@visactor/vchart-extension 2.0.7-alpha.2 → 2.0.7-alpha.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/build/index.js +1054 -0
- package/build/index.min.js +2 -2
- package/cjs/charts/candlestick/candlestick.js +2 -1
- package/cjs/charts/combination-candlestick/combination-candlestick.js +1 -2
- package/cjs/charts/conversion-funnel/arrow-data-transform.js +0 -1
- package/cjs/charts/funnel-3d/chart.js +2 -1
- package/cjs/components/bar-regression-line/index.d.ts +26 -0
- package/cjs/components/bar-regression-line/index.js +87 -0
- package/cjs/components/bar-regression-line/index.js.map +1 -0
- package/cjs/components/bar-regression-line/type.d.ts +8 -0
- package/cjs/components/bar-regression-line/type.js +6 -0
- package/cjs/components/bar-regression-line/type.js.map +1 -0
- package/cjs/components/histogram-regression-line/index.d.ts +22 -0
- package/cjs/components/histogram-regression-line/index.js +79 -0
- package/cjs/components/histogram-regression-line/index.js.map +1 -0
- package/cjs/components/histogram-regression-line/type.d.ts +8 -0
- package/cjs/components/histogram-regression-line/type.js +6 -0
- package/cjs/components/histogram-regression-line/type.js.map +1 -0
- package/cjs/components/regression-line/index.d.ts +2 -0
- package/cjs/components/regression-line/index.js +21 -0
- package/cjs/components/regression-line/index.js.map +1 -0
- package/cjs/components/regression-line/regression-line.d.ts +8 -0
- package/cjs/components/regression-line/regression-line.js +58 -0
- package/cjs/components/regression-line/regression-line.js.map +1 -0
- package/cjs/components/regression-line/type.d.ts +30 -0
- package/cjs/components/regression-line/type.js +6 -0
- package/cjs/components/regression-line/type.js.map +1 -0
- package/cjs/components/scatter-regression-line/index.d.ts +25 -0
- package/cjs/components/scatter-regression-line/index.js +103 -0
- package/cjs/components/scatter-regression-line/index.js.map +1 -0
- package/cjs/components/scatter-regression-line/type.d.ts +9 -0
- package/cjs/components/scatter-regression-line/type.js +6 -0
- package/cjs/components/scatter-regression-line/type.js.map +1 -0
- package/cjs/index.d.ts +4 -0
- package/cjs/index.js +3 -1
- package/cjs/index.js.map +1 -1
- package/esm/charts/candlestick/candlestick.js +2 -1
- package/esm/charts/combination-candlestick/combination-candlestick.js +1 -2
- package/esm/charts/conversion-funnel/arrow-data-transform.js +1 -2
- package/esm/charts/funnel-3d/chart.js +2 -1
- package/esm/components/bar-regression-line/index.d.ts +26 -0
- package/esm/components/bar-regression-line/index.js +80 -0
- package/esm/components/bar-regression-line/index.js.map +1 -0
- package/esm/components/bar-regression-line/type.d.ts +8 -0
- package/esm/components/bar-regression-line/type.js +2 -0
- package/esm/components/bar-regression-line/type.js.map +1 -0
- package/esm/components/histogram-regression-line/index.d.ts +22 -0
- package/esm/components/histogram-regression-line/index.js +75 -0
- package/esm/components/histogram-regression-line/index.js.map +1 -0
- package/esm/components/histogram-regression-line/type.d.ts +8 -0
- package/esm/components/histogram-regression-line/type.js +2 -0
- package/esm/components/histogram-regression-line/type.js.map +1 -0
- package/esm/components/regression-line/index.d.ts +2 -0
- package/esm/components/regression-line/index.js +4 -0
- package/esm/components/regression-line/index.js.map +1 -0
- package/esm/components/regression-line/regression-line.d.ts +8 -0
- package/esm/components/regression-line/regression-line.js +54 -0
- package/esm/components/regression-line/regression-line.js.map +1 -0
- package/esm/components/regression-line/type.d.ts +30 -0
- package/esm/components/regression-line/type.js +2 -0
- package/esm/components/regression-line/type.js.map +1 -0
- package/esm/components/scatter-regression-line/index.d.ts +25 -0
- package/esm/components/scatter-regression-line/index.js +99 -0
- package/esm/components/scatter-regression-line/index.js.map +1 -0
- package/esm/components/scatter-regression-line/type.d.ts +9 -0
- package/esm/components/scatter-regression-line/type.js +2 -0
- package/esm/components/scatter-regression-line/type.js.map +1 -0
- package/esm/index.d.ts +4 -0
- package/esm/index.js +9 -1
- package/esm/index.js.map +1 -1
- package/package.json +11 -11
package/build/index.js
CHANGED
|
@@ -757,6 +757,750 @@
|
|
|
757
757
|
return [min, max];
|
|
758
758
|
};
|
|
759
759
|
|
|
760
|
+
function invNorm(p) {
|
|
761
|
+
if (p <= 0 || p >= 1) return 0;
|
|
762
|
+
const c1 = -.00778489400243029,
|
|
763
|
+
c2 = -.322396458041136,
|
|
764
|
+
c3 = -2.40075827716184,
|
|
765
|
+
c4 = -2.54973253934373,
|
|
766
|
+
c5 = 4.37466414146497,
|
|
767
|
+
c6 = 2.93816398269878,
|
|
768
|
+
d1 = .00778469570904146,
|
|
769
|
+
d2 = .32246712907004,
|
|
770
|
+
d3 = 2.445134137143,
|
|
771
|
+
d4 = 3.75440866190742;
|
|
772
|
+
let q, r;
|
|
773
|
+
return p < .02425 ? (q = Math.sqrt(-2 * Math.log(p)), (((((c1 * q + c2) * q + c3) * q + c4) * q + c5) * q + c6) / ((((d1 * q + d2) * q + d3) * q + d4) * q + 1)) : p <= .97575 ? (q = p - .5, r = q * q, (((((-39.6968302866538 * r + 220.946098424521) * r - 275.928510446969) * r + 138.357751867269) * r - 30.6647980661472) * r + 2.50662827745924) * q / (((((-54.4760987982241 * r + 161.585836858041) * r - 155.698979859887) * r + 66.8013118877197) * r - 13.2806815528857) * r + 1)) : (q = Math.sqrt(-2 * Math.log(1 - p)), -(((((c1 * q + c2) * q + c3) * q + c4) * q + c5) * q + c6) / ((((d1 * q + d2) * q + d3) * q + d4) * q + 1));
|
|
774
|
+
}
|
|
775
|
+
function computeLinearCIComponents(data, x, y, predict) {
|
|
776
|
+
let min = 1 / 0,
|
|
777
|
+
max = -1 / 0,
|
|
778
|
+
n = 0,
|
|
779
|
+
sumX = 0;
|
|
780
|
+
for (let i = 0; i < data.length; i++) {
|
|
781
|
+
const d = data[i];
|
|
782
|
+
let dx = x(d),
|
|
783
|
+
dy = y(d);
|
|
784
|
+
!isNil$1(dx) && (dx = +dx) >= dx && !isNil$1(dy) && (dy = +dy) >= dy && (dx < min && (min = dx), dx > max && (max = dx), n++, sumX += dx);
|
|
785
|
+
}
|
|
786
|
+
if (0 === n) return {
|
|
787
|
+
min: min,
|
|
788
|
+
max: max,
|
|
789
|
+
n: n,
|
|
790
|
+
X: 0,
|
|
791
|
+
SSE: 0,
|
|
792
|
+
Sxx: 0
|
|
793
|
+
};
|
|
794
|
+
const X = sumX / n;
|
|
795
|
+
let SSE = 0,
|
|
796
|
+
Sxx = 0;
|
|
797
|
+
for (let i = 0; i < data.length; i++) {
|
|
798
|
+
const d = data[i];
|
|
799
|
+
let dx = x(d),
|
|
800
|
+
dy = y(d);
|
|
801
|
+
if (!isNil$1(dx) && (dx = +dx) >= dx && !isNil$1(dy) && (dy = +dy) >= dy) {
|
|
802
|
+
const r = dy - predict(dx);
|
|
803
|
+
SSE += r * r;
|
|
804
|
+
const dxc = dx - X;
|
|
805
|
+
Sxx += dxc * dxc;
|
|
806
|
+
}
|
|
807
|
+
}
|
|
808
|
+
return {
|
|
809
|
+
min: min,
|
|
810
|
+
max: max,
|
|
811
|
+
n: n,
|
|
812
|
+
X: X,
|
|
813
|
+
SSE: SSE,
|
|
814
|
+
Sxx: Sxx
|
|
815
|
+
};
|
|
816
|
+
}
|
|
817
|
+
function stdErrorsAt(px, comps) {
|
|
818
|
+
const {
|
|
819
|
+
n: n,
|
|
820
|
+
X: X,
|
|
821
|
+
Sxx: Sxx,
|
|
822
|
+
SSE: SSE
|
|
823
|
+
} = comps,
|
|
824
|
+
s2 = n > 2 ? SSE / (n - 2) : 0;
|
|
825
|
+
return {
|
|
826
|
+
seMean: Sxx > 0 ? Math.sqrt(s2 * (1 / n + (px - X) * (px - X) / Sxx)) : Math.sqrt(s2 / n),
|
|
827
|
+
sePred: Math.sqrt(s2 * (1 + 1 / n + (Sxx > 0 ? (px - X) * (px - X) / Sxx : 0)))
|
|
828
|
+
};
|
|
829
|
+
}
|
|
830
|
+
|
|
831
|
+
function ordinaryLeastSquares(uX, uY, uXY, uX2) {
|
|
832
|
+
const denom = uX2 - uX * uX;
|
|
833
|
+
if (Math.abs(denom) < Number.EPSILON) return {
|
|
834
|
+
a: uY,
|
|
835
|
+
b: 0
|
|
836
|
+
};
|
|
837
|
+
const b = (uXY - uX * uY) / denom;
|
|
838
|
+
return {
|
|
839
|
+
a: uY - b * uX,
|
|
840
|
+
b: b
|
|
841
|
+
};
|
|
842
|
+
}
|
|
843
|
+
function visitPoints(data, x, y, callback) {
|
|
844
|
+
for (let i = 0; i < data.length; i++) {
|
|
845
|
+
const d = data[i];
|
|
846
|
+
let xi = x(d),
|
|
847
|
+
yi = y(d);
|
|
848
|
+
!isNil$1(xi) && (xi = +xi) >= xi && !isNil$1(yi) && (yi = +yi) >= yi && callback(xi, yi, i);
|
|
849
|
+
}
|
|
850
|
+
}
|
|
851
|
+
function rSquared(data, x, y, uY, predict) {
|
|
852
|
+
let ssr = 0,
|
|
853
|
+
sst = 0;
|
|
854
|
+
for (let i = 0; i < data.length; i++) {
|
|
855
|
+
const d = data[i];
|
|
856
|
+
let yi = y(d);
|
|
857
|
+
if (!isNil$1(yi) && (yi = +yi) >= yi) {
|
|
858
|
+
const r = yi - predict(x(d));
|
|
859
|
+
ssr += r * r;
|
|
860
|
+
const t = yi - uY;
|
|
861
|
+
sst += t * t;
|
|
862
|
+
}
|
|
863
|
+
}
|
|
864
|
+
return 0 === sst ? 0 : 1 - ssr / sst;
|
|
865
|
+
}
|
|
866
|
+
function regressionLinear(data, x = d => d.x, y = d => d.y) {
|
|
867
|
+
let n = 0,
|
|
868
|
+
meanX = 0,
|
|
869
|
+
meanY = 0,
|
|
870
|
+
meanXY = 0,
|
|
871
|
+
meanX2 = 0;
|
|
872
|
+
visitPoints(data, x, y, (xi, yi) => {
|
|
873
|
+
n++, meanX += (xi - meanX) / n, meanY += (yi - meanY) / n, meanXY += (xi * yi - meanXY) / n, meanX2 += (xi * xi - meanX2) / n;
|
|
874
|
+
});
|
|
875
|
+
const {
|
|
876
|
+
a: a,
|
|
877
|
+
b: b
|
|
878
|
+
} = ordinaryLeastSquares(meanX, meanY, meanXY, meanX2),
|
|
879
|
+
predict = xx => a + b * xx,
|
|
880
|
+
comps = computeLinearCIComponents(data, x, y, predict);
|
|
881
|
+
return {
|
|
882
|
+
coef: {
|
|
883
|
+
a: a,
|
|
884
|
+
b: b
|
|
885
|
+
},
|
|
886
|
+
predict: predict,
|
|
887
|
+
rSquared: rSquared(data, x, y, meanY, predict),
|
|
888
|
+
evaluateGrid: function (N) {
|
|
889
|
+
const out = [];
|
|
890
|
+
if (0 === comps.n || N <= 0) return out;
|
|
891
|
+
if (comps.min === comps.max) {
|
|
892
|
+
for (let i = 0; i < N; i++) out.push({
|
|
893
|
+
x: comps.min,
|
|
894
|
+
y: predict(comps.min)
|
|
895
|
+
});
|
|
896
|
+
return out;
|
|
897
|
+
}
|
|
898
|
+
const step = (comps.max - comps.min) / (N - 1);
|
|
899
|
+
for (let i = 0; i < N; i++) {
|
|
900
|
+
const px = i === N - 1 ? comps.max : comps.min + step * i;
|
|
901
|
+
out.push({
|
|
902
|
+
x: px,
|
|
903
|
+
y: predict(px)
|
|
904
|
+
});
|
|
905
|
+
}
|
|
906
|
+
return out;
|
|
907
|
+
},
|
|
908
|
+
confidenceInterval: function (N = 50, alpha = .05) {
|
|
909
|
+
const out = [];
|
|
910
|
+
if (0 === comps.n || N <= 0) return out;
|
|
911
|
+
const z = invNorm(1 - alpha / 2);
|
|
912
|
+
if (comps.min === comps.max) {
|
|
913
|
+
const m = predict(comps.min),
|
|
914
|
+
errs = stdErrorsAt(comps.min, comps);
|
|
915
|
+
for (let i = 0; i < N; i++) out.push({
|
|
916
|
+
x: comps.min,
|
|
917
|
+
mean: m,
|
|
918
|
+
lower: m - z * errs.seMean,
|
|
919
|
+
upper: m + z * errs.seMean,
|
|
920
|
+
predLower: m - z * errs.sePred,
|
|
921
|
+
predUpper: m + z * errs.sePred
|
|
922
|
+
});
|
|
923
|
+
return out;
|
|
924
|
+
}
|
|
925
|
+
const step = (comps.max - comps.min) / (N - 1);
|
|
926
|
+
for (let i = 0; i < N; i++) {
|
|
927
|
+
const px = i === N - 1 ? comps.max : comps.min + step * i,
|
|
928
|
+
m = predict(px),
|
|
929
|
+
errs = stdErrorsAt(px, comps);
|
|
930
|
+
out.push({
|
|
931
|
+
x: px,
|
|
932
|
+
mean: m,
|
|
933
|
+
lower: m - z * errs.seMean,
|
|
934
|
+
upper: m + z * errs.seMean,
|
|
935
|
+
predLower: m - z * errs.sePred,
|
|
936
|
+
predUpper: m + z * errs.sePred
|
|
937
|
+
});
|
|
938
|
+
}
|
|
939
|
+
return out;
|
|
940
|
+
}
|
|
941
|
+
};
|
|
942
|
+
}
|
|
943
|
+
|
|
944
|
+
function regressionLogistic(data, x = d => d.x, y = d => d.y, options) {
|
|
945
|
+
var _a, _b;
|
|
946
|
+
const maxIter = null !== (_a = null == options ? void 0 : options.maxIteration) && void 0 !== _a ? _a : 25,
|
|
947
|
+
tol = null !== (_b = null == options ? void 0 : options.tol) && void 0 !== _b ? _b : 1e-6,
|
|
948
|
+
xs = [],
|
|
949
|
+
ys = [];
|
|
950
|
+
visitPoints(data, x, y, (dx, dy) => {
|
|
951
|
+
xs.push(dx), ys.push(dy ? 1 : 0);
|
|
952
|
+
});
|
|
953
|
+
const n = xs.length;
|
|
954
|
+
if (0 === n) return {
|
|
955
|
+
coef: [0, 0],
|
|
956
|
+
predict: _x => 0,
|
|
957
|
+
evaluateGrid: N => [],
|
|
958
|
+
confidenceInterval: (N = 50) => []
|
|
959
|
+
};
|
|
960
|
+
let intercept = 0,
|
|
961
|
+
beta = 0;
|
|
962
|
+
for (let iter = 0; iter < maxIter; iter++) {
|
|
963
|
+
const p = new Array(n);
|
|
964
|
+
let converged = !0;
|
|
965
|
+
for (let i = 0; i < n; i++) {
|
|
966
|
+
const z = intercept + beta * xs[i],
|
|
967
|
+
pi = 1 / (1 + Math.exp(-z));
|
|
968
|
+
p[i] = pi;
|
|
969
|
+
}
|
|
970
|
+
let g0 = 0,
|
|
971
|
+
g1 = 0,
|
|
972
|
+
h00 = 0,
|
|
973
|
+
h01 = 0,
|
|
974
|
+
h11 = 0;
|
|
975
|
+
for (let i = 0; i < n; i++) {
|
|
976
|
+
const wi = p[i] * (1 - p[i]),
|
|
977
|
+
diff = ys[i] - p[i];
|
|
978
|
+
g0 += diff, g1 += diff * xs[i], h00 += wi, h01 += wi * xs[i], h11 += wi * xs[i] * xs[i];
|
|
979
|
+
}
|
|
980
|
+
const det = h00 * h11 - h01 * h01;
|
|
981
|
+
if (Math.abs(det) < 1e-12) break;
|
|
982
|
+
const delta0 = (h11 * g0 - h01 * g1) / det,
|
|
983
|
+
delta1 = (-h01 * g0 + h00 * g1) / det;
|
|
984
|
+
if (intercept += delta0, beta += delta1, (Math.abs(delta0) > tol || Math.abs(delta1) > tol) && (converged = !1), converged) break;
|
|
985
|
+
}
|
|
986
|
+
const predict = xx => {
|
|
987
|
+
const z = intercept + beta * xx;
|
|
988
|
+
return 1 / (1 + Math.exp(-z));
|
|
989
|
+
};
|
|
990
|
+
return {
|
|
991
|
+
coef: [intercept, beta],
|
|
992
|
+
predict: predict,
|
|
993
|
+
evaluateGrid: function (N) {
|
|
994
|
+
const out = [];
|
|
995
|
+
if (N <= 0) return out;
|
|
996
|
+
let min = 1 / 0,
|
|
997
|
+
max = -1 / 0;
|
|
998
|
+
if (visitPoints(data, x, y, dx => {
|
|
999
|
+
dx < min && (min = dx), dx > max && (max = dx);
|
|
1000
|
+
}), min === 1 / 0 || max === -1 / 0) return out;
|
|
1001
|
+
if (min === max) {
|
|
1002
|
+
const v = predict(min);
|
|
1003
|
+
for (let i = 0; i < N; i++) out.push({
|
|
1004
|
+
x: min,
|
|
1005
|
+
y: v
|
|
1006
|
+
});
|
|
1007
|
+
return out;
|
|
1008
|
+
}
|
|
1009
|
+
const step = (max - min) / (N - 1);
|
|
1010
|
+
for (let i = 0; i < N; i++) {
|
|
1011
|
+
const px = i === N - 1 ? max : min + step * i;
|
|
1012
|
+
out.push({
|
|
1013
|
+
x: px,
|
|
1014
|
+
y: predict(px)
|
|
1015
|
+
});
|
|
1016
|
+
}
|
|
1017
|
+
return out;
|
|
1018
|
+
},
|
|
1019
|
+
confidenceInterval: function (N = 50, alpha = .05) {
|
|
1020
|
+
const out = [];
|
|
1021
|
+
if (N <= 0) return out;
|
|
1022
|
+
const comps = computeLinearCIComponents(data, x, y, predict);
|
|
1023
|
+
if (0 === comps.n) return out;
|
|
1024
|
+
const z = Math.abs(invNorm(1 - alpha / 2));
|
|
1025
|
+
if (comps.min === comps.max) {
|
|
1026
|
+
const v = predict(comps.min),
|
|
1027
|
+
errs = stdErrorsAt(comps.min, comps);
|
|
1028
|
+
for (let i = 0; i < N; i++) out.push({
|
|
1029
|
+
x: comps.min,
|
|
1030
|
+
mean: v,
|
|
1031
|
+
lower: v - z * errs.seMean,
|
|
1032
|
+
upper: v + z * errs.seMean,
|
|
1033
|
+
predLower: v - z * errs.sePred,
|
|
1034
|
+
predUpper: v + z * errs.sePred
|
|
1035
|
+
});
|
|
1036
|
+
return out;
|
|
1037
|
+
}
|
|
1038
|
+
const step = (comps.max - comps.min) / (N - 1);
|
|
1039
|
+
for (let i = 0; i < N; i++) {
|
|
1040
|
+
const px = i === N - 1 ? comps.max : comps.min + step * i,
|
|
1041
|
+
yh = predict(px),
|
|
1042
|
+
errs = stdErrorsAt(px, comps);
|
|
1043
|
+
out.push({
|
|
1044
|
+
x: px,
|
|
1045
|
+
mean: yh,
|
|
1046
|
+
lower: yh - z * errs.seMean,
|
|
1047
|
+
upper: yh + z * errs.seMean,
|
|
1048
|
+
predLower: yh - z * errs.sePred,
|
|
1049
|
+
predUpper: yh + z * errs.sePred
|
|
1050
|
+
});
|
|
1051
|
+
}
|
|
1052
|
+
return out;
|
|
1053
|
+
}
|
|
1054
|
+
};
|
|
1055
|
+
}
|
|
1056
|
+
|
|
1057
|
+
function tricube(u) {
|
|
1058
|
+
const uu = Math.abs(u);
|
|
1059
|
+
if (uu >= 1) return 0;
|
|
1060
|
+
const t = 1 - uu * uu * uu;
|
|
1061
|
+
return t * t * t;
|
|
1062
|
+
}
|
|
1063
|
+
function regressionLowess(data, x = d => d.x, y = d => d.y, options = {}) {
|
|
1064
|
+
const span = options.span || .3,
|
|
1065
|
+
degree = 0 === options.degree ? 0 : 1,
|
|
1066
|
+
iterations = null == options.iterations ? 2 : options.iterations,
|
|
1067
|
+
ptsX = [],
|
|
1068
|
+
ptsY = [];
|
|
1069
|
+
visitPoints(data, x, y, (dx, dy) => {
|
|
1070
|
+
ptsX.push(dx), ptsY.push(dy);
|
|
1071
|
+
});
|
|
1072
|
+
const n = ptsX.length;
|
|
1073
|
+
function predictSingle(x0, robustWeights) {
|
|
1074
|
+
if (0 === n) return 0;
|
|
1075
|
+
const dists = [];
|
|
1076
|
+
for (let i = 0; i < n; i++) dists.push({
|
|
1077
|
+
idx: i,
|
|
1078
|
+
dist: Math.abs(ptsX[i] - x0)
|
|
1079
|
+
});
|
|
1080
|
+
dists.sort((a, b) => a.dist - b.dist);
|
|
1081
|
+
const m = Math.max(2, Math.min(n, Math.floor(span * n))),
|
|
1082
|
+
maxDist = dists[m - 1].dist || 0,
|
|
1083
|
+
w = new Array(m);
|
|
1084
|
+
let sumw = 0;
|
|
1085
|
+
for (let i = 0; i < m; i++) {
|
|
1086
|
+
const idx = dists[i].idx;
|
|
1087
|
+
let wi = tricube(0 === maxDist ? 0 : dists[i].dist / maxDist);
|
|
1088
|
+
robustWeights && null != robustWeights[idx] && (wi *= robustWeights[idx]), w[i] = wi, sumw += wi;
|
|
1089
|
+
}
|
|
1090
|
+
if (0 === sumw) return ptsY[dists[0].idx];
|
|
1091
|
+
if (0 === degree) {
|
|
1092
|
+
let s = 0;
|
|
1093
|
+
for (let i = 0; i < m; i++) s += w[i] * ptsY[dists[i].idx];
|
|
1094
|
+
return s / sumw;
|
|
1095
|
+
}
|
|
1096
|
+
let sw = 0,
|
|
1097
|
+
sx = 0,
|
|
1098
|
+
sy = 0,
|
|
1099
|
+
sxx = 0,
|
|
1100
|
+
sxy = 0;
|
|
1101
|
+
for (let i = 0; i < m; i++) {
|
|
1102
|
+
const idx = dists[i].idx,
|
|
1103
|
+
xi = ptsX[idx],
|
|
1104
|
+
yi = ptsY[idx],
|
|
1105
|
+
wi = w[i];
|
|
1106
|
+
sw += wi, sx += wi * xi, sy += wi * yi, sxx += wi * xi * xi, sxy += wi * xi * yi;
|
|
1107
|
+
}
|
|
1108
|
+
const meanX = sx / sw,
|
|
1109
|
+
meanY = sy / sw,
|
|
1110
|
+
denom = sxx - sx * meanX,
|
|
1111
|
+
slope = Math.abs(denom) < 1e-12 ? 0 : (sxy - sx * meanY) / denom;
|
|
1112
|
+
return meanY - slope * meanX + slope * x0;
|
|
1113
|
+
}
|
|
1114
|
+
function predict(x0) {
|
|
1115
|
+
if (Array.isArray(x0)) {
|
|
1116
|
+
const out = [];
|
|
1117
|
+
for (let i = 0; i < x0.length; i++) out.push(predictSingle(x0[i]));
|
|
1118
|
+
return out;
|
|
1119
|
+
}
|
|
1120
|
+
return predictSingle(x0);
|
|
1121
|
+
}
|
|
1122
|
+
return {
|
|
1123
|
+
predict: predict,
|
|
1124
|
+
evaluate: predict,
|
|
1125
|
+
evaluateGrid: function (N) {
|
|
1126
|
+
const out = [];
|
|
1127
|
+
if (N <= 0) return out;
|
|
1128
|
+
if (0 === n) return out;
|
|
1129
|
+
let min = 1 / 0,
|
|
1130
|
+
max = -1 / 0;
|
|
1131
|
+
for (let i = 0; i < n; i++) ptsX[i] < min && (min = ptsX[i]), ptsX[i] > max && (max = ptsX[i]);
|
|
1132
|
+
if (min === max) {
|
|
1133
|
+
const v = predictSingle(min);
|
|
1134
|
+
for (let i = 0; i < N; i++) out.push({
|
|
1135
|
+
x: min,
|
|
1136
|
+
y: v
|
|
1137
|
+
});
|
|
1138
|
+
return out;
|
|
1139
|
+
}
|
|
1140
|
+
const step = (max - min) / (N - 1);
|
|
1141
|
+
let robustWeights;
|
|
1142
|
+
for (let iter = 0; iter < iterations; iter++) {
|
|
1143
|
+
const fits = [];
|
|
1144
|
+
for (let i = 0; i < n; i++) fits.push(predictSingle(ptsX[i], robustWeights));
|
|
1145
|
+
const res = [];
|
|
1146
|
+
for (let i = 0; i < n; i++) res.push(Math.abs(ptsY[i] - fits[i]));
|
|
1147
|
+
const med = res.slice().sort((a, b) => a - b)[Math.floor(n / 2)] || 0;
|
|
1148
|
+
robustWeights = new Array(n);
|
|
1149
|
+
for (let i = 0; i < n; i++) {
|
|
1150
|
+
const u = 0 === med ? 0 : res[i] / (6 * med),
|
|
1151
|
+
w = Math.abs(u) >= 1 ? 0 : (1 - u * u) * (1 - u * u);
|
|
1152
|
+
robustWeights[i] = w;
|
|
1153
|
+
}
|
|
1154
|
+
}
|
|
1155
|
+
for (let i = 0; i < N; i++) {
|
|
1156
|
+
const px = i === N - 1 ? max : min + step * i;
|
|
1157
|
+
out.push({
|
|
1158
|
+
x: px,
|
|
1159
|
+
y: predictSingle(px, robustWeights)
|
|
1160
|
+
});
|
|
1161
|
+
}
|
|
1162
|
+
return out;
|
|
1163
|
+
},
|
|
1164
|
+
confidenceInterval: function (N = 50, alpha = .05) {
|
|
1165
|
+
const out = [];
|
|
1166
|
+
if (N <= 0) return out;
|
|
1167
|
+
if (0 === n) return out;
|
|
1168
|
+
let min = 1 / 0,
|
|
1169
|
+
max = -1 / 0;
|
|
1170
|
+
for (let i = 0; i < n; i++) ptsX[i] < min && (min = ptsX[i]), ptsX[i] > max && (max = ptsX[i]);
|
|
1171
|
+
if (min === 1 / 0 || max === -1 / 0) return out;
|
|
1172
|
+
const comps = computeLinearCIComponents(data, x, y, xx => predictSingle(xx));
|
|
1173
|
+
if (0 === comps.n) return out;
|
|
1174
|
+
const z = Math.abs(invNorm(1 - alpha / 2));
|
|
1175
|
+
if (comps.min === comps.max) {
|
|
1176
|
+
const v = predictSingle(comps.min),
|
|
1177
|
+
errs = stdErrorsAt(comps.min, comps);
|
|
1178
|
+
for (let i = 0; i < N; i++) out.push({
|
|
1179
|
+
x: comps.min,
|
|
1180
|
+
mean: v,
|
|
1181
|
+
lower: v - z * errs.seMean,
|
|
1182
|
+
upper: v + z * errs.seMean,
|
|
1183
|
+
predLower: v - z * errs.sePred,
|
|
1184
|
+
predUpper: v + z * errs.sePred
|
|
1185
|
+
});
|
|
1186
|
+
return out;
|
|
1187
|
+
}
|
|
1188
|
+
const step = (max - min) / (N - 1);
|
|
1189
|
+
for (let i = 0; i < N; i++) {
|
|
1190
|
+
const px = i === N - 1 ? max : min + step * i,
|
|
1191
|
+
yh = predictSingle(px),
|
|
1192
|
+
errs = stdErrorsAt(px, comps);
|
|
1193
|
+
out.push({
|
|
1194
|
+
x: px,
|
|
1195
|
+
mean: yh,
|
|
1196
|
+
lower: yh - z * errs.seMean,
|
|
1197
|
+
upper: yh + z * errs.seMean,
|
|
1198
|
+
predLower: yh - z * errs.sePred,
|
|
1199
|
+
predUpper: yh + z * errs.sePred
|
|
1200
|
+
});
|
|
1201
|
+
}
|
|
1202
|
+
return out;
|
|
1203
|
+
}
|
|
1204
|
+
};
|
|
1205
|
+
}
|
|
1206
|
+
|
|
1207
|
+
function solveLinearSystem(A, b) {
|
|
1208
|
+
const n = b.length,
|
|
1209
|
+
M = new Array(n);
|
|
1210
|
+
for (let i = 0; i < n; i++) M[i] = A[i].slice(), M[i].push(b[i]);
|
|
1211
|
+
for (let k = 0; k < n; k++) {
|
|
1212
|
+
let maxRow = k,
|
|
1213
|
+
maxVal = Math.abs(M[k][k]);
|
|
1214
|
+
for (let i = k + 1; i < n; i++) {
|
|
1215
|
+
const v = Math.abs(M[i][k]);
|
|
1216
|
+
v > maxVal && (maxVal = v, maxRow = i);
|
|
1217
|
+
}
|
|
1218
|
+
if (maxRow !== k) {
|
|
1219
|
+
const tmp = M[k];
|
|
1220
|
+
M[k] = M[maxRow], M[maxRow] = tmp;
|
|
1221
|
+
}
|
|
1222
|
+
if (Math.abs(M[k][k]) < 1e-12) {
|
|
1223
|
+
return new Array(n).fill(0);
|
|
1224
|
+
}
|
|
1225
|
+
for (let j = k + 1; j <= n; j++) M[k][j] = M[k][j] / M[k][k];
|
|
1226
|
+
M[k][k] = 1;
|
|
1227
|
+
for (let i = 0; i < n; i++) {
|
|
1228
|
+
if (i === k) continue;
|
|
1229
|
+
const factor = M[i][k];
|
|
1230
|
+
if (0 !== factor) {
|
|
1231
|
+
for (let j = k + 1; j <= n; j++) M[i][j] -= factor * M[k][j];
|
|
1232
|
+
M[i][k] = 0;
|
|
1233
|
+
}
|
|
1234
|
+
}
|
|
1235
|
+
}
|
|
1236
|
+
const x = new Array(n);
|
|
1237
|
+
for (let i = 0; i < n; i++) x[i] = M[i][n];
|
|
1238
|
+
return x;
|
|
1239
|
+
}
|
|
1240
|
+
function regressionPolynomial(data, x = d => d.x, y = d => d.y, options = {}) {
|
|
1241
|
+
var _a;
|
|
1242
|
+
let degree = null !== (_a = options.degree) && void 0 !== _a ? _a : 0;
|
|
1243
|
+
degree < 0 && (degree = 0);
|
|
1244
|
+
const m = degree + 1,
|
|
1245
|
+
sums = new Array(2 * degree + 1).fill(0);
|
|
1246
|
+
visitPoints(data, x, y, (dx, dy) => {
|
|
1247
|
+
let xp = 1;
|
|
1248
|
+
for (let k = 0; k < sums.length; k++) sums[k] += xp, xp *= dx;
|
|
1249
|
+
});
|
|
1250
|
+
const A = new Array(m);
|
|
1251
|
+
for (let i = 0; i < m; i++) {
|
|
1252
|
+
A[i] = new Array(m).fill(0);
|
|
1253
|
+
for (let j = 0; j < m; j++) A[i][j] = sums[i + j];
|
|
1254
|
+
}
|
|
1255
|
+
const B = new Array(m).fill(0);
|
|
1256
|
+
visitPoints(data, x, y, (dx, dy) => {
|
|
1257
|
+
let xp = 1;
|
|
1258
|
+
for (let k = 0; k < m; k++) B[k] += dy * xp, xp *= dx;
|
|
1259
|
+
});
|
|
1260
|
+
const coef = solveLinearSystem(A, B),
|
|
1261
|
+
predict = xx => {
|
|
1262
|
+
let xp = 1,
|
|
1263
|
+
v = 0;
|
|
1264
|
+
for (let k = 0; k < coef.length; k++) v += coef[k] * xp, xp *= xx;
|
|
1265
|
+
return v;
|
|
1266
|
+
};
|
|
1267
|
+
return {
|
|
1268
|
+
degree: degree,
|
|
1269
|
+
coef: coef,
|
|
1270
|
+
predict: predict,
|
|
1271
|
+
rSquared: rSquared(data, x, y, (() => {
|
|
1272
|
+
let sum = 0,
|
|
1273
|
+
cnt = 0;
|
|
1274
|
+
return visitPoints(data, x, y, (_dx, dy) => {
|
|
1275
|
+
sum += dy, cnt++;
|
|
1276
|
+
}), 0 === cnt ? 0 : sum / cnt;
|
|
1277
|
+
})(), predict),
|
|
1278
|
+
evaluateGrid(N) {
|
|
1279
|
+
const out = [];
|
|
1280
|
+
if (N <= 0) return out;
|
|
1281
|
+
let min = 1 / 0,
|
|
1282
|
+
max = -1 / 0;
|
|
1283
|
+
if (visitPoints(data, x, y, dx => {
|
|
1284
|
+
isNil$1(dx) || (dx < min && (min = dx), dx > max && (max = dx));
|
|
1285
|
+
}), min === 1 / 0 || max === -1 / 0) return out;
|
|
1286
|
+
if (min === max) {
|
|
1287
|
+
const v = predict(min);
|
|
1288
|
+
for (let i = 0; i < N; i++) out.push({
|
|
1289
|
+
x: min,
|
|
1290
|
+
y: v
|
|
1291
|
+
});
|
|
1292
|
+
return out;
|
|
1293
|
+
}
|
|
1294
|
+
const step = (max - min) / (N - 1);
|
|
1295
|
+
for (let i = 0; i < N; i++) {
|
|
1296
|
+
const px = i === N - 1 ? max : min + step * i;
|
|
1297
|
+
out.push({
|
|
1298
|
+
x: px,
|
|
1299
|
+
y: predict(px)
|
|
1300
|
+
});
|
|
1301
|
+
}
|
|
1302
|
+
return out;
|
|
1303
|
+
},
|
|
1304
|
+
confidenceInterval(N = 50, alpha = .05) {
|
|
1305
|
+
const out = [];
|
|
1306
|
+
if (N <= 0) return out;
|
|
1307
|
+
const comps = computeLinearCIComponents(data, x, y, predict);
|
|
1308
|
+
if (0 === comps.n) return out;
|
|
1309
|
+
const z = Math.abs(invNorm(1 - alpha / 2));
|
|
1310
|
+
if (comps.min === comps.max) {
|
|
1311
|
+
const v = predict(comps.min),
|
|
1312
|
+
errs = stdErrorsAt(comps.min, comps);
|
|
1313
|
+
for (let i = 0; i < N; i++) out.push({
|
|
1314
|
+
x: comps.min,
|
|
1315
|
+
mean: v,
|
|
1316
|
+
lower: v - z * errs.seMean,
|
|
1317
|
+
upper: v + z * errs.seMean,
|
|
1318
|
+
predLower: v - z * errs.sePred,
|
|
1319
|
+
predUpper: v + z * errs.sePred
|
|
1320
|
+
});
|
|
1321
|
+
return out;
|
|
1322
|
+
}
|
|
1323
|
+
const step = (comps.max - comps.min) / (N - 1);
|
|
1324
|
+
for (let i = 0; i < N; i++) {
|
|
1325
|
+
const px = i === N - 1 ? comps.max : comps.min + step * i,
|
|
1326
|
+
yh = predict(px),
|
|
1327
|
+
errs = stdErrorsAt(px, comps);
|
|
1328
|
+
out.push({
|
|
1329
|
+
x: px,
|
|
1330
|
+
mean: yh,
|
|
1331
|
+
lower: yh - z * errs.seMean,
|
|
1332
|
+
upper: yh + z * errs.seMean,
|
|
1333
|
+
predLower: yh - z * errs.sePred,
|
|
1334
|
+
predUpper: yh + z * errs.sePred
|
|
1335
|
+
});
|
|
1336
|
+
}
|
|
1337
|
+
return out;
|
|
1338
|
+
}
|
|
1339
|
+
};
|
|
1340
|
+
}
|
|
1341
|
+
|
|
1342
|
+
const gaussian = u => 1 / Math.sqrt(2 * Math.PI) * Math.exp(-.5 * u * u);
|
|
1343
|
+
function scott(n, std, dim = 1) {
|
|
1344
|
+
return n <= 0 || 0 === std ? 0 : std * Math.pow(n, -1 / (dim + 4));
|
|
1345
|
+
}
|
|
1346
|
+
function silverman(n, std, dim = 1) {
|
|
1347
|
+
if (n <= 0 || 0 === std) return 0;
|
|
1348
|
+
return Math.pow(4 / (dim + 2), 1 / (dim + 4)) * std * Math.pow(n, -1 / (dim + 4));
|
|
1349
|
+
}
|
|
1350
|
+
function std(values) {
|
|
1351
|
+
const n = values.length;
|
|
1352
|
+
if (0 === n) return 0;
|
|
1353
|
+
let mean = 0;
|
|
1354
|
+
for (let i = 0; i < n; i++) mean += values[i];
|
|
1355
|
+
mean /= n;
|
|
1356
|
+
let s = 0;
|
|
1357
|
+
for (let i = 0; i < n; i++) {
|
|
1358
|
+
const d = values[i] - mean;
|
|
1359
|
+
s += d * d;
|
|
1360
|
+
}
|
|
1361
|
+
return Math.sqrt(s / n);
|
|
1362
|
+
}
|
|
1363
|
+
function kde(data, options = {}) {
|
|
1364
|
+
const n = data.length,
|
|
1365
|
+
kernel = options.kernel || gaussian;
|
|
1366
|
+
let h = options.bandwidth;
|
|
1367
|
+
if (!h || h <= 0) {
|
|
1368
|
+
const sd = std(data) || 0,
|
|
1369
|
+
method = options.bandwidthMethod || "scott";
|
|
1370
|
+
h = "silverman" === method ? silverman(n, sd, 1) : scott(n, sd, 1);
|
|
1371
|
+
}
|
|
1372
|
+
if (!h || h <= 0) {
|
|
1373
|
+
return {
|
|
1374
|
+
bandwidth: 0,
|
|
1375
|
+
kernel: kernel,
|
|
1376
|
+
evaluate: x => {
|
|
1377
|
+
if (Array.isArray(x)) {
|
|
1378
|
+
const out = [];
|
|
1379
|
+
for (let i = 0; i < x.length; i++) out.push(0);
|
|
1380
|
+
return out;
|
|
1381
|
+
}
|
|
1382
|
+
return 0;
|
|
1383
|
+
},
|
|
1384
|
+
evaluateGrid: N => {
|
|
1385
|
+
const out = [];
|
|
1386
|
+
if (N <= 0) return out;
|
|
1387
|
+
let min = 1 / 0,
|
|
1388
|
+
max = -1 / 0;
|
|
1389
|
+
for (let j = 0; j < n; j++) {
|
|
1390
|
+
const v = data[j];
|
|
1391
|
+
v < min && (min = v), v > max && (max = v);
|
|
1392
|
+
}
|
|
1393
|
+
if (min === 1 / 0 || max === -1 / 0) {
|
|
1394
|
+
for (let i = 0; i < N; i++) out.push({
|
|
1395
|
+
x: 0,
|
|
1396
|
+
y: 0
|
|
1397
|
+
});
|
|
1398
|
+
return out;
|
|
1399
|
+
}
|
|
1400
|
+
for (let i = 0; i < N; i++) out.push({
|
|
1401
|
+
x: min,
|
|
1402
|
+
y: 0
|
|
1403
|
+
});
|
|
1404
|
+
return out;
|
|
1405
|
+
}
|
|
1406
|
+
};
|
|
1407
|
+
}
|
|
1408
|
+
const invNh = 1 / (n * h);
|
|
1409
|
+
function evalPoint(x) {
|
|
1410
|
+
let sum = 0;
|
|
1411
|
+
for (let j = 0; j < n; j++) sum += kernel((x - data[j]) / h);
|
|
1412
|
+
return sum * invNh;
|
|
1413
|
+
}
|
|
1414
|
+
return {
|
|
1415
|
+
bandwidth: h,
|
|
1416
|
+
kernel: kernel,
|
|
1417
|
+
evaluate: function (x) {
|
|
1418
|
+
if (Array.isArray(x)) {
|
|
1419
|
+
const out = [];
|
|
1420
|
+
for (let i = 0; i < x.length; i++) out.push(evalPoint(x[i]));
|
|
1421
|
+
return out;
|
|
1422
|
+
}
|
|
1423
|
+
return evalPoint(x);
|
|
1424
|
+
},
|
|
1425
|
+
evaluateGrid(N) {
|
|
1426
|
+
const out = [];
|
|
1427
|
+
if (N <= 0) return out;
|
|
1428
|
+
let min = 1 / 0,
|
|
1429
|
+
max = -1 / 0;
|
|
1430
|
+
for (let i = 0; i < n; i++) {
|
|
1431
|
+
const v = data[i];
|
|
1432
|
+
v < min && (min = v), v > max && (max = v);
|
|
1433
|
+
}
|
|
1434
|
+
if (min === 1 / 0 || max === -1 / 0) return out;
|
|
1435
|
+
if (min === max) {
|
|
1436
|
+
for (let i = 0; i < N; i++) out.push({
|
|
1437
|
+
x: min,
|
|
1438
|
+
y: evalPoint(min)
|
|
1439
|
+
});
|
|
1440
|
+
return out;
|
|
1441
|
+
}
|
|
1442
|
+
const step = (max - min) / (N - 1);
|
|
1443
|
+
for (let i = 0; i < N; i++) {
|
|
1444
|
+
const x = i === N - 1 ? max : min + step * i;
|
|
1445
|
+
out.push({
|
|
1446
|
+
x: x,
|
|
1447
|
+
y: evalPoint(x)
|
|
1448
|
+
});
|
|
1449
|
+
}
|
|
1450
|
+
return out;
|
|
1451
|
+
}
|
|
1452
|
+
};
|
|
1453
|
+
}
|
|
1454
|
+
|
|
1455
|
+
function ecdf(data) {
|
|
1456
|
+
const n = data.length,
|
|
1457
|
+
sorted = data.slice().sort((a, b) => a - b);
|
|
1458
|
+
function evaluateSingle(x) {
|
|
1459
|
+
if (0 === n) return 0;
|
|
1460
|
+
let lo = 0,
|
|
1461
|
+
hi = n;
|
|
1462
|
+
for (; lo < hi;) {
|
|
1463
|
+
const mid = lo + hi >>> 1;
|
|
1464
|
+
sorted[mid] <= x ? lo = mid + 1 : hi = mid;
|
|
1465
|
+
}
|
|
1466
|
+
return lo / n;
|
|
1467
|
+
}
|
|
1468
|
+
return {
|
|
1469
|
+
evaluate: function (x) {
|
|
1470
|
+
if (Array.isArray(x)) {
|
|
1471
|
+
const out = [];
|
|
1472
|
+
for (let i = 0; i < x.length; i++) out.push(evaluateSingle(x[i]));
|
|
1473
|
+
return out;
|
|
1474
|
+
}
|
|
1475
|
+
return evaluateSingle(x);
|
|
1476
|
+
},
|
|
1477
|
+
evaluateGrid: function (N) {
|
|
1478
|
+
const out = [];
|
|
1479
|
+
if (N <= 0) return out;
|
|
1480
|
+
if (0 === n) return out;
|
|
1481
|
+
const min = sorted[0],
|
|
1482
|
+
max = sorted[n - 1];
|
|
1483
|
+
if (min === max) {
|
|
1484
|
+
for (let i = 0; i < N; i++) out.push({
|
|
1485
|
+
x: min,
|
|
1486
|
+
y: 1
|
|
1487
|
+
});
|
|
1488
|
+
return out;
|
|
1489
|
+
}
|
|
1490
|
+
const step = (max - min) / (N - 1);
|
|
1491
|
+
for (let i = 0; i < N; i++) {
|
|
1492
|
+
const x = i === N - 1 ? max : min + step * i;
|
|
1493
|
+
out.push({
|
|
1494
|
+
x: x,
|
|
1495
|
+
y: evaluateSingle(x)
|
|
1496
|
+
});
|
|
1497
|
+
}
|
|
1498
|
+
return out;
|
|
1499
|
+
},
|
|
1500
|
+
n: n
|
|
1501
|
+
};
|
|
1502
|
+
}
|
|
1503
|
+
|
|
760
1504
|
const epsilon = 1e-12;
|
|
761
1505
|
const pi = Math.PI;
|
|
762
1506
|
const halfPi$1 = pi / 2;
|
|
@@ -25971,6 +26715,307 @@
|
|
|
25971
26715
|
}
|
|
25972
26716
|
};
|
|
25973
26717
|
|
|
26718
|
+
const REGRESSION_LINE = 'regressionLine';
|
|
26719
|
+
class RegressionLine extends AbstractComponent {
|
|
26720
|
+
constructor() {
|
|
26721
|
+
super(...arguments);
|
|
26722
|
+
this.name = REGRESSION_LINE;
|
|
26723
|
+
}
|
|
26724
|
+
render() {
|
|
26725
|
+
this.removeAllChild();
|
|
26726
|
+
const { data, line = {}, label, name = 'regression-line', confidenceInterval } = this.attribute;
|
|
26727
|
+
if (isEmpty(data)) {
|
|
26728
|
+
return;
|
|
26729
|
+
}
|
|
26730
|
+
data.forEach(d => {
|
|
26731
|
+
const { color } = d;
|
|
26732
|
+
if (d.area && (confidenceInterval === null || confidenceInterval === void 0 ? void 0 : confidenceInterval.visible) !== false) {
|
|
26733
|
+
const areaShape = createArea(Object.assign(Object.assign({ points: d.area }, (isValid$1(color) ? { fill: color, fillOpacity: 0.12 } : null)), confidenceInterval === null || confidenceInterval === void 0 ? void 0 : confidenceInterval.style));
|
|
26734
|
+
areaShape.name = 'scatter-regression-area';
|
|
26735
|
+
this.add(areaShape);
|
|
26736
|
+
}
|
|
26737
|
+
if (d.line && (line === null || line === void 0 ? void 0 : line.visible) !== false) {
|
|
26738
|
+
const lineShape = createLine(Object.assign(Object.assign({ points: d.line, lineWidth: 1 }, (isValid$1(color) ? { stroke: color } : null)), line === null || line === void 0 ? void 0 : line.style));
|
|
26739
|
+
lineShape.name = `${name}-curve`;
|
|
26740
|
+
this.add(lineShape);
|
|
26741
|
+
}
|
|
26742
|
+
const lastPoint = last(d.line);
|
|
26743
|
+
if (label && label.visible !== false && label.text && lastPoint) {
|
|
26744
|
+
const tag = createText(Object.assign(Object.assign(Object.assign({}, lastPoint), { text: label.text, textAlign: 'end', textBaseline: 'middle' }), label.style));
|
|
26745
|
+
tag.name = `${name}-label`;
|
|
26746
|
+
this.add(tag);
|
|
26747
|
+
}
|
|
26748
|
+
});
|
|
26749
|
+
}
|
|
26750
|
+
}
|
|
26751
|
+
const registerRegressionLine = () => {
|
|
26752
|
+
vchart.Factory.registerGraphicComponent(REGRESSION_LINE, (attrs) => new RegressionLine(attrs));
|
|
26753
|
+
};
|
|
26754
|
+
|
|
26755
|
+
const getRegressionByType$1 = (type, data, x = d => d.x, y = d => d.y, degree) => {
|
|
26756
|
+
switch (type) {
|
|
26757
|
+
case 'logisitc':
|
|
26758
|
+
return regressionLogistic(data, x, y);
|
|
26759
|
+
case 'lowess':
|
|
26760
|
+
return regressionLowess(data, x, y);
|
|
26761
|
+
case 'polynomial':
|
|
26762
|
+
return regressionPolynomial(data, x, y, { degree });
|
|
26763
|
+
default:
|
|
26764
|
+
return regressionLinear(data, x, y);
|
|
26765
|
+
}
|
|
26766
|
+
};
|
|
26767
|
+
function getScatterRegressionLineConfig(type, config) {
|
|
26768
|
+
const { color, line, confidenceInterval, label } = config;
|
|
26769
|
+
return {
|
|
26770
|
+
type: 'component',
|
|
26771
|
+
componentType: REGRESSION_LINE,
|
|
26772
|
+
interactive: false,
|
|
26773
|
+
style: {
|
|
26774
|
+
data: (datum, ctx) => {
|
|
26775
|
+
const vchart$1 = ctx.vchart;
|
|
26776
|
+
const chart = vchart$1.getChart();
|
|
26777
|
+
const series = chart.getAllSeries().filter((s) => s.type === vchart.SeriesTypeEnum.scatter);
|
|
26778
|
+
const regressionData = [];
|
|
26779
|
+
if (series && series.length) {
|
|
26780
|
+
series.forEach(s => {
|
|
26781
|
+
var _a, _b;
|
|
26782
|
+
const start = s.getRegion().getLayoutStartPoint();
|
|
26783
|
+
const rect = s.getRegion().getLayoutRect();
|
|
26784
|
+
const yClamper = clamper(start.y, start.y + rect.height);
|
|
26785
|
+
const colorAttrOptions = s.getColorAttribute();
|
|
26786
|
+
const groups = s.getSeriesKeys();
|
|
26787
|
+
const data = s.getViewData().latestData;
|
|
26788
|
+
const fieldX = (_a = s.fieldX) === null || _a === void 0 ? void 0 : _a[0];
|
|
26789
|
+
const fieldY = (_b = s.fieldY) === null || _b === void 0 ? void 0 : _b[0];
|
|
26790
|
+
if (!fieldX || !fieldY || !data || data.length <= 2) {
|
|
26791
|
+
return;
|
|
26792
|
+
}
|
|
26793
|
+
groups.forEach(group => {
|
|
26794
|
+
var _a;
|
|
26795
|
+
const groupData = data.filter((d) => d[colorAttrOptions === null || colorAttrOptions === void 0 ? void 0 : colorAttrOptions.field] === group);
|
|
26796
|
+
if (!groupData.length) {
|
|
26797
|
+
return;
|
|
26798
|
+
}
|
|
26799
|
+
const { evaluateGrid, confidenceInterval } = getRegressionByType$1(type, groupData, (datum) => datum === null || datum === void 0 ? void 0 : datum[fieldX], (datum) => datum === null || datum === void 0 ? void 0 : datum[fieldY], config.polynomialDegree);
|
|
26800
|
+
const N = Math.max(3, Math.floor(groupData.length / 4));
|
|
26801
|
+
const lineData = evaluateGrid(N);
|
|
26802
|
+
const confidenceData = confidenceInterval(N);
|
|
26803
|
+
regressionData.push({
|
|
26804
|
+
color: color !== null && color !== void 0 ? color : (_a = colorAttrOptions === null || colorAttrOptions === void 0 ? void 0 : colorAttrOptions.scale) === null || _a === void 0 ? void 0 : _a.scale(group),
|
|
26805
|
+
line: lineData.map((ld) => {
|
|
26806
|
+
const d = { [fieldX]: ld.x, [fieldY]: ld.y };
|
|
26807
|
+
return {
|
|
26808
|
+
x: s.dataToPositionX(d) + start.x,
|
|
26809
|
+
y: yClamper(type === 'logisitc' ? start.y + rect.height * (1 - ld.y) : s.dataToPositionY(d) + start.y)
|
|
26810
|
+
};
|
|
26811
|
+
}),
|
|
26812
|
+
area: confidenceData.map((c) => {
|
|
26813
|
+
const d = { [fieldX]: c.x, [fieldY]: c.lower };
|
|
26814
|
+
return {
|
|
26815
|
+
x: s.dataToPositionX(d) + start.x,
|
|
26816
|
+
y: yClamper(s.dataToPositionY(d) + start.y),
|
|
26817
|
+
y1: yClamper(s.dataToPositionY({ [fieldY]: c.upper }) + start.y)
|
|
26818
|
+
};
|
|
26819
|
+
})
|
|
26820
|
+
});
|
|
26821
|
+
});
|
|
26822
|
+
});
|
|
26823
|
+
}
|
|
26824
|
+
return regressionData;
|
|
26825
|
+
},
|
|
26826
|
+
line,
|
|
26827
|
+
confidenceInterval,
|
|
26828
|
+
label
|
|
26829
|
+
}
|
|
26830
|
+
};
|
|
26831
|
+
}
|
|
26832
|
+
function appendScatterRegressionLineConfig(chartSpec, spec) {
|
|
26833
|
+
var _a, _b;
|
|
26834
|
+
if (!spec) {
|
|
26835
|
+
spec =
|
|
26836
|
+
(_a = get$1(chartSpec, REGRESSION_LINE)) !== null && _a !== void 0 ? _a : get$1((_b = chartSpec.series) === null || _b === void 0 ? void 0 : _b.find(s => s.type === vchart.SeriesTypeEnum.scatter), REGRESSION_LINE);
|
|
26837
|
+
}
|
|
26838
|
+
const specs = array(spec);
|
|
26839
|
+
specs.forEach((s) => {
|
|
26840
|
+
if (s.visible !== false) {
|
|
26841
|
+
if (!chartSpec.customMark) {
|
|
26842
|
+
chartSpec.customMark = [];
|
|
26843
|
+
}
|
|
26844
|
+
const { type } = s, rest = __rest$1(s, ["type"]);
|
|
26845
|
+
chartSpec.customMark.push(getScatterRegressionLineConfig(type, rest));
|
|
26846
|
+
}
|
|
26847
|
+
});
|
|
26848
|
+
}
|
|
26849
|
+
|
|
26850
|
+
function getBarRegressionLineConfig(config) {
|
|
26851
|
+
const { color, line, confidenceInterval, label } = config;
|
|
26852
|
+
return {
|
|
26853
|
+
type: 'component',
|
|
26854
|
+
componentType: REGRESSION_LINE,
|
|
26855
|
+
interactive: false,
|
|
26856
|
+
zIndex: 500,
|
|
26857
|
+
style: {
|
|
26858
|
+
data: (datum, ctx) => {
|
|
26859
|
+
const vchart$1 = ctx.vchart;
|
|
26860
|
+
const chart = vchart$1.getChart();
|
|
26861
|
+
const series = chart.getAllSeries().filter((s) => s.type === vchart.SeriesTypeEnum.bar);
|
|
26862
|
+
const regressionData = [];
|
|
26863
|
+
if (series && series.length) {
|
|
26864
|
+
series.forEach(s => {
|
|
26865
|
+
var _a, _b, _c;
|
|
26866
|
+
const region = s.getRegion().getLayoutStartPoint();
|
|
26867
|
+
const start = s.getRegion().getLayoutStartPoint();
|
|
26868
|
+
const rect = s.getRegion().getLayoutRect();
|
|
26869
|
+
const yClamper = clamper(start.y, start.y + rect.height);
|
|
26870
|
+
const data = s.getViewData().latestData;
|
|
26871
|
+
const fieldX = (_a = s.fieldX) === null || _a === void 0 ? void 0 : _a[0];
|
|
26872
|
+
const fieldY = (_b = s.fieldY) === null || _b === void 0 ? void 0 : _b[0];
|
|
26873
|
+
const isHorizontal = s.direction === "horizontal";
|
|
26874
|
+
const groups = s.getRawDataStatisticsByField(fieldX).values;
|
|
26875
|
+
if (isHorizontal || !fieldX || !fieldY || !data || data.length <= 2 || groups.length <= 2) {
|
|
26876
|
+
return;
|
|
26877
|
+
}
|
|
26878
|
+
const { evaluateGrid, confidenceInterval } = regressionPolynomial(data, (datum) => groups.indexOf(datum === null || datum === void 0 ? void 0 : datum[fieldX]), (datum) => datum === null || datum === void 0 ? void 0 : datum[fieldY], { degree: config.degree });
|
|
26879
|
+
const N = groups.length;
|
|
26880
|
+
const lineData = evaluateGrid(N);
|
|
26881
|
+
const confidenceData = confidenceInterval(N);
|
|
26882
|
+
const halfBandWidth = s.getXAxisHelper().getBandwidth(0) / 2;
|
|
26883
|
+
regressionData.push({
|
|
26884
|
+
color: color !== null && color !== void 0 ? color : (_c = s.getOption().globalScale.getScale('color')) === null || _c === void 0 ? void 0 : _c.scale(s.getSeriesKeys()[0]),
|
|
26885
|
+
line: lineData.map((ld) => {
|
|
26886
|
+
const d = { [fieldX]: groups[ld.x], [fieldY]: ld.y };
|
|
26887
|
+
return {
|
|
26888
|
+
x: s.dataToPositionX(d) + region.x + halfBandWidth,
|
|
26889
|
+
y: yClamper(s.dataToPositionY(d) + region.y)
|
|
26890
|
+
};
|
|
26891
|
+
}),
|
|
26892
|
+
area: confidenceData.map((c) => {
|
|
26893
|
+
const d = { [fieldX]: groups[c.x], [fieldY]: c.lower };
|
|
26894
|
+
return {
|
|
26895
|
+
x: s.dataToPositionX(d) + region.x + halfBandWidth,
|
|
26896
|
+
y: yClamper(s.dataToPositionY(d) + region.y),
|
|
26897
|
+
y1: yClamper(s.dataToPositionY({ [fieldY]: c.upper }) + region.y)
|
|
26898
|
+
};
|
|
26899
|
+
})
|
|
26900
|
+
});
|
|
26901
|
+
});
|
|
26902
|
+
}
|
|
26903
|
+
return regressionData;
|
|
26904
|
+
},
|
|
26905
|
+
line,
|
|
26906
|
+
confidenceInterval,
|
|
26907
|
+
label
|
|
26908
|
+
}
|
|
26909
|
+
};
|
|
26910
|
+
}
|
|
26911
|
+
function appendBarRegressionLineConfig(chartSpec, spec) {
|
|
26912
|
+
var _a, _b;
|
|
26913
|
+
if (!spec) {
|
|
26914
|
+
spec =
|
|
26915
|
+
(_a = get$1(chartSpec, REGRESSION_LINE)) !== null && _a !== void 0 ? _a : get$1((_b = chartSpec.series) === null || _b === void 0 ? void 0 : _b.find(s => s.type === vchart.SeriesTypeEnum.bar), REGRESSION_LINE);
|
|
26916
|
+
}
|
|
26917
|
+
const specs = array(spec);
|
|
26918
|
+
specs.forEach((s) => {
|
|
26919
|
+
if (s.visible !== false) {
|
|
26920
|
+
if (!chartSpec.customMark) {
|
|
26921
|
+
chartSpec.customMark = [];
|
|
26922
|
+
}
|
|
26923
|
+
const rest = __rest$1(s, ["visible"]);
|
|
26924
|
+
chartSpec.customMark.push(getBarRegressionLineConfig(rest));
|
|
26925
|
+
}
|
|
26926
|
+
});
|
|
26927
|
+
}
|
|
26928
|
+
|
|
26929
|
+
const getRegressionByType = (type, data, kdeOptions) => {
|
|
26930
|
+
switch (type) {
|
|
26931
|
+
case 'kde':
|
|
26932
|
+
return kde(data, kdeOptions);
|
|
26933
|
+
case 'ecdf':
|
|
26934
|
+
return ecdf(data);
|
|
26935
|
+
}
|
|
26936
|
+
};
|
|
26937
|
+
function getHistogramRegressionLineConfig(type, config) {
|
|
26938
|
+
const { line, label, color } = config;
|
|
26939
|
+
return {
|
|
26940
|
+
type: 'component',
|
|
26941
|
+
componentType: REGRESSION_LINE,
|
|
26942
|
+
interactive: false,
|
|
26943
|
+
zIndex: 500,
|
|
26944
|
+
style: {
|
|
26945
|
+
data: (datum, ctx) => {
|
|
26946
|
+
const vchart$1 = ctx.vchart;
|
|
26947
|
+
const chart = vchart$1.getChart();
|
|
26948
|
+
const series = chart.getAllSeries().filter((s) => s.type === vchart.SeriesTypeEnum.bar);
|
|
26949
|
+
const regressionData = [];
|
|
26950
|
+
if (series && series.length) {
|
|
26951
|
+
series.forEach(s => {
|
|
26952
|
+
var _a, _b, _c, _d, _e, _f, _g, _h;
|
|
26953
|
+
const region = s.getRegion().getLayoutStartPoint();
|
|
26954
|
+
const rawData = s._rawData;
|
|
26955
|
+
const data = rawData === null || rawData === void 0 ? void 0 : rawData.rawData;
|
|
26956
|
+
const binTransformOptions = (_b = (_a = rawData.transformsArr) === null || _a === void 0 ? void 0 : _a.find((t) => t.type === 'bin')) === null || _b === void 0 ? void 0 : _b.options;
|
|
26957
|
+
const fieldX = (_c = s.fieldX) === null || _c === void 0 ? void 0 : _c[0];
|
|
26958
|
+
const scaleY = s.getYAxisHelper().getScale(0);
|
|
26959
|
+
const viewData = s.getViewData().latestData;
|
|
26960
|
+
if (!data || !data.length || !(binTransformOptions === null || binTransformOptions === void 0 ? void 0 : binTransformOptions.field) || !scaleY || !viewData || !viewData.length) {
|
|
26961
|
+
return;
|
|
26962
|
+
}
|
|
26963
|
+
const simpleData = data.map((entry) => entry[binTransformOptions.field]);
|
|
26964
|
+
const res = getRegressionByType(type, simpleData, type === 'kde'
|
|
26965
|
+
? {
|
|
26966
|
+
bandwidth: viewData[0][(_e = (_d = binTransformOptions.outputNames) === null || _d === void 0 ? void 0 : _d.x1) !== null && _e !== void 0 ? _e : 'x1'] -
|
|
26967
|
+
viewData[0][(_g = (_f = binTransformOptions.outputNames) === null || _f === void 0 ? void 0 : _f.x0) !== null && _g !== void 0 ? _g : 'x0']
|
|
26968
|
+
}
|
|
26969
|
+
: null);
|
|
26970
|
+
const N = Math.max(3, Math.floor(simpleData.length / 4));
|
|
26971
|
+
const lineData = res.evaluateGrid(N);
|
|
26972
|
+
const yRange = scaleY.range();
|
|
26973
|
+
const y0 = yRange[0];
|
|
26974
|
+
const y1 = last(yRange);
|
|
26975
|
+
const scaleR = type === 'kde'
|
|
26976
|
+
? (k) => {
|
|
26977
|
+
return scaleY.scale(k * data.length * res.bandwidth);
|
|
26978
|
+
}
|
|
26979
|
+
: (e) => {
|
|
26980
|
+
return y0 + (y1 - y0) * e;
|
|
26981
|
+
};
|
|
26982
|
+
regressionData.push({
|
|
26983
|
+
color: color !== null && color !== void 0 ? color : (_h = s.getOption().globalScale.getScale('color')) === null || _h === void 0 ? void 0 : _h.scale(s.getSeriesKeys()[0]),
|
|
26984
|
+
line: lineData.map((ld) => {
|
|
26985
|
+
const d = { [fieldX]: ld.x };
|
|
26986
|
+
return {
|
|
26987
|
+
x: s.dataToPositionX(d) + region.x,
|
|
26988
|
+
y: scaleR(ld.y) + region.y
|
|
26989
|
+
};
|
|
26990
|
+
})
|
|
26991
|
+
});
|
|
26992
|
+
});
|
|
26993
|
+
}
|
|
26994
|
+
return regressionData;
|
|
26995
|
+
},
|
|
26996
|
+
line,
|
|
26997
|
+
label
|
|
26998
|
+
}
|
|
26999
|
+
};
|
|
27000
|
+
}
|
|
27001
|
+
function appendHistogramRegressionLineConfig(chartSpec, spec) {
|
|
27002
|
+
var _a, _b;
|
|
27003
|
+
if (!spec) {
|
|
27004
|
+
spec =
|
|
27005
|
+
(_a = get$1(chartSpec, REGRESSION_LINE)) !== null && _a !== void 0 ? _a : get$1((_b = chartSpec.series) === null || _b === void 0 ? void 0 : _b.find(s => s.type === vchart.SeriesTypeEnum.bar), REGRESSION_LINE);
|
|
27006
|
+
}
|
|
27007
|
+
const specs = array(spec);
|
|
27008
|
+
specs.forEach((s) => {
|
|
27009
|
+
if (s.visible !== false) {
|
|
27010
|
+
if (!chartSpec.customMark) {
|
|
27011
|
+
chartSpec.customMark = [];
|
|
27012
|
+
}
|
|
27013
|
+
const { type } = s, rest = __rest$1(s, ["type"]);
|
|
27014
|
+
chartSpec.customMark.push(getHistogramRegressionLineConfig(type, rest));
|
|
27015
|
+
}
|
|
27016
|
+
});
|
|
27017
|
+
}
|
|
27018
|
+
|
|
25974
27019
|
exports.BAR_LINK = BAR_LINK;
|
|
25975
27020
|
exports.Bar3dChart = Bar3dChart;
|
|
25976
27021
|
exports.Bar3dChartSpecTransformer = Bar3dChartSpecTransformer;
|
|
@@ -25999,12 +27044,14 @@
|
|
|
25999
27044
|
exports.Pie3dChartSpecTransformer = Pie3dChartSpecTransformer;
|
|
26000
27045
|
exports.Pie3dSeries = Pie3dSeries;
|
|
26001
27046
|
exports.Pie3dSeriesSpecTransformer = Pie3dSeriesSpecTransformer;
|
|
27047
|
+
exports.REGRESSION_LINE = REGRESSION_LINE;
|
|
26002
27048
|
exports.RangeColumn3dChart = RangeColumn3dChart;
|
|
26003
27049
|
exports.RangeColumn3dChartSpecTransformer = RangeColumn3dChartSpecTransformer;
|
|
26004
27050
|
exports.RangeColumn3dSeries = RangeColumn3dSeries;
|
|
26005
27051
|
exports.RangeColumn3dSeriesSpecTransformer = RangeColumn3dSeriesSpecTransformer;
|
|
26006
27052
|
exports.RankingBar = RankingBar;
|
|
26007
27053
|
exports.RankingList = RankingList;
|
|
27054
|
+
exports.RegressionLine = RegressionLine;
|
|
26008
27055
|
exports.SERIES_BREAK = SERIES_BREAK;
|
|
26009
27056
|
exports.SequenceScatterKDE = SequenceScatterKDE;
|
|
26010
27057
|
exports.SequenceScatterLink = SequenceScatterLink;
|
|
@@ -26015,11 +27062,17 @@
|
|
|
26015
27062
|
exports.WordCloud3dChartSpecTransformer = WordCloud3dChartSpecTransformer;
|
|
26016
27063
|
exports.WordCloud3dSeries = WordCloud3dSeries;
|
|
26017
27064
|
exports.appendBarLinkConfig = appendBarLinkConfig;
|
|
27065
|
+
exports.appendBarRegressionLineConfig = appendBarRegressionLineConfig;
|
|
27066
|
+
exports.appendHistogramRegressionLineConfig = appendHistogramRegressionLineConfig;
|
|
27067
|
+
exports.appendScatterRegressionLineConfig = appendScatterRegressionLineConfig;
|
|
26018
27068
|
exports.appendSeriesBreakConfig = appendSeriesBreakConfig;
|
|
26019
27069
|
exports.appendSeriesLabelConfig = appendSeriesLabelConfig;
|
|
26020
27070
|
exports.clearSVGSource = clearSVGSource;
|
|
26021
27071
|
exports.getBarLinkConfig = getBarLinkConfig;
|
|
27072
|
+
exports.getBarRegressionLineConfig = getBarRegressionLineConfig;
|
|
27073
|
+
exports.getHistogramRegressionLineConfig = getHistogramRegressionLineConfig;
|
|
26022
27074
|
exports.getSVGSource = getSVGSource;
|
|
27075
|
+
exports.getScatterRegressionLineConfig = getScatterRegressionLineConfig;
|
|
26023
27076
|
exports.getSeriesBreakConfig = getSeriesBreakConfig;
|
|
26024
27077
|
exports.getSeriesLabelConfig = getSeriesLabelConfig;
|
|
26025
27078
|
exports.register3DPlugin = register3DPlugin;
|
|
@@ -26044,6 +27097,7 @@
|
|
|
26044
27097
|
exports.registerRangeColumn3dSeries = registerRangeColumn3dSeries;
|
|
26045
27098
|
exports.registerRankingBarChart = registerRankingBarChart;
|
|
26046
27099
|
exports.registerRankingList = registerRankingList;
|
|
27100
|
+
exports.registerRegressionLine = registerRegressionLine;
|
|
26047
27101
|
exports.registerSVGSource = registerSVGSource;
|
|
26048
27102
|
exports.registerSequenceScatterKDE = registerSequenceScatterKDE;
|
|
26049
27103
|
exports.registerSequenceScatterLink = registerSequenceScatterLink;
|