@visactor/vutils 1.0.20 → 1.0.21

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -9,38 +9,60 @@ function tricube(u) {
9
9
  return t * t * t;
10
10
  }
11
11
 
12
+ function stratifiedSample(sortedData, maxSamples) {
13
+ const n = sortedData.length;
14
+ if (n <= maxSamples) return sortedData;
15
+ const sampled = [], step = n / maxSamples;
16
+ for (let i = 0; i < maxSamples; i++) {
17
+ const idx = Math.min(Math.floor(i * step), n - 1);
18
+ sampled.push(sortedData[idx]);
19
+ }
20
+ return sampled;
21
+ }
22
+
12
23
  export function regressionLowess(data, x = (d => d.x), y = (d => d.y), options = {}) {
13
24
  var _a;
14
- const span = options.span || .3, degree = 0 === options.degree ? 0 : 1, alpha = null !== (_a = null == options ? void 0 : options.alpha) && void 0 !== _a ? _a : .05, iterations = null == options.iterations ? 2 : options.iterations, ptsX = [], ptsY = [];
25
+ const span = options.span || .3, degree = 0 === options.degree ? 0 : 1, alpha = null !== (_a = options.alpha) && void 0 !== _a ? _a : .05, iterations = null == options.iterations ? 2 : options.iterations, maxSamples = options.maxSamples || 1e3, rawPoints = [];
15
26
  visitPoints(data, x, y, ((dx, dy) => {
16
- ptsX.push(dx), ptsY.push(dy);
17
- }));
18
- const n = ptsX.length;
27
+ rawPoints.push({
28
+ x: dx,
29
+ y: dy
30
+ });
31
+ })), rawPoints.sort(((a, b) => a.x - b.x));
32
+ const sampledPoints = stratifiedSample(rawPoints, maxSamples), n = sampledPoints.length, ptsX = new Array(n), ptsY = new Array(n);
33
+ for (let i = 0; i < n; i++) ptsX[i] = sampledPoints[i].x, ptsY[i] = sampledPoints[i].y;
19
34
  function predictSingle(x0, robustWeights) {
20
35
  if (0 === n) return 0;
21
- const dists = [];
22
- for (let i = 0; i < n; i++) dists.push({
23
- idx: i,
24
- dist: Math.abs(ptsX[i] - x0)
25
- });
26
- dists.sort(((a, b) => a.dist - b.dist));
27
- const m = Math.max(2, Math.min(n, Math.floor(span * n))), maxDist = dists[m - 1].dist || 0, w = new Array(m);
36
+ let left = 0, right = n;
37
+ for (;left < right; ) {
38
+ const mid = left + right >> 1;
39
+ ptsX[mid] < x0 ? left = mid + 1 : right = mid;
40
+ }
41
+ const m = Math.max(2, Math.min(n, Math.floor(span * n))), start = Math.max(0, left - Math.floor(m / 2)), end = Math.min(n, start + m), actualStart = Math.max(0, end - m);
42
+ let maxDist = 0;
43
+ const windowSize = end - actualStart, distances = new Array(windowSize);
44
+ for (let i = actualStart; i < end; i++) {
45
+ const dist = Math.abs(ptsX[i] - x0);
46
+ distances[i - actualStart] = dist, dist > maxDist && (maxDist = dist);
47
+ }
28
48
  let sumw = 0;
29
- for (let i = 0; i < m; i++) {
30
- const idx = dists[i].idx;
31
- let wi = tricube(0 === maxDist ? 0 : dists[i].dist / maxDist);
32
- robustWeights && null != robustWeights[idx] && (wi *= robustWeights[idx]), w[i] = wi,
33
- sumw += wi;
49
+ const w = new Array(windowSize);
50
+ for (let i = 0; i < windowSize; i++) {
51
+ let wi = tricube(0 === maxDist ? 0 : distances[i] / maxDist);
52
+ robustWeights && null != robustWeights[actualStart + i] && (wi *= robustWeights[actualStart + i]),
53
+ w[i] = wi, sumw += wi;
54
+ }
55
+ if (0 === sumw) {
56
+ return ptsY[left < n ? left : n - 1];
34
57
  }
35
- if (0 === sumw) return ptsY[dists[0].idx];
36
58
  if (0 === degree) {
37
59
  let s = 0;
38
- for (let i = 0; i < m; i++) s += w[i] * ptsY[dists[i].idx];
60
+ for (let i = 0; i < w.length; i++) s += w[i] * ptsY[actualStart + i];
39
61
  return s / sumw;
40
62
  }
41
63
  let sw = 0, sx = 0, sy = 0, sxx = 0, sxy = 0;
42
- for (let i = 0; i < m; i++) {
43
- const idx = dists[i].idx, xi = ptsX[idx], yi = ptsY[idx], wi = w[i];
64
+ for (let i = actualStart; i < end; i++) {
65
+ const idx = i - actualStart, xi = ptsX[i], yi = ptsY[i], wi = w[idx];
44
66
  sw += wi, sx += wi * xi, sy += wi * yi, sxx += wi * xi * xi, sxy += wi * xi * yi;
45
67
  }
46
68
  const meanX = sx / sw, meanY = sy / sw, denom = sxx - sx * meanX, slope = Math.abs(denom) < 1e-12 ? 0 : (sxy - sx * meanY) / denom;
@@ -48,8 +70,8 @@ export function regressionLowess(data, x = (d => d.x), y = (d => d.y), options =
48
70
  }
49
71
  function predict(x0) {
50
72
  if (Array.isArray(x0)) {
51
- const out = [];
52
- for (let i = 0; i < x0.length; i++) out.push(predictSingle(x0[i]));
73
+ const len = x0.length, out = new Array(len);
74
+ for (let i = 0; i < len; i++) out[i] = predictSingle(x0[i]);
53
75
  return out;
54
76
  }
55
77
  return predictSingle(x0);
@@ -58,26 +80,23 @@ export function regressionLowess(data, x = (d => d.x), y = (d => d.y), options =
58
80
  predict: predict,
59
81
  evaluate: predict,
60
82
  evaluateGrid: function(N) {
61
- const out = [];
62
- if (N <= 0) return out;
63
- if (0 === n) return out;
64
- let min = 1 / 0, max = -1 / 0;
65
- for (let i = 0; i < n; i++) ptsX[i] < min && (min = ptsX[i]), ptsX[i] > max && (max = ptsX[i]);
83
+ if (N <= 0) return [];
84
+ if (0 === n) return [];
85
+ const out = new Array(N), min = ptsX[0], max = ptsX[n - 1];
66
86
  if (min === max) {
67
87
  const v = predictSingle(min);
68
- for (let i = 0; i < N; i++) out.push({
88
+ for (let i = 0; i < N; i++) out[i] = {
69
89
  x: min,
70
90
  y: v
71
- });
91
+ };
72
92
  return out;
73
93
  }
74
94
  const step = (max - min) / (N - 1);
75
95
  let robustWeights;
76
- for (let iter = 0; iter < iterations; iter++) {
77
- const fits = [];
78
- for (let i = 0; i < n; i++) fits.push(predictSingle(ptsX[i], robustWeights));
79
- const res = [];
80
- for (let i = 0; i < n; i++) res.push(Math.abs(ptsY[i] - fits[i]));
96
+ const effectiveIterations = null != options.iterations ? iterations : n > 500 ? 0 : iterations;
97
+ if (effectiveIterations > 0) for (let iter = 0; iter < effectiveIterations; iter++) {
98
+ const fits = new Array(n), res = new Array(n);
99
+ for (let i = 0; i < n; i++) fits[i] = predictSingle(ptsX[i], robustWeights), res[i] = Math.abs(ptsY[i] - fits[i]);
81
100
  const med = res.slice().sort(((a, b) => a - b))[Math.floor(n / 2)] || 0;
82
101
  robustWeights = new Array(n);
83
102
  for (let i = 0; i < n; i++) {
@@ -87,10 +106,10 @@ export function regressionLowess(data, x = (d => d.x), y = (d => d.y), options =
87
106
  }
88
107
  for (let i = 0; i < N; i++) {
89
108
  const px = i === N - 1 ? max : min + step * i;
90
- out.push({
109
+ out[i] = {
91
110
  x: px,
92
111
  y: predictSingle(px, robustWeights)
93
- });
112
+ };
94
113
  }
95
114
  return out;
96
115
  },
@@ -98,9 +117,8 @@ export function regressionLowess(data, x = (d => d.x), y = (d => d.y), options =
98
117
  const out = [];
99
118
  if (N <= 0) return out;
100
119
  if (0 === n) return out;
101
- let min = 1 / 0, max = -1 / 0;
102
- for (let i = 0; i < n; i++) ptsX[i] < min && (min = ptsX[i]), ptsX[i] > max && (max = ptsX[i]);
103
- if (min === 1 / 0 || max === -1 / 0) return out;
120
+ const min = ptsX[0], max = ptsX[n - 1];
121
+ if (void 0 === min || void 0 === max || min === 1 / 0 || max === -1 / 0) return out;
104
122
  const comps = computeLinearCIComponents(data, x, y, (xx => predictSingle(xx)));
105
123
  if (0 === comps.n) return out;
106
124
  const z = Math.abs(invNorm(1 - alpha / 2));
@@ -1 +1 @@
1
- {"version":3,"sources":["../src/common/regression-lowess.ts"],"names":[],"mappings":"AAAA,OAAO,EAAE,WAAW,EAAE,MAAM,qBAAqB,CAAC;AAClD,OAAO,EAAE,yBAAyB,EAAE,OAAO,EAAE,WAAW,EAAE,MAAM,oBAAoB,CAAC;AAErF,SAAS,OAAO,CAAC,CAAS;IACxB,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;IACvB,IAAI,EAAE,IAAI,CAAC,EAAE;QACX,OAAO,CAAC,CAAC;KACV;IACD,MAAM,CAAC,GAAG,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;IAC3B,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AACnB,CAAC;AASD,MAAM,UAAU,gBAAgB,CAC9B,IAAW,EACX,IAAwB,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAChC,IAAwB,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAChC,UAAkF,EAAE;;IAEpF,MAAM,IAAI,GAAG,OAAO,CAAC,IAAI,IAAI,GAAG,CAAC;IACjC,MAAM,MAAM,GAAG,OAAO,CAAC,MAAM,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;IAC5C,MAAM,KAAK,GAAG,MAAA,OAAO,aAAP,OAAO,uBAAP,OAAO,CAAE,KAAK,mCAAI,IAAI,CAAC;IACrC,MAAM,UAAU,GAAG,OAAO,CAAC,UAAU,IAAI,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO,CAAC,UAAU,CAAC;IAEvE,MAAM,IAAI,GAAa,EAAE,CAAC;IAC1B,MAAM,IAAI,GAAa,EAAE,CAAC;IAC1B,WAAW,CAAC,IAAI,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE;QACjC,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;QACd,IAAI,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;IAChB,CAAC,CAAC,CAAC;IAEH,MAAM,CAAC,GAAG,IAAI,CAAC,MAAM,CAAC;IACtB,SAAS,aAAa,CAAC,EAAU,EAAE,aAAwB;QACzD,IAAI,CAAC,KAAK,CAAC,EAAE;YACX,OAAO,CAAC,CAAC;SACV;QAED,MAAM,KAAK,GAAoC,EAAE,CAAC;QAClD,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;YAC1B,KAAK,CAAC,IAAI,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,IAAI,EAAE,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC,EAAE,CAAC,CAAC;SACtD;QACD,KAAK,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,IAAI,GAAG,CAAC,CAAC,IAAI,CAAC,CAAC;QACtC,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;QACzD,MAAM,OAAO,GAAG,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,IAAI,CAAC,CAAC;QAGvC,MAAM,CAAC,GAAa,IAAI,KAAK,CAAC,CAAC,CAAC,CAAC;QACjC,IAAI,IAAI,GAAG,CAAC,CAAC;QACb,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;YAC1B,MAAM,GAAG,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;YACzB,MAAM,CAAC,GAAG,OAAO,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,IAAI,GAAG,OAAO,CAAC;YACtD,IAAI,EAAE,GAAG,OAAO,CAAC,CAAC,CAAC,CAAC;YACpB,IAAI,aAAa,IAAI,aAAa,CAAC,GAAG,CAAC,IAAI,IAAI,EAAE;gBAC/C,EAAE,IAAI,aAAa,CAAC,GAAG,CAAC,CAAC;aAC1B;YACD,CAAC,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC;YACV,IAAI,IAAI,EAAE,CAAC;SACZ;QAED,IAAI,IAAI,KAAK,CAAC,EAAE;YAEd,OAAO,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;SAC3B;QAED,IAAI,MAAM,KAAK,CAAC,EAAE;YAChB,IAAI,CAAC,GAAG,CAAC,CAAC;YACV,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;gBAC1B,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;aAChC;YACD,OAAO,CAAC,GAAG,IAAI,CAAC;SACjB;QAGD,IAAI,EAAE,GAAG,CAAC,CAAC;QACX,IAAI,EAAE,GAAG,CAAC,CAAC;QACX,IAAI,EAAE,GAAG,CAAC,CAAC;QACX,IAAI,GAAG,GAAG,CAAC,CAAC;QACZ,IAAI,GAAG,GAAG,CAAC,CAAC;QACZ,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;YAC1B,MAAM,GAAG,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC;YACzB,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC;YACrB,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC;YACrB,MAAM,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;YAChB,EAAE,IAAI,EAAE,CAAC;YACT,EAAE,IAAI,EAAE,GAAG,EAAE,CAAC;YACd,EAAE,IAAI,EAAE,GAAG,EAAE,CAAC;YACd,GAAG,IAAI,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;YACpB,GAAG,IAAI,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;SACrB;QAED,MAAM,KAAK,GAAG,EAAE,GAAG,EAAE,CAAC;QACtB,MAAM,KAAK,GAAG,EAAE,GAAG,EAAE,CAAC;QACtB,MAAM,KAAK,GAAG,GAAG,GAAG,EAAE,GAAG,KAAK,CAAC;QAC/B,MAAM,KAAK,GAAG,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,EAAE,GAAG,KAAK,CAAC,GAAG,KAAK,CAAC;QACvE,MAAM,SAAS,GAAG,KAAK,GAAG,KAAK,GAAG,KAAK,CAAC;QACxC,OAAO,SAAS,GAAG,KAAK,GAAG,EAAE,CAAC;IAChC,CAAC;IAED,SAAS,OAAO,CAAC,EAAqB;QACpC,IAAI,KAAK,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE;YACrB,MAAM,GAAG,GAAa,EAAE,CAAC;YACzB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,EAAE,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE;gBAClC,GAAG,CAAC,IAAI,CAAC,aAAa,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;aAChC;YACD,OAAO,GAAG,CAAC;SACZ;QACD,OAAO,aAAa,CAAC,EAAY,CAAC,CAAC;IACrC,CAAC;IAED,SAAS,YAAY,CAAC,CAAS;QAC7B,MAAM,GAAG,GAA+B,EAAE,CAAC;QAC3C,IAAI,CAAC,IAAI,CAAC,EAAE;YACV,OAAO,GAAG,CAAC;SACZ;QACD,IAAI,CAAC,KAAK,CAAC,EAAE;YACX,OAAO,GAAG,CAAC;SACZ;QACD,IAAI,GAAG,GAAG,QAAQ,CAAC;QACnB,IAAI,GAAG,GAAG,CAAC,QAAQ,CAAC;QACpB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;YAC1B,IAAI,IAAI,CAAC,CAAC,CAAC,GAAG,GAAG,EAAE;gBACjB,GAAG,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;aACf;YACD,IAAI,IAAI,CAAC,CAAC,CAAC,GAAG,GAAG,EAAE;gBACjB,GAAG,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;aACf;SACF;QACD,IAAI,GAAG,KAAK,GAAG,EAAE;YACf,MAAM,CAAC,GAAG,aAAa,CAAC,GAAG,CAAC,CAAC;YAC7B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;gBAC1B,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC;aAC5B;YACD,OAAO,GAAG,CAAC;SACZ;QACD,MAAM,IAAI,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QAGnC,IAAI,aAAmC,CAAC;QACxC,KAAK,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,GAAG,UAAU,EAAE,IAAI,EAAE,EAAE;YAE5C,MAAM,IAAI,GAAa,EAAE,CAAC;YAC1B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;gBAC1B,IAAI,CAAC,IAAI,CAAC,aAAa,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,aAAa,CAAC,CAAC,CAAC;aAClD;YAED,MAAM,GAAG,GAAa,EAAE,CAAC;YACzB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;gBAC1B,GAAG,CAAC,IAAI,CAAC,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;aACvC;YAED,MAAM,SAAS,GAAG,GAAG,CAAC,KAAK,EAAE,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;YACpD,MAAM,GAAG,GAAG,SAAS,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC;YAC9C,aAAa,GAAG,IAAI,KAAK,CAAC,CAAC,CAAC,CAAC;YAC7B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;gBAC1B,MAAM,CAAC,GAAG,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC;gBAC7C,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;gBAC3D,aAAa,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;aACtB;SACF;QAED,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;YAC1B,MAAM,EAAE,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,GAAG,IAAI,GAAG,CAAC,CAAC;YAC9C,GAAG,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,aAAa,CAAC,EAAE,EAAE,aAAa,CAAC,EAAE,CAAC,CAAC;SAC1D;QACD,OAAO,GAAG,CAAC;IACb,CAAC;IAED,SAAS,kBAAkB,CAAC,IAAY,EAAE;QACxC,MAAM,GAAG,GAAsG,EAAE,CAAC;QAElH,IAAI,CAAC,IAAI,CAAC,EAAE;YACV,OAAO,GAAG,CAAC;SACZ;QACD,IAAI,CAAC,KAAK,CAAC,EAAE;YACX,OAAO,GAAG,CAAC;SACZ;QAGD,IAAI,GAAG,GAAG,QAAQ,CAAC;QACnB,IAAI,GAAG,GAAG,CAAC,QAAQ,CAAC;QACpB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;YAC1B,IAAI,IAAI,CAAC,CAAC,CAAC,GAAG,GAAG,EAAE;gBACjB,GAAG,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;aACf;YACD,IAAI,IAAI,CAAC,CAAC,CAAC,GAAG,GAAG,EAAE;gBACjB,GAAG,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;aACf;SACF;QACD,IAAI,GAAG,KAAK,QAAQ,IAAI,GAAG,KAAK,CAAC,QAAQ,EAAE;YACzC,OAAO,GAAG,CAAC;SACZ;QAED,MAAM,KAAK,GAAG,yBAAyB,CAAC,IAAI,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAU,EAAE,EAAE,CAAC,aAAa,CAAC,EAAE,CAAC,CAAC,CAAC;QACvF,IAAI,KAAK,CAAC,CAAC,KAAK,CAAC,EAAE;YACjB,OAAO,GAAG,CAAC;SACZ;QAED,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,OAAO,CAAC,CAAC,GAAG,KAAK,GAAG,CAAC,CAAC,CAAC,CAAC;QAC3C,IAAI,KAAK,CAAC,GAAG,KAAK,KAAK,CAAC,GAAG,EAAE;YAC3B,MAAM,CAAC,GAAG,aAAa,CAAC,KAAK,CAAC,GAAG,CAAC,CAAC;YACnC,MAAM,IAAI,GAAG,WAAW,CAAC,KAAK,CAAC,GAAG,EAAE,KAAK,CAAC,CAAC;YAC3C,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;gBAC1B,GAAG,CAAC,IAAI,CAAC;oBACP,CAAC,EAAE,KAAK,CAAC,GAAG;oBACZ,IAAI,EAAE,CAAC;oBACP,KAAK,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM;oBAC1B,KAAK,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM;oBAC1B,SAAS,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM;oBAC9B,SAAS,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM;iBAC/B,CAAC,CAAC;aACJ;YACD,OAAO,GAAG,CAAC;SACZ;QAED,MAAM,IAAI,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QACnC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;YAC1B,MAAM,EAAE,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,GAAG,IAAI,GAAG,CAAC,CAAC;YAC9C,MAAM,EAAE,GAAG,aAAa,CAAC,EAAE,CAAC,CAAC;YAC7B,MAAM,IAAI,GAAG,WAAW,CAAC,EAAE,EAAE,KAAK,CAAC,CAAC;YACpC,GAAG,CAAC,IAAI,CAAC;gBACP,CAAC,EAAE,EAAE;gBACL,IAAI,EAAE,EAAE;gBACR,KAAK,EAAE,EAAE,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM;gBAC3B,KAAK,EAAE,EAAE,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM;gBAC3B,SAAS,EAAE,EAAE,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM;gBAC/B,SAAS,EAAE,EAAE,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM;aAChC,CAAC,CAAC;SACJ;QACD,OAAO,GAAG,CAAC;IACb,CAAC;IAED,OAAO;QACL,OAAO;QACP,QAAQ,EAAE,OAAc;QACxB,YAAY;QACZ,kBAAkB;KACnB,CAAC;AACJ,CAAC;AAED,eAAe,gBAAgB,CAAC","file":"regression-lowess.js","sourcesContent":["import { visitPoints } from './regression-linear';\nimport { computeLinearCIComponents, invNorm, stdErrorsAt } from './regression-utils';\n\nfunction tricube(u: number) {\n const uu = Math.abs(u);\n if (uu >= 1) {\n return 0;\n }\n const t = 1 - uu * uu * uu;\n return t * t * t;\n}\n\n/**\n * Simple lowess implementation (univariate x)\n * options:\n * - span: fraction of points used in local regression (0,1]\n * - degree: 0 (constant) or 1 (linear)\n * - iterations: number of robustifying iterations\n */\nexport function regressionLowess(\n data: any[],\n x: (d: any) => number = d => d.x,\n y: (d: any) => number = d => d.y,\n options: { span?: number; degree?: 1 | 0; iterations?: number; alpha?: number } = {}\n) {\n const span = options.span || 0.3;\n const degree = options.degree === 0 ? 0 : 1;\n const alpha = options?.alpha ?? 0.05;\n const iterations = options.iterations == null ? 2 : options.iterations;\n\n const ptsX: number[] = [];\n const ptsY: number[] = [];\n visitPoints(data, x, y, (dx, dy) => {\n ptsX.push(dx);\n ptsY.push(dy);\n });\n\n const n = ptsX.length;\n function predictSingle(x0: number, robustWeights?: number[]) {\n if (n === 0) {\n return 0;\n }\n // compute distances and select nearest m points\n const dists: { idx: number; dist: number }[] = [];\n for (let i = 0; i < n; i++) {\n dists.push({ idx: i, dist: Math.abs(ptsX[i] - x0) });\n }\n dists.sort((a, b) => a.dist - b.dist);\n const m = Math.max(2, Math.min(n, Math.floor(span * n)));\n const maxDist = dists[m - 1].dist || 0;\n\n // compute weights\n const w: number[] = new Array(m);\n let sumw = 0;\n for (let i = 0; i < m; i++) {\n const idx = dists[i].idx;\n const u = maxDist === 0 ? 0 : dists[i].dist / maxDist;\n let wi = tricube(u);\n if (robustWeights && robustWeights[idx] != null) {\n wi *= robustWeights[idx];\n }\n w[i] = wi;\n sumw += wi;\n }\n\n if (sumw === 0) {\n // fallback to nearest y\n return ptsY[dists[0].idx];\n }\n\n if (degree === 0) {\n let s = 0;\n for (let i = 0; i < m; i++) {\n s += w[i] * ptsY[dists[i].idx];\n }\n return s / sumw;\n }\n\n // weighted linear regression on local points\n let sw = 0;\n let sx = 0;\n let sy = 0;\n let sxx = 0;\n let sxy = 0;\n for (let i = 0; i < m; i++) {\n const idx = dists[i].idx;\n const xi = ptsX[idx];\n const yi = ptsY[idx];\n const wi = w[i];\n sw += wi;\n sx += wi * xi;\n sy += wi * yi;\n sxx += wi * xi * xi;\n sxy += wi * xi * yi;\n }\n\n const meanX = sx / sw;\n const meanY = sy / sw;\n const denom = sxx - sx * meanX;\n const slope = Math.abs(denom) < 1e-12 ? 0 : (sxy - sx * meanY) / denom;\n const intercept = meanY - slope * meanX;\n return intercept + slope * x0;\n }\n\n function predict(x0: number | number[]) {\n if (Array.isArray(x0)) {\n const out: number[] = [];\n for (let i = 0; i < x0.length; i++) {\n out.push(predictSingle(x0[i]));\n }\n return out;\n }\n return predictSingle(x0 as number);\n }\n\n function evaluateGrid(N: number) {\n const out: { x: number; y: number }[] = [];\n if (N <= 0) {\n return out;\n }\n if (n === 0) {\n return out;\n }\n let min = Infinity;\n let max = -Infinity;\n for (let i = 0; i < n; i++) {\n if (ptsX[i] < min) {\n min = ptsX[i];\n }\n if (ptsX[i] > max) {\n max = ptsX[i];\n }\n }\n if (min === max) {\n const v = predictSingle(min);\n for (let i = 0; i < N; i++) {\n out.push({ x: min, y: v });\n }\n return out;\n }\n const step = (max - min) / (N - 1);\n\n // optionally add robust iterations\n let robustWeights: number[] | undefined;\n for (let iter = 0; iter < iterations; iter++) {\n // compute fits\n const fits: number[] = [];\n for (let i = 0; i < n; i++) {\n fits.push(predictSingle(ptsX[i], robustWeights));\n }\n // compute residuals\n const res: number[] = [];\n for (let i = 0; i < n; i++) {\n res.push(Math.abs(ptsY[i] - fits[i]));\n }\n // median absolute deviation\n const sortedRes = res.slice().sort((a, b) => a - b);\n const med = sortedRes[Math.floor(n / 2)] || 0;\n robustWeights = new Array(n);\n for (let i = 0; i < n; i++) {\n const u = med === 0 ? 0 : res[i] / (6 * med);\n const w = Math.abs(u) >= 1 ? 0 : (1 - u * u) * (1 - u * u);\n robustWeights[i] = w;\n }\n }\n\n for (let i = 0; i < N; i++) {\n const px = i === N - 1 ? max : min + step * i;\n out.push({ x: px, y: predictSingle(px, robustWeights) });\n }\n return out;\n }\n\n function confidenceInterval(N: number = 50) {\n const out: { x: number; mean: number; lower: number; upper: number; predLower: number; predUpper: number }[] = [];\n\n if (N <= 0) {\n return out;\n }\n if (n === 0) {\n return out;\n }\n\n // use data x-range\n let min = Infinity;\n let max = -Infinity;\n for (let i = 0; i < n; i++) {\n if (ptsX[i] < min) {\n min = ptsX[i];\n }\n if (ptsX[i] > max) {\n max = ptsX[i];\n }\n }\n if (min === Infinity || max === -Infinity) {\n return out;\n }\n\n const comps = computeLinearCIComponents(data, x, y, (xx: number) => predictSingle(xx));\n if (comps.n === 0) {\n return out;\n }\n\n const z = Math.abs(invNorm(1 - alpha / 2));\n if (comps.min === comps.max) {\n const v = predictSingle(comps.min);\n const errs = stdErrorsAt(comps.min, comps);\n for (let i = 0; i < N; i++) {\n out.push({\n x: comps.min,\n mean: v,\n lower: v - z * errs.seMean,\n upper: v + z * errs.seMean,\n predLower: v - z * errs.sePred,\n predUpper: v + z * errs.sePred\n });\n }\n return out;\n }\n\n const step = (max - min) / (N - 1);\n for (let i = 0; i < N; i++) {\n const px = i === N - 1 ? max : min + step * i;\n const yh = predictSingle(px);\n const errs = stdErrorsAt(px, comps);\n out.push({\n x: px,\n mean: yh,\n lower: yh - z * errs.seMean,\n upper: yh + z * errs.seMean,\n predLower: yh - z * errs.sePred,\n predUpper: yh + z * errs.sePred\n });\n }\n return out;\n }\n\n return {\n predict,\n evaluate: predict as any,\n evaluateGrid,\n confidenceInterval\n };\n}\n\nexport default regressionLowess;\n"]}
1
+ {"version":3,"sources":["../src/common/regression-lowess.ts"],"names":[],"mappings":"AAAA,OAAO,EAAE,WAAW,EAAE,MAAM,qBAAqB,CAAC;AAClD,OAAO,EAAE,yBAAyB,EAAE,OAAO,EAAE,WAAW,EAAE,MAAM,oBAAoB,CAAC;AAErF,SAAS,OAAO,CAAC,CAAS;IACxB,MAAM,EAAE,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;IACvB,IAAI,EAAE,IAAI,CAAC,EAAE;QACX,OAAO,CAAC,CAAC;KACV;IACD,MAAM,CAAC,GAAG,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;IAC3B,OAAO,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;AACnB,CAAC;AAKD,SAAS,gBAAgB,CAAC,UAAsC,EAAE,UAAkB;IAClF,MAAM,CAAC,GAAG,UAAU,CAAC,MAAM,CAAC;IAC5B,IAAI,CAAC,IAAI,UAAU,EAAE;QACnB,OAAO,UAAU,CAAC;KACnB;IAED,MAAM,OAAO,GAA+B,EAAE,CAAC;IAG/C,MAAM,IAAI,GAAG,CAAC,GAAG,UAAU,CAAC;IAE5B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,UAAU,EAAE,CAAC,EAAE,EAAE;QACnC,MAAM,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,IAAI,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,CAAC;QAClD,OAAO,CAAC,IAAI,CAAC,UAAU,CAAC,GAAG,CAAC,CAAC,CAAC;KAC/B;IAED,OAAO,OAAO,CAAC;AACjB,CAAC;AAWD,MAAM,UAAU,gBAAgB,CAC9B,IAAW,EACX,IAAwB,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAChC,IAAwB,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,EAChC,UAAuG,EAAE;;IAEzG,MAAM,IAAI,GAAG,OAAO,CAAC,IAAI,IAAI,GAAG,CAAC;IACjC,MAAM,MAAM,GAAG,OAAO,CAAC,MAAM,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;IAC5C,MAAM,KAAK,GAAG,MAAA,OAAO,CAAC,KAAK,mCAAI,IAAI,CAAC;IACpC,MAAM,UAAU,GAAG,OAAO,CAAC,UAAU,IAAI,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,OAAO,CAAC,UAAU,CAAC;IACvE,MAAM,UAAU,GAAG,OAAO,CAAC,UAAU,IAAI,IAAI,CAAC;IAG9C,MAAM,SAAS,GAA+B,EAAE,CAAC;IACjD,WAAW,CAAC,IAAI,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,EAAE,EAAE,EAAE;QACjC,SAAS,CAAC,IAAI,CAAC,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,CAAC;IACnC,CAAC,CAAC,CAAC;IAEH,SAAS,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IAGpC,MAAM,aAAa,GAAG,gBAAgB,CAAC,SAAS,EAAE,UAAU,CAAC,CAAC;IAE9D,MAAM,CAAC,GAAG,aAAa,CAAC,MAAM,CAAC;IAC/B,MAAM,IAAI,GAAa,IAAI,KAAK,CAAC,CAAC,CAAC,CAAC;IACpC,MAAM,IAAI,GAAa,IAAI,KAAK,CAAC,CAAC,CAAC,CAAC;IAEpC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;QAC1B,IAAI,CAAC,CAAC,CAAC,GAAG,aAAa,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QAC7B,IAAI,CAAC,CAAC,CAAC,GAAG,aAAa,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;KAC9B;IAKD,SAAS,aAAa,CAAC,EAAU,EAAE,aAAwB;QACzD,IAAI,CAAC,KAAK,CAAC,EAAE;YACX,OAAO,CAAC,CAAC;SACV;QAGD,IAAI,IAAI,GAAG,CAAC,CAAC;QACb,IAAI,KAAK,GAAG,CAAC,CAAC;QACd,OAAO,IAAI,GAAG,KAAK,EAAE;YACnB,MAAM,GAAG,GAAG,CAAC,IAAI,GAAG,KAAK,CAAC,IAAI,CAAC,CAAC;YAChC,IAAI,IAAI,CAAC,GAAG,CAAC,GAAG,EAAE,EAAE;gBAClB,IAAI,GAAG,GAAG,GAAG,CAAC,CAAC;aAChB;iBAAM;gBACL,KAAK,GAAG,GAAG,CAAC;aACb;SACF;QAED,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,CAAC,KAAK,CAAC,IAAI,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;QAGzD,MAAM,KAAK,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,IAAI,GAAG,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;QACpD,MAAM,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,KAAK,GAAG,CAAC,CAAC,CAAC;QACnC,MAAM,WAAW,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,GAAG,CAAC,CAAC,CAAC;QAGzC,IAAI,OAAO,GAAG,CAAC,CAAC;QAChB,MAAM,UAAU,GAAG,GAAG,GAAG,WAAW,CAAC;QACrC,MAAM,SAAS,GAAa,IAAI,KAAK,CAAC,UAAU,CAAC,CAAC;QAElD,KAAK,IAAI,CAAC,GAAG,WAAW,EAAE,CAAC,GAAG,GAAG,EAAE,CAAC,EAAE,EAAE;YACtC,MAAM,IAAI,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC;YACpC,SAAS,CAAC,CAAC,GAAG,WAAW,CAAC,GAAG,IAAI,CAAC;YAClC,IAAI,IAAI,GAAG,OAAO,EAAE;gBAClB,OAAO,GAAG,IAAI,CAAC;aAChB;SACF;QAGD,IAAI,IAAI,GAAG,CAAC,CAAC;QACb,MAAM,CAAC,GAAa,IAAI,KAAK,CAAC,UAAU,CAAC,CAAC;QAC1C,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,UAAU,EAAE,CAAC,EAAE,EAAE;YACnC,MAAM,CAAC,GAAG,OAAO,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,SAAS,CAAC,CAAC,CAAC,GAAG,OAAO,CAAC;YACrD,IAAI,EAAE,GAAG,OAAO,CAAC,CAAC,CAAC,CAAC;YACpB,IAAI,aAAa,IAAI,aAAa,CAAC,WAAW,GAAG,CAAC,CAAC,IAAI,IAAI,EAAE;gBAC3D,EAAE,IAAI,aAAa,CAAC,WAAW,GAAG,CAAC,CAAC,CAAC;aACtC;YACD,CAAC,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC;YACV,IAAI,IAAI,EAAE,CAAC;SACZ;QAED,IAAI,IAAI,KAAK,CAAC,EAAE;YAEd,MAAM,UAAU,GAAG,IAAI,GAAG,CAAC,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;YAC3C,OAAO,IAAI,CAAC,UAAU,CAAC,CAAC;SACzB;QAED,IAAI,MAAM,KAAK,CAAC,EAAE;YAChB,IAAI,CAAC,GAAG,CAAC,CAAC;YACV,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,CAAC,MAAM,EAAE,CAAC,EAAE,EAAE;gBACjC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,WAAW,GAAG,CAAC,CAAC,CAAC;aACnC;YACD,OAAO,CAAC,GAAG,IAAI,CAAC;SACjB;QAGD,IAAI,EAAE,GAAG,CAAC,CAAC;QACX,IAAI,EAAE,GAAG,CAAC,CAAC;QACX,IAAI,EAAE,GAAG,CAAC,CAAC;QACX,IAAI,GAAG,GAAG,CAAC,CAAC;QACZ,IAAI,GAAG,GAAG,CAAC,CAAC;QACZ,KAAK,IAAI,CAAC,GAAG,WAAW,EAAE,CAAC,GAAG,GAAG,EAAE,CAAC,EAAE,EAAE;YACtC,MAAM,GAAG,GAAG,CAAC,GAAG,WAAW,CAAC;YAC5B,MAAM,EAAE,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;YACnB,MAAM,EAAE,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;YACnB,MAAM,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC;YAClB,EAAE,IAAI,EAAE,CAAC;YACT,EAAE,IAAI,EAAE,GAAG,EAAE,CAAC;YACd,EAAE,IAAI,EAAE,GAAG,EAAE,CAAC;YACd,GAAG,IAAI,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;YACpB,GAAG,IAAI,EAAE,GAAG,EAAE,GAAG,EAAE,CAAC;SACrB;QAED,MAAM,KAAK,GAAG,EAAE,GAAG,EAAE,CAAC;QACtB,MAAM,KAAK,GAAG,EAAE,GAAG,EAAE,CAAC;QACtB,MAAM,KAAK,GAAG,GAAG,GAAG,EAAE,GAAG,KAAK,CAAC;QAC/B,MAAM,KAAK,GAAG,IAAI,CAAC,GAAG,CAAC,KAAK,CAAC,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,EAAE,GAAG,KAAK,CAAC,GAAG,KAAK,CAAC;QACvE,MAAM,SAAS,GAAG,KAAK,GAAG,KAAK,GAAG,KAAK,CAAC;QACxC,OAAO,SAAS,GAAG,KAAK,GAAG,EAAE,CAAC;IAChC,CAAC;IAED,SAAS,OAAO,CAAC,EAAqB;QACpC,IAAI,KAAK,CAAC,OAAO,CAAC,EAAE,CAAC,EAAE;YACrB,MAAM,GAAG,GAAG,EAAE,CAAC,MAAM,CAAC;YACtB,MAAM,GAAG,GAAa,IAAI,KAAK,CAAC,GAAG,CAAC,CAAC;YACrC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,GAAG,EAAE,CAAC,EAAE,EAAE;gBAC5B,GAAG,CAAC,CAAC,CAAC,GAAG,aAAa,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,CAAC;aAC/B;YACD,OAAO,GAAG,CAAC;SACZ;QACD,OAAO,aAAa,CAAC,EAAY,CAAC,CAAC;IACrC,CAAC;IAED,SAAS,YAAY,CAAC,CAAS;QAC7B,IAAI,CAAC,IAAI,CAAC,EAAE;YACV,OAAO,EAAE,CAAC;SACX;QACD,IAAI,CAAC,KAAK,CAAC,EAAE;YACX,OAAO,EAAE,CAAC;SACX;QAED,MAAM,GAAG,GAA+B,IAAI,KAAK,CAAC,CAAC,CAAC,CAAC;QACrD,MAAM,GAAG,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;QACpB,MAAM,GAAG,GAAG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QAExB,IAAI,GAAG,KAAK,GAAG,EAAE;YACf,MAAM,CAAC,GAAG,aAAa,CAAC,GAAG,CAAC,CAAC;YAC7B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;gBAC1B,GAAG,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC,EAAE,GAAG,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC;aAC3B;YACD,OAAO,GAAG,CAAC;SACZ;QACD,MAAM,IAAI,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QAGnC,IAAI,aAAmC,CAAC;QAIxC,MAAM,mBAAmB,GAAG,OAAO,CAAC,UAAU,IAAI,IAAI,CAAC,CAAC,CAAC,UAAU,CAAC,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,UAAU,CAAC;QAE/F,IAAI,mBAAmB,GAAG,CAAC,EAAE;YAC3B,KAAK,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,GAAG,mBAAmB,EAAE,IAAI,EAAE,EAAE;gBAErD,MAAM,IAAI,GAAa,IAAI,KAAK,CAAC,CAAC,CAAC,CAAC;gBACpC,MAAM,GAAG,GAAa,IAAI,KAAK,CAAC,CAAC,CAAC,CAAC;gBAEnC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;oBAC1B,IAAI,CAAC,CAAC,CAAC,GAAG,aAAa,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,aAAa,CAAC,CAAC;oBAChD,GAAG,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,CAAC,CAAC,CAAC,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC;iBACtC;gBAGD,MAAM,SAAS,GAAG,GAAG,CAAC,KAAK,EAAE,CAAC,IAAI,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;gBACpD,MAAM,GAAG,GAAG,SAAS,CAAC,IAAI,CAAC,KAAK,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC;gBAC9C,aAAa,GAAG,IAAI,KAAK,CAAC,CAAC,CAAC,CAAC;gBAC7B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;oBAC1B,MAAM,CAAC,GAAG,GAAG,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,GAAG,CAAC,CAAC;oBAC7C,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC;oBAC3D,aAAa,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC;iBACtB;aACF;SACF;QAED,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;YAC1B,MAAM,EAAE,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,GAAG,IAAI,GAAG,CAAC,CAAC;YAC9C,GAAG,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,aAAa,CAAC,EAAE,EAAE,aAAa,CAAC,EAAE,CAAC;SACzD;QACD,OAAO,GAAG,CAAC;IACb,CAAC;IAED,SAAS,kBAAkB,CAAC,IAAY,EAAE;QACxC,MAAM,GAAG,GAAsG,EAAE,CAAC;QAElH,IAAI,CAAC,IAAI,CAAC,EAAE;YACV,OAAO,GAAG,CAAC;SACZ;QACD,IAAI,CAAC,KAAK,CAAC,EAAE;YACX,OAAO,GAAG,CAAC;SACZ;QAGD,MAAM,GAAG,GAAG,IAAI,CAAC,CAAC,CAAC,CAAC;QACpB,MAAM,GAAG,GAAG,IAAI,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QAExB,IAAI,GAAG,KAAK,SAAS,IAAI,GAAG,KAAK,SAAS,IAAI,GAAG,KAAK,QAAQ,IAAI,GAAG,KAAK,CAAC,QAAQ,EAAE;YACnF,OAAO,GAAG,CAAC;SACZ;QAED,MAAM,KAAK,GAAG,yBAAyB,CAAC,IAAI,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAU,EAAE,EAAE,CAAC,aAAa,CAAC,EAAE,CAAC,CAAC,CAAC;QACvF,IAAI,KAAK,CAAC,CAAC,KAAK,CAAC,EAAE;YACjB,OAAO,GAAG,CAAC;SACZ;QAED,MAAM,CAAC,GAAG,IAAI,CAAC,GAAG,CAAC,OAAO,CAAC,CAAC,GAAG,KAAK,GAAG,CAAC,CAAC,CAAC,CAAC;QAC3C,IAAI,KAAK,CAAC,GAAG,KAAK,KAAK,CAAC,GAAG,EAAE;YAC3B,MAAM,CAAC,GAAG,aAAa,CAAC,KAAK,CAAC,GAAG,CAAC,CAAC;YACnC,MAAM,IAAI,GAAG,WAAW,CAAC,KAAK,CAAC,GAAG,EAAE,KAAK,CAAC,CAAC;YAC3C,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;gBAC1B,GAAG,CAAC,IAAI,CAAC;oBACP,CAAC,EAAE,KAAK,CAAC,GAAG;oBACZ,IAAI,EAAE,CAAC;oBACP,KAAK,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM;oBAC1B,KAAK,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM;oBAC1B,SAAS,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM;oBAC9B,SAAS,EAAE,CAAC,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM;iBAC/B,CAAC,CAAC;aACJ;YACD,OAAO,GAAG,CAAC;SACZ;QAED,MAAM,IAAI,GAAG,CAAC,GAAG,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC;QACnC,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE;YAC1B,MAAM,EAAE,GAAG,CAAC,KAAK,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,GAAG,GAAG,IAAI,GAAG,CAAC,CAAC;YAC9C,MAAM,EAAE,GAAG,aAAa,CAAC,EAAE,CAAC,CAAC;YAC7B,MAAM,IAAI,GAAG,WAAW,CAAC,EAAE,EAAE,KAAK,CAAC,CAAC;YACpC,GAAG,CAAC,IAAI,CAAC;gBACP,CAAC,EAAE,EAAE;gBACL,IAAI,EAAE,EAAE;gBACR,KAAK,EAAE,EAAE,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM;gBAC3B,KAAK,EAAE,EAAE,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM;gBAC3B,SAAS,EAAE,EAAE,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM;gBAC/B,SAAS,EAAE,EAAE,GAAG,CAAC,GAAG,IAAI,CAAC,MAAM;aAChC,CAAC,CAAC;SACJ;QACD,OAAO,GAAG,CAAC;IACb,CAAC;IAED,OAAO;QACL,OAAO;QACP,QAAQ,EAAE,OAAc;QACxB,YAAY;QACZ,kBAAkB;KACnB,CAAC;AACJ,CAAC;AAED,eAAe,gBAAgB,CAAC","file":"regression-lowess.js","sourcesContent":["import { visitPoints } from './regression-linear';\nimport { computeLinearCIComponents, invNorm, stdErrorsAt } from './regression-utils';\n\nfunction tricube(u: number) {\n const uu = Math.abs(u);\n if (uu >= 1) {\n return 0;\n }\n const t = 1 - uu * uu * uu;\n return t * t * t;\n}\n\n/**\n * Stratified sampling to reduce data size while preserving distribution\n */\nfunction stratifiedSample(sortedData: { x: number; y: number }[], maxSamples: number) {\n const n = sortedData.length;\n if (n <= maxSamples) {\n return sortedData;\n }\n\n const sampled: { x: number; y: number }[] = [];\n\n // More aggressive sampling - use exact step size\n const step = n / maxSamples;\n\n for (let i = 0; i < maxSamples; i++) {\n const idx = Math.min(Math.floor(i * step), n - 1);\n sampled.push(sortedData[idx]);\n }\n\n return sampled;\n}\n\n/**\n * Simple lowess implementation (univariate x)\n * options:\n * - span: fraction of points used in local regression (0,1]\n * - degree: 0 (constant) or 1 (linear)\n * - iterations: number of robustifying iterations\n * - alpha: confidence level for CI\n * - maxSamples: maximum number of points to use (default: 1000 for fast processing)\n */\nexport function regressionLowess(\n data: any[],\n x: (d: any) => number = d => d.x,\n y: (d: any) => number = d => d.y,\n options: { span?: number; degree?: 1 | 0; iterations?: number; alpha?: number; maxSamples?: number } = {}\n) {\n const span = options.span || 0.3;\n const degree = options.degree === 0 ? 0 : 1;\n const alpha = options.alpha ?? 0.05;\n const iterations = options.iterations == null ? 2 : options.iterations;\n const maxSamples = options.maxSamples || 1000;\n\n // Collect and sort data by x\n const rawPoints: { x: number; y: number }[] = [];\n visitPoints(data, x, y, (dx, dy) => {\n rawPoints.push({ x: dx, y: dy });\n });\n\n rawPoints.sort((a, b) => a.x - b.x);\n\n // Apply sampling if needed\n const sampledPoints = stratifiedSample(rawPoints, maxSamples);\n\n const n = sampledPoints.length;\n const ptsX: number[] = new Array(n);\n const ptsY: number[] = new Array(n);\n\n for (let i = 0; i < n; i++) {\n ptsX[i] = sampledPoints[i].x;\n ptsY[i] = sampledPoints[i].y;\n }\n\n /**\n * Optimized predictSingle using binary search on pre-sorted data\n */\n function predictSingle(x0: number, robustWeights?: number[]) {\n if (n === 0) {\n return 0;\n }\n\n // Binary search to find insertion point\n let left = 0;\n let right = n;\n while (left < right) {\n const mid = (left + right) >> 1;\n if (ptsX[mid] < x0) {\n left = mid + 1;\n } else {\n right = mid;\n }\n }\n\n const m = Math.max(2, Math.min(n, Math.floor(span * n)));\n\n // Calculate range around insertion point\n const start = Math.max(0, left - Math.floor(m / 2));\n const end = Math.min(n, start + m);\n const actualStart = Math.max(0, end - m);\n\n // Find max distance and compute weights in single pass\n let maxDist = 0;\n const windowSize = end - actualStart;\n const distances: number[] = new Array(windowSize);\n\n for (let i = actualStart; i < end; i++) {\n const dist = Math.abs(ptsX[i] - x0);\n distances[i - actualStart] = dist;\n if (dist > maxDist) {\n maxDist = dist;\n }\n }\n\n // Compute weights using pre-calculated distances\n let sumw = 0;\n const w: number[] = new Array(windowSize);\n for (let i = 0; i < windowSize; i++) {\n const u = maxDist === 0 ? 0 : distances[i] / maxDist;\n let wi = tricube(u);\n if (robustWeights && robustWeights[actualStart + i] != null) {\n wi *= robustWeights[actualStart + i];\n }\n w[i] = wi;\n sumw += wi;\n }\n\n if (sumw === 0) {\n // fallback to nearest y\n const nearestIdx = left < n ? left : n - 1;\n return ptsY[nearestIdx];\n }\n\n if (degree === 0) {\n let s = 0;\n for (let i = 0; i < w.length; i++) {\n s += w[i] * ptsY[actualStart + i];\n }\n return s / sumw;\n }\n\n // weighted linear regression on local points\n let sw = 0;\n let sx = 0;\n let sy = 0;\n let sxx = 0;\n let sxy = 0;\n for (let i = actualStart; i < end; i++) {\n const idx = i - actualStart;\n const xi = ptsX[i];\n const yi = ptsY[i];\n const wi = w[idx];\n sw += wi;\n sx += wi * xi;\n sy += wi * yi;\n sxx += wi * xi * xi;\n sxy += wi * xi * yi;\n }\n\n const meanX = sx / sw;\n const meanY = sy / sw;\n const denom = sxx - sx * meanX;\n const slope = Math.abs(denom) < 1e-12 ? 0 : (sxy - sx * meanY) / denom;\n const intercept = meanY - slope * meanX;\n return intercept + slope * x0;\n }\n\n function predict(x0: number | number[]) {\n if (Array.isArray(x0)) {\n const len = x0.length;\n const out: number[] = new Array(len);\n for (let i = 0; i < len; i++) {\n out[i] = predictSingle(x0[i]);\n }\n return out;\n }\n return predictSingle(x0 as number);\n }\n\n function evaluateGrid(N: number) {\n if (N <= 0) {\n return [];\n }\n if (n === 0) {\n return [];\n }\n\n const out: { x: number; y: number }[] = new Array(N);\n const min = ptsX[0];\n const max = ptsX[n - 1];\n\n if (min === max) {\n const v = predictSingle(min);\n for (let i = 0; i < N; i++) {\n out[i] = { x: min, y: v };\n }\n return out;\n }\n const step = (max - min) / (N - 1);\n\n // optionally add robust iterations\n let robustWeights: number[] | undefined;\n\n // Disable robustness iterations for large datasets to improve performance\n // Users can override by setting iterations explicitly\n const effectiveIterations = options.iterations != null ? iterations : n > 500 ? 0 : iterations;\n\n if (effectiveIterations > 0) {\n for (let iter = 0; iter < effectiveIterations; iter++) {\n // compute fits - pre-allocate arrays\n const fits: number[] = new Array(n);\n const res: number[] = new Array(n);\n\n for (let i = 0; i < n; i++) {\n fits[i] = predictSingle(ptsX[i], robustWeights);\n res[i] = Math.abs(ptsY[i] - fits[i]);\n }\n\n // median absolute deviation\n const sortedRes = res.slice().sort((a, b) => a - b);\n const med = sortedRes[Math.floor(n / 2)] || 0;\n robustWeights = new Array(n);\n for (let i = 0; i < n; i++) {\n const u = med === 0 ? 0 : res[i] / (6 * med);\n const w = Math.abs(u) >= 1 ? 0 : (1 - u * u) * (1 - u * u);\n robustWeights[i] = w;\n }\n }\n }\n\n for (let i = 0; i < N; i++) {\n const px = i === N - 1 ? max : min + step * i;\n out[i] = { x: px, y: predictSingle(px, robustWeights) };\n }\n return out;\n }\n\n function confidenceInterval(N: number = 50) {\n const out: { x: number; mean: number; lower: number; upper: number; predLower: number; predUpper: number }[] = [];\n\n if (N <= 0) {\n return out;\n }\n if (n === 0) {\n return out;\n }\n\n // use data x-range (already sorted)\n const min = ptsX[0];\n const max = ptsX[n - 1];\n\n if (min === undefined || max === undefined || min === Infinity || max === -Infinity) {\n return out;\n }\n\n const comps = computeLinearCIComponents(data, x, y, (xx: number) => predictSingle(xx));\n if (comps.n === 0) {\n return out;\n }\n\n const z = Math.abs(invNorm(1 - alpha / 2));\n if (comps.min === comps.max) {\n const v = predictSingle(comps.min);\n const errs = stdErrorsAt(comps.min, comps);\n for (let i = 0; i < N; i++) {\n out.push({\n x: comps.min,\n mean: v,\n lower: v - z * errs.seMean,\n upper: v + z * errs.seMean,\n predLower: v - z * errs.sePred,\n predUpper: v + z * errs.sePred\n });\n }\n return out;\n }\n\n const step = (max - min) / (N - 1);\n for (let i = 0; i < N; i++) {\n const px = i === N - 1 ? max : min + step * i;\n const yh = predictSingle(px);\n const errs = stdErrorsAt(px, comps);\n out.push({\n x: px,\n mean: yh,\n lower: yh - z * errs.seMean,\n upper: yh + z * errs.seMean,\n predLower: yh - z * errs.sePred,\n predUpper: yh + z * errs.sePred\n });\n }\n return out;\n }\n\n return {\n predict,\n evaluate: predict as any,\n evaluateGrid,\n confidenceInterval\n };\n}\n\nexport default regressionLowess;\n"]}
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@visactor/vutils",
3
- "version": "1.0.20",
3
+ "version": "1.0.21",
4
4
  "main": "cjs/index.js",
5
5
  "module": "es/index.js",
6
6
  "types": "es/index.d.ts",
@@ -30,8 +30,8 @@
30
30
  "@types/jest": "~29.5.0",
31
31
  "typescript": "4.9.5",
32
32
  "@types/node": "*",
33
- "@internal/eslint-config": "0.0.1",
34
33
  "@internal/bundler": "0.0.1",
34
+ "@internal/eslint-config": "0.0.1",
35
35
  "@internal/ts-config": "0.0.1",
36
36
  "@internal/jest-config": "0.0.1"
37
37
  },