@vectorstores/qdrant 0.1.5 → 0.1.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/index.cjs +7 -4
- package/dist/index.edge-light.js +7 -4
- package/dist/index.js +7 -4
- package/package.json +3 -3
package/dist/index.cjs
CHANGED
|
@@ -175,9 +175,6 @@ var core = require('@vectorstores/core');
|
|
|
175
175
|
const qdrantSearchParams = options && "qdrant_search_params" in options ? options.qdrant_search_params : undefined;
|
|
176
176
|
let queryFilters;
|
|
177
177
|
let searchParams;
|
|
178
|
-
if (!query.queryEmbedding) {
|
|
179
|
-
throw new Error("No query embedding provided");
|
|
180
|
-
}
|
|
181
178
|
if (qdrantFilters) {
|
|
182
179
|
queryFilters = qdrantFilters;
|
|
183
180
|
} else {
|
|
@@ -188,8 +185,14 @@ var core = require('@vectorstores/core');
|
|
|
188
185
|
} else {
|
|
189
186
|
searchParams = buildSearchParams(query);
|
|
190
187
|
}
|
|
188
|
+
const queryVector = query.queryEmbedding;
|
|
189
|
+
if (!queryVector) {
|
|
190
|
+
throw new Error("Qdrant vector search requires a dense query embedding, even when falling back from BM25 or HYBRID modes.");
|
|
191
|
+
}
|
|
192
|
+
// For now, Qdrant implementation only supports dense vector search.
|
|
193
|
+
// BM25 and HYBRID will fallback to dense vector search if no sparse vectors are configured.
|
|
191
194
|
const result = await this.db.query(this.collectionName, {
|
|
192
|
-
query:
|
|
195
|
+
query: queryVector,
|
|
193
196
|
limit: query.similarityTopK,
|
|
194
197
|
with_payload: true,
|
|
195
198
|
with_vector: false,
|
package/dist/index.edge-light.js
CHANGED
|
@@ -173,9 +173,6 @@ import { BaseVectorStore, nodeToMetadata, metadataDictToNode, FilterOperator, Fi
|
|
|
173
173
|
const qdrantSearchParams = options && "qdrant_search_params" in options ? options.qdrant_search_params : undefined;
|
|
174
174
|
let queryFilters;
|
|
175
175
|
let searchParams;
|
|
176
|
-
if (!query.queryEmbedding) {
|
|
177
|
-
throw new Error("No query embedding provided");
|
|
178
|
-
}
|
|
179
176
|
if (qdrantFilters) {
|
|
180
177
|
queryFilters = qdrantFilters;
|
|
181
178
|
} else {
|
|
@@ -186,8 +183,14 @@ import { BaseVectorStore, nodeToMetadata, metadataDictToNode, FilterOperator, Fi
|
|
|
186
183
|
} else {
|
|
187
184
|
searchParams = buildSearchParams(query);
|
|
188
185
|
}
|
|
186
|
+
const queryVector = query.queryEmbedding;
|
|
187
|
+
if (!queryVector) {
|
|
188
|
+
throw new Error("Qdrant vector search requires a dense query embedding, even when falling back from BM25 or HYBRID modes.");
|
|
189
|
+
}
|
|
190
|
+
// For now, Qdrant implementation only supports dense vector search.
|
|
191
|
+
// BM25 and HYBRID will fallback to dense vector search if no sparse vectors are configured.
|
|
189
192
|
const result = await this.db.query(this.collectionName, {
|
|
190
|
-
query:
|
|
193
|
+
query: queryVector,
|
|
191
194
|
limit: query.similarityTopK,
|
|
192
195
|
with_payload: true,
|
|
193
196
|
with_vector: false,
|
package/dist/index.js
CHANGED
|
@@ -173,9 +173,6 @@ import { BaseVectorStore, nodeToMetadata, metadataDictToNode, FilterOperator, Fi
|
|
|
173
173
|
const qdrantSearchParams = options && "qdrant_search_params" in options ? options.qdrant_search_params : undefined;
|
|
174
174
|
let queryFilters;
|
|
175
175
|
let searchParams;
|
|
176
|
-
if (!query.queryEmbedding) {
|
|
177
|
-
throw new Error("No query embedding provided");
|
|
178
|
-
}
|
|
179
176
|
if (qdrantFilters) {
|
|
180
177
|
queryFilters = qdrantFilters;
|
|
181
178
|
} else {
|
|
@@ -186,8 +183,14 @@ import { BaseVectorStore, nodeToMetadata, metadataDictToNode, FilterOperator, Fi
|
|
|
186
183
|
} else {
|
|
187
184
|
searchParams = buildSearchParams(query);
|
|
188
185
|
}
|
|
186
|
+
const queryVector = query.queryEmbedding;
|
|
187
|
+
if (!queryVector) {
|
|
188
|
+
throw new Error("Qdrant vector search requires a dense query embedding, even when falling back from BM25 or HYBRID modes.");
|
|
189
|
+
}
|
|
190
|
+
// For now, Qdrant implementation only supports dense vector search.
|
|
191
|
+
// BM25 and HYBRID will fallback to dense vector search if no sparse vectors are configured.
|
|
189
192
|
const result = await this.db.query(this.collectionName, {
|
|
190
|
-
query:
|
|
193
|
+
query: queryVector,
|
|
191
194
|
limit: query.similarityTopK,
|
|
192
195
|
with_payload: true,
|
|
193
196
|
with_vector: false,
|
package/package.json
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@vectorstores/qdrant",
|
|
3
3
|
"description": "Qdrant Storage for vectorstores",
|
|
4
|
-
"version": "0.1.
|
|
4
|
+
"version": "0.1.6",
|
|
5
5
|
"type": "module",
|
|
6
6
|
"main": "./dist/index.cjs",
|
|
7
7
|
"module": "./dist/index.js",
|
|
@@ -35,11 +35,11 @@
|
|
|
35
35
|
},
|
|
36
36
|
"devDependencies": {
|
|
37
37
|
"vitest": "^2.1.9",
|
|
38
|
-
"@vectorstores/core": "0.1.
|
|
38
|
+
"@vectorstores/core": "0.1.6",
|
|
39
39
|
"@vectorstores/env": "0.1.0"
|
|
40
40
|
},
|
|
41
41
|
"peerDependencies": {
|
|
42
|
-
"@vectorstores/core": "0.1.
|
|
42
|
+
"@vectorstores/core": "0.1.6",
|
|
43
43
|
"@vectorstores/env": "0.1.0"
|
|
44
44
|
},
|
|
45
45
|
"dependencies": {
|