@waku/sds 0.0.2-c41b319.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,168 @@
1
+ // This file contains the probability tables used to determine the optimal number of
2
+ // hash functions (k) and bits per element (m/n) for a Bloom filter.
3
+ //
4
+ // These are used to determine how to construct a Bloom filter that can perform
5
+ // lookups with false-positive rate low enough to be satisfactory.
6
+
7
+ /**
8
+ * Represents the error rates for a given number of hash functions (k) across
9
+ * different (m/n) ratios (i.e., bits per element).
10
+ */
11
+ type TErrorForK = Float32Array;
12
+
13
+ /**
14
+ * An array where each index corresponds to a value of k (the number of hash functions),
15
+ * and each element is a vector of false-positive rates for varying bits-per-element ratios.
16
+ * Example:
17
+ * ```ts
18
+ * // Probability of a false positive upon lookup when using 1 hash function (k=1)
19
+ * // and 15 bits per element (mOverN=15):
20
+ * const falsePositiveRate = kErrors[1][15];
21
+ * ```
22
+ */
23
+ type TAllErrorRates = Array<TErrorForK>;
24
+
25
+ /**
26
+ * Table of false positive rates for values of k from 0 to 12, and bits-per-element
27
+ * ratios ranging from 0 up to around 32. Each Float32Array is indexed by mOverN,
28
+ * so kErrors[k][mOverN] gives the estimated false-positive probability.
29
+ *
30
+ * These values mirror commonly used reference data found in Bloom filter literature,
31
+ * such as:
32
+ * https://pages.cs.wisc.edu/~cao/papers/summary-cache/node8.html
33
+ * https://dl.acm.org/doi/pdf/10.1145/362686.362692
34
+ */
35
+ // prettier-ignore
36
+ export const kErrors: TAllErrorRates = [
37
+ new Float32Array([1.0]),
38
+ new Float32Array([1.0, 1.0, 0.3930000000, 0.2830000000, 0.2210000000, 0.1810000000,
39
+ 0.1540000000, 0.1330000000, 0.1180000000, 0.1050000000, 0.0952000000,
40
+ 0.0869000000, 0.0800000000, 0.0740000000, 0.0689000000, 0.0645000000,
41
+ 0.0606000000, 0.0571000000, 0.0540000000, 0.0513000000, 0.0488000000,
42
+ 0.0465000000, 0.0444000000, 0.0425000000, 0.0408000000, 0.0392000000,
43
+ 0.0377000000, 0.0364000000, 0.0351000000, 0.0339000000, 0.0328000000,
44
+ 0.0317000000, 0.0308000000]),
45
+
46
+ new Float32Array([1.0, 1.0, 0.4000000000, 0.2370000000, 0.1550000000, 0.1090000000,
47
+ 0.0804000000, 0.0618000000, 0.0489000000, 0.0397000000, 0.0329000000,
48
+ 0.0276000000, 0.0236000000, 0.0203000000, 0.0177000000, 0.0156000000,
49
+ 0.0138000000, 0.0123000000, 0.0111000000, 0.0099800000, 0.0090600000,
50
+ 0.0082500000, 0.0075500000, 0.0069400000, 0.0063900000, 0.0059100000,
51
+ 0.0054800000, 0.0051000000, 0.0047500000, 0.0044400000, 0.0041600000,
52
+ 0.0039000000, 0.0036700000]),
53
+
54
+ new Float32Array([1.0, 1.0, 1.0, 0.2530000000, 0.1470000000, 0.0920000000,
55
+ 0.0609000000, 0.0423000000, 0.0306000000, 0.0228000000, 0.0174000000,
56
+ 0.0136000000, 0.0108000000, 0.0087500000, 0.0071800000, 0.0059600000,
57
+ 0.0108000000, 0.0087500000, 0.0071800000, 0.0059600000, 0.0050000000,
58
+ 0.0042300000, 0.0036200000, 0.0031200000, 0.0027000000, 0.0023600000,
59
+ 0.0020700000, 0.0018300000, 0.0016200000, 0.0014500000, 0.0012900000,
60
+ 0.0011600000, 0.0010500000, 0.0009490000, 0.0008620000, 0.0007850000,
61
+ 0.0007170000]),
62
+
63
+ new Float32Array([1.0, 1.0, 1.0, 1.0, 0.1600000000, 0.0920000000, 0.0561000000, 0.0359000000,
64
+ 0.0240000000, 0.0166000000, 0.0118000000, 0.0086400000, 0.0064600000,
65
+ 0.0049200000, 0.0038100000, 0.0030000000, 0.0023900000, 0.0019300000,
66
+ 0.0015800000, 0.0013000000, 0.0010800000, 0.0009050000, 0.0007640000,
67
+ 0.0006490000, 0.0005550000, 0.0004780000, 0.0004130000, 0.0003590000,
68
+ 0.0003140000, 0.0002760000, 0.0002430000, 0.0002150000, 0.0001910000]),
69
+
70
+ new Float32Array([1.0, 1.0, 1.0, 1.0, 1.0, 0.1010000000, 0.0578000000, 0.0347000000,
71
+ 0.0217000000, 0.0141000000, 0.0094300000, 0.0065000000, 0.0045900000,
72
+ 0.0033200000, 0.0024400000, 0.0018300000, 0.0013900000, 0.0010700000,
73
+ 0.0008390000, 0.0006630000, 0.0005300000, 0.0004270000, 0.0003470000,
74
+ 0.0002850000, 0.0002350000, 0.0001960000, 0.0001640000, 0.0001380000,
75
+ 0.0001170000, 0.0000996000, 0.0000853000, 0.0000733000, 0.0000633000]),
76
+
77
+ new Float32Array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0638000000, 0.0364000000, 0.0216000000,
78
+ 0.0133000000, 0.0084400000, 0.0055200000, 0.0037100000, 0.0025500000,
79
+ 0.0017900000, 0.0012800000, 0.0009350000, 0.0006920000, 0.0005190000,
80
+ 0.0003940000, 0.0003030000, 0.0002360000, 0.0001850000, 0.0001470000,
81
+ 0.0001170000, 0.0000944000, 0.0000766000, 0.0000626000, 0.0000515000,
82
+ 0.0000426000, 0.0000355000, 0.0000297000, 0.0000250000]),
83
+
84
+ new Float32Array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0229000000, 0.0135000000, 0.0081900000,
85
+ 0.0051300000, 0.0032900000, 0.0021700000, 0.0014600000, 0.0010000000,
86
+ 0.0007020000, 0.0004990000, 0.0003600000, 0.0002640000, 0.0001960000,
87
+ 0.0001470000, 0.0001120000, 0.0000856000, 0.0000663000, 0.0000518000,
88
+ 0.0000408000, 0.0000324000, 0.0000259000, 0.0000209000, 0.0000169000,
89
+ 0.0000138000, 0.0000113000]),
90
+
91
+ new Float32Array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
92
+ 1.0, 0.0145000000, 0.0084600000, 0.0050900000, 0.0031400000, 0.0019900000,
93
+ 0.0012900000, 0.0008520000, 0.0005740000, 0.0003940000, 0.0002750000,
94
+ 0.0001940000, 0.0001400000, 0.0001010000, 0.0000746000, 0.0000555000,
95
+ 0.0000417000, 0.0000316000, 0.0000242000, 0.0000187000, 0.0000146000,
96
+ 0.0000114000, 0.0000090100, 0.0000071600, 0.0000057300]),
97
+
98
+ new Float32Array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0053100000, 0.0031700000,
99
+ 0.0019400000, 0.0012100000, 0.0007750000, 0.0005050000, 0.0003350000,
100
+ 0.0002260000, 0.0001550000, 0.0001080000, 0.0000759000, 0.0000542000,
101
+ 0.0000392000, 0.0000286000, 0.0000211000, 0.0000157000, 0.0000118000,
102
+ 0.0000089600, 0.0000068500, 0.0000052800, 0.0000041000, 0.0000032000]),
103
+
104
+ new Float32Array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0033400000,
105
+ 0.0019800000, 0.0012000000, 0.0007440000, 0.0004700000, 0.0003020000,
106
+ 0.0001980000, 0.0001320000, 0.0000889000, 0.0000609000, 0.0000423000,
107
+ 0.0000297000, 0.0000211000, 0.0000152000, 0.0000110000, 0.0000080700,
108
+ 0.0000059700, 0.0000044500, 0.0000033500, 0.0000025400, 0.0000019400]),
109
+
110
+ new Float32Array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
111
+ 0.0021000000, 0.0012400000, 0.0007470000, 0.0004590000, 0.0002870000,
112
+ 0.0001830000, 0.0001180000, 0.0000777000, 0.0000518000, 0.0000350000,
113
+ 0.0000240000, 0.0000166000, 0.0000116000, 0.0000082300, 0.0000058900,
114
+ 0.0000042500, 0.0000031000, 0.0000022800, 0.0000016900, 0.0000012600]),
115
+
116
+ new Float32Array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
117
+ 0.0007780000, 0.0004660000, 0.0002840000, 0.0001760000, 0.0001110000,
118
+ 0.0000712000, 0.0000463000, 0.0000305000, 0.0000204000, 0.0000138000,
119
+ 0.0000094200, 0.0000065200, 0.0000045600, 0.0000032200, 0.0000022900,
120
+ 0.0000016500, 0.0000012000, 0.0000008740]),
121
+ ]
122
+
123
+ export const KTooLargeError = "K must be <= 12";
124
+ export const NoSuitableRatioError =
125
+ "Specified value of k and error rate not achievable using less than 4 bytes / element.";
126
+
127
+ /**
128
+ * Given a number of hash functions (k) and a target false-positive rate (targetError),
129
+ * determines the minimum (m/n) bits-per-element that satisfies the error threshold.
130
+ *
131
+ * In the context of a Bloom filter:
132
+ * - m is the total number of bits in the filter.
133
+ * - n is the number of elements you expect to insert.
134
+ * Thus, (m/n) describes how many bits are assigned per inserted element.
135
+ *
136
+ * Example:
137
+ * ```ts
138
+ * // We want to use 3 hash functions (k=3) and a false-positive rate of 1% (targetError=0.01).
139
+ * const mOverN = getMOverNBitsForK(3, 0.01);
140
+ * // The function will iterate through the error tables and find the smallest m/n that satisfies the error threshold.
141
+ * // In this case, kErrors[3][5] is the first value in the vector kErrors[3] that is less than 0.01 (0.0920000000).
142
+ * console.log(mOverN); // 5
143
+ * ```
144
+ *
145
+ * @param k - The number of hash functions.
146
+ * @param targetError - The desired maximum false-positive rate.
147
+ * @param probabilityTable - An optional table of false-positive probabilities indexed by k.
148
+ * @returns The smallest (m/n) bit ratio for which the false-positive rate is below targetError.
149
+ * @throws If k is out of range or if no suitable ratio can be found.
150
+ */
151
+ export function getMOverNBitsForK(
152
+ k: number,
153
+ targetError: number,
154
+ probabilityTable = kErrors
155
+ ): number {
156
+ // Returns the optimal number of m/n bits for a given k.
157
+ if (k < 0 || k > 12) {
158
+ throw new Error(KTooLargeError);
159
+ }
160
+
161
+ for (let mOverN = 2; mOverN < probabilityTable[k].length; mOverN++) {
162
+ if (probabilityTable[k][mOverN] < targetError) {
163
+ return mOverN;
164
+ }
165
+ }
166
+
167
+ throw new Error(NoSuitableRatioError);
168
+ }
package/src/sds.ts ADDED
@@ -0,0 +1,190 @@
1
+ import { sha256 } from "@noble/hashes/sha256";
2
+ import { bytesToHex } from "@noble/hashes/utils";
3
+ import { proto_sds_message } from "@waku/proto";
4
+
5
+ import { DefaultBloomFilter } from "./bloom.js";
6
+
7
+ export type Message = proto_sds_message.SdsMessage;
8
+ export type ChannelId = string;
9
+
10
+ export const DEFAULT_BLOOM_FILTER_OPTIONS = {
11
+ capacity: 10000,
12
+ errorRate: 0.001
13
+ };
14
+
15
+ const DEFAULT_CAUSAL_HISTORY_SIZE = 2;
16
+
17
+ export class MessageChannel {
18
+ private lamportTimestamp: number;
19
+ private filter: DefaultBloomFilter;
20
+ private outgoingBuffer: Message[];
21
+ private acknowledgements: Map<string, number>;
22
+ private incomingBuffer: Message[];
23
+ private messageIdLog: { timestamp: number; messageId: string }[];
24
+ private channelId: ChannelId;
25
+ private causalHistorySize: number;
26
+ private acknowledgementCount: number;
27
+
28
+ public constructor(
29
+ channelId: ChannelId,
30
+ causalHistorySize: number = DEFAULT_CAUSAL_HISTORY_SIZE
31
+ ) {
32
+ this.channelId = channelId;
33
+ this.lamportTimestamp = 0;
34
+ this.filter = new DefaultBloomFilter(DEFAULT_BLOOM_FILTER_OPTIONS);
35
+ this.outgoingBuffer = [];
36
+ this.acknowledgements = new Map();
37
+ this.incomingBuffer = [];
38
+ this.messageIdLog = [];
39
+ this.causalHistorySize = causalHistorySize;
40
+ this.acknowledgementCount = this.getAcknowledgementCount();
41
+ }
42
+
43
+ public static getMessageId(payload: Uint8Array): string {
44
+ return bytesToHex(sha256(payload));
45
+ }
46
+
47
+ /**
48
+ * Send a message to the SDS channel.
49
+ *
50
+ * Increments the lamport timestamp, constructs a `Message` object
51
+ * with the given payload, and adds it to the outgoing buffer.
52
+ *
53
+ * If the callback is successful, the message is also added to
54
+ * the bloom filter and message history. In the context of
55
+ * Waku, this likely means the message was published via
56
+ * light push or relay.
57
+ *
58
+ * See https://rfc.vac.dev/vac/raw/sds/#send-message
59
+ *
60
+ * @param payload - The payload to send.
61
+ * @param callback - A callback function that returns a boolean indicating whether the message was sent successfully.
62
+ */
63
+ public sendMessage(
64
+ payload: Uint8Array,
65
+ callback?: (message: Message) => boolean
66
+ ): void {
67
+ this.lamportTimestamp++;
68
+
69
+ const messageId = MessageChannel.getMessageId(payload);
70
+
71
+ const message: Message = {
72
+ messageId,
73
+ channelId: this.channelId,
74
+ lamportTimestamp: this.lamportTimestamp,
75
+ causalHistory: this.messageIdLog
76
+ .slice(-this.causalHistorySize)
77
+ .map(({ messageId }) => messageId),
78
+ bloomFilter: this.filter.toBytes(),
79
+ content: payload
80
+ };
81
+
82
+ this.outgoingBuffer.push(message);
83
+
84
+ if (callback) {
85
+ const success = callback(message);
86
+ if (success) {
87
+ this.filter.insert(messageId);
88
+ this.messageIdLog.push({ timestamp: this.lamportTimestamp, messageId });
89
+ }
90
+ }
91
+ }
92
+
93
+ /**
94
+ * Process a received SDS message for this channel.
95
+ *
96
+ * Review the acknowledgement status of messages in the outgoing buffer
97
+ * by inspecting the received message's bloom filter and causal history.
98
+ * Add the received message to the bloom filter.
99
+ * If the local history contains every message in the received message's
100
+ * causal history, deliver the message. Otherwise, add the message to the
101
+ * incoming buffer.
102
+ *
103
+ * See https://rfc.vac.dev/vac/raw/sds/#receive-message
104
+ *
105
+ * @param message - The received SDS message.
106
+ */
107
+ public receiveMessage(message: Message): void {
108
+ // review ack status
109
+ this.reviewAckStatus(message);
110
+ // add to bloom filter
111
+ this.filter.insert(message.messageId);
112
+ // verify causal history
113
+ const dependenciesMet = message.causalHistory.every((messageId) =>
114
+ this.messageIdLog.some(
115
+ ({ messageId: logMessageId }) => logMessageId === messageId
116
+ )
117
+ );
118
+ if (!dependenciesMet) {
119
+ this.incomingBuffer.push(message);
120
+ } else {
121
+ this.deliverMessage(message);
122
+ }
123
+ }
124
+
125
+ // See https://rfc.vac.dev/vac/raw/sds/#deliver-message
126
+ private deliverMessage(message: Message): void {
127
+ const messageLamportTimestamp = message.lamportTimestamp ?? 0;
128
+ if (messageLamportTimestamp > this.lamportTimestamp) {
129
+ this.lamportTimestamp = messageLamportTimestamp;
130
+ }
131
+
132
+ // The participant MUST insert the message ID into its local log,
133
+ // based on Lamport timestamp.
134
+ // If one or more message IDs with the same Lamport timestamp already exists,
135
+ // the participant MUST follow the Resolve Conflicts procedure.
136
+ // https://rfc.vac.dev/vac/raw/sds/#resolve-conflicts
137
+ this.messageIdLog.push({
138
+ timestamp: messageLamportTimestamp,
139
+ messageId: message.messageId
140
+ });
141
+ this.messageIdLog.sort((a, b) => {
142
+ if (a.timestamp !== b.timestamp) {
143
+ return a.timestamp - b.timestamp;
144
+ }
145
+ return a.messageId.localeCompare(b.messageId);
146
+ });
147
+ }
148
+
149
+ // See https://rfc.vac.dev/vac/raw/sds/#review-ack-status
150
+ private reviewAckStatus(receivedMessage: Message): void {
151
+ // the participant MUST mark all messages in the received causal_history as acknowledged.
152
+ receivedMessage.causalHistory.forEach((messageId) => {
153
+ this.outgoingBuffer = this.outgoingBuffer.filter(
154
+ (msg) => msg.messageId !== messageId
155
+ );
156
+ this.acknowledgements.delete(messageId);
157
+ if (!this.filter.lookup(messageId)) {
158
+ this.filter.insert(messageId);
159
+ }
160
+ });
161
+ // the participant MUST mark all messages included in the bloom_filter as possibly acknowledged
162
+ if (!receivedMessage.bloomFilter) {
163
+ return;
164
+ }
165
+ const messageBloomFilter = DefaultBloomFilter.fromBytes(
166
+ receivedMessage.bloomFilter,
167
+ this.filter.options
168
+ );
169
+ this.outgoingBuffer = this.outgoingBuffer.filter((message) => {
170
+ if (!messageBloomFilter.lookup(message.messageId)) {
171
+ return true;
172
+ }
173
+ // If a message appears as possibly acknowledged in multiple received bloom filters,
174
+ // the participant MAY mark it as acknowledged based on probabilistic grounds,
175
+ // taking into account the bloom filter size and hash number.
176
+ const count = (this.acknowledgements.get(message.messageId) ?? 0) + 1;
177
+ if (count < this.acknowledgementCount) {
178
+ this.acknowledgements.set(message.messageId, count);
179
+ return true;
180
+ }
181
+ this.acknowledgements.delete(message.messageId);
182
+ return false;
183
+ });
184
+ }
185
+
186
+ // TODO: this should be determined based on the bloom filter parameters and number of hashes
187
+ private getAcknowledgementCount(): number {
188
+ return 2;
189
+ }
190
+ }