@turf/clusters-dbscan 7.0.0 → 7.1.0-alpha.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,7 +1,4 @@
1
- "use strict";Object.defineProperty(exports, "__esModule", {value: true}); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }var __defProp = Object.defineProperty;
2
- var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
3
-
4
- // index.ts
1
+ "use strict";Object.defineProperty(exports, "__esModule", {value: true}); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }// index.ts
5
2
  var _clone = require('@turf/clone');
6
3
  var _distance = require('@turf/distance');
7
4
  var _helpers = require('@turf/helpers');
@@ -33,7 +30,7 @@ function clustersDbscan(points, maxDistance, options = {}) {
33
30
  };
34
31
  })
35
32
  );
36
- const regionQuery = /* @__PURE__ */ __name((index) => {
33
+ const regionQuery = (index) => {
37
34
  const point = points.features[index];
38
35
  const [x, y] = point.geometry.coordinates;
39
36
  const minY = Math.max(y - latDistanceInDegrees, -90);
@@ -61,8 +58,8 @@ function clustersDbscan(points, maxDistance, options = {}) {
61
58
  return distanceInKm <= maxDistance;
62
59
  }
63
60
  );
64
- }, "regionQuery");
65
- const expandCluster = /* @__PURE__ */ __name((clusteredId, neighbors) => {
61
+ };
62
+ const expandCluster = (clusteredId, neighbors) => {
66
63
  for (var i = 0; i < neighbors.length; i++) {
67
64
  var neighbor = neighbors[i];
68
65
  const neighborIndex = neighbor.index;
@@ -78,7 +75,7 @@ function clustersDbscan(points, maxDistance, options = {}) {
78
75
  clusterIds[neighborIndex] = clusteredId;
79
76
  }
80
77
  }
81
- }, "expandCluster");
78
+ };
82
79
  var nextClusteredId = 0;
83
80
  points.features.forEach((_, index) => {
84
81
  if (visited[index])
@@ -107,7 +104,6 @@ function clustersDbscan(points, maxDistance, options = {}) {
107
104
  });
108
105
  return points;
109
106
  }
110
- __name(clustersDbscan, "clustersDbscan");
111
107
  var turf_clusters_dbscan_default = clustersDbscan;
112
108
 
113
109
 
@@ -1 +1 @@
1
- {"version":3,"sources":["../../index.ts","../../lib/rbush-export.ts"],"names":[],"mappings":";;;;AACA,SAAS,aAAa;AACtB,SAAS,gBAAgB;AACzB,SAAS,kBAAkB,uBAA8B;;;ACCzD,OAAO,SAAS;AAET,IAAM,QAAQ;;;ADsCrB,SAAS,eACP,QACA,aACA,UAII,CAAC,GACkC;AAQvC,MAAI,QAAQ,WAAW;AAAM,aAAS,MAAM,MAAM;AAGlD,QAAM,YAAY,QAAQ,aAAa;AAGvC,QAAM,uBAAuB,gBAAgB,aAAa,QAAQ,KAAK;AAGvE,MAAI,OAAO,IAAI,MAAM,OAAO,SAAS,MAAM;AAG3C,MAAI,UAAU,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG9C,MAAI,WAAW,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG/C,MAAI,UAAU,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG9C,MAAI,aAAuB,OAAO,SAAS,IAAI,CAAC,MAAM,EAAE;AAGxD,OAAK;AAAA,IACH,OAAO,SAAS,IAAI,CAAC,OAAO,UAAU;AACpC,UAAI,CAAC,GAAG,CAAC,IAAI,MAAM,SAAS;AAC5B,aAAO;AAAA,QACL,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN;AAAA,MACF;AAAA,IACF,CAAC;AAAA,EACH;AAGA,QAAM,cAAc,wBAAC,UAAkC;AACrD,UAAM,QAAQ,OAAO,SAAS,KAAK;AACnC,UAAM,CAAC,GAAG,CAAC,IAAI,MAAM,SAAS;AAE9B,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,GAAK;AACrD,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,EAAI;AAEpD,UAAM,uBAAwB,WAAY;AAExC,UAAI,OAAO,KAAK,OAAO,GAAG;AACxB,eAAO;AAAA,MACT;AACA,UAAI,KAAK,IAAI,IAAI,IAAI,KAAK,IAAI,IAAI,GAAG;AACnC,eAAO,uBAAuB,KAAK,IAAI,iBAAiB,IAAI,CAAC;AAAA,MAC/D,OAAO;AACL,eAAO,uBAAuB,KAAK,IAAI,iBAAiB,IAAI,CAAC;AAAA,MAC/D;AAAA,IACF,EAAG;AAEH,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,IAAM;AACtD,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,GAAK;AAGrD,UAAM,OAAO,EAAE,MAAM,MAAM,MAAM,KAAK;AACtC,WAAQ,KAAK,OAAO,IAAI,EAAkC;AAAA,MACxD,CAAC,aAAa;AACZ,cAAM,gBAAgB,SAAS;AAC/B,cAAM,gBAAgB,OAAO,SAAS,aAAa;AACnD,cAAM,eAAe,SAAS,OAAO,eAAe;AAAA,UAClD,OAAO;AAAA,QACT,CAAC;AACD,eAAO,gBAAgB;AAAA,MACzB;AAAA,IACF;AAAA,EACF,GAlCoB;AAqCpB,QAAM,gBAAgB,wBAAC,aAAqB,cAA8B;AACxE,aAAS,IAAI,GAAG,IAAI,UAAU,QAAQ,KAAK;AACzC,UAAI,WAAW,UAAU,CAAC;AAC1B,YAAM,gBAAgB,SAAS;AAC/B,UAAI,CAAC,QAAQ,aAAa,GAAG;AAC3B,gBAAQ,aAAa,IAAI;AACzB,cAAM,gBAAgB,YAAY,aAAa;AAC/C,YAAI,cAAc,UAAU,WAAW;AACrC,oBAAU,KAAK,GAAG,aAAa;AAAA,QACjC;AAAA,MACF;AACA,UAAI,CAAC,SAAS,aAAa,GAAG;AAC5B,iBAAS,aAAa,IAAI;AAC1B,mBAAW,aAAa,IAAI;AAAA,MAC9B;AAAA,IACF;AAAA,EACF,GAhBsB;AAmBtB,MAAI,kBAAkB;AACtB,SAAO,SAAS,QAAQ,CAAC,GAAG,UAAU;AACpC,QAAI,QAAQ,KAAK;AAAG;AACpB,UAAM,YAAY,YAAY,KAAK;AACnC,QAAI,UAAU,UAAU,WAAW;AACjC,YAAM,cAAc;AACpB;AACA,cAAQ,KAAK,IAAI;AACjB,oBAAc,aAAa,SAAS;AAAA,IACtC,OAAO;AACL,cAAQ,KAAK,IAAI;AAAA,IACnB;AAAA,EACF,CAAC;AAGD,SAAO,SAAS,QAAQ,CAAC,GAAG,UAAU;AACpC,QAAI,eAAe,OAAO,SAAS,KAAK;AACxC,QAAI,CAAC,aAAa,YAAY;AAC5B,mBAAa,aAAa,CAAC;AAAA,IAC7B;AAEA,QAAI,WAAW,KAAK,KAAK,GAAG;AAC1B,mBAAa,WAAW,SAAS,QAAQ,KAAK,IAAI,SAAS;AAC3D,mBAAa,WAAW,UAAU,WAAW,KAAK;AAAA,IACpD,OAAO;AACL,mBAAa,WAAW,SAAS;AAAA,IACnC;AAAA,EACF,CAAC;AAED,SAAO;AACT;AA5IS;AA+IT,IAAO,+BAAQ","sourcesContent":["import { GeoJsonProperties, FeatureCollection, Point } from \"geojson\";\nimport { clone } from \"@turf/clone\";\nimport { distance } from \"@turf/distance\";\nimport { degreesToRadians, lengthToDegrees, Units } from \"@turf/helpers\";\nimport { rbush as RBush } from \"./lib/rbush-export.js\";\n\ntype Dbscan = \"core\" | \"edge\" | \"noise\";\ntype DbscanProps = GeoJsonProperties & {\n dbscan?: Dbscan;\n cluster?: number;\n};\n\n// Structure of a point in the spatial index\ntype IndexedPoint = {\n minX: number;\n minY: number;\n maxX: number;\n maxY: number;\n index: number;\n};\n\n/**\n * Takes a set of {@link Point|points} and partition them into clusters according to {@link DBSCAN's|https://en.wikipedia.org/wiki/DBSCAN} data clustering algorithm.\n *\n * @name clustersDbscan\n * @param {FeatureCollection<Point>} points to be clustered\n * @param {number} maxDistance Maximum Distance between any point of the cluster to generate the clusters (kilometers only)\n * @param {Object} [options={}] Optional parameters\n * @param {string} [options.units=\"kilometers\"] in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers\n * @param {boolean} [options.mutate=false] Allows GeoJSON input to be mutated\n * @param {number} [options.minPoints=3] Minimum number of points to generate a single cluster,\n * points which do not meet this requirement will be classified as an 'edge' or 'noise'.\n * @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:\n * - {number} cluster - the associated clusterId\n * - {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')\n * @example\n * // create random points with random z-values in their properties\n * var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});\n * var maxDistance = 100;\n * var clustered = turf.clustersDbscan(points, maxDistance);\n *\n * //addToMap\n * var addToMap = [clustered];\n */\nfunction clustersDbscan(\n points: FeatureCollection<Point>,\n maxDistance: number,\n options: {\n units?: Units;\n minPoints?: number;\n mutate?: boolean;\n } = {}\n): FeatureCollection<Point, DbscanProps> {\n // Input validation being handled by Typescript\n // collectionOf(points, 'Point', 'points must consist of a FeatureCollection of only Points');\n // if (maxDistance === null || maxDistance === undefined) throw new Error('maxDistance is required');\n // if (!(Math.sign(maxDistance) > 0)) throw new Error('maxDistance is invalid');\n // if (!(minPoints === undefined || minPoints === null || Math.sign(minPoints) > 0)) throw new Error('options.minPoints is invalid');\n\n // Clone points to prevent any mutations\n if (options.mutate !== true) points = clone(points);\n\n // Defaults\n const minPoints = options.minPoints || 3;\n\n // Calculate the distance in degrees for region queries\n const latDistanceInDegrees = lengthToDegrees(maxDistance, options.units);\n\n // Create a spatial index\n var tree = new RBush(points.features.length);\n\n // Keeps track of whether a point has been visited or not.\n var visited = points.features.map((_) => false);\n\n // Keeps track of whether a point is assigned to a cluster or not.\n var assigned = points.features.map((_) => false);\n\n // Keeps track of whether a point is noise|edge or not.\n var isnoise = points.features.map((_) => false);\n\n // Keeps track of the clusterId for each point\n var clusterIds: number[] = points.features.map((_) => -1);\n\n // Index each point for spatial queries\n tree.load(\n points.features.map((point, index) => {\n var [x, y] = point.geometry.coordinates;\n return {\n minX: x,\n minY: y,\n maxX: x,\n maxY: y,\n index: index,\n } as IndexedPoint;\n })\n );\n\n // Function to find neighbors of a point within a given distance\n const regionQuery = (index: number): IndexedPoint[] => {\n const point = points.features[index];\n const [x, y] = point.geometry.coordinates;\n\n const minY = Math.max(y - latDistanceInDegrees, -90.0);\n const maxY = Math.min(y + latDistanceInDegrees, 90.0);\n\n const lonDistanceInDegrees = (function () {\n // Handle the case where the bounding box crosses the poles\n if (minY < 0 && maxY > 0) {\n return latDistanceInDegrees;\n }\n if (Math.abs(minY) < Math.abs(maxY)) {\n return latDistanceInDegrees / Math.cos(degreesToRadians(maxY));\n } else {\n return latDistanceInDegrees / Math.cos(degreesToRadians(minY));\n }\n })();\n\n const minX = Math.max(x - lonDistanceInDegrees, -360.0);\n const maxX = Math.min(x + lonDistanceInDegrees, 360.0);\n\n // Calculate the bounding box for the region query\n const bbox = { minX, minY, maxX, maxY };\n return (tree.search(bbox) as ReadonlyArray<IndexedPoint>).filter(\n (neighbor) => {\n const neighborIndex = neighbor.index;\n const neighborPoint = points.features[neighborIndex];\n const distanceInKm = distance(point, neighborPoint, {\n units: \"kilometers\",\n });\n return distanceInKm <= maxDistance;\n }\n );\n };\n\n // Function to expand a cluster\n const expandCluster = (clusteredId: number, neighbors: IndexedPoint[]) => {\n for (var i = 0; i < neighbors.length; i++) {\n var neighbor = neighbors[i];\n const neighborIndex = neighbor.index;\n if (!visited[neighborIndex]) {\n visited[neighborIndex] = true;\n const nextNeighbors = regionQuery(neighborIndex);\n if (nextNeighbors.length >= minPoints) {\n neighbors.push(...nextNeighbors);\n }\n }\n if (!assigned[neighborIndex]) {\n assigned[neighborIndex] = true;\n clusterIds[neighborIndex] = clusteredId;\n }\n }\n };\n\n // Main DBSCAN clustering algorithm\n var nextClusteredId = 0;\n points.features.forEach((_, index) => {\n if (visited[index]) return;\n const neighbors = regionQuery(index);\n if (neighbors.length >= minPoints) {\n const clusteredId = nextClusteredId;\n nextClusteredId++;\n visited[index] = true;\n expandCluster(clusteredId, neighbors);\n } else {\n isnoise[index] = true;\n }\n });\n\n // Assign DBSCAN properties to each point\n points.features.forEach((_, index) => {\n var clusterPoint = points.features[index];\n if (!clusterPoint.properties) {\n clusterPoint.properties = {};\n }\n\n if (clusterIds[index] >= 0) {\n clusterPoint.properties.dbscan = isnoise[index] ? \"edge\" : \"core\";\n clusterPoint.properties.cluster = clusterIds[index];\n } else {\n clusterPoint.properties.dbscan = \"noise\";\n }\n });\n\n return points as FeatureCollection<Point, DbscanProps>;\n}\n\nexport { Dbscan, DbscanProps, clustersDbscan };\nexport default clustersDbscan;\n","// Get around problems with moduleResolution node16 and some older libraries.\n// Manifests as \"This expression is not callable ... has no call signatures\"\n// https://stackoverflow.com/a/74709714\n\nimport lib from \"rbush\";\n\nexport const rbush = lib as unknown as typeof lib.default;\n"]}
1
+ {"version":3,"sources":["../../index.ts","../../lib/rbush-export.ts"],"names":[],"mappings":";AACA,SAAS,aAAa;AACtB,SAAS,gBAAgB;AACzB,SAAS,kBAAkB,uBAA8B;;;ACCzD,OAAO,SAAS;AAET,IAAM,QAAQ;;;ADsCrB,SAAS,eACP,QACA,aACA,UAII,CAAC,GACkC;AAQvC,MAAI,QAAQ,WAAW;AAAM,aAAS,MAAM,MAAM;AAGlD,QAAM,YAAY,QAAQ,aAAa;AAGvC,QAAM,uBAAuB,gBAAgB,aAAa,QAAQ,KAAK;AAGvE,MAAI,OAAO,IAAI,MAAM,OAAO,SAAS,MAAM;AAG3C,MAAI,UAAU,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG9C,MAAI,WAAW,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG/C,MAAI,UAAU,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG9C,MAAI,aAAuB,OAAO,SAAS,IAAI,CAAC,MAAM,EAAE;AAGxD,OAAK;AAAA,IACH,OAAO,SAAS,IAAI,CAAC,OAAO,UAAU;AACpC,UAAI,CAAC,GAAG,CAAC,IAAI,MAAM,SAAS;AAC5B,aAAO;AAAA,QACL,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN;AAAA,MACF;AAAA,IACF,CAAC;AAAA,EACH;AAGA,QAAM,cAAc,CAAC,UAAkC;AACrD,UAAM,QAAQ,OAAO,SAAS,KAAK;AACnC,UAAM,CAAC,GAAG,CAAC,IAAI,MAAM,SAAS;AAE9B,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,GAAK;AACrD,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,EAAI;AAEpD,UAAM,uBAAwB,WAAY;AAExC,UAAI,OAAO,KAAK,OAAO,GAAG;AACxB,eAAO;AAAA,MACT;AACA,UAAI,KAAK,IAAI,IAAI,IAAI,KAAK,IAAI,IAAI,GAAG;AACnC,eAAO,uBAAuB,KAAK,IAAI,iBAAiB,IAAI,CAAC;AAAA,MAC/D,OAAO;AACL,eAAO,uBAAuB,KAAK,IAAI,iBAAiB,IAAI,CAAC;AAAA,MAC/D;AAAA,IACF,EAAG;AAEH,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,IAAM;AACtD,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,GAAK;AAGrD,UAAM,OAAO,EAAE,MAAM,MAAM,MAAM,KAAK;AACtC,WAAQ,KAAK,OAAO,IAAI,EAAkC;AAAA,MACxD,CAAC,aAAa;AACZ,cAAM,gBAAgB,SAAS;AAC/B,cAAM,gBAAgB,OAAO,SAAS,aAAa;AACnD,cAAM,eAAe,SAAS,OAAO,eAAe;AAAA,UAClD,OAAO;AAAA,QACT,CAAC;AACD,eAAO,gBAAgB;AAAA,MACzB;AAAA,IACF;AAAA,EACF;AAGA,QAAM,gBAAgB,CAAC,aAAqB,cAA8B;AACxE,aAAS,IAAI,GAAG,IAAI,UAAU,QAAQ,KAAK;AACzC,UAAI,WAAW,UAAU,CAAC;AAC1B,YAAM,gBAAgB,SAAS;AAC/B,UAAI,CAAC,QAAQ,aAAa,GAAG;AAC3B,gBAAQ,aAAa,IAAI;AACzB,cAAM,gBAAgB,YAAY,aAAa;AAC/C,YAAI,cAAc,UAAU,WAAW;AACrC,oBAAU,KAAK,GAAG,aAAa;AAAA,QACjC;AAAA,MACF;AACA,UAAI,CAAC,SAAS,aAAa,GAAG;AAC5B,iBAAS,aAAa,IAAI;AAC1B,mBAAW,aAAa,IAAI;AAAA,MAC9B;AAAA,IACF;AAAA,EACF;AAGA,MAAI,kBAAkB;AACtB,SAAO,SAAS,QAAQ,CAAC,GAAG,UAAU;AACpC,QAAI,QAAQ,KAAK;AAAG;AACpB,UAAM,YAAY,YAAY,KAAK;AACnC,QAAI,UAAU,UAAU,WAAW;AACjC,YAAM,cAAc;AACpB;AACA,cAAQ,KAAK,IAAI;AACjB,oBAAc,aAAa,SAAS;AAAA,IACtC,OAAO;AACL,cAAQ,KAAK,IAAI;AAAA,IACnB;AAAA,EACF,CAAC;AAGD,SAAO,SAAS,QAAQ,CAAC,GAAG,UAAU;AACpC,QAAI,eAAe,OAAO,SAAS,KAAK;AACxC,QAAI,CAAC,aAAa,YAAY;AAC5B,mBAAa,aAAa,CAAC;AAAA,IAC7B;AAEA,QAAI,WAAW,KAAK,KAAK,GAAG;AAC1B,mBAAa,WAAW,SAAS,QAAQ,KAAK,IAAI,SAAS;AAC3D,mBAAa,WAAW,UAAU,WAAW,KAAK;AAAA,IACpD,OAAO;AACL,mBAAa,WAAW,SAAS;AAAA,IACnC;AAAA,EACF,CAAC;AAED,SAAO;AACT;AAGA,IAAO,+BAAQ","sourcesContent":["import { GeoJsonProperties, FeatureCollection, Point } from \"geojson\";\nimport { clone } from \"@turf/clone\";\nimport { distance } from \"@turf/distance\";\nimport { degreesToRadians, lengthToDegrees, Units } from \"@turf/helpers\";\nimport { rbush as RBush } from \"./lib/rbush-export.js\";\n\ntype Dbscan = \"core\" | \"edge\" | \"noise\";\ntype DbscanProps = GeoJsonProperties & {\n dbscan?: Dbscan;\n cluster?: number;\n};\n\n// Structure of a point in the spatial index\ntype IndexedPoint = {\n minX: number;\n minY: number;\n maxX: number;\n maxY: number;\n index: number;\n};\n\n/**\n * Takes a set of {@link Point|points} and partition them into clusters according to {@link DBSCAN's|https://en.wikipedia.org/wiki/DBSCAN} data clustering algorithm.\n *\n * @name clustersDbscan\n * @param {FeatureCollection<Point>} points to be clustered\n * @param {number} maxDistance Maximum Distance between any point of the cluster to generate the clusters (kilometers only)\n * @param {Object} [options={}] Optional parameters\n * @param {string} [options.units=\"kilometers\"] in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers\n * @param {boolean} [options.mutate=false] Allows GeoJSON input to be mutated\n * @param {number} [options.minPoints=3] Minimum number of points to generate a single cluster,\n * points which do not meet this requirement will be classified as an 'edge' or 'noise'.\n * @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:\n * - {number} cluster - the associated clusterId\n * - {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')\n * @example\n * // create random points with random z-values in their properties\n * var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});\n * var maxDistance = 100;\n * var clustered = turf.clustersDbscan(points, maxDistance);\n *\n * //addToMap\n * var addToMap = [clustered];\n */\nfunction clustersDbscan(\n points: FeatureCollection<Point>,\n maxDistance: number,\n options: {\n units?: Units;\n minPoints?: number;\n mutate?: boolean;\n } = {}\n): FeatureCollection<Point, DbscanProps> {\n // Input validation being handled by Typescript\n // collectionOf(points, 'Point', 'points must consist of a FeatureCollection of only Points');\n // if (maxDistance === null || maxDistance === undefined) throw new Error('maxDistance is required');\n // if (!(Math.sign(maxDistance) > 0)) throw new Error('maxDistance is invalid');\n // if (!(minPoints === undefined || minPoints === null || Math.sign(minPoints) > 0)) throw new Error('options.minPoints is invalid');\n\n // Clone points to prevent any mutations\n if (options.mutate !== true) points = clone(points);\n\n // Defaults\n const minPoints = options.minPoints || 3;\n\n // Calculate the distance in degrees for region queries\n const latDistanceInDegrees = lengthToDegrees(maxDistance, options.units);\n\n // Create a spatial index\n var tree = new RBush(points.features.length);\n\n // Keeps track of whether a point has been visited or not.\n var visited = points.features.map((_) => false);\n\n // Keeps track of whether a point is assigned to a cluster or not.\n var assigned = points.features.map((_) => false);\n\n // Keeps track of whether a point is noise|edge or not.\n var isnoise = points.features.map((_) => false);\n\n // Keeps track of the clusterId for each point\n var clusterIds: number[] = points.features.map((_) => -1);\n\n // Index each point for spatial queries\n tree.load(\n points.features.map((point, index) => {\n var [x, y] = point.geometry.coordinates;\n return {\n minX: x,\n minY: y,\n maxX: x,\n maxY: y,\n index: index,\n } as IndexedPoint;\n })\n );\n\n // Function to find neighbors of a point within a given distance\n const regionQuery = (index: number): IndexedPoint[] => {\n const point = points.features[index];\n const [x, y] = point.geometry.coordinates;\n\n const minY = Math.max(y - latDistanceInDegrees, -90.0);\n const maxY = Math.min(y + latDistanceInDegrees, 90.0);\n\n const lonDistanceInDegrees = (function () {\n // Handle the case where the bounding box crosses the poles\n if (minY < 0 && maxY > 0) {\n return latDistanceInDegrees;\n }\n if (Math.abs(minY) < Math.abs(maxY)) {\n return latDistanceInDegrees / Math.cos(degreesToRadians(maxY));\n } else {\n return latDistanceInDegrees / Math.cos(degreesToRadians(minY));\n }\n })();\n\n const minX = Math.max(x - lonDistanceInDegrees, -360.0);\n const maxX = Math.min(x + lonDistanceInDegrees, 360.0);\n\n // Calculate the bounding box for the region query\n const bbox = { minX, minY, maxX, maxY };\n return (tree.search(bbox) as ReadonlyArray<IndexedPoint>).filter(\n (neighbor) => {\n const neighborIndex = neighbor.index;\n const neighborPoint = points.features[neighborIndex];\n const distanceInKm = distance(point, neighborPoint, {\n units: \"kilometers\",\n });\n return distanceInKm <= maxDistance;\n }\n );\n };\n\n // Function to expand a cluster\n const expandCluster = (clusteredId: number, neighbors: IndexedPoint[]) => {\n for (var i = 0; i < neighbors.length; i++) {\n var neighbor = neighbors[i];\n const neighborIndex = neighbor.index;\n if (!visited[neighborIndex]) {\n visited[neighborIndex] = true;\n const nextNeighbors = regionQuery(neighborIndex);\n if (nextNeighbors.length >= minPoints) {\n neighbors.push(...nextNeighbors);\n }\n }\n if (!assigned[neighborIndex]) {\n assigned[neighborIndex] = true;\n clusterIds[neighborIndex] = clusteredId;\n }\n }\n };\n\n // Main DBSCAN clustering algorithm\n var nextClusteredId = 0;\n points.features.forEach((_, index) => {\n if (visited[index]) return;\n const neighbors = regionQuery(index);\n if (neighbors.length >= minPoints) {\n const clusteredId = nextClusteredId;\n nextClusteredId++;\n visited[index] = true;\n expandCluster(clusteredId, neighbors);\n } else {\n isnoise[index] = true;\n }\n });\n\n // Assign DBSCAN properties to each point\n points.features.forEach((_, index) => {\n var clusterPoint = points.features[index];\n if (!clusterPoint.properties) {\n clusterPoint.properties = {};\n }\n\n if (clusterIds[index] >= 0) {\n clusterPoint.properties.dbscan = isnoise[index] ? \"edge\" : \"core\";\n clusterPoint.properties.cluster = clusterIds[index];\n } else {\n clusterPoint.properties.dbscan = \"noise\";\n }\n });\n\n return points as FeatureCollection<Point, DbscanProps>;\n}\n\nexport { Dbscan, DbscanProps, clustersDbscan };\nexport default clustersDbscan;\n","// Get around problems with moduleResolution node16 and some older libraries.\n// Manifests as \"This expression is not callable ... has no call signatures\"\n// https://stackoverflow.com/a/74709714\n\nimport lib from \"rbush\";\n\nexport const rbush = lib as unknown as typeof lib.default;\n"]}
package/dist/esm/index.js CHANGED
@@ -1,6 +1,3 @@
1
- var __defProp = Object.defineProperty;
2
- var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
3
-
4
1
  // index.ts
5
2
  import { clone } from "@turf/clone";
6
3
  import { distance } from "@turf/distance";
@@ -33,7 +30,7 @@ function clustersDbscan(points, maxDistance, options = {}) {
33
30
  };
34
31
  })
35
32
  );
36
- const regionQuery = /* @__PURE__ */ __name((index) => {
33
+ const regionQuery = (index) => {
37
34
  const point = points.features[index];
38
35
  const [x, y] = point.geometry.coordinates;
39
36
  const minY = Math.max(y - latDistanceInDegrees, -90);
@@ -61,8 +58,8 @@ function clustersDbscan(points, maxDistance, options = {}) {
61
58
  return distanceInKm <= maxDistance;
62
59
  }
63
60
  );
64
- }, "regionQuery");
65
- const expandCluster = /* @__PURE__ */ __name((clusteredId, neighbors) => {
61
+ };
62
+ const expandCluster = (clusteredId, neighbors) => {
66
63
  for (var i = 0; i < neighbors.length; i++) {
67
64
  var neighbor = neighbors[i];
68
65
  const neighborIndex = neighbor.index;
@@ -78,7 +75,7 @@ function clustersDbscan(points, maxDistance, options = {}) {
78
75
  clusterIds[neighborIndex] = clusteredId;
79
76
  }
80
77
  }
81
- }, "expandCluster");
78
+ };
82
79
  var nextClusteredId = 0;
83
80
  points.features.forEach((_, index) => {
84
81
  if (visited[index])
@@ -107,7 +104,6 @@ function clustersDbscan(points, maxDistance, options = {}) {
107
104
  });
108
105
  return points;
109
106
  }
110
- __name(clustersDbscan, "clustersDbscan");
111
107
  var turf_clusters_dbscan_default = clustersDbscan;
112
108
  export {
113
109
  clustersDbscan,
@@ -1 +1 @@
1
- {"version":3,"sources":["../../index.ts","../../lib/rbush-export.ts"],"sourcesContent":["import { GeoJsonProperties, FeatureCollection, Point } from \"geojson\";\nimport { clone } from \"@turf/clone\";\nimport { distance } from \"@turf/distance\";\nimport { degreesToRadians, lengthToDegrees, Units } from \"@turf/helpers\";\nimport { rbush as RBush } from \"./lib/rbush-export.js\";\n\ntype Dbscan = \"core\" | \"edge\" | \"noise\";\ntype DbscanProps = GeoJsonProperties & {\n dbscan?: Dbscan;\n cluster?: number;\n};\n\n// Structure of a point in the spatial index\ntype IndexedPoint = {\n minX: number;\n minY: number;\n maxX: number;\n maxY: number;\n index: number;\n};\n\n/**\n * Takes a set of {@link Point|points} and partition them into clusters according to {@link DBSCAN's|https://en.wikipedia.org/wiki/DBSCAN} data clustering algorithm.\n *\n * @name clustersDbscan\n * @param {FeatureCollection<Point>} points to be clustered\n * @param {number} maxDistance Maximum Distance between any point of the cluster to generate the clusters (kilometers only)\n * @param {Object} [options={}] Optional parameters\n * @param {string} [options.units=\"kilometers\"] in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers\n * @param {boolean} [options.mutate=false] Allows GeoJSON input to be mutated\n * @param {number} [options.minPoints=3] Minimum number of points to generate a single cluster,\n * points which do not meet this requirement will be classified as an 'edge' or 'noise'.\n * @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:\n * - {number} cluster - the associated clusterId\n * - {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')\n * @example\n * // create random points with random z-values in their properties\n * var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});\n * var maxDistance = 100;\n * var clustered = turf.clustersDbscan(points, maxDistance);\n *\n * //addToMap\n * var addToMap = [clustered];\n */\nfunction clustersDbscan(\n points: FeatureCollection<Point>,\n maxDistance: number,\n options: {\n units?: Units;\n minPoints?: number;\n mutate?: boolean;\n } = {}\n): FeatureCollection<Point, DbscanProps> {\n // Input validation being handled by Typescript\n // collectionOf(points, 'Point', 'points must consist of a FeatureCollection of only Points');\n // if (maxDistance === null || maxDistance === undefined) throw new Error('maxDistance is required');\n // if (!(Math.sign(maxDistance) > 0)) throw new Error('maxDistance is invalid');\n // if (!(minPoints === undefined || minPoints === null || Math.sign(minPoints) > 0)) throw new Error('options.minPoints is invalid');\n\n // Clone points to prevent any mutations\n if (options.mutate !== true) points = clone(points);\n\n // Defaults\n const minPoints = options.minPoints || 3;\n\n // Calculate the distance in degrees for region queries\n const latDistanceInDegrees = lengthToDegrees(maxDistance, options.units);\n\n // Create a spatial index\n var tree = new RBush(points.features.length);\n\n // Keeps track of whether a point has been visited or not.\n var visited = points.features.map((_) => false);\n\n // Keeps track of whether a point is assigned to a cluster or not.\n var assigned = points.features.map((_) => false);\n\n // Keeps track of whether a point is noise|edge or not.\n var isnoise = points.features.map((_) => false);\n\n // Keeps track of the clusterId for each point\n var clusterIds: number[] = points.features.map((_) => -1);\n\n // Index each point for spatial queries\n tree.load(\n points.features.map((point, index) => {\n var [x, y] = point.geometry.coordinates;\n return {\n minX: x,\n minY: y,\n maxX: x,\n maxY: y,\n index: index,\n } as IndexedPoint;\n })\n );\n\n // Function to find neighbors of a point within a given distance\n const regionQuery = (index: number): IndexedPoint[] => {\n const point = points.features[index];\n const [x, y] = point.geometry.coordinates;\n\n const minY = Math.max(y - latDistanceInDegrees, -90.0);\n const maxY = Math.min(y + latDistanceInDegrees, 90.0);\n\n const lonDistanceInDegrees = (function () {\n // Handle the case where the bounding box crosses the poles\n if (minY < 0 && maxY > 0) {\n return latDistanceInDegrees;\n }\n if (Math.abs(minY) < Math.abs(maxY)) {\n return latDistanceInDegrees / Math.cos(degreesToRadians(maxY));\n } else {\n return latDistanceInDegrees / Math.cos(degreesToRadians(minY));\n }\n })();\n\n const minX = Math.max(x - lonDistanceInDegrees, -360.0);\n const maxX = Math.min(x + lonDistanceInDegrees, 360.0);\n\n // Calculate the bounding box for the region query\n const bbox = { minX, minY, maxX, maxY };\n return (tree.search(bbox) as ReadonlyArray<IndexedPoint>).filter(\n (neighbor) => {\n const neighborIndex = neighbor.index;\n const neighborPoint = points.features[neighborIndex];\n const distanceInKm = distance(point, neighborPoint, {\n units: \"kilometers\",\n });\n return distanceInKm <= maxDistance;\n }\n );\n };\n\n // Function to expand a cluster\n const expandCluster = (clusteredId: number, neighbors: IndexedPoint[]) => {\n for (var i = 0; i < neighbors.length; i++) {\n var neighbor = neighbors[i];\n const neighborIndex = neighbor.index;\n if (!visited[neighborIndex]) {\n visited[neighborIndex] = true;\n const nextNeighbors = regionQuery(neighborIndex);\n if (nextNeighbors.length >= minPoints) {\n neighbors.push(...nextNeighbors);\n }\n }\n if (!assigned[neighborIndex]) {\n assigned[neighborIndex] = true;\n clusterIds[neighborIndex] = clusteredId;\n }\n }\n };\n\n // Main DBSCAN clustering algorithm\n var nextClusteredId = 0;\n points.features.forEach((_, index) => {\n if (visited[index]) return;\n const neighbors = regionQuery(index);\n if (neighbors.length >= minPoints) {\n const clusteredId = nextClusteredId;\n nextClusteredId++;\n visited[index] = true;\n expandCluster(clusteredId, neighbors);\n } else {\n isnoise[index] = true;\n }\n });\n\n // Assign DBSCAN properties to each point\n points.features.forEach((_, index) => {\n var clusterPoint = points.features[index];\n if (!clusterPoint.properties) {\n clusterPoint.properties = {};\n }\n\n if (clusterIds[index] >= 0) {\n clusterPoint.properties.dbscan = isnoise[index] ? \"edge\" : \"core\";\n clusterPoint.properties.cluster = clusterIds[index];\n } else {\n clusterPoint.properties.dbscan = \"noise\";\n }\n });\n\n return points as FeatureCollection<Point, DbscanProps>;\n}\n\nexport { Dbscan, DbscanProps, clustersDbscan };\nexport default clustersDbscan;\n","// Get around problems with moduleResolution node16 and some older libraries.\n// Manifests as \"This expression is not callable ... has no call signatures\"\n// https://stackoverflow.com/a/74709714\n\nimport lib from \"rbush\";\n\nexport const rbush = lib as unknown as typeof lib.default;\n"],"mappings":";;;;AACA,SAAS,aAAa;AACtB,SAAS,gBAAgB;AACzB,SAAS,kBAAkB,uBAA8B;;;ACCzD,OAAO,SAAS;AAET,IAAM,QAAQ;;;ADsCrB,SAAS,eACP,QACA,aACA,UAII,CAAC,GACkC;AAQvC,MAAI,QAAQ,WAAW;AAAM,aAAS,MAAM,MAAM;AAGlD,QAAM,YAAY,QAAQ,aAAa;AAGvC,QAAM,uBAAuB,gBAAgB,aAAa,QAAQ,KAAK;AAGvE,MAAI,OAAO,IAAI,MAAM,OAAO,SAAS,MAAM;AAG3C,MAAI,UAAU,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG9C,MAAI,WAAW,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG/C,MAAI,UAAU,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG9C,MAAI,aAAuB,OAAO,SAAS,IAAI,CAAC,MAAM,EAAE;AAGxD,OAAK;AAAA,IACH,OAAO,SAAS,IAAI,CAAC,OAAO,UAAU;AACpC,UAAI,CAAC,GAAG,CAAC,IAAI,MAAM,SAAS;AAC5B,aAAO;AAAA,QACL,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN;AAAA,MACF;AAAA,IACF,CAAC;AAAA,EACH;AAGA,QAAM,cAAc,wBAAC,UAAkC;AACrD,UAAM,QAAQ,OAAO,SAAS,KAAK;AACnC,UAAM,CAAC,GAAG,CAAC,IAAI,MAAM,SAAS;AAE9B,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,GAAK;AACrD,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,EAAI;AAEpD,UAAM,uBAAwB,WAAY;AAExC,UAAI,OAAO,KAAK,OAAO,GAAG;AACxB,eAAO;AAAA,MACT;AACA,UAAI,KAAK,IAAI,IAAI,IAAI,KAAK,IAAI,IAAI,GAAG;AACnC,eAAO,uBAAuB,KAAK,IAAI,iBAAiB,IAAI,CAAC;AAAA,MAC/D,OAAO;AACL,eAAO,uBAAuB,KAAK,IAAI,iBAAiB,IAAI,CAAC;AAAA,MAC/D;AAAA,IACF,EAAG;AAEH,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,IAAM;AACtD,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,GAAK;AAGrD,UAAM,OAAO,EAAE,MAAM,MAAM,MAAM,KAAK;AACtC,WAAQ,KAAK,OAAO,IAAI,EAAkC;AAAA,MACxD,CAAC,aAAa;AACZ,cAAM,gBAAgB,SAAS;AAC/B,cAAM,gBAAgB,OAAO,SAAS,aAAa;AACnD,cAAM,eAAe,SAAS,OAAO,eAAe;AAAA,UAClD,OAAO;AAAA,QACT,CAAC;AACD,eAAO,gBAAgB;AAAA,MACzB;AAAA,IACF;AAAA,EACF,GAlCoB;AAqCpB,QAAM,gBAAgB,wBAAC,aAAqB,cAA8B;AACxE,aAAS,IAAI,GAAG,IAAI,UAAU,QAAQ,KAAK;AACzC,UAAI,WAAW,UAAU,CAAC;AAC1B,YAAM,gBAAgB,SAAS;AAC/B,UAAI,CAAC,QAAQ,aAAa,GAAG;AAC3B,gBAAQ,aAAa,IAAI;AACzB,cAAM,gBAAgB,YAAY,aAAa;AAC/C,YAAI,cAAc,UAAU,WAAW;AACrC,oBAAU,KAAK,GAAG,aAAa;AAAA,QACjC;AAAA,MACF;AACA,UAAI,CAAC,SAAS,aAAa,GAAG;AAC5B,iBAAS,aAAa,IAAI;AAC1B,mBAAW,aAAa,IAAI;AAAA,MAC9B;AAAA,IACF;AAAA,EACF,GAhBsB;AAmBtB,MAAI,kBAAkB;AACtB,SAAO,SAAS,QAAQ,CAAC,GAAG,UAAU;AACpC,QAAI,QAAQ,KAAK;AAAG;AACpB,UAAM,YAAY,YAAY,KAAK;AACnC,QAAI,UAAU,UAAU,WAAW;AACjC,YAAM,cAAc;AACpB;AACA,cAAQ,KAAK,IAAI;AACjB,oBAAc,aAAa,SAAS;AAAA,IACtC,OAAO;AACL,cAAQ,KAAK,IAAI;AAAA,IACnB;AAAA,EACF,CAAC;AAGD,SAAO,SAAS,QAAQ,CAAC,GAAG,UAAU;AACpC,QAAI,eAAe,OAAO,SAAS,KAAK;AACxC,QAAI,CAAC,aAAa,YAAY;AAC5B,mBAAa,aAAa,CAAC;AAAA,IAC7B;AAEA,QAAI,WAAW,KAAK,KAAK,GAAG;AAC1B,mBAAa,WAAW,SAAS,QAAQ,KAAK,IAAI,SAAS;AAC3D,mBAAa,WAAW,UAAU,WAAW,KAAK;AAAA,IACpD,OAAO;AACL,mBAAa,WAAW,SAAS;AAAA,IACnC;AAAA,EACF,CAAC;AAED,SAAO;AACT;AA5IS;AA+IT,IAAO,+BAAQ;","names":[]}
1
+ {"version":3,"sources":["../../index.ts","../../lib/rbush-export.ts"],"sourcesContent":["import { GeoJsonProperties, FeatureCollection, Point } from \"geojson\";\nimport { clone } from \"@turf/clone\";\nimport { distance } from \"@turf/distance\";\nimport { degreesToRadians, lengthToDegrees, Units } from \"@turf/helpers\";\nimport { rbush as RBush } from \"./lib/rbush-export.js\";\n\ntype Dbscan = \"core\" | \"edge\" | \"noise\";\ntype DbscanProps = GeoJsonProperties & {\n dbscan?: Dbscan;\n cluster?: number;\n};\n\n// Structure of a point in the spatial index\ntype IndexedPoint = {\n minX: number;\n minY: number;\n maxX: number;\n maxY: number;\n index: number;\n};\n\n/**\n * Takes a set of {@link Point|points} and partition them into clusters according to {@link DBSCAN's|https://en.wikipedia.org/wiki/DBSCAN} data clustering algorithm.\n *\n * @name clustersDbscan\n * @param {FeatureCollection<Point>} points to be clustered\n * @param {number} maxDistance Maximum Distance between any point of the cluster to generate the clusters (kilometers only)\n * @param {Object} [options={}] Optional parameters\n * @param {string} [options.units=\"kilometers\"] in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers\n * @param {boolean} [options.mutate=false] Allows GeoJSON input to be mutated\n * @param {number} [options.minPoints=3] Minimum number of points to generate a single cluster,\n * points which do not meet this requirement will be classified as an 'edge' or 'noise'.\n * @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:\n * - {number} cluster - the associated clusterId\n * - {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')\n * @example\n * // create random points with random z-values in their properties\n * var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});\n * var maxDistance = 100;\n * var clustered = turf.clustersDbscan(points, maxDistance);\n *\n * //addToMap\n * var addToMap = [clustered];\n */\nfunction clustersDbscan(\n points: FeatureCollection<Point>,\n maxDistance: number,\n options: {\n units?: Units;\n minPoints?: number;\n mutate?: boolean;\n } = {}\n): FeatureCollection<Point, DbscanProps> {\n // Input validation being handled by Typescript\n // collectionOf(points, 'Point', 'points must consist of a FeatureCollection of only Points');\n // if (maxDistance === null || maxDistance === undefined) throw new Error('maxDistance is required');\n // if (!(Math.sign(maxDistance) > 0)) throw new Error('maxDistance is invalid');\n // if (!(minPoints === undefined || minPoints === null || Math.sign(minPoints) > 0)) throw new Error('options.minPoints is invalid');\n\n // Clone points to prevent any mutations\n if (options.mutate !== true) points = clone(points);\n\n // Defaults\n const minPoints = options.minPoints || 3;\n\n // Calculate the distance in degrees for region queries\n const latDistanceInDegrees = lengthToDegrees(maxDistance, options.units);\n\n // Create a spatial index\n var tree = new RBush(points.features.length);\n\n // Keeps track of whether a point has been visited or not.\n var visited = points.features.map((_) => false);\n\n // Keeps track of whether a point is assigned to a cluster or not.\n var assigned = points.features.map((_) => false);\n\n // Keeps track of whether a point is noise|edge or not.\n var isnoise = points.features.map((_) => false);\n\n // Keeps track of the clusterId for each point\n var clusterIds: number[] = points.features.map((_) => -1);\n\n // Index each point for spatial queries\n tree.load(\n points.features.map((point, index) => {\n var [x, y] = point.geometry.coordinates;\n return {\n minX: x,\n minY: y,\n maxX: x,\n maxY: y,\n index: index,\n } as IndexedPoint;\n })\n );\n\n // Function to find neighbors of a point within a given distance\n const regionQuery = (index: number): IndexedPoint[] => {\n const point = points.features[index];\n const [x, y] = point.geometry.coordinates;\n\n const minY = Math.max(y - latDistanceInDegrees, -90.0);\n const maxY = Math.min(y + latDistanceInDegrees, 90.0);\n\n const lonDistanceInDegrees = (function () {\n // Handle the case where the bounding box crosses the poles\n if (minY < 0 && maxY > 0) {\n return latDistanceInDegrees;\n }\n if (Math.abs(minY) < Math.abs(maxY)) {\n return latDistanceInDegrees / Math.cos(degreesToRadians(maxY));\n } else {\n return latDistanceInDegrees / Math.cos(degreesToRadians(minY));\n }\n })();\n\n const minX = Math.max(x - lonDistanceInDegrees, -360.0);\n const maxX = Math.min(x + lonDistanceInDegrees, 360.0);\n\n // Calculate the bounding box for the region query\n const bbox = { minX, minY, maxX, maxY };\n return (tree.search(bbox) as ReadonlyArray<IndexedPoint>).filter(\n (neighbor) => {\n const neighborIndex = neighbor.index;\n const neighborPoint = points.features[neighborIndex];\n const distanceInKm = distance(point, neighborPoint, {\n units: \"kilometers\",\n });\n return distanceInKm <= maxDistance;\n }\n );\n };\n\n // Function to expand a cluster\n const expandCluster = (clusteredId: number, neighbors: IndexedPoint[]) => {\n for (var i = 0; i < neighbors.length; i++) {\n var neighbor = neighbors[i];\n const neighborIndex = neighbor.index;\n if (!visited[neighborIndex]) {\n visited[neighborIndex] = true;\n const nextNeighbors = regionQuery(neighborIndex);\n if (nextNeighbors.length >= minPoints) {\n neighbors.push(...nextNeighbors);\n }\n }\n if (!assigned[neighborIndex]) {\n assigned[neighborIndex] = true;\n clusterIds[neighborIndex] = clusteredId;\n }\n }\n };\n\n // Main DBSCAN clustering algorithm\n var nextClusteredId = 0;\n points.features.forEach((_, index) => {\n if (visited[index]) return;\n const neighbors = regionQuery(index);\n if (neighbors.length >= minPoints) {\n const clusteredId = nextClusteredId;\n nextClusteredId++;\n visited[index] = true;\n expandCluster(clusteredId, neighbors);\n } else {\n isnoise[index] = true;\n }\n });\n\n // Assign DBSCAN properties to each point\n points.features.forEach((_, index) => {\n var clusterPoint = points.features[index];\n if (!clusterPoint.properties) {\n clusterPoint.properties = {};\n }\n\n if (clusterIds[index] >= 0) {\n clusterPoint.properties.dbscan = isnoise[index] ? \"edge\" : \"core\";\n clusterPoint.properties.cluster = clusterIds[index];\n } else {\n clusterPoint.properties.dbscan = \"noise\";\n }\n });\n\n return points as FeatureCollection<Point, DbscanProps>;\n}\n\nexport { Dbscan, DbscanProps, clustersDbscan };\nexport default clustersDbscan;\n","// Get around problems with moduleResolution node16 and some older libraries.\n// Manifests as \"This expression is not callable ... has no call signatures\"\n// https://stackoverflow.com/a/74709714\n\nimport lib from \"rbush\";\n\nexport const rbush = lib as unknown as typeof lib.default;\n"],"mappings":";AACA,SAAS,aAAa;AACtB,SAAS,gBAAgB;AACzB,SAAS,kBAAkB,uBAA8B;;;ACCzD,OAAO,SAAS;AAET,IAAM,QAAQ;;;ADsCrB,SAAS,eACP,QACA,aACA,UAII,CAAC,GACkC;AAQvC,MAAI,QAAQ,WAAW;AAAM,aAAS,MAAM,MAAM;AAGlD,QAAM,YAAY,QAAQ,aAAa;AAGvC,QAAM,uBAAuB,gBAAgB,aAAa,QAAQ,KAAK;AAGvE,MAAI,OAAO,IAAI,MAAM,OAAO,SAAS,MAAM;AAG3C,MAAI,UAAU,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG9C,MAAI,WAAW,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG/C,MAAI,UAAU,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG9C,MAAI,aAAuB,OAAO,SAAS,IAAI,CAAC,MAAM,EAAE;AAGxD,OAAK;AAAA,IACH,OAAO,SAAS,IAAI,CAAC,OAAO,UAAU;AACpC,UAAI,CAAC,GAAG,CAAC,IAAI,MAAM,SAAS;AAC5B,aAAO;AAAA,QACL,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN;AAAA,MACF;AAAA,IACF,CAAC;AAAA,EACH;AAGA,QAAM,cAAc,CAAC,UAAkC;AACrD,UAAM,QAAQ,OAAO,SAAS,KAAK;AACnC,UAAM,CAAC,GAAG,CAAC,IAAI,MAAM,SAAS;AAE9B,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,GAAK;AACrD,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,EAAI;AAEpD,UAAM,uBAAwB,WAAY;AAExC,UAAI,OAAO,KAAK,OAAO,GAAG;AACxB,eAAO;AAAA,MACT;AACA,UAAI,KAAK,IAAI,IAAI,IAAI,KAAK,IAAI,IAAI,GAAG;AACnC,eAAO,uBAAuB,KAAK,IAAI,iBAAiB,IAAI,CAAC;AAAA,MAC/D,OAAO;AACL,eAAO,uBAAuB,KAAK,IAAI,iBAAiB,IAAI,CAAC;AAAA,MAC/D;AAAA,IACF,EAAG;AAEH,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,IAAM;AACtD,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,GAAK;AAGrD,UAAM,OAAO,EAAE,MAAM,MAAM,MAAM,KAAK;AACtC,WAAQ,KAAK,OAAO,IAAI,EAAkC;AAAA,MACxD,CAAC,aAAa;AACZ,cAAM,gBAAgB,SAAS;AAC/B,cAAM,gBAAgB,OAAO,SAAS,aAAa;AACnD,cAAM,eAAe,SAAS,OAAO,eAAe;AAAA,UAClD,OAAO;AAAA,QACT,CAAC;AACD,eAAO,gBAAgB;AAAA,MACzB;AAAA,IACF;AAAA,EACF;AAGA,QAAM,gBAAgB,CAAC,aAAqB,cAA8B;AACxE,aAAS,IAAI,GAAG,IAAI,UAAU,QAAQ,KAAK;AACzC,UAAI,WAAW,UAAU,CAAC;AAC1B,YAAM,gBAAgB,SAAS;AAC/B,UAAI,CAAC,QAAQ,aAAa,GAAG;AAC3B,gBAAQ,aAAa,IAAI;AACzB,cAAM,gBAAgB,YAAY,aAAa;AAC/C,YAAI,cAAc,UAAU,WAAW;AACrC,oBAAU,KAAK,GAAG,aAAa;AAAA,QACjC;AAAA,MACF;AACA,UAAI,CAAC,SAAS,aAAa,GAAG;AAC5B,iBAAS,aAAa,IAAI;AAC1B,mBAAW,aAAa,IAAI;AAAA,MAC9B;AAAA,IACF;AAAA,EACF;AAGA,MAAI,kBAAkB;AACtB,SAAO,SAAS,QAAQ,CAAC,GAAG,UAAU;AACpC,QAAI,QAAQ,KAAK;AAAG;AACpB,UAAM,YAAY,YAAY,KAAK;AACnC,QAAI,UAAU,UAAU,WAAW;AACjC,YAAM,cAAc;AACpB;AACA,cAAQ,KAAK,IAAI;AACjB,oBAAc,aAAa,SAAS;AAAA,IACtC,OAAO;AACL,cAAQ,KAAK,IAAI;AAAA,IACnB;AAAA,EACF,CAAC;AAGD,SAAO,SAAS,QAAQ,CAAC,GAAG,UAAU;AACpC,QAAI,eAAe,OAAO,SAAS,KAAK;AACxC,QAAI,CAAC,aAAa,YAAY;AAC5B,mBAAa,aAAa,CAAC;AAAA,IAC7B;AAEA,QAAI,WAAW,KAAK,KAAK,GAAG;AAC1B,mBAAa,WAAW,SAAS,QAAQ,KAAK,IAAI,SAAS;AAC3D,mBAAa,WAAW,UAAU,WAAW,KAAK;AAAA,IACpD,OAAO;AACL,mBAAa,WAAW,SAAS;AAAA,IACnC;AAAA,EACF,CAAC;AAED,SAAO;AACT;AAGA,IAAO,+BAAQ;","names":[]}
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@turf/clusters-dbscan",
3
- "version": "7.0.0",
3
+ "version": "7.1.0-alpha.7+0ce6ecca0",
4
4
  "description": "turf clusters-dbscan module",
5
5
  "author": "Turf Authors",
6
6
  "contributors": [
@@ -60,8 +60,8 @@
60
60
  "test:types": "tsc --esModuleInterop --module node16 --moduleResolution node16 --noEmit --strict types.ts"
61
61
  },
62
62
  "devDependencies": {
63
- "@turf/centroid": "^7.0.0",
64
- "@turf/clusters": "^7.0.0",
63
+ "@turf/centroid": "^7.1.0-alpha.7+0ce6ecca0",
64
+ "@turf/clusters": "^7.1.0-alpha.7+0ce6ecca0",
65
65
  "@types/benchmark": "^2.1.5",
66
66
  "@types/rbush": "^3.0.2",
67
67
  "@types/tape": "^4.2.32",
@@ -77,12 +77,12 @@
77
77
  "write-json-file": "^5.0.0"
78
78
  },
79
79
  "dependencies": {
80
- "@turf/clone": "^7.0.0",
81
- "@turf/distance": "^7.0.0",
82
- "@turf/helpers": "^7.0.0",
83
- "@turf/meta": "^7.0.0",
80
+ "@turf/clone": "^7.1.0-alpha.7+0ce6ecca0",
81
+ "@turf/distance": "^7.1.0-alpha.7+0ce6ecca0",
82
+ "@turf/helpers": "^7.1.0-alpha.7+0ce6ecca0",
83
+ "@turf/meta": "^7.1.0-alpha.7+0ce6ecca0",
84
84
  "rbush": "^3.0.1",
85
85
  "tslib": "^2.6.2"
86
86
  },
87
- "gitHead": "3d3a7917025fbabe191dbddbc89754b86f9c7739"
87
+ "gitHead": "0ce6ecca05829690270fec6d6bed2003495fe0ea"
88
88
  }