@turf/clusters-kmeans 7.0.0 → 7.1.0-alpha.70

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -9,11 +9,11 @@ It uses the [k-means algorithm][2]
9
9
 
10
10
  ### Parameters
11
11
 
12
- * `points` **[FeatureCollection][3]<[Point][4]>** to be clustered
13
- * `options` **[Object][5]** Optional parameters (optional, default `{}`)
12
+ * `points` **[FeatureCollection][3]<[Point][1]>** to be clustered
13
+ * `options` **[Object][4]** Optional parameters (optional, default `{}`)
14
14
 
15
- * `options.numberOfClusters` **[number][6]** numberOfClusters that will be generated (optional, default `Math.sqrt(numberOfPoints/2)`)
16
- * `options.mutate` **[boolean][7]** allows GeoJSON input to be mutated (significant performance increase if true) (optional, default `false`)
15
+ * `options.numberOfClusters` **[number][5]** numberOfClusters that will be generated (optional, default `Math.sqrt(numberOfPoints/2)`)
16
+ * `options.mutate` **[boolean][6]** allows GeoJSON input to be mutated (significant performance increase if true) (optional, default `false`)
17
17
 
18
18
  ### Examples
19
19
 
@@ -27,7 +27,7 @@ var clustered = turf.clustersKmeans(points, options);
27
27
  var addToMap = [clustered];
28
28
  ```
29
29
 
30
- Returns **[FeatureCollection][3]<[Point][4]>** Clustered Points with an additional two properties associated to each Feature:* {number} cluster - the associated clusterId
30
+ Returns **[FeatureCollection][3]<[Point][1]>** Clustered Points with an additional two properties associated to each Feature:* {number} cluster - the associated clusterId
31
31
  * {\[number, number]} centroid - Centroid of the cluster \[Longitude, Latitude]
32
32
 
33
33
  [1]: https://tools.ietf.org/html/rfc7946#section-3.1.2
@@ -36,13 +36,11 @@ Returns **[FeatureCollection][3]<[Point][4]>** Clustered Points with an addition
36
36
 
37
37
  [3]: https://tools.ietf.org/html/rfc7946#section-3.3
38
38
 
39
- [4]: https://tools.ietf.org/html/rfc7946#section-3.1.2
39
+ [4]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object
40
40
 
41
- [5]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object
41
+ [5]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number
42
42
 
43
- [6]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number
44
-
45
- [7]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean
43
+ [6]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean
46
44
 
47
45
  <!-- This file is automatically generated. Please don't edit it directly. If you find an error, edit the source file of the module in question (likely index.js or index.ts), and re-run "yarn docs" from the root of the turf project. -->
48
46
 
@@ -1,7 +1,4 @@
1
- "use strict";Object.defineProperty(exports, "__esModule", {value: true}); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }var __defProp = Object.defineProperty;
2
- var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
3
-
4
- // index.ts
1
+ "use strict";Object.defineProperty(exports, "__esModule", {value: true}); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }// index.ts
5
2
  var _clone = require('@turf/clone');
6
3
  var _meta = require('@turf/meta');
7
4
  var _skmeans = require('skmeans'); var _skmeans2 = _interopRequireDefault(_skmeans);
@@ -26,7 +23,6 @@ function clustersKmeans(points, options = {}) {
26
23
  });
27
24
  return points;
28
25
  }
29
- __name(clustersKmeans, "clustersKmeans");
30
26
  var turf_clusters_kmeans_default = clustersKmeans;
31
27
 
32
28
 
@@ -1 +1 @@
1
- {"version":3,"sources":["../../index.ts"],"names":[],"mappings":";;;;AACA,SAAS,aAAa;AACtB,SAAS,UAAU,mBAAmB;AACtC,OAAO,aAAa;AA4BpB,SAAS,eACP,QACA,UAGI,CAAC,GACkC;AAEvC,MAAI,QAAQ,OAAO,SAAS;AAC5B,UAAQ,mBACN,QAAQ,oBAAoB,KAAK,MAAM,KAAK,KAAK,QAAQ,CAAC,CAAC;AAI7D,MAAI,QAAQ,mBAAmB;AAAO,YAAQ,mBAAmB;AAGjE,MAAI,QAAQ,WAAW;AAAM,aAAS,MAAM,MAAM;AAGlD,MAAI,OAAO,SAAS,MAAM;AAG1B,MAAI,mBAAmB,KAAK,MAAM,GAAG,QAAQ,gBAAgB;AAG7D,MAAI,gBAAgB,QAAQ,MAAM,QAAQ,kBAAkB,gBAAgB;AAG5E,MAAI,YAAsC,CAAC;AAC3C,EAAC,cAAc,UAAyB,QAAQ,SAC9C,OACA,KACA;AACA,cAAU,GAAG,IAAI;AAAA,EACnB,CAAC;AAGD,cAAY,QAAQ,SAAU,OAAO,OAAO;AAC1C,QAAI,YAAY,cAAc,KAAK,KAAK;AACxC,UAAM,WAAY,UAAU;AAC5B,UAAM,WAAY,WAAW,UAAU,SAAS;AAAA,EAClD,CAAC;AAED,SAAO;AACT;AA7CS;AAgDT,IAAO,+BAAQ","sourcesContent":["import { FeatureCollection, Point, GeoJsonProperties } from \"geojson\";\nimport { clone } from \"@turf/clone\";\nimport { coordAll, featureEach } from \"@turf/meta\";\nimport skmeans from \"skmeans\";\n\ntype KmeansProps = GeoJsonProperties & {\n cluster?: number;\n centroid?: [number, number];\n};\n\n/**\n * Takes a set of {@link Point|points} and partition them into clusters using the k-mean .\n * It uses the [k-means algorithm](https://en.wikipedia.org/wiki/K-means_clustering)\n *\n * @name clustersKmeans\n * @param {FeatureCollection<Point>} points to be clustered\n * @param {Object} [options={}] Optional parameters\n * @param {number} [options.numberOfClusters=Math.sqrt(numberOfPoints/2)] numberOfClusters that will be generated\n * @param {boolean} [options.mutate=false] allows GeoJSON input to be mutated (significant performance increase if true)\n * @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:\n * - {number} cluster - the associated clusterId\n * - {[number, number]} centroid - Centroid of the cluster [Longitude, Latitude]\n * @example\n * // create random points with random z-values in their properties\n * var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});\n * var options = {numberOfClusters: 7};\n * var clustered = turf.clustersKmeans(points, options);\n *\n * //addToMap\n * var addToMap = [clustered];\n */\nfunction clustersKmeans(\n points: FeatureCollection<Point>,\n options: {\n numberOfClusters?: number;\n mutate?: boolean;\n } = {}\n): FeatureCollection<Point, KmeansProps> {\n // Default Params\n var count = points.features.length;\n options.numberOfClusters =\n options.numberOfClusters || Math.round(Math.sqrt(count / 2));\n\n // numberOfClusters can't be greater than the number of points\n // fallbacks to count\n if (options.numberOfClusters > count) options.numberOfClusters = count;\n\n // Clone points to prevent any mutations (enabled by default)\n if (options.mutate !== true) points = clone(points);\n\n // collect points coordinates\n var data = coordAll(points);\n\n // create seed to avoid skmeans to drift\n var initialCentroids = data.slice(0, options.numberOfClusters);\n\n // create skmeans clusters\n var skmeansResult = skmeans(data, options.numberOfClusters, initialCentroids);\n\n // store centroids {clusterId: [number, number]}\n var centroids: Record<string, number[]> = {};\n (skmeansResult.centroids as number[][]).forEach(function (\n coord: number[],\n idx: number\n ) {\n centroids[idx] = coord;\n });\n\n // add associated cluster number\n featureEach(points, function (point, index) {\n var clusterId = skmeansResult.idxs[index];\n point.properties!.cluster = clusterId;\n point.properties!.centroid = centroids[clusterId];\n });\n\n return points as FeatureCollection<Point, KmeansProps>;\n}\n\nexport { clustersKmeans, KmeansProps };\nexport default clustersKmeans;\n"]}
1
+ {"version":3,"sources":["../../index.ts"],"names":[],"mappings":";AACA,SAAS,aAAa;AACtB,SAAS,UAAU,mBAAmB;AACtC,OAAO,aAAa;AA4BpB,SAAS,eACP,QACA,UAGI,CAAC,GACkC;AAEvC,MAAI,QAAQ,OAAO,SAAS;AAC5B,UAAQ,mBACN,QAAQ,oBAAoB,KAAK,MAAM,KAAK,KAAK,QAAQ,CAAC,CAAC;AAI7D,MAAI,QAAQ,mBAAmB;AAAO,YAAQ,mBAAmB;AAGjE,MAAI,QAAQ,WAAW;AAAM,aAAS,MAAM,MAAM;AAGlD,MAAI,OAAO,SAAS,MAAM;AAG1B,MAAI,mBAAmB,KAAK,MAAM,GAAG,QAAQ,gBAAgB;AAG7D,MAAI,gBAAgB,QAAQ,MAAM,QAAQ,kBAAkB,gBAAgB;AAG5E,MAAI,YAAsC,CAAC;AAC3C,EAAC,cAAc,UAAyB,QAAQ,SAC9C,OACA,KACA;AACA,cAAU,GAAG,IAAI;AAAA,EACnB,CAAC;AAGD,cAAY,QAAQ,SAAU,OAAO,OAAO;AAC1C,QAAI,YAAY,cAAc,KAAK,KAAK;AACxC,UAAM,WAAY,UAAU;AAC5B,UAAM,WAAY,WAAW,UAAU,SAAS;AAAA,EAClD,CAAC;AAED,SAAO;AACT;AAGA,IAAO,+BAAQ","sourcesContent":["import { FeatureCollection, Point, GeoJsonProperties } from \"geojson\";\nimport { clone } from \"@turf/clone\";\nimport { coordAll, featureEach } from \"@turf/meta\";\nimport skmeans from \"skmeans\";\n\ntype KmeansProps = GeoJsonProperties & {\n cluster?: number;\n centroid?: [number, number];\n};\n\n/**\n * Takes a set of {@link Point|points} and partition them into clusters using the k-mean .\n * It uses the [k-means algorithm](https://en.wikipedia.org/wiki/K-means_clustering)\n *\n * @name clustersKmeans\n * @param {FeatureCollection<Point>} points to be clustered\n * @param {Object} [options={}] Optional parameters\n * @param {number} [options.numberOfClusters=Math.sqrt(numberOfPoints/2)] numberOfClusters that will be generated\n * @param {boolean} [options.mutate=false] allows GeoJSON input to be mutated (significant performance increase if true)\n * @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:\n * - {number} cluster - the associated clusterId\n * - {[number, number]} centroid - Centroid of the cluster [Longitude, Latitude]\n * @example\n * // create random points with random z-values in their properties\n * var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});\n * var options = {numberOfClusters: 7};\n * var clustered = turf.clustersKmeans(points, options);\n *\n * //addToMap\n * var addToMap = [clustered];\n */\nfunction clustersKmeans(\n points: FeatureCollection<Point>,\n options: {\n numberOfClusters?: number;\n mutate?: boolean;\n } = {}\n): FeatureCollection<Point, KmeansProps> {\n // Default Params\n var count = points.features.length;\n options.numberOfClusters =\n options.numberOfClusters || Math.round(Math.sqrt(count / 2));\n\n // numberOfClusters can't be greater than the number of points\n // fallbacks to count\n if (options.numberOfClusters > count) options.numberOfClusters = count;\n\n // Clone points to prevent any mutations (enabled by default)\n if (options.mutate !== true) points = clone(points);\n\n // collect points coordinates\n var data = coordAll(points);\n\n // create seed to avoid skmeans to drift\n var initialCentroids = data.slice(0, options.numberOfClusters);\n\n // create skmeans clusters\n var skmeansResult = skmeans(data, options.numberOfClusters, initialCentroids);\n\n // store centroids {clusterId: [number, number]}\n var centroids: Record<string, number[]> = {};\n (skmeansResult.centroids as number[][]).forEach(function (\n coord: number[],\n idx: number\n ) {\n centroids[idx] = coord;\n });\n\n // add associated cluster number\n featureEach(points, function (point, index) {\n var clusterId = skmeansResult.idxs[index];\n point.properties!.cluster = clusterId;\n point.properties!.centroid = centroids[clusterId];\n });\n\n return points as FeatureCollection<Point, KmeansProps>;\n}\n\nexport { clustersKmeans, KmeansProps };\nexport default clustersKmeans;\n"]}
package/dist/esm/index.js CHANGED
@@ -1,6 +1,3 @@
1
- var __defProp = Object.defineProperty;
2
- var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
3
-
4
1
  // index.ts
5
2
  import { clone } from "@turf/clone";
6
3
  import { coordAll, featureEach } from "@turf/meta";
@@ -26,7 +23,6 @@ function clustersKmeans(points, options = {}) {
26
23
  });
27
24
  return points;
28
25
  }
29
- __name(clustersKmeans, "clustersKmeans");
30
26
  var turf_clusters_kmeans_default = clustersKmeans;
31
27
  export {
32
28
  clustersKmeans,
@@ -1 +1 @@
1
- {"version":3,"sources":["../../index.ts"],"sourcesContent":["import { FeatureCollection, Point, GeoJsonProperties } from \"geojson\";\nimport { clone } from \"@turf/clone\";\nimport { coordAll, featureEach } from \"@turf/meta\";\nimport skmeans from \"skmeans\";\n\ntype KmeansProps = GeoJsonProperties & {\n cluster?: number;\n centroid?: [number, number];\n};\n\n/**\n * Takes a set of {@link Point|points} and partition them into clusters using the k-mean .\n * It uses the [k-means algorithm](https://en.wikipedia.org/wiki/K-means_clustering)\n *\n * @name clustersKmeans\n * @param {FeatureCollection<Point>} points to be clustered\n * @param {Object} [options={}] Optional parameters\n * @param {number} [options.numberOfClusters=Math.sqrt(numberOfPoints/2)] numberOfClusters that will be generated\n * @param {boolean} [options.mutate=false] allows GeoJSON input to be mutated (significant performance increase if true)\n * @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:\n * - {number} cluster - the associated clusterId\n * - {[number, number]} centroid - Centroid of the cluster [Longitude, Latitude]\n * @example\n * // create random points with random z-values in their properties\n * var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});\n * var options = {numberOfClusters: 7};\n * var clustered = turf.clustersKmeans(points, options);\n *\n * //addToMap\n * var addToMap = [clustered];\n */\nfunction clustersKmeans(\n points: FeatureCollection<Point>,\n options: {\n numberOfClusters?: number;\n mutate?: boolean;\n } = {}\n): FeatureCollection<Point, KmeansProps> {\n // Default Params\n var count = points.features.length;\n options.numberOfClusters =\n options.numberOfClusters || Math.round(Math.sqrt(count / 2));\n\n // numberOfClusters can't be greater than the number of points\n // fallbacks to count\n if (options.numberOfClusters > count) options.numberOfClusters = count;\n\n // Clone points to prevent any mutations (enabled by default)\n if (options.mutate !== true) points = clone(points);\n\n // collect points coordinates\n var data = coordAll(points);\n\n // create seed to avoid skmeans to drift\n var initialCentroids = data.slice(0, options.numberOfClusters);\n\n // create skmeans clusters\n var skmeansResult = skmeans(data, options.numberOfClusters, initialCentroids);\n\n // store centroids {clusterId: [number, number]}\n var centroids: Record<string, number[]> = {};\n (skmeansResult.centroids as number[][]).forEach(function (\n coord: number[],\n idx: number\n ) {\n centroids[idx] = coord;\n });\n\n // add associated cluster number\n featureEach(points, function (point, index) {\n var clusterId = skmeansResult.idxs[index];\n point.properties!.cluster = clusterId;\n point.properties!.centroid = centroids[clusterId];\n });\n\n return points as FeatureCollection<Point, KmeansProps>;\n}\n\nexport { clustersKmeans, KmeansProps };\nexport default clustersKmeans;\n"],"mappings":";;;;AACA,SAAS,aAAa;AACtB,SAAS,UAAU,mBAAmB;AACtC,OAAO,aAAa;AA4BpB,SAAS,eACP,QACA,UAGI,CAAC,GACkC;AAEvC,MAAI,QAAQ,OAAO,SAAS;AAC5B,UAAQ,mBACN,QAAQ,oBAAoB,KAAK,MAAM,KAAK,KAAK,QAAQ,CAAC,CAAC;AAI7D,MAAI,QAAQ,mBAAmB;AAAO,YAAQ,mBAAmB;AAGjE,MAAI,QAAQ,WAAW;AAAM,aAAS,MAAM,MAAM;AAGlD,MAAI,OAAO,SAAS,MAAM;AAG1B,MAAI,mBAAmB,KAAK,MAAM,GAAG,QAAQ,gBAAgB;AAG7D,MAAI,gBAAgB,QAAQ,MAAM,QAAQ,kBAAkB,gBAAgB;AAG5E,MAAI,YAAsC,CAAC;AAC3C,EAAC,cAAc,UAAyB,QAAQ,SAC9C,OACA,KACA;AACA,cAAU,GAAG,IAAI;AAAA,EACnB,CAAC;AAGD,cAAY,QAAQ,SAAU,OAAO,OAAO;AAC1C,QAAI,YAAY,cAAc,KAAK,KAAK;AACxC,UAAM,WAAY,UAAU;AAC5B,UAAM,WAAY,WAAW,UAAU,SAAS;AAAA,EAClD,CAAC;AAED,SAAO;AACT;AA7CS;AAgDT,IAAO,+BAAQ;","names":[]}
1
+ {"version":3,"sources":["../../index.ts"],"sourcesContent":["import { FeatureCollection, Point, GeoJsonProperties } from \"geojson\";\nimport { clone } from \"@turf/clone\";\nimport { coordAll, featureEach } from \"@turf/meta\";\nimport skmeans from \"skmeans\";\n\ntype KmeansProps = GeoJsonProperties & {\n cluster?: number;\n centroid?: [number, number];\n};\n\n/**\n * Takes a set of {@link Point|points} and partition them into clusters using the k-mean .\n * It uses the [k-means algorithm](https://en.wikipedia.org/wiki/K-means_clustering)\n *\n * @name clustersKmeans\n * @param {FeatureCollection<Point>} points to be clustered\n * @param {Object} [options={}] Optional parameters\n * @param {number} [options.numberOfClusters=Math.sqrt(numberOfPoints/2)] numberOfClusters that will be generated\n * @param {boolean} [options.mutate=false] allows GeoJSON input to be mutated (significant performance increase if true)\n * @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:\n * - {number} cluster - the associated clusterId\n * - {[number, number]} centroid - Centroid of the cluster [Longitude, Latitude]\n * @example\n * // create random points with random z-values in their properties\n * var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});\n * var options = {numberOfClusters: 7};\n * var clustered = turf.clustersKmeans(points, options);\n *\n * //addToMap\n * var addToMap = [clustered];\n */\nfunction clustersKmeans(\n points: FeatureCollection<Point>,\n options: {\n numberOfClusters?: number;\n mutate?: boolean;\n } = {}\n): FeatureCollection<Point, KmeansProps> {\n // Default Params\n var count = points.features.length;\n options.numberOfClusters =\n options.numberOfClusters || Math.round(Math.sqrt(count / 2));\n\n // numberOfClusters can't be greater than the number of points\n // fallbacks to count\n if (options.numberOfClusters > count) options.numberOfClusters = count;\n\n // Clone points to prevent any mutations (enabled by default)\n if (options.mutate !== true) points = clone(points);\n\n // collect points coordinates\n var data = coordAll(points);\n\n // create seed to avoid skmeans to drift\n var initialCentroids = data.slice(0, options.numberOfClusters);\n\n // create skmeans clusters\n var skmeansResult = skmeans(data, options.numberOfClusters, initialCentroids);\n\n // store centroids {clusterId: [number, number]}\n var centroids: Record<string, number[]> = {};\n (skmeansResult.centroids as number[][]).forEach(function (\n coord: number[],\n idx: number\n ) {\n centroids[idx] = coord;\n });\n\n // add associated cluster number\n featureEach(points, function (point, index) {\n var clusterId = skmeansResult.idxs[index];\n point.properties!.cluster = clusterId;\n point.properties!.centroid = centroids[clusterId];\n });\n\n return points as FeatureCollection<Point, KmeansProps>;\n}\n\nexport { clustersKmeans, KmeansProps };\nexport default clustersKmeans;\n"],"mappings":";AACA,SAAS,aAAa;AACtB,SAAS,UAAU,mBAAmB;AACtC,OAAO,aAAa;AA4BpB,SAAS,eACP,QACA,UAGI,CAAC,GACkC;AAEvC,MAAI,QAAQ,OAAO,SAAS;AAC5B,UAAQ,mBACN,QAAQ,oBAAoB,KAAK,MAAM,KAAK,KAAK,QAAQ,CAAC,CAAC;AAI7D,MAAI,QAAQ,mBAAmB;AAAO,YAAQ,mBAAmB;AAGjE,MAAI,QAAQ,WAAW;AAAM,aAAS,MAAM,MAAM;AAGlD,MAAI,OAAO,SAAS,MAAM;AAG1B,MAAI,mBAAmB,KAAK,MAAM,GAAG,QAAQ,gBAAgB;AAG7D,MAAI,gBAAgB,QAAQ,MAAM,QAAQ,kBAAkB,gBAAgB;AAG5E,MAAI,YAAsC,CAAC;AAC3C,EAAC,cAAc,UAAyB,QAAQ,SAC9C,OACA,KACA;AACA,cAAU,GAAG,IAAI;AAAA,EACnB,CAAC;AAGD,cAAY,QAAQ,SAAU,OAAO,OAAO;AAC1C,QAAI,YAAY,cAAc,KAAK,KAAK;AACxC,UAAM,WAAY,UAAU;AAC5B,UAAM,WAAY,WAAW,UAAU,SAAS;AAAA,EAClD,CAAC;AAED,SAAO;AACT;AAGA,IAAO,+BAAQ;","names":[]}
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@turf/clusters-kmeans",
3
- "version": "7.0.0",
3
+ "version": "7.1.0-alpha.70+948cdafaf",
4
4
  "description": "turf clusters-kmeans module",
5
5
  "author": "Turf Authors",
6
6
  "contributors": [
@@ -59,9 +59,9 @@
59
59
  "test:types": "tsc --esModuleInterop --module node16 --moduleResolution node16 --noEmit --strict types.ts"
60
60
  },
61
61
  "devDependencies": {
62
- "@turf/centroid": "^7.0.0",
63
- "@turf/clusters": "^7.0.0",
64
- "@turf/random": "^7.0.0",
62
+ "@turf/centroid": "^7.1.0-alpha.70+948cdafaf",
63
+ "@turf/clusters": "^7.1.0-alpha.70+948cdafaf",
64
+ "@turf/random": "^7.1.0-alpha.70+948cdafaf",
65
65
  "@types/benchmark": "^2.1.5",
66
66
  "@types/skmeans": "^0.11.7",
67
67
  "@types/tape": "^4.2.32",
@@ -77,12 +77,13 @@
77
77
  "write-json-file": "^5.0.0"
78
78
  },
79
79
  "dependencies": {
80
- "@turf/clone": "^7.0.0",
81
- "@turf/helpers": "^7.0.0",
82
- "@turf/invariant": "^7.0.0",
83
- "@turf/meta": "^7.0.0",
80
+ "@turf/clone": "^7.1.0-alpha.70+948cdafaf",
81
+ "@turf/helpers": "^7.1.0-alpha.70+948cdafaf",
82
+ "@turf/invariant": "^7.1.0-alpha.70+948cdafaf",
83
+ "@turf/meta": "^7.1.0-alpha.70+948cdafaf",
84
+ "@types/geojson": "^7946.0.10",
84
85
  "skmeans": "0.9.7",
85
86
  "tslib": "^2.6.2"
86
87
  },
87
- "gitHead": "3d3a7917025fbabe191dbddbc89754b86f9c7739"
88
+ "gitHead": "948cdafaf70606d2e27fcc79973fa48ee1182067"
88
89
  }