@turf/clusters-dbscan 7.0.0-alpha.2 → 7.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +4 -9
- package/dist/cjs/index.cjs +116 -0
- package/dist/cjs/index.cjs.map +1 -0
- package/dist/cjs/index.d.cts +38 -0
- package/dist/{js → esm}/index.d.ts +7 -5
- package/dist/esm/index.js +116 -0
- package/dist/esm/index.js.map +1 -0
- package/package.json +40 -35
- package/dist/es/index.js +0 -69
- package/dist/es/package.json +0 -1
- package/dist/js/index.js +0 -72
package/README.md
CHANGED
|
@@ -48,26 +48,21 @@ Returns **[FeatureCollection][3]<[Point][4]>** Clustered Points with an addition
|
|
|
48
48
|
|
|
49
49
|
[8]: https://developer.mozilla.org/docs/Web/JavaScript/Reference/Global_Objects/Boolean
|
|
50
50
|
|
|
51
|
-
<!-- This file is automatically generated. Please don't edit it directly
|
|
52
|
-
if you find an error, edit the source file (likely index.js), and re-run
|
|
53
|
-
./scripts/generate-readmes in the turf project. -->
|
|
51
|
+
<!-- This file is automatically generated. Please don't edit it directly. If you find an error, edit the source file of the module in question (likely index.js or index.ts), and re-run "yarn docs" from the root of the turf project. -->
|
|
54
52
|
|
|
55
53
|
---
|
|
56
54
|
|
|
57
|
-
This module is part of the [Turfjs project](
|
|
58
|
-
module collection dedicated to geographic algorithms. It is maintained in the
|
|
59
|
-
[Turfjs/turf](https://github.com/Turfjs/turf) repository, where you can create
|
|
60
|
-
PRs and issues.
|
|
55
|
+
This module is part of the [Turfjs project](https://turfjs.org/), an open source module collection dedicated to geographic algorithms. It is maintained in the [Turfjs/turf](https://github.com/Turfjs/turf) repository, where you can create PRs and issues.
|
|
61
56
|
|
|
62
57
|
### Installation
|
|
63
58
|
|
|
64
|
-
Install this module individually:
|
|
59
|
+
Install this single module individually:
|
|
65
60
|
|
|
66
61
|
```sh
|
|
67
62
|
$ npm install @turf/clusters-dbscan
|
|
68
63
|
```
|
|
69
64
|
|
|
70
|
-
Or install the
|
|
65
|
+
Or install the all-encompassing @turf/turf module that includes all modules as functions:
|
|
71
66
|
|
|
72
67
|
```sh
|
|
73
68
|
$ npm install @turf/turf
|
|
@@ -0,0 +1,116 @@
|
|
|
1
|
+
"use strict";Object.defineProperty(exports, "__esModule", {value: true}); function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }var __defProp = Object.defineProperty;
|
|
2
|
+
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
|
3
|
+
|
|
4
|
+
// index.ts
|
|
5
|
+
var _clone = require('@turf/clone');
|
|
6
|
+
var _distance = require('@turf/distance');
|
|
7
|
+
var _helpers = require('@turf/helpers');
|
|
8
|
+
|
|
9
|
+
// lib/rbush-export.ts
|
|
10
|
+
var _rbush = require('rbush'); var _rbush2 = _interopRequireDefault(_rbush);
|
|
11
|
+
var rbush = _rbush2.default;
|
|
12
|
+
|
|
13
|
+
// index.ts
|
|
14
|
+
function clustersDbscan(points, maxDistance, options = {}) {
|
|
15
|
+
if (options.mutate !== true)
|
|
16
|
+
points = _clone.clone.call(void 0, points);
|
|
17
|
+
const minPoints = options.minPoints || 3;
|
|
18
|
+
const latDistanceInDegrees = _helpers.lengthToDegrees.call(void 0, maxDistance, options.units);
|
|
19
|
+
var tree = new rbush(points.features.length);
|
|
20
|
+
var visited = points.features.map((_) => false);
|
|
21
|
+
var assigned = points.features.map((_) => false);
|
|
22
|
+
var isnoise = points.features.map((_) => false);
|
|
23
|
+
var clusterIds = points.features.map((_) => -1);
|
|
24
|
+
tree.load(
|
|
25
|
+
points.features.map((point, index) => {
|
|
26
|
+
var [x, y] = point.geometry.coordinates;
|
|
27
|
+
return {
|
|
28
|
+
minX: x,
|
|
29
|
+
minY: y,
|
|
30
|
+
maxX: x,
|
|
31
|
+
maxY: y,
|
|
32
|
+
index
|
|
33
|
+
};
|
|
34
|
+
})
|
|
35
|
+
);
|
|
36
|
+
const regionQuery = /* @__PURE__ */ __name((index) => {
|
|
37
|
+
const point = points.features[index];
|
|
38
|
+
const [x, y] = point.geometry.coordinates;
|
|
39
|
+
const minY = Math.max(y - latDistanceInDegrees, -90);
|
|
40
|
+
const maxY = Math.min(y + latDistanceInDegrees, 90);
|
|
41
|
+
const lonDistanceInDegrees = function() {
|
|
42
|
+
if (minY < 0 && maxY > 0) {
|
|
43
|
+
return latDistanceInDegrees;
|
|
44
|
+
}
|
|
45
|
+
if (Math.abs(minY) < Math.abs(maxY)) {
|
|
46
|
+
return latDistanceInDegrees / Math.cos(_helpers.degreesToRadians.call(void 0, maxY));
|
|
47
|
+
} else {
|
|
48
|
+
return latDistanceInDegrees / Math.cos(_helpers.degreesToRadians.call(void 0, minY));
|
|
49
|
+
}
|
|
50
|
+
}();
|
|
51
|
+
const minX = Math.max(x - lonDistanceInDegrees, -360);
|
|
52
|
+
const maxX = Math.min(x + lonDistanceInDegrees, 360);
|
|
53
|
+
const bbox = { minX, minY, maxX, maxY };
|
|
54
|
+
return tree.search(bbox).filter(
|
|
55
|
+
(neighbor) => {
|
|
56
|
+
const neighborIndex = neighbor.index;
|
|
57
|
+
const neighborPoint = points.features[neighborIndex];
|
|
58
|
+
const distanceInKm = _distance.distance.call(void 0, point, neighborPoint, {
|
|
59
|
+
units: "kilometers"
|
|
60
|
+
});
|
|
61
|
+
return distanceInKm <= maxDistance;
|
|
62
|
+
}
|
|
63
|
+
);
|
|
64
|
+
}, "regionQuery");
|
|
65
|
+
const expandCluster = /* @__PURE__ */ __name((clusteredId, neighbors) => {
|
|
66
|
+
for (var i = 0; i < neighbors.length; i++) {
|
|
67
|
+
var neighbor = neighbors[i];
|
|
68
|
+
const neighborIndex = neighbor.index;
|
|
69
|
+
if (!visited[neighborIndex]) {
|
|
70
|
+
visited[neighborIndex] = true;
|
|
71
|
+
const nextNeighbors = regionQuery(neighborIndex);
|
|
72
|
+
if (nextNeighbors.length >= minPoints) {
|
|
73
|
+
neighbors.push(...nextNeighbors);
|
|
74
|
+
}
|
|
75
|
+
}
|
|
76
|
+
if (!assigned[neighborIndex]) {
|
|
77
|
+
assigned[neighborIndex] = true;
|
|
78
|
+
clusterIds[neighborIndex] = clusteredId;
|
|
79
|
+
}
|
|
80
|
+
}
|
|
81
|
+
}, "expandCluster");
|
|
82
|
+
var nextClusteredId = 0;
|
|
83
|
+
points.features.forEach((_, index) => {
|
|
84
|
+
if (visited[index])
|
|
85
|
+
return;
|
|
86
|
+
const neighbors = regionQuery(index);
|
|
87
|
+
if (neighbors.length >= minPoints) {
|
|
88
|
+
const clusteredId = nextClusteredId;
|
|
89
|
+
nextClusteredId++;
|
|
90
|
+
visited[index] = true;
|
|
91
|
+
expandCluster(clusteredId, neighbors);
|
|
92
|
+
} else {
|
|
93
|
+
isnoise[index] = true;
|
|
94
|
+
}
|
|
95
|
+
});
|
|
96
|
+
points.features.forEach((_, index) => {
|
|
97
|
+
var clusterPoint = points.features[index];
|
|
98
|
+
if (!clusterPoint.properties) {
|
|
99
|
+
clusterPoint.properties = {};
|
|
100
|
+
}
|
|
101
|
+
if (clusterIds[index] >= 0) {
|
|
102
|
+
clusterPoint.properties.dbscan = isnoise[index] ? "edge" : "core";
|
|
103
|
+
clusterPoint.properties.cluster = clusterIds[index];
|
|
104
|
+
} else {
|
|
105
|
+
clusterPoint.properties.dbscan = "noise";
|
|
106
|
+
}
|
|
107
|
+
});
|
|
108
|
+
return points;
|
|
109
|
+
}
|
|
110
|
+
__name(clustersDbscan, "clustersDbscan");
|
|
111
|
+
var turf_clusters_dbscan_default = clustersDbscan;
|
|
112
|
+
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
exports.clustersDbscan = clustersDbscan; exports.default = turf_clusters_dbscan_default;
|
|
116
|
+
//# sourceMappingURL=index.cjs.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"sources":["../../index.ts","../../lib/rbush-export.ts"],"names":[],"mappings":";;;;AACA,SAAS,aAAa;AACtB,SAAS,gBAAgB;AACzB,SAAS,kBAAkB,uBAA8B;;;ACCzD,OAAO,SAAS;AAET,IAAM,QAAQ;;;ADsCrB,SAAS,eACP,QACA,aACA,UAII,CAAC,GACkC;AAQvC,MAAI,QAAQ,WAAW;AAAM,aAAS,MAAM,MAAM;AAGlD,QAAM,YAAY,QAAQ,aAAa;AAGvC,QAAM,uBAAuB,gBAAgB,aAAa,QAAQ,KAAK;AAGvE,MAAI,OAAO,IAAI,MAAM,OAAO,SAAS,MAAM;AAG3C,MAAI,UAAU,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG9C,MAAI,WAAW,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG/C,MAAI,UAAU,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG9C,MAAI,aAAuB,OAAO,SAAS,IAAI,CAAC,MAAM,EAAE;AAGxD,OAAK;AAAA,IACH,OAAO,SAAS,IAAI,CAAC,OAAO,UAAU;AACpC,UAAI,CAAC,GAAG,CAAC,IAAI,MAAM,SAAS;AAC5B,aAAO;AAAA,QACL,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN;AAAA,MACF;AAAA,IACF,CAAC;AAAA,EACH;AAGA,QAAM,cAAc,wBAAC,UAAkC;AACrD,UAAM,QAAQ,OAAO,SAAS,KAAK;AACnC,UAAM,CAAC,GAAG,CAAC,IAAI,MAAM,SAAS;AAE9B,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,GAAK;AACrD,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,EAAI;AAEpD,UAAM,uBAAwB,WAAY;AAExC,UAAI,OAAO,KAAK,OAAO,GAAG;AACxB,eAAO;AAAA,MACT;AACA,UAAI,KAAK,IAAI,IAAI,IAAI,KAAK,IAAI,IAAI,GAAG;AACnC,eAAO,uBAAuB,KAAK,IAAI,iBAAiB,IAAI,CAAC;AAAA,MAC/D,OAAO;AACL,eAAO,uBAAuB,KAAK,IAAI,iBAAiB,IAAI,CAAC;AAAA,MAC/D;AAAA,IACF,EAAG;AAEH,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,IAAM;AACtD,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,GAAK;AAGrD,UAAM,OAAO,EAAE,MAAM,MAAM,MAAM,KAAK;AACtC,WAAQ,KAAK,OAAO,IAAI,EAAkC;AAAA,MACxD,CAAC,aAAa;AACZ,cAAM,gBAAgB,SAAS;AAC/B,cAAM,gBAAgB,OAAO,SAAS,aAAa;AACnD,cAAM,eAAe,SAAS,OAAO,eAAe;AAAA,UAClD,OAAO;AAAA,QACT,CAAC;AACD,eAAO,gBAAgB;AAAA,MACzB;AAAA,IACF;AAAA,EACF,GAlCoB;AAqCpB,QAAM,gBAAgB,wBAAC,aAAqB,cAA8B;AACxE,aAAS,IAAI,GAAG,IAAI,UAAU,QAAQ,KAAK;AACzC,UAAI,WAAW,UAAU,CAAC;AAC1B,YAAM,gBAAgB,SAAS;AAC/B,UAAI,CAAC,QAAQ,aAAa,GAAG;AAC3B,gBAAQ,aAAa,IAAI;AACzB,cAAM,gBAAgB,YAAY,aAAa;AAC/C,YAAI,cAAc,UAAU,WAAW;AACrC,oBAAU,KAAK,GAAG,aAAa;AAAA,QACjC;AAAA,MACF;AACA,UAAI,CAAC,SAAS,aAAa,GAAG;AAC5B,iBAAS,aAAa,IAAI;AAC1B,mBAAW,aAAa,IAAI;AAAA,MAC9B;AAAA,IACF;AAAA,EACF,GAhBsB;AAmBtB,MAAI,kBAAkB;AACtB,SAAO,SAAS,QAAQ,CAAC,GAAG,UAAU;AACpC,QAAI,QAAQ,KAAK;AAAG;AACpB,UAAM,YAAY,YAAY,KAAK;AACnC,QAAI,UAAU,UAAU,WAAW;AACjC,YAAM,cAAc;AACpB;AACA,cAAQ,KAAK,IAAI;AACjB,oBAAc,aAAa,SAAS;AAAA,IACtC,OAAO;AACL,cAAQ,KAAK,IAAI;AAAA,IACnB;AAAA,EACF,CAAC;AAGD,SAAO,SAAS,QAAQ,CAAC,GAAG,UAAU;AACpC,QAAI,eAAe,OAAO,SAAS,KAAK;AACxC,QAAI,CAAC,aAAa,YAAY;AAC5B,mBAAa,aAAa,CAAC;AAAA,IAC7B;AAEA,QAAI,WAAW,KAAK,KAAK,GAAG;AAC1B,mBAAa,WAAW,SAAS,QAAQ,KAAK,IAAI,SAAS;AAC3D,mBAAa,WAAW,UAAU,WAAW,KAAK;AAAA,IACpD,OAAO;AACL,mBAAa,WAAW,SAAS;AAAA,IACnC;AAAA,EACF,CAAC;AAED,SAAO;AACT;AA5IS;AA+IT,IAAO,+BAAQ","sourcesContent":["import { GeoJsonProperties, FeatureCollection, Point } from \"geojson\";\nimport { clone } from \"@turf/clone\";\nimport { distance } from \"@turf/distance\";\nimport { degreesToRadians, lengthToDegrees, Units } from \"@turf/helpers\";\nimport { rbush as RBush } from \"./lib/rbush-export.js\";\n\ntype Dbscan = \"core\" | \"edge\" | \"noise\";\ntype DbscanProps = GeoJsonProperties & {\n dbscan?: Dbscan;\n cluster?: number;\n};\n\n// Structure of a point in the spatial index\ntype IndexedPoint = {\n minX: number;\n minY: number;\n maxX: number;\n maxY: number;\n index: number;\n};\n\n/**\n * Takes a set of {@link Point|points} and partition them into clusters according to {@link DBSCAN's|https://en.wikipedia.org/wiki/DBSCAN} data clustering algorithm.\n *\n * @name clustersDbscan\n * @param {FeatureCollection<Point>} points to be clustered\n * @param {number} maxDistance Maximum Distance between any point of the cluster to generate the clusters (kilometers only)\n * @param {Object} [options={}] Optional parameters\n * @param {string} [options.units=\"kilometers\"] in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers\n * @param {boolean} [options.mutate=false] Allows GeoJSON input to be mutated\n * @param {number} [options.minPoints=3] Minimum number of points to generate a single cluster,\n * points which do not meet this requirement will be classified as an 'edge' or 'noise'.\n * @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:\n * - {number} cluster - the associated clusterId\n * - {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')\n * @example\n * // create random points with random z-values in their properties\n * var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});\n * var maxDistance = 100;\n * var clustered = turf.clustersDbscan(points, maxDistance);\n *\n * //addToMap\n * var addToMap = [clustered];\n */\nfunction clustersDbscan(\n points: FeatureCollection<Point>,\n maxDistance: number,\n options: {\n units?: Units;\n minPoints?: number;\n mutate?: boolean;\n } = {}\n): FeatureCollection<Point, DbscanProps> {\n // Input validation being handled by Typescript\n // collectionOf(points, 'Point', 'points must consist of a FeatureCollection of only Points');\n // if (maxDistance === null || maxDistance === undefined) throw new Error('maxDistance is required');\n // if (!(Math.sign(maxDistance) > 0)) throw new Error('maxDistance is invalid');\n // if (!(minPoints === undefined || minPoints === null || Math.sign(minPoints) > 0)) throw new Error('options.minPoints is invalid');\n\n // Clone points to prevent any mutations\n if (options.mutate !== true) points = clone(points);\n\n // Defaults\n const minPoints = options.minPoints || 3;\n\n // Calculate the distance in degrees for region queries\n const latDistanceInDegrees = lengthToDegrees(maxDistance, options.units);\n\n // Create a spatial index\n var tree = new RBush(points.features.length);\n\n // Keeps track of whether a point has been visited or not.\n var visited = points.features.map((_) => false);\n\n // Keeps track of whether a point is assigned to a cluster or not.\n var assigned = points.features.map((_) => false);\n\n // Keeps track of whether a point is noise|edge or not.\n var isnoise = points.features.map((_) => false);\n\n // Keeps track of the clusterId for each point\n var clusterIds: number[] = points.features.map((_) => -1);\n\n // Index each point for spatial queries\n tree.load(\n points.features.map((point, index) => {\n var [x, y] = point.geometry.coordinates;\n return {\n minX: x,\n minY: y,\n maxX: x,\n maxY: y,\n index: index,\n } as IndexedPoint;\n })\n );\n\n // Function to find neighbors of a point within a given distance\n const regionQuery = (index: number): IndexedPoint[] => {\n const point = points.features[index];\n const [x, y] = point.geometry.coordinates;\n\n const minY = Math.max(y - latDistanceInDegrees, -90.0);\n const maxY = Math.min(y + latDistanceInDegrees, 90.0);\n\n const lonDistanceInDegrees = (function () {\n // Handle the case where the bounding box crosses the poles\n if (minY < 0 && maxY > 0) {\n return latDistanceInDegrees;\n }\n if (Math.abs(minY) < Math.abs(maxY)) {\n return latDistanceInDegrees / Math.cos(degreesToRadians(maxY));\n } else {\n return latDistanceInDegrees / Math.cos(degreesToRadians(minY));\n }\n })();\n\n const minX = Math.max(x - lonDistanceInDegrees, -360.0);\n const maxX = Math.min(x + lonDistanceInDegrees, 360.0);\n\n // Calculate the bounding box for the region query\n const bbox = { minX, minY, maxX, maxY };\n return (tree.search(bbox) as ReadonlyArray<IndexedPoint>).filter(\n (neighbor) => {\n const neighborIndex = neighbor.index;\n const neighborPoint = points.features[neighborIndex];\n const distanceInKm = distance(point, neighborPoint, {\n units: \"kilometers\",\n });\n return distanceInKm <= maxDistance;\n }\n );\n };\n\n // Function to expand a cluster\n const expandCluster = (clusteredId: number, neighbors: IndexedPoint[]) => {\n for (var i = 0; i < neighbors.length; i++) {\n var neighbor = neighbors[i];\n const neighborIndex = neighbor.index;\n if (!visited[neighborIndex]) {\n visited[neighborIndex] = true;\n const nextNeighbors = regionQuery(neighborIndex);\n if (nextNeighbors.length >= minPoints) {\n neighbors.push(...nextNeighbors);\n }\n }\n if (!assigned[neighborIndex]) {\n assigned[neighborIndex] = true;\n clusterIds[neighborIndex] = clusteredId;\n }\n }\n };\n\n // Main DBSCAN clustering algorithm\n var nextClusteredId = 0;\n points.features.forEach((_, index) => {\n if (visited[index]) return;\n const neighbors = regionQuery(index);\n if (neighbors.length >= minPoints) {\n const clusteredId = nextClusteredId;\n nextClusteredId++;\n visited[index] = true;\n expandCluster(clusteredId, neighbors);\n } else {\n isnoise[index] = true;\n }\n });\n\n // Assign DBSCAN properties to each point\n points.features.forEach((_, index) => {\n var clusterPoint = points.features[index];\n if (!clusterPoint.properties) {\n clusterPoint.properties = {};\n }\n\n if (clusterIds[index] >= 0) {\n clusterPoint.properties.dbscan = isnoise[index] ? \"edge\" : \"core\";\n clusterPoint.properties.cluster = clusterIds[index];\n } else {\n clusterPoint.properties.dbscan = \"noise\";\n }\n });\n\n return points as FeatureCollection<Point, DbscanProps>;\n}\n\nexport { Dbscan, DbscanProps, clustersDbscan };\nexport default clustersDbscan;\n","// Get around problems with moduleResolution node16 and some older libraries.\n// Manifests as \"This expression is not callable ... has no call signatures\"\n// https://stackoverflow.com/a/74709714\n\nimport lib from \"rbush\";\n\nexport const rbush = lib as unknown as typeof lib.default;\n"]}
|
|
@@ -0,0 +1,38 @@
|
|
|
1
|
+
import { GeoJsonProperties, FeatureCollection, Point } from 'geojson';
|
|
2
|
+
import { Units } from '@turf/helpers';
|
|
3
|
+
|
|
4
|
+
type Dbscan = "core" | "edge" | "noise";
|
|
5
|
+
type DbscanProps = GeoJsonProperties & {
|
|
6
|
+
dbscan?: Dbscan;
|
|
7
|
+
cluster?: number;
|
|
8
|
+
};
|
|
9
|
+
/**
|
|
10
|
+
* Takes a set of {@link Point|points} and partition them into clusters according to {@link DBSCAN's|https://en.wikipedia.org/wiki/DBSCAN} data clustering algorithm.
|
|
11
|
+
*
|
|
12
|
+
* @name clustersDbscan
|
|
13
|
+
* @param {FeatureCollection<Point>} points to be clustered
|
|
14
|
+
* @param {number} maxDistance Maximum Distance between any point of the cluster to generate the clusters (kilometers only)
|
|
15
|
+
* @param {Object} [options={}] Optional parameters
|
|
16
|
+
* @param {string} [options.units="kilometers"] in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers
|
|
17
|
+
* @param {boolean} [options.mutate=false] Allows GeoJSON input to be mutated
|
|
18
|
+
* @param {number} [options.minPoints=3] Minimum number of points to generate a single cluster,
|
|
19
|
+
* points which do not meet this requirement will be classified as an 'edge' or 'noise'.
|
|
20
|
+
* @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:
|
|
21
|
+
* - {number} cluster - the associated clusterId
|
|
22
|
+
* - {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')
|
|
23
|
+
* @example
|
|
24
|
+
* // create random points with random z-values in their properties
|
|
25
|
+
* var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});
|
|
26
|
+
* var maxDistance = 100;
|
|
27
|
+
* var clustered = turf.clustersDbscan(points, maxDistance);
|
|
28
|
+
*
|
|
29
|
+
* //addToMap
|
|
30
|
+
* var addToMap = [clustered];
|
|
31
|
+
*/
|
|
32
|
+
declare function clustersDbscan(points: FeatureCollection<Point>, maxDistance: number, options?: {
|
|
33
|
+
units?: Units;
|
|
34
|
+
minPoints?: number;
|
|
35
|
+
mutate?: boolean;
|
|
36
|
+
}): FeatureCollection<Point, DbscanProps>;
|
|
37
|
+
|
|
38
|
+
export { type Dbscan, type DbscanProps, clustersDbscan, clustersDbscan as default };
|
|
@@ -1,7 +1,8 @@
|
|
|
1
|
-
import { GeoJsonProperties, FeatureCollection, Point } from
|
|
2
|
-
import { Units } from
|
|
3
|
-
|
|
4
|
-
|
|
1
|
+
import { GeoJsonProperties, FeatureCollection, Point } from 'geojson';
|
|
2
|
+
import { Units } from '@turf/helpers';
|
|
3
|
+
|
|
4
|
+
type Dbscan = "core" | "edge" | "noise";
|
|
5
|
+
type DbscanProps = GeoJsonProperties & {
|
|
5
6
|
dbscan?: Dbscan;
|
|
6
7
|
cluster?: number;
|
|
7
8
|
};
|
|
@@ -33,4 +34,5 @@ declare function clustersDbscan(points: FeatureCollection<Point>, maxDistance: n
|
|
|
33
34
|
minPoints?: number;
|
|
34
35
|
mutate?: boolean;
|
|
35
36
|
}): FeatureCollection<Point, DbscanProps>;
|
|
36
|
-
|
|
37
|
+
|
|
38
|
+
export { type Dbscan, type DbscanProps, clustersDbscan, clustersDbscan as default };
|
|
@@ -0,0 +1,116 @@
|
|
|
1
|
+
var __defProp = Object.defineProperty;
|
|
2
|
+
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
|
3
|
+
|
|
4
|
+
// index.ts
|
|
5
|
+
import { clone } from "@turf/clone";
|
|
6
|
+
import { distance } from "@turf/distance";
|
|
7
|
+
import { degreesToRadians, lengthToDegrees } from "@turf/helpers";
|
|
8
|
+
|
|
9
|
+
// lib/rbush-export.ts
|
|
10
|
+
import lib from "rbush";
|
|
11
|
+
var rbush = lib;
|
|
12
|
+
|
|
13
|
+
// index.ts
|
|
14
|
+
function clustersDbscan(points, maxDistance, options = {}) {
|
|
15
|
+
if (options.mutate !== true)
|
|
16
|
+
points = clone(points);
|
|
17
|
+
const minPoints = options.minPoints || 3;
|
|
18
|
+
const latDistanceInDegrees = lengthToDegrees(maxDistance, options.units);
|
|
19
|
+
var tree = new rbush(points.features.length);
|
|
20
|
+
var visited = points.features.map((_) => false);
|
|
21
|
+
var assigned = points.features.map((_) => false);
|
|
22
|
+
var isnoise = points.features.map((_) => false);
|
|
23
|
+
var clusterIds = points.features.map((_) => -1);
|
|
24
|
+
tree.load(
|
|
25
|
+
points.features.map((point, index) => {
|
|
26
|
+
var [x, y] = point.geometry.coordinates;
|
|
27
|
+
return {
|
|
28
|
+
minX: x,
|
|
29
|
+
minY: y,
|
|
30
|
+
maxX: x,
|
|
31
|
+
maxY: y,
|
|
32
|
+
index
|
|
33
|
+
};
|
|
34
|
+
})
|
|
35
|
+
);
|
|
36
|
+
const regionQuery = /* @__PURE__ */ __name((index) => {
|
|
37
|
+
const point = points.features[index];
|
|
38
|
+
const [x, y] = point.geometry.coordinates;
|
|
39
|
+
const minY = Math.max(y - latDistanceInDegrees, -90);
|
|
40
|
+
const maxY = Math.min(y + latDistanceInDegrees, 90);
|
|
41
|
+
const lonDistanceInDegrees = function() {
|
|
42
|
+
if (minY < 0 && maxY > 0) {
|
|
43
|
+
return latDistanceInDegrees;
|
|
44
|
+
}
|
|
45
|
+
if (Math.abs(minY) < Math.abs(maxY)) {
|
|
46
|
+
return latDistanceInDegrees / Math.cos(degreesToRadians(maxY));
|
|
47
|
+
} else {
|
|
48
|
+
return latDistanceInDegrees / Math.cos(degreesToRadians(minY));
|
|
49
|
+
}
|
|
50
|
+
}();
|
|
51
|
+
const minX = Math.max(x - lonDistanceInDegrees, -360);
|
|
52
|
+
const maxX = Math.min(x + lonDistanceInDegrees, 360);
|
|
53
|
+
const bbox = { minX, minY, maxX, maxY };
|
|
54
|
+
return tree.search(bbox).filter(
|
|
55
|
+
(neighbor) => {
|
|
56
|
+
const neighborIndex = neighbor.index;
|
|
57
|
+
const neighborPoint = points.features[neighborIndex];
|
|
58
|
+
const distanceInKm = distance(point, neighborPoint, {
|
|
59
|
+
units: "kilometers"
|
|
60
|
+
});
|
|
61
|
+
return distanceInKm <= maxDistance;
|
|
62
|
+
}
|
|
63
|
+
);
|
|
64
|
+
}, "regionQuery");
|
|
65
|
+
const expandCluster = /* @__PURE__ */ __name((clusteredId, neighbors) => {
|
|
66
|
+
for (var i = 0; i < neighbors.length; i++) {
|
|
67
|
+
var neighbor = neighbors[i];
|
|
68
|
+
const neighborIndex = neighbor.index;
|
|
69
|
+
if (!visited[neighborIndex]) {
|
|
70
|
+
visited[neighborIndex] = true;
|
|
71
|
+
const nextNeighbors = regionQuery(neighborIndex);
|
|
72
|
+
if (nextNeighbors.length >= minPoints) {
|
|
73
|
+
neighbors.push(...nextNeighbors);
|
|
74
|
+
}
|
|
75
|
+
}
|
|
76
|
+
if (!assigned[neighborIndex]) {
|
|
77
|
+
assigned[neighborIndex] = true;
|
|
78
|
+
clusterIds[neighborIndex] = clusteredId;
|
|
79
|
+
}
|
|
80
|
+
}
|
|
81
|
+
}, "expandCluster");
|
|
82
|
+
var nextClusteredId = 0;
|
|
83
|
+
points.features.forEach((_, index) => {
|
|
84
|
+
if (visited[index])
|
|
85
|
+
return;
|
|
86
|
+
const neighbors = regionQuery(index);
|
|
87
|
+
if (neighbors.length >= minPoints) {
|
|
88
|
+
const clusteredId = nextClusteredId;
|
|
89
|
+
nextClusteredId++;
|
|
90
|
+
visited[index] = true;
|
|
91
|
+
expandCluster(clusteredId, neighbors);
|
|
92
|
+
} else {
|
|
93
|
+
isnoise[index] = true;
|
|
94
|
+
}
|
|
95
|
+
});
|
|
96
|
+
points.features.forEach((_, index) => {
|
|
97
|
+
var clusterPoint = points.features[index];
|
|
98
|
+
if (!clusterPoint.properties) {
|
|
99
|
+
clusterPoint.properties = {};
|
|
100
|
+
}
|
|
101
|
+
if (clusterIds[index] >= 0) {
|
|
102
|
+
clusterPoint.properties.dbscan = isnoise[index] ? "edge" : "core";
|
|
103
|
+
clusterPoint.properties.cluster = clusterIds[index];
|
|
104
|
+
} else {
|
|
105
|
+
clusterPoint.properties.dbscan = "noise";
|
|
106
|
+
}
|
|
107
|
+
});
|
|
108
|
+
return points;
|
|
109
|
+
}
|
|
110
|
+
__name(clustersDbscan, "clustersDbscan");
|
|
111
|
+
var turf_clusters_dbscan_default = clustersDbscan;
|
|
112
|
+
export {
|
|
113
|
+
clustersDbscan,
|
|
114
|
+
turf_clusters_dbscan_default as default
|
|
115
|
+
};
|
|
116
|
+
//# sourceMappingURL=index.js.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"sources":["../../index.ts","../../lib/rbush-export.ts"],"sourcesContent":["import { GeoJsonProperties, FeatureCollection, Point } from \"geojson\";\nimport { clone } from \"@turf/clone\";\nimport { distance } from \"@turf/distance\";\nimport { degreesToRadians, lengthToDegrees, Units } from \"@turf/helpers\";\nimport { rbush as RBush } from \"./lib/rbush-export.js\";\n\ntype Dbscan = \"core\" | \"edge\" | \"noise\";\ntype DbscanProps = GeoJsonProperties & {\n dbscan?: Dbscan;\n cluster?: number;\n};\n\n// Structure of a point in the spatial index\ntype IndexedPoint = {\n minX: number;\n minY: number;\n maxX: number;\n maxY: number;\n index: number;\n};\n\n/**\n * Takes a set of {@link Point|points} and partition them into clusters according to {@link DBSCAN's|https://en.wikipedia.org/wiki/DBSCAN} data clustering algorithm.\n *\n * @name clustersDbscan\n * @param {FeatureCollection<Point>} points to be clustered\n * @param {number} maxDistance Maximum Distance between any point of the cluster to generate the clusters (kilometers only)\n * @param {Object} [options={}] Optional parameters\n * @param {string} [options.units=\"kilometers\"] in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers\n * @param {boolean} [options.mutate=false] Allows GeoJSON input to be mutated\n * @param {number} [options.minPoints=3] Minimum number of points to generate a single cluster,\n * points which do not meet this requirement will be classified as an 'edge' or 'noise'.\n * @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:\n * - {number} cluster - the associated clusterId\n * - {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')\n * @example\n * // create random points with random z-values in their properties\n * var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});\n * var maxDistance = 100;\n * var clustered = turf.clustersDbscan(points, maxDistance);\n *\n * //addToMap\n * var addToMap = [clustered];\n */\nfunction clustersDbscan(\n points: FeatureCollection<Point>,\n maxDistance: number,\n options: {\n units?: Units;\n minPoints?: number;\n mutate?: boolean;\n } = {}\n): FeatureCollection<Point, DbscanProps> {\n // Input validation being handled by Typescript\n // collectionOf(points, 'Point', 'points must consist of a FeatureCollection of only Points');\n // if (maxDistance === null || maxDistance === undefined) throw new Error('maxDistance is required');\n // if (!(Math.sign(maxDistance) > 0)) throw new Error('maxDistance is invalid');\n // if (!(minPoints === undefined || minPoints === null || Math.sign(minPoints) > 0)) throw new Error('options.minPoints is invalid');\n\n // Clone points to prevent any mutations\n if (options.mutate !== true) points = clone(points);\n\n // Defaults\n const minPoints = options.minPoints || 3;\n\n // Calculate the distance in degrees for region queries\n const latDistanceInDegrees = lengthToDegrees(maxDistance, options.units);\n\n // Create a spatial index\n var tree = new RBush(points.features.length);\n\n // Keeps track of whether a point has been visited or not.\n var visited = points.features.map((_) => false);\n\n // Keeps track of whether a point is assigned to a cluster or not.\n var assigned = points.features.map((_) => false);\n\n // Keeps track of whether a point is noise|edge or not.\n var isnoise = points.features.map((_) => false);\n\n // Keeps track of the clusterId for each point\n var clusterIds: number[] = points.features.map((_) => -1);\n\n // Index each point for spatial queries\n tree.load(\n points.features.map((point, index) => {\n var [x, y] = point.geometry.coordinates;\n return {\n minX: x,\n minY: y,\n maxX: x,\n maxY: y,\n index: index,\n } as IndexedPoint;\n })\n );\n\n // Function to find neighbors of a point within a given distance\n const regionQuery = (index: number): IndexedPoint[] => {\n const point = points.features[index];\n const [x, y] = point.geometry.coordinates;\n\n const minY = Math.max(y - latDistanceInDegrees, -90.0);\n const maxY = Math.min(y + latDistanceInDegrees, 90.0);\n\n const lonDistanceInDegrees = (function () {\n // Handle the case where the bounding box crosses the poles\n if (minY < 0 && maxY > 0) {\n return latDistanceInDegrees;\n }\n if (Math.abs(minY) < Math.abs(maxY)) {\n return latDistanceInDegrees / Math.cos(degreesToRadians(maxY));\n } else {\n return latDistanceInDegrees / Math.cos(degreesToRadians(minY));\n }\n })();\n\n const minX = Math.max(x - lonDistanceInDegrees, -360.0);\n const maxX = Math.min(x + lonDistanceInDegrees, 360.0);\n\n // Calculate the bounding box for the region query\n const bbox = { minX, minY, maxX, maxY };\n return (tree.search(bbox) as ReadonlyArray<IndexedPoint>).filter(\n (neighbor) => {\n const neighborIndex = neighbor.index;\n const neighborPoint = points.features[neighborIndex];\n const distanceInKm = distance(point, neighborPoint, {\n units: \"kilometers\",\n });\n return distanceInKm <= maxDistance;\n }\n );\n };\n\n // Function to expand a cluster\n const expandCluster = (clusteredId: number, neighbors: IndexedPoint[]) => {\n for (var i = 0; i < neighbors.length; i++) {\n var neighbor = neighbors[i];\n const neighborIndex = neighbor.index;\n if (!visited[neighborIndex]) {\n visited[neighborIndex] = true;\n const nextNeighbors = regionQuery(neighborIndex);\n if (nextNeighbors.length >= minPoints) {\n neighbors.push(...nextNeighbors);\n }\n }\n if (!assigned[neighborIndex]) {\n assigned[neighborIndex] = true;\n clusterIds[neighborIndex] = clusteredId;\n }\n }\n };\n\n // Main DBSCAN clustering algorithm\n var nextClusteredId = 0;\n points.features.forEach((_, index) => {\n if (visited[index]) return;\n const neighbors = regionQuery(index);\n if (neighbors.length >= minPoints) {\n const clusteredId = nextClusteredId;\n nextClusteredId++;\n visited[index] = true;\n expandCluster(clusteredId, neighbors);\n } else {\n isnoise[index] = true;\n }\n });\n\n // Assign DBSCAN properties to each point\n points.features.forEach((_, index) => {\n var clusterPoint = points.features[index];\n if (!clusterPoint.properties) {\n clusterPoint.properties = {};\n }\n\n if (clusterIds[index] >= 0) {\n clusterPoint.properties.dbscan = isnoise[index] ? \"edge\" : \"core\";\n clusterPoint.properties.cluster = clusterIds[index];\n } else {\n clusterPoint.properties.dbscan = \"noise\";\n }\n });\n\n return points as FeatureCollection<Point, DbscanProps>;\n}\n\nexport { Dbscan, DbscanProps, clustersDbscan };\nexport default clustersDbscan;\n","// Get around problems with moduleResolution node16 and some older libraries.\n// Manifests as \"This expression is not callable ... has no call signatures\"\n// https://stackoverflow.com/a/74709714\n\nimport lib from \"rbush\";\n\nexport const rbush = lib as unknown as typeof lib.default;\n"],"mappings":";;;;AACA,SAAS,aAAa;AACtB,SAAS,gBAAgB;AACzB,SAAS,kBAAkB,uBAA8B;;;ACCzD,OAAO,SAAS;AAET,IAAM,QAAQ;;;ADsCrB,SAAS,eACP,QACA,aACA,UAII,CAAC,GACkC;AAQvC,MAAI,QAAQ,WAAW;AAAM,aAAS,MAAM,MAAM;AAGlD,QAAM,YAAY,QAAQ,aAAa;AAGvC,QAAM,uBAAuB,gBAAgB,aAAa,QAAQ,KAAK;AAGvE,MAAI,OAAO,IAAI,MAAM,OAAO,SAAS,MAAM;AAG3C,MAAI,UAAU,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG9C,MAAI,WAAW,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG/C,MAAI,UAAU,OAAO,SAAS,IAAI,CAAC,MAAM,KAAK;AAG9C,MAAI,aAAuB,OAAO,SAAS,IAAI,CAAC,MAAM,EAAE;AAGxD,OAAK;AAAA,IACH,OAAO,SAAS,IAAI,CAAC,OAAO,UAAU;AACpC,UAAI,CAAC,GAAG,CAAC,IAAI,MAAM,SAAS;AAC5B,aAAO;AAAA,QACL,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN,MAAM;AAAA,QACN;AAAA,MACF;AAAA,IACF,CAAC;AAAA,EACH;AAGA,QAAM,cAAc,wBAAC,UAAkC;AACrD,UAAM,QAAQ,OAAO,SAAS,KAAK;AACnC,UAAM,CAAC,GAAG,CAAC,IAAI,MAAM,SAAS;AAE9B,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,GAAK;AACrD,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,EAAI;AAEpD,UAAM,uBAAwB,WAAY;AAExC,UAAI,OAAO,KAAK,OAAO,GAAG;AACxB,eAAO;AAAA,MACT;AACA,UAAI,KAAK,IAAI,IAAI,IAAI,KAAK,IAAI,IAAI,GAAG;AACnC,eAAO,uBAAuB,KAAK,IAAI,iBAAiB,IAAI,CAAC;AAAA,MAC/D,OAAO;AACL,eAAO,uBAAuB,KAAK,IAAI,iBAAiB,IAAI,CAAC;AAAA,MAC/D;AAAA,IACF,EAAG;AAEH,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,IAAM;AACtD,UAAM,OAAO,KAAK,IAAI,IAAI,sBAAsB,GAAK;AAGrD,UAAM,OAAO,EAAE,MAAM,MAAM,MAAM,KAAK;AACtC,WAAQ,KAAK,OAAO,IAAI,EAAkC;AAAA,MACxD,CAAC,aAAa;AACZ,cAAM,gBAAgB,SAAS;AAC/B,cAAM,gBAAgB,OAAO,SAAS,aAAa;AACnD,cAAM,eAAe,SAAS,OAAO,eAAe;AAAA,UAClD,OAAO;AAAA,QACT,CAAC;AACD,eAAO,gBAAgB;AAAA,MACzB;AAAA,IACF;AAAA,EACF,GAlCoB;AAqCpB,QAAM,gBAAgB,wBAAC,aAAqB,cAA8B;AACxE,aAAS,IAAI,GAAG,IAAI,UAAU,QAAQ,KAAK;AACzC,UAAI,WAAW,UAAU,CAAC;AAC1B,YAAM,gBAAgB,SAAS;AAC/B,UAAI,CAAC,QAAQ,aAAa,GAAG;AAC3B,gBAAQ,aAAa,IAAI;AACzB,cAAM,gBAAgB,YAAY,aAAa;AAC/C,YAAI,cAAc,UAAU,WAAW;AACrC,oBAAU,KAAK,GAAG,aAAa;AAAA,QACjC;AAAA,MACF;AACA,UAAI,CAAC,SAAS,aAAa,GAAG;AAC5B,iBAAS,aAAa,IAAI;AAC1B,mBAAW,aAAa,IAAI;AAAA,MAC9B;AAAA,IACF;AAAA,EACF,GAhBsB;AAmBtB,MAAI,kBAAkB;AACtB,SAAO,SAAS,QAAQ,CAAC,GAAG,UAAU;AACpC,QAAI,QAAQ,KAAK;AAAG;AACpB,UAAM,YAAY,YAAY,KAAK;AACnC,QAAI,UAAU,UAAU,WAAW;AACjC,YAAM,cAAc;AACpB;AACA,cAAQ,KAAK,IAAI;AACjB,oBAAc,aAAa,SAAS;AAAA,IACtC,OAAO;AACL,cAAQ,KAAK,IAAI;AAAA,IACnB;AAAA,EACF,CAAC;AAGD,SAAO,SAAS,QAAQ,CAAC,GAAG,UAAU;AACpC,QAAI,eAAe,OAAO,SAAS,KAAK;AACxC,QAAI,CAAC,aAAa,YAAY;AAC5B,mBAAa,aAAa,CAAC;AAAA,IAC7B;AAEA,QAAI,WAAW,KAAK,KAAK,GAAG;AAC1B,mBAAa,WAAW,SAAS,QAAQ,KAAK,IAAI,SAAS;AAC3D,mBAAa,WAAW,UAAU,WAAW,KAAK;AAAA,IACpD,OAAO;AACL,mBAAa,WAAW,SAAS;AAAA,IACnC;AAAA,EACF,CAAC;AAED,SAAO;AACT;AA5IS;AA+IT,IAAO,+BAAQ;","names":[]}
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@turf/clusters-dbscan",
|
|
3
|
-
"version": "7.0.0
|
|
3
|
+
"version": "7.0.0",
|
|
4
4
|
"description": "turf clusters-dbscan module",
|
|
5
5
|
"author": "Turf Authors",
|
|
6
6
|
"contributors": [
|
|
@@ -30,54 +30,59 @@
|
|
|
30
30
|
"density",
|
|
31
31
|
"dbscan"
|
|
32
32
|
],
|
|
33
|
-
"
|
|
34
|
-
"
|
|
33
|
+
"type": "module",
|
|
34
|
+
"main": "dist/cjs/index.cjs",
|
|
35
|
+
"module": "dist/esm/index.js",
|
|
36
|
+
"types": "dist/esm/index.d.ts",
|
|
35
37
|
"exports": {
|
|
36
38
|
"./package.json": "./package.json",
|
|
37
39
|
".": {
|
|
38
|
-
"
|
|
39
|
-
|
|
40
|
-
|
|
40
|
+
"import": {
|
|
41
|
+
"types": "./dist/esm/index.d.ts",
|
|
42
|
+
"default": "./dist/esm/index.js"
|
|
43
|
+
},
|
|
44
|
+
"require": {
|
|
45
|
+
"types": "./dist/cjs/index.d.cts",
|
|
46
|
+
"default": "./dist/cjs/index.cjs"
|
|
47
|
+
}
|
|
41
48
|
}
|
|
42
49
|
},
|
|
43
|
-
"types": "dist/js/index.d.ts",
|
|
44
50
|
"sideEffects": false,
|
|
45
51
|
"files": [
|
|
46
52
|
"dist"
|
|
47
53
|
],
|
|
48
54
|
"scripts": {
|
|
49
|
-
"bench": "tsx bench.
|
|
50
|
-
"build": "
|
|
51
|
-
"
|
|
52
|
-
"
|
|
53
|
-
"
|
|
54
|
-
"test": "
|
|
55
|
-
"test:tape": "tsx test.js",
|
|
56
|
-
"test:types": "tsc --esModuleInterop --noEmit --strict types.ts"
|
|
55
|
+
"bench": "tsx bench.ts",
|
|
56
|
+
"build": "tsup --config ../../tsup.config.ts",
|
|
57
|
+
"docs": "tsx ../../scripts/generate-readmes.ts",
|
|
58
|
+
"test": "npm-run-all --npm-path npm test:*",
|
|
59
|
+
"test:tape": "tsx test.ts",
|
|
60
|
+
"test:types": "tsc --esModuleInterop --module node16 --moduleResolution node16 --noEmit --strict types.ts"
|
|
57
61
|
},
|
|
58
62
|
"devDependencies": {
|
|
59
|
-
"@turf/centroid": "^7.0.0
|
|
60
|
-
"@turf/clusters": "^7.0.0
|
|
61
|
-
"@types/
|
|
62
|
-
"@types/
|
|
63
|
-
"
|
|
64
|
-
"
|
|
63
|
+
"@turf/centroid": "^7.0.0",
|
|
64
|
+
"@turf/clusters": "^7.0.0",
|
|
65
|
+
"@types/benchmark": "^2.1.5",
|
|
66
|
+
"@types/rbush": "^3.0.2",
|
|
67
|
+
"@types/tape": "^4.2.32",
|
|
68
|
+
"benchmark": "^2.1.4",
|
|
69
|
+
"chromatism": "^3.0.0",
|
|
65
70
|
"concaveman": "^1.2.1",
|
|
66
|
-
"load-json-file": "
|
|
67
|
-
"npm-run-all": "
|
|
68
|
-
"tape": "
|
|
69
|
-
"
|
|
70
|
-
"tsx": "
|
|
71
|
-
"typescript": "
|
|
72
|
-
"write-json-file": "
|
|
71
|
+
"load-json-file": "^7.0.1",
|
|
72
|
+
"npm-run-all": "^4.1.5",
|
|
73
|
+
"tape": "^5.7.2",
|
|
74
|
+
"tsup": "^8.0.1",
|
|
75
|
+
"tsx": "^4.6.2",
|
|
76
|
+
"typescript": "^5.2.2",
|
|
77
|
+
"write-json-file": "^5.0.0"
|
|
73
78
|
},
|
|
74
79
|
"dependencies": {
|
|
75
|
-
"@turf/clone": "^7.0.0
|
|
76
|
-
"@turf/distance": "^7.0.0
|
|
77
|
-
"@turf/helpers": "^7.0.0
|
|
78
|
-
"@turf/meta": "^7.0.0
|
|
79
|
-
"
|
|
80
|
-
"tslib": "^2.
|
|
80
|
+
"@turf/clone": "^7.0.0",
|
|
81
|
+
"@turf/distance": "^7.0.0",
|
|
82
|
+
"@turf/helpers": "^7.0.0",
|
|
83
|
+
"@turf/meta": "^7.0.0",
|
|
84
|
+
"rbush": "^3.0.1",
|
|
85
|
+
"tslib": "^2.6.2"
|
|
81
86
|
},
|
|
82
|
-
"gitHead": "
|
|
87
|
+
"gitHead": "3d3a7917025fbabe191dbddbc89754b86f9c7739"
|
|
83
88
|
}
|
package/dist/es/index.js
DELETED
|
@@ -1,69 +0,0 @@
|
|
|
1
|
-
import clone from "@turf/clone";
|
|
2
|
-
import distance from "@turf/distance";
|
|
3
|
-
import { coordAll } from "@turf/meta";
|
|
4
|
-
import { convertLength } from "@turf/helpers";
|
|
5
|
-
import clustering from "density-clustering";
|
|
6
|
-
/**
|
|
7
|
-
* Takes a set of {@link Point|points} and partition them into clusters according to {@link DBSCAN's|https://en.wikipedia.org/wiki/DBSCAN} data clustering algorithm.
|
|
8
|
-
*
|
|
9
|
-
* @name clustersDbscan
|
|
10
|
-
* @param {FeatureCollection<Point>} points to be clustered
|
|
11
|
-
* @param {number} maxDistance Maximum Distance between any point of the cluster to generate the clusters (kilometers only)
|
|
12
|
-
* @param {Object} [options={}] Optional parameters
|
|
13
|
-
* @param {string} [options.units="kilometers"] in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers
|
|
14
|
-
* @param {boolean} [options.mutate=false] Allows GeoJSON input to be mutated
|
|
15
|
-
* @param {number} [options.minPoints=3] Minimum number of points to generate a single cluster,
|
|
16
|
-
* points which do not meet this requirement will be classified as an 'edge' or 'noise'.
|
|
17
|
-
* @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:
|
|
18
|
-
* - {number} cluster - the associated clusterId
|
|
19
|
-
* - {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')
|
|
20
|
-
* @example
|
|
21
|
-
* // create random points with random z-values in their properties
|
|
22
|
-
* var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});
|
|
23
|
-
* var maxDistance = 100;
|
|
24
|
-
* var clustered = turf.clustersDbscan(points, maxDistance);
|
|
25
|
-
*
|
|
26
|
-
* //addToMap
|
|
27
|
-
* var addToMap = [clustered];
|
|
28
|
-
*/
|
|
29
|
-
function clustersDbscan(points, maxDistance, options = {}) {
|
|
30
|
-
// Input validation being handled by Typescript
|
|
31
|
-
// collectionOf(points, 'Point', 'points must consist of a FeatureCollection of only Points');
|
|
32
|
-
// if (maxDistance === null || maxDistance === undefined) throw new Error('maxDistance is required');
|
|
33
|
-
// if (!(Math.sign(maxDistance) > 0)) throw new Error('maxDistance is invalid');
|
|
34
|
-
// if (!(minPoints === undefined || minPoints === null || Math.sign(minPoints) > 0)) throw new Error('options.minPoints is invalid');
|
|
35
|
-
// Clone points to prevent any mutations
|
|
36
|
-
if (options.mutate !== true)
|
|
37
|
-
points = clone(points);
|
|
38
|
-
// Defaults
|
|
39
|
-
options.minPoints = options.minPoints || 3;
|
|
40
|
-
// create clustered ids
|
|
41
|
-
var dbscan = new clustering.DBSCAN();
|
|
42
|
-
var clusteredIds = dbscan.run(coordAll(points), convertLength(maxDistance, options.units), options.minPoints, distance);
|
|
43
|
-
// Tag points to Clusters ID
|
|
44
|
-
var clusterId = -1;
|
|
45
|
-
clusteredIds.forEach(function (clusterIds) {
|
|
46
|
-
clusterId++;
|
|
47
|
-
// assign cluster ids to input points
|
|
48
|
-
clusterIds.forEach(function (idx) {
|
|
49
|
-
var clusterPoint = points.features[idx];
|
|
50
|
-
if (!clusterPoint.properties)
|
|
51
|
-
clusterPoint.properties = {};
|
|
52
|
-
clusterPoint.properties.cluster = clusterId;
|
|
53
|
-
clusterPoint.properties.dbscan = "core";
|
|
54
|
-
});
|
|
55
|
-
});
|
|
56
|
-
// handle noise points, if any
|
|
57
|
-
// edges points are tagged by DBSCAN as both 'noise' and 'cluster' as they can "reach" less than 'minPoints' number of points
|
|
58
|
-
dbscan.noise.forEach(function (noiseId) {
|
|
59
|
-
var noisePoint = points.features[noiseId];
|
|
60
|
-
if (!noisePoint.properties)
|
|
61
|
-
noisePoint.properties = {};
|
|
62
|
-
if (noisePoint.properties.cluster)
|
|
63
|
-
noisePoint.properties.dbscan = "edge";
|
|
64
|
-
else
|
|
65
|
-
noisePoint.properties.dbscan = "noise";
|
|
66
|
-
});
|
|
67
|
-
return points;
|
|
68
|
-
}
|
|
69
|
-
export default clustersDbscan;
|
package/dist/es/package.json
DELETED
|
@@ -1 +0,0 @@
|
|
|
1
|
-
{"type":"module"}
|
package/dist/js/index.js
DELETED
|
@@ -1,72 +0,0 @@
|
|
|
1
|
-
"use strict";
|
|
2
|
-
Object.defineProperty(exports, "__esModule", { value: true });
|
|
3
|
-
const tslib_1 = require("tslib");
|
|
4
|
-
const clone_1 = tslib_1.__importDefault(require("@turf/clone"));
|
|
5
|
-
const distance_1 = tslib_1.__importDefault(require("@turf/distance"));
|
|
6
|
-
const meta_1 = require("@turf/meta");
|
|
7
|
-
const helpers_1 = require("@turf/helpers");
|
|
8
|
-
const density_clustering_1 = tslib_1.__importDefault(require("density-clustering"));
|
|
9
|
-
/**
|
|
10
|
-
* Takes a set of {@link Point|points} and partition them into clusters according to {@link DBSCAN's|https://en.wikipedia.org/wiki/DBSCAN} data clustering algorithm.
|
|
11
|
-
*
|
|
12
|
-
* @name clustersDbscan
|
|
13
|
-
* @param {FeatureCollection<Point>} points to be clustered
|
|
14
|
-
* @param {number} maxDistance Maximum Distance between any point of the cluster to generate the clusters (kilometers only)
|
|
15
|
-
* @param {Object} [options={}] Optional parameters
|
|
16
|
-
* @param {string} [options.units="kilometers"] in which `maxDistance` is expressed, can be degrees, radians, miles, or kilometers
|
|
17
|
-
* @param {boolean} [options.mutate=false] Allows GeoJSON input to be mutated
|
|
18
|
-
* @param {number} [options.minPoints=3] Minimum number of points to generate a single cluster,
|
|
19
|
-
* points which do not meet this requirement will be classified as an 'edge' or 'noise'.
|
|
20
|
-
* @returns {FeatureCollection<Point>} Clustered Points with an additional two properties associated to each Feature:
|
|
21
|
-
* - {number} cluster - the associated clusterId
|
|
22
|
-
* - {string} dbscan - type of point it has been classified as ('core'|'edge'|'noise')
|
|
23
|
-
* @example
|
|
24
|
-
* // create random points with random z-values in their properties
|
|
25
|
-
* var points = turf.randomPoint(100, {bbox: [0, 30, 20, 50]});
|
|
26
|
-
* var maxDistance = 100;
|
|
27
|
-
* var clustered = turf.clustersDbscan(points, maxDistance);
|
|
28
|
-
*
|
|
29
|
-
* //addToMap
|
|
30
|
-
* var addToMap = [clustered];
|
|
31
|
-
*/
|
|
32
|
-
function clustersDbscan(points, maxDistance, options = {}) {
|
|
33
|
-
// Input validation being handled by Typescript
|
|
34
|
-
// collectionOf(points, 'Point', 'points must consist of a FeatureCollection of only Points');
|
|
35
|
-
// if (maxDistance === null || maxDistance === undefined) throw new Error('maxDistance is required');
|
|
36
|
-
// if (!(Math.sign(maxDistance) > 0)) throw new Error('maxDistance is invalid');
|
|
37
|
-
// if (!(minPoints === undefined || minPoints === null || Math.sign(minPoints) > 0)) throw new Error('options.minPoints is invalid');
|
|
38
|
-
// Clone points to prevent any mutations
|
|
39
|
-
if (options.mutate !== true)
|
|
40
|
-
points = clone_1.default(points);
|
|
41
|
-
// Defaults
|
|
42
|
-
options.minPoints = options.minPoints || 3;
|
|
43
|
-
// create clustered ids
|
|
44
|
-
var dbscan = new density_clustering_1.default.DBSCAN();
|
|
45
|
-
var clusteredIds = dbscan.run(meta_1.coordAll(points), helpers_1.convertLength(maxDistance, options.units), options.minPoints, distance_1.default);
|
|
46
|
-
// Tag points to Clusters ID
|
|
47
|
-
var clusterId = -1;
|
|
48
|
-
clusteredIds.forEach(function (clusterIds) {
|
|
49
|
-
clusterId++;
|
|
50
|
-
// assign cluster ids to input points
|
|
51
|
-
clusterIds.forEach(function (idx) {
|
|
52
|
-
var clusterPoint = points.features[idx];
|
|
53
|
-
if (!clusterPoint.properties)
|
|
54
|
-
clusterPoint.properties = {};
|
|
55
|
-
clusterPoint.properties.cluster = clusterId;
|
|
56
|
-
clusterPoint.properties.dbscan = "core";
|
|
57
|
-
});
|
|
58
|
-
});
|
|
59
|
-
// handle noise points, if any
|
|
60
|
-
// edges points are tagged by DBSCAN as both 'noise' and 'cluster' as they can "reach" less than 'minPoints' number of points
|
|
61
|
-
dbscan.noise.forEach(function (noiseId) {
|
|
62
|
-
var noisePoint = points.features[noiseId];
|
|
63
|
-
if (!noisePoint.properties)
|
|
64
|
-
noisePoint.properties = {};
|
|
65
|
-
if (noisePoint.properties.cluster)
|
|
66
|
-
noisePoint.properties.dbscan = "edge";
|
|
67
|
-
else
|
|
68
|
-
noisePoint.properties.dbscan = "noise";
|
|
69
|
-
});
|
|
70
|
-
return points;
|
|
71
|
-
}
|
|
72
|
-
exports.default = clustersDbscan;
|