@turf/standard-deviational-ellipse 7.0.0-alpha.1 → 7.0.0-alpha.110
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +4 -9
- package/dist/cjs/index.cjs +91 -0
- package/dist/cjs/index.cjs.map +1 -0
- package/dist/cjs/index.d.ts +32 -0
- package/dist/esm/index.d.mts +32 -0
- package/dist/esm/index.mjs +91 -0
- package/dist/esm/index.mjs.map +1 -0
- package/index.d.ts +6 -3
- package/package.json +34 -28
- package/dist/es/index.js +0 -151
- package/dist/es/package.json +0 -1
- package/dist/js/index.js +0 -160
package/README.md
CHANGED
|
@@ -69,26 +69,21 @@ Returns **[Feature][11]<[Polygon][12]>** an elliptical Polygon that includes app
|
|
|
69
69
|
|
|
70
70
|
[12]: https://tools.ietf.org/html/rfc7946#section-3.1.6
|
|
71
71
|
|
|
72
|
-
<!-- This file is automatically generated. Please don't edit it directly
|
|
73
|
-
if you find an error, edit the source file (likely index.js), and re-run
|
|
74
|
-
./scripts/generate-readmes in the turf project. -->
|
|
72
|
+
<!-- This file is automatically generated. Please don't edit it directly. If you find an error, edit the source file of the module in question (likely index.js or index.ts), and re-run "yarn docs" from the root of the turf project. -->
|
|
75
73
|
|
|
76
74
|
---
|
|
77
75
|
|
|
78
|
-
This module is part of the [Turfjs project](
|
|
79
|
-
module collection dedicated to geographic algorithms. It is maintained in the
|
|
80
|
-
[Turfjs/turf](https://github.com/Turfjs/turf) repository, where you can create
|
|
81
|
-
PRs and issues.
|
|
76
|
+
This module is part of the [Turfjs project](https://turfjs.org/), an open source module collection dedicated to geographic algorithms. It is maintained in the [Turfjs/turf](https://github.com/Turfjs/turf) repository, where you can create PRs and issues.
|
|
82
77
|
|
|
83
78
|
### Installation
|
|
84
79
|
|
|
85
|
-
Install this module individually:
|
|
80
|
+
Install this single module individually:
|
|
86
81
|
|
|
87
82
|
```sh
|
|
88
83
|
$ npm install @turf/standard-deviational-ellipse
|
|
89
84
|
```
|
|
90
85
|
|
|
91
|
-
Or install the
|
|
86
|
+
Or install the all-encompassing @turf/turf module that includes all modules as functions:
|
|
92
87
|
|
|
93
88
|
```sh
|
|
94
89
|
$ npm install @turf/turf
|
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
"use strict";Object.defineProperty(exports, "__esModule", {value: true});var __defProp = Object.defineProperty;
|
|
2
|
+
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
|
3
|
+
|
|
4
|
+
// index.js
|
|
5
|
+
var _meta = require('@turf/meta');
|
|
6
|
+
var _invariant = require('@turf/invariant');
|
|
7
|
+
var _helpers = require('@turf/helpers');
|
|
8
|
+
var _centermean = require('@turf/center-mean');
|
|
9
|
+
var _pointswithinpolygon = require('@turf/points-within-polygon');
|
|
10
|
+
var _ellipse = require('@turf/ellipse');
|
|
11
|
+
function standardDeviationalEllipse(points, options) {
|
|
12
|
+
options = options || {};
|
|
13
|
+
if (!_helpers.isObject.call(void 0, options))
|
|
14
|
+
throw new Error("options is invalid");
|
|
15
|
+
var steps = options.steps || 64;
|
|
16
|
+
var weightTerm = options.weight;
|
|
17
|
+
var properties = options.properties || {};
|
|
18
|
+
if (!_helpers.isNumber.call(void 0, steps))
|
|
19
|
+
throw new Error("steps must be a number");
|
|
20
|
+
if (!_helpers.isObject.call(void 0, properties))
|
|
21
|
+
throw new Error("properties must be a number");
|
|
22
|
+
var numberOfFeatures = _meta.coordAll.call(void 0, points).length;
|
|
23
|
+
var meanCenter = _centermean.centerMean.call(void 0, points, { weight: weightTerm });
|
|
24
|
+
var xDeviationSquaredSum = 0;
|
|
25
|
+
var yDeviationSquaredSum = 0;
|
|
26
|
+
var xyDeviationSum = 0;
|
|
27
|
+
_meta.featureEach.call(void 0, points, function(point) {
|
|
28
|
+
var weight = point.properties[weightTerm] || 1;
|
|
29
|
+
var deviation = getDeviations(_invariant.getCoords.call(void 0, point), _invariant.getCoords.call(void 0, meanCenter));
|
|
30
|
+
xDeviationSquaredSum += Math.pow(deviation.x, 2) * weight;
|
|
31
|
+
yDeviationSquaredSum += Math.pow(deviation.y, 2) * weight;
|
|
32
|
+
xyDeviationSum += deviation.x * deviation.y * weight;
|
|
33
|
+
});
|
|
34
|
+
var bigA = xDeviationSquaredSum - yDeviationSquaredSum;
|
|
35
|
+
var bigB = Math.sqrt(Math.pow(bigA, 2) + 4 * Math.pow(xyDeviationSum, 2));
|
|
36
|
+
var bigC = 2 * xyDeviationSum;
|
|
37
|
+
var theta = Math.atan((bigA + bigB) / bigC);
|
|
38
|
+
var thetaDeg = theta * 180 / Math.PI;
|
|
39
|
+
var sigmaXsum = 0;
|
|
40
|
+
var sigmaYsum = 0;
|
|
41
|
+
var weightsum = 0;
|
|
42
|
+
_meta.featureEach.call(void 0, points, function(point) {
|
|
43
|
+
var weight = point.properties[weightTerm] || 1;
|
|
44
|
+
var deviation = getDeviations(_invariant.getCoords.call(void 0, point), _invariant.getCoords.call(void 0, meanCenter));
|
|
45
|
+
sigmaXsum += Math.pow(
|
|
46
|
+
deviation.x * Math.cos(theta) - deviation.y * Math.sin(theta),
|
|
47
|
+
2
|
|
48
|
+
) * weight;
|
|
49
|
+
sigmaYsum += Math.pow(
|
|
50
|
+
deviation.x * Math.sin(theta) + deviation.y * Math.cos(theta),
|
|
51
|
+
2
|
|
52
|
+
) * weight;
|
|
53
|
+
weightsum += weight;
|
|
54
|
+
});
|
|
55
|
+
var sigmaX = Math.sqrt(2 * sigmaXsum / weightsum);
|
|
56
|
+
var sigmaY = Math.sqrt(2 * sigmaYsum / weightsum);
|
|
57
|
+
var theEllipse = _ellipse.ellipse.call(void 0, meanCenter, sigmaX, sigmaY, {
|
|
58
|
+
units: "degrees",
|
|
59
|
+
angle: thetaDeg,
|
|
60
|
+
steps,
|
|
61
|
+
properties
|
|
62
|
+
});
|
|
63
|
+
var pointsWithinEllipse = _pointswithinpolygon.pointsWithinPolygon.call(void 0,
|
|
64
|
+
points,
|
|
65
|
+
_helpers.featureCollection.call(void 0, [theEllipse])
|
|
66
|
+
);
|
|
67
|
+
var standardDeviationalEllipseProperties = {
|
|
68
|
+
meanCenterCoordinates: _invariant.getCoords.call(void 0, meanCenter),
|
|
69
|
+
semiMajorAxis: sigmaX,
|
|
70
|
+
semiMinorAxis: sigmaY,
|
|
71
|
+
numberOfFeatures,
|
|
72
|
+
angle: thetaDeg,
|
|
73
|
+
percentageWithinEllipse: 100 * _meta.coordAll.call(void 0, pointsWithinEllipse).length / numberOfFeatures
|
|
74
|
+
};
|
|
75
|
+
theEllipse.properties.standardDeviationalEllipse = standardDeviationalEllipseProperties;
|
|
76
|
+
return theEllipse;
|
|
77
|
+
}
|
|
78
|
+
__name(standardDeviationalEllipse, "standardDeviationalEllipse");
|
|
79
|
+
function getDeviations(coordinates, center) {
|
|
80
|
+
return {
|
|
81
|
+
x: coordinates[0] - center[0],
|
|
82
|
+
y: coordinates[1] - center[1]
|
|
83
|
+
};
|
|
84
|
+
}
|
|
85
|
+
__name(getDeviations, "getDeviations");
|
|
86
|
+
var turf_standard_deviational_ellipse_default = standardDeviationalEllipse;
|
|
87
|
+
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
exports.default = turf_standard_deviational_ellipse_default; exports.standardDeviationalEllipse = standardDeviationalEllipse;
|
|
91
|
+
//# sourceMappingURL=index.cjs.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"sources":["../../index.js"],"names":[],"mappings":";;;;AAAA,SAAS,UAAU,mBAAmB;AACtC,SAAS,iBAAiB;AAC1B,SAAS,mBAAmB,UAAU,gBAAgB;AACtD,SAAS,kBAAkB;AAC3B,SAAS,2BAA2B;AACpC,SAAS,eAAe;AAwCxB,SAAS,2BAA2B,QAAQ,SAAS;AAEnD,YAAU,WAAW,CAAC;AACtB,MAAI,CAAC,SAAS,OAAO;AAAG,UAAM,IAAI,MAAM,oBAAoB;AAC5D,MAAI,QAAQ,QAAQ,SAAS;AAC7B,MAAI,aAAa,QAAQ;AACzB,MAAI,aAAa,QAAQ,cAAc,CAAC;AAGxC,MAAI,CAAC,SAAS,KAAK;AAAG,UAAM,IAAI,MAAM,wBAAwB;AAC9D,MAAI,CAAC,SAAS,UAAU;AAAG,UAAM,IAAI,MAAM,6BAA6B;AAGxE,MAAI,mBAAmB,SAAS,MAAM,EAAE;AACxC,MAAI,aAAa,WAAW,QAAQ,EAAE,QAAQ,WAAW,CAAC;AAS1D,MAAI,uBAAuB;AAC3B,MAAI,uBAAuB;AAC3B,MAAI,iBAAiB;AAErB,cAAY,QAAQ,SAAU,OAAO;AACnC,QAAI,SAAS,MAAM,WAAW,UAAU,KAAK;AAC7C,QAAI,YAAY,cAAc,UAAU,KAAK,GAAG,UAAU,UAAU,CAAC;AACrE,4BAAwB,KAAK,IAAI,UAAU,GAAG,CAAC,IAAI;AACnD,4BAAwB,KAAK,IAAI,UAAU,GAAG,CAAC,IAAI;AACnD,sBAAkB,UAAU,IAAI,UAAU,IAAI;AAAA,EAChD,CAAC;AAED,MAAI,OAAO,uBAAuB;AAClC,MAAI,OAAO,KAAK,KAAK,KAAK,IAAI,MAAM,CAAC,IAAI,IAAI,KAAK,IAAI,gBAAgB,CAAC,CAAC;AACxE,MAAI,OAAO,IAAI;AACf,MAAI,QAAQ,KAAK,MAAM,OAAO,QAAQ,IAAI;AAC1C,MAAI,WAAY,QAAQ,MAAO,KAAK;AAKpC,MAAI,YAAY;AAChB,MAAI,YAAY;AAChB,MAAI,YAAY;AAChB,cAAY,QAAQ,SAAU,OAAO;AACnC,QAAI,SAAS,MAAM,WAAW,UAAU,KAAK;AAC7C,QAAI,YAAY,cAAc,UAAU,KAAK,GAAG,UAAU,UAAU,CAAC;AACrE,iBACE,KAAK;AAAA,MACH,UAAU,IAAI,KAAK,IAAI,KAAK,IAAI,UAAU,IAAI,KAAK,IAAI,KAAK;AAAA,MAC5D;AAAA,IACF,IAAI;AACN,iBACE,KAAK;AAAA,MACH,UAAU,IAAI,KAAK,IAAI,KAAK,IAAI,UAAU,IAAI,KAAK,IAAI,KAAK;AAAA,MAC5D;AAAA,IACF,IAAI;AACN,iBAAa;AAAA,EACf,CAAC;AAED,MAAI,SAAS,KAAK,KAAM,IAAI,YAAa,SAAS;AAClD,MAAI,SAAS,KAAK,KAAM,IAAI,YAAa,SAAS;AAElD,MAAI,aAAa,QAAQ,YAAY,QAAQ,QAAQ;AAAA,IACnD,OAAO;AAAA,IACP,OAAO;AAAA,IACP;AAAA,IACA;AAAA,EACF,CAAC;AACD,MAAI,sBAAsB;AAAA,IACxB;AAAA,IACA,kBAAkB,CAAC,UAAU,CAAC;AAAA,EAChC;AACA,MAAI,uCAAuC;AAAA,IACzC,uBAAuB,UAAU,UAAU;AAAA,IAC3C,eAAe;AAAA,IACf,eAAe;AAAA,IACf;AAAA,IACA,OAAO;AAAA,IACP,yBACG,MAAM,SAAS,mBAAmB,EAAE,SAAU;AAAA,EACnD;AACA,aAAW,WAAW,6BACpB;AAEF,SAAO;AACT;AAzFS;AAmGT,SAAS,cAAc,aAAa,QAAQ;AAC1C,SAAO;AAAA,IACL,GAAG,YAAY,CAAC,IAAI,OAAO,CAAC;AAAA,IAC5B,GAAG,YAAY,CAAC,IAAI,OAAO,CAAC;AAAA,EAC9B;AACF;AALS;AAQT,IAAO,4CAAQ","sourcesContent":["import { coordAll, featureEach } from \"@turf/meta\";\nimport { getCoords } from \"@turf/invariant\";\nimport { featureCollection, isObject, isNumber } from \"@turf/helpers\";\nimport { centerMean } from \"@turf/center-mean\";\nimport { pointsWithinPolygon } from \"@turf/points-within-polygon\";\nimport { ellipse } from \"@turf/ellipse\";\n\n/**\n * Takes a {@link FeatureCollection} and returns a standard deviational ellipse,\n * also known as a “directional distribution.” The standard deviational ellipse\n * aims to show the direction and the distribution of a dataset by drawing\n * an ellipse that contains about one standard deviation’s worth (~ 70%) of the\n * data.\n *\n * This module mirrors the functionality of [Directional Distribution](http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-statistics-toolbox/directional-distribution.htm)\n * in ArcGIS and the [QGIS Standard Deviational Ellipse Plugin](http://arken.nmbu.no/~havatv/gis/qgisplugins/SDEllipse/)\n *\n * **Bibliography**\n *\n * • Robert S. Yuill, “The Standard Deviational Ellipse; An Updated Tool for\n * Spatial Description,” _Geografiska Annaler_ 53, no. 1 (1971): 28–39,\n * doi:{@link https://doi.org/10.2307/490885|10.2307/490885}.\n *\n * • Paul Hanly Furfey, “A Note on Lefever’s “Standard Deviational Ellipse,”\n * _American Journal of Sociology_ 33, no. 1 (1927): 94—98,\n * doi:{@link https://doi.org/10.1086/214336|10.1086/214336}.\n *\n *\n * @name standardDeviationalEllipse\n * @param {FeatureCollection<Point>} points GeoJSON points\n * @param {Object} [options={}] Optional parameters\n * @param {string} [options.weight] the property name used to weight the center\n * @param {number} [options.steps=64] number of steps for the polygon\n * @param {Object} [options.properties={}] properties to pass to the resulting ellipse\n * @returns {Feature<Polygon>} an elliptical Polygon that includes approximately 1 SD of the dataset within it.\n * @example\n *\n * var bbox = [-74, 40.72, -73.98, 40.74];\n * var points = turf.randomPoint(400, {bbox: bbox});\n * var sdEllipse = turf.standardDeviationalEllipse(points);\n *\n * //addToMap\n * var addToMap = [points, sdEllipse];\n *\n */\nfunction standardDeviationalEllipse(points, options) {\n // Optional params\n options = options || {};\n if (!isObject(options)) throw new Error(\"options is invalid\");\n var steps = options.steps || 64;\n var weightTerm = options.weight;\n var properties = options.properties || {};\n\n // Validation:\n if (!isNumber(steps)) throw new Error(\"steps must be a number\");\n if (!isObject(properties)) throw new Error(\"properties must be a number\");\n\n // Calculate mean center & number of features:\n var numberOfFeatures = coordAll(points).length;\n var meanCenter = centerMean(points, { weight: weightTerm });\n\n // Calculate angle of rotation:\n // [X, Y] = mean center of all [x, y].\n // theta = arctan( (A + B) / C )\n // A = sum((x - X)^2) - sum((y - Y)^2)\n // B = sqrt(A^2 + 4(sum((x - X)(y - Y))^2))\n // C = 2(sum((x - X)(y - Y)))\n\n var xDeviationSquaredSum = 0;\n var yDeviationSquaredSum = 0;\n var xyDeviationSum = 0;\n\n featureEach(points, function (point) {\n var weight = point.properties[weightTerm] || 1;\n var deviation = getDeviations(getCoords(point), getCoords(meanCenter));\n xDeviationSquaredSum += Math.pow(deviation.x, 2) * weight;\n yDeviationSquaredSum += Math.pow(deviation.y, 2) * weight;\n xyDeviationSum += deviation.x * deviation.y * weight;\n });\n\n var bigA = xDeviationSquaredSum - yDeviationSquaredSum;\n var bigB = Math.sqrt(Math.pow(bigA, 2) + 4 * Math.pow(xyDeviationSum, 2));\n var bigC = 2 * xyDeviationSum;\n var theta = Math.atan((bigA + bigB) / bigC);\n var thetaDeg = (theta * 180) / Math.PI;\n\n // Calculate axes:\n // sigmaX = sqrt((1 / n - 2) * sum((((x - X) * cos(theta)) - ((y - Y) * sin(theta)))^2))\n // sigmaY = sqrt((1 / n - 2) * sum((((x - X) * sin(theta)) - ((y - Y) * cos(theta)))^2))\n var sigmaXsum = 0;\n var sigmaYsum = 0;\n var weightsum = 0;\n featureEach(points, function (point) {\n var weight = point.properties[weightTerm] || 1;\n var deviation = getDeviations(getCoords(point), getCoords(meanCenter));\n sigmaXsum +=\n Math.pow(\n deviation.x * Math.cos(theta) - deviation.y * Math.sin(theta),\n 2\n ) * weight;\n sigmaYsum +=\n Math.pow(\n deviation.x * Math.sin(theta) + deviation.y * Math.cos(theta),\n 2\n ) * weight;\n weightsum += weight;\n });\n\n var sigmaX = Math.sqrt((2 * sigmaXsum) / weightsum);\n var sigmaY = Math.sqrt((2 * sigmaYsum) / weightsum);\n\n var theEllipse = ellipse(meanCenter, sigmaX, sigmaY, {\n units: \"degrees\",\n angle: thetaDeg,\n steps: steps,\n properties: properties,\n });\n var pointsWithinEllipse = pointsWithinPolygon(\n points,\n featureCollection([theEllipse])\n );\n var standardDeviationalEllipseProperties = {\n meanCenterCoordinates: getCoords(meanCenter),\n semiMajorAxis: sigmaX,\n semiMinorAxis: sigmaY,\n numberOfFeatures: numberOfFeatures,\n angle: thetaDeg,\n percentageWithinEllipse:\n (100 * coordAll(pointsWithinEllipse).length) / numberOfFeatures,\n };\n theEllipse.properties.standardDeviationalEllipse =\n standardDeviationalEllipseProperties;\n\n return theEllipse;\n}\n\n/**\n * Get x_i - X and y_i - Y\n *\n * @private\n * @param {Array} coordinates Array of [x_i, y_i]\n * @param {Array} center Array of [X, Y]\n * @returns {Object} { x: n, y: m }\n */\nfunction getDeviations(coordinates, center) {\n return {\n x: coordinates[0] - center[0],\n y: coordinates[1] - center[1],\n };\n}\n\nexport { standardDeviationalEllipse };\nexport default standardDeviationalEllipse;\n"]}
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
import { Position, Feature, Polygon, FeatureCollection, Point, GeoJsonProperties } from 'geojson';
|
|
2
|
+
|
|
3
|
+
/**
|
|
4
|
+
* http://turfjs.org/docs/#standarddeviational-ellipse
|
|
5
|
+
*/
|
|
6
|
+
|
|
7
|
+
declare interface SDEProps {
|
|
8
|
+
meanCenterCoordinates: Position;
|
|
9
|
+
semiMajorAxis: number;
|
|
10
|
+
semiMinorAxis: number;
|
|
11
|
+
numberOfFeatures: number;
|
|
12
|
+
angle: number;
|
|
13
|
+
percentageWithinEllipse: number;
|
|
14
|
+
}
|
|
15
|
+
|
|
16
|
+
declare interface StandardDeviationalEllipse extends Feature<Polygon> {
|
|
17
|
+
properties: {
|
|
18
|
+
standardDeviationalEllipse: SDEProps;
|
|
19
|
+
[key: string]: any;
|
|
20
|
+
};
|
|
21
|
+
}
|
|
22
|
+
|
|
23
|
+
declare function standardDeviationalEllipse(
|
|
24
|
+
points: FeatureCollection<Point>,
|
|
25
|
+
options?: {
|
|
26
|
+
properties?: GeoJsonProperties;
|
|
27
|
+
weight?: string;
|
|
28
|
+
steps?: number;
|
|
29
|
+
}
|
|
30
|
+
): StandardDeviationalEllipse;
|
|
31
|
+
|
|
32
|
+
export { type SDEProps, type StandardDeviationalEllipse, standardDeviationalEllipse as default, standardDeviationalEllipse };
|
|
@@ -0,0 +1,32 @@
|
|
|
1
|
+
import { Position, Feature, Polygon, FeatureCollection, Point, GeoJsonProperties } from 'geojson';
|
|
2
|
+
|
|
3
|
+
/**
|
|
4
|
+
* http://turfjs.org/docs/#standarddeviational-ellipse
|
|
5
|
+
*/
|
|
6
|
+
|
|
7
|
+
declare interface SDEProps {
|
|
8
|
+
meanCenterCoordinates: Position;
|
|
9
|
+
semiMajorAxis: number;
|
|
10
|
+
semiMinorAxis: number;
|
|
11
|
+
numberOfFeatures: number;
|
|
12
|
+
angle: number;
|
|
13
|
+
percentageWithinEllipse: number;
|
|
14
|
+
}
|
|
15
|
+
|
|
16
|
+
declare interface StandardDeviationalEllipse extends Feature<Polygon> {
|
|
17
|
+
properties: {
|
|
18
|
+
standardDeviationalEllipse: SDEProps;
|
|
19
|
+
[key: string]: any;
|
|
20
|
+
};
|
|
21
|
+
}
|
|
22
|
+
|
|
23
|
+
declare function standardDeviationalEllipse(
|
|
24
|
+
points: FeatureCollection<Point>,
|
|
25
|
+
options?: {
|
|
26
|
+
properties?: GeoJsonProperties;
|
|
27
|
+
weight?: string;
|
|
28
|
+
steps?: number;
|
|
29
|
+
}
|
|
30
|
+
): StandardDeviationalEllipse;
|
|
31
|
+
|
|
32
|
+
export { type SDEProps, type StandardDeviationalEllipse, standardDeviationalEllipse as default, standardDeviationalEllipse };
|
|
@@ -0,0 +1,91 @@
|
|
|
1
|
+
var __defProp = Object.defineProperty;
|
|
2
|
+
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
|
3
|
+
|
|
4
|
+
// index.js
|
|
5
|
+
import { coordAll, featureEach } from "@turf/meta";
|
|
6
|
+
import { getCoords } from "@turf/invariant";
|
|
7
|
+
import { featureCollection, isObject, isNumber } from "@turf/helpers";
|
|
8
|
+
import { centerMean } from "@turf/center-mean";
|
|
9
|
+
import { pointsWithinPolygon } from "@turf/points-within-polygon";
|
|
10
|
+
import { ellipse } from "@turf/ellipse";
|
|
11
|
+
function standardDeviationalEllipse(points, options) {
|
|
12
|
+
options = options || {};
|
|
13
|
+
if (!isObject(options))
|
|
14
|
+
throw new Error("options is invalid");
|
|
15
|
+
var steps = options.steps || 64;
|
|
16
|
+
var weightTerm = options.weight;
|
|
17
|
+
var properties = options.properties || {};
|
|
18
|
+
if (!isNumber(steps))
|
|
19
|
+
throw new Error("steps must be a number");
|
|
20
|
+
if (!isObject(properties))
|
|
21
|
+
throw new Error("properties must be a number");
|
|
22
|
+
var numberOfFeatures = coordAll(points).length;
|
|
23
|
+
var meanCenter = centerMean(points, { weight: weightTerm });
|
|
24
|
+
var xDeviationSquaredSum = 0;
|
|
25
|
+
var yDeviationSquaredSum = 0;
|
|
26
|
+
var xyDeviationSum = 0;
|
|
27
|
+
featureEach(points, function(point) {
|
|
28
|
+
var weight = point.properties[weightTerm] || 1;
|
|
29
|
+
var deviation = getDeviations(getCoords(point), getCoords(meanCenter));
|
|
30
|
+
xDeviationSquaredSum += Math.pow(deviation.x, 2) * weight;
|
|
31
|
+
yDeviationSquaredSum += Math.pow(deviation.y, 2) * weight;
|
|
32
|
+
xyDeviationSum += deviation.x * deviation.y * weight;
|
|
33
|
+
});
|
|
34
|
+
var bigA = xDeviationSquaredSum - yDeviationSquaredSum;
|
|
35
|
+
var bigB = Math.sqrt(Math.pow(bigA, 2) + 4 * Math.pow(xyDeviationSum, 2));
|
|
36
|
+
var bigC = 2 * xyDeviationSum;
|
|
37
|
+
var theta = Math.atan((bigA + bigB) / bigC);
|
|
38
|
+
var thetaDeg = theta * 180 / Math.PI;
|
|
39
|
+
var sigmaXsum = 0;
|
|
40
|
+
var sigmaYsum = 0;
|
|
41
|
+
var weightsum = 0;
|
|
42
|
+
featureEach(points, function(point) {
|
|
43
|
+
var weight = point.properties[weightTerm] || 1;
|
|
44
|
+
var deviation = getDeviations(getCoords(point), getCoords(meanCenter));
|
|
45
|
+
sigmaXsum += Math.pow(
|
|
46
|
+
deviation.x * Math.cos(theta) - deviation.y * Math.sin(theta),
|
|
47
|
+
2
|
|
48
|
+
) * weight;
|
|
49
|
+
sigmaYsum += Math.pow(
|
|
50
|
+
deviation.x * Math.sin(theta) + deviation.y * Math.cos(theta),
|
|
51
|
+
2
|
|
52
|
+
) * weight;
|
|
53
|
+
weightsum += weight;
|
|
54
|
+
});
|
|
55
|
+
var sigmaX = Math.sqrt(2 * sigmaXsum / weightsum);
|
|
56
|
+
var sigmaY = Math.sqrt(2 * sigmaYsum / weightsum);
|
|
57
|
+
var theEllipse = ellipse(meanCenter, sigmaX, sigmaY, {
|
|
58
|
+
units: "degrees",
|
|
59
|
+
angle: thetaDeg,
|
|
60
|
+
steps,
|
|
61
|
+
properties
|
|
62
|
+
});
|
|
63
|
+
var pointsWithinEllipse = pointsWithinPolygon(
|
|
64
|
+
points,
|
|
65
|
+
featureCollection([theEllipse])
|
|
66
|
+
);
|
|
67
|
+
var standardDeviationalEllipseProperties = {
|
|
68
|
+
meanCenterCoordinates: getCoords(meanCenter),
|
|
69
|
+
semiMajorAxis: sigmaX,
|
|
70
|
+
semiMinorAxis: sigmaY,
|
|
71
|
+
numberOfFeatures,
|
|
72
|
+
angle: thetaDeg,
|
|
73
|
+
percentageWithinEllipse: 100 * coordAll(pointsWithinEllipse).length / numberOfFeatures
|
|
74
|
+
};
|
|
75
|
+
theEllipse.properties.standardDeviationalEllipse = standardDeviationalEllipseProperties;
|
|
76
|
+
return theEllipse;
|
|
77
|
+
}
|
|
78
|
+
__name(standardDeviationalEllipse, "standardDeviationalEllipse");
|
|
79
|
+
function getDeviations(coordinates, center) {
|
|
80
|
+
return {
|
|
81
|
+
x: coordinates[0] - center[0],
|
|
82
|
+
y: coordinates[1] - center[1]
|
|
83
|
+
};
|
|
84
|
+
}
|
|
85
|
+
__name(getDeviations, "getDeviations");
|
|
86
|
+
var turf_standard_deviational_ellipse_default = standardDeviationalEllipse;
|
|
87
|
+
export {
|
|
88
|
+
turf_standard_deviational_ellipse_default as default,
|
|
89
|
+
standardDeviationalEllipse
|
|
90
|
+
};
|
|
91
|
+
//# sourceMappingURL=index.mjs.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"sources":["../../index.js"],"sourcesContent":["import { coordAll, featureEach } from \"@turf/meta\";\nimport { getCoords } from \"@turf/invariant\";\nimport { featureCollection, isObject, isNumber } from \"@turf/helpers\";\nimport { centerMean } from \"@turf/center-mean\";\nimport { pointsWithinPolygon } from \"@turf/points-within-polygon\";\nimport { ellipse } from \"@turf/ellipse\";\n\n/**\n * Takes a {@link FeatureCollection} and returns a standard deviational ellipse,\n * also known as a “directional distribution.” The standard deviational ellipse\n * aims to show the direction and the distribution of a dataset by drawing\n * an ellipse that contains about one standard deviation’s worth (~ 70%) of the\n * data.\n *\n * This module mirrors the functionality of [Directional Distribution](http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-statistics-toolbox/directional-distribution.htm)\n * in ArcGIS and the [QGIS Standard Deviational Ellipse Plugin](http://arken.nmbu.no/~havatv/gis/qgisplugins/SDEllipse/)\n *\n * **Bibliography**\n *\n * • Robert S. Yuill, “The Standard Deviational Ellipse; An Updated Tool for\n * Spatial Description,” _Geografiska Annaler_ 53, no. 1 (1971): 28–39,\n * doi:{@link https://doi.org/10.2307/490885|10.2307/490885}.\n *\n * • Paul Hanly Furfey, “A Note on Lefever’s “Standard Deviational Ellipse,”\n * _American Journal of Sociology_ 33, no. 1 (1927): 94—98,\n * doi:{@link https://doi.org/10.1086/214336|10.1086/214336}.\n *\n *\n * @name standardDeviationalEllipse\n * @param {FeatureCollection<Point>} points GeoJSON points\n * @param {Object} [options={}] Optional parameters\n * @param {string} [options.weight] the property name used to weight the center\n * @param {number} [options.steps=64] number of steps for the polygon\n * @param {Object} [options.properties={}] properties to pass to the resulting ellipse\n * @returns {Feature<Polygon>} an elliptical Polygon that includes approximately 1 SD of the dataset within it.\n * @example\n *\n * var bbox = [-74, 40.72, -73.98, 40.74];\n * var points = turf.randomPoint(400, {bbox: bbox});\n * var sdEllipse = turf.standardDeviationalEllipse(points);\n *\n * //addToMap\n * var addToMap = [points, sdEllipse];\n *\n */\nfunction standardDeviationalEllipse(points, options) {\n // Optional params\n options = options || {};\n if (!isObject(options)) throw new Error(\"options is invalid\");\n var steps = options.steps || 64;\n var weightTerm = options.weight;\n var properties = options.properties || {};\n\n // Validation:\n if (!isNumber(steps)) throw new Error(\"steps must be a number\");\n if (!isObject(properties)) throw new Error(\"properties must be a number\");\n\n // Calculate mean center & number of features:\n var numberOfFeatures = coordAll(points).length;\n var meanCenter = centerMean(points, { weight: weightTerm });\n\n // Calculate angle of rotation:\n // [X, Y] = mean center of all [x, y].\n // theta = arctan( (A + B) / C )\n // A = sum((x - X)^2) - sum((y - Y)^2)\n // B = sqrt(A^2 + 4(sum((x - X)(y - Y))^2))\n // C = 2(sum((x - X)(y - Y)))\n\n var xDeviationSquaredSum = 0;\n var yDeviationSquaredSum = 0;\n var xyDeviationSum = 0;\n\n featureEach(points, function (point) {\n var weight = point.properties[weightTerm] || 1;\n var deviation = getDeviations(getCoords(point), getCoords(meanCenter));\n xDeviationSquaredSum += Math.pow(deviation.x, 2) * weight;\n yDeviationSquaredSum += Math.pow(deviation.y, 2) * weight;\n xyDeviationSum += deviation.x * deviation.y * weight;\n });\n\n var bigA = xDeviationSquaredSum - yDeviationSquaredSum;\n var bigB = Math.sqrt(Math.pow(bigA, 2) + 4 * Math.pow(xyDeviationSum, 2));\n var bigC = 2 * xyDeviationSum;\n var theta = Math.atan((bigA + bigB) / bigC);\n var thetaDeg = (theta * 180) / Math.PI;\n\n // Calculate axes:\n // sigmaX = sqrt((1 / n - 2) * sum((((x - X) * cos(theta)) - ((y - Y) * sin(theta)))^2))\n // sigmaY = sqrt((1 / n - 2) * sum((((x - X) * sin(theta)) - ((y - Y) * cos(theta)))^2))\n var sigmaXsum = 0;\n var sigmaYsum = 0;\n var weightsum = 0;\n featureEach(points, function (point) {\n var weight = point.properties[weightTerm] || 1;\n var deviation = getDeviations(getCoords(point), getCoords(meanCenter));\n sigmaXsum +=\n Math.pow(\n deviation.x * Math.cos(theta) - deviation.y * Math.sin(theta),\n 2\n ) * weight;\n sigmaYsum +=\n Math.pow(\n deviation.x * Math.sin(theta) + deviation.y * Math.cos(theta),\n 2\n ) * weight;\n weightsum += weight;\n });\n\n var sigmaX = Math.sqrt((2 * sigmaXsum) / weightsum);\n var sigmaY = Math.sqrt((2 * sigmaYsum) / weightsum);\n\n var theEllipse = ellipse(meanCenter, sigmaX, sigmaY, {\n units: \"degrees\",\n angle: thetaDeg,\n steps: steps,\n properties: properties,\n });\n var pointsWithinEllipse = pointsWithinPolygon(\n points,\n featureCollection([theEllipse])\n );\n var standardDeviationalEllipseProperties = {\n meanCenterCoordinates: getCoords(meanCenter),\n semiMajorAxis: sigmaX,\n semiMinorAxis: sigmaY,\n numberOfFeatures: numberOfFeatures,\n angle: thetaDeg,\n percentageWithinEllipse:\n (100 * coordAll(pointsWithinEllipse).length) / numberOfFeatures,\n };\n theEllipse.properties.standardDeviationalEllipse =\n standardDeviationalEllipseProperties;\n\n return theEllipse;\n}\n\n/**\n * Get x_i - X and y_i - Y\n *\n * @private\n * @param {Array} coordinates Array of [x_i, y_i]\n * @param {Array} center Array of [X, Y]\n * @returns {Object} { x: n, y: m }\n */\nfunction getDeviations(coordinates, center) {\n return {\n x: coordinates[0] - center[0],\n y: coordinates[1] - center[1],\n };\n}\n\nexport { standardDeviationalEllipse };\nexport default standardDeviationalEllipse;\n"],"mappings":";;;;AAAA,SAAS,UAAU,mBAAmB;AACtC,SAAS,iBAAiB;AAC1B,SAAS,mBAAmB,UAAU,gBAAgB;AACtD,SAAS,kBAAkB;AAC3B,SAAS,2BAA2B;AACpC,SAAS,eAAe;AAwCxB,SAAS,2BAA2B,QAAQ,SAAS;AAEnD,YAAU,WAAW,CAAC;AACtB,MAAI,CAAC,SAAS,OAAO;AAAG,UAAM,IAAI,MAAM,oBAAoB;AAC5D,MAAI,QAAQ,QAAQ,SAAS;AAC7B,MAAI,aAAa,QAAQ;AACzB,MAAI,aAAa,QAAQ,cAAc,CAAC;AAGxC,MAAI,CAAC,SAAS,KAAK;AAAG,UAAM,IAAI,MAAM,wBAAwB;AAC9D,MAAI,CAAC,SAAS,UAAU;AAAG,UAAM,IAAI,MAAM,6BAA6B;AAGxE,MAAI,mBAAmB,SAAS,MAAM,EAAE;AACxC,MAAI,aAAa,WAAW,QAAQ,EAAE,QAAQ,WAAW,CAAC;AAS1D,MAAI,uBAAuB;AAC3B,MAAI,uBAAuB;AAC3B,MAAI,iBAAiB;AAErB,cAAY,QAAQ,SAAU,OAAO;AACnC,QAAI,SAAS,MAAM,WAAW,UAAU,KAAK;AAC7C,QAAI,YAAY,cAAc,UAAU,KAAK,GAAG,UAAU,UAAU,CAAC;AACrE,4BAAwB,KAAK,IAAI,UAAU,GAAG,CAAC,IAAI;AACnD,4BAAwB,KAAK,IAAI,UAAU,GAAG,CAAC,IAAI;AACnD,sBAAkB,UAAU,IAAI,UAAU,IAAI;AAAA,EAChD,CAAC;AAED,MAAI,OAAO,uBAAuB;AAClC,MAAI,OAAO,KAAK,KAAK,KAAK,IAAI,MAAM,CAAC,IAAI,IAAI,KAAK,IAAI,gBAAgB,CAAC,CAAC;AACxE,MAAI,OAAO,IAAI;AACf,MAAI,QAAQ,KAAK,MAAM,OAAO,QAAQ,IAAI;AAC1C,MAAI,WAAY,QAAQ,MAAO,KAAK;AAKpC,MAAI,YAAY;AAChB,MAAI,YAAY;AAChB,MAAI,YAAY;AAChB,cAAY,QAAQ,SAAU,OAAO;AACnC,QAAI,SAAS,MAAM,WAAW,UAAU,KAAK;AAC7C,QAAI,YAAY,cAAc,UAAU,KAAK,GAAG,UAAU,UAAU,CAAC;AACrE,iBACE,KAAK;AAAA,MACH,UAAU,IAAI,KAAK,IAAI,KAAK,IAAI,UAAU,IAAI,KAAK,IAAI,KAAK;AAAA,MAC5D;AAAA,IACF,IAAI;AACN,iBACE,KAAK;AAAA,MACH,UAAU,IAAI,KAAK,IAAI,KAAK,IAAI,UAAU,IAAI,KAAK,IAAI,KAAK;AAAA,MAC5D;AAAA,IACF,IAAI;AACN,iBAAa;AAAA,EACf,CAAC;AAED,MAAI,SAAS,KAAK,KAAM,IAAI,YAAa,SAAS;AAClD,MAAI,SAAS,KAAK,KAAM,IAAI,YAAa,SAAS;AAElD,MAAI,aAAa,QAAQ,YAAY,QAAQ,QAAQ;AAAA,IACnD,OAAO;AAAA,IACP,OAAO;AAAA,IACP;AAAA,IACA;AAAA,EACF,CAAC;AACD,MAAI,sBAAsB;AAAA,IACxB;AAAA,IACA,kBAAkB,CAAC,UAAU,CAAC;AAAA,EAChC;AACA,MAAI,uCAAuC;AAAA,IACzC,uBAAuB,UAAU,UAAU;AAAA,IAC3C,eAAe;AAAA,IACf,eAAe;AAAA,IACf;AAAA,IACA,OAAO;AAAA,IACP,yBACG,MAAM,SAAS,mBAAmB,EAAE,SAAU;AAAA,EACnD;AACA,aAAW,WAAW,6BACpB;AAEF,SAAO;AACT;AAzFS;AAmGT,SAAS,cAAc,aAAa,QAAQ;AAC1C,SAAO;AAAA,IACL,GAAG,YAAY,CAAC,IAAI,OAAO,CAAC;AAAA,IAC5B,GAAG,YAAY,CAAC,IAAI,OAAO,CAAC;AAAA,EAC9B;AACF;AALS;AAQT,IAAO,4CAAQ;","names":[]}
|
package/index.d.ts
CHANGED
|
@@ -11,7 +11,7 @@ import {
|
|
|
11
11
|
* http://turfjs.org/docs/#standarddeviational-ellipse
|
|
12
12
|
*/
|
|
13
13
|
|
|
14
|
-
|
|
14
|
+
declare interface SDEProps {
|
|
15
15
|
meanCenterCoordinates: Position;
|
|
16
16
|
semiMajorAxis: number;
|
|
17
17
|
semiMinorAxis: number;
|
|
@@ -20,14 +20,14 @@ export interface SDEProps {
|
|
|
20
20
|
percentageWithinEllipse: number;
|
|
21
21
|
}
|
|
22
22
|
|
|
23
|
-
|
|
23
|
+
declare interface StandardDeviationalEllipse extends Feature<Polygon> {
|
|
24
24
|
properties: {
|
|
25
25
|
standardDeviationalEllipse: SDEProps;
|
|
26
26
|
[key: string]: any;
|
|
27
27
|
};
|
|
28
28
|
}
|
|
29
29
|
|
|
30
|
-
|
|
30
|
+
declare function standardDeviationalEllipse(
|
|
31
31
|
points: FeatureCollection<Point>,
|
|
32
32
|
options?: {
|
|
33
33
|
properties?: GeoJsonProperties;
|
|
@@ -35,3 +35,6 @@ export default function (
|
|
|
35
35
|
steps?: number;
|
|
36
36
|
}
|
|
37
37
|
): StandardDeviationalEllipse;
|
|
38
|
+
|
|
39
|
+
export { SDEProps, StandardDeviationalEllipse, standardDeviationalEllipse };
|
|
40
|
+
export default standardDeviationalEllipse;
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@turf/standard-deviational-ellipse",
|
|
3
|
-
"version": "7.0.0-alpha.
|
|
3
|
+
"version": "7.0.0-alpha.110+1411d63a7",
|
|
4
4
|
"description": "turf standard-deviational-ellipse module",
|
|
5
5
|
"author": "Turf Authors",
|
|
6
6
|
"contributors": [
|
|
@@ -25,48 +25,54 @@
|
|
|
25
25
|
"geostatistics",
|
|
26
26
|
"directional distribution"
|
|
27
27
|
],
|
|
28
|
-
"
|
|
29
|
-
"
|
|
28
|
+
"type": "commonjs",
|
|
29
|
+
"main": "dist/cjs/index.cjs",
|
|
30
|
+
"module": "dist/esm/index.mjs",
|
|
31
|
+
"types": "dist/cjs/index.d.ts",
|
|
30
32
|
"exports": {
|
|
31
33
|
"./package.json": "./package.json",
|
|
32
34
|
".": {
|
|
33
|
-
"
|
|
34
|
-
|
|
35
|
-
|
|
35
|
+
"import": {
|
|
36
|
+
"types": "./dist/esm/index.d.mts",
|
|
37
|
+
"default": "./dist/esm/index.mjs"
|
|
38
|
+
},
|
|
39
|
+
"require": {
|
|
40
|
+
"types": "./dist/cjs/index.d.ts",
|
|
41
|
+
"default": "./dist/cjs/index.cjs"
|
|
42
|
+
}
|
|
36
43
|
}
|
|
37
44
|
},
|
|
38
|
-
"types": "index.d.ts",
|
|
39
45
|
"sideEffects": false,
|
|
40
46
|
"files": [
|
|
41
47
|
"dist",
|
|
42
48
|
"index.d.ts"
|
|
43
49
|
],
|
|
44
50
|
"scripts": {
|
|
45
|
-
"bench": "tsx bench.
|
|
46
|
-
"build": "
|
|
47
|
-
"docs": "tsx ../../scripts/generate-readmes",
|
|
48
|
-
"test": "npm-run-all test:*",
|
|
49
|
-
"test:tape": "tsx test.
|
|
51
|
+
"bench": "tsx bench.ts",
|
|
52
|
+
"build": "tsup --config ../../tsup.config.ts",
|
|
53
|
+
"docs": "tsx ../../scripts/generate-readmes.ts",
|
|
54
|
+
"test": "npm-run-all --npm-path npm test:*",
|
|
55
|
+
"test:tape": "tsx test.ts",
|
|
50
56
|
"test:types": "tsc --esModuleInterop --noEmit --strict types.ts"
|
|
51
57
|
},
|
|
52
58
|
"devDependencies": {
|
|
53
|
-
"@turf/random": "^7.0.0-alpha.
|
|
54
|
-
"@turf/truncate": "^7.0.0-alpha.
|
|
55
|
-
"benchmark": "
|
|
56
|
-
"load-json-file": "
|
|
57
|
-
"npm-run-all": "
|
|
58
|
-
"
|
|
59
|
-
"
|
|
60
|
-
"tsx": "
|
|
61
|
-
"write-json-file": "
|
|
59
|
+
"@turf/random": "^7.0.0-alpha.110+1411d63a7",
|
|
60
|
+
"@turf/truncate": "^7.0.0-alpha.110+1411d63a7",
|
|
61
|
+
"benchmark": "^2.1.4",
|
|
62
|
+
"load-json-file": "^7.0.1",
|
|
63
|
+
"npm-run-all": "^4.1.5",
|
|
64
|
+
"tape": "^5.7.2",
|
|
65
|
+
"tsup": "^8.0.1",
|
|
66
|
+
"tsx": "^4.6.2",
|
|
67
|
+
"write-json-file": "^5.0.0"
|
|
62
68
|
},
|
|
63
69
|
"dependencies": {
|
|
64
|
-
"@turf/center-mean": "^7.0.0-alpha.
|
|
65
|
-
"@turf/ellipse": "^7.0.0-alpha.
|
|
66
|
-
"@turf/helpers": "^7.0.0-alpha.
|
|
67
|
-
"@turf/invariant": "^7.0.0-alpha.
|
|
68
|
-
"@turf/meta": "^7.0.0-alpha.
|
|
69
|
-
"@turf/points-within-polygon": "^7.0.0-alpha.
|
|
70
|
+
"@turf/center-mean": "^7.0.0-alpha.110+1411d63a7",
|
|
71
|
+
"@turf/ellipse": "^7.0.0-alpha.110+1411d63a7",
|
|
72
|
+
"@turf/helpers": "^7.0.0-alpha.110+1411d63a7",
|
|
73
|
+
"@turf/invariant": "^7.0.0-alpha.110+1411d63a7",
|
|
74
|
+
"@turf/meta": "^7.0.0-alpha.110+1411d63a7",
|
|
75
|
+
"@turf/points-within-polygon": "^7.0.0-alpha.110+1411d63a7"
|
|
70
76
|
},
|
|
71
|
-
"gitHead": "
|
|
77
|
+
"gitHead": "1411d63a74c275c9216fe48e9d3cb2d48a359068"
|
|
72
78
|
}
|
package/dist/es/index.js
DELETED
|
@@ -1,151 +0,0 @@
|
|
|
1
|
-
import { coordAll, featureEach } from '@turf/meta';
|
|
2
|
-
import { getCoords } from '@turf/invariant';
|
|
3
|
-
import { isObject, isNumber, featureCollection } from '@turf/helpers';
|
|
4
|
-
import centerMean from '@turf/center-mean';
|
|
5
|
-
import pointsWithinPolygon from '@turf/points-within-polygon';
|
|
6
|
-
import ellipse from '@turf/ellipse';
|
|
7
|
-
|
|
8
|
-
/**
|
|
9
|
-
* Takes a {@link FeatureCollection} and returns a standard deviational ellipse,
|
|
10
|
-
* also known as a “directional distribution.” The standard deviational ellipse
|
|
11
|
-
* aims to show the direction and the distribution of a dataset by drawing
|
|
12
|
-
* an ellipse that contains about one standard deviation’s worth (~ 70%) of the
|
|
13
|
-
* data.
|
|
14
|
-
*
|
|
15
|
-
* This module mirrors the functionality of [Directional Distribution](http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-statistics-toolbox/directional-distribution.htm)
|
|
16
|
-
* in ArcGIS and the [QGIS Standard Deviational Ellipse Plugin](http://arken.nmbu.no/~havatv/gis/qgisplugins/SDEllipse/)
|
|
17
|
-
*
|
|
18
|
-
* **Bibliography**
|
|
19
|
-
*
|
|
20
|
-
* • Robert S. Yuill, “The Standard Deviational Ellipse; An Updated Tool for
|
|
21
|
-
* Spatial Description,” _Geografiska Annaler_ 53, no. 1 (1971): 28–39,
|
|
22
|
-
* doi:{@link https://doi.org/10.2307/490885|10.2307/490885}.
|
|
23
|
-
*
|
|
24
|
-
* • Paul Hanly Furfey, “A Note on Lefever’s “Standard Deviational Ellipse,”
|
|
25
|
-
* _American Journal of Sociology_ 33, no. 1 (1927): 94—98,
|
|
26
|
-
* doi:{@link https://doi.org/10.1086/214336|10.1086/214336}.
|
|
27
|
-
*
|
|
28
|
-
*
|
|
29
|
-
* @name standardDeviationalEllipse
|
|
30
|
-
* @param {FeatureCollection<Point>} points GeoJSON points
|
|
31
|
-
* @param {Object} [options={}] Optional parameters
|
|
32
|
-
* @param {string} [options.weight] the property name used to weight the center
|
|
33
|
-
* @param {number} [options.steps=64] number of steps for the polygon
|
|
34
|
-
* @param {Object} [options.properties={}] properties to pass to the resulting ellipse
|
|
35
|
-
* @returns {Feature<Polygon>} an elliptical Polygon that includes approximately 1 SD of the dataset within it.
|
|
36
|
-
* @example
|
|
37
|
-
*
|
|
38
|
-
* var bbox = [-74, 40.72, -73.98, 40.74];
|
|
39
|
-
* var points = turf.randomPoint(400, {bbox: bbox});
|
|
40
|
-
* var sdEllipse = turf.standardDeviationalEllipse(points);
|
|
41
|
-
*
|
|
42
|
-
* //addToMap
|
|
43
|
-
* var addToMap = [points, sdEllipse];
|
|
44
|
-
*
|
|
45
|
-
*/
|
|
46
|
-
function standardDeviationalEllipse(points, options) {
|
|
47
|
-
// Optional params
|
|
48
|
-
options = options || {};
|
|
49
|
-
if (!isObject(options)) throw new Error("options is invalid");
|
|
50
|
-
var steps = options.steps || 64;
|
|
51
|
-
var weightTerm = options.weight;
|
|
52
|
-
var properties = options.properties || {};
|
|
53
|
-
|
|
54
|
-
// Validation:
|
|
55
|
-
if (!isNumber(steps)) throw new Error("steps must be a number");
|
|
56
|
-
if (!isObject(properties)) throw new Error("properties must be a number");
|
|
57
|
-
|
|
58
|
-
// Calculate mean center & number of features:
|
|
59
|
-
var numberOfFeatures = coordAll(points).length;
|
|
60
|
-
var meanCenter = centerMean(points, { weight: weightTerm });
|
|
61
|
-
|
|
62
|
-
// Calculate angle of rotation:
|
|
63
|
-
// [X, Y] = mean center of all [x, y].
|
|
64
|
-
// theta = arctan( (A + B) / C )
|
|
65
|
-
// A = sum((x - X)^2) - sum((y - Y)^2)
|
|
66
|
-
// B = sqrt(A^2 + 4(sum((x - X)(y - Y))^2))
|
|
67
|
-
// C = 2(sum((x - X)(y - Y)))
|
|
68
|
-
|
|
69
|
-
var xDeviationSquaredSum = 0;
|
|
70
|
-
var yDeviationSquaredSum = 0;
|
|
71
|
-
var xyDeviationSum = 0;
|
|
72
|
-
|
|
73
|
-
featureEach(points, function (point) {
|
|
74
|
-
var weight = point.properties[weightTerm] || 1;
|
|
75
|
-
var deviation = getDeviations(getCoords(point), getCoords(meanCenter));
|
|
76
|
-
xDeviationSquaredSum += Math.pow(deviation.x, 2) * weight;
|
|
77
|
-
yDeviationSquaredSum += Math.pow(deviation.y, 2) * weight;
|
|
78
|
-
xyDeviationSum += deviation.x * deviation.y * weight;
|
|
79
|
-
});
|
|
80
|
-
|
|
81
|
-
var bigA = xDeviationSquaredSum - yDeviationSquaredSum;
|
|
82
|
-
var bigB = Math.sqrt(Math.pow(bigA, 2) + 4 * Math.pow(xyDeviationSum, 2));
|
|
83
|
-
var bigC = 2 * xyDeviationSum;
|
|
84
|
-
var theta = Math.atan((bigA + bigB) / bigC);
|
|
85
|
-
var thetaDeg = (theta * 180) / Math.PI;
|
|
86
|
-
|
|
87
|
-
// Calculate axes:
|
|
88
|
-
// sigmaX = sqrt((1 / n - 2) * sum((((x - X) * cos(theta)) - ((y - Y) * sin(theta)))^2))
|
|
89
|
-
// sigmaY = sqrt((1 / n - 2) * sum((((x - X) * sin(theta)) - ((y - Y) * cos(theta)))^2))
|
|
90
|
-
var sigmaXsum = 0;
|
|
91
|
-
var sigmaYsum = 0;
|
|
92
|
-
var weightsum = 0;
|
|
93
|
-
featureEach(points, function (point) {
|
|
94
|
-
var weight = point.properties[weightTerm] || 1;
|
|
95
|
-
var deviation = getDeviations(getCoords(point), getCoords(meanCenter));
|
|
96
|
-
sigmaXsum +=
|
|
97
|
-
Math.pow(
|
|
98
|
-
deviation.x * Math.cos(theta) - deviation.y * Math.sin(theta),
|
|
99
|
-
2
|
|
100
|
-
) * weight;
|
|
101
|
-
sigmaYsum +=
|
|
102
|
-
Math.pow(
|
|
103
|
-
deviation.x * Math.sin(theta) + deviation.y * Math.cos(theta),
|
|
104
|
-
2
|
|
105
|
-
) * weight;
|
|
106
|
-
weightsum += weight;
|
|
107
|
-
});
|
|
108
|
-
|
|
109
|
-
var sigmaX = Math.sqrt((2 * sigmaXsum) / weightsum);
|
|
110
|
-
var sigmaY = Math.sqrt((2 * sigmaYsum) / weightsum);
|
|
111
|
-
|
|
112
|
-
var theEllipse = ellipse(meanCenter, sigmaX, sigmaY, {
|
|
113
|
-
units: "degrees",
|
|
114
|
-
angle: thetaDeg,
|
|
115
|
-
steps: steps,
|
|
116
|
-
properties: properties,
|
|
117
|
-
});
|
|
118
|
-
var pointsWithinEllipse = pointsWithinPolygon(
|
|
119
|
-
points,
|
|
120
|
-
featureCollection([theEllipse])
|
|
121
|
-
);
|
|
122
|
-
var standardDeviationalEllipseProperties = {
|
|
123
|
-
meanCenterCoordinates: getCoords(meanCenter),
|
|
124
|
-
semiMajorAxis: sigmaX,
|
|
125
|
-
semiMinorAxis: sigmaY,
|
|
126
|
-
numberOfFeatures: numberOfFeatures,
|
|
127
|
-
angle: thetaDeg,
|
|
128
|
-
percentageWithinEllipse:
|
|
129
|
-
(100 * coordAll(pointsWithinEllipse).length) / numberOfFeatures,
|
|
130
|
-
};
|
|
131
|
-
theEllipse.properties.standardDeviationalEllipse = standardDeviationalEllipseProperties;
|
|
132
|
-
|
|
133
|
-
return theEllipse;
|
|
134
|
-
}
|
|
135
|
-
|
|
136
|
-
/**
|
|
137
|
-
* Get x_i - X and y_i - Y
|
|
138
|
-
*
|
|
139
|
-
* @private
|
|
140
|
-
* @param {Array} coordinates Array of [x_i, y_i]
|
|
141
|
-
* @param {Array} center Array of [X, Y]
|
|
142
|
-
* @returns {Object} { x: n, y: m }
|
|
143
|
-
*/
|
|
144
|
-
function getDeviations(coordinates, center) {
|
|
145
|
-
return {
|
|
146
|
-
x: coordinates[0] - center[0],
|
|
147
|
-
y: coordinates[1] - center[1],
|
|
148
|
-
};
|
|
149
|
-
}
|
|
150
|
-
|
|
151
|
-
export default standardDeviationalEllipse;
|
package/dist/es/package.json
DELETED
|
@@ -1 +0,0 @@
|
|
|
1
|
-
{"type":"module"}
|
package/dist/js/index.js
DELETED
|
@@ -1,160 +0,0 @@
|
|
|
1
|
-
'use strict';
|
|
2
|
-
|
|
3
|
-
var meta = require('@turf/meta');
|
|
4
|
-
var invariant = require('@turf/invariant');
|
|
5
|
-
var helpers = require('@turf/helpers');
|
|
6
|
-
var centerMean = require('@turf/center-mean');
|
|
7
|
-
var pointsWithinPolygon = require('@turf/points-within-polygon');
|
|
8
|
-
var ellipse = require('@turf/ellipse');
|
|
9
|
-
|
|
10
|
-
function _interopDefaultLegacy (e) { return e && typeof e === 'object' && 'default' in e ? e : { 'default': e }; }
|
|
11
|
-
|
|
12
|
-
var centerMean__default = /*#__PURE__*/_interopDefaultLegacy(centerMean);
|
|
13
|
-
var pointsWithinPolygon__default = /*#__PURE__*/_interopDefaultLegacy(pointsWithinPolygon);
|
|
14
|
-
var ellipse__default = /*#__PURE__*/_interopDefaultLegacy(ellipse);
|
|
15
|
-
|
|
16
|
-
/**
|
|
17
|
-
* Takes a {@link FeatureCollection} and returns a standard deviational ellipse,
|
|
18
|
-
* also known as a “directional distribution.” The standard deviational ellipse
|
|
19
|
-
* aims to show the direction and the distribution of a dataset by drawing
|
|
20
|
-
* an ellipse that contains about one standard deviation’s worth (~ 70%) of the
|
|
21
|
-
* data.
|
|
22
|
-
*
|
|
23
|
-
* This module mirrors the functionality of [Directional Distribution](http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-statistics-toolbox/directional-distribution.htm)
|
|
24
|
-
* in ArcGIS and the [QGIS Standard Deviational Ellipse Plugin](http://arken.nmbu.no/~havatv/gis/qgisplugins/SDEllipse/)
|
|
25
|
-
*
|
|
26
|
-
* **Bibliography**
|
|
27
|
-
*
|
|
28
|
-
* • Robert S. Yuill, “The Standard Deviational Ellipse; An Updated Tool for
|
|
29
|
-
* Spatial Description,” _Geografiska Annaler_ 53, no. 1 (1971): 28–39,
|
|
30
|
-
* doi:{@link https://doi.org/10.2307/490885|10.2307/490885}.
|
|
31
|
-
*
|
|
32
|
-
* • Paul Hanly Furfey, “A Note on Lefever’s “Standard Deviational Ellipse,”
|
|
33
|
-
* _American Journal of Sociology_ 33, no. 1 (1927): 94—98,
|
|
34
|
-
* doi:{@link https://doi.org/10.1086/214336|10.1086/214336}.
|
|
35
|
-
*
|
|
36
|
-
*
|
|
37
|
-
* @name standardDeviationalEllipse
|
|
38
|
-
* @param {FeatureCollection<Point>} points GeoJSON points
|
|
39
|
-
* @param {Object} [options={}] Optional parameters
|
|
40
|
-
* @param {string} [options.weight] the property name used to weight the center
|
|
41
|
-
* @param {number} [options.steps=64] number of steps for the polygon
|
|
42
|
-
* @param {Object} [options.properties={}] properties to pass to the resulting ellipse
|
|
43
|
-
* @returns {Feature<Polygon>} an elliptical Polygon that includes approximately 1 SD of the dataset within it.
|
|
44
|
-
* @example
|
|
45
|
-
*
|
|
46
|
-
* var bbox = [-74, 40.72, -73.98, 40.74];
|
|
47
|
-
* var points = turf.randomPoint(400, {bbox: bbox});
|
|
48
|
-
* var sdEllipse = turf.standardDeviationalEllipse(points);
|
|
49
|
-
*
|
|
50
|
-
* //addToMap
|
|
51
|
-
* var addToMap = [points, sdEllipse];
|
|
52
|
-
*
|
|
53
|
-
*/
|
|
54
|
-
function standardDeviationalEllipse(points, options) {
|
|
55
|
-
// Optional params
|
|
56
|
-
options = options || {};
|
|
57
|
-
if (!helpers.isObject(options)) throw new Error("options is invalid");
|
|
58
|
-
var steps = options.steps || 64;
|
|
59
|
-
var weightTerm = options.weight;
|
|
60
|
-
var properties = options.properties || {};
|
|
61
|
-
|
|
62
|
-
// Validation:
|
|
63
|
-
if (!helpers.isNumber(steps)) throw new Error("steps must be a number");
|
|
64
|
-
if (!helpers.isObject(properties)) throw new Error("properties must be a number");
|
|
65
|
-
|
|
66
|
-
// Calculate mean center & number of features:
|
|
67
|
-
var numberOfFeatures = meta.coordAll(points).length;
|
|
68
|
-
var meanCenter = centerMean__default['default'](points, { weight: weightTerm });
|
|
69
|
-
|
|
70
|
-
// Calculate angle of rotation:
|
|
71
|
-
// [X, Y] = mean center of all [x, y].
|
|
72
|
-
// theta = arctan( (A + B) / C )
|
|
73
|
-
// A = sum((x - X)^2) - sum((y - Y)^2)
|
|
74
|
-
// B = sqrt(A^2 + 4(sum((x - X)(y - Y))^2))
|
|
75
|
-
// C = 2(sum((x - X)(y - Y)))
|
|
76
|
-
|
|
77
|
-
var xDeviationSquaredSum = 0;
|
|
78
|
-
var yDeviationSquaredSum = 0;
|
|
79
|
-
var xyDeviationSum = 0;
|
|
80
|
-
|
|
81
|
-
meta.featureEach(points, function (point) {
|
|
82
|
-
var weight = point.properties[weightTerm] || 1;
|
|
83
|
-
var deviation = getDeviations(invariant.getCoords(point), invariant.getCoords(meanCenter));
|
|
84
|
-
xDeviationSquaredSum += Math.pow(deviation.x, 2) * weight;
|
|
85
|
-
yDeviationSquaredSum += Math.pow(deviation.y, 2) * weight;
|
|
86
|
-
xyDeviationSum += deviation.x * deviation.y * weight;
|
|
87
|
-
});
|
|
88
|
-
|
|
89
|
-
var bigA = xDeviationSquaredSum - yDeviationSquaredSum;
|
|
90
|
-
var bigB = Math.sqrt(Math.pow(bigA, 2) + 4 * Math.pow(xyDeviationSum, 2));
|
|
91
|
-
var bigC = 2 * xyDeviationSum;
|
|
92
|
-
var theta = Math.atan((bigA + bigB) / bigC);
|
|
93
|
-
var thetaDeg = (theta * 180) / Math.PI;
|
|
94
|
-
|
|
95
|
-
// Calculate axes:
|
|
96
|
-
// sigmaX = sqrt((1 / n - 2) * sum((((x - X) * cos(theta)) - ((y - Y) * sin(theta)))^2))
|
|
97
|
-
// sigmaY = sqrt((1 / n - 2) * sum((((x - X) * sin(theta)) - ((y - Y) * cos(theta)))^2))
|
|
98
|
-
var sigmaXsum = 0;
|
|
99
|
-
var sigmaYsum = 0;
|
|
100
|
-
var weightsum = 0;
|
|
101
|
-
meta.featureEach(points, function (point) {
|
|
102
|
-
var weight = point.properties[weightTerm] || 1;
|
|
103
|
-
var deviation = getDeviations(invariant.getCoords(point), invariant.getCoords(meanCenter));
|
|
104
|
-
sigmaXsum +=
|
|
105
|
-
Math.pow(
|
|
106
|
-
deviation.x * Math.cos(theta) - deviation.y * Math.sin(theta),
|
|
107
|
-
2
|
|
108
|
-
) * weight;
|
|
109
|
-
sigmaYsum +=
|
|
110
|
-
Math.pow(
|
|
111
|
-
deviation.x * Math.sin(theta) + deviation.y * Math.cos(theta),
|
|
112
|
-
2
|
|
113
|
-
) * weight;
|
|
114
|
-
weightsum += weight;
|
|
115
|
-
});
|
|
116
|
-
|
|
117
|
-
var sigmaX = Math.sqrt((2 * sigmaXsum) / weightsum);
|
|
118
|
-
var sigmaY = Math.sqrt((2 * sigmaYsum) / weightsum);
|
|
119
|
-
|
|
120
|
-
var theEllipse = ellipse__default['default'](meanCenter, sigmaX, sigmaY, {
|
|
121
|
-
units: "degrees",
|
|
122
|
-
angle: thetaDeg,
|
|
123
|
-
steps: steps,
|
|
124
|
-
properties: properties,
|
|
125
|
-
});
|
|
126
|
-
var pointsWithinEllipse = pointsWithinPolygon__default['default'](
|
|
127
|
-
points,
|
|
128
|
-
helpers.featureCollection([theEllipse])
|
|
129
|
-
);
|
|
130
|
-
var standardDeviationalEllipseProperties = {
|
|
131
|
-
meanCenterCoordinates: invariant.getCoords(meanCenter),
|
|
132
|
-
semiMajorAxis: sigmaX,
|
|
133
|
-
semiMinorAxis: sigmaY,
|
|
134
|
-
numberOfFeatures: numberOfFeatures,
|
|
135
|
-
angle: thetaDeg,
|
|
136
|
-
percentageWithinEllipse:
|
|
137
|
-
(100 * meta.coordAll(pointsWithinEllipse).length) / numberOfFeatures,
|
|
138
|
-
};
|
|
139
|
-
theEllipse.properties.standardDeviationalEllipse = standardDeviationalEllipseProperties;
|
|
140
|
-
|
|
141
|
-
return theEllipse;
|
|
142
|
-
}
|
|
143
|
-
|
|
144
|
-
/**
|
|
145
|
-
* Get x_i - X and y_i - Y
|
|
146
|
-
*
|
|
147
|
-
* @private
|
|
148
|
-
* @param {Array} coordinates Array of [x_i, y_i]
|
|
149
|
-
* @param {Array} center Array of [X, Y]
|
|
150
|
-
* @returns {Object} { x: n, y: m }
|
|
151
|
-
*/
|
|
152
|
-
function getDeviations(coordinates, center) {
|
|
153
|
-
return {
|
|
154
|
-
x: coordinates[0] - center[0],
|
|
155
|
-
y: coordinates[1] - center[1],
|
|
156
|
-
};
|
|
157
|
-
}
|
|
158
|
-
|
|
159
|
-
module.exports = standardDeviationalEllipse;
|
|
160
|
-
module.exports.default = standardDeviationalEllipse;
|