@tryhamster/gerbil 1.0.0-rc.0 → 1.0.0-rc.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (94) hide show
  1. package/README.md +79 -14
  2. package/dist/auto-update-DsWBBnEk.mjs +3 -0
  3. package/dist/browser/index.d.mts +401 -5
  4. package/dist/browser/index.d.mts.map +1 -1
  5. package/dist/browser/index.mjs +1772 -146
  6. package/dist/browser/index.mjs.map +1 -1
  7. package/dist/{chrome-backend-CtwPENIW.mjs → chrome-backend-JEPeM2YE.mjs} +1 -1
  8. package/dist/{chrome-backend-C5Un08O4.mjs → chrome-backend-Y9F7W5VQ.mjs} +514 -73
  9. package/dist/chrome-backend-Y9F7W5VQ.mjs.map +1 -0
  10. package/dist/cli.mjs +3359 -646
  11. package/dist/cli.mjs.map +1 -1
  12. package/dist/frameworks/express.d.mts +1 -1
  13. package/dist/frameworks/express.mjs +3 -3
  14. package/dist/frameworks/fastify.d.mts +1 -1
  15. package/dist/frameworks/fastify.mjs +3 -3
  16. package/dist/frameworks/hono.d.mts +1 -1
  17. package/dist/frameworks/hono.mjs +3 -3
  18. package/dist/frameworks/next.d.mts +2 -2
  19. package/dist/frameworks/next.mjs +3 -3
  20. package/dist/frameworks/react.d.mts +1 -1
  21. package/dist/frameworks/trpc.d.mts +1 -1
  22. package/dist/frameworks/trpc.mjs +3 -3
  23. package/dist/gerbil-DeQlX_Mt.mjs +5 -0
  24. package/dist/gerbil-POAz8peb.d.mts +431 -0
  25. package/dist/gerbil-POAz8peb.d.mts.map +1 -0
  26. package/dist/gerbil-yoSpRHgv.mjs +1463 -0
  27. package/dist/gerbil-yoSpRHgv.mjs.map +1 -0
  28. package/dist/index.d.mts +395 -9
  29. package/dist/index.d.mts.map +1 -1
  30. package/dist/index.mjs +8 -6
  31. package/dist/index.mjs.map +1 -1
  32. package/dist/integrations/ai-sdk.d.mts +122 -4
  33. package/dist/integrations/ai-sdk.d.mts.map +1 -1
  34. package/dist/integrations/ai-sdk.mjs +239 -11
  35. package/dist/integrations/ai-sdk.mjs.map +1 -1
  36. package/dist/integrations/langchain.d.mts +132 -2
  37. package/dist/integrations/langchain.d.mts.map +1 -1
  38. package/dist/integrations/langchain.mjs +176 -8
  39. package/dist/integrations/langchain.mjs.map +1 -1
  40. package/dist/integrations/llamaindex.d.mts +1 -1
  41. package/dist/integrations/llamaindex.mjs +3 -3
  42. package/dist/integrations/mcp-client.mjs +4 -4
  43. package/dist/integrations/mcp-client.mjs.map +1 -1
  44. package/dist/integrations/mcp.d.mts +2 -2
  45. package/dist/integrations/mcp.d.mts.map +1 -1
  46. package/dist/integrations/mcp.mjs +6 -6
  47. package/dist/{mcp-R8kRLIKb.mjs → mcp-Bitg4sjX.mjs} +10 -37
  48. package/dist/mcp-Bitg4sjX.mjs.map +1 -0
  49. package/dist/microphone-D-6y9aiE.mjs +3 -0
  50. package/dist/{models-DKULvhOr.mjs → models-BAtL8qsA.mjs} +42 -7
  51. package/dist/models-BAtL8qsA.mjs.map +1 -0
  52. package/dist/{models-De2-_GmQ.d.mts → models-CE0fBq0U.d.mts} +2 -2
  53. package/dist/models-CE0fBq0U.d.mts.map +1 -0
  54. package/dist/{one-liner-BUQR0nqq.mjs → one-liner-B1rmFto6.mjs} +2 -2
  55. package/dist/{one-liner-BUQR0nqq.mjs.map → one-liner-B1rmFto6.mjs.map} +1 -1
  56. package/dist/repl-D20JO260.mjs +10 -0
  57. package/dist/skills/index.d.mts +303 -12
  58. package/dist/skills/index.d.mts.map +1 -1
  59. package/dist/skills/index.mjs +6 -6
  60. package/dist/skills-5DxAV-rn.mjs +1435 -0
  61. package/dist/skills-5DxAV-rn.mjs.map +1 -0
  62. package/dist/stt-Bv_dum-R.mjs +433 -0
  63. package/dist/stt-Bv_dum-R.mjs.map +1 -0
  64. package/dist/stt-KzSoNvwI.mjs +3 -0
  65. package/dist/{tools-BsiEE6f2.mjs → tools-IYPrqoek.mjs} +6 -7
  66. package/dist/{tools-BsiEE6f2.mjs.map → tools-IYPrqoek.mjs.map} +1 -1
  67. package/dist/tts-5yWeP_I0.mjs +3 -0
  68. package/dist/tts-DG6denWG.mjs +729 -0
  69. package/dist/tts-DG6denWG.mjs.map +1 -0
  70. package/dist/types-s6Py2_DL.d.mts +353 -0
  71. package/dist/types-s6Py2_DL.d.mts.map +1 -0
  72. package/dist/{utils-7vXqtq2Q.mjs → utils-CkB4Roi6.mjs} +1 -1
  73. package/dist/{utils-7vXqtq2Q.mjs.map → utils-CkB4Roi6.mjs.map} +1 -1
  74. package/docs/ai-sdk.md +137 -21
  75. package/docs/browser.md +241 -2
  76. package/docs/memory.md +72 -0
  77. package/docs/stt.md +494 -0
  78. package/docs/tts.md +569 -0
  79. package/docs/vision.md +396 -0
  80. package/package.json +17 -18
  81. package/dist/auto-update-BbNHbSU1.mjs +0 -3
  82. package/dist/chrome-backend-C5Un08O4.mjs.map +0 -1
  83. package/dist/gerbil-BfnsFWRE.mjs +0 -644
  84. package/dist/gerbil-BfnsFWRE.mjs.map +0 -1
  85. package/dist/gerbil-BjW-z7Fq.mjs +0 -5
  86. package/dist/gerbil-DZ1k3ChC.d.mts +0 -138
  87. package/dist/gerbil-DZ1k3ChC.d.mts.map +0 -1
  88. package/dist/mcp-R8kRLIKb.mjs.map +0 -1
  89. package/dist/models-DKULvhOr.mjs.map +0 -1
  90. package/dist/models-De2-_GmQ.d.mts.map +0 -1
  91. package/dist/skills-D3CEpgDc.mjs +0 -630
  92. package/dist/skills-D3CEpgDc.mjs.map +0 -1
  93. package/dist/types-BS1N92Jt.d.mts +0 -183
  94. package/dist/types-BS1N92Jt.d.mts.map +0 -1
@@ -0,0 +1,1463 @@
1
+ import { i as getModelConfig, n as createExternalModelConfig, o as resolveModel, r as fetchModelContextLength, t as BUILTIN_MODELS } from "./models-BAtL8qsA.mjs";
2
+ import { n as zodToJsonSchema, t as extractJson } from "./utils-CkB4Roi6.mjs";
3
+ import { AutoModelForCausalLM, AutoModelForImageTextToText, AutoProcessor, AutoTokenizer, RawImage, TextStreamer, env, pipeline } from "@huggingface/transformers";
4
+
5
+ //#region src/core/cache.ts
6
+ /**
7
+ * Generate a deterministic cache key from prompt and options.
8
+ * Key includes all parameters that affect the output.
9
+ */
10
+ function generateCacheKey(prompt, modelId, options) {
11
+ const keyParts = [
12
+ prompt,
13
+ modelId,
14
+ options.maxTokens ?? 256,
15
+ options.temperature ?? .7,
16
+ options.topP ?? .9,
17
+ options.topK ?? 50,
18
+ options.system ?? "",
19
+ options.thinking ?? false
20
+ ];
21
+ const str = JSON.stringify(keyParts);
22
+ let hash = 0;
23
+ for (let i = 0; i < str.length; i++) {
24
+ const char = str.charCodeAt(i);
25
+ hash = (hash << 5) - hash + char;
26
+ hash = hash & hash;
27
+ }
28
+ return `gerbil:${hash.toString(16)}`;
29
+ }
30
+ /**
31
+ * LRU cache with TTL expiration for inference responses.
32
+ */
33
+ var ResponseCache = class {
34
+ cache = /* @__PURE__ */ new Map();
35
+ maxSize;
36
+ defaultTtl;
37
+ hits = 0;
38
+ misses = 0;
39
+ /**
40
+ * Create a new response cache.
41
+ * @param maxSize Maximum number of entries (default: 100)
42
+ * @param defaultTtl Default TTL in ms (default: 5 minutes)
43
+ */
44
+ constructor(maxSize = 100, defaultTtl = 300 * 1e3) {
45
+ this.maxSize = maxSize;
46
+ this.defaultTtl = defaultTtl;
47
+ }
48
+ /**
49
+ * Get a cached response if it exists and hasn't expired.
50
+ */
51
+ get(key) {
52
+ const entry = this.cache.get(key);
53
+ if (!entry) {
54
+ this.misses++;
55
+ return null;
56
+ }
57
+ if (Date.now() - entry.createdAt > entry.ttl) {
58
+ this.cache.delete(key);
59
+ this.misses++;
60
+ return null;
61
+ }
62
+ this.cache.delete(key);
63
+ this.cache.set(key, entry);
64
+ this.hits++;
65
+ return {
66
+ ...entry.result,
67
+ cached: true
68
+ };
69
+ }
70
+ /**
71
+ * Store a response in the cache.
72
+ */
73
+ set(key, result, ttl) {
74
+ while (this.cache.size >= this.maxSize) {
75
+ const firstKey = this.cache.keys().next().value;
76
+ if (firstKey) this.cache.delete(firstKey);
77
+ }
78
+ this.cache.set(key, {
79
+ result,
80
+ createdAt: Date.now(),
81
+ ttl: ttl ?? this.defaultTtl
82
+ });
83
+ }
84
+ /**
85
+ * Check if a key exists and is not expired.
86
+ */
87
+ has(key) {
88
+ const entry = this.cache.get(key);
89
+ if (!entry) return false;
90
+ if (Date.now() - entry.createdAt > entry.ttl) {
91
+ this.cache.delete(key);
92
+ return false;
93
+ }
94
+ return true;
95
+ }
96
+ /**
97
+ * Remove a specific key from the cache.
98
+ */
99
+ delete(key) {
100
+ return this.cache.delete(key);
101
+ }
102
+ /**
103
+ * Clear all entries from the cache.
104
+ */
105
+ clear() {
106
+ this.cache.clear();
107
+ this.hits = 0;
108
+ this.misses = 0;
109
+ }
110
+ /**
111
+ * Remove all expired entries.
112
+ */
113
+ prune() {
114
+ const now = Date.now();
115
+ let pruned = 0;
116
+ for (const [key, entry] of this.cache) if (now - entry.createdAt > entry.ttl) {
117
+ this.cache.delete(key);
118
+ pruned++;
119
+ }
120
+ return pruned;
121
+ }
122
+ /**
123
+ * Get cache statistics.
124
+ */
125
+ getStats() {
126
+ return {
127
+ hits: this.hits,
128
+ misses: this.misses,
129
+ size: this.cache.size,
130
+ maxSize: this.maxSize
131
+ };
132
+ }
133
+ /**
134
+ * Get hit rate as a percentage.
135
+ */
136
+ getHitRate() {
137
+ const total = this.hits + this.misses;
138
+ if (total === 0) return 0;
139
+ return this.hits / total * 100;
140
+ }
141
+ };
142
+ let globalCache = null;
143
+ /**
144
+ * Get the global response cache instance.
145
+ * Creates one if it doesn't exist.
146
+ */
147
+ function getGlobalCache() {
148
+ if (!globalCache) globalCache = new ResponseCache();
149
+ return globalCache;
150
+ }
151
+ /**
152
+ * Configure the global cache with custom settings.
153
+ */
154
+ function configureGlobalCache(maxSize, defaultTtl) {
155
+ globalCache = new ResponseCache(maxSize, defaultTtl);
156
+ return globalCache;
157
+ }
158
+ /**
159
+ * Clear and reset the global cache.
160
+ */
161
+ function clearGlobalCache() {
162
+ if (globalCache) globalCache.clear();
163
+ }
164
+
165
+ //#endregion
166
+ //#region src/core/gerbil.ts
167
+ /**
168
+ * Gerbil - Local GPU-accelerated LLM inference
169
+ */
170
+ const pipeline$1 = pipeline;
171
+ function suppressNoisyWarnings(fn) {
172
+ const originalWarn = console.warn;
173
+ console.warn = (...args) => {
174
+ const msg = args[0]?.toString?.() || "";
175
+ if (msg.includes("content-length") || msg.includes("Unable to determine")) return;
176
+ originalWarn.apply(console, args);
177
+ };
178
+ return fn().finally(() => {
179
+ console.warn = originalWarn;
180
+ });
181
+ }
182
+ const KOKORO_VOICES_DEFAULT = [
183
+ {
184
+ id: "af_bella",
185
+ name: "Bella",
186
+ gender: "female",
187
+ language: "en-us",
188
+ description: "American female, warm and friendly"
189
+ },
190
+ {
191
+ id: "af_sarah",
192
+ name: "Sarah",
193
+ gender: "female",
194
+ language: "en-us",
195
+ description: "American female, clear and professional"
196
+ },
197
+ {
198
+ id: "af_nicole",
199
+ name: "Nicole",
200
+ gender: "female",
201
+ language: "en-us",
202
+ description: "American female, soft and gentle"
203
+ },
204
+ {
205
+ id: "af_sky",
206
+ name: "Sky",
207
+ gender: "female",
208
+ language: "en-us",
209
+ description: "American female, young and energetic"
210
+ },
211
+ {
212
+ id: "am_adam",
213
+ name: "Adam",
214
+ gender: "male",
215
+ language: "en-us",
216
+ description: "American male, deep and confident"
217
+ },
218
+ {
219
+ id: "am_michael",
220
+ name: "Michael",
221
+ gender: "male",
222
+ language: "en-us",
223
+ description: "American male, warm and friendly"
224
+ },
225
+ {
226
+ id: "bf_emma",
227
+ name: "Emma",
228
+ gender: "female",
229
+ language: "en-gb",
230
+ description: "British female, elegant and clear"
231
+ },
232
+ {
233
+ id: "bf_isabella",
234
+ name: "Isabella",
235
+ gender: "female",
236
+ language: "en-gb",
237
+ description: "British female, sophisticated"
238
+ },
239
+ {
240
+ id: "bm_george",
241
+ name: "George",
242
+ gender: "male",
243
+ language: "en-gb",
244
+ description: "British male, distinguished"
245
+ },
246
+ {
247
+ id: "bm_lewis",
248
+ name: "Lewis",
249
+ gender: "male",
250
+ language: "en-gb",
251
+ description: "British male, friendly and warm"
252
+ }
253
+ ];
254
+ const isBrowser = typeof window !== "undefined";
255
+ env.allowLocalModels = !isBrowser;
256
+ env.useBrowserCache = isBrowser;
257
+ let webgpuInitialized = false;
258
+ let webgpuAvailable = false;
259
+ /**
260
+ * Initialize WebGPU for Node.js environments
261
+ * Called automatically before model loading
262
+ */
263
+ async function initNodeWebGPU() {
264
+ if (webgpuInitialized) return webgpuAvailable;
265
+ webgpuInitialized = true;
266
+ if (typeof window !== "undefined") {
267
+ webgpuAvailable = "gpu" in navigator;
268
+ return webgpuAvailable;
269
+ }
270
+ try {
271
+ const { create, globals } = await new Function("specifier", "return import(specifier)")("webgpu");
272
+ Object.assign(globalThis, globals);
273
+ if (!globalThis.navigator) globalThis.navigator = {};
274
+ globalThis.navigator.gpu = create([]);
275
+ webgpuAvailable = true;
276
+ } catch {
277
+ webgpuAvailable = false;
278
+ }
279
+ return webgpuAvailable;
280
+ }
281
+ var Gerbil = class {
282
+ generator = null;
283
+ tokenizer = null;
284
+ model = null;
285
+ embedder = null;
286
+ currentModel = null;
287
+ modelConfig = null;
288
+ config;
289
+ stats;
290
+ useDirect = false;
291
+ chromeBackend = null;
292
+ _deviceMode = "cpu";
293
+ processor = null;
294
+ visionModel = null;
295
+ isVisionModel = false;
296
+ constructor(config = {}) {
297
+ this.config = config;
298
+ this.stats = {
299
+ prompts: 0,
300
+ tokensIn: 0,
301
+ tokensOut: 0,
302
+ avgSpeed: 0,
303
+ totalTime: 0,
304
+ cacheHits: 0,
305
+ cacheMisses: 0
306
+ };
307
+ }
308
+ static listModels() {
309
+ return Object.values(BUILTIN_MODELS);
310
+ }
311
+ static getModel(modelId) {
312
+ return BUILTIN_MODELS[modelId];
313
+ }
314
+ /**
315
+ * Load a model
316
+ *
317
+ * @example
318
+ * ```ts
319
+ * // Built-in model
320
+ * await g.loadModel("qwen3-0.6b");
321
+ *
322
+ * // HuggingFace model
323
+ * await g.loadModel("hf:microsoft/Phi-3-mini");
324
+ *
325
+ * // Local model
326
+ * await g.loadModel("file:./models/my-model");
327
+ *
328
+ * // Vision model
329
+ * await g.loadModel("ministral-3b");
330
+ * ```
331
+ */
332
+ async loadModel(modelId = "qwen3-0.6b", options = {}) {
333
+ if (this.isLoaded()) await this.dispose();
334
+ await initNodeWebGPU();
335
+ const source = resolveModel(modelId);
336
+ const { onProgress, device = "auto", dtype: userDtype } = options;
337
+ let config = getModelConfig(modelId);
338
+ if (!config) {
339
+ const contextLength = await fetchModelContextLength(source.path).catch(() => null);
340
+ config = createExternalModelConfig(modelId, source.path, contextLength || void 0);
341
+ }
342
+ if (config.supportsVision) return this.loadVisionModel(modelId, source.path, config, options);
343
+ onProgress?.({ status: `Loading ${modelId}...` });
344
+ const isBrowser$1 = typeof window !== "undefined";
345
+ const fallbackDevice = isBrowser$1 ? "wasm" : "cpu";
346
+ let tfDevice = fallbackDevice;
347
+ if (device === "webgpu" || device === "gpu" || device === "auto") tfDevice = "webgpu";
348
+ const dtype = userDtype ?? (tfDevice === "webgpu" ? "q4f16" : "q4");
349
+ let isLoading = true;
350
+ let lastFile = "";
351
+ let lastPct = -1;
352
+ const progressCallback = (progress) => {
353
+ if (!isLoading) return;
354
+ if (progress.status === "progress" && progress.file) {
355
+ const pct = Math.round(progress.progress || 0);
356
+ if (progress.file !== lastFile || pct >= lastPct + 5) {
357
+ lastFile = progress.file;
358
+ lastPct = pct;
359
+ onProgress?.({
360
+ status: `Downloading ${progress.file}`,
361
+ progress: pct,
362
+ file: progress.file
363
+ });
364
+ }
365
+ }
366
+ };
367
+ try {
368
+ if (isBrowser$1 && tfDevice === "webgpu") {
369
+ onProgress?.({ status: "Loading tokenizer..." });
370
+ this.tokenizer = await suppressNoisyWarnings(() => AutoTokenizer.from_pretrained(source.path, { progress_callback: progressCallback }));
371
+ onProgress?.({ status: "Loading model..." });
372
+ this.model = await suppressNoisyWarnings(() => AutoModelForCausalLM.from_pretrained(source.path, {
373
+ dtype,
374
+ device: tfDevice,
375
+ progress_callback: progressCallback
376
+ }));
377
+ this.useDirect = true;
378
+ this._deviceMode = "webgpu";
379
+ this.isVisionModel = false;
380
+ isLoading = false;
381
+ this.currentModel = modelId;
382
+ this.modelConfig = config;
383
+ onProgress?.({ status: "Ready (WebGPU)!" });
384
+ } else if (!isBrowser$1 && tfDevice === "webgpu") {
385
+ onProgress?.({ status: "Starting Chrome WebGPU backend..." });
386
+ const { ChromeGPUBackend } = await import("./chrome-backend-JEPeM2YE.mjs");
387
+ this.chromeBackend = await ChromeGPUBackend.create({
388
+ modelId: source.path,
389
+ contextLength: config.contextLength,
390
+ onProgress
391
+ });
392
+ this.useDirect = false;
393
+ this._deviceMode = "webgpu";
394
+ this.isVisionModel = false;
395
+ isLoading = false;
396
+ this.currentModel = modelId;
397
+ this.modelConfig = config;
398
+ } else {
399
+ const pipelineOptions = {
400
+ dtype,
401
+ device: tfDevice,
402
+ progress_callback: progressCallback
403
+ };
404
+ this.generator = await suppressNoisyWarnings(() => pipeline$1("text-generation", source.path, pipelineOptions));
405
+ this.useDirect = false;
406
+ this._deviceMode = tfDevice;
407
+ this.isVisionModel = false;
408
+ isLoading = false;
409
+ this.currentModel = modelId;
410
+ this.modelConfig = config;
411
+ onProgress?.({ status: `Ready (${tfDevice.toUpperCase()})!` });
412
+ }
413
+ } catch (err) {
414
+ if (tfDevice !== fallbackDevice) {
415
+ onProgress?.({ status: `Using ${fallbackDevice.toUpperCase()}...` });
416
+ if (this.chromeBackend) {
417
+ await this.chromeBackend.dispose();
418
+ this.chromeBackend = null;
419
+ }
420
+ this.generator = await suppressNoisyWarnings(() => pipeline$1("text-generation", source.path, {
421
+ dtype: "q4",
422
+ device: fallbackDevice,
423
+ progress_callback: progressCallback
424
+ }));
425
+ this.useDirect = false;
426
+ this._deviceMode = fallbackDevice;
427
+ this.isVisionModel = false;
428
+ isLoading = false;
429
+ this.currentModel = modelId;
430
+ this.modelConfig = config;
431
+ onProgress?.({ status: `Ready (${fallbackDevice.toUpperCase()})!` });
432
+ } else throw err;
433
+ }
434
+ }
435
+ /**
436
+ * Load a vision model (VLM)
437
+ * Uses AutoProcessor + AutoModelForImageTextToText instead of tokenizer + causal LM
438
+ */
439
+ async loadVisionModel(modelId, repoPath, config, options = {}) {
440
+ const { onProgress, device = "auto" } = options;
441
+ onProgress?.({ status: `Loading ${modelId} (vision model)...` });
442
+ const isBrowser$1 = typeof window !== "undefined";
443
+ const fallbackDevice = isBrowser$1 ? "wasm" : "cpu";
444
+ let tfDevice = fallbackDevice;
445
+ if (device === "webgpu" || device === "gpu" || device === "auto") tfDevice = "webgpu";
446
+ if (!isBrowser$1 && tfDevice === "webgpu") {
447
+ onProgress?.({ status: "Starting Chrome WebGPU backend (vision)..." });
448
+ const { ChromeGPUBackend } = await import("./chrome-backend-JEPeM2YE.mjs");
449
+ this.chromeBackend = await ChromeGPUBackend.create({
450
+ modelId: repoPath,
451
+ contextLength: config.contextLength,
452
+ isVision: true,
453
+ onProgress
454
+ });
455
+ this.useDirect = false;
456
+ this._deviceMode = "webgpu";
457
+ this.isVisionModel = true;
458
+ this.currentModel = modelId;
459
+ this.modelConfig = config;
460
+ return;
461
+ }
462
+ let lastFile = "";
463
+ let lastPct = -1;
464
+ const progressCallback = (progress) => {
465
+ if (progress.status === "progress" && progress.file) {
466
+ const pct = Math.round(progress.progress || 0);
467
+ if (progress.file !== lastFile || pct >= lastPct + 5) {
468
+ lastFile = progress.file;
469
+ lastPct = pct;
470
+ onProgress?.({
471
+ status: `Downloading ${progress.file}`,
472
+ progress: pct,
473
+ file: progress.file
474
+ });
475
+ }
476
+ }
477
+ };
478
+ try {
479
+ onProgress?.({ status: "Loading processor..." });
480
+ this.processor = await suppressNoisyWarnings(() => AutoProcessor.from_pretrained(repoPath, { progress_callback: progressCallback }));
481
+ onProgress?.({ status: "Loading vision model..." });
482
+ this.visionModel = await suppressNoisyWarnings(() => AutoModelForImageTextToText.from_pretrained(repoPath, {
483
+ device: tfDevice,
484
+ progress_callback: progressCallback
485
+ }));
486
+ this.isVisionModel = true;
487
+ this.useDirect = true;
488
+ this._deviceMode = tfDevice === "webgpu" ? "webgpu" : tfDevice;
489
+ this.currentModel = modelId;
490
+ this.modelConfig = config;
491
+ onProgress?.({ status: `Ready (Vision, ${tfDevice.toUpperCase()})!` });
492
+ } catch (err) {
493
+ if (tfDevice !== fallbackDevice) {
494
+ onProgress?.({ status: `Vision model: Using ${fallbackDevice.toUpperCase()}...` });
495
+ this.processor = await suppressNoisyWarnings(() => AutoProcessor.from_pretrained(repoPath, { progress_callback: progressCallback }));
496
+ this.visionModel = await suppressNoisyWarnings(() => AutoModelForImageTextToText.from_pretrained(repoPath, {
497
+ device: fallbackDevice,
498
+ progress_callback: progressCallback
499
+ }));
500
+ this.isVisionModel = true;
501
+ this.useDirect = true;
502
+ this._deviceMode = fallbackDevice;
503
+ this.currentModel = modelId;
504
+ this.modelConfig = config;
505
+ onProgress?.({ status: `Ready (Vision, ${fallbackDevice.toUpperCase()})!` });
506
+ } else throw err;
507
+ }
508
+ }
509
+ /**
510
+ * Check if a model is loaded
511
+ */
512
+ isLoaded() {
513
+ return this.generator !== null || this.useDirect && this.model !== null || this.chromeBackend !== null || this.isVisionModel && this.visionModel !== null;
514
+ }
515
+ /**
516
+ * Check if current model supports vision
517
+ */
518
+ supportsVision() {
519
+ return this.isVisionModel && this.modelConfig?.supportsVision === true;
520
+ }
521
+ /**
522
+ * Get current model info
523
+ */
524
+ getModelInfo() {
525
+ return this.modelConfig;
526
+ }
527
+ /**
528
+ * Get current device mode (webgpu, cpu, or wasm)
529
+ */
530
+ getDeviceMode() {
531
+ return this._deviceMode;
532
+ }
533
+ /**
534
+ * Get dtype used for current model
535
+ */
536
+ getDtype() {
537
+ return this._deviceMode === "webgpu" ? "q4f16" : "q4";
538
+ }
539
+ /**
540
+ * Get response cache statistics
541
+ */
542
+ getResponseCacheStats() {
543
+ const cache = getGlobalCache();
544
+ const stats = cache.getStats();
545
+ return {
546
+ hits: stats.hits,
547
+ misses: stats.misses,
548
+ size: stats.size,
549
+ hitRate: cache.getHitRate()
550
+ };
551
+ }
552
+ /**
553
+ * Clear the response cache (for cached generate() results)
554
+ */
555
+ clearResponseCache() {
556
+ getGlobalCache().clear();
557
+ }
558
+ /**
559
+ * Get Chrome backend status (if using WebGPU via Chrome)
560
+ */
561
+ getChromeStatus() {
562
+ if (!this.chromeBackend) return null;
563
+ return this.chromeBackend.getStatus();
564
+ }
565
+ /**
566
+ * Get Chrome memory usage (if using WebGPU via Chrome)
567
+ * Returns JS heap memory in bytes
568
+ */
569
+ async getChromeMemory() {
570
+ if (!this.chromeBackend) return null;
571
+ return this.chromeBackend.getMemoryUsage();
572
+ }
573
+ /**
574
+ * Get memory usage in GB (if using WebGPU via Chrome)
575
+ */
576
+ async getMemoryUsage() {
577
+ if (!this.chromeBackend) return null;
578
+ return this.chromeBackend.getMemoryStats();
579
+ }
580
+ /**
581
+ * Clear KV cache to free memory
582
+ * This will reset the conversation context but free up memory
583
+ */
584
+ async clearCache() {
585
+ if (this.chromeBackend) await this.chromeBackend.reset();
586
+ }
587
+ /**
588
+ * Check memory usage and cleanup if needed
589
+ * @param thresholdGB Memory threshold in GB (default: 8)
590
+ * @returns true if cleanup was performed
591
+ */
592
+ async checkMemoryAndCleanup(thresholdGB = 8) {
593
+ if (!this.chromeBackend) return false;
594
+ return this.chromeBackend.checkMemoryAndCleanup(thresholdGB);
595
+ }
596
+ /**
597
+ * Generate text (automatically routes to vision generation if images provided)
598
+ *
599
+ * @example
600
+ * ```ts
601
+ * // Text generation
602
+ * const result = await g.generate("Hello!");
603
+ *
604
+ * // Vision generation (with vision model)
605
+ * const result = await g.generate("What's in this image?", {
606
+ * images: [{ source: "https://example.com/cat.jpg" }]
607
+ * });
608
+ * ```
609
+ */
610
+ async generate(prompt, options = {}) {
611
+ if (!this.isLoaded()) await this.loadModel(this.config.model || "qwen3-0.6b");
612
+ const { images } = options;
613
+ if (images?.length && this.isVisionModel && !this.chromeBackend) return this.generateWithVision(prompt, options);
614
+ if (images?.length && !this.isVisionModel) {}
615
+ const { maxTokens = 256, temperature = .7, topP = .9, topK = 50, thinking = false, system, cache = false, cacheTtl } = options;
616
+ if (cache && !options.onToken && !images?.length) {
617
+ const cacheKey = generateCacheKey(prompt, this.currentModel || "", {
618
+ maxTokens,
619
+ temperature,
620
+ topP,
621
+ topK,
622
+ system,
623
+ thinking
624
+ });
625
+ const cached = getGlobalCache().get(cacheKey);
626
+ if (cached) return cached;
627
+ }
628
+ const startTime = performance.now();
629
+ try {
630
+ let rawText = "";
631
+ if (this.chromeBackend) try {
632
+ rawText = await this.chromeBackend.generate(prompt, {
633
+ maxTokens,
634
+ temperature,
635
+ topP,
636
+ topK,
637
+ thinking,
638
+ system,
639
+ images: images?.map((img) => img.source),
640
+ onToken: options.onToken ? (t) => options.onToken?.(t.text) : void 0
641
+ });
642
+ } catch (chromeErr) {
643
+ if (chromeErr?.message === "CHROME_BACKEND_DEAD" || !this.chromeBackend?.isAlive()) {
644
+ await this.chromeBackend?.dispose().catch(() => {});
645
+ this.chromeBackend = null;
646
+ this._deviceMode = "cpu";
647
+ this.generator = await pipeline$1("text-generation", this.currentModel || "qwen3-0.6b", {
648
+ dtype: "q4",
649
+ device: "cpu"
650
+ });
651
+ return this.generate(prompt, options);
652
+ }
653
+ throw chromeErr;
654
+ }
655
+ else if (this.useDirect && this.model && this.tokenizer) {
656
+ const messages = this.buildMessages(prompt, {
657
+ ...options,
658
+ thinking
659
+ });
660
+ const inputs = this.tokenizer.apply_chat_template(messages, {
661
+ add_generation_prompt: true,
662
+ return_dict: true,
663
+ enable_thinking: thinking
664
+ });
665
+ const output = await this.model.generate({
666
+ ...inputs,
667
+ max_new_tokens: maxTokens,
668
+ temperature: temperature > 0 ? temperature : void 0,
669
+ top_p: topP,
670
+ top_k: topK,
671
+ do_sample: temperature > 0
672
+ });
673
+ const inputLength = inputs.input_ids.dims?.[1] || inputs.input_ids.data?.length || 0;
674
+ const outputTokens = output.slice(null, [inputLength, null]);
675
+ rawText = this.tokenizer.batch_decode(outputTokens, { skip_special_tokens: true })[0] || "";
676
+ if (rawText.toLowerCase().includes("assistant")) {
677
+ const match = rawText.match(/assistant[:\s]*([\s\S]*)/i);
678
+ if (match) rawText = match[1].trim();
679
+ }
680
+ } else if (this.generator) {
681
+ const formattedPrompt = this.formatPrompt(prompt, {
682
+ ...options,
683
+ thinking
684
+ });
685
+ const output = await this.generator(formattedPrompt, {
686
+ max_new_tokens: maxTokens,
687
+ temperature,
688
+ top_p: topP,
689
+ top_k: topK,
690
+ do_sample: temperature > 0,
691
+ return_full_text: false
692
+ });
693
+ if (Array.isArray(output) && output[0]) {
694
+ const result$1 = output[0];
695
+ if (Array.isArray(result$1.generated_text)) rawText = result$1.generated_text.at(-1)?.content || "";
696
+ else rawText = result$1.generated_text || "";
697
+ }
698
+ } else throw new Error("No model loaded");
699
+ const totalTime = performance.now() - startTime;
700
+ rawText = this.cleanOutput(rawText);
701
+ const { thinking: thinkingText, response } = this.parseThinking(rawText);
702
+ const finalThinking = thinking ? thinkingText : void 0;
703
+ const tokensGenerated = Math.ceil(response.length / 4);
704
+ this.stats.prompts += 1;
705
+ this.stats.tokensOut += tokensGenerated;
706
+ this.stats.totalTime += totalTime;
707
+ this.stats.avgSpeed = this.stats.tokensOut / this.stats.totalTime * 1e3;
708
+ const result = {
709
+ text: response,
710
+ thinking: finalThinking,
711
+ tokensGenerated,
712
+ tokensPerSecond: tokensGenerated / totalTime * 1e3,
713
+ totalTime,
714
+ finishReason: "stop",
715
+ provider: "local",
716
+ cached: false
717
+ };
718
+ if (cache && !options.onToken && !images?.length) {
719
+ const cacheKey = generateCacheKey(prompt, this.currentModel || "", {
720
+ maxTokens,
721
+ temperature,
722
+ topP,
723
+ topK,
724
+ system,
725
+ thinking
726
+ });
727
+ getGlobalCache().set(cacheKey, result, cacheTtl);
728
+ }
729
+ return result;
730
+ } catch (_error) {
731
+ return {
732
+ text: "",
733
+ tokensGenerated: 0,
734
+ tokensPerSecond: 0,
735
+ totalTime: performance.now() - startTime,
736
+ finishReason: "error",
737
+ provider: "local",
738
+ cached: false
739
+ };
740
+ }
741
+ }
742
+ /**
743
+ * Stream text generation (simulated token-by-token)
744
+ *
745
+ * Note: Yields the raw output including <think> tags if thinking mode is enabled.
746
+ * The final result has parsed thinking separated out.
747
+ */
748
+ async *stream(prompt, options = {}) {
749
+ if (!this.isLoaded()) await this.loadModel(this.config.model || "qwen3-0.6b");
750
+ const startTime = performance.now();
751
+ if (this.chromeBackend) {
752
+ let fullText = "";
753
+ const tokenQueue = [];
754
+ let resolveNext = null;
755
+ let done = false;
756
+ const generatePromise = this.chromeBackend.generate(prompt, {
757
+ ...options,
758
+ images: options.images?.map((img) => img.source),
759
+ onToken: (token) => {
760
+ fullText += token.text;
761
+ if (resolveNext) {
762
+ resolveNext(token.text);
763
+ resolveNext = null;
764
+ } else tokenQueue.push(token.text);
765
+ }
766
+ }).then(() => {
767
+ done = true;
768
+ if (resolveNext) resolveNext(null);
769
+ }).catch((err) => {
770
+ done = true;
771
+ if (resolveNext) resolveNext(null);
772
+ throw err;
773
+ });
774
+ while (!done || tokenQueue.length > 0) if (tokenQueue.length > 0) {
775
+ const token = tokenQueue.shift();
776
+ yield token;
777
+ options.onToken?.(token);
778
+ } else if (!done) {
779
+ const token = await new Promise((resolve) => {
780
+ resolveNext = resolve;
781
+ });
782
+ if (token) {
783
+ yield token;
784
+ options.onToken?.(token);
785
+ }
786
+ }
787
+ await generatePromise;
788
+ const { thinking: thinkingText, response } = this.parseThinking(fullText);
789
+ const tokensGenerated = Math.ceil(response.length / 4);
790
+ const totalTime = performance.now() - startTime;
791
+ return {
792
+ text: response,
793
+ thinking: options.thinking ? thinkingText : void 0,
794
+ tokensGenerated,
795
+ totalTime,
796
+ tokensPerSecond: tokensGenerated / totalTime * 1e3,
797
+ finishReason: "stop"
798
+ };
799
+ }
800
+ const result = await this.generateRaw(prompt, options);
801
+ const words = result.rawText.split(/(\s+)/);
802
+ for (const word of words) if (word) {
803
+ yield word;
804
+ options.onToken?.(word);
805
+ }
806
+ return result.result;
807
+ }
808
+ /**
809
+ * Internal: Generate with raw text access for streaming
810
+ */
811
+ async generateRaw(prompt, options = {}) {
812
+ const { maxTokens = 256, temperature = .7, topP = .9, topK = 50, thinking = false } = options;
813
+ const startTime = performance.now();
814
+ const formattedPrompt = this.formatPrompt(prompt, {
815
+ ...options,
816
+ thinking
817
+ });
818
+ try {
819
+ const output = await this.generator?.(formattedPrompt, {
820
+ max_new_tokens: maxTokens,
821
+ temperature,
822
+ top_p: topP,
823
+ top_k: topK,
824
+ do_sample: temperature > 0,
825
+ return_full_text: false
826
+ });
827
+ const totalTime = performance.now() - startTime;
828
+ let rawText = "";
829
+ if (Array.isArray(output) && output[0]) {
830
+ const result = output[0];
831
+ if (Array.isArray(result.generated_text)) rawText = result.generated_text.at(-1)?.content || "";
832
+ else rawText = result.generated_text || "";
833
+ }
834
+ rawText = this.cleanOutput(rawText);
835
+ const { thinking: thinkingText, response } = this.parseThinking(rawText);
836
+ const finalThinking = thinking ? thinkingText : void 0;
837
+ const tokensGenerated = Math.ceil(response.length / 4);
838
+ this.stats.prompts += 1;
839
+ this.stats.tokensOut += tokensGenerated;
840
+ this.stats.totalTime += totalTime;
841
+ this.stats.avgSpeed = this.stats.tokensOut / this.stats.totalTime * 1e3;
842
+ return {
843
+ rawText,
844
+ result: {
845
+ text: response,
846
+ thinking: finalThinking,
847
+ tokensGenerated,
848
+ tokensPerSecond: tokensGenerated / totalTime * 1e3,
849
+ totalTime,
850
+ finishReason: "stop",
851
+ provider: "local",
852
+ cached: false
853
+ }
854
+ };
855
+ } catch (_error) {
856
+ return {
857
+ rawText: "",
858
+ result: {
859
+ text: "",
860
+ tokensGenerated: 0,
861
+ tokensPerSecond: 0,
862
+ totalTime: performance.now() - startTime,
863
+ finishReason: "error",
864
+ provider: "local",
865
+ cached: false
866
+ }
867
+ };
868
+ }
869
+ }
870
+ /**
871
+ * Generate text from images using a vision model
872
+ * Called automatically by generate() when images are provided
873
+ */
874
+ async generateWithVision(prompt, options) {
875
+ if (!(this.processor && this.visionModel)) throw new Error("Vision model not loaded. Load a vision model first.");
876
+ const { images = [], maxTokens = 2048, temperature = .7, topP = .9, topK = 20, system } = options;
877
+ const startTime = performance.now();
878
+ try {
879
+ const content = [];
880
+ for (let i = 0; i < images.length; i += 1) content.push({ type: "image" });
881
+ content.push({
882
+ type: "text",
883
+ text: prompt
884
+ });
885
+ const messages = [...system ? [{
886
+ role: "system",
887
+ content: system
888
+ }] : [], {
889
+ role: "user",
890
+ content
891
+ }];
892
+ const chatPrompt = this.processor.apply_chat_template(messages);
893
+ const loadedImages = await Promise.all(images.map(async (img) => await RawImage.fromURL(img.source)));
894
+ const inputs = await this.processor(loadedImages.length === 1 ? loadedImages[0] : loadedImages, chatPrompt, { add_special_tokens: false });
895
+ let fullText = "";
896
+ const streamer = options.onToken ? new TextStreamer(this.processor.tokenizer, {
897
+ skip_prompt: true,
898
+ skip_special_tokens: true,
899
+ callback_function: (text$1) => {
900
+ fullText += text$1;
901
+ options.onToken?.(text$1);
902
+ }
903
+ }) : void 0;
904
+ const outputs = await this.visionModel.generate({
905
+ ...inputs,
906
+ max_new_tokens: maxTokens,
907
+ temperature: temperature > 0 ? temperature : void 0,
908
+ top_p: topP,
909
+ top_k: topK,
910
+ do_sample: temperature > 0,
911
+ ...streamer ? { streamer } : {}
912
+ });
913
+ const inputLength = inputs.input_ids.dims?.at(-1) || 0;
914
+ const text = this.processor.batch_decode(outputs.slice(null, [inputLength, null]), { skip_special_tokens: true })[0] || fullText || "";
915
+ const totalTime = performance.now() - startTime;
916
+ const tokensGenerated = Math.ceil(text.length / 4);
917
+ this.stats.prompts += 1;
918
+ this.stats.tokensOut += tokensGenerated;
919
+ this.stats.totalTime += totalTime;
920
+ this.stats.avgSpeed = this.stats.tokensOut / this.stats.totalTime * 1e3;
921
+ return {
922
+ text: this.cleanOutput(text),
923
+ tokensGenerated,
924
+ tokensPerSecond: tokensGenerated / totalTime * 1e3,
925
+ totalTime,
926
+ finishReason: "stop",
927
+ provider: "local",
928
+ cached: false
929
+ };
930
+ } catch (_error) {
931
+ return {
932
+ text: "",
933
+ tokensGenerated: 0,
934
+ tokensPerSecond: 0,
935
+ totalTime: performance.now() - startTime,
936
+ finishReason: "error",
937
+ provider: "local",
938
+ cached: false
939
+ };
940
+ }
941
+ }
942
+ /**
943
+ * Generate structured JSON output
944
+ */
945
+ async json(prompt, options) {
946
+ const { schema, retries = 3, temperature = .3 } = options;
947
+ const systemPrompt = `You are a JSON generator. You MUST respond with valid JSON only.
948
+ No explanations, no markdown, no code blocks. Just pure JSON.
949
+ The JSON must conform to this schema: ${JSON.stringify(zodToJsonSchema(schema))}`;
950
+ for (let attempt = 0; attempt < retries; attempt += 1) {
951
+ const result = await this.generate(prompt, {
952
+ system: options.system || systemPrompt,
953
+ temperature,
954
+ maxTokens: 1e3
955
+ });
956
+ try {
957
+ const jsonStr = extractJson(result.text);
958
+ const parsed = JSON.parse(jsonStr);
959
+ return schema.parse(parsed);
960
+ } catch (error) {
961
+ if (attempt === retries - 1) throw new Error(`Failed to generate valid JSON after ${retries} attempts: ${error}`);
962
+ }
963
+ }
964
+ throw new Error("Failed to generate valid JSON");
965
+ }
966
+ /**
967
+ * Generate embeddings
968
+ */
969
+ async embed(text, options = {}) {
970
+ if (!this.embedder) this.embedder = await pipeline$1("feature-extraction", options.model || "Xenova/all-MiniLM-L6-v2");
971
+ const startTime = performance.now();
972
+ const output = await this.embedder(text, {
973
+ pooling: "mean",
974
+ normalize: options.normalize !== false
975
+ });
976
+ return {
977
+ vector: Array.from(output.data),
978
+ text,
979
+ totalTime: performance.now() - startTime
980
+ };
981
+ }
982
+ /**
983
+ * Generate embeddings for multiple texts
984
+ */
985
+ async embedBatch(texts, options = {}) {
986
+ const results = [];
987
+ for (const text of texts) results.push(await this.embed(text, options));
988
+ return results;
989
+ }
990
+ /**
991
+ * Get session stats
992
+ */
993
+ getStats() {
994
+ return { ...this.stats };
995
+ }
996
+ /**
997
+ * Get system info
998
+ */
999
+ getInfo() {
1000
+ return {
1001
+ version: "1.0.0",
1002
+ model: this.modelConfig,
1003
+ device: {
1004
+ backend: "transformers.js",
1005
+ gpu: null,
1006
+ vram: null,
1007
+ status: this.isLoaded() ? "ready" : "loading"
1008
+ },
1009
+ context: {
1010
+ max: this.modelConfig?.contextLength || 0,
1011
+ used: 0,
1012
+ available: this.modelConfig?.contextLength || 0
1013
+ },
1014
+ cache: {
1015
+ location: "~/.gerbil/models",
1016
+ size: "0 MB",
1017
+ modelCount: 0
1018
+ }
1019
+ };
1020
+ }
1021
+ /**
1022
+ * Reset stats
1023
+ */
1024
+ resetStats() {
1025
+ this.stats = {
1026
+ prompts: 0,
1027
+ tokensIn: 0,
1028
+ tokensOut: 0,
1029
+ avgSpeed: 0,
1030
+ totalTime: 0,
1031
+ cacheHits: 0,
1032
+ cacheMisses: 0
1033
+ };
1034
+ }
1035
+ tts = null;
1036
+ ttsModelId = "kokoro-82m";
1037
+ /**
1038
+ * Load TTS model for text-to-speech synthesis
1039
+ *
1040
+ * @example
1041
+ * ```ts
1042
+ * // Load default (Kokoro)
1043
+ * await g.loadTTS({ onProgress: (p) => console.log(p.status) });
1044
+ *
1045
+ * // Load Supertonic (faster, 44kHz output)
1046
+ * await g.loadTTS({ model: "supertonic-66m" });
1047
+ *
1048
+ * const result = await g.speak("Hello world");
1049
+ * // result.audio = Float32Array, result.sampleRate = 24000 or 44100
1050
+ * ```
1051
+ */
1052
+ async loadTTS(options = {}) {
1053
+ const modelId = options.model || "kokoro-82m";
1054
+ if (this.tts && this.ttsModelId !== modelId) {
1055
+ await this.tts.dispose();
1056
+ this.tts = null;
1057
+ }
1058
+ if (this.tts?.isLoaded()) return;
1059
+ this.ttsModelId = modelId;
1060
+ const { createTTS } = await import("./tts-5yWeP_I0.mjs");
1061
+ if (!this.tts) this.tts = createTTS(modelId);
1062
+ await this.tts.load(options);
1063
+ }
1064
+ /**
1065
+ * Ensure TTS model is loaded (lazy loading)
1066
+ */
1067
+ async ensureTTSLoaded(options) {
1068
+ if (!this.tts?.isLoaded()) await this.loadTTS(options);
1069
+ }
1070
+ /**
1071
+ * Generate speech from text
1072
+ *
1073
+ * @example
1074
+ * ```ts
1075
+ * const result = await g.speak("Hello world", { voice: "af_bella" });
1076
+ * // result.audio = Float32Array PCM
1077
+ * // result.sampleRate = 24000
1078
+ * // result.duration = seconds
1079
+ * ```
1080
+ */
1081
+ async speak(text, options = {}) {
1082
+ await this.ensureTTSLoaded({ onProgress: options.onProgress });
1083
+ return this.tts.speak(text, options);
1084
+ }
1085
+ /**
1086
+ * Stream speech generation (yields audio chunks as they're generated)
1087
+ *
1088
+ * @example
1089
+ * ```ts
1090
+ * for await (const chunk of g.speakStream("Long text...")) {
1091
+ * // chunk.samples = Float32Array
1092
+ * // chunk.isFinal = boolean
1093
+ * playChunk(chunk);
1094
+ * }
1095
+ * ```
1096
+ */
1097
+ async *speakStream(text, options = {}) {
1098
+ await this.ensureTTSLoaded({ onProgress: options.onProgress });
1099
+ return yield* this.tts.speakStream(text, options);
1100
+ }
1101
+ /**
1102
+ * Get list of available TTS voices
1103
+ */
1104
+ listVoices() {
1105
+ if (!this.tts) return KOKORO_VOICES_DEFAULT;
1106
+ return this.tts.listVoices();
1107
+ }
1108
+ /**
1109
+ * Check if TTS model is loaded
1110
+ */
1111
+ isTTSLoaded() {
1112
+ return this.tts?.isLoaded() ?? false;
1113
+ }
1114
+ /**
1115
+ * Get current TTS model info
1116
+ */
1117
+ getTTSModelInfo() {
1118
+ if (!this.tts) return null;
1119
+ return {
1120
+ id: this.ttsModelId,
1121
+ loaded: this.tts.isLoaded(),
1122
+ device: this.tts.isLoaded() ? this.tts.getDeviceMode() : void 0
1123
+ };
1124
+ }
1125
+ /**
1126
+ * List available TTS models
1127
+ */
1128
+ async listTTSModels() {
1129
+ const { TTS_MODELS } = await import("./tts-5yWeP_I0.mjs");
1130
+ return Object.values(TTS_MODELS).map((m) => ({
1131
+ id: m.id,
1132
+ description: m.description,
1133
+ sampleRate: m.sampleRate,
1134
+ voiceCount: m.voices.length
1135
+ }));
1136
+ }
1137
+ stt = null;
1138
+ /**
1139
+ * Load STT model for speech-to-text transcription
1140
+ *
1141
+ * @example
1142
+ * ```ts
1143
+ * await g.loadSTT({
1144
+ * onProgress: (p) => console.log(p.status)
1145
+ * });
1146
+ *
1147
+ * const result = await g.transcribe(audioData);
1148
+ * console.log(result.text);
1149
+ * ```
1150
+ */
1151
+ async loadSTT(modelId, options = {}) {
1152
+ if (this.stt?.isLoaded()) return;
1153
+ const { WhisperSTT } = await import("./stt-KzSoNvwI.mjs");
1154
+ if (!this.stt) this.stt = new WhisperSTT(modelId);
1155
+ await this.stt.load(options);
1156
+ }
1157
+ /**
1158
+ * Ensure STT model is loaded (lazy loading)
1159
+ */
1160
+ async ensureSTTLoaded(modelId, options) {
1161
+ if (!this.stt?.isLoaded()) await this.loadSTT(modelId, options);
1162
+ }
1163
+ /**
1164
+ * Transcribe audio to text
1165
+ *
1166
+ * @param audio - Audio data as Float32Array (16kHz mono) or Uint8Array (WAV file)
1167
+ * @param options - Transcription options
1168
+ *
1169
+ * @example
1170
+ * ```ts
1171
+ * // From Float32Array (16kHz mono)
1172
+ * const result = await g.transcribe(audioData);
1173
+ * console.log(result.text);
1174
+ *
1175
+ * // With timestamps
1176
+ * const result = await g.transcribe(audioData, { timestamps: true });
1177
+ * for (const seg of result.segments) {
1178
+ * console.log(`[${seg.start}s] ${seg.text}`);
1179
+ * }
1180
+ *
1181
+ * // From WAV file
1182
+ * const wavData = fs.readFileSync("audio.wav");
1183
+ * const result = await g.transcribe(new Uint8Array(wavData));
1184
+ * ```
1185
+ */
1186
+ async transcribe(audio, options = {}) {
1187
+ await this.ensureSTTLoaded(void 0, { onProgress: options.onProgress });
1188
+ return this.stt.transcribe(audio, options);
1189
+ }
1190
+ /**
1191
+ * Create a streaming transcription session
1192
+ *
1193
+ * Transcribes audio in real-time by processing chunks at regular intervals.
1194
+ * Perfect for live captioning, call transcription, or real-time subtitles.
1195
+ *
1196
+ * @param options - Streaming options
1197
+ * @returns Streaming session controller
1198
+ *
1199
+ * @example
1200
+ * ```ts
1201
+ * const session = await g.createStreamingTranscription({
1202
+ * chunkDuration: 3000, // Transcribe every 3 seconds
1203
+ * onChunk: (text, idx) => console.log(`Chunk ${idx}: ${text}`),
1204
+ * onTranscript: (fullText) => console.log("Full:", fullText),
1205
+ * });
1206
+ *
1207
+ * // Feed audio data as it comes in
1208
+ * session.feedAudio(audioChunk);
1209
+ *
1210
+ * // Start automatic interval-based transcription
1211
+ * session.start();
1212
+ *
1213
+ * // Later, stop and get final transcript
1214
+ * const finalText = await session.stop();
1215
+ * ```
1216
+ */
1217
+ async createStreamingTranscription(options = {}) {
1218
+ await this.ensureSTTLoaded();
1219
+ return this.stt.createStreamingSession(options);
1220
+ }
1221
+ /**
1222
+ * Get list of available STT models
1223
+ */
1224
+ async listSTTModels() {
1225
+ const { WhisperSTT } = await import("./stt-KzSoNvwI.mjs");
1226
+ return WhisperSTT.listModels();
1227
+ }
1228
+ /**
1229
+ * Check if STT model is loaded
1230
+ */
1231
+ isSTTLoaded() {
1232
+ return this.stt?.isLoaded() ?? false;
1233
+ }
1234
+ /**
1235
+ * Get current STT model info
1236
+ */
1237
+ getSTTModelInfo() {
1238
+ if (!this.stt) return null;
1239
+ return {
1240
+ id: this.stt.getModelInfo().id,
1241
+ loaded: this.stt.isLoaded(),
1242
+ device: this.stt.isLoaded() ? this.stt.getDeviceMode() : void 0
1243
+ };
1244
+ }
1245
+ /**
1246
+ * Record audio from microphone and transcribe
1247
+ *
1248
+ * @example
1249
+ * ```ts
1250
+ * // Record for 5 seconds and transcribe
1251
+ * const result = await g.listen(5000);
1252
+ * console.log(result.text);
1253
+ *
1254
+ * // Use with voice chat
1255
+ * const userInput = await g.listen(10000);
1256
+ * const response = await g.generate(userInput.text);
1257
+ * await g.speak(response.text);
1258
+ * ```
1259
+ */
1260
+ async listen(durationMs = 5e3, options = {}) {
1261
+ const { Microphone, isSoxAvailable } = await import("./microphone-D-6y9aiE.mjs");
1262
+ if (!isSoxAvailable()) throw new Error("Microphone recording requires SoX. Install with:\n macOS: brew install sox\n Ubuntu: sudo apt install sox\n Windows: https://sox.sourceforge.net/");
1263
+ options.onProgress?.("Starting microphone...");
1264
+ const mic = new Microphone({ sampleRate: 16e3 });
1265
+ await mic.start();
1266
+ options.onProgress?.(`Recording for ${(durationMs / 1e3).toFixed(1)}s...`);
1267
+ await new Promise((r) => setTimeout(r, durationMs));
1268
+ options.onProgress?.("Processing audio...");
1269
+ const { audio } = await mic.stop();
1270
+ options.onProgress?.("Transcribing...");
1271
+ return this.transcribe(audio, { onProgress: (p) => options.onProgress?.(p.status || "Transcribing...") });
1272
+ }
1273
+ /**
1274
+ * Check if microphone recording is available
1275
+ */
1276
+ async isMicrophoneAvailable() {
1277
+ try {
1278
+ const { isSoxAvailable } = await import("./microphone-D-6y9aiE.mjs");
1279
+ return isSoxAvailable();
1280
+ } catch {
1281
+ return false;
1282
+ }
1283
+ }
1284
+ /**
1285
+ * Dispose of resources
1286
+ * @param disconnect If true, also disconnect from shared browser (for clean script exit)
1287
+ */
1288
+ async dispose(disconnect = false) {
1289
+ if (this.chromeBackend) {
1290
+ try {
1291
+ await this.chromeBackend.dispose(disconnect);
1292
+ } catch {}
1293
+ this.chromeBackend = null;
1294
+ }
1295
+ if (this.generator) {
1296
+ if (typeof this.generator.dispose === "function") try {
1297
+ await this.generator.dispose();
1298
+ } catch {}
1299
+ this.generator = null;
1300
+ }
1301
+ if (this.embedder) {
1302
+ if (typeof this.embedder.dispose === "function") try {
1303
+ await this.embedder.dispose();
1304
+ } catch {}
1305
+ this.embedder = null;
1306
+ }
1307
+ if (this.visionModel) {
1308
+ if (typeof this.visionModel.dispose === "function") try {
1309
+ await this.visionModel.dispose();
1310
+ } catch {}
1311
+ this.visionModel = null;
1312
+ }
1313
+ if (this.processor) this.processor = null;
1314
+ if (this.tts) {
1315
+ try {
1316
+ await this.tts.dispose();
1317
+ } catch {}
1318
+ this.tts = null;
1319
+ }
1320
+ if (this.stt) {
1321
+ try {
1322
+ this.stt.dispose();
1323
+ } catch {}
1324
+ this.stt = null;
1325
+ }
1326
+ this.currentModel = null;
1327
+ this.modelConfig = null;
1328
+ this.isVisionModel = false;
1329
+ }
1330
+ /**
1331
+ * Shutdown the shared Chrome backend completely.
1332
+ * Call this when your script/process is done to ensure proper cleanup.
1333
+ * This closes the shared browser used for WebGPU acceleration.
1334
+ */
1335
+ static async shutdown() {
1336
+ const { ChromeGPUBackend } = await import("./chrome-backend-JEPeM2YE.mjs");
1337
+ await ChromeGPUBackend.closeSharedBrowser();
1338
+ }
1339
+ /**
1340
+ * Get global WebGPU process info (all active backends)
1341
+ * Useful for monitoring and debugging memory leaks
1342
+ */
1343
+ static async getWebGPUProcesses() {
1344
+ if (typeof window !== "undefined") return null;
1345
+ try {
1346
+ const { ChromeGPUBackend } = await import("./chrome-backend-JEPeM2YE.mjs");
1347
+ return {
1348
+ browser: ChromeGPUBackend.getGlobalBrowserStatus(),
1349
+ backends: await ChromeGPUBackend.getAllBackendsInfo()
1350
+ };
1351
+ } catch {
1352
+ return null;
1353
+ }
1354
+ }
1355
+ /**
1356
+ * Kill all WebGPU processes (for zombie cleanup)
1357
+ * Use this if you suspect memory leaks from undisposed Gerbil instances
1358
+ */
1359
+ static async killAllWebGPU() {
1360
+ if (typeof window !== "undefined") return null;
1361
+ try {
1362
+ const { ChromeGPUBackend } = await import("./chrome-backend-JEPeM2YE.mjs");
1363
+ return await ChromeGPUBackend.killAllBackends();
1364
+ } catch {
1365
+ return null;
1366
+ }
1367
+ }
1368
+ /**
1369
+ * Kill a specific WebGPU backend by index
1370
+ * @param index Index of the backend to kill (0-based)
1371
+ */
1372
+ static async killWebGPUBackend(index) {
1373
+ if (typeof window !== "undefined") return false;
1374
+ try {
1375
+ const { ChromeGPUBackend } = await import("./chrome-backend-JEPeM2YE.mjs");
1376
+ return await ChromeGPUBackend.killBackendByIndex(index);
1377
+ } catch {
1378
+ return false;
1379
+ }
1380
+ }
1381
+ /**
1382
+ * Get all Chrome pages across ALL Gerbil processes
1383
+ * This provides cross-process visibility into WebGPU backends
1384
+ */
1385
+ static async getAllChromePagesInfo() {
1386
+ if (typeof window !== "undefined") return null;
1387
+ try {
1388
+ const { ChromeGPUBackend } = await import("./chrome-backend-JEPeM2YE.mjs");
1389
+ return await ChromeGPUBackend.getAllChromePages();
1390
+ } catch {
1391
+ return null;
1392
+ }
1393
+ }
1394
+ /**
1395
+ * Kill a Chrome page by index (works across processes)
1396
+ * @param index Index of the page to kill (0-based)
1397
+ */
1398
+ static async killChromePage(index) {
1399
+ if (typeof window !== "undefined") return false;
1400
+ try {
1401
+ const { ChromeGPUBackend } = await import("./chrome-backend-JEPeM2YE.mjs");
1402
+ return await ChromeGPUBackend.killPageByIndex(index);
1403
+ } catch {
1404
+ return false;
1405
+ }
1406
+ }
1407
+ /**
1408
+ * Get total Chrome page count (all processes)
1409
+ */
1410
+ static async getTotalChromePageCount() {
1411
+ if (typeof window !== "undefined") return 0;
1412
+ try {
1413
+ const { ChromeGPUBackend } = await import("./chrome-backend-JEPeM2YE.mjs");
1414
+ return await ChromeGPUBackend.getTotalPageCount();
1415
+ } catch {
1416
+ return 0;
1417
+ }
1418
+ }
1419
+ formatPrompt(prompt, options) {
1420
+ const system = options.system || "You are a helpful assistant.";
1421
+ const isQwen = this.currentModel?.includes("qwen");
1422
+ if (options.thinking && this.modelConfig?.supportsThinking) return `<|im_start|>system\n${`${system}\n\nThink step-by-step before answering. Wrap your reasoning in <think></think> tags, then provide your answer.`}<|im_end|>\n<|im_start|>user\n${prompt}<|im_end|>\n<|im_start|>assistant\n`;
1423
+ if (isQwen) return `<|im_start|>system\n${system}<|im_end|>\n<|im_start|>user\n${prompt} /no_think<|im_end|>\n<|im_start|>assistant\n`;
1424
+ return `<|im_start|>system\n${system}<|im_end|>\n<|im_start|>user\n${prompt}<|im_end|>\n<|im_start|>assistant\n`;
1425
+ }
1426
+ buildMessages(prompt, options) {
1427
+ const system = options.system || "You are a helpful assistant.";
1428
+ const messages = [];
1429
+ messages.push({
1430
+ role: "system",
1431
+ content: system
1432
+ });
1433
+ messages.push({
1434
+ role: "user",
1435
+ content: prompt
1436
+ });
1437
+ return messages;
1438
+ }
1439
+ parseThinking(text) {
1440
+ const match = text.match(/<think>([\s\S]*?)<\/think>/);
1441
+ if (match) return {
1442
+ thinking: match[1].trim(),
1443
+ response: text.replace(/<think>[\s\S]*?<\/think>/, "").trim()
1444
+ };
1445
+ const unclosedMatch = text.match(/<think>([\s\S]*)$/);
1446
+ if (unclosedMatch) {
1447
+ const thinking = unclosedMatch[1].trim();
1448
+ const response = text.replace(/<think>[\s\S]*$/, "").trim();
1449
+ return {
1450
+ thinking: thinking || void 0,
1451
+ response
1452
+ };
1453
+ }
1454
+ return { response: text.replace(/<\/?think>/g, "").trim() };
1455
+ }
1456
+ cleanOutput(text) {
1457
+ return text.replace(/<\|im_end\|>/g, "").replace(/<\|im_start\|>/g, "").replace(/<\|endoftext\|>/g, "").replace(/<\/s>/g, "").replace(/^\/no_think\s*/i, "").replace(/^assistant\s*/i, "").replace(/^\s*\/no_think\s*/gim, "").replace(/^\s*assistant\s*/gim, "").replace(/^(system|user|assistant):\s*/gim, "").trim();
1458
+ }
1459
+ };
1460
+
1461
+ //#endregion
1462
+ export { getGlobalCache as a, configureGlobalCache as i, ResponseCache as n, clearGlobalCache as r, Gerbil as t };
1463
+ //# sourceMappingURL=gerbil-yoSpRHgv.mjs.map