@vfarcic/dot-ai 0.99.0 → 0.101.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -8,6 +8,7 @@
8
8
 
9
9
  DevOps AI Toolkit is an AI-powered development productivity platform that enhances software development workflows through intelligent automation and AI-driven assistance.
10
10
 
11
+ 📚 [Quick Start](./docs/quick-start.md) | 🔧 [MCP Setup](./docs/mcp-setup.md) | 🛠️ [Features & Tools](./docs/mcp-tools-overview.md)
11
12
 
12
13
  ## Who is this for?
13
14
 
@@ -44,6 +45,8 @@ DevOps AI Toolkit is an AI-powered development productivity platform that enhanc
44
45
  🔧 **Operator-Aware**: Leverages custom operators and CRDs when available
45
46
  🚀 **Complete Workflow**: From discovery to deployment with automated Kubernetes integration
46
47
 
48
+ 📖 [Learn more →](./docs/mcp-recommendation-guide.md)
49
+
47
50
  #### Capability-Enhanced Recommendations
48
51
  Transform how AI understands your cluster by discovering semantic capabilities of each resource:
49
52
 
@@ -65,7 +68,7 @@ AI: Gets pre-filtered relevant resources with rich context
65
68
  Result: Finds sqls.devopstoolkit.live as perfect match ✨
66
69
  ```
67
70
 
68
- **Get Started**: See the [Tools and Features Overview](./docs/mcp-tools-overview.md) for complete guide to all available tools including capability management, deployment recommendations, and workflow integration.
71
+ 📖 [Learn more ](./docs/mcp-capability-management-guide.md)
69
72
 
70
73
  ### Kubernetes Issue Remediation
71
74
  🔍 **AI-Powered Root Cause Analysis**: Multi-step investigation loop identifies the real cause behind Kubernetes failures
@@ -74,18 +77,24 @@ Result: Finds sqls.devopstoolkit.live as perfect match ✨
74
77
  🔒 **Safety Mechanisms**: Automatic fallback to manual mode when validation discovers additional issues
75
78
  🎯 **Cross-Resource Intelligence**: Understands how pod issues may require fixes in different resource types (storage, networking, etc.)
76
79
 
80
+ 📖 [Learn more →](./docs/mcp-remediate-guide.md)
81
+
77
82
  ### Documentation Testing & Validation
78
83
  📖 **Automated Testing**: Validates documentation by executing commands and testing examples
79
84
  🔍 **Two-Phase Validation**: Tests both functionality (does it work?) and semantic accuracy (are descriptions truthful?)
80
85
  🛠️ **Fix Application**: User-driven selection and application of recommended documentation improvements
81
86
  💾 **Session Management**: Resumable testing workflows for large documentation sets
82
87
 
88
+ 📖 [Learn more →](./docs/mcp-documentation-testing-guide.md)
89
+
83
90
  ### Organizational Pattern Management
84
91
  🏛️ **Pattern Creation**: Define organizational deployment patterns that capture institutional knowledge
85
92
  🧠 **AI Enhancement**: Patterns automatically enhance deployment recommendations with organizational context
86
93
  🔍 **Semantic Search**: Uses Vector DB (Qdrant) for intelligent pattern matching based on user intent
87
94
  📋 **Best Practices**: Share deployment standards across teams through reusable patterns
88
95
 
96
+ 📖 [Learn more →](./docs/pattern-management-guide.md)
97
+
89
98
  ### Policy Management & Governance
90
99
  🛡️ **Policy Creation**: Define governance policies that guide users toward compliant configurations
91
100
  ⚠️ **Compliance Integration**: Policies create required questions with compliance indicators during deployment
@@ -93,245 +102,37 @@ Result: Finds sqls.devopstoolkit.live as perfect match ✨
93
102
  🎯 **Proactive Governance**: Prevents configuration drift by embedding compliance into the recommendation workflow
94
103
  🔍 **Vector Storage**: Uses Qdrant Vector DB for semantic policy matching and retrieval
95
104
 
105
+ 📖 [Learn more →](./docs/policy-management-guide.md)
106
+
96
107
  ### Shared Prompts Library
97
108
  🎯 **Native Slash Commands**: Prompts appear as `/dot-ai:prompt-name` in your coding agent
98
109
  📚 **Curated Library**: Access proven prompts for code review, documentation, architecture, and project management
99
110
  🔄 **Zero Setup**: Connect to MCP server and prompts are immediately available across all projects
100
111
  🤝 **Team Consistency**: Standardized prompt usage with centralized management
101
112
 
113
+ 📖 [Learn more →](./docs/mcp-prompts-guide.md)
114
+
102
115
  ### AI Integration
103
116
  ⚡ **MCP Integration**: Works seamlessly with Claude Code, Cursor, or VS Code through Model Context Protocol
104
117
  🤖 **Conversational Interface**: Natural language interaction for deployment, documentation testing, pattern management, and shared prompt workflows
105
118
 
106
119
  **Setup Required**: See the [MCP Setup Guide](./docs/mcp-setup.md) for complete configuration instructions.
107
120
 
121
+ ---
122
+ 🚀 **Ready to deploy?** Jump to the [Quick Start](./docs/quick-start.md) guide to begin using DevOps AI Toolkit.
123
+ ---
124
+
108
125
  ## See It In Action
109
126
 
110
127
  [![DevOps AI Toolkit: AI-Powered Application Deployment](https://img.youtube.com/vi/8Yzn-9qQpQI/maxresdefault.jpg)](https://youtu.be/8Yzn-9qQpQI)
111
128
 
112
129
  This video explains the platform engineering problem and demonstrates the Kubernetes deployment recommendation workflow from intent to running applications.
113
130
 
114
- ## Quick Start
115
-
116
- ### Prerequisites
117
-
118
- **For Kubernetes deployment and documentation testing:**
119
- - **Claude API key** (required for AI analysis)
120
- - Get your API key from [Anthropic Console](https://console.anthropic.com/) (requires account login)
121
- <!-- dotai-ignore: Console URL may return 403 - expected behavior for auth-protected endpoint -->
122
- - Set it as environment variable: `export ANTHROPIC_API_KEY=your_api_key_here`
123
-
124
- **For shared prompts library:**
125
- - **No API key required** - Works with any MCP-enabled coding agent (other features like deployments do require ANTHROPIC_API_KEY)
126
-
127
- **For Kubernetes deployment recommendations:**
128
- - **kubectl** configured with cluster access
129
- - Verify cluster access with: `kubectl get nodes`
130
- - Should show your cluster nodes without authentication errors
131
- <!-- dotai-ignore: kubectl verification command output format - implementation-specific -->
132
-
133
- **For documentation testing:**
134
- - **Documentation files** to test (Markdown, HTML, etc.)
135
- - **File system access** to the documentation you want to validate
136
-
137
- **For organizational pattern management:**
138
- - **Vector DB service** (Qdrant) for pattern storage and semantic search
139
- - **OpenAI API key** (required) for semantic pattern matching and vector operations
140
-
141
- **For policy management and governance:**
142
- - **Vector DB service** (Qdrant) for policy storage and semantic search
143
- - **OpenAI API key** (required) for semantic policy matching and vector operations
144
- - **Optional**: Kyverno installed in cluster for active policy enforcement
145
-
146
- ### Installation
147
-
148
- DevOps AI Toolkit is designed to be used through AI development tools via MCP (Model Context Protocol). No direct installation needed - simply configure your AI tool to connect to the MCP server.
149
-
150
- ### Usage
151
-
152
- **🎯 Recommended: Docker Setup (Complete Stack)**
153
- Perfect for getting all features working immediately with minimal setup:
154
-
155
- 1. **Download Docker Compose configuration:**
156
- ```bash
157
- curl -o docker-compose-dot-ai.yaml https://raw.githubusercontent.com/vfarcic/dot-ai/main/docker-compose-dot-ai.yaml
158
- ```
159
-
160
- 2. **Set environment variables and create MCP configuration:**
161
- ```bash
162
- # Set your API keys
163
- export ANTHROPIC_API_KEY="sk-ant-api03-your-key-here"
164
- export OPENAI_API_KEY="sk-proj-your-openai-key-here"
165
-
166
- # Create MCP configuration for Claude Code
167
- cat > .mcp.json << 'EOF'
168
- {
169
- "mcpServers": {
170
- "dot-ai": {
171
- "command": "docker",
172
- "args": [
173
- "compose",
174
- "-f",
175
- "docker-compose-dot-ai.yaml",
176
- "--env-file",
177
- ".env",
178
- "run",
179
- "--rm",
180
- "--remove-orphans",
181
- "dot-ai"
182
- ]
183
- }
184
- }
185
- }
186
- EOF
187
- ```
188
-
189
- **What you get:**
190
- - ✅ **Complete Stack**: MCP server + Qdrant vector database included
191
- - ✅ **All Features Working**: Capability management, pattern storage, policy governance, semantic search
192
- - ✅ **No External Dependencies**: Everything runs in containers
193
- - ✅ **Kubernetes Integration**: Direct kubectl access to your clusters
194
-
195
- **Alternative Methods**: See the [MCP Setup Guide](docs/mcp-setup.md) for NPX (Node.js) and Development setup options.
196
-
197
- 3. **Start your MCP client:**
198
- ```bash
199
- claude # or your preferred MCP-enabled AI tool
200
-
201
- # Verify everything works by asking:
202
- "Show dot-ai status"
203
- ```
204
-
205
- 4. **Use conversational workflows:**
206
-
207
- **Example: Kubernetes Deployment**
208
- ```
209
- User: I want to deploy a web application to my cluster
210
-
211
- Agent: I'll help you deploy a web application. Let me get recommendations. First, a few questions to provide better suggestions:
212
-
213
- What type of web application is this? Is it for development or production?
214
- Does it need external access?
215
- [Uses recommend tool for clarification]
216
-
217
- User: It's a production Node.js API that needs external access
218
-
219
- Agent: Perfect! Based on your production requirements, I found 3 deployment options.
220
- Let's use the Production Web Stack with external access.
221
- What's your application name and container image?
222
- [Uses recommend tool with refined intent]
223
-
224
- User: App name is "myapp" and image is "myapp:v1.0.0"
225
-
226
- Agent: Excellent! Generating production-ready manifests and deploying...
227
- [Uses chooseSolution, answerQuestion, generateManifests, deployManifests]
228
-
229
- Agent: ✅ Successfully deployed! Your production API is running with external access.
230
- ```
231
-
232
- **Example: Capability Management**
233
- ```
234
- User: I want to scan my cluster for resource capabilities to improve recommendations
235
-
236
- [Uses manageOrgData with capabilities scanning]
237
-
238
- Agent: Would you like to scan all cluster resources or specify a subset?
239
- Options: 1) All resources 2) Specific subset
240
-
241
- User: All resources in auto mode
242
-
243
- Agent: Starting comprehensive cluster capability scan...
244
- ✅ Capability scan completed! Processed cluster resources successfully.
245
-
246
- User: Now I need a PostgreSQL database
247
-
248
- Agent: Let me get enhanced recommendations using your capability data.
249
- [Uses recommend tool with capability pre-filtering]
250
-
251
- Agent: Perfect! I found sqls.devopstoolkit.live as the top match - it's a managed database solution supporting PostgreSQL with multi-cloud capabilities and low complexity. Much better than the generic StatefulSet approach I would have suggested before!
252
- ```
253
-
254
- **Example: Kubernetes Issue Remediation**
255
- ```
256
- User: Something is wrong with my database in postgres-demo namespace
257
-
258
- Agent: I'll investigate the database issue using AI-powered analysis.
259
- [Uses remediate tool for systematic investigation]
260
-
261
- Agent: 🔍 Root Cause (95% confidence): PostgreSQL pod can't start because the required PersistentVolumeClaim 'postgres-pvc' is missing.
262
-
263
- 🔧 Recommended Fix: Create missing PVC
264
- - Risk Level: Low
265
- - Command: kubectl apply [PVC manifest]
266
-
267
- Choose execution: 1) Execute via MCP 2) Show commands
268
-
269
- User: 1
270
-
271
- Agent: ✅ Issue Resolved! Created postgres-pvc, pod transitioned to Running state. Database is operational!
272
- ```
273
-
274
- **Example: Policy Management**
275
- ```
276
- User: I want to create a policy requiring resource limits on all deployments
277
-
278
- Agent: I'll help you create a governance policy for resource limits. Let me start the creation workflow.
279
- [Uses manageOrgData with policy creation]
280
-
281
- Agent: Please describe your resource limits policy intent:
282
-
283
- User: All container deployments must have CPU and memory limits to prevent resource exhaustion. CPU limits should be between 100m-2000m, memory between 128Mi-4Gi.
284
-
285
- Agent: Excellent! I've created your Resource Limits Policy and generated a Kyverno ClusterPolicy for enforcement.
286
-
287
- Would you like to:
288
- 1. Store policy intent only (for AI guidance)
289
- 2. Apply Kyverno policy to cluster (active enforcement)
290
-
291
- User: Apply the Kyverno policy for active enforcement
292
-
293
- Agent: ✅ Policy deployed! Now when users deploy applications, they'll get required questions for CPU/memory limits with your specified ranges, and any non-compliant deployments will be blocked by Kyverno.
294
- ```
295
-
296
- **Example: Documentation Testing**
297
- ```
298
- User: I want to test my README.md file to make sure all the examples work
299
-
300
- Agent: I'll help you test your README.md for accuracy. Let me start a documentation testing session.
301
- [Uses testDocs tool]
302
-
303
- Agent: Found 6 testable sections in your README. Testing installation instructions...
304
-
305
- ✅ npm install command works correctly
306
- ❌ Configuration example has wrong port number (8080 vs 3000)
307
- ⚠️ Claims "works out of the box" but requires additional setup
308
-
309
- Which issues would you like me to help you fix?
310
-
311
- User: Fix the port number directly in the doc, and I'll create a GitHub issue for the setup requirements.
312
-
313
- Agent: ✅ Documentation testing complete! Fixed 1 issue directly, 1 issue tracked externally.
314
- ```
315
-
316
- *Note: Conversational examples are illustrative - actual AI responses will vary based on specific context and implementation.*
317
-
318
- **Example: Shared Prompts Library**
319
- ```
320
- # Conversational approach
321
- User: I want to create a new PRD for a feature
322
-
323
- Agent: I'll help you create a documentation-first PRD. Let me start the process.
324
- [Uses prd-create prompt via /dot-ai:prd-create]
325
-
326
- Agent: Great! I've created GitHub issue #34 and the PRD file. What feature would you like to document?
327
-
328
- # Direct slash command approach
329
- User: /dot-ai:prd-create
330
-
331
- Agent: I'm executing the PRD creation workflow. Please describe the feature you want to create a PRD for...
332
- ```
131
+ ## Documentation
333
132
 
334
- 📖 **[Complete MCP Setup Guide →](docs/mcp-setup.md)** - Detailed configuration, troubleshooting, and examples
133
+ ### 🚀 Getting Started
134
+ - **[MCP Setup Guide](docs/mcp-setup.md)** - Complete configuration instructions for AI tools integration
135
+ - **[Tools and Features Overview](docs/mcp-tools-overview.md)** - Comprehensive guide to all available tools and features
335
136
 
336
137
  ## Troubleshooting
337
138
 
@@ -347,12 +148,6 @@ Agent: I'm executing the PRD creation workflow. Please describe the feature you
347
148
  - Check KUBECONFIG path in environment variables
348
149
  - Test cluster access: `kubectl get nodes`
349
150
 
350
- ## Documentation
351
-
352
- ### 🚀 Getting Started
353
- - **[MCP Setup Guide](docs/mcp-setup.md)** - Complete configuration instructions for AI tools integration
354
- - **[Tools and Features Overview](docs/mcp-tools-overview.md)** - Comprehensive guide to all available tools and features
355
-
356
151
  ## Support
357
152
 
358
153
  - **Issues**: [GitHub Issues](https://github.com/vfarcic/dot-ai/issues)
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@vfarcic/dot-ai",
3
- "version": "0.99.0",
3
+ "version": "0.101.0",
4
4
  "description": "AI-powered development productivity platform that enhances software development workflows through intelligent automation and AI-driven assistance",
5
5
  "mcpName": "io.github.vfarcic/dot-ai",
6
6
  "main": "dist/index.js",
@@ -60,6 +60,9 @@ Complete the PRD implementation workflow including branch management, pull reque
60
60
  - [ ] **Check PR details**: Use `gh pr view [pr-number]` to check for human review comments and PR metadata
61
61
  - [ ] **Review all automated feedback**: Check PR comments section for automated code review feedback (bots, linters, analyzers)
62
62
  - **Use multiple methods to capture all feedback**:
63
+ - **MCP servers** (preferred when available): Use any available MCP servers for comprehensive review data
64
+ - Code review MCPs (e.g., CodeRabbit, custom review servers) for detailed AI code reviews
65
+ - Check available MCP tools/functions related to code reviews, pull requests, or automated feedback
63
66
  - CLI commands: `gh pr view [pr-number]`, `gh pr checks [pr-number]`, `gh api repos/owner/repo/pulls/[pr-number]/comments`
64
67
  - **Web interface inspection**: Fetch the PR URL directly to capture all comments, including inline code suggestions that CLI tools may miss
65
68
  - Look for comments from automated tools (usernames ending in 'ai', 'bot', or known review tools)