@turf/clusters-dbscan 7.1.0 → 7.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -2,19 +2,38 @@
2
2
 
3
3
  <!-- Generated by documentation.js. Update this documentation by updating the source code. -->
4
4
 
5
+ ## Dbscan
6
+
7
+ Point classification within the cluster.
8
+
9
+ Type: (`"core"` | `"edge"` | `"noise"`)
10
+
11
+ ## DbscanProps
12
+
13
+ **Extends GeoJsonProperties**
14
+
15
+ Properties assigned to each clustered point.
16
+
17
+ Type: [object][1]
18
+
19
+ ### Properties
20
+
21
+ * `dbscan` **[Dbscan][2]?** type of point it has been classified as
22
+ * `cluster` **[number][3]?** associated clusterId
23
+
5
24
  ## clustersDbscan
6
25
 
7
- Takes a set of [points][1] and partition them into clusters according to [https://en.wikipedia.org/wiki/DBSCAN][2] data clustering algorithm.
26
+ Takes a set of [points][4] and partition them into clusters according to [DBSCAN's][5] data clustering algorithm.
8
27
 
9
28
  ### Parameters
10
29
 
11
- * `points` **[FeatureCollection][3]<[Point][1]>** to be clustered
12
- * `maxDistance` **[number][4]** Maximum Distance between any point of the cluster to generate the clusters (kilometers by default, see options)
13
- * `options` **[Object][5]** Optional parameters (optional, default `{}`)
30
+ * `points` **[FeatureCollection][6]<[Point][4]>** to be clustered
31
+ * `maxDistance` **[number][3]** Maximum Distance between any point of the cluster to generate the clusters (kilometers by default, see options)
32
+ * `options` **[Object][1]** Optional parameters (optional, default `{}`)
14
33
 
15
- * `options.units` **[string][6]** in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers (optional, default `"kilometers"`)
16
- * `options.mutate` **[boolean][7]** Allows GeoJSON input to be mutated (optional, default `false`)
17
- * `options.minPoints` **[number][4]** Minimum number of points to generate a single cluster,
34
+ * `options.units` **[string][7]** in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers (optional, default `"kilometers"`)
35
+ * `options.mutate` **[boolean][8]** Allows GeoJSON input to be mutated (optional, default `false`)
36
+ * `options.minPoints` **[number][3]** Minimum number of points to generate a single cluster,
18
37
  points which do not meet this requirement will be classified as an 'edge' or 'noise'. (optional, default `3`)
19
38
 
20
39
  ### Examples
@@ -29,22 +48,26 @@ var clustered = turf.clustersDbscan(points, maxDistance);
29
48
  var addToMap = [clustered];
30
49
  ```
31
50
 
32
- Returns **[FeatureCollection][3]<[Point][1]>** Clustered Points with an additional two properties associated to each Feature:* {number} cluster - the associated clusterId
51
+ Returns **[FeatureCollection][6]<[Point][4], [DbscanProps][9]>** Clustered Points with an additional two properties associated to each Feature:* {number} cluster - the associated clusterId
33
52
  * {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')
34
53
 
35
- [1]: https://tools.ietf.org/html/rfc7946#section-3.1.2
54
+ [1]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object
55
+
56
+ [2]: #dbscan
57
+
58
+ [3]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number
36
59
 
37
- [2]: DBSCAN's
60
+ [4]: https://tools.ietf.org/html/rfc7946#section-3.1.2
38
61
 
39
- [3]: https://tools.ietf.org/html/rfc7946#section-3.3
62
+ [5]: https://en.wikipedia.org/wiki/DBSCAN
40
63
 
41
- [4]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Number
64
+ [6]: https://tools.ietf.org/html/rfc7946#section-3.3
42
65
 
43
- [5]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Object
66
+ [7]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String
44
67
 
45
- [6]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/String
68
+ [8]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean
46
69
 
47
- [7]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean
70
+ [9]: #dbscanprops
48
71
 
49
72
  <!-- This file is automatically generated. Please don't edit it directly. If you find an error, edit the source file of the module in question (likely index.js or index.ts), and re-run "yarn docs" from the root of the turf project. -->
50
73
 
@@ -9,8 +9,7 @@ var rbush = _rbush2.default;
9
9
 
10
10
  // index.ts
11
11
  function clustersDbscan(points, maxDistance, options = {}) {
12
- if (options.mutate !== true)
13
- points = _clone.clone.call(void 0, points);
12
+ if (options.mutate !== true) points = _clone.clone.call(void 0, points);
14
13
  const minPoints = options.minPoints || 3;
15
14
  const latDistanceInDegrees = _helpers.lengthToDegrees.call(void 0, maxDistance, options.units);
16
15
  var tree = new rbush(points.features.length);
@@ -78,8 +77,7 @@ function clustersDbscan(points, maxDistance, options = {}) {
78
77
  };
79
78
  var nextClusteredId = 0;
80
79
  points.features.forEach((_, index) => {
81
- if (visited[index])
82
- return;
80
+ if (visited[index]) return;
83
81
  const neighbors = regionQuery(index);
84
82
  if (neighbors.length >= minPoints) {
85
83
  const clusteredId = nextClusteredId;
@@ -1 +1 @@
1
- {"version":3,"sources":["../../index.ts","../../lib/rbush-export.ts"],"names":[],"mappings":";AACA,SAAS,aAAa;AACtB,SAAS,gBAAgB;AACzB,SAAS,kBAAkB,uBAA8B;;;ACCzD,OAAO,SAAS;AAET,IAAM,QAAQ;;;ADsCrB,SAAS,eACP,QACA,aACA,UAII,CAAC,GACkC;AAQvC,MAAI,QAAQ,WAAW;AAAM,aAAS,MAAM,MAAM;AAGlD,QAAM,YAAY,QAAQ,aAAa;AAGvC,QAAM,uBAAuB,gBAAgB,aAAa,QAAQ,KAAK;AAGvE,MAAI,OAAO,IAAI,MAAM,OAAO,SAAS,MAAM;AAG3C,MAAI,UAAU,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG9C,MAAI,WAAW,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG/C,MAAI,UAAU,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG9C,MAAI,aAAuB,OAAO,SAAS,IAAI,CAAC,MAAM,EAAE;AAGxD,OAAK;AAAA,IACH,OAAO,SAAS,IAAI,CAAC,OAAO,UAAU;AACpC,UAAI,CAAC,GAAG,CAAC,IAAI,MAAM,SAAS;AAC5B,aAAO;AAAA,QACL,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN;AAAA,MACF;AAAA,IACF,CAAC;AAAA,EACH;AAGA,QAAM,cAAc,CAAC,UAAkC;AACrD,UAAM,QAAQ,OAAO,SAAS,KAAK;AACnC,UAAM,CAAC,GAAG,CAAC,IAAI,MAAM,SAAS;AAE9B,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,GAAK;AACrD,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,EAAI;AAEpD,UAAM,uBAAwB,WAAY;AAExC,UAAI,OAAO,KAAK,OAAO,GAAG;AACxB,eAAO;AAAA,MACT;AACA,UAAI,KAAK,IAAI,IAAI,IAAI,KAAK,IAAI,IAAI,GAAG;AACnC,eAAO,uBAAuB,KAAK,IAAI,iBAAiB,IAAI,CAAC;AAAA,MAC/D,OAAO;AACL,eAAO,uBAAuB,KAAK,IAAI,iBAAiB,IAAI,CAAC;AAAA,MAC/D;AAAA,IACF,EAAG;AAEH,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,IAAM;AACtD,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,GAAK;AAGrD,UAAM,OAAO,EAAE,MAAM,MAAM,MAAM,KAAK;AACtC,WAAQ,KAAK,OAAO,IAAI,EAAkC;AAAA,MACxD,CAAC,aAAa;AACZ,cAAM,gBAAgB,SAAS;AAC/B,cAAM,gBAAgB,OAAO,SAAS,aAAa;AACnD,cAAM,eAAe,SAAS,OAAO,eAAe;AAAA,UAClD,OAAO;AAAA,QACT,CAAC;AACD,eAAO,gBAAgB;AAAA,MACzB;AAAA,IACF;AAAA,EACF;AAGA,QAAM,gBAAgB,CAAC,aAAqB,cAA8B;AACxE,aAAS,IAAI,GAAG,IAAI,UAAU,QAAQ,KAAK;AACzC,UAAI,WAAW,UAAU,CAAC;AAC1B,YAAM,gBAAgB,SAAS;AAC/B,UAAI,CAAC,QAAQ,aAAa,GAAG;AAC3B,gBAAQ,aAAa,IAAI;AACzB,cAAM,gBAAgB,YAAY,aAAa;AAC/C,YAAI,cAAc,UAAU,WAAW;AACrC,oBAAU,KAAK,GAAG,aAAa;AAAA,QACjC;AAAA,MACF;AACA,UAAI,CAAC,SAAS,aAAa,GAAG;AAC5B,iBAAS,aAAa,IAAI;AAC1B,mBAAW,aAAa,IAAI;AAAA,MAC9B;AAAA,IACF;AAAA,EACF;AAGA,MAAI,kBAAkB;AACtB,SAAO,SAAS,QAAQ,CAAC,GAAG,UAAU;AACpC,QAAI,QAAQ,KAAK;AAAG;AACpB,UAAM,YAAY,YAAY,KAAK;AACnC,QAAI,UAAU,UAAU,WAAW;AACjC,YAAM,cAAc;AACpB;AACA,cAAQ,KAAK,IAAI;AACjB,oBAAc,aAAa,SAAS;AAAA,IACtC,OAAO;AACL,cAAQ,KAAK,IAAI;AAAA,IACnB;AAAA,EACF,CAAC;AAGD,SAAO,SAAS,QAAQ,CAAC,GAAG,UAAU;AACpC,QAAI,eAAe,OAAO,SAAS,KAAK;AACxC,QAAI,CAAC,aAAa,YAAY;AAC5B,mBAAa,aAAa,CAAC;AAAA,IAC7B;AAEA,QAAI,WAAW,KAAK,KAAK,GAAG;AAC1B,mBAAa,WAAW,SAAS,QAAQ,KAAK,IAAI,SAAS;AAC3D,mBAAa,WAAW,UAAU,WAAW,KAAK;AAAA,IACpD,OAAO;AACL,mBAAa,WAAW,SAAS;AAAA,IACnC;AAAA,EACF,CAAC;AAED,SAAO;AACT;AAGA,IAAO,+BAAQ","sourcesContent":["import { GeoJsonProperties, FeatureCollection, Point } from \"geojson\";\nimport { clone } from \"@turf/clone\";\nimport { distance } from \"@turf/distance\";\nimport { degreesToRadians, lengthToDegrees, Units } from \"@turf/helpers\";\nimport { rbush as RBush } from \"./lib/rbush-export.js\";\n\ntype Dbscan = \"core\" | \"edge\" | \"noise\";\ntype DbscanProps = GeoJsonProperties & {\n dbscan?: Dbscan;\n cluster?: number;\n};\n\n// Structure of a point in the spatial index\ntype IndexedPoint = {\n minX: number;\n minY: number;\n maxX: number;\n maxY: number;\n index: number;\n};\n\n/**\n * Takes a set of {@link Point|points} and partition them into clusters according to {@link DBSCAN's|https://en.wikipedia.org/wiki/DBSCAN} data clustering algorithm.\n *\n * @name clustersDbscan\n * @param {FeatureCollection<Point>} points to be clustered\n * @param {number} maxDistance Maximum Distance between any point of the cluster to generate the clusters (kilometers by default, see options)\n * @param {Object} [options={}] Optional parameters\n * @param {string} [options.units=\"kilometers\"] in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers\n * @param {boolean} [options.mutate=false] Allows GeoJSON input to be mutated\n * @param {number} [options.minPoints=3] Minimum number of points to generate a single cluster,\n * points which do not meet this requirement will be classified as an 'edge' or 'noise'.\n * @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:\n * - {number} cluster - the associated clusterId\n * - {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')\n * @example\n * // create random points with random z-values in their properties\n * var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});\n * var maxDistance = 100;\n * var clustered = turf.clustersDbscan(points, maxDistance);\n *\n * //addToMap\n * var addToMap = [clustered];\n */\nfunction clustersDbscan(\n points: FeatureCollection<Point>,\n maxDistance: number,\n options: {\n units?: Units;\n minPoints?: number;\n mutate?: boolean;\n } = {}\n): FeatureCollection<Point, DbscanProps> {\n // Input validation being handled by Typescript\n // collectionOf(points, 'Point', 'points must consist of a FeatureCollection of only Points');\n // if (maxDistance === null || maxDistance === undefined) throw new Error('maxDistance is required');\n // if (!(Math.sign(maxDistance) > 0)) throw new Error('maxDistance is invalid');\n // if (!(minPoints === undefined || minPoints === null || Math.sign(minPoints) > 0)) throw new Error('options.minPoints is invalid');\n\n // Clone points to prevent any mutations\n if (options.mutate !== true) points = clone(points);\n\n // Defaults\n const minPoints = options.minPoints || 3;\n\n // Calculate the distance in degrees for region queries\n const latDistanceInDegrees = lengthToDegrees(maxDistance, options.units);\n\n // Create a spatial index\n var tree = new RBush(points.features.length);\n\n // Keeps track of whether a point has been visited or not.\n var visited = points.features.map((_) => false);\n\n // Keeps track of whether a point is assigned to a cluster or not.\n var assigned = points.features.map((_) => false);\n\n // Keeps track of whether a point is noise|edge or not.\n var isnoise = points.features.map((_) => false);\n\n // Keeps track of the clusterId for each point\n var clusterIds: number[] = points.features.map((_) => -1);\n\n // Index each point for spatial queries\n tree.load(\n points.features.map((point, index) => {\n var [x, y] = point.geometry.coordinates;\n return {\n minX: x,\n minY: y,\n maxX: x,\n maxY: y,\n index: index,\n } as IndexedPoint;\n })\n );\n\n // Function to find neighbors of a point within a given distance\n const regionQuery = (index: number): IndexedPoint[] => {\n const point = points.features[index];\n const [x, y] = point.geometry.coordinates;\n\n const minY = Math.max(y - latDistanceInDegrees, -90.0);\n const maxY = Math.min(y + latDistanceInDegrees, 90.0);\n\n const lonDistanceInDegrees = (function () {\n // Handle the case where the bounding box crosses the poles\n if (minY < 0 && maxY > 0) {\n return latDistanceInDegrees;\n }\n if (Math.abs(minY) < Math.abs(maxY)) {\n return latDistanceInDegrees / Math.cos(degreesToRadians(maxY));\n } else {\n return latDistanceInDegrees / Math.cos(degreesToRadians(minY));\n }\n })();\n\n const minX = Math.max(x - lonDistanceInDegrees, -360.0);\n const maxX = Math.min(x + lonDistanceInDegrees, 360.0);\n\n // Calculate the bounding box for the region query\n const bbox = { minX, minY, maxX, maxY };\n return (tree.search(bbox) as ReadonlyArray<IndexedPoint>).filter(\n (neighbor) => {\n const neighborIndex = neighbor.index;\n const neighborPoint = points.features[neighborIndex];\n const distanceInKm = distance(point, neighborPoint, {\n units: \"kilometers\",\n });\n return distanceInKm <= maxDistance;\n }\n );\n };\n\n // Function to expand a cluster\n const expandCluster = (clusteredId: number, neighbors: IndexedPoint[]) => {\n for (var i = 0; i < neighbors.length; i++) {\n var neighbor = neighbors[i];\n const neighborIndex = neighbor.index;\n if (!visited[neighborIndex]) {\n visited[neighborIndex] = true;\n const nextNeighbors = regionQuery(neighborIndex);\n if (nextNeighbors.length >= minPoints) {\n neighbors.push(...nextNeighbors);\n }\n }\n if (!assigned[neighborIndex]) {\n assigned[neighborIndex] = true;\n clusterIds[neighborIndex] = clusteredId;\n }\n }\n };\n\n // Main DBSCAN clustering algorithm\n var nextClusteredId = 0;\n points.features.forEach((_, index) => {\n if (visited[index]) return;\n const neighbors = regionQuery(index);\n if (neighbors.length >= minPoints) {\n const clusteredId = nextClusteredId;\n nextClusteredId++;\n visited[index] = true;\n expandCluster(clusteredId, neighbors);\n } else {\n isnoise[index] = true;\n }\n });\n\n // Assign DBSCAN properties to each point\n points.features.forEach((_, index) => {\n var clusterPoint = points.features[index];\n if (!clusterPoint.properties) {\n clusterPoint.properties = {};\n }\n\n if (clusterIds[index] >= 0) {\n clusterPoint.properties.dbscan = isnoise[index] ? \"edge\" : \"core\";\n clusterPoint.properties.cluster = clusterIds[index];\n } else {\n clusterPoint.properties.dbscan = \"noise\";\n }\n });\n\n return points as FeatureCollection<Point, DbscanProps>;\n}\n\nexport { Dbscan, DbscanProps, clustersDbscan };\nexport default clustersDbscan;\n","// Get around problems with moduleResolution node16 and some older libraries.\n// Manifests as \"This expression is not callable ... has no call signatures\"\n// https://stackoverflow.com/a/74709714\n\nimport lib from \"rbush\";\n\nexport const rbush = lib as unknown as typeof lib.default;\n"]}
1
+ {"version":3,"sources":["/home/runner/work/turf/turf/packages/turf-clusters-dbscan/dist/cjs/index.cjs","../../index.ts","../../lib/rbush-export.ts"],"names":[],"mappings":"AAAA;ACCA,oCAAsB;AACtB,0CAAyB;AACzB,wCAAyD;ADCzD;AACA;AEDA,4EAAgB;AAET,IAAM,MAAA,EAAQ,eAAA;AFErB;AACA;ACiDA,SAAS,cAAA,CACP,MAAA,EACA,WAAA,EACA,QAAA,EAII,CAAC,CAAA,EACkC;AAQvC,EAAA,GAAA,CAAI,OAAA,CAAQ,OAAA,IAAW,IAAA,EAAM,OAAA,EAAS,0BAAA,MAAY,CAAA;AAGlD,EAAA,MAAM,UAAA,EAAY,OAAA,CAAQ,UAAA,GAAa,CAAA;AAGvC,EAAA,MAAM,qBAAA,EAAuB,sCAAA,WAAgB,EAAa,OAAA,CAAQ,KAAK,CAAA;AAGvE,EAAA,IAAI,KAAA,EAAO,IAAI,KAAA,CAAM,MAAA,CAAO,QAAA,CAAS,MAAM,CAAA;AAG3C,EAAA,IAAI,QAAA,EAAU,MAAA,CAAO,QAAA,CAAS,GAAA,CAAI,CAAC,CAAA,EAAA,GAAM,KAAK,CAAA;AAG9C,EAAA,IAAI,SAAA,EAAW,MAAA,CAAO,QAAA,CAAS,GAAA,CAAI,CAAC,CAAA,EAAA,GAAM,KAAK,CAAA;AAG/C,EAAA,IAAI,QAAA,EAAU,MAAA,CAAO,QAAA,CAAS,GAAA,CAAI,CAAC,CAAA,EAAA,GAAM,KAAK,CAAA;AAG9C,EAAA,IAAI,WAAA,EAAuB,MAAA,CAAO,QAAA,CAAS,GAAA,CAAI,CAAC,CAAA,EAAA,GAAM,CAAA,CAAE,CAAA;AAGxD,EAAA,IAAA,CAAK,IAAA;AAAA,IACH,MAAA,CAAO,QAAA,CAAS,GAAA,CAAI,CAAC,KAAA,EAAO,KAAA,EAAA,GAAU;AACpC,MAAA,IAAI,CAAC,CAAA,EAAG,CAAC,EAAA,EAAI,KAAA,CAAM,QAAA,CAAS,WAAA;AAC5B,MAAA,OAAO;AAAA,QACL,IAAA,EAAM,CAAA;AAAA,QACN,IAAA,EAAM,CAAA;AAAA,QACN,IAAA,EAAM,CAAA;AAAA,QACN,IAAA,EAAM,CAAA;AAAA,QACN;AAAA,MACF,CAAA;AAAA,IACF,CAAC;AAAA,EACH,CAAA;AAGA,EAAA,MAAM,YAAA,EAAc,CAAC,KAAA,EAAA,GAAkC;AACrD,IAAA,MAAM,MAAA,EAAQ,MAAA,CAAO,QAAA,CAAS,KAAK,CAAA;AACnC,IAAA,MAAM,CAAC,CAAA,EAAG,CAAC,EAAA,EAAI,KAAA,CAAM,QAAA,CAAS,WAAA;AAE9B,IAAA,MAAM,KAAA,EAAO,IAAA,CAAK,GAAA,CAAI,EAAA,EAAI,oBAAA,EAAsB,CAAA,EAAK,CAAA;AACrD,IAAA,MAAM,KAAA,EAAO,IAAA,CAAK,GAAA,CAAI,EAAA,EAAI,oBAAA,EAAsB,EAAI,CAAA;AAEpD,IAAA,MAAM,qBAAA,EAAwB,QAAA,CAAA,EAAY;AAExC,MAAA,GAAA,CAAI,KAAA,EAAO,EAAA,GAAK,KAAA,EAAO,CAAA,EAAG;AACxB,QAAA,OAAO,oBAAA;AAAA,MACT;AACA,MAAA,GAAA,CAAI,IAAA,CAAK,GAAA,CAAI,IAAI,EAAA,EAAI,IAAA,CAAK,GAAA,CAAI,IAAI,CAAA,EAAG;AACnC,QAAA,OAAO,qBAAA,EAAuB,IAAA,CAAK,GAAA,CAAI,uCAAA,IAAqB,CAAC,CAAA;AAAA,MAC/D,EAAA,KAAO;AACL,QAAA,OAAO,qBAAA,EAAuB,IAAA,CAAK,GAAA,CAAI,uCAAA,IAAqB,CAAC,CAAA;AAAA,MAC/D;AAAA,IACF,CAAA,CAAG,CAAA;AAEH,IAAA,MAAM,KAAA,EAAO,IAAA,CAAK,GAAA,CAAI,EAAA,EAAI,oBAAA,EAAsB,CAAA,GAAM,CAAA;AACtD,IAAA,MAAM,KAAA,EAAO,IAAA,CAAK,GAAA,CAAI,EAAA,EAAI,oBAAA,EAAsB,GAAK,CAAA;AAGrD,IAAA,MAAM,KAAA,EAAO,EAAE,IAAA,EAAM,IAAA,EAAM,IAAA,EAAM,KAAK,CAAA;AACtC,IAAA,OAAQ,IAAA,CAAK,MAAA,CAAO,IAAI,CAAA,CAAkC,MAAA;AAAA,MACxD,CAAC,QAAA,EAAA,GAAa;AACZ,QAAA,MAAM,cAAA,EAAgB,QAAA,CAAS,KAAA;AAC/B,QAAA,MAAM,cAAA,EAAgB,MAAA,CAAO,QAAA,CAAS,aAAa,CAAA;AACnD,QAAA,MAAM,aAAA,EAAe,gCAAA,KAAS,EAAO,aAAA,EAAe;AAAA,UAClD,KAAA,EAAO;AAAA,QACT,CAAC,CAAA;AACD,QAAA,OAAO,aAAA,GAAgB,WAAA;AAAA,MACzB;AAAA,IACF,CAAA;AAAA,EACF,CAAA;AAGA,EAAA,MAAM,cAAA,EAAgB,CAAC,WAAA,EAAqB,SAAA,EAAA,GAA8B;AACxE,IAAA,IAAA,CAAA,IAAS,EAAA,EAAI,CAAA,EAAG,EAAA,EAAI,SAAA,CAAU,MAAA,EAAQ,CAAA,EAAA,EAAK;AACzC,MAAA,IAAI,SAAA,EAAW,SAAA,CAAU,CAAC,CAAA;AAC1B,MAAA,MAAM,cAAA,EAAgB,QAAA,CAAS,KAAA;AAC/B,MAAA,GAAA,CAAI,CAAC,OAAA,CAAQ,aAAa,CAAA,EAAG;AAC3B,QAAA,OAAA,CAAQ,aAAa,EAAA,EAAI,IAAA;AACzB,QAAA,MAAM,cAAA,EAAgB,WAAA,CAAY,aAAa,CAAA;AAC/C,QAAA,GAAA,CAAI,aAAA,CAAc,OAAA,GAAU,SAAA,EAAW;AACrC,UAAA,SAAA,CAAU,IAAA,CAAK,GAAG,aAAa,CAAA;AAAA,QACjC;AAAA,MACF;AACA,MAAA,GAAA,CAAI,CAAC,QAAA,CAAS,aAAa,CAAA,EAAG;AAC5B,QAAA,QAAA,CAAS,aAAa,EAAA,EAAI,IAAA;AAC1B,QAAA,UAAA,CAAW,aAAa,EAAA,EAAI,WAAA;AAAA,MAC9B;AAAA,IACF;AAAA,EACF,CAAA;AAGA,EAAA,IAAI,gBAAA,EAAkB,CAAA;AACtB,EAAA,MAAA,CAAO,QAAA,CAAS,OAAA,CAAQ,CAAC,CAAA,EAAG,KAAA,EAAA,GAAU;AACpC,IAAA,GAAA,CAAI,OAAA,CAAQ,KAAK,CAAA,EAAG,MAAA;AACpB,IAAA,MAAM,UAAA,EAAY,WAAA,CAAY,KAAK,CAAA;AACnC,IAAA,GAAA,CAAI,SAAA,CAAU,OAAA,GAAU,SAAA,EAAW;AACjC,MAAA,MAAM,YAAA,EAAc,eAAA;AACpB,MAAA,eAAA,EAAA;AACA,MAAA,OAAA,CAAQ,KAAK,EAAA,EAAI,IAAA;AACjB,MAAA,aAAA,CAAc,WAAA,EAAa,SAAS,CAAA;AAAA,IACtC,EAAA,KAAO;AACL,MAAA,OAAA,CAAQ,KAAK,EAAA,EAAI,IAAA;AAAA,IACnB;AAAA,EACF,CAAC,CAAA;AAGD,EAAA,MAAA,CAAO,QAAA,CAAS,OAAA,CAAQ,CAAC,CAAA,EAAG,KAAA,EAAA,GAAU;AACpC,IAAA,IAAI,aAAA,EAAe,MAAA,CAAO,QAAA,CAAS,KAAK,CAAA;AACxC,IAAA,GAAA,CAAI,CAAC,YAAA,CAAa,UAAA,EAAY;AAC5B,MAAA,YAAA,CAAa,WAAA,EAAa,CAAC,CAAA;AAAA,IAC7B;AAEA,IAAA,GAAA,CAAI,UAAA,CAAW,KAAK,EAAA,GAAK,CAAA,EAAG;AAC1B,MAAA,YAAA,CAAa,UAAA,CAAW,OAAA,EAAS,OAAA,CAAQ,KAAK,EAAA,EAAI,OAAA,EAAS,MAAA;AAC3D,MAAA,YAAA,CAAa,UAAA,CAAW,QAAA,EAAU,UAAA,CAAW,KAAK,CAAA;AAAA,IACpD,EAAA,KAAO;AACL,MAAA,YAAA,CAAa,UAAA,CAAW,OAAA,EAAS,OAAA;AAAA,IACnC;AAAA,EACF,CAAC,CAAA;AAED,EAAA,OAAO,MAAA;AACT;AAGA,IAAO,6BAAA,EAAQ,cAAA;ADhGf;AACE;AACA;AACF,wFAAC","file":"/home/runner/work/turf/turf/packages/turf-clusters-dbscan/dist/cjs/index.cjs","sourcesContent":[null,"import { GeoJsonProperties, FeatureCollection, Point } from \"geojson\";\nimport { clone } from \"@turf/clone\";\nimport { distance } from \"@turf/distance\";\nimport { degreesToRadians, lengthToDegrees, Units } from \"@turf/helpers\";\nimport { rbush as RBush } from \"./lib/rbush-export.js\";\n\n/**\n * Point classification within the cluster.\n *\n * @typedef {\"core\" | \"edge\" | \"noise\"} Dbscan\n */\ntype Dbscan = \"core\" | \"edge\" | \"noise\";\n\n/**\n * Properties assigned to each clustered point.\n *\n * @extends GeoJsonProperties\n * @typedef {object} DbscanProps\n * @property {Dbscan} [dbscan] type of point it has been classified as\n * @property {number} [cluster] associated clusterId\n */\ntype DbscanProps = GeoJsonProperties & {\n dbscan?: Dbscan;\n cluster?: number;\n};\n\n// Structure of a point in the spatial index\ntype IndexedPoint = {\n minX: number;\n minY: number;\n maxX: number;\n maxY: number;\n index: number;\n};\n\n/**\n * Takes a set of {@link Point|points} and partition them into clusters according to {@link https://en.wikipedia.org/wiki/DBSCAN|DBSCAN's} data clustering algorithm.\n *\n * @function\n * @param {FeatureCollection<Point>} points to be clustered\n * @param {number} maxDistance Maximum Distance between any point of the cluster to generate the clusters (kilometers by default, see options)\n * @param {Object} [options={}] Optional parameters\n * @param {string} [options.units=\"kilometers\"] in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers\n * @param {boolean} [options.mutate=false] Allows GeoJSON input to be mutated\n * @param {number} [options.minPoints=3] Minimum number of points to generate a single cluster,\n * points which do not meet this requirement will be classified as an 'edge' or 'noise'.\n * @returns {FeatureCollection<Point, DbscanProps>} Clustered Points with an additional two properties associated to each Feature:\n * - {number} cluster - the associated clusterId\n * - {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')\n * @example\n * // create random points with random z-values in their properties\n * var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});\n * var maxDistance = 100;\n * var clustered = turf.clustersDbscan(points, maxDistance);\n *\n * //addToMap\n * var addToMap = [clustered];\n */\nfunction clustersDbscan(\n points: FeatureCollection<Point>,\n maxDistance: number,\n options: {\n units?: Units;\n minPoints?: number;\n mutate?: boolean;\n } = {}\n): FeatureCollection<Point, DbscanProps> {\n // Input validation being handled by Typescript\n // collectionOf(points, 'Point', 'points must consist of a FeatureCollection of only Points');\n // if (maxDistance === null || maxDistance === undefined) throw new Error('maxDistance is required');\n // if (!(Math.sign(maxDistance) > 0)) throw new Error('maxDistance is invalid');\n // if (!(minPoints === undefined || minPoints === null || Math.sign(minPoints) > 0)) throw new Error('options.minPoints is invalid');\n\n // Clone points to prevent any mutations\n if (options.mutate !== true) points = clone(points);\n\n // Defaults\n const minPoints = options.minPoints || 3;\n\n // Calculate the distance in degrees for region queries\n const latDistanceInDegrees = lengthToDegrees(maxDistance, options.units);\n\n // Create a spatial index\n var tree = new RBush(points.features.length);\n\n // Keeps track of whether a point has been visited or not.\n var visited = points.features.map((_) => false);\n\n // Keeps track of whether a point is assigned to a cluster or not.\n var assigned = points.features.map((_) => false);\n\n // Keeps track of whether a point is noise|edge or not.\n var isnoise = points.features.map((_) => false);\n\n // Keeps track of the clusterId for each point\n var clusterIds: number[] = points.features.map((_) => -1);\n\n // Index each point for spatial queries\n tree.load(\n points.features.map((point, index) => {\n var [x, y] = point.geometry.coordinates;\n return {\n minX: x,\n minY: y,\n maxX: x,\n maxY: y,\n index: index,\n } as IndexedPoint;\n })\n );\n\n // Function to find neighbors of a point within a given distance\n const regionQuery = (index: number): IndexedPoint[] => {\n const point = points.features[index];\n const [x, y] = point.geometry.coordinates;\n\n const minY = Math.max(y - latDistanceInDegrees, -90.0);\n const maxY = Math.min(y + latDistanceInDegrees, 90.0);\n\n const lonDistanceInDegrees = (function () {\n // Handle the case where the bounding box crosses the poles\n if (minY < 0 && maxY > 0) {\n return latDistanceInDegrees;\n }\n if (Math.abs(minY) < Math.abs(maxY)) {\n return latDistanceInDegrees / Math.cos(degreesToRadians(maxY));\n } else {\n return latDistanceInDegrees / Math.cos(degreesToRadians(minY));\n }\n })();\n\n const minX = Math.max(x - lonDistanceInDegrees, -360.0);\n const maxX = Math.min(x + lonDistanceInDegrees, 360.0);\n\n // Calculate the bounding box for the region query\n const bbox = { minX, minY, maxX, maxY };\n return (tree.search(bbox) as ReadonlyArray<IndexedPoint>).filter(\n (neighbor) => {\n const neighborIndex = neighbor.index;\n const neighborPoint = points.features[neighborIndex];\n const distanceInKm = distance(point, neighborPoint, {\n units: \"kilometers\",\n });\n return distanceInKm <= maxDistance;\n }\n );\n };\n\n // Function to expand a cluster\n const expandCluster = (clusteredId: number, neighbors: IndexedPoint[]) => {\n for (var i = 0; i < neighbors.length; i++) {\n var neighbor = neighbors[i];\n const neighborIndex = neighbor.index;\n if (!visited[neighborIndex]) {\n visited[neighborIndex] = true;\n const nextNeighbors = regionQuery(neighborIndex);\n if (nextNeighbors.length >= minPoints) {\n neighbors.push(...nextNeighbors);\n }\n }\n if (!assigned[neighborIndex]) {\n assigned[neighborIndex] = true;\n clusterIds[neighborIndex] = clusteredId;\n }\n }\n };\n\n // Main DBSCAN clustering algorithm\n var nextClusteredId = 0;\n points.features.forEach((_, index) => {\n if (visited[index]) return;\n const neighbors = regionQuery(index);\n if (neighbors.length >= minPoints) {\n const clusteredId = nextClusteredId;\n nextClusteredId++;\n visited[index] = true;\n expandCluster(clusteredId, neighbors);\n } else {\n isnoise[index] = true;\n }\n });\n\n // Assign DBSCAN properties to each point\n points.features.forEach((_, index) => {\n var clusterPoint = points.features[index];\n if (!clusterPoint.properties) {\n clusterPoint.properties = {};\n }\n\n if (clusterIds[index] >= 0) {\n clusterPoint.properties.dbscan = isnoise[index] ? \"edge\" : \"core\";\n clusterPoint.properties.cluster = clusterIds[index];\n } else {\n clusterPoint.properties.dbscan = \"noise\";\n }\n });\n\n return points as FeatureCollection<Point, DbscanProps>;\n}\n\nexport { Dbscan, DbscanProps, clustersDbscan };\nexport default clustersDbscan;\n","// Get around problems with moduleResolution node16 and some older libraries.\n// Manifests as \"This expression is not callable ... has no call signatures\"\n// https://stackoverflow.com/a/74709714\n\nimport lib from \"rbush\";\n\nexport const rbush = lib as unknown as typeof lib.default;\n"]}
@@ -1,15 +1,28 @@
1
1
  import { GeoJsonProperties, FeatureCollection, Point } from 'geojson';
2
2
  import { Units } from '@turf/helpers';
3
3
 
4
+ /**
5
+ * Point classification within the cluster.
6
+ *
7
+ * @typedef {"core" | "edge" | "noise"} Dbscan
8
+ */
4
9
  type Dbscan = "core" | "edge" | "noise";
10
+ /**
11
+ * Properties assigned to each clustered point.
12
+ *
13
+ * @extends GeoJsonProperties
14
+ * @typedef {object} DbscanProps
15
+ * @property {Dbscan} [dbscan] type of point it has been classified as
16
+ * @property {number} [cluster] associated clusterId
17
+ */
5
18
  type DbscanProps = GeoJsonProperties & {
6
19
  dbscan?: Dbscan;
7
20
  cluster?: number;
8
21
  };
9
22
  /**
10
- * Takes a set of {@link Point|points} and partition them into clusters according to {@link DBSCAN's|https://en.wikipedia.org/wiki/DBSCAN} data clustering algorithm.
23
+ * Takes a set of {@link Point|points} and partition them into clusters according to {@link https://en.wikipedia.org/wiki/DBSCAN|DBSCAN's} data clustering algorithm.
11
24
  *
12
- * @name clustersDbscan
25
+ * @function
13
26
  * @param {FeatureCollection<Point>} points to be clustered
14
27
  * @param {number} maxDistance Maximum Distance between any point of the cluster to generate the clusters (kilometers by default, see options)
15
28
  * @param {Object} [options={}] Optional parameters
@@ -17,7 +30,7 @@ type DbscanProps = GeoJsonProperties & {
17
30
  * @param {boolean} [options.mutate=false] Allows GeoJSON input to be mutated
18
31
  * @param {number} [options.minPoints=3] Minimum number of points to generate a single cluster,
19
32
  * points which do not meet this requirement will be classified as an 'edge' or 'noise'.
20
- * @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:
33
+ * @returns {FeatureCollection<Point, DbscanProps>} Clustered Points with an additional two properties associated to each Feature:
21
34
  * - {number} cluster - the associated clusterId
22
35
  * - {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')
23
36
  * @example
@@ -1,15 +1,28 @@
1
1
  import { GeoJsonProperties, FeatureCollection, Point } from 'geojson';
2
2
  import { Units } from '@turf/helpers';
3
3
 
4
+ /**
5
+ * Point classification within the cluster.
6
+ *
7
+ * @typedef {"core" | "edge" | "noise"} Dbscan
8
+ */
4
9
  type Dbscan = "core" | "edge" | "noise";
10
+ /**
11
+ * Properties assigned to each clustered point.
12
+ *
13
+ * @extends GeoJsonProperties
14
+ * @typedef {object} DbscanProps
15
+ * @property {Dbscan} [dbscan] type of point it has been classified as
16
+ * @property {number} [cluster] associated clusterId
17
+ */
5
18
  type DbscanProps = GeoJsonProperties & {
6
19
  dbscan?: Dbscan;
7
20
  cluster?: number;
8
21
  };
9
22
  /**
10
- * Takes a set of {@link Point|points} and partition them into clusters according to {@link DBSCAN's|https://en.wikipedia.org/wiki/DBSCAN} data clustering algorithm.
23
+ * Takes a set of {@link Point|points} and partition them into clusters according to {@link https://en.wikipedia.org/wiki/DBSCAN|DBSCAN's} data clustering algorithm.
11
24
  *
12
- * @name clustersDbscan
25
+ * @function
13
26
  * @param {FeatureCollection<Point>} points to be clustered
14
27
  * @param {number} maxDistance Maximum Distance between any point of the cluster to generate the clusters (kilometers by default, see options)
15
28
  * @param {Object} [options={}] Optional parameters
@@ -17,7 +30,7 @@ type DbscanProps = GeoJsonProperties & {
17
30
  * @param {boolean} [options.mutate=false] Allows GeoJSON input to be mutated
18
31
  * @param {number} [options.minPoints=3] Minimum number of points to generate a single cluster,
19
32
  * points which do not meet this requirement will be classified as an 'edge' or 'noise'.
20
- * @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:
33
+ * @returns {FeatureCollection<Point, DbscanProps>} Clustered Points with an additional two properties associated to each Feature:
21
34
  * - {number} cluster - the associated clusterId
22
35
  * - {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')
23
36
  * @example
package/dist/esm/index.js CHANGED
@@ -9,8 +9,7 @@ var rbush = lib;
9
9
 
10
10
  // index.ts
11
11
  function clustersDbscan(points, maxDistance, options = {}) {
12
- if (options.mutate !== true)
13
- points = clone(points);
12
+ if (options.mutate !== true) points = clone(points);
14
13
  const minPoints = options.minPoints || 3;
15
14
  const latDistanceInDegrees = lengthToDegrees(maxDistance, options.units);
16
15
  var tree = new rbush(points.features.length);
@@ -78,8 +77,7 @@ function clustersDbscan(points, maxDistance, options = {}) {
78
77
  };
79
78
  var nextClusteredId = 0;
80
79
  points.features.forEach((_, index) => {
81
- if (visited[index])
82
- return;
80
+ if (visited[index]) return;
83
81
  const neighbors = regionQuery(index);
84
82
  if (neighbors.length >= minPoints) {
85
83
  const clusteredId = nextClusteredId;
@@ -1 +1 @@
1
- {"version":3,"sources":["../../index.ts","../../lib/rbush-export.ts"],"sourcesContent":["import { GeoJsonProperties, FeatureCollection, Point } from \"geojson\";\nimport { clone } from \"@turf/clone\";\nimport { distance } from \"@turf/distance\";\nimport { degreesToRadians, lengthToDegrees, Units } from \"@turf/helpers\";\nimport { rbush as RBush } from \"./lib/rbush-export.js\";\n\ntype Dbscan = \"core\" | \"edge\" | \"noise\";\ntype DbscanProps = GeoJsonProperties & {\n dbscan?: Dbscan;\n cluster?: number;\n};\n\n// Structure of a point in the spatial index\ntype IndexedPoint = {\n minX: number;\n minY: number;\n maxX: number;\n maxY: number;\n index: number;\n};\n\n/**\n * Takes a set of {@link Point|points} and partition them into clusters according to {@link DBSCAN's|https://en.wikipedia.org/wiki/DBSCAN} data clustering algorithm.\n *\n * @name clustersDbscan\n * @param {FeatureCollection<Point>} points to be clustered\n * @param {number} maxDistance Maximum Distance between any point of the cluster to generate the clusters (kilometers by default, see options)\n * @param {Object} [options={}] Optional parameters\n * @param {string} [options.units=\"kilometers\"] in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers\n * @param {boolean} [options.mutate=false] Allows GeoJSON input to be mutated\n * @param {number} [options.minPoints=3] Minimum number of points to generate a single cluster,\n * points which do not meet this requirement will be classified as an 'edge' or 'noise'.\n * @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:\n * - {number} cluster - the associated clusterId\n * - {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')\n * @example\n * // create random points with random z-values in their properties\n * var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});\n * var maxDistance = 100;\n * var clustered = turf.clustersDbscan(points, maxDistance);\n *\n * //addToMap\n * var addToMap = [clustered];\n */\nfunction clustersDbscan(\n points: FeatureCollection<Point>,\n maxDistance: number,\n options: {\n units?: Units;\n minPoints?: number;\n mutate?: boolean;\n } = {}\n): FeatureCollection<Point, DbscanProps> {\n // Input validation being handled by Typescript\n // collectionOf(points, 'Point', 'points must consist of a FeatureCollection of only Points');\n // if (maxDistance === null || maxDistance === undefined) throw new Error('maxDistance is required');\n // if (!(Math.sign(maxDistance) > 0)) throw new Error('maxDistance is invalid');\n // if (!(minPoints === undefined || minPoints === null || Math.sign(minPoints) > 0)) throw new Error('options.minPoints is invalid');\n\n // Clone points to prevent any mutations\n if (options.mutate !== true) points = clone(points);\n\n // Defaults\n const minPoints = options.minPoints || 3;\n\n // Calculate the distance in degrees for region queries\n const latDistanceInDegrees = lengthToDegrees(maxDistance, options.units);\n\n // Create a spatial index\n var tree = new RBush(points.features.length);\n\n // Keeps track of whether a point has been visited or not.\n var visited = points.features.map((_) => false);\n\n // Keeps track of whether a point is assigned to a cluster or not.\n var assigned = points.features.map((_) => false);\n\n // Keeps track of whether a point is noise|edge or not.\n var isnoise = points.features.map((_) => false);\n\n // Keeps track of the clusterId for each point\n var clusterIds: number[] = points.features.map((_) => -1);\n\n // Index each point for spatial queries\n tree.load(\n points.features.map((point, index) => {\n var [x, y] = point.geometry.coordinates;\n return {\n minX: x,\n minY: y,\n maxX: x,\n maxY: y,\n index: index,\n } as IndexedPoint;\n })\n );\n\n // Function to find neighbors of a point within a given distance\n const regionQuery = (index: number): IndexedPoint[] => {\n const point = points.features[index];\n const [x, y] = point.geometry.coordinates;\n\n const minY = Math.max(y - latDistanceInDegrees, -90.0);\n const maxY = Math.min(y + latDistanceInDegrees, 90.0);\n\n const lonDistanceInDegrees = (function () {\n // Handle the case where the bounding box crosses the poles\n if (minY < 0 && maxY > 0) {\n return latDistanceInDegrees;\n }\n if (Math.abs(minY) < Math.abs(maxY)) {\n return latDistanceInDegrees / Math.cos(degreesToRadians(maxY));\n } else {\n return latDistanceInDegrees / Math.cos(degreesToRadians(minY));\n }\n })();\n\n const minX = Math.max(x - lonDistanceInDegrees, -360.0);\n const maxX = Math.min(x + lonDistanceInDegrees, 360.0);\n\n // Calculate the bounding box for the region query\n const bbox = { minX, minY, maxX, maxY };\n return (tree.search(bbox) as ReadonlyArray<IndexedPoint>).filter(\n (neighbor) => {\n const neighborIndex = neighbor.index;\n const neighborPoint = points.features[neighborIndex];\n const distanceInKm = distance(point, neighborPoint, {\n units: \"kilometers\",\n });\n return distanceInKm <= maxDistance;\n }\n );\n };\n\n // Function to expand a cluster\n const expandCluster = (clusteredId: number, neighbors: IndexedPoint[]) => {\n for (var i = 0; i < neighbors.length; i++) {\n var neighbor = neighbors[i];\n const neighborIndex = neighbor.index;\n if (!visited[neighborIndex]) {\n visited[neighborIndex] = true;\n const nextNeighbors = regionQuery(neighborIndex);\n if (nextNeighbors.length >= minPoints) {\n neighbors.push(...nextNeighbors);\n }\n }\n if (!assigned[neighborIndex]) {\n assigned[neighborIndex] = true;\n clusterIds[neighborIndex] = clusteredId;\n }\n }\n };\n\n // Main DBSCAN clustering algorithm\n var nextClusteredId = 0;\n points.features.forEach((_, index) => {\n if (visited[index]) return;\n const neighbors = regionQuery(index);\n if (neighbors.length >= minPoints) {\n const clusteredId = nextClusteredId;\n nextClusteredId++;\n visited[index] = true;\n expandCluster(clusteredId, neighbors);\n } else {\n isnoise[index] = true;\n }\n });\n\n // Assign DBSCAN properties to each point\n points.features.forEach((_, index) => {\n var clusterPoint = points.features[index];\n if (!clusterPoint.properties) {\n clusterPoint.properties = {};\n }\n\n if (clusterIds[index] >= 0) {\n clusterPoint.properties.dbscan = isnoise[index] ? \"edge\" : \"core\";\n clusterPoint.properties.cluster = clusterIds[index];\n } else {\n clusterPoint.properties.dbscan = \"noise\";\n }\n });\n\n return points as FeatureCollection<Point, DbscanProps>;\n}\n\nexport { Dbscan, DbscanProps, clustersDbscan };\nexport default clustersDbscan;\n","// Get around problems with moduleResolution node16 and some older libraries.\n// Manifests as \"This expression is not callable ... has no call signatures\"\n// https://stackoverflow.com/a/74709714\n\nimport lib from \"rbush\";\n\nexport const rbush = lib as unknown as typeof lib.default;\n"],"mappings":";AACA,SAAS,aAAa;AACtB,SAAS,gBAAgB;AACzB,SAAS,kBAAkB,uBAA8B;;;ACCzD,OAAO,SAAS;AAET,IAAM,QAAQ;;;ADsCrB,SAAS,eACP,QACA,aACA,UAII,CAAC,GACkC;AAQvC,MAAI,QAAQ,WAAW;AAAM,aAAS,MAAM,MAAM;AAGlD,QAAM,YAAY,QAAQ,aAAa;AAGvC,QAAM,uBAAuB,gBAAgB,aAAa,QAAQ,KAAK;AAGvE,MAAI,OAAO,IAAI,MAAM,OAAO,SAAS,MAAM;AAG3C,MAAI,UAAU,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG9C,MAAI,WAAW,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG/C,MAAI,UAAU,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG9C,MAAI,aAAuB,OAAO,SAAS,IAAI,CAAC,MAAM,EAAE;AAGxD,OAAK;AAAA,IACH,OAAO,SAAS,IAAI,CAAC,OAAO,UAAU;AACpC,UAAI,CAAC,GAAG,CAAC,IAAI,MAAM,SAAS;AAC5B,aAAO;AAAA,QACL,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN;AAAA,MACF;AAAA,IACF,CAAC;AAAA,EACH;AAGA,QAAM,cAAc,CAAC,UAAkC;AACrD,UAAM,QAAQ,OAAO,SAAS,KAAK;AACnC,UAAM,CAAC,GAAG,CAAC,IAAI,MAAM,SAAS;AAE9B,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,GAAK;AACrD,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,EAAI;AAEpD,UAAM,uBAAwB,WAAY;AAExC,UAAI,OAAO,KAAK,OAAO,GAAG;AACxB,eAAO;AAAA,MACT;AACA,UAAI,KAAK,IAAI,IAAI,IAAI,KAAK,IAAI,IAAI,GAAG;AACnC,eAAO,uBAAuB,KAAK,IAAI,iBAAiB,IAAI,CAAC;AAAA,MAC/D,OAAO;AACL,eAAO,uBAAuB,KAAK,IAAI,iBAAiB,IAAI,CAAC;AAAA,MAC/D;AAAA,IACF,EAAG;AAEH,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,IAAM;AACtD,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,GAAK;AAGrD,UAAM,OAAO,EAAE,MAAM,MAAM,MAAM,KAAK;AACtC,WAAQ,KAAK,OAAO,IAAI,EAAkC;AAAA,MACxD,CAAC,aAAa;AACZ,cAAM,gBAAgB,SAAS;AAC/B,cAAM,gBAAgB,OAAO,SAAS,aAAa;AACnD,cAAM,eAAe,SAAS,OAAO,eAAe;AAAA,UAClD,OAAO;AAAA,QACT,CAAC;AACD,eAAO,gBAAgB;AAAA,MACzB;AAAA,IACF;AAAA,EACF;AAGA,QAAM,gBAAgB,CAAC,aAAqB,cAA8B;AACxE,aAAS,IAAI,GAAG,IAAI,UAAU,QAAQ,KAAK;AACzC,UAAI,WAAW,UAAU,CAAC;AAC1B,YAAM,gBAAgB,SAAS;AAC/B,UAAI,CAAC,QAAQ,aAAa,GAAG;AAC3B,gBAAQ,aAAa,IAAI;AACzB,cAAM,gBAAgB,YAAY,aAAa;AAC/C,YAAI,cAAc,UAAU,WAAW;AACrC,oBAAU,KAAK,GAAG,aAAa;AAAA,QACjC;AAAA,MACF;AACA,UAAI,CAAC,SAAS,aAAa,GAAG;AAC5B,iBAAS,aAAa,IAAI;AAC1B,mBAAW,aAAa,IAAI;AAAA,MAC9B;AAAA,IACF;AAAA,EACF;AAGA,MAAI,kBAAkB;AACtB,SAAO,SAAS,QAAQ,CAAC,GAAG,UAAU;AACpC,QAAI,QAAQ,KAAK;AAAG;AACpB,UAAM,YAAY,YAAY,KAAK;AACnC,QAAI,UAAU,UAAU,WAAW;AACjC,YAAM,cAAc;AACpB;AACA,cAAQ,KAAK,IAAI;AACjB,oBAAc,aAAa,SAAS;AAAA,IACtC,OAAO;AACL,cAAQ,KAAK,IAAI;AAAA,IACnB;AAAA,EACF,CAAC;AAGD,SAAO,SAAS,QAAQ,CAAC,GAAG,UAAU;AACpC,QAAI,eAAe,OAAO,SAAS,KAAK;AACxC,QAAI,CAAC,aAAa,YAAY;AAC5B,mBAAa,aAAa,CAAC;AAAA,IAC7B;AAEA,QAAI,WAAW,KAAK,KAAK,GAAG;AAC1B,mBAAa,WAAW,SAAS,QAAQ,KAAK,IAAI,SAAS;AAC3D,mBAAa,WAAW,UAAU,WAAW,KAAK;AAAA,IACpD,OAAO;AACL,mBAAa,WAAW,SAAS;AAAA,IACnC;AAAA,EACF,CAAC;AAED,SAAO;AACT;AAGA,IAAO,+BAAQ;","names":[]}
1
+ {"version":3,"sources":["../../index.ts","../../lib/rbush-export.ts"],"sourcesContent":["import { GeoJsonProperties, FeatureCollection, Point } from \"geojson\";\nimport { clone } from \"@turf/clone\";\nimport { distance } from \"@turf/distance\";\nimport { degreesToRadians, lengthToDegrees, Units } from \"@turf/helpers\";\nimport { rbush as RBush } from \"./lib/rbush-export.js\";\n\n/**\n * Point classification within the cluster.\n *\n * @typedef {\"core\" | \"edge\" | \"noise\"} Dbscan\n */\ntype Dbscan = \"core\" | \"edge\" | \"noise\";\n\n/**\n * Properties assigned to each clustered point.\n *\n * @extends GeoJsonProperties\n * @typedef {object} DbscanProps\n * @property {Dbscan} [dbscan] type of point it has been classified as\n * @property {number} [cluster] associated clusterId\n */\ntype DbscanProps = GeoJsonProperties & {\n dbscan?: Dbscan;\n cluster?: number;\n};\n\n// Structure of a point in the spatial index\ntype IndexedPoint = {\n minX: number;\n minY: number;\n maxX: number;\n maxY: number;\n index: number;\n};\n\n/**\n * Takes a set of {@link Point|points} and partition them into clusters according to {@link https://en.wikipedia.org/wiki/DBSCAN|DBSCAN's} data clustering algorithm.\n *\n * @function\n * @param {FeatureCollection<Point>} points to be clustered\n * @param {number} maxDistance Maximum Distance between any point of the cluster to generate the clusters (kilometers by default, see options)\n * @param {Object} [options={}] Optional parameters\n * @param {string} [options.units=\"kilometers\"] in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers\n * @param {boolean} [options.mutate=false] Allows GeoJSON input to be mutated\n * @param {number} [options.minPoints=3] Minimum number of points to generate a single cluster,\n * points which do not meet this requirement will be classified as an 'edge' or 'noise'.\n * @returns {FeatureCollection<Point, DbscanProps>} Clustered Points with an additional two properties associated to each Feature:\n * - {number} cluster - the associated clusterId\n * - {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')\n * @example\n * // create random points with random z-values in their properties\n * var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});\n * var maxDistance = 100;\n * var clustered = turf.clustersDbscan(points, maxDistance);\n *\n * //addToMap\n * var addToMap = [clustered];\n */\nfunction clustersDbscan(\n points: FeatureCollection<Point>,\n maxDistance: number,\n options: {\n units?: Units;\n minPoints?: number;\n mutate?: boolean;\n } = {}\n): FeatureCollection<Point, DbscanProps> {\n // Input validation being handled by Typescript\n // collectionOf(points, 'Point', 'points must consist of a FeatureCollection of only Points');\n // if (maxDistance === null || maxDistance === undefined) throw new Error('maxDistance is required');\n // if (!(Math.sign(maxDistance) > 0)) throw new Error('maxDistance is invalid');\n // if (!(minPoints === undefined || minPoints === null || Math.sign(minPoints) > 0)) throw new Error('options.minPoints is invalid');\n\n // Clone points to prevent any mutations\n if (options.mutate !== true) points = clone(points);\n\n // Defaults\n const minPoints = options.minPoints || 3;\n\n // Calculate the distance in degrees for region queries\n const latDistanceInDegrees = lengthToDegrees(maxDistance, options.units);\n\n // Create a spatial index\n var tree = new RBush(points.features.length);\n\n // Keeps track of whether a point has been visited or not.\n var visited = points.features.map((_) => false);\n\n // Keeps track of whether a point is assigned to a cluster or not.\n var assigned = points.features.map((_) => false);\n\n // Keeps track of whether a point is noise|edge or not.\n var isnoise = points.features.map((_) => false);\n\n // Keeps track of the clusterId for each point\n var clusterIds: number[] = points.features.map((_) => -1);\n\n // Index each point for spatial queries\n tree.load(\n points.features.map((point, index) => {\n var [x, y] = point.geometry.coordinates;\n return {\n minX: x,\n minY: y,\n maxX: x,\n maxY: y,\n index: index,\n } as IndexedPoint;\n })\n );\n\n // Function to find neighbors of a point within a given distance\n const regionQuery = (index: number): IndexedPoint[] => {\n const point = points.features[index];\n const [x, y] = point.geometry.coordinates;\n\n const minY = Math.max(y - latDistanceInDegrees, -90.0);\n const maxY = Math.min(y + latDistanceInDegrees, 90.0);\n\n const lonDistanceInDegrees = (function () {\n // Handle the case where the bounding box crosses the poles\n if (minY < 0 && maxY > 0) {\n return latDistanceInDegrees;\n }\n if (Math.abs(minY) < Math.abs(maxY)) {\n return latDistanceInDegrees / Math.cos(degreesToRadians(maxY));\n } else {\n return latDistanceInDegrees / Math.cos(degreesToRadians(minY));\n }\n })();\n\n const minX = Math.max(x - lonDistanceInDegrees, -360.0);\n const maxX = Math.min(x + lonDistanceInDegrees, 360.0);\n\n // Calculate the bounding box for the region query\n const bbox = { minX, minY, maxX, maxY };\n return (tree.search(bbox) as ReadonlyArray<IndexedPoint>).filter(\n (neighbor) => {\n const neighborIndex = neighbor.index;\n const neighborPoint = points.features[neighborIndex];\n const distanceInKm = distance(point, neighborPoint, {\n units: \"kilometers\",\n });\n return distanceInKm <= maxDistance;\n }\n );\n };\n\n // Function to expand a cluster\n const expandCluster = (clusteredId: number, neighbors: IndexedPoint[]) => {\n for (var i = 0; i < neighbors.length; i++) {\n var neighbor = neighbors[i];\n const neighborIndex = neighbor.index;\n if (!visited[neighborIndex]) {\n visited[neighborIndex] = true;\n const nextNeighbors = regionQuery(neighborIndex);\n if (nextNeighbors.length >= minPoints) {\n neighbors.push(...nextNeighbors);\n }\n }\n if (!assigned[neighborIndex]) {\n assigned[neighborIndex] = true;\n clusterIds[neighborIndex] = clusteredId;\n }\n }\n };\n\n // Main DBSCAN clustering algorithm\n var nextClusteredId = 0;\n points.features.forEach((_, index) => {\n if (visited[index]) return;\n const neighbors = regionQuery(index);\n if (neighbors.length >= minPoints) {\n const clusteredId = nextClusteredId;\n nextClusteredId++;\n visited[index] = true;\n expandCluster(clusteredId, neighbors);\n } else {\n isnoise[index] = true;\n }\n });\n\n // Assign DBSCAN properties to each point\n points.features.forEach((_, index) => {\n var clusterPoint = points.features[index];\n if (!clusterPoint.properties) {\n clusterPoint.properties = {};\n }\n\n if (clusterIds[index] >= 0) {\n clusterPoint.properties.dbscan = isnoise[index] ? \"edge\" : \"core\";\n clusterPoint.properties.cluster = clusterIds[index];\n } else {\n clusterPoint.properties.dbscan = \"noise\";\n }\n });\n\n return points as FeatureCollection<Point, DbscanProps>;\n}\n\nexport { Dbscan, DbscanProps, clustersDbscan };\nexport default clustersDbscan;\n","// Get around problems with moduleResolution node16 and some older libraries.\n// Manifests as \"This expression is not callable ... has no call signatures\"\n// https://stackoverflow.com/a/74709714\n\nimport lib from \"rbush\";\n\nexport const rbush = lib as unknown as typeof lib.default;\n"],"mappings":";AACA,SAAS,aAAa;AACtB,SAAS,gBAAgB;AACzB,SAAS,kBAAkB,uBAA8B;;;ACCzD,OAAO,SAAS;AAET,IAAM,QAAQ;;;ADoDrB,SAAS,eACP,QACA,aACA,UAII,CAAC,GACkC;AAQvC,MAAI,QAAQ,WAAW,KAAM,UAAS,MAAM,MAAM;AAGlD,QAAM,YAAY,QAAQ,aAAa;AAGvC,QAAM,uBAAuB,gBAAgB,aAAa,QAAQ,KAAK;AAGvE,MAAI,OAAO,IAAI,MAAM,OAAO,SAAS,MAAM;AAG3C,MAAI,UAAU,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG9C,MAAI,WAAW,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG/C,MAAI,UAAU,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG9C,MAAI,aAAuB,OAAO,SAAS,IAAI,CAAC,MAAM,EAAE;AAGxD,OAAK;AAAA,IACH,OAAO,SAAS,IAAI,CAAC,OAAO,UAAU;AACpC,UAAI,CAAC,GAAG,CAAC,IAAI,MAAM,SAAS;AAC5B,aAAO;AAAA,QACL,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN;AAAA,MACF;AAAA,IACF,CAAC;AAAA,EACH;AAGA,QAAM,cAAc,CAAC,UAAkC;AACrD,UAAM,QAAQ,OAAO,SAAS,KAAK;AACnC,UAAM,CAAC,GAAG,CAAC,IAAI,MAAM,SAAS;AAE9B,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,GAAK;AACrD,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,EAAI;AAEpD,UAAM,uBAAwB,WAAY;AAExC,UAAI,OAAO,KAAK,OAAO,GAAG;AACxB,eAAO;AAAA,MACT;AACA,UAAI,KAAK,IAAI,IAAI,IAAI,KAAK,IAAI,IAAI,GAAG;AACnC,eAAO,uBAAuB,KAAK,IAAI,iBAAiB,IAAI,CAAC;AAAA,MAC/D,OAAO;AACL,eAAO,uBAAuB,KAAK,IAAI,iBAAiB,IAAI,CAAC;AAAA,MAC/D;AAAA,IACF,EAAG;AAEH,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,IAAM;AACtD,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,GAAK;AAGrD,UAAM,OAAO,EAAE,MAAM,MAAM,MAAM,KAAK;AACtC,WAAQ,KAAK,OAAO,IAAI,EAAkC;AAAA,MACxD,CAAC,aAAa;AACZ,cAAM,gBAAgB,SAAS;AAC/B,cAAM,gBAAgB,OAAO,SAAS,aAAa;AACnD,cAAM,eAAe,SAAS,OAAO,eAAe;AAAA,UAClD,OAAO;AAAA,QACT,CAAC;AACD,eAAO,gBAAgB;AAAA,MACzB;AAAA,IACF;AAAA,EACF;AAGA,QAAM,gBAAgB,CAAC,aAAqB,cAA8B;AACxE,aAAS,IAAI,GAAG,IAAI,UAAU,QAAQ,KAAK;AACzC,UAAI,WAAW,UAAU,CAAC;AAC1B,YAAM,gBAAgB,SAAS;AAC/B,UAAI,CAAC,QAAQ,aAAa,GAAG;AAC3B,gBAAQ,aAAa,IAAI;AACzB,cAAM,gBAAgB,YAAY,aAAa;AAC/C,YAAI,cAAc,UAAU,WAAW;AACrC,oBAAU,KAAK,GAAG,aAAa;AAAA,QACjC;AAAA,MACF;AACA,UAAI,CAAC,SAAS,aAAa,GAAG;AAC5B,iBAAS,aAAa,IAAI;AAC1B,mBAAW,aAAa,IAAI;AAAA,MAC9B;AAAA,IACF;AAAA,EACF;AAGA,MAAI,kBAAkB;AACtB,SAAO,SAAS,QAAQ,CAAC,GAAG,UAAU;AACpC,QAAI,QAAQ,KAAK,EAAG;AACpB,UAAM,YAAY,YAAY,KAAK;AACnC,QAAI,UAAU,UAAU,WAAW;AACjC,YAAM,cAAc;AACpB;AACA,cAAQ,KAAK,IAAI;AACjB,oBAAc,aAAa,SAAS;AAAA,IACtC,OAAO;AACL,cAAQ,KAAK,IAAI;AAAA,IACnB;AAAA,EACF,CAAC;AAGD,SAAO,SAAS,QAAQ,CAAC,GAAG,UAAU;AACpC,QAAI,eAAe,OAAO,SAAS,KAAK;AACxC,QAAI,CAAC,aAAa,YAAY;AAC5B,mBAAa,aAAa,CAAC;AAAA,IAC7B;AAEA,QAAI,WAAW,KAAK,KAAK,GAAG;AAC1B,mBAAa,WAAW,SAAS,QAAQ,KAAK,IAAI,SAAS;AAC3D,mBAAa,WAAW,UAAU,WAAW,KAAK;AAAA,IACpD,OAAO;AACL,mBAAa,WAAW,SAAS;AAAA,IACnC;AAAA,EACF,CAAC;AAED,SAAO;AACT;AAGA,IAAO,+BAAQ;","names":[]}
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@turf/clusters-dbscan",
3
- "version": "7.1.0",
3
+ "version": "7.2.0",
4
4
  "description": "turf clusters-dbscan module",
5
5
  "author": "Turf Authors",
6
6
  "contributors": [
@@ -60,30 +60,30 @@
60
60
  "test:types": "tsc --esModuleInterop --module node16 --moduleResolution node16 --noEmit --strict types.ts"
61
61
  },
62
62
  "devDependencies": {
63
- "@turf/centroid": "^7.1.0",
64
- "@turf/clusters": "^7.1.0",
63
+ "@turf/centroid": "^7.2.0",
64
+ "@turf/clusters": "^7.2.0",
65
65
  "@types/benchmark": "^2.1.5",
66
66
  "@types/rbush": "^3.0.2",
67
- "@types/tape": "^4.2.32",
67
+ "@types/tape": "^4.13.4",
68
68
  "benchmark": "^2.1.4",
69
69
  "chromatism": "^3.0.0",
70
70
  "concaveman": "^1.2.1",
71
71
  "load-json-file": "^7.0.1",
72
72
  "npm-run-all": "^4.1.5",
73
- "tape": "^5.7.2",
74
- "tsup": "^8.0.1",
75
- "tsx": "^4.6.2",
76
- "typescript": "^5.2.2",
73
+ "tape": "^5.9.0",
74
+ "tsup": "^8.3.5",
75
+ "tsx": "^4.19.2",
76
+ "typescript": "^5.5.4",
77
77
  "write-json-file": "^5.0.0"
78
78
  },
79
79
  "dependencies": {
80
- "@turf/clone": "^7.1.0",
81
- "@turf/distance": "^7.1.0",
82
- "@turf/helpers": "^7.1.0",
83
- "@turf/meta": "^7.1.0",
80
+ "@turf/clone": "^7.2.0",
81
+ "@turf/distance": "^7.2.0",
82
+ "@turf/helpers": "^7.2.0",
83
+ "@turf/meta": "^7.2.0",
84
84
  "@types/geojson": "^7946.0.10",
85
85
  "rbush": "^3.0.1",
86
- "tslib": "^2.6.2"
86
+ "tslib": "^2.8.1"
87
87
  },
88
- "gitHead": "68915eeebc9278bb40dec3f1034499698a0561ef"
88
+ "gitHead": "7b0f0374c4668cd569f8904c71e2ae7d941be867"
89
89
  }