@townco/agent 0.1.51 → 0.1.53

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -24,6 +24,8 @@ export declare class AgentAcpAdapter implements acp.Agent {
24
24
  private agentVersion;
25
25
  private agentDescription;
26
26
  private agentSuggestedPrompts;
27
+ private currentToolOverheadTokens;
28
+ private currentMcpOverheadTokens;
27
29
  constructor(agent: AgentRunner, connection: acp.AgentSideConnection, agentDir?: string, agentName?: string);
28
30
  /**
29
31
  * Helper to save session to disk
@@ -103,6 +103,8 @@ export class AgentAcpAdapter {
103
103
  agentVersion;
104
104
  agentDescription;
105
105
  agentSuggestedPrompts;
106
+ currentToolOverheadTokens = 0; // Track tool overhead for current turn
107
+ currentMcpOverheadTokens = 0; // Track MCP overhead for current turn
106
108
  constructor(agent, connection, agentDir, agentName) {
107
109
  this.connection = connection;
108
110
  this.sessions = new Map();
@@ -338,6 +340,9 @@ export class AgentAcpAdapter {
338
340
  }
339
341
  session.pendingPrompt?.abort();
340
342
  session.pendingPrompt = new AbortController();
343
+ // Reset tool overhead for new turn (will be set by harness)
344
+ this.currentToolOverheadTokens = 0;
345
+ this.currentMcpOverheadTokens = 0;
341
346
  // Generate a unique messageId for this assistant response
342
347
  const messageId = Math.random().toString(36).substring(2);
343
348
  // Extract and store the user message
@@ -397,7 +402,9 @@ export class AgentAcpAdapter {
397
402
  }
398
403
  }
399
404
  // Calculate context size - no LLM call yet, so only estimated values
400
- const context_size = calculateContextSize(contextMessages, this.agent.definition.systemPrompt ?? undefined, undefined);
405
+ const context_size = calculateContextSize(contextMessages, this.agent.definition.systemPrompt ?? undefined, undefined, // No LLM-reported tokens yet
406
+ this.currentToolOverheadTokens, // Include tool overhead
407
+ this.currentMcpOverheadTokens);
401
408
  const contextSnapshot = createContextSnapshot(session.messages.length, new Date().toISOString(), previousContext, context_size);
402
409
  session.context.push(contextSnapshot);
403
410
  await this.saveSessionToDisk(params.sessionId, session);
@@ -461,6 +468,20 @@ export class AgentAcpAdapter {
461
468
  let iterResult = await generator.next();
462
469
  while (!iterResult.done) {
463
470
  const msg = iterResult.value;
471
+ // Capture tool overhead info if provided by harness
472
+ if ("sessionUpdate" in msg &&
473
+ msg.sessionUpdate === "tool_overhead_info") {
474
+ const overheadInfo = msg;
475
+ this.currentToolOverheadTokens = overheadInfo.toolOverheadTokens;
476
+ this.currentMcpOverheadTokens = overheadInfo.mcpOverheadTokens;
477
+ logger.debug("Received tool overhead info from harness", {
478
+ toolOverheadTokens: this.currentToolOverheadTokens,
479
+ mcpOverheadTokens: this.currentMcpOverheadTokens,
480
+ });
481
+ // Don't send this update to client, it's internal metadata
482
+ iterResult = await generator.next();
483
+ continue;
484
+ }
464
485
  // Extract and accumulate token usage from message chunks
465
486
  if ("sessionUpdate" in msg &&
466
487
  msg.sessionUpdate === "agent_message_chunk" &&
@@ -659,7 +680,9 @@ export class AgentAcpAdapter {
659
680
  }
660
681
  }
661
682
  // Calculate context size - tool result is now in the message, but hasn't been sent to LLM yet
662
- const context_size = calculateContextSize(contextMessages, this.agent.definition.systemPrompt ?? undefined, undefined);
683
+ const context_size = calculateContextSize(contextMessages, this.agent.definition.systemPrompt ?? undefined, undefined, // Tool result hasn't been sent to LLM yet, so no new LLM-reported tokens
684
+ this.currentToolOverheadTokens, // Include tool overhead
685
+ this.currentMcpOverheadTokens);
663
686
  // Create snapshot with a pointer to the partial message (not a full copy!)
664
687
  const midTurnSnapshot = {
665
688
  timestamp: new Date().toISOString(),
@@ -779,7 +802,9 @@ export class AgentAcpAdapter {
779
802
  }
780
803
  }
781
804
  // Calculate context size with LLM-reported tokens from this turn
782
- const context_size = calculateContextSize(contextMessages, this.agent.definition.systemPrompt ?? undefined, turnTokenUsage.inputTokens);
805
+ const context_size = calculateContextSize(contextMessages, this.agent.definition.systemPrompt ?? undefined, turnTokenUsage.inputTokens, // Final LLM-reported tokens from this turn
806
+ this.currentToolOverheadTokens, // Include tool overhead
807
+ this.currentMcpOverheadTokens);
783
808
  const contextSnapshot = createContextSnapshot(session.messages.length, new Date().toISOString(), previousContext, context_size);
784
809
  session.context.push(contextSnapshot);
785
810
  await this.saveSessionToDisk(params.sessionId, session);
@@ -1,2 +1,7 @@
1
+ import { initializeOpenTelemetryFromEnv } from "../telemetry/setup.js";
2
+ // Initialize OpenTelemetry when this module is imported (if enabled)
3
+ if (process.env.ENABLE_TELEMETRY === "true") {
4
+ initializeOpenTelemetryFromEnv();
5
+ }
1
6
  export { makeStdioTransport } from "./cli";
2
7
  export { makeHttpTransport } from "./http";
@@ -62,6 +62,8 @@ export interface ContextEntry {
62
62
  */
63
63
  context_size: {
64
64
  systemPromptTokens: number;
65
+ toolOverheadTokens?: number | undefined;
66
+ mcpOverheadTokens?: number | undefined;
65
67
  userMessagesTokens: number;
66
68
  assistantMessagesTokens: number;
67
69
  toolInputTokens: number;
@@ -58,6 +58,8 @@ const contextEntrySchema = z.object({
58
58
  compactedUpTo: z.number().optional(),
59
59
  context_size: z.object({
60
60
  systemPromptTokens: z.number(),
61
+ toolOverheadTokens: z.number().optional(),
62
+ mcpOverheadTokens: z.number().optional(),
61
63
  userMessagesTokens: z.number(),
62
64
  assistantMessagesTokens: z.number(),
63
65
  toolInputTokens: z.number(),
@@ -109,6 +109,10 @@ export type ExtendedSessionUpdate = (SessionNotification["update"] & {
109
109
  contextInputTokens?: number;
110
110
  [key: string]: unknown;
111
111
  };
112
+ } | {
113
+ sessionUpdate: "tool_overhead_info";
114
+ toolOverheadTokens: number;
115
+ mcpOverheadTokens: number;
112
116
  } | AgentMessageChunkWithTokens | HookNotificationUpdate;
113
117
  /** Describes an object that can run an agent definition */
114
118
  export interface AgentRunner {
@@ -10,7 +10,6 @@ type MakeLazy<T> = T extends LangchainTool ? () => T : never;
10
10
  export declare const TOOL_REGISTRY: Record<BuiltInToolType, LangchainTool | LazyLangchainTool | LazyLangchainTools>;
11
11
  export declare class LangchainAgent implements AgentRunner {
12
12
  definition: CreateAgentRunnerParams;
13
- private toolSpans;
14
13
  constructor(params: CreateAgentRunnerParams);
15
14
  invoke(req: InvokeRequest): AsyncGenerator<ExtendedSessionUpdate, PromptResponse, undefined>;
16
15
  }
@@ -54,7 +54,6 @@ async function loadCustomTools(modulePaths) {
54
54
  }
55
55
  export class LangchainAgent {
56
56
  definition;
57
- toolSpans = new Map();
58
57
  constructor(params) {
59
58
  this.definition = params;
60
59
  }
@@ -157,10 +156,41 @@ export class LangchainAgent {
157
156
  const customTools = await loadCustomTools(customToolPaths);
158
157
  enabledTools.push(...customTools);
159
158
  }
160
- // MCP tools
159
+ // Calculate tool overhead tokens for non-MCP tools
160
+ const { countTokens } = await import("../../utils/token-counter.js");
161
+ const { extractToolMetadata, estimateAllToolsOverhead } = await import("../../utils/tool-overhead-calculator.js");
162
+ // Calculate overhead for non-MCP tools (built-in, custom, filesystem)
163
+ const nonMcpToolMetadata = enabledTools.map(extractToolMetadata);
164
+ const nonMcpToolDefinitionsTokens = estimateAllToolsOverhead(nonMcpToolMetadata);
165
+ // Calculate TODO_WRITE_INSTRUCTIONS overhead if applicable
166
+ const hasTodoWriteTool = builtInNames.includes("todo_write");
167
+ const todoInstructionsTokens = hasTodoWriteTool
168
+ ? countTokens(TODO_WRITE_INSTRUCTIONS)
169
+ : 0;
170
+ // Total non-MCP tool overhead: tool definitions + TODO instructions
171
+ const toolOverheadTokens = nonMcpToolDefinitionsTokens + todoInstructionsTokens;
172
+ // MCP tools - calculate overhead separately
173
+ let mcpOverheadTokens = 0;
161
174
  if ((this.definition.mcps?.length ?? 0) > 0) {
162
- enabledTools.push(...(await makeMcpToolsClient(this.definition.mcps).getTools()));
175
+ const mcpTools = await makeMcpToolsClient(this.definition.mcps).getTools();
176
+ const mcpToolMetadata = mcpTools.map(extractToolMetadata);
177
+ mcpOverheadTokens = estimateAllToolsOverhead(mcpToolMetadata);
178
+ enabledTools.push(...mcpTools);
163
179
  }
180
+ _logger.debug("Calculated tool overhead for context sizing", {
181
+ enabledToolCount: enabledTools.length,
182
+ nonMcpToolDefinitionsTokens,
183
+ mcpToolDefinitionsTokens: mcpOverheadTokens,
184
+ todoInstructionsTokens,
185
+ totalNonMcpOverheadTokens: toolOverheadTokens,
186
+ totalMcpOverheadTokens: mcpOverheadTokens,
187
+ });
188
+ // Yield tool overhead info to adapter early in the turn
189
+ yield {
190
+ sessionUpdate: "tool_overhead_info",
191
+ toolOverheadTokens,
192
+ mcpOverheadTokens,
193
+ };
164
194
  // Wrap tools with response compaction if hook is configured
165
195
  const hooks = this.definition.hooks ?? [];
166
196
  const hasToolResponseHook = hooks.some((h) => h.type === "tool_response");
@@ -255,9 +285,12 @@ export class LangchainAgent {
255
285
  }
256
286
  // Filter tools if running in subagent mode
257
287
  const isSubagent = req.sessionMeta?.[SUBAGENT_MODE_KEY] === true;
258
- const finalTools = isSubagent
288
+ const filteredTools = isSubagent
259
289
  ? wrappedTools.filter((t) => t.name !== TODO_WRITE_TOOL_NAME && t.name !== TASK_TOOL_NAME)
260
290
  : wrappedTools;
291
+ // Wrap tools with tracing so each tool executes within its own span context.
292
+ // This ensures subagent spans are children of the Task tool span.
293
+ const finalTools = filteredTools.map((t) => wrapToolWithTracing(t, req.sessionId));
261
294
  // Create the model instance using the factory
262
295
  // This detects the provider from the model string:
263
296
  // - "gemini-2.0-flash" → Google Generative AI
@@ -362,13 +395,6 @@ export class LangchainAgent {
362
395
  if (toolCall.id == null) {
363
396
  throw new Error(`Tool call is missing id: ${JSON.stringify(toolCall)}`);
364
397
  }
365
- // Create tool span within the invocation context
366
- // This makes the tool span a child of the invocation span
367
- const toolSpan = context.with(invocationContext, () => telemetry.startSpan("agent.tool_call", {
368
- "tool.name": toolCall.name,
369
- "tool.id": toolCall.id,
370
- }));
371
- this.toolSpans.set(toolCall.id, toolSpan);
372
398
  telemetry.log("info", `Tool call started: ${toolCall.name}`, {
373
399
  toolCallId: toolCall.id,
374
400
  toolName: toolCall.name,
@@ -550,15 +576,9 @@ export class LangchainAgent {
550
576
  // Skip tool_call_update for todo_write tools
551
577
  continue;
552
578
  }
553
- // End telemetry span for this tool call
554
- const toolSpan = this.toolSpans.get(aiMessage.tool_call_id);
555
- if (toolSpan) {
556
- telemetry.log("info", "Tool call completed", {
557
- toolCallId: aiMessage.tool_call_id,
558
- });
559
- telemetry.endSpan(toolSpan);
560
- this.toolSpans.delete(aiMessage.tool_call_id);
561
- }
579
+ telemetry.log("info", "Tool call completed", {
580
+ toolCallId: aiMessage.tool_call_id,
581
+ });
562
582
  // Send status update (metadata only, no content)
563
583
  yield {
564
584
  sessionUpdate: "tool_call_update",
@@ -708,3 +728,51 @@ I've found some existing telemetry code. Let me mark the first todo as in_progre
708
728
  `.trim();
709
729
  // Re-export subagent tool utility
710
730
  export { makeSubagentsTool } from "./tools/subagent.js";
731
+ /**
732
+ * Wraps a LangChain tool with OpenTelemetry tracing.
733
+ * This ensures the tool executes within its own span context,
734
+ * so any child operations (like subagent spawning) become children
735
+ * of the tool span rather than the parent invocation span.
736
+ */
737
+ function wrapToolWithTracing(originalTool, sessionId) {
738
+ const wrappedFunc = async (input) => {
739
+ const toolInputJson = JSON.stringify(input);
740
+ const toolSpan = telemetry.startSpan("agent.tool_call", {
741
+ "tool.name": originalTool.name,
742
+ "tool.input": toolInputJson,
743
+ "agent.session_id": sessionId,
744
+ });
745
+ // Create a context with the tool span as active
746
+ const spanContext = toolSpan
747
+ ? trace.setSpan(context.active(), toolSpan)
748
+ : context.active();
749
+ try {
750
+ // Execute within the tool span's context
751
+ const result = await context.with(spanContext, () => originalTool.invoke(input));
752
+ const resultStr = typeof result === "string" ? result : JSON.stringify(result);
753
+ if (toolSpan) {
754
+ telemetry.setSpanAttributes(toolSpan, {
755
+ "tool.output": resultStr,
756
+ });
757
+ telemetry.endSpan(toolSpan);
758
+ }
759
+ return result;
760
+ }
761
+ catch (error) {
762
+ if (toolSpan) {
763
+ telemetry.endSpan(toolSpan, error);
764
+ }
765
+ throw error;
766
+ }
767
+ };
768
+ // Create new tool with wrapped function
769
+ const wrappedTool = tool(wrappedFunc, {
770
+ name: originalTool.name,
771
+ description: originalTool.description,
772
+ schema: originalTool.schema,
773
+ });
774
+ // Preserve metadata
775
+ wrappedTool.prettyName = originalTool.prettyName;
776
+ wrappedTool.icon = originalTool.icon;
777
+ return wrappedTool;
778
+ }
@@ -1,4 +1,4 @@
1
- import { context } from "@opentelemetry/api";
1
+ import { context, trace } from "@opentelemetry/api";
2
2
  import { telemetry } from "../../telemetry/index.js";
3
3
  /**
4
4
  * OpenTelemetry callback handler for LangChain LLM calls.
@@ -45,6 +45,38 @@ function extractSystemPrompt(messages) {
45
45
  return undefined;
46
46
  }
47
47
  }
48
+ /**
49
+ * Serializes LLM output to a string for logging.
50
+ * Preserves the raw provider format (content blocks, tool_calls, etc.)
51
+ */
52
+ function serializeOutput(output) {
53
+ try {
54
+ const generations = output.generations.flat();
55
+ const serialized = generations.map((gen) => {
56
+ // ChatGeneration has a message property with the full AIMessage
57
+ const chatGen = gen;
58
+ if (chatGen.message) {
59
+ const msg = chatGen.message;
60
+ const result = {
61
+ role: msg._getType?.() ?? "assistant",
62
+ content: msg.content, // Keep as-is: string or ContentBlock[]
63
+ };
64
+ // Include tool_calls if present (LangChain's normalized format)
65
+ const aiMsg = msg;
66
+ if (aiMsg.tool_calls && aiMsg.tool_calls.length > 0) {
67
+ result.tool_calls = aiMsg.tool_calls;
68
+ }
69
+ return result;
70
+ }
71
+ // Fallback for non-chat generations
72
+ return { text: gen.text };
73
+ });
74
+ return JSON.stringify(serialized);
75
+ }
76
+ catch (error) {
77
+ return `[Error serializing output: ${error}]`;
78
+ }
79
+ }
48
80
  /**
49
81
  * Creates OpenTelemetry callback handlers for LangChain LLM calls.
50
82
  * These handlers instrument model invocations with OTEL spans and record token usage.
@@ -84,6 +116,18 @@ export function makeOtelCallbacks(opts) {
84
116
  }));
85
117
  if (span) {
86
118
  spansByRunId.set(runId, span);
119
+ // Emit log for LLM request with trace context
120
+ const spanContext = span.spanContext();
121
+ telemetry.log("info", "LLM Request", {
122
+ "gen_ai.operation.name": "chat",
123
+ "gen_ai.provider.name": opts.provider,
124
+ "gen_ai.request.model": opts.model,
125
+ "gen_ai.input.messages": serializedMessages,
126
+ "langchain.run_id": runId,
127
+ // Include trace context for correlation
128
+ trace_id: spanContext.traceId,
129
+ span_id: spanContext.spanId,
130
+ });
87
131
  }
88
132
  },
89
133
  /**
@@ -105,6 +149,28 @@ export function makeOtelCallbacks(opts) {
105
149
  : 0);
106
150
  telemetry.recordTokenUsage(inputTokens, outputTokens, span);
107
151
  }
152
+ // Serialize output and attach to span
153
+ const serializedOutput = serializeOutput(output);
154
+ telemetry.setSpanAttributes(span, {
155
+ "gen_ai.output.messages": serializedOutput,
156
+ });
157
+ // Emit log for LLM response with trace context
158
+ const spanContext = span.spanContext();
159
+ telemetry.log("info", "LLM Response", {
160
+ "gen_ai.operation.name": "chat",
161
+ "gen_ai.output.messages": serializedOutput,
162
+ "langchain.run_id": runId,
163
+ // Include token usage in log
164
+ ...(tokenUsage
165
+ ? {
166
+ "gen_ai.usage.input_tokens": tokenUsage.inputTokens ?? 0,
167
+ "gen_ai.usage.output_tokens": tokenUsage.outputTokens ?? 0,
168
+ }
169
+ : {}),
170
+ // Include trace context for correlation
171
+ trace_id: spanContext.traceId,
172
+ span_id: spanContext.spanId,
173
+ });
108
174
  telemetry.endSpan(span);
109
175
  spansByRunId.delete(runId);
110
176
  },
@@ -1,7 +1,8 @@
1
1
  /**
2
2
  * OpenTelemetry provider setup for @townco/agent
3
- * Initializes the trace provider, exporter, and propagator
3
+ * Initializes the trace provider, log provider, exporters, and propagator
4
4
  */
5
+ import { LoggerProvider } from "@opentelemetry/sdk-logs";
5
6
  import { NodeTracerProvider } from "@opentelemetry/sdk-trace-node";
6
7
  export interface TelemetrySetupOptions {
7
8
  serviceName?: string;
@@ -14,6 +15,7 @@ export interface TelemetrySetupOptions {
14
15
  */
15
16
  export declare function initializeOpenTelemetry(options?: TelemetrySetupOptions): {
16
17
  provider: NodeTracerProvider;
18
+ loggerProvider: LoggerProvider;
17
19
  shutdown: () => Promise<void>;
18
20
  };
19
21
  /**
@@ -1,11 +1,14 @@
1
1
  /**
2
2
  * OpenTelemetry provider setup for @townco/agent
3
- * Initializes the trace provider, exporter, and propagator
3
+ * Initializes the trace provider, log provider, exporters, and propagator
4
4
  */
5
5
  import { propagation } from "@opentelemetry/api";
6
+ import { logs } from "@opentelemetry/api-logs";
6
7
  import { W3CTraceContextPropagator } from "@opentelemetry/core";
8
+ import { OTLPLogExporter } from "@opentelemetry/exporter-logs-otlp-http";
7
9
  import { OTLPTraceExporter } from "@opentelemetry/exporter-trace-otlp-http";
8
10
  import { Resource } from "@opentelemetry/resources";
11
+ import { BatchLogRecordProcessor, LoggerProvider, } from "@opentelemetry/sdk-logs";
9
12
  import { BatchSpanProcessor } from "@opentelemetry/sdk-trace-base";
10
13
  import { NodeTracerProvider } from "@opentelemetry/sdk-trace-node";
11
14
  import { ATTR_SERVICE_NAME } from "@opentelemetry/semantic-conventions";
@@ -83,13 +86,38 @@ export function initializeOpenTelemetry(options = {}) {
83
86
  const batchProcessor = new BatchSpanProcessor(loggingExporter, {
84
87
  maxQueueSize: 100,
85
88
  maxExportBatchSize: 10,
86
- scheduledDelayMillis: 5000, // Export every 5 seconds (default)
89
+ scheduledDelayMillis: 2000, // Export every 2 seconds
87
90
  });
88
91
  provider.addSpanProcessor(batchProcessor);
89
92
  // Register the provider globally
90
93
  provider.register();
91
94
  // Configure W3C Trace Context propagator for cross-process traces
92
95
  propagation.setGlobalPropagator(new W3CTraceContextPropagator());
96
+ // Set up LoggerProvider for OTLP log export
97
+ const logUrl = otlpEndpoint.endsWith("/")
98
+ ? `${otlpEndpoint}v1/logs`
99
+ : `${otlpEndpoint}/v1/logs`;
100
+ if (debug) {
101
+ console.log(`OTLP log URL: ${logUrl}`);
102
+ }
103
+ const logExporter = new OTLPLogExporter({
104
+ url: logUrl,
105
+ });
106
+ const loggerProvider = new LoggerProvider({
107
+ resource: new Resource({
108
+ [ATTR_SERVICE_NAME]: serviceName,
109
+ }),
110
+ });
111
+ loggerProvider.addLogRecordProcessor(new BatchLogRecordProcessor(logExporter, {
112
+ maxQueueSize: 100,
113
+ maxExportBatchSize: 10,
114
+ scheduledDelayMillis: 2000,
115
+ }));
116
+ // Register the logger provider globally
117
+ logs.setGlobalLoggerProvider(loggerProvider);
118
+ if (debug) {
119
+ console.log("✓ Log exporter configured");
120
+ }
93
121
  // Now configure our telemetry wrapper
94
122
  configureTelemetry({
95
123
  enabled: true,
@@ -106,6 +134,8 @@ export function initializeOpenTelemetry(options = {}) {
106
134
  try {
107
135
  await provider.forceFlush();
108
136
  await provider.shutdown();
137
+ await loggerProvider.forceFlush();
138
+ await loggerProvider.shutdown();
109
139
  if (debug) {
110
140
  console.log("✓ Telemetry flushed");
111
141
  }
@@ -114,7 +144,7 @@ export function initializeOpenTelemetry(options = {}) {
114
144
  console.error("Error flushing telemetry:", error);
115
145
  }
116
146
  };
117
- return { provider, shutdown };
147
+ return { provider, loggerProvider, shutdown };
118
148
  }
119
149
  /**
120
150
  * Initialize OpenTelemetry from environment variables and register shutdown handlers