@vfarcic/dot-ai 0.99.0 → 0.101.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +22 -227
- package/package.json +1 -1
- package/shared-prompts/prd-done.md +3 -0
package/README.md
CHANGED
|
@@ -8,6 +8,7 @@
|
|
|
8
8
|
|
|
9
9
|
DevOps AI Toolkit is an AI-powered development productivity platform that enhances software development workflows through intelligent automation and AI-driven assistance.
|
|
10
10
|
|
|
11
|
+
📚 [Quick Start](./docs/quick-start.md) | 🔧 [MCP Setup](./docs/mcp-setup.md) | 🛠️ [Features & Tools](./docs/mcp-tools-overview.md)
|
|
11
12
|
|
|
12
13
|
## Who is this for?
|
|
13
14
|
|
|
@@ -44,6 +45,8 @@ DevOps AI Toolkit is an AI-powered development productivity platform that enhanc
|
|
|
44
45
|
🔧 **Operator-Aware**: Leverages custom operators and CRDs when available
|
|
45
46
|
🚀 **Complete Workflow**: From discovery to deployment with automated Kubernetes integration
|
|
46
47
|
|
|
48
|
+
📖 [Learn more →](./docs/mcp-recommendation-guide.md)
|
|
49
|
+
|
|
47
50
|
#### Capability-Enhanced Recommendations
|
|
48
51
|
Transform how AI understands your cluster by discovering semantic capabilities of each resource:
|
|
49
52
|
|
|
@@ -65,7 +68,7 @@ AI: Gets pre-filtered relevant resources with rich context
|
|
|
65
68
|
Result: Finds sqls.devopstoolkit.live as perfect match ✨
|
|
66
69
|
```
|
|
67
70
|
|
|
68
|
-
|
|
71
|
+
📖 [Learn more →](./docs/mcp-capability-management-guide.md)
|
|
69
72
|
|
|
70
73
|
### Kubernetes Issue Remediation
|
|
71
74
|
🔍 **AI-Powered Root Cause Analysis**: Multi-step investigation loop identifies the real cause behind Kubernetes failures
|
|
@@ -74,18 +77,24 @@ Result: Finds sqls.devopstoolkit.live as perfect match ✨
|
|
|
74
77
|
🔒 **Safety Mechanisms**: Automatic fallback to manual mode when validation discovers additional issues
|
|
75
78
|
🎯 **Cross-Resource Intelligence**: Understands how pod issues may require fixes in different resource types (storage, networking, etc.)
|
|
76
79
|
|
|
80
|
+
📖 [Learn more →](./docs/mcp-remediate-guide.md)
|
|
81
|
+
|
|
77
82
|
### Documentation Testing & Validation
|
|
78
83
|
📖 **Automated Testing**: Validates documentation by executing commands and testing examples
|
|
79
84
|
🔍 **Two-Phase Validation**: Tests both functionality (does it work?) and semantic accuracy (are descriptions truthful?)
|
|
80
85
|
🛠️ **Fix Application**: User-driven selection and application of recommended documentation improvements
|
|
81
86
|
💾 **Session Management**: Resumable testing workflows for large documentation sets
|
|
82
87
|
|
|
88
|
+
📖 [Learn more →](./docs/mcp-documentation-testing-guide.md)
|
|
89
|
+
|
|
83
90
|
### Organizational Pattern Management
|
|
84
91
|
🏛️ **Pattern Creation**: Define organizational deployment patterns that capture institutional knowledge
|
|
85
92
|
🧠 **AI Enhancement**: Patterns automatically enhance deployment recommendations with organizational context
|
|
86
93
|
🔍 **Semantic Search**: Uses Vector DB (Qdrant) for intelligent pattern matching based on user intent
|
|
87
94
|
📋 **Best Practices**: Share deployment standards across teams through reusable patterns
|
|
88
95
|
|
|
96
|
+
📖 [Learn more →](./docs/pattern-management-guide.md)
|
|
97
|
+
|
|
89
98
|
### Policy Management & Governance
|
|
90
99
|
🛡️ **Policy Creation**: Define governance policies that guide users toward compliant configurations
|
|
91
100
|
⚠️ **Compliance Integration**: Policies create required questions with compliance indicators during deployment
|
|
@@ -93,245 +102,37 @@ Result: Finds sqls.devopstoolkit.live as perfect match ✨
|
|
|
93
102
|
🎯 **Proactive Governance**: Prevents configuration drift by embedding compliance into the recommendation workflow
|
|
94
103
|
🔍 **Vector Storage**: Uses Qdrant Vector DB for semantic policy matching and retrieval
|
|
95
104
|
|
|
105
|
+
📖 [Learn more →](./docs/policy-management-guide.md)
|
|
106
|
+
|
|
96
107
|
### Shared Prompts Library
|
|
97
108
|
🎯 **Native Slash Commands**: Prompts appear as `/dot-ai:prompt-name` in your coding agent
|
|
98
109
|
📚 **Curated Library**: Access proven prompts for code review, documentation, architecture, and project management
|
|
99
110
|
🔄 **Zero Setup**: Connect to MCP server and prompts are immediately available across all projects
|
|
100
111
|
🤝 **Team Consistency**: Standardized prompt usage with centralized management
|
|
101
112
|
|
|
113
|
+
📖 [Learn more →](./docs/mcp-prompts-guide.md)
|
|
114
|
+
|
|
102
115
|
### AI Integration
|
|
103
116
|
⚡ **MCP Integration**: Works seamlessly with Claude Code, Cursor, or VS Code through Model Context Protocol
|
|
104
117
|
🤖 **Conversational Interface**: Natural language interaction for deployment, documentation testing, pattern management, and shared prompt workflows
|
|
105
118
|
|
|
106
119
|
**Setup Required**: See the [MCP Setup Guide](./docs/mcp-setup.md) for complete configuration instructions.
|
|
107
120
|
|
|
121
|
+
---
|
|
122
|
+
🚀 **Ready to deploy?** Jump to the [Quick Start](./docs/quick-start.md) guide to begin using DevOps AI Toolkit.
|
|
123
|
+
---
|
|
124
|
+
|
|
108
125
|
## See It In Action
|
|
109
126
|
|
|
110
127
|
[](https://youtu.be/8Yzn-9qQpQI)
|
|
111
128
|
|
|
112
129
|
This video explains the platform engineering problem and demonstrates the Kubernetes deployment recommendation workflow from intent to running applications.
|
|
113
130
|
|
|
114
|
-
##
|
|
115
|
-
|
|
116
|
-
### Prerequisites
|
|
117
|
-
|
|
118
|
-
**For Kubernetes deployment and documentation testing:**
|
|
119
|
-
- **Claude API key** (required for AI analysis)
|
|
120
|
-
- Get your API key from [Anthropic Console](https://console.anthropic.com/) (requires account login)
|
|
121
|
-
<!-- dotai-ignore: Console URL may return 403 - expected behavior for auth-protected endpoint -->
|
|
122
|
-
- Set it as environment variable: `export ANTHROPIC_API_KEY=your_api_key_here`
|
|
123
|
-
|
|
124
|
-
**For shared prompts library:**
|
|
125
|
-
- **No API key required** - Works with any MCP-enabled coding agent (other features like deployments do require ANTHROPIC_API_KEY)
|
|
126
|
-
|
|
127
|
-
**For Kubernetes deployment recommendations:**
|
|
128
|
-
- **kubectl** configured with cluster access
|
|
129
|
-
- Verify cluster access with: `kubectl get nodes`
|
|
130
|
-
- Should show your cluster nodes without authentication errors
|
|
131
|
-
<!-- dotai-ignore: kubectl verification command output format - implementation-specific -->
|
|
132
|
-
|
|
133
|
-
**For documentation testing:**
|
|
134
|
-
- **Documentation files** to test (Markdown, HTML, etc.)
|
|
135
|
-
- **File system access** to the documentation you want to validate
|
|
136
|
-
|
|
137
|
-
**For organizational pattern management:**
|
|
138
|
-
- **Vector DB service** (Qdrant) for pattern storage and semantic search
|
|
139
|
-
- **OpenAI API key** (required) for semantic pattern matching and vector operations
|
|
140
|
-
|
|
141
|
-
**For policy management and governance:**
|
|
142
|
-
- **Vector DB service** (Qdrant) for policy storage and semantic search
|
|
143
|
-
- **OpenAI API key** (required) for semantic policy matching and vector operations
|
|
144
|
-
- **Optional**: Kyverno installed in cluster for active policy enforcement
|
|
145
|
-
|
|
146
|
-
### Installation
|
|
147
|
-
|
|
148
|
-
DevOps AI Toolkit is designed to be used through AI development tools via MCP (Model Context Protocol). No direct installation needed - simply configure your AI tool to connect to the MCP server.
|
|
149
|
-
|
|
150
|
-
### Usage
|
|
151
|
-
|
|
152
|
-
**🎯 Recommended: Docker Setup (Complete Stack)**
|
|
153
|
-
Perfect for getting all features working immediately with minimal setup:
|
|
154
|
-
|
|
155
|
-
1. **Download Docker Compose configuration:**
|
|
156
|
-
```bash
|
|
157
|
-
curl -o docker-compose-dot-ai.yaml https://raw.githubusercontent.com/vfarcic/dot-ai/main/docker-compose-dot-ai.yaml
|
|
158
|
-
```
|
|
159
|
-
|
|
160
|
-
2. **Set environment variables and create MCP configuration:**
|
|
161
|
-
```bash
|
|
162
|
-
# Set your API keys
|
|
163
|
-
export ANTHROPIC_API_KEY="sk-ant-api03-your-key-here"
|
|
164
|
-
export OPENAI_API_KEY="sk-proj-your-openai-key-here"
|
|
165
|
-
|
|
166
|
-
# Create MCP configuration for Claude Code
|
|
167
|
-
cat > .mcp.json << 'EOF'
|
|
168
|
-
{
|
|
169
|
-
"mcpServers": {
|
|
170
|
-
"dot-ai": {
|
|
171
|
-
"command": "docker",
|
|
172
|
-
"args": [
|
|
173
|
-
"compose",
|
|
174
|
-
"-f",
|
|
175
|
-
"docker-compose-dot-ai.yaml",
|
|
176
|
-
"--env-file",
|
|
177
|
-
".env",
|
|
178
|
-
"run",
|
|
179
|
-
"--rm",
|
|
180
|
-
"--remove-orphans",
|
|
181
|
-
"dot-ai"
|
|
182
|
-
]
|
|
183
|
-
}
|
|
184
|
-
}
|
|
185
|
-
}
|
|
186
|
-
EOF
|
|
187
|
-
```
|
|
188
|
-
|
|
189
|
-
**What you get:**
|
|
190
|
-
- ✅ **Complete Stack**: MCP server + Qdrant vector database included
|
|
191
|
-
- ✅ **All Features Working**: Capability management, pattern storage, policy governance, semantic search
|
|
192
|
-
- ✅ **No External Dependencies**: Everything runs in containers
|
|
193
|
-
- ✅ **Kubernetes Integration**: Direct kubectl access to your clusters
|
|
194
|
-
|
|
195
|
-
**Alternative Methods**: See the [MCP Setup Guide](docs/mcp-setup.md) for NPX (Node.js) and Development setup options.
|
|
196
|
-
|
|
197
|
-
3. **Start your MCP client:**
|
|
198
|
-
```bash
|
|
199
|
-
claude # or your preferred MCP-enabled AI tool
|
|
200
|
-
|
|
201
|
-
# Verify everything works by asking:
|
|
202
|
-
"Show dot-ai status"
|
|
203
|
-
```
|
|
204
|
-
|
|
205
|
-
4. **Use conversational workflows:**
|
|
206
|
-
|
|
207
|
-
**Example: Kubernetes Deployment**
|
|
208
|
-
```
|
|
209
|
-
User: I want to deploy a web application to my cluster
|
|
210
|
-
|
|
211
|
-
Agent: I'll help you deploy a web application. Let me get recommendations. First, a few questions to provide better suggestions:
|
|
212
|
-
|
|
213
|
-
What type of web application is this? Is it for development or production?
|
|
214
|
-
Does it need external access?
|
|
215
|
-
[Uses recommend tool for clarification]
|
|
216
|
-
|
|
217
|
-
User: It's a production Node.js API that needs external access
|
|
218
|
-
|
|
219
|
-
Agent: Perfect! Based on your production requirements, I found 3 deployment options.
|
|
220
|
-
Let's use the Production Web Stack with external access.
|
|
221
|
-
What's your application name and container image?
|
|
222
|
-
[Uses recommend tool with refined intent]
|
|
223
|
-
|
|
224
|
-
User: App name is "myapp" and image is "myapp:v1.0.0"
|
|
225
|
-
|
|
226
|
-
Agent: Excellent! Generating production-ready manifests and deploying...
|
|
227
|
-
[Uses chooseSolution, answerQuestion, generateManifests, deployManifests]
|
|
228
|
-
|
|
229
|
-
Agent: ✅ Successfully deployed! Your production API is running with external access.
|
|
230
|
-
```
|
|
231
|
-
|
|
232
|
-
**Example: Capability Management**
|
|
233
|
-
```
|
|
234
|
-
User: I want to scan my cluster for resource capabilities to improve recommendations
|
|
235
|
-
|
|
236
|
-
[Uses manageOrgData with capabilities scanning]
|
|
237
|
-
|
|
238
|
-
Agent: Would you like to scan all cluster resources or specify a subset?
|
|
239
|
-
Options: 1) All resources 2) Specific subset
|
|
240
|
-
|
|
241
|
-
User: All resources in auto mode
|
|
242
|
-
|
|
243
|
-
Agent: Starting comprehensive cluster capability scan...
|
|
244
|
-
✅ Capability scan completed! Processed cluster resources successfully.
|
|
245
|
-
|
|
246
|
-
User: Now I need a PostgreSQL database
|
|
247
|
-
|
|
248
|
-
Agent: Let me get enhanced recommendations using your capability data.
|
|
249
|
-
[Uses recommend tool with capability pre-filtering]
|
|
250
|
-
|
|
251
|
-
Agent: Perfect! I found sqls.devopstoolkit.live as the top match - it's a managed database solution supporting PostgreSQL with multi-cloud capabilities and low complexity. Much better than the generic StatefulSet approach I would have suggested before!
|
|
252
|
-
```
|
|
253
|
-
|
|
254
|
-
**Example: Kubernetes Issue Remediation**
|
|
255
|
-
```
|
|
256
|
-
User: Something is wrong with my database in postgres-demo namespace
|
|
257
|
-
|
|
258
|
-
Agent: I'll investigate the database issue using AI-powered analysis.
|
|
259
|
-
[Uses remediate tool for systematic investigation]
|
|
260
|
-
|
|
261
|
-
Agent: 🔍 Root Cause (95% confidence): PostgreSQL pod can't start because the required PersistentVolumeClaim 'postgres-pvc' is missing.
|
|
262
|
-
|
|
263
|
-
🔧 Recommended Fix: Create missing PVC
|
|
264
|
-
- Risk Level: Low
|
|
265
|
-
- Command: kubectl apply [PVC manifest]
|
|
266
|
-
|
|
267
|
-
Choose execution: 1) Execute via MCP 2) Show commands
|
|
268
|
-
|
|
269
|
-
User: 1
|
|
270
|
-
|
|
271
|
-
Agent: ✅ Issue Resolved! Created postgres-pvc, pod transitioned to Running state. Database is operational!
|
|
272
|
-
```
|
|
273
|
-
|
|
274
|
-
**Example: Policy Management**
|
|
275
|
-
```
|
|
276
|
-
User: I want to create a policy requiring resource limits on all deployments
|
|
277
|
-
|
|
278
|
-
Agent: I'll help you create a governance policy for resource limits. Let me start the creation workflow.
|
|
279
|
-
[Uses manageOrgData with policy creation]
|
|
280
|
-
|
|
281
|
-
Agent: Please describe your resource limits policy intent:
|
|
282
|
-
|
|
283
|
-
User: All container deployments must have CPU and memory limits to prevent resource exhaustion. CPU limits should be between 100m-2000m, memory between 128Mi-4Gi.
|
|
284
|
-
|
|
285
|
-
Agent: Excellent! I've created your Resource Limits Policy and generated a Kyverno ClusterPolicy for enforcement.
|
|
286
|
-
|
|
287
|
-
Would you like to:
|
|
288
|
-
1. Store policy intent only (for AI guidance)
|
|
289
|
-
2. Apply Kyverno policy to cluster (active enforcement)
|
|
290
|
-
|
|
291
|
-
User: Apply the Kyverno policy for active enforcement
|
|
292
|
-
|
|
293
|
-
Agent: ✅ Policy deployed! Now when users deploy applications, they'll get required questions for CPU/memory limits with your specified ranges, and any non-compliant deployments will be blocked by Kyverno.
|
|
294
|
-
```
|
|
295
|
-
|
|
296
|
-
**Example: Documentation Testing**
|
|
297
|
-
```
|
|
298
|
-
User: I want to test my README.md file to make sure all the examples work
|
|
299
|
-
|
|
300
|
-
Agent: I'll help you test your README.md for accuracy. Let me start a documentation testing session.
|
|
301
|
-
[Uses testDocs tool]
|
|
302
|
-
|
|
303
|
-
Agent: Found 6 testable sections in your README. Testing installation instructions...
|
|
304
|
-
|
|
305
|
-
✅ npm install command works correctly
|
|
306
|
-
❌ Configuration example has wrong port number (8080 vs 3000)
|
|
307
|
-
⚠️ Claims "works out of the box" but requires additional setup
|
|
308
|
-
|
|
309
|
-
Which issues would you like me to help you fix?
|
|
310
|
-
|
|
311
|
-
User: Fix the port number directly in the doc, and I'll create a GitHub issue for the setup requirements.
|
|
312
|
-
|
|
313
|
-
Agent: ✅ Documentation testing complete! Fixed 1 issue directly, 1 issue tracked externally.
|
|
314
|
-
```
|
|
315
|
-
|
|
316
|
-
*Note: Conversational examples are illustrative - actual AI responses will vary based on specific context and implementation.*
|
|
317
|
-
|
|
318
|
-
**Example: Shared Prompts Library**
|
|
319
|
-
```
|
|
320
|
-
# Conversational approach
|
|
321
|
-
User: I want to create a new PRD for a feature
|
|
322
|
-
|
|
323
|
-
Agent: I'll help you create a documentation-first PRD. Let me start the process.
|
|
324
|
-
[Uses prd-create prompt via /dot-ai:prd-create]
|
|
325
|
-
|
|
326
|
-
Agent: Great! I've created GitHub issue #34 and the PRD file. What feature would you like to document?
|
|
327
|
-
|
|
328
|
-
# Direct slash command approach
|
|
329
|
-
User: /dot-ai:prd-create
|
|
330
|
-
|
|
331
|
-
Agent: I'm executing the PRD creation workflow. Please describe the feature you want to create a PRD for...
|
|
332
|
-
```
|
|
131
|
+
## Documentation
|
|
333
132
|
|
|
334
|
-
|
|
133
|
+
### 🚀 Getting Started
|
|
134
|
+
- **[MCP Setup Guide](docs/mcp-setup.md)** - Complete configuration instructions for AI tools integration
|
|
135
|
+
- **[Tools and Features Overview](docs/mcp-tools-overview.md)** - Comprehensive guide to all available tools and features
|
|
335
136
|
|
|
336
137
|
## Troubleshooting
|
|
337
138
|
|
|
@@ -347,12 +148,6 @@ Agent: I'm executing the PRD creation workflow. Please describe the feature you
|
|
|
347
148
|
- Check KUBECONFIG path in environment variables
|
|
348
149
|
- Test cluster access: `kubectl get nodes`
|
|
349
150
|
|
|
350
|
-
## Documentation
|
|
351
|
-
|
|
352
|
-
### 🚀 Getting Started
|
|
353
|
-
- **[MCP Setup Guide](docs/mcp-setup.md)** - Complete configuration instructions for AI tools integration
|
|
354
|
-
- **[Tools and Features Overview](docs/mcp-tools-overview.md)** - Comprehensive guide to all available tools and features
|
|
355
|
-
|
|
356
151
|
## Support
|
|
357
152
|
|
|
358
153
|
- **Issues**: [GitHub Issues](https://github.com/vfarcic/dot-ai/issues)
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@vfarcic/dot-ai",
|
|
3
|
-
"version": "0.
|
|
3
|
+
"version": "0.101.0",
|
|
4
4
|
"description": "AI-powered development productivity platform that enhances software development workflows through intelligent automation and AI-driven assistance",
|
|
5
5
|
"mcpName": "io.github.vfarcic/dot-ai",
|
|
6
6
|
"main": "dist/index.js",
|
|
@@ -60,6 +60,9 @@ Complete the PRD implementation workflow including branch management, pull reque
|
|
|
60
60
|
- [ ] **Check PR details**: Use `gh pr view [pr-number]` to check for human review comments and PR metadata
|
|
61
61
|
- [ ] **Review all automated feedback**: Check PR comments section for automated code review feedback (bots, linters, analyzers)
|
|
62
62
|
- **Use multiple methods to capture all feedback**:
|
|
63
|
+
- **MCP servers** (preferred when available): Use any available MCP servers for comprehensive review data
|
|
64
|
+
- Code review MCPs (e.g., CodeRabbit, custom review servers) for detailed AI code reviews
|
|
65
|
+
- Check available MCP tools/functions related to code reviews, pull requests, or automated feedback
|
|
63
66
|
- CLI commands: `gh pr view [pr-number]`, `gh pr checks [pr-number]`, `gh api repos/owner/repo/pulls/[pr-number]/comments`
|
|
64
67
|
- **Web interface inspection**: Fetch the PR URL directly to capture all comments, including inline code suggestions that CLI tools may miss
|
|
65
68
|
- Look for comments from automated tools (usernames ending in 'ai', 'bot', or known review tools)
|