@tldraw/editor 3.16.0-next.f9f54ec051f3 → 4.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist-cjs/index.d.ts +197 -114
- package/dist-cjs/index.js +5 -5
- package/dist-cjs/index.js.map +2 -2
- package/dist-cjs/lib/TldrawEditor.js +9 -9
- package/dist-cjs/lib/TldrawEditor.js.map +2 -2
- package/dist-cjs/lib/components/MenuClickCapture.js +0 -5
- package/dist-cjs/lib/components/MenuClickCapture.js.map +2 -2
- package/dist-cjs/lib/components/Shape.js +7 -10
- package/dist-cjs/lib/components/Shape.js.map +2 -2
- package/dist-cjs/lib/components/default-components/DefaultCanvas.js +14 -23
- package/dist-cjs/lib/components/default-components/DefaultCanvas.js.map +2 -2
- package/dist-cjs/lib/components/default-components/DefaultCollaboratorHint.js +1 -1
- package/dist-cjs/lib/components/default-components/DefaultCollaboratorHint.js.map +1 -1
- package/dist-cjs/lib/components/default-components/DefaultErrorFallback.js +1 -1
- package/dist-cjs/lib/components/default-components/DefaultErrorFallback.js.map +2 -2
- package/dist-cjs/lib/components/default-components/DefaultScribble.js +1 -1
- package/dist-cjs/lib/components/default-components/DefaultScribble.js.map +2 -2
- package/dist-cjs/lib/components/default-components/DefaultShapeIndicator.js +9 -1
- package/dist-cjs/lib/components/default-components/DefaultShapeIndicator.js.map +2 -2
- package/dist-cjs/lib/config/TLUserPreferences.js +21 -4
- package/dist-cjs/lib/config/TLUserPreferences.js.map +2 -2
- package/dist-cjs/lib/editor/Editor.js +121 -138
- package/dist-cjs/lib/editor/Editor.js.map +2 -2
- package/dist-cjs/lib/editor/derivations/notVisibleShapes.js +4 -0
- package/dist-cjs/lib/editor/derivations/notVisibleShapes.js.map +2 -2
- package/dist-cjs/lib/editor/managers/FocusManager/FocusManager.js +4 -2
- package/dist-cjs/lib/editor/managers/FocusManager/FocusManager.js.map +2 -2
- package/dist-cjs/lib/editor/managers/UserPreferencesManager/UserPreferencesManager.js +14 -4
- package/dist-cjs/lib/editor/managers/UserPreferencesManager/UserPreferencesManager.js.map +2 -2
- package/dist-cjs/lib/editor/shapes/ShapeUtil.js +23 -0
- package/dist-cjs/lib/editor/shapes/ShapeUtil.js.map +2 -2
- package/dist-cjs/lib/editor/types/misc-types.js.map +1 -1
- package/dist-cjs/lib/exports/getSvgJsx.js +35 -16
- package/dist-cjs/lib/exports/getSvgJsx.js.map +2 -2
- package/dist-cjs/lib/hooks/useCanvasEvents.js +47 -38
- package/dist-cjs/lib/hooks/useCanvasEvents.js.map +2 -2
- package/dist-cjs/lib/hooks/useDocumentEvents.js +5 -5
- package/dist-cjs/lib/hooks/useDocumentEvents.js.map +2 -2
- package/dist-cjs/lib/hooks/useFixSafariDoubleTapZoomPencilEvents.js +1 -2
- package/dist-cjs/lib/hooks/useFixSafariDoubleTapZoomPencilEvents.js.map +2 -2
- package/dist-cjs/lib/hooks/useGestureEvents.js +1 -1
- package/dist-cjs/lib/hooks/useGestureEvents.js.map +2 -2
- package/dist-cjs/lib/hooks/useHandleEvents.js +6 -6
- package/dist-cjs/lib/hooks/useHandleEvents.js.map +2 -2
- package/dist-cjs/lib/hooks/usePassThroughMouseOverEvents.js +4 -1
- package/dist-cjs/lib/hooks/usePassThroughMouseOverEvents.js.map +2 -2
- package/dist-cjs/lib/hooks/usePassThroughWheelEvents.js +4 -1
- package/dist-cjs/lib/hooks/usePassThroughWheelEvents.js.map +2 -2
- package/dist-cjs/lib/hooks/useSelectionEvents.js +8 -8
- package/dist-cjs/lib/hooks/useSelectionEvents.js.map +2 -2
- package/dist-cjs/lib/{utils/nearestMultiple.js → hooks/useStateAttribute.js} +15 -14
- package/dist-cjs/lib/hooks/useStateAttribute.js.map +7 -0
- package/dist-cjs/lib/license/LicenseManager.js +143 -53
- package/dist-cjs/lib/license/LicenseManager.js.map +2 -2
- package/dist-cjs/lib/license/LicenseProvider.js +39 -1
- package/dist-cjs/lib/license/LicenseProvider.js.map +2 -2
- package/dist-cjs/lib/license/Watermark.js +144 -75
- package/dist-cjs/lib/license/Watermark.js.map +3 -3
- package/dist-cjs/lib/license/useLicenseManagerState.js.map +2 -2
- package/dist-cjs/lib/options.js +7 -0
- package/dist-cjs/lib/options.js.map +2 -2
- package/dist-cjs/lib/primitives/Box.js +3 -0
- package/dist-cjs/lib/primitives/Box.js.map +2 -2
- package/dist-cjs/lib/primitives/Vec.js +0 -4
- package/dist-cjs/lib/primitives/Vec.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Geometry2d.js +50 -20
- package/dist-cjs/lib/primitives/geometry/Geometry2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Group2d.js +8 -1
- package/dist-cjs/lib/primitives/geometry/Group2d.js.map +2 -2
- package/dist-cjs/lib/utils/EditorAtom.js +45 -0
- package/dist-cjs/lib/utils/EditorAtom.js.map +7 -0
- package/dist-cjs/lib/utils/dom.js.map +2 -2
- package/dist-cjs/lib/utils/getPointerInfo.js +2 -3
- package/dist-cjs/lib/utils/getPointerInfo.js.map +2 -2
- package/dist-cjs/lib/utils/reparenting.js +7 -36
- package/dist-cjs/lib/utils/reparenting.js.map +3 -3
- package/dist-cjs/version.js +4 -4
- package/dist-cjs/version.js.map +1 -1
- package/dist-esm/index.d.mts +197 -114
- package/dist-esm/index.mjs +5 -5
- package/dist-esm/index.mjs.map +2 -2
- package/dist-esm/lib/TldrawEditor.mjs +9 -9
- package/dist-esm/lib/TldrawEditor.mjs.map +2 -2
- package/dist-esm/lib/components/MenuClickCapture.mjs +0 -5
- package/dist-esm/lib/components/MenuClickCapture.mjs.map +2 -2
- package/dist-esm/lib/components/Shape.mjs +7 -10
- package/dist-esm/lib/components/Shape.mjs.map +2 -2
- package/dist-esm/lib/components/default-components/DefaultCanvas.mjs +14 -23
- package/dist-esm/lib/components/default-components/DefaultCanvas.mjs.map +2 -2
- package/dist-esm/lib/components/default-components/DefaultCollaboratorHint.mjs +1 -1
- package/dist-esm/lib/components/default-components/DefaultCollaboratorHint.mjs.map +1 -1
- package/dist-esm/lib/components/default-components/DefaultErrorFallback.mjs +1 -1
- package/dist-esm/lib/components/default-components/DefaultErrorFallback.mjs.map +2 -2
- package/dist-esm/lib/components/default-components/DefaultScribble.mjs +1 -1
- package/dist-esm/lib/components/default-components/DefaultScribble.mjs.map +2 -2
- package/dist-esm/lib/components/default-components/DefaultShapeIndicator.mjs +9 -1
- package/dist-esm/lib/components/default-components/DefaultShapeIndicator.mjs.map +2 -2
- package/dist-esm/lib/config/TLUserPreferences.mjs +21 -4
- package/dist-esm/lib/config/TLUserPreferences.mjs.map +2 -2
- package/dist-esm/lib/editor/Editor.mjs +121 -138
- package/dist-esm/lib/editor/Editor.mjs.map +2 -2
- package/dist-esm/lib/editor/derivations/notVisibleShapes.mjs +4 -0
- package/dist-esm/lib/editor/derivations/notVisibleShapes.mjs.map +2 -2
- package/dist-esm/lib/editor/managers/FocusManager/FocusManager.mjs +4 -2
- package/dist-esm/lib/editor/managers/FocusManager/FocusManager.mjs.map +2 -2
- package/dist-esm/lib/editor/managers/UserPreferencesManager/UserPreferencesManager.mjs +14 -4
- package/dist-esm/lib/editor/managers/UserPreferencesManager/UserPreferencesManager.mjs.map +2 -2
- package/dist-esm/lib/editor/shapes/ShapeUtil.mjs +23 -0
- package/dist-esm/lib/editor/shapes/ShapeUtil.mjs.map +2 -2
- package/dist-esm/lib/exports/getSvgJsx.mjs +36 -16
- package/dist-esm/lib/exports/getSvgJsx.mjs.map +2 -2
- package/dist-esm/lib/hooks/useCanvasEvents.mjs +49 -45
- package/dist-esm/lib/hooks/useCanvasEvents.mjs.map +2 -2
- package/dist-esm/lib/hooks/useDocumentEvents.mjs +6 -6
- package/dist-esm/lib/hooks/useDocumentEvents.mjs.map +2 -2
- package/dist-esm/lib/hooks/useFixSafariDoubleTapZoomPencilEvents.mjs +1 -2
- package/dist-esm/lib/hooks/useFixSafariDoubleTapZoomPencilEvents.mjs.map +2 -2
- package/dist-esm/lib/hooks/useGestureEvents.mjs +2 -2
- package/dist-esm/lib/hooks/useGestureEvents.mjs.map +2 -2
- package/dist-esm/lib/hooks/useHandleEvents.mjs +6 -6
- package/dist-esm/lib/hooks/useHandleEvents.mjs.map +2 -2
- package/dist-esm/lib/hooks/usePassThroughMouseOverEvents.mjs +4 -1
- package/dist-esm/lib/hooks/usePassThroughMouseOverEvents.mjs.map +2 -2
- package/dist-esm/lib/hooks/usePassThroughWheelEvents.mjs +4 -1
- package/dist-esm/lib/hooks/usePassThroughWheelEvents.mjs.map +2 -2
- package/dist-esm/lib/hooks/useSelectionEvents.mjs +9 -14
- package/dist-esm/lib/hooks/useSelectionEvents.mjs.map +2 -2
- package/dist-esm/lib/hooks/useStateAttribute.mjs +15 -0
- package/dist-esm/lib/hooks/useStateAttribute.mjs.map +7 -0
- package/dist-esm/lib/license/LicenseManager.mjs +144 -54
- package/dist-esm/lib/license/LicenseManager.mjs.map +2 -2
- package/dist-esm/lib/license/LicenseProvider.mjs +39 -2
- package/dist-esm/lib/license/LicenseProvider.mjs.map +2 -2
- package/dist-esm/lib/license/Watermark.mjs +145 -76
- package/dist-esm/lib/license/Watermark.mjs.map +3 -3
- package/dist-esm/lib/license/useLicenseManagerState.mjs.map +2 -2
- package/dist-esm/lib/options.mjs +7 -0
- package/dist-esm/lib/options.mjs.map +2 -2
- package/dist-esm/lib/primitives/Box.mjs +4 -1
- package/dist-esm/lib/primitives/Box.mjs.map +2 -2
- package/dist-esm/lib/primitives/Vec.mjs +0 -4
- package/dist-esm/lib/primitives/Vec.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Geometry2d.mjs +53 -21
- package/dist-esm/lib/primitives/geometry/Geometry2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Group2d.mjs +8 -1
- package/dist-esm/lib/primitives/geometry/Group2d.mjs.map +2 -2
- package/dist-esm/lib/utils/EditorAtom.mjs +25 -0
- package/dist-esm/lib/utils/EditorAtom.mjs.map +7 -0
- package/dist-esm/lib/utils/dom.mjs.map +2 -2
- package/dist-esm/lib/utils/getPointerInfo.mjs +2 -3
- package/dist-esm/lib/utils/getPointerInfo.mjs.map +2 -2
- package/dist-esm/lib/utils/reparenting.mjs +8 -41
- package/dist-esm/lib/utils/reparenting.mjs.map +2 -2
- package/dist-esm/version.mjs +4 -4
- package/dist-esm/version.mjs.map +1 -1
- package/editor.css +308 -290
- package/package.json +14 -37
- package/src/index.ts +4 -9
- package/src/lib/TldrawEditor.tsx +14 -21
- package/src/lib/components/MenuClickCapture.tsx +0 -8
- package/src/lib/components/Shape.tsx +6 -12
- package/src/lib/components/default-components/DefaultCanvas.tsx +11 -22
- package/src/lib/components/default-components/DefaultCollaboratorHint.tsx +1 -1
- package/src/lib/components/default-components/DefaultErrorFallback.tsx +1 -1
- package/src/lib/components/default-components/DefaultScribble.tsx +1 -1
- package/src/lib/components/default-components/DefaultShapeIndicator.tsx +5 -1
- package/src/lib/config/TLUserPreferences.ts +21 -1
- package/src/lib/editor/Editor.test.ts +102 -11
- package/src/lib/editor/Editor.ts +165 -198
- package/src/lib/editor/derivations/notVisibleShapes.ts +6 -0
- package/src/lib/editor/managers/ClickManager/ClickManager.test.ts +15 -14
- package/src/lib/editor/managers/EdgeScrollManager/EdgeScrollManager.test.ts +16 -15
- package/src/lib/editor/managers/FocusManager/FocusManager.test.ts +49 -48
- package/src/lib/editor/managers/FocusManager/FocusManager.ts +6 -2
- package/src/lib/editor/managers/FontManager/FontManager.test.ts +24 -23
- package/src/lib/editor/managers/HistoryManager/HistoryManager.test.ts +7 -6
- package/src/lib/editor/managers/ScribbleManager/ScribbleManager.test.ts +12 -11
- package/src/lib/editor/managers/SnapManager/SnapManager.test.ts +57 -50
- package/src/lib/editor/managers/TextManager/TextManager.test.ts +51 -26
- package/src/lib/editor/managers/TickManager/TickManager.test.ts +14 -13
- package/src/lib/editor/managers/UserPreferencesManager/UserPreferencesManager.test.ts +56 -26
- package/src/lib/editor/managers/UserPreferencesManager/UserPreferencesManager.ts +13 -1
- package/src/lib/editor/shapes/ShapeUtil.ts +46 -0
- package/src/lib/editor/types/misc-types.ts +54 -7
- package/src/lib/exports/getSvgJsx.test.ts +868 -0
- package/src/lib/exports/getSvgJsx.tsx +78 -21
- package/src/lib/hooks/useCanvasEvents.ts +62 -55
- package/src/lib/hooks/useDocumentEvents.ts +6 -6
- package/src/lib/hooks/useFixSafariDoubleTapZoomPencilEvents.ts +1 -1
- package/src/lib/hooks/useGestureEvents.ts +2 -2
- package/src/lib/hooks/useHandleEvents.ts +6 -6
- package/src/lib/hooks/usePassThroughMouseOverEvents.ts +4 -1
- package/src/lib/hooks/usePassThroughWheelEvents.ts +6 -1
- package/src/lib/hooks/useSelectionEvents.ts +9 -14
- package/src/lib/hooks/useStateAttribute.ts +15 -0
- package/src/lib/license/LicenseManager.test.ts +724 -383
- package/src/lib/license/LicenseManager.ts +204 -58
- package/src/lib/license/LicenseProvider.tsx +74 -2
- package/src/lib/license/Watermark.test.tsx +2 -1
- package/src/lib/license/Watermark.tsx +152 -77
- package/src/lib/license/useLicenseManagerState.ts +2 -2
- package/src/lib/options.ts +8 -0
- package/src/lib/primitives/Box.test.ts +126 -0
- package/src/lib/primitives/Box.ts +10 -1
- package/src/lib/primitives/Vec.ts +0 -5
- package/src/lib/primitives/geometry/Geometry2d.test.ts +420 -0
- package/src/lib/primitives/geometry/Geometry2d.ts +78 -21
- package/src/lib/primitives/geometry/Group2d.ts +10 -1
- package/src/lib/test/InFrontOfTheCanvas.test.tsx +187 -0
- package/src/lib/utils/EditorAtom.ts +37 -0
- package/src/lib/utils/dom.test.ts +103 -0
- package/src/lib/utils/dom.ts +8 -1
- package/src/lib/utils/getPointerInfo.ts +3 -2
- package/src/lib/utils/reparenting.ts +10 -70
- package/src/lib/utils/sync/LocalIndexedDb.test.ts +2 -1
- package/src/lib/utils/sync/TLLocalSyncClient.test.ts +15 -15
- package/src/version.ts +4 -4
- package/dist-cjs/lib/utils/nearestMultiple.js.map +0 -7
- package/dist-esm/lib/utils/nearestMultiple.mjs +0 -14
- package/dist-esm/lib/utils/nearestMultiple.mjs.map +0 -7
- package/src/lib/utils/nearestMultiple.ts +0 -13
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
{
|
|
2
2
|
"version": 3,
|
|
3
3
|
"sources": ["../../../src/lib/primitives/Box.ts"],
|
|
4
|
-
"sourcesContent": ["import { BoxModel } from '@tldraw/tlschema'\nimport { Vec, VecLike } from './Vec'\nimport { PI, PI2, toPrecision } from './utils'\n\n/** @public */\nexport type BoxLike = BoxModel | Box\n\n/** @public */\nexport type SelectionEdge = 'top' | 'right' | 'bottom' | 'left'\n\n/** @public */\nexport type SelectionCorner = 'top_left' | 'top_right' | 'bottom_right' | 'bottom_left'\n\n/** @public */\nexport type SelectionHandle = SelectionEdge | SelectionCorner\n\n/** @public */\nexport type RotateCorner =\n\t| 'top_left_rotate'\n\t| 'top_right_rotate'\n\t| 'bottom_right_rotate'\n\t| 'bottom_left_rotate'\n\t| 'mobile_rotate'\n\n/** @public */\nexport class Box {\n\tconstructor(x = 0, y = 0, w = 0, h = 0) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.w = w\n\t\tthis.h = h\n\t}\n\n\tx = 0\n\ty = 0\n\tw = 0\n\th = 0\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget point() {\n\t\treturn new Vec(this.x, this.y)\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset point(val: Vec) {\n\t\tthis.x = val.x\n\t\tthis.y = val.y\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget minX() {\n\t\treturn this.x\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset minX(n: number) {\n\t\tthis.x = n\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget left() {\n\t\treturn this.x\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget midX() {\n\t\treturn this.x + this.w / 2\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget maxX() {\n\t\treturn this.x + this.w\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget right() {\n\t\treturn this.x + this.w\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget minY() {\n\t\treturn this.y\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset minY(n: number) {\n\t\tthis.y = n\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget top() {\n\t\treturn this.y\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget midY() {\n\t\treturn this.y + this.h / 2\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget maxY() {\n\t\treturn this.y + this.h\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget bottom() {\n\t\treturn this.y + this.h\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget width() {\n\t\treturn this.w\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset width(n: number) {\n\t\tthis.w = n\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget height() {\n\t\treturn this.h\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset height(n: number) {\n\t\tthis.h = n\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget aspectRatio() {\n\t\treturn this.width / this.height\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget center() {\n\t\treturn new Vec(this.x + this.w / 2, this.y + this.h / 2)\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset center(v: Vec) {\n\t\tthis.x = v.x - this.w / 2\n\t\tthis.y = v.y - this.h / 2\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget corners() {\n\t\treturn [\n\t\t\tnew Vec(this.x, this.y),\n\t\t\tnew Vec(this.x + this.w, this.y),\n\t\t\tnew Vec(this.x + this.w, this.y + this.h),\n\t\t\tnew Vec(this.x, this.y + this.h),\n\t\t]\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget cornersAndCenter() {\n\t\treturn [\n\t\t\tnew Vec(this.x, this.y),\n\t\t\tnew Vec(this.x + this.w, this.y),\n\t\t\tnew Vec(this.x + this.w, this.y + this.h),\n\t\t\tnew Vec(this.x, this.y + this.h),\n\t\t\tnew Vec(this.x + this.w / 2, this.y + this.h / 2),\n\t\t]\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget sides(): Array<[Vec, Vec]> {\n\t\tconst { corners } = this\n\t\treturn [\n\t\t\t[corners[0], corners[1]],\n\t\t\t[corners[1], corners[2]],\n\t\t\t[corners[2], corners[3]],\n\t\t\t[corners[3], corners[0]],\n\t\t]\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget size(): Vec {\n\t\treturn new Vec(this.w, this.h)\n\t}\n\n\ttoFixed() {\n\t\tthis.x = toPrecision(this.x)\n\t\tthis.y = toPrecision(this.y)\n\t\tthis.w = toPrecision(this.w)\n\t\tthis.h = toPrecision(this.h)\n\t\treturn this\n\t}\n\n\tsetTo(B: Box) {\n\t\tthis.x = B.x\n\t\tthis.y = B.y\n\t\tthis.w = B.w\n\t\tthis.h = B.h\n\t\treturn this\n\t}\n\n\tset(x = 0, y = 0, w = 0, h = 0) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.w = w\n\t\tthis.h = h\n\t\treturn this\n\t}\n\n\texpand(A: Box) {\n\t\tconst minX = Math.min(this.x, A.x)\n\t\tconst minY = Math.min(this.y, A.y)\n\t\tconst maxX = Math.max(this.x + this.w, A.x + A.w)\n\t\tconst maxY = Math.max(this.y + this.h, A.y + A.h)\n\n\t\tthis.x = minX\n\t\tthis.y = minY\n\t\tthis.w = maxX - minX\n\t\tthis.h = maxY - minY\n\t\treturn this\n\t}\n\n\texpandBy(n: number) {\n\t\tthis.x -= n\n\t\tthis.y -= n\n\t\tthis.w += n * 2\n\t\tthis.h += n * 2\n\t\treturn this\n\t}\n\n\tscale(n: number) {\n\t\tthis.x /= n\n\t\tthis.y /= n\n\t\tthis.w /= n\n\t\tthis.h /= n\n\t\treturn this\n\t}\n\n\tclone() {\n\t\tconst { x, y, w, h } = this\n\t\treturn new Box(x, y, w, h)\n\t}\n\n\ttranslate(delta: VecLike) {\n\t\tthis.x += delta.x\n\t\tthis.y += delta.y\n\t\treturn this\n\t}\n\n\tsnapToGrid(size: number) {\n\t\tconst minX = Math.round(this.x / size) * size\n\t\tconst minY = Math.round(this.y / size) * size\n\t\tconst maxX = Math.round((this.x + this.w) / size) * size\n\t\tconst maxY = Math.round((this.y + this.h) / size) * size\n\t\tthis.minX = minX\n\t\tthis.minY = minY\n\t\tthis.width = Math.max(1, maxX - minX)\n\t\tthis.height = Math.max(1, maxY - minY)\n\t}\n\n\tcollides(B: Box) {\n\t\treturn Box.Collides(this, B)\n\t}\n\n\tcontains(B: Box) {\n\t\treturn Box.Contains(this, B)\n\t}\n\n\tincludes(B: Box) {\n\t\treturn Box.Includes(this, B)\n\t}\n\n\tcontainsPoint(V: VecLike, margin = 0) {\n\t\treturn Box.ContainsPoint(this, V, margin)\n\t}\n\n\tgetHandlePoint(handle: SelectionCorner | SelectionEdge) {\n\t\tswitch (handle) {\n\t\t\tcase 'top_left':\n\t\t\t\treturn new Vec(this.x, this.y)\n\t\t\tcase 'top_right':\n\t\t\t\treturn new Vec(this.x + this.w, this.y)\n\t\t\tcase 'bottom_left':\n\t\t\t\treturn new Vec(this.x, this.y + this.h)\n\t\t\tcase 'bottom_right':\n\t\t\t\treturn new Vec(this.x + this.w, this.y + this.h)\n\t\t\tcase 'top':\n\t\t\t\treturn new Vec(this.x + this.w / 2, this.y)\n\t\t\tcase 'right':\n\t\t\t\treturn new Vec(this.x + this.w, this.y + this.h / 2)\n\t\t\tcase 'bottom':\n\t\t\t\treturn new Vec(this.x + this.w / 2, this.y + this.h)\n\t\t\tcase 'left':\n\t\t\t\treturn new Vec(this.x, this.y + this.h / 2)\n\t\t}\n\t}\n\n\ttoJson(): BoxModel {\n\t\treturn { x: this.x, y: this.y, w: this.w, h: this.h }\n\t}\n\n\tresize(handle: SelectionCorner | SelectionEdge | string, dx: number, dy: number) {\n\t\tconst { minX: a0x, minY: a0y, maxX: a1x, maxY: a1y } = this\n\t\tlet { minX: b0x, minY: b0y, maxX: b1x, maxY: b1y } = this\n\n\t\t// Use the delta to adjust the new box by changing its corners.\n\t\t// The dragging handle (corner or edge) will determine which\n\t\t// corners should change.\n\t\tswitch (handle) {\n\t\t\tcase 'left':\n\t\t\tcase 'top_left':\n\t\t\tcase 'bottom_left': {\n\t\t\t\tb0x += dx\n\t\t\t\tbreak\n\t\t\t}\n\t\t\tcase 'right':\n\t\t\tcase 'top_right':\n\t\t\tcase 'bottom_right': {\n\t\t\t\tb1x += dx\n\t\t\t\tbreak\n\t\t\t}\n\t\t}\n\t\tswitch (handle) {\n\t\t\tcase 'top':\n\t\t\tcase 'top_left':\n\t\t\tcase 'top_right': {\n\t\t\t\tb0y += dy\n\t\t\t\tbreak\n\t\t\t}\n\t\t\tcase 'bottom':\n\t\t\tcase 'bottom_left':\n\t\t\tcase 'bottom_right': {\n\t\t\t\tb1y += dy\n\t\t\t\tbreak\n\t\t\t}\n\t\t}\n\n\t\tconst scaleX = (b1x - b0x) / (a1x - a0x)\n\t\tconst scaleY = (b1y - b0y) / (a1y - a0y)\n\n\t\tconst flipX = scaleX < 0\n\t\tconst flipY = scaleY < 0\n\n\t\tif (flipX) {\n\t\t\tconst t = b1x\n\t\t\tb1x = b0x\n\t\t\tb0x = t\n\t\t}\n\n\t\tif (flipY) {\n\t\t\tconst t = b1y\n\t\t\tb1y = b0y\n\t\t\tb0y = t\n\t\t}\n\n\t\tthis.minX = b0x\n\t\tthis.minY = b0y\n\t\tthis.width = Math.abs(b1x - b0x)\n\t\tthis.height = Math.abs(b1y - b0y)\n\t}\n\n\tunion(box: BoxModel) {\n\t\tconst minX = Math.min(this.x, box.x)\n\t\tconst minY = Math.min(this.y, box.y)\n\t\tconst maxX = Math.max(this.x + this.w, box.x + box.w)\n\t\tconst maxY = Math.max(this.y + this.h, box.y + box.h)\n\n\t\tthis.x = minX\n\t\tthis.y = minY\n\t\tthis.width = maxX - minX\n\t\tthis.height = maxY - minY\n\n\t\treturn this\n\t}\n\n\tstatic From(box: BoxModel) {\n\t\treturn new Box(box.x, box.y, box.w, box.h)\n\t}\n\n\tstatic FromCenter(center: VecLike, size: VecLike) {\n\t\treturn new Box(center.x - size.x / 2, center.y - size.y / 2, size.x, size.y)\n\t}\n\n\tstatic FromPoints(points: VecLike[]) {\n\t\tif (points.length === 0) return new Box()\n\t\tlet minX = Infinity\n\t\tlet minY = Infinity\n\t\tlet maxX = -Infinity\n\t\tlet maxY = -Infinity\n\t\tlet point: VecLike\n\t\tfor (let i = 0, n = points.length; i < n; i++) {\n\t\t\tpoint = points[i]\n\t\t\tminX = Math.min(point.x, minX)\n\t\t\tminY = Math.min(point.y, minY)\n\t\t\tmaxX = Math.max(point.x, maxX)\n\t\t\tmaxY = Math.max(point.y, maxY)\n\t\t}\n\n\t\treturn new Box(minX, minY, maxX - minX, maxY - minY)\n\t}\n\n\tstatic Expand(A: Box, B: Box) {\n\t\tconst minX = Math.min(B.minX, A.minX)\n\t\tconst minY = Math.min(B.minY, A.minY)\n\t\tconst maxX = Math.max(B.maxX, A.maxX)\n\t\tconst maxY = Math.max(B.maxY, A.maxY)\n\n\t\treturn new Box(minX, minY, maxX - minX, maxY - minY)\n\t}\n\n\tstatic ExpandBy(A: Box, n: number) {\n\t\treturn new Box(A.minX - n, A.minY - n, A.width + n * 2, A.height + n * 2)\n\t}\n\n\tstatic Collides(A: Box, B: Box) {\n\t\treturn !(A.maxX < B.minX || A.minX > B.maxX || A.maxY < B.minY || A.minY > B.maxY)\n\t}\n\n\tstatic Contains(A: Box, B: Box) {\n\t\treturn A.minX < B.minX && A.minY < B.minY && A.maxY > B.maxY && A.maxX > B.maxX\n\t}\n\n\tstatic Includes(A: Box, B: Box) {\n\t\treturn Box.Collides(A, B) || Box.Contains(A, B)\n\t}\n\n\tstatic ContainsPoint(A: Box, B: VecLike, margin = 0) {\n\t\treturn !(\n\t\t\tB.x < A.minX - margin ||\n\t\t\tB.y < A.minY - margin ||\n\t\t\tB.x > A.maxX + margin ||\n\t\t\tB.y > A.maxY + margin\n\t\t)\n\t}\n\n\tstatic Common(boxes: Box[]) {\n\t\tlet minX = Infinity\n\t\tlet minY = Infinity\n\t\tlet maxX = -Infinity\n\t\tlet maxY = -Infinity\n\n\t\tfor (let i = 0; i < boxes.length; i++) {\n\t\t\tconst B = boxes[i]\n\t\t\tminX = Math.min(minX, B.minX)\n\t\t\tminY = Math.min(minY, B.minY)\n\t\t\tmaxX = Math.max(maxX, B.maxX)\n\t\t\tmaxY = Math.max(maxY, B.maxY)\n\t\t}\n\n\t\treturn new Box(minX, minY, maxX - minX, maxY - minY)\n\t}\n\n\tstatic Sides(A: Box, inset = 0) {\n\t\tconst { corners } = A\n\t\tif (inset) {\n\t\t\t// TODO: Inset the corners by the inset amount.\n\t\t}\n\n\t\treturn [\n\t\t\t[corners[0], corners[1]],\n\t\t\t[corners[1], corners[2]],\n\t\t\t[corners[2], corners[3]],\n\t\t\t[corners[3], corners[0]],\n\t\t]\n\t}\n\n\tstatic Resize(\n\t\tbox: Box,\n\t\thandle: SelectionCorner | SelectionEdge | string,\n\t\tdx: number,\n\t\tdy: number,\n\t\tisAspectRatioLocked = false\n\t) {\n\t\tconst { minX: a0x, minY: a0y, maxX: a1x, maxY: a1y } = box\n\t\tlet { minX: b0x, minY: b0y, maxX: b1x, maxY: b1y } = box\n\n\t\t// Use the delta to adjust the new box by changing its corners.\n\t\t// The dragging handle (corner or edge) will determine which\n\t\t// corners should change.\n\t\tswitch (handle) {\n\t\t\tcase 'left':\n\t\t\tcase 'top_left':\n\t\t\tcase 'bottom_left': {\n\t\t\t\tb0x += dx\n\t\t\t\tbreak\n\t\t\t}\n\t\t\tcase 'right':\n\t\t\tcase 'top_right':\n\t\t\tcase 'bottom_right': {\n\t\t\t\tb1x += dx\n\t\t\t\tbreak\n\t\t\t}\n\t\t}\n\t\tswitch (handle) {\n\t\t\tcase 'top':\n\t\t\tcase 'top_left':\n\t\t\tcase 'top_right': {\n\t\t\t\tb0y += dy\n\t\t\t\tbreak\n\t\t\t}\n\t\t\tcase 'bottom':\n\t\t\tcase 'bottom_left':\n\t\t\tcase 'bottom_right': {\n\t\t\t\tb1y += dy\n\t\t\t\tbreak\n\t\t\t}\n\t\t}\n\n\t\tconst scaleX = (b1x - b0x) / (a1x - a0x)\n\t\tconst scaleY = (b1y - b0y) / (a1y - a0y)\n\n\t\tconst flipX = scaleX < 0\n\t\tconst flipY = scaleY < 0\n\n\t\t/*\n 2. Aspect ratio\n If the aspect ratio is locked, adjust the corners so that the\n new box's aspect ratio matches the original aspect ratio.\n */\n\t\tif (isAspectRatioLocked) {\n\t\t\tconst aspectRatio = (a1x - a0x) / (a1y - a0y)\n\t\t\tconst bw = Math.abs(b1x - b0x)\n\t\t\tconst bh = Math.abs(b1y - b0y)\n\t\t\tconst tw = bw * (scaleY < 0 ? 1 : -1) * (1 / aspectRatio)\n\t\t\tconst th = bh * (scaleX < 0 ? 1 : -1) * aspectRatio\n\t\t\tconst isTall = aspectRatio < bw / bh\n\n\t\t\tswitch (handle) {\n\t\t\t\tcase 'top_left': {\n\t\t\t\t\tif (isTall) b0y = b1y + tw\n\t\t\t\t\telse b0x = b1x + th\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'top_right': {\n\t\t\t\t\tif (isTall) b0y = b1y + tw\n\t\t\t\t\telse b1x = b0x - th\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'bottom_right': {\n\t\t\t\t\tif (isTall) b1y = b0y - tw\n\t\t\t\t\telse b1x = b0x - th\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'bottom_left': {\n\t\t\t\t\tif (isTall) b1y = b0y - tw\n\t\t\t\t\telse b0x = b1x + th\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'bottom':\n\t\t\t\tcase 'top': {\n\t\t\t\t\tconst m = (b0x + b1x) / 2\n\t\t\t\t\tconst w = bh * aspectRatio\n\t\t\t\t\tb0x = m - w / 2\n\t\t\t\t\tb1x = m + w / 2\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'left':\n\t\t\t\tcase 'right': {\n\t\t\t\t\tconst m = (b0y + b1y) / 2\n\t\t\t\t\tconst h = bw / aspectRatio\n\t\t\t\t\tb0y = m - h / 2\n\t\t\t\t\tb1y = m + h / 2\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif (flipX) {\n\t\t\tconst t = b1x\n\t\t\tb1x = b0x\n\t\t\tb0x = t\n\t\t}\n\n\t\tif (flipY) {\n\t\t\tconst t = b1y\n\t\t\tb1y = b0y\n\t\t\tb0y = t\n\t\t}\n\n\t\tconst final = new Box(b0x, b0y, Math.abs(b1x - b0x), Math.abs(b1y - b0y))\n\n\t\treturn {\n\t\t\tbox: final,\n\t\t\tscaleX: +((final.width / box.width) * (scaleX > 0 ? 1 : -1)).toFixed(5),\n\t\t\tscaleY: +((final.height / box.height) * (scaleY > 0 ? 1 : -1)).toFixed(5),\n\t\t}\n\t}\n\n\tequals(other: Box | BoxModel) {\n\t\treturn Box.Equals(this, other)\n\t}\n\n\tstatic Equals(a: Box | BoxModel, b: Box | BoxModel) {\n\t\treturn b.x === a.x && b.y === a.y && b.w === a.w && b.h === a.h\n\t}\n\n\tzeroFix() {\n\t\tthis.w = Math.max(1, this.w)\n\t\tthis.h = Math.max(1, this.h)\n\t\treturn this\n\t}\n\n\tstatic ZeroFix(other: Box | BoxModel) {\n\t\treturn new Box(other.x, other.y, Math.max(1, other.w), Math.max(1, other.h))\n\t}\n}\n\n/** @public */\nexport function flipSelectionHandleY(handle: SelectionHandle) {\n\tswitch (handle) {\n\t\tcase 'top':\n\t\t\treturn 'bottom'\n\t\tcase 'bottom':\n\t\t\treturn 'top'\n\t\tcase 'top_left':\n\t\t\treturn 'bottom_left'\n\t\tcase 'top_right':\n\t\t\treturn 'bottom_right'\n\t\tcase 'bottom_left':\n\t\t\treturn 'top_left'\n\t\tcase 'bottom_right':\n\t\t\treturn 'top_right'\n\t\tdefault:\n\t\t\treturn handle\n\t}\n}\n\n/** @public */\nexport function flipSelectionHandleX(handle: SelectionHandle) {\n\tswitch (handle) {\n\t\tcase 'left':\n\t\t\treturn 'right'\n\t\tcase 'right':\n\t\t\treturn 'left'\n\t\tcase 'top_left':\n\t\t\treturn 'top_right'\n\t\tcase 'top_right':\n\t\t\treturn 'top_left'\n\t\tcase 'bottom_left':\n\t\t\treturn 'bottom_right'\n\t\tcase 'bottom_right':\n\t\t\treturn 'bottom_left'\n\t\tdefault:\n\t\t\treturn handle\n\t}\n}\n\nconst ORDERED_SELECTION_HANDLES = [\n\t'top',\n\t'top_right',\n\t'right',\n\t'bottom_right',\n\t'bottom',\n\t'bottom_left',\n\t'left',\n\t'top_left',\n] as const\n\n/** @public */\nexport function rotateSelectionHandle(handle: SelectionHandle, rotation: number): SelectionHandle {\n\t// first find out how many tau we need to rotate by\n\trotation = rotation % PI2\n\tconst numSteps = Math.round(rotation / (PI / 4))\n\n\tconst currentIndex = ORDERED_SELECTION_HANDLES.indexOf(handle)\n\treturn ORDERED_SELECTION_HANDLES[(currentIndex + numSteps) % ORDERED_SELECTION_HANDLES.length]\n}\n\n/** @public */\nexport function isSelectionCorner(selection: string): selection is SelectionCorner {\n\treturn (\n\t\tselection === 'top_left' ||\n\t\tselection === 'top_right' ||\n\t\tselection === 'bottom_right' ||\n\t\tselection === 'bottom_left'\n\t)\n}\n\n/** @public */\nexport const ROTATE_CORNER_TO_SELECTION_CORNER = {\n\ttop_left_rotate: 'top_left',\n\ttop_right_rotate: 'top_right',\n\tbottom_right_rotate: 'bottom_right',\n\tbottom_left_rotate: 'bottom_left',\n\tmobile_rotate: 'top_left',\n} as const\n"],
|
|
5
|
-
"mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AACA,iBAA6B;AAC7B,mBAAqC;AAuB9B,MAAM,IAAI;AAAA,EAChB,YAAY,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AAAA,EACV;AAAA,EAEA,IAAI;AAAA,EACJ,IAAI;AAAA,EACJ,IAAI;AAAA,EACJ,IAAI;AAAA;AAAA,EAGJ,IAAI,QAAQ;AACX,WAAO,IAAI,eAAI,KAAK,GAAG,KAAK,CAAC;AAAA,EAC9B;AAAA;AAAA,EAGA,IAAI,MAAM,KAAU;AACnB,SAAK,IAAI,IAAI;AACb,SAAK,IAAI,IAAI;AAAA,EACd;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,KAAK,GAAW;AACnB,SAAK,IAAI;AAAA,EACV;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK,IAAI,KAAK,IAAI;AAAA,EAC1B;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK,IAAI,KAAK;AAAA,EACtB;AAAA;AAAA,EAGA,IAAI,QAAQ;AACX,WAAO,KAAK,IAAI,KAAK;AAAA,EACtB;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,KAAK,GAAW;AACnB,SAAK,IAAI;AAAA,EACV;AAAA;AAAA,EAGA,IAAI,MAAM;AACT,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK,IAAI,KAAK,IAAI;AAAA,EAC1B;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK,IAAI,KAAK;AAAA,EACtB;AAAA;AAAA,EAGA,IAAI,SAAS;AACZ,WAAO,KAAK,IAAI,KAAK;AAAA,EACtB;AAAA;AAAA,EAGA,IAAI,QAAQ;AACX,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,MAAM,GAAW;AACpB,SAAK,IAAI;AAAA,EACV;AAAA;AAAA,EAGA,IAAI,SAAS;AACZ,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,OAAO,GAAW;AACrB,SAAK,IAAI;AAAA,EACV;AAAA;AAAA,EAGA,IAAI,cAAc;AACjB,WAAO,KAAK,QAAQ,KAAK;AAAA,EAC1B;AAAA;AAAA,EAGA,IAAI,SAAS;AACZ,WAAO,IAAI,eAAI,KAAK,IAAI,KAAK,IAAI,GAAG,KAAK,IAAI,KAAK,IAAI,CAAC;AAAA,EACxD;AAAA;AAAA,EAGA,IAAI,OAAO,GAAQ;AAClB,SAAK,IAAI,EAAE,IAAI,KAAK,IAAI;AACxB,SAAK,IAAI,EAAE,IAAI,KAAK,IAAI;AAAA,EACzB;AAAA;AAAA,EAGA,IAAI,UAAU;AACb,WAAO;AAAA,MACN,IAAI,eAAI,KAAK,GAAG,KAAK,CAAC;AAAA,MACtB,IAAI,eAAI,KAAK,IAAI,KAAK,GAAG,KAAK,CAAC;AAAA,MAC/B,IAAI,eAAI,KAAK,IAAI,KAAK,GAAG,KAAK,IAAI,KAAK,CAAC;AAAA,MACxC,IAAI,eAAI,KAAK,GAAG,KAAK,IAAI,KAAK,CAAC;AAAA,IAChC;AAAA,EACD;AAAA;AAAA,EAGA,IAAI,mBAAmB;AACtB,WAAO;AAAA,MACN,IAAI,eAAI,KAAK,GAAG,KAAK,CAAC;AAAA,MACtB,IAAI,eAAI,KAAK,IAAI,KAAK,GAAG,KAAK,CAAC;AAAA,MAC/B,IAAI,eAAI,KAAK,IAAI,KAAK,GAAG,KAAK,IAAI,KAAK,CAAC;AAAA,MACxC,IAAI,eAAI,KAAK,GAAG,KAAK,IAAI,KAAK,CAAC;AAAA,MAC/B,IAAI,eAAI,KAAK,IAAI,KAAK,IAAI,GAAG,KAAK,IAAI,KAAK,IAAI,CAAC;AAAA,IACjD;AAAA,EACD;AAAA;AAAA,EAGA,IAAI,QAA2B;AAC9B,UAAM,EAAE,QAAQ,IAAI;AACpB,WAAO;AAAA,MACN,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,IACxB;AAAA,EACD;AAAA;AAAA,EAGA,IAAI,OAAY;AACf,WAAO,IAAI,eAAI,KAAK,GAAG,KAAK,CAAC;AAAA,EAC9B;AAAA,EAEA,UAAU;AACT,SAAK,QAAI,0BAAY,KAAK,CAAC;AAC3B,SAAK,QAAI,0BAAY,KAAK,CAAC;AAC3B,SAAK,QAAI,0BAAY,KAAK,CAAC;AAC3B,SAAK,QAAI,0BAAY,KAAK,CAAC;AAC3B,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAQ;AACb,SAAK,IAAI,EAAE;AACX,SAAK,IAAI,EAAE;AACX,SAAK,IAAI,EAAE;AACX,SAAK,IAAI,EAAE;AACX,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AAC/B,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,GAAQ;AACd,UAAM,OAAO,KAAK,IAAI,KAAK,GAAG,EAAE,CAAC;AACjC,UAAM,OAAO,KAAK,IAAI,KAAK,GAAG,EAAE,CAAC;AACjC,UAAM,OAAO,KAAK,IAAI,KAAK,IAAI,KAAK,GAAG,EAAE,IAAI,EAAE,CAAC;AAChD,UAAM,OAAO,KAAK,IAAI,KAAK,IAAI,KAAK,GAAG,EAAE,IAAI,EAAE,CAAC;AAEhD,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI,OAAO;AAChB,SAAK,IAAI,OAAO;AAChB,WAAO;AAAA,EACR;AAAA,EAEA,SAAS,GAAW;AACnB,SAAK,KAAK;AACV,SAAK,KAAK;AACV,SAAK,KAAK,IAAI;AACd,SAAK,KAAK,IAAI;AACd,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW;AAChB,SAAK,KAAK;AACV,SAAK,KAAK;AACV,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,QAAQ;AACP,UAAM,EAAE,GAAG,GAAG,GAAG,EAAE,IAAI;AACvB,WAAO,IAAI,IAAI,GAAG,GAAG,GAAG,CAAC;AAAA,EAC1B;AAAA,EAEA,UAAU,OAAgB;AACzB,SAAK,KAAK,MAAM;AAChB,SAAK,KAAK,MAAM;AAChB,WAAO;AAAA,EACR;AAAA,EAEA,WAAW,MAAc;AACxB,UAAM,OAAO,KAAK,MAAM,KAAK,IAAI,IAAI,IAAI;AACzC,UAAM,OAAO,KAAK,MAAM,KAAK,IAAI,IAAI,IAAI;AACzC,UAAM,OAAO,KAAK,OAAO,KAAK,IAAI,KAAK,KAAK,IAAI,IAAI;AACpD,UAAM,OAAO,KAAK,OAAO,KAAK,IAAI,KAAK,KAAK,IAAI,IAAI;AACpD,SAAK,OAAO;AACZ,SAAK,OAAO;AACZ,SAAK,QAAQ,KAAK,IAAI,GAAG,OAAO,IAAI;AACpC,SAAK,SAAS,KAAK,IAAI,GAAG,OAAO,IAAI;AAAA,EACtC;AAAA,EAEA,SAAS,GAAQ;AAChB,WAAO,IAAI,SAAS,MAAM,CAAC;AAAA,EAC5B;AAAA,EAEA,SAAS,GAAQ;AAChB,WAAO,IAAI,SAAS,MAAM,CAAC;AAAA,EAC5B;AAAA,EAEA,SAAS,GAAQ;AAChB,WAAO,IAAI,SAAS,MAAM,CAAC;AAAA,EAC5B;AAAA,EAEA,cAAc,GAAY,SAAS,GAAG;AACrC,WAAO,IAAI,cAAc,MAAM,GAAG,MAAM;AAAA,EACzC;AAAA,EAEA,eAAe,QAAyC;AACvD,YAAQ,QAAQ;AAAA,MACf,KAAK;AACJ,eAAO,IAAI,eAAI,KAAK,GAAG,KAAK,CAAC;AAAA,MAC9B,KAAK;AACJ,eAAO,IAAI,eAAI,KAAK,IAAI,KAAK,GAAG,KAAK,CAAC;AAAA,MACvC,KAAK;AACJ,eAAO,IAAI,eAAI,KAAK,GAAG,KAAK,IAAI,KAAK,CAAC;AAAA,MACvC,KAAK;AACJ,eAAO,IAAI,eAAI,KAAK,IAAI,KAAK,GAAG,KAAK,IAAI,KAAK,CAAC;AAAA,MAChD,KAAK;AACJ,eAAO,IAAI,eAAI,KAAK,IAAI,KAAK,IAAI,GAAG,KAAK,CAAC;AAAA,MAC3C,KAAK;AACJ,eAAO,IAAI,eAAI,KAAK,IAAI,KAAK,GAAG,KAAK,IAAI,KAAK,IAAI,CAAC;AAAA,MACpD,KAAK;AACJ,eAAO,IAAI,eAAI,KAAK,IAAI,KAAK,IAAI,GAAG,KAAK,IAAI,KAAK,CAAC;AAAA,MACpD,KAAK;AACJ,eAAO,IAAI,eAAI,KAAK,GAAG,KAAK,IAAI,KAAK,IAAI,CAAC;AAAA,IAC5C;AAAA,EACD;AAAA,EAEA,SAAmB;AAClB,WAAO,EAAE,GAAG,KAAK,GAAG,GAAG,KAAK,GAAG,GAAG,KAAK,GAAG,GAAG,KAAK,EAAE;AAAA,EACrD;AAAA,EAEA,OAAO,QAAkD,IAAY,IAAY;AAChF,UAAM,EAAE,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AACvD,QAAI,EAAE,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AAKrD,YAAQ,QAAQ;AAAA,MACf,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,eAAe;AACnB,eAAO;AACP;AAAA,MACD;AAAA,MACA,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,gBAAgB;AACpB,eAAO;AACP;AAAA,MACD;AAAA,IACD;AACA,YAAQ,QAAQ;AAAA,MACf,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,aAAa;AACjB,eAAO;AACP;AAAA,MACD;AAAA,MACA,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,gBAAgB;AACpB,eAAO;AACP;AAAA,MACD;AAAA,IACD;AAEA,UAAM,UAAU,MAAM,QAAQ,MAAM;AACpC,UAAM,UAAU,MAAM,QAAQ,MAAM;AAEpC,UAAM,QAAQ,SAAS;AACvB,UAAM,QAAQ,SAAS;AAEvB,QAAI,OAAO;AACV,YAAM,IAAI;AACV,YAAM;AACN,YAAM;AAAA,IACP;AAEA,QAAI,OAAO;AACV,YAAM,IAAI;AACV,YAAM;AACN,YAAM;AAAA,IACP;AAEA,SAAK,OAAO;AACZ,SAAK,OAAO;AACZ,SAAK,QAAQ,KAAK,IAAI,MAAM,GAAG;AAC/B,SAAK,SAAS,KAAK,IAAI,MAAM,GAAG;AAAA,EACjC;AAAA,EAEA,MAAM,KAAe;AACpB,UAAM,OAAO,KAAK,IAAI,KAAK,GAAG,IAAI,CAAC;AACnC,UAAM,OAAO,KAAK,IAAI,KAAK,GAAG,IAAI,CAAC;AACnC,UAAM,OAAO,KAAK,IAAI,KAAK,IAAI,KAAK,GAAG,IAAI,IAAI,IAAI,CAAC;AACpD,UAAM,OAAO,KAAK,IAAI,KAAK,IAAI,KAAK,GAAG,IAAI,IAAI,IAAI,CAAC;AAEpD,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,QAAQ,OAAO;AACpB,SAAK,SAAS,OAAO;AAErB,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,KAAK,KAAe;AAC1B,WAAO,IAAI,IAAI,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,CAAC;AAAA,EAC1C;AAAA,EAEA,OAAO,WAAW,QAAiB,MAAe;AACjD,WAAO,IAAI,IAAI,OAAO,IAAI,KAAK,IAAI,GAAG,OAAO,IAAI,KAAK,IAAI,GAAG,KAAK,GAAG,KAAK,CAAC;AAAA,EAC5E;AAAA,EAEA,OAAO,WAAW,QAAmB;AACpC,QAAI,OAAO,WAAW,EAAG,QAAO,IAAI,IAAI;AACxC,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI;AACJ,aAAS,IAAI,GAAG,IAAI,OAAO,QAAQ,IAAI,GAAG,KAAK;AAC9C,cAAQ,OAAO,CAAC;AAChB,aAAO,KAAK,IAAI,MAAM,GAAG,IAAI;AAC7B,aAAO,KAAK,IAAI,MAAM,GAAG,IAAI;AAC7B,aAAO,KAAK,IAAI,MAAM,GAAG,IAAI;AAC7B,aAAO,KAAK,IAAI,MAAM,GAAG,IAAI;AAAA,IAC9B;AAEA,WAAO,IAAI,IAAI,MAAM,MAAM,OAAO,MAAM,OAAO,IAAI;AAAA,EACpD;AAAA,EAEA,OAAO,OAAO,GAAQ,GAAQ;AAC7B,UAAM,OAAO,KAAK,IAAI,EAAE,MAAM,EAAE,IAAI;AACpC,UAAM,OAAO,KAAK,IAAI,EAAE,MAAM,EAAE,IAAI;AACpC,UAAM,OAAO,KAAK,IAAI,EAAE,MAAM,EAAE,IAAI;AACpC,UAAM,OAAO,KAAK,IAAI,EAAE,MAAM,EAAE,IAAI;AAEpC,WAAO,IAAI,IAAI,MAAM,MAAM,OAAO,MAAM,OAAO,IAAI;AAAA,EACpD;AAAA,EAEA,OAAO,SAAS,GAAQ,GAAW;AAClC,WAAO,IAAI,IAAI,EAAE,OAAO,GAAG,EAAE,OAAO,GAAG,EAAE,QAAQ,IAAI,GAAG,EAAE,SAAS,IAAI,CAAC;AAAA,EACzE;AAAA,EAEA,OAAO,SAAS,GAAQ,GAAQ;AAC/B,WAAO,EAAE,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE;AAAA,EAC9E;AAAA,EAEA,OAAO,SAAS,GAAQ,GAAQ;AAC/B,WAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE;AAAA,EAC5E;AAAA,EAEA,OAAO,SAAS,GAAQ,GAAQ;AAC/B,WAAO,IAAI,SAAS,GAAG,CAAC,KAAK,IAAI,SAAS,GAAG,CAAC;AAAA,EAC/C;AAAA,EAEA,OAAO,cAAc,GAAQ,GAAY,SAAS,GAAG;AACpD,WAAO,EACN,EAAE,IAAI,EAAE,OAAO,UACf,EAAE,IAAI,EAAE,OAAO,UACf,EAAE,IAAI,EAAE,OAAO,UACf,EAAE,IAAI,EAAE,OAAO;AAAA,EAEjB;AAAA,EAEA,OAAO,OAAO,OAAc;AAC3B,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI,OAAO;AAEX,aAAS,IAAI,GAAG,IAAI,MAAM,QAAQ,KAAK;AACtC,YAAM,IAAI,MAAM,CAAC;AACjB,aAAO,KAAK,IAAI,MAAM,EAAE,IAAI;AAC5B,aAAO,KAAK,IAAI,MAAM,EAAE,IAAI;AAC5B,aAAO,KAAK,IAAI,MAAM,EAAE,IAAI;AAC5B,aAAO,KAAK,IAAI,MAAM,EAAE,IAAI;AAAA,IAC7B;AAEA,WAAO,IAAI,IAAI,MAAM,MAAM,OAAO,MAAM,OAAO,IAAI;AAAA,EACpD;AAAA,EAEA,OAAO,MAAM,GAAQ,QAAQ,GAAG;AAC/B,UAAM,EAAE,QAAQ,IAAI;AACpB,QAAI,OAAO;AAAA,IAEX;AAEA,WAAO;AAAA,MACN,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,IACxB;AAAA,EACD;AAAA,EAEA,OAAO,OACN,KACA,QACA,IACA,IACA,sBAAsB,OACrB;AACD,UAAM,EAAE,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AACvD,QAAI,EAAE,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AAKrD,YAAQ,QAAQ;AAAA,MACf,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,eAAe;AACnB,eAAO;AACP;AAAA,MACD;AAAA,MACA,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,gBAAgB;AACpB,eAAO;AACP;AAAA,MACD;AAAA,IACD;AACA,YAAQ,QAAQ;AAAA,MACf,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,aAAa;AACjB,eAAO;AACP;AAAA,MACD;AAAA,MACA,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,gBAAgB;AACpB,eAAO;AACP;AAAA,MACD;AAAA,IACD;AAEA,UAAM,UAAU,MAAM,QAAQ,MAAM;AACpC,UAAM,UAAU,MAAM,QAAQ,MAAM;AAEpC,UAAM,QAAQ,SAAS;AACvB,UAAM,QAAQ,SAAS;AAOvB,QAAI,qBAAqB;AACxB,YAAM,eAAe,MAAM,QAAQ,MAAM;AACzC,YAAM,KAAK,KAAK,IAAI,MAAM,GAAG;AAC7B,YAAM,KAAK,KAAK,IAAI,MAAM,GAAG;AAC7B,YAAM,KAAK,MAAM,SAAS,IAAI,IAAI,OAAO,IAAI;AAC7C,YAAM,KAAK,MAAM,SAAS,IAAI,IAAI,MAAM;AACxC,YAAM,SAAS,cAAc,KAAK;AAElC,cAAQ,QAAQ;AAAA,QACf,KAAK,YAAY;AAChB,cAAI,OAAQ,OAAM,MAAM;AAAA,cACnB,OAAM,MAAM;AACjB;AAAA,QACD;AAAA,QACA,KAAK,aAAa;AACjB,cAAI,OAAQ,OAAM,MAAM;AAAA,cACnB,OAAM,MAAM;AACjB;AAAA,QACD;AAAA,QACA,KAAK,gBAAgB;AACpB,cAAI,OAAQ,OAAM,MAAM;AAAA,cACnB,OAAM,MAAM;AACjB;AAAA,QACD;AAAA,QACA,KAAK,eAAe;AACnB,cAAI,OAAQ,OAAM,MAAM;AAAA,cACnB,OAAM,MAAM;AACjB;AAAA,QACD;AAAA,QACA,KAAK;AAAA,QACL,KAAK,OAAO;AACX,gBAAM,KAAK,MAAM,OAAO;AACxB,gBAAM,IAAI,KAAK;AACf,gBAAM,IAAI,IAAI;AACd,gBAAM,IAAI,IAAI;AACd;AAAA,QACD;AAAA,QACA,KAAK;AAAA,QACL,KAAK,SAAS;AACb,gBAAM,KAAK,MAAM,OAAO;AACxB,gBAAM,IAAI,KAAK;AACf,gBAAM,IAAI,IAAI;AACd,gBAAM,IAAI,IAAI;AACd;AAAA,QACD;AAAA,MACD;AAAA,IACD;AAEA,QAAI,OAAO;AACV,YAAM,IAAI;AACV,YAAM;AACN,YAAM;AAAA,IACP;AAEA,QAAI,OAAO;AACV,YAAM,IAAI;AACV,YAAM;AACN,YAAM;AAAA,IACP;AAEA,UAAM,QAAQ,IAAI,IAAI,KAAK,KAAK,KAAK,IAAI,MAAM,GAAG,GAAG,KAAK,IAAI,MAAM,GAAG,CAAC;AAExE,WAAO;AAAA,MACN,KAAK;AAAA,MACL,QAAQ,EAAG,MAAM,QAAQ,IAAI,SAAU,SAAS,IAAI,IAAI,KAAK,QAAQ,CAAC;AAAA,MACtE,QAAQ,EAAG,MAAM,SAAS,IAAI,UAAW,SAAS,IAAI,IAAI,KAAK,QAAQ,CAAC;AAAA,IACzE;AAAA,EACD;AAAA,EAEA,OAAO,OAAuB;AAC7B,WAAO,IAAI,OAAO,MAAM,KAAK;AAAA,EAC9B;AAAA,EAEA,OAAO,OAAO,GAAmB,GAAmB;AACnD,WAAO,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,EAAE;AAAA,EAC/D;AAAA,EAEA,UAAU;AACT,SAAK,IAAI,KAAK,IAAI,GAAG,KAAK,CAAC;AAC3B,SAAK,IAAI,KAAK,IAAI,GAAG,KAAK,CAAC;AAC3B,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,QAAQ,OAAuB;AACrC,WAAO,IAAI,IAAI,MAAM,GAAG,MAAM,GAAG,KAAK,IAAI,GAAG,MAAM,CAAC,GAAG,KAAK,IAAI,GAAG,MAAM,CAAC,CAAC;AAAA,EAC5E;AACD;AAGO,SAAS,qBAAqB,QAAyB;AAC7D,UAAQ,QAAQ;AAAA,IACf,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR;AACC,aAAO;AAAA,EACT;AACD;AAGO,SAAS,qBAAqB,QAAyB;AAC7D,UAAQ,QAAQ;AAAA,IACf,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR;AACC,aAAO;AAAA,EACT;AACD;AAEA,MAAM,4BAA4B;AAAA,EACjC;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACD;AAGO,SAAS,sBAAsB,QAAyB,UAAmC;AAEjG,aAAW,WAAW;AACtB,QAAM,WAAW,KAAK,MAAM,YAAY,kBAAK,EAAE;AAE/C,QAAM,eAAe,0BAA0B,QAAQ,MAAM;AAC7D,SAAO,2BAA2B,eAAe,YAAY,0BAA0B,MAAM;AAC9F;AAGO,SAAS,kBAAkB,WAAiD;AAClF,SACC,cAAc,cACd,cAAc,eACd,cAAc,kBACd,cAAc;AAEhB;AAGO,MAAM,oCAAoC;AAAA,EAChD,iBAAiB;AAAA,EACjB,kBAAkB;AAAA,EAClB,qBAAqB;AAAA,EACrB,oBAAoB;AAAA,EACpB,eAAe;AAChB;",
|
|
4
|
+
"sourcesContent": ["import { BoxModel } from '@tldraw/tlschema'\nimport { Vec, VecLike } from './Vec'\nimport { approximatelyLte, PI, PI2, toPrecision } from './utils'\n\n/** @public */\nexport type BoxLike = BoxModel | Box\n\n/** @public */\nexport type SelectionEdge = 'top' | 'right' | 'bottom' | 'left'\n\n/** @public */\nexport type SelectionCorner = 'top_left' | 'top_right' | 'bottom_right' | 'bottom_left'\n\n/** @public */\nexport type SelectionHandle = SelectionEdge | SelectionCorner\n\n/** @public */\nexport type RotateCorner =\n\t| 'top_left_rotate'\n\t| 'top_right_rotate'\n\t| 'bottom_right_rotate'\n\t| 'bottom_left_rotate'\n\t| 'mobile_rotate'\n\n/** @public */\nexport class Box {\n\tconstructor(x = 0, y = 0, w = 0, h = 0) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.w = w\n\t\tthis.h = h\n\t}\n\n\tx = 0\n\ty = 0\n\tw = 0\n\th = 0\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget point() {\n\t\treturn new Vec(this.x, this.y)\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset point(val: Vec) {\n\t\tthis.x = val.x\n\t\tthis.y = val.y\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget minX() {\n\t\treturn this.x\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset minX(n: number) {\n\t\tthis.x = n\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget left() {\n\t\treturn this.x\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget midX() {\n\t\treturn this.x + this.w / 2\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget maxX() {\n\t\treturn this.x + this.w\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget right() {\n\t\treturn this.x + this.w\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget minY() {\n\t\treturn this.y\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset minY(n: number) {\n\t\tthis.y = n\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget top() {\n\t\treturn this.y\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget midY() {\n\t\treturn this.y + this.h / 2\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget maxY() {\n\t\treturn this.y + this.h\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget bottom() {\n\t\treturn this.y + this.h\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget width() {\n\t\treturn this.w\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset width(n: number) {\n\t\tthis.w = n\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget height() {\n\t\treturn this.h\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset height(n: number) {\n\t\tthis.h = n\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget aspectRatio() {\n\t\treturn this.width / this.height\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget center() {\n\t\treturn new Vec(this.x + this.w / 2, this.y + this.h / 2)\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tset center(v: Vec) {\n\t\tthis.x = v.x - this.w / 2\n\t\tthis.y = v.y - this.h / 2\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget corners() {\n\t\treturn [\n\t\t\tnew Vec(this.x, this.y),\n\t\t\tnew Vec(this.x + this.w, this.y),\n\t\t\tnew Vec(this.x + this.w, this.y + this.h),\n\t\t\tnew Vec(this.x, this.y + this.h),\n\t\t]\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget cornersAndCenter() {\n\t\treturn [\n\t\t\tnew Vec(this.x, this.y),\n\t\t\tnew Vec(this.x + this.w, this.y),\n\t\t\tnew Vec(this.x + this.w, this.y + this.h),\n\t\t\tnew Vec(this.x, this.y + this.h),\n\t\t\tnew Vec(this.x + this.w / 2, this.y + this.h / 2),\n\t\t]\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget sides(): Array<[Vec, Vec]> {\n\t\tconst { corners } = this\n\t\treturn [\n\t\t\t[corners[0], corners[1]],\n\t\t\t[corners[1], corners[2]],\n\t\t\t[corners[2], corners[3]],\n\t\t\t[corners[3], corners[0]],\n\t\t]\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget size(): Vec {\n\t\treturn new Vec(this.w, this.h)\n\t}\n\n\ttoFixed() {\n\t\tthis.x = toPrecision(this.x)\n\t\tthis.y = toPrecision(this.y)\n\t\tthis.w = toPrecision(this.w)\n\t\tthis.h = toPrecision(this.h)\n\t\treturn this\n\t}\n\n\tsetTo(B: Box) {\n\t\tthis.x = B.x\n\t\tthis.y = B.y\n\t\tthis.w = B.w\n\t\tthis.h = B.h\n\t\treturn this\n\t}\n\n\tset(x = 0, y = 0, w = 0, h = 0) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.w = w\n\t\tthis.h = h\n\t\treturn this\n\t}\n\n\texpand(A: Box) {\n\t\tconst minX = Math.min(this.x, A.x)\n\t\tconst minY = Math.min(this.y, A.y)\n\t\tconst maxX = Math.max(this.x + this.w, A.x + A.w)\n\t\tconst maxY = Math.max(this.y + this.h, A.y + A.h)\n\n\t\tthis.x = minX\n\t\tthis.y = minY\n\t\tthis.w = maxX - minX\n\t\tthis.h = maxY - minY\n\t\treturn this\n\t}\n\n\texpandBy(n: number) {\n\t\tthis.x -= n\n\t\tthis.y -= n\n\t\tthis.w += n * 2\n\t\tthis.h += n * 2\n\t\treturn this\n\t}\n\n\tscale(n: number) {\n\t\tthis.x /= n\n\t\tthis.y /= n\n\t\tthis.w /= n\n\t\tthis.h /= n\n\t\treturn this\n\t}\n\n\tclone() {\n\t\tconst { x, y, w, h } = this\n\t\treturn new Box(x, y, w, h)\n\t}\n\n\ttranslate(delta: VecLike) {\n\t\tthis.x += delta.x\n\t\tthis.y += delta.y\n\t\treturn this\n\t}\n\n\tsnapToGrid(size: number) {\n\t\tconst minX = Math.round(this.x / size) * size\n\t\tconst minY = Math.round(this.y / size) * size\n\t\tconst maxX = Math.round((this.x + this.w) / size) * size\n\t\tconst maxY = Math.round((this.y + this.h) / size) * size\n\t\tthis.minX = minX\n\t\tthis.minY = minY\n\t\tthis.width = Math.max(1, maxX - minX)\n\t\tthis.height = Math.max(1, maxY - minY)\n\t}\n\n\tcollides(B: Box) {\n\t\treturn Box.Collides(this, B)\n\t}\n\n\tcontains(B: Box) {\n\t\treturn Box.Contains(this, B)\n\t}\n\n\tincludes(B: Box) {\n\t\treturn Box.Includes(this, B)\n\t}\n\n\tcontainsPoint(V: VecLike, margin = 0) {\n\t\treturn Box.ContainsPoint(this, V, margin)\n\t}\n\n\tgetHandlePoint(handle: SelectionCorner | SelectionEdge) {\n\t\tswitch (handle) {\n\t\t\tcase 'top_left':\n\t\t\t\treturn new Vec(this.x, this.y)\n\t\t\tcase 'top_right':\n\t\t\t\treturn new Vec(this.x + this.w, this.y)\n\t\t\tcase 'bottom_left':\n\t\t\t\treturn new Vec(this.x, this.y + this.h)\n\t\t\tcase 'bottom_right':\n\t\t\t\treturn new Vec(this.x + this.w, this.y + this.h)\n\t\t\tcase 'top':\n\t\t\t\treturn new Vec(this.x + this.w / 2, this.y)\n\t\t\tcase 'right':\n\t\t\t\treturn new Vec(this.x + this.w, this.y + this.h / 2)\n\t\t\tcase 'bottom':\n\t\t\t\treturn new Vec(this.x + this.w / 2, this.y + this.h)\n\t\t\tcase 'left':\n\t\t\t\treturn new Vec(this.x, this.y + this.h / 2)\n\t\t}\n\t}\n\n\ttoJson(): BoxModel {\n\t\treturn { x: this.x, y: this.y, w: this.w, h: this.h }\n\t}\n\n\tresize(handle: SelectionCorner | SelectionEdge | string, dx: number, dy: number) {\n\t\tconst { minX: a0x, minY: a0y, maxX: a1x, maxY: a1y } = this\n\t\tlet { minX: b0x, minY: b0y, maxX: b1x, maxY: b1y } = this\n\n\t\t// Use the delta to adjust the new box by changing its corners.\n\t\t// The dragging handle (corner or edge) will determine which\n\t\t// corners should change.\n\t\tswitch (handle) {\n\t\t\tcase 'left':\n\t\t\tcase 'top_left':\n\t\t\tcase 'bottom_left': {\n\t\t\t\tb0x += dx\n\t\t\t\tbreak\n\t\t\t}\n\t\t\tcase 'right':\n\t\t\tcase 'top_right':\n\t\t\tcase 'bottom_right': {\n\t\t\t\tb1x += dx\n\t\t\t\tbreak\n\t\t\t}\n\t\t}\n\t\tswitch (handle) {\n\t\t\tcase 'top':\n\t\t\tcase 'top_left':\n\t\t\tcase 'top_right': {\n\t\t\t\tb0y += dy\n\t\t\t\tbreak\n\t\t\t}\n\t\t\tcase 'bottom':\n\t\t\tcase 'bottom_left':\n\t\t\tcase 'bottom_right': {\n\t\t\t\tb1y += dy\n\t\t\t\tbreak\n\t\t\t}\n\t\t}\n\n\t\tconst scaleX = (b1x - b0x) / (a1x - a0x)\n\t\tconst scaleY = (b1y - b0y) / (a1y - a0y)\n\n\t\tconst flipX = scaleX < 0\n\t\tconst flipY = scaleY < 0\n\n\t\tif (flipX) {\n\t\t\tconst t = b1x\n\t\t\tb1x = b0x\n\t\t\tb0x = t\n\t\t}\n\n\t\tif (flipY) {\n\t\t\tconst t = b1y\n\t\t\tb1y = b0y\n\t\t\tb0y = t\n\t\t}\n\n\t\tthis.minX = b0x\n\t\tthis.minY = b0y\n\t\tthis.width = Math.abs(b1x - b0x)\n\t\tthis.height = Math.abs(b1y - b0y)\n\t}\n\n\tunion(box: BoxModel) {\n\t\tconst minX = Math.min(this.x, box.x)\n\t\tconst minY = Math.min(this.y, box.y)\n\t\tconst maxX = Math.max(this.x + this.w, box.x + box.w)\n\t\tconst maxY = Math.max(this.y + this.h, box.y + box.h)\n\n\t\tthis.x = minX\n\t\tthis.y = minY\n\t\tthis.width = maxX - minX\n\t\tthis.height = maxY - minY\n\n\t\treturn this\n\t}\n\n\tstatic From(box: BoxModel) {\n\t\treturn new Box(box.x, box.y, box.w, box.h)\n\t}\n\n\tstatic FromCenter(center: VecLike, size: VecLike) {\n\t\treturn new Box(center.x - size.x / 2, center.y - size.y / 2, size.x, size.y)\n\t}\n\n\tstatic FromPoints(points: VecLike[]) {\n\t\tif (points.length === 0) return new Box()\n\t\tlet minX = Infinity\n\t\tlet minY = Infinity\n\t\tlet maxX = -Infinity\n\t\tlet maxY = -Infinity\n\t\tlet point: VecLike\n\t\tfor (let i = 0, n = points.length; i < n; i++) {\n\t\t\tpoint = points[i]\n\t\t\tminX = Math.min(point.x, minX)\n\t\t\tminY = Math.min(point.y, minY)\n\t\t\tmaxX = Math.max(point.x, maxX)\n\t\t\tmaxY = Math.max(point.y, maxY)\n\t\t}\n\n\t\treturn new Box(minX, minY, maxX - minX, maxY - minY)\n\t}\n\n\tstatic Expand(A: Box, B: Box) {\n\t\tconst minX = Math.min(B.minX, A.minX)\n\t\tconst minY = Math.min(B.minY, A.minY)\n\t\tconst maxX = Math.max(B.maxX, A.maxX)\n\t\tconst maxY = Math.max(B.maxY, A.maxY)\n\n\t\treturn new Box(minX, minY, maxX - minX, maxY - minY)\n\t}\n\n\tstatic ExpandBy(A: Box, n: number) {\n\t\treturn new Box(A.minX - n, A.minY - n, A.width + n * 2, A.height + n * 2)\n\t}\n\n\tstatic Collides(A: Box, B: Box) {\n\t\treturn !(A.maxX < B.minX || A.minX > B.maxX || A.maxY < B.minY || A.minY > B.maxY)\n\t}\n\n\tstatic Contains(A: Box, B: Box) {\n\t\treturn A.minX < B.minX && A.minY < B.minY && A.maxY > B.maxY && A.maxX > B.maxX\n\t}\n\n\tstatic ContainsApproximately(A: Box, B: Box, precision?: number) {\n\t\treturn (\n\t\t\tapproximatelyLte(A.minX, B.minX, precision) &&\n\t\t\tapproximatelyLte(A.minY, B.minY, precision) &&\n\t\t\tapproximatelyLte(B.maxX, A.maxX, precision) &&\n\t\t\tapproximatelyLte(B.maxY, A.maxY, precision)\n\t\t)\n\t}\n\n\tstatic Includes(A: Box, B: Box) {\n\t\treturn Box.Collides(A, B) || Box.Contains(A, B)\n\t}\n\n\tstatic ContainsPoint(A: Box, B: VecLike, margin = 0) {\n\t\treturn !(\n\t\t\tB.x < A.minX - margin ||\n\t\t\tB.y < A.minY - margin ||\n\t\t\tB.x > A.maxX + margin ||\n\t\t\tB.y > A.maxY + margin\n\t\t)\n\t}\n\n\tstatic Common(boxes: Box[]) {\n\t\tlet minX = Infinity\n\t\tlet minY = Infinity\n\t\tlet maxX = -Infinity\n\t\tlet maxY = -Infinity\n\n\t\tfor (let i = 0; i < boxes.length; i++) {\n\t\t\tconst B = boxes[i]\n\t\t\tminX = Math.min(minX, B.minX)\n\t\t\tminY = Math.min(minY, B.minY)\n\t\t\tmaxX = Math.max(maxX, B.maxX)\n\t\t\tmaxY = Math.max(maxY, B.maxY)\n\t\t}\n\n\t\treturn new Box(minX, minY, maxX - minX, maxY - minY)\n\t}\n\n\tstatic Sides(A: Box, inset = 0) {\n\t\tconst { corners } = A\n\t\tif (inset) {\n\t\t\t// TODO: Inset the corners by the inset amount.\n\t\t}\n\n\t\treturn [\n\t\t\t[corners[0], corners[1]],\n\t\t\t[corners[1], corners[2]],\n\t\t\t[corners[2], corners[3]],\n\t\t\t[corners[3], corners[0]],\n\t\t]\n\t}\n\n\tstatic Resize(\n\t\tbox: Box,\n\t\thandle: SelectionCorner | SelectionEdge | string,\n\t\tdx: number,\n\t\tdy: number,\n\t\tisAspectRatioLocked = false\n\t) {\n\t\tconst { minX: a0x, minY: a0y, maxX: a1x, maxY: a1y } = box\n\t\tlet { minX: b0x, minY: b0y, maxX: b1x, maxY: b1y } = box\n\n\t\t// Use the delta to adjust the new box by changing its corners.\n\t\t// The dragging handle (corner or edge) will determine which\n\t\t// corners should change.\n\t\tswitch (handle) {\n\t\t\tcase 'left':\n\t\t\tcase 'top_left':\n\t\t\tcase 'bottom_left': {\n\t\t\t\tb0x += dx\n\t\t\t\tbreak\n\t\t\t}\n\t\t\tcase 'right':\n\t\t\tcase 'top_right':\n\t\t\tcase 'bottom_right': {\n\t\t\t\tb1x += dx\n\t\t\t\tbreak\n\t\t\t}\n\t\t}\n\t\tswitch (handle) {\n\t\t\tcase 'top':\n\t\t\tcase 'top_left':\n\t\t\tcase 'top_right': {\n\t\t\t\tb0y += dy\n\t\t\t\tbreak\n\t\t\t}\n\t\t\tcase 'bottom':\n\t\t\tcase 'bottom_left':\n\t\t\tcase 'bottom_right': {\n\t\t\t\tb1y += dy\n\t\t\t\tbreak\n\t\t\t}\n\t\t}\n\n\t\tconst scaleX = (b1x - b0x) / (a1x - a0x)\n\t\tconst scaleY = (b1y - b0y) / (a1y - a0y)\n\n\t\tconst flipX = scaleX < 0\n\t\tconst flipY = scaleY < 0\n\n\t\t/*\n 2. Aspect ratio\n If the aspect ratio is locked, adjust the corners so that the\n new box's aspect ratio matches the original aspect ratio.\n */\n\t\tif (isAspectRatioLocked) {\n\t\t\tconst aspectRatio = (a1x - a0x) / (a1y - a0y)\n\t\t\tconst bw = Math.abs(b1x - b0x)\n\t\t\tconst bh = Math.abs(b1y - b0y)\n\t\t\tconst tw = bw * (scaleY < 0 ? 1 : -1) * (1 / aspectRatio)\n\t\t\tconst th = bh * (scaleX < 0 ? 1 : -1) * aspectRatio\n\t\t\tconst isTall = aspectRatio < bw / bh\n\n\t\t\tswitch (handle) {\n\t\t\t\tcase 'top_left': {\n\t\t\t\t\tif (isTall) b0y = b1y + tw\n\t\t\t\t\telse b0x = b1x + th\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'top_right': {\n\t\t\t\t\tif (isTall) b0y = b1y + tw\n\t\t\t\t\telse b1x = b0x - th\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'bottom_right': {\n\t\t\t\t\tif (isTall) b1y = b0y - tw\n\t\t\t\t\telse b1x = b0x - th\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'bottom_left': {\n\t\t\t\t\tif (isTall) b1y = b0y - tw\n\t\t\t\t\telse b0x = b1x + th\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'bottom':\n\t\t\t\tcase 'top': {\n\t\t\t\t\tconst m = (b0x + b1x) / 2\n\t\t\t\t\tconst w = bh * aspectRatio\n\t\t\t\t\tb0x = m - w / 2\n\t\t\t\t\tb1x = m + w / 2\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t\tcase 'left':\n\t\t\t\tcase 'right': {\n\t\t\t\t\tconst m = (b0y + b1y) / 2\n\t\t\t\t\tconst h = bw / aspectRatio\n\t\t\t\t\tb0y = m - h / 2\n\t\t\t\t\tb1y = m + h / 2\n\t\t\t\t\tbreak\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\tif (flipX) {\n\t\t\tconst t = b1x\n\t\t\tb1x = b0x\n\t\t\tb0x = t\n\t\t}\n\n\t\tif (flipY) {\n\t\t\tconst t = b1y\n\t\t\tb1y = b0y\n\t\t\tb0y = t\n\t\t}\n\n\t\tconst final = new Box(b0x, b0y, Math.abs(b1x - b0x), Math.abs(b1y - b0y))\n\n\t\treturn {\n\t\t\tbox: final,\n\t\t\tscaleX: +((final.width / box.width) * (scaleX > 0 ? 1 : -1)).toFixed(5),\n\t\t\tscaleY: +((final.height / box.height) * (scaleY > 0 ? 1 : -1)).toFixed(5),\n\t\t}\n\t}\n\n\tequals(other: Box | BoxModel) {\n\t\treturn Box.Equals(this, other)\n\t}\n\n\tstatic Equals(a: Box | BoxModel, b: Box | BoxModel) {\n\t\treturn b.x === a.x && b.y === a.y && b.w === a.w && b.h === a.h\n\t}\n\n\tzeroFix() {\n\t\tthis.w = Math.max(1, this.w)\n\t\tthis.h = Math.max(1, this.h)\n\t\treturn this\n\t}\n\n\tstatic ZeroFix(other: Box | BoxModel) {\n\t\treturn new Box(other.x, other.y, Math.max(1, other.w), Math.max(1, other.h))\n\t}\n}\n\n/** @public */\nexport function flipSelectionHandleY(handle: SelectionHandle) {\n\tswitch (handle) {\n\t\tcase 'top':\n\t\t\treturn 'bottom'\n\t\tcase 'bottom':\n\t\t\treturn 'top'\n\t\tcase 'top_left':\n\t\t\treturn 'bottom_left'\n\t\tcase 'top_right':\n\t\t\treturn 'bottom_right'\n\t\tcase 'bottom_left':\n\t\t\treturn 'top_left'\n\t\tcase 'bottom_right':\n\t\t\treturn 'top_right'\n\t\tdefault:\n\t\t\treturn handle\n\t}\n}\n\n/** @public */\nexport function flipSelectionHandleX(handle: SelectionHandle) {\n\tswitch (handle) {\n\t\tcase 'left':\n\t\t\treturn 'right'\n\t\tcase 'right':\n\t\t\treturn 'left'\n\t\tcase 'top_left':\n\t\t\treturn 'top_right'\n\t\tcase 'top_right':\n\t\t\treturn 'top_left'\n\t\tcase 'bottom_left':\n\t\t\treturn 'bottom_right'\n\t\tcase 'bottom_right':\n\t\t\treturn 'bottom_left'\n\t\tdefault:\n\t\t\treturn handle\n\t}\n}\n\nconst ORDERED_SELECTION_HANDLES = [\n\t'top',\n\t'top_right',\n\t'right',\n\t'bottom_right',\n\t'bottom',\n\t'bottom_left',\n\t'left',\n\t'top_left',\n] as const\n\n/** @public */\nexport function rotateSelectionHandle(handle: SelectionHandle, rotation: number): SelectionHandle {\n\t// first find out how many tau we need to rotate by\n\trotation = rotation % PI2\n\tconst numSteps = Math.round(rotation / (PI / 4))\n\n\tconst currentIndex = ORDERED_SELECTION_HANDLES.indexOf(handle)\n\treturn ORDERED_SELECTION_HANDLES[(currentIndex + numSteps) % ORDERED_SELECTION_HANDLES.length]\n}\n\n/** @public */\nexport function isSelectionCorner(selection: string): selection is SelectionCorner {\n\treturn (\n\t\tselection === 'top_left' ||\n\t\tselection === 'top_right' ||\n\t\tselection === 'bottom_right' ||\n\t\tselection === 'bottom_left'\n\t)\n}\n\n/** @public */\nexport const ROTATE_CORNER_TO_SELECTION_CORNER = {\n\ttop_left_rotate: 'top_left',\n\ttop_right_rotate: 'top_right',\n\tbottom_right_rotate: 'bottom_right',\n\tbottom_left_rotate: 'bottom_left',\n\tmobile_rotate: 'top_left',\n} as const\n"],
|
|
5
|
+
"mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AACA,iBAA6B;AAC7B,mBAAuD;AAuBhD,MAAM,IAAI;AAAA,EAChB,YAAY,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AAAA,EACV;AAAA,EAEA,IAAI;AAAA,EACJ,IAAI;AAAA,EACJ,IAAI;AAAA,EACJ,IAAI;AAAA;AAAA,EAGJ,IAAI,QAAQ;AACX,WAAO,IAAI,eAAI,KAAK,GAAG,KAAK,CAAC;AAAA,EAC9B;AAAA;AAAA,EAGA,IAAI,MAAM,KAAU;AACnB,SAAK,IAAI,IAAI;AACb,SAAK,IAAI,IAAI;AAAA,EACd;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,KAAK,GAAW;AACnB,SAAK,IAAI;AAAA,EACV;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK,IAAI,KAAK,IAAI;AAAA,EAC1B;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK,IAAI,KAAK;AAAA,EACtB;AAAA;AAAA,EAGA,IAAI,QAAQ;AACX,WAAO,KAAK,IAAI,KAAK;AAAA,EACtB;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,KAAK,GAAW;AACnB,SAAK,IAAI;AAAA,EACV;AAAA;AAAA,EAGA,IAAI,MAAM;AACT,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK,IAAI,KAAK,IAAI;AAAA,EAC1B;AAAA;AAAA,EAGA,IAAI,OAAO;AACV,WAAO,KAAK,IAAI,KAAK;AAAA,EACtB;AAAA;AAAA,EAGA,IAAI,SAAS;AACZ,WAAO,KAAK,IAAI,KAAK;AAAA,EACtB;AAAA;AAAA,EAGA,IAAI,QAAQ;AACX,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,MAAM,GAAW;AACpB,SAAK,IAAI;AAAA,EACV;AAAA;AAAA,EAGA,IAAI,SAAS;AACZ,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,OAAO,GAAW;AACrB,SAAK,IAAI;AAAA,EACV;AAAA;AAAA,EAGA,IAAI,cAAc;AACjB,WAAO,KAAK,QAAQ,KAAK;AAAA,EAC1B;AAAA;AAAA,EAGA,IAAI,SAAS;AACZ,WAAO,IAAI,eAAI,KAAK,IAAI,KAAK,IAAI,GAAG,KAAK,IAAI,KAAK,IAAI,CAAC;AAAA,EACxD;AAAA;AAAA,EAGA,IAAI,OAAO,GAAQ;AAClB,SAAK,IAAI,EAAE,IAAI,KAAK,IAAI;AACxB,SAAK,IAAI,EAAE,IAAI,KAAK,IAAI;AAAA,EACzB;AAAA;AAAA,EAGA,IAAI,UAAU;AACb,WAAO;AAAA,MACN,IAAI,eAAI,KAAK,GAAG,KAAK,CAAC;AAAA,MACtB,IAAI,eAAI,KAAK,IAAI,KAAK,GAAG,KAAK,CAAC;AAAA,MAC/B,IAAI,eAAI,KAAK,IAAI,KAAK,GAAG,KAAK,IAAI,KAAK,CAAC;AAAA,MACxC,IAAI,eAAI,KAAK,GAAG,KAAK,IAAI,KAAK,CAAC;AAAA,IAChC;AAAA,EACD;AAAA;AAAA,EAGA,IAAI,mBAAmB;AACtB,WAAO;AAAA,MACN,IAAI,eAAI,KAAK,GAAG,KAAK,CAAC;AAAA,MACtB,IAAI,eAAI,KAAK,IAAI,KAAK,GAAG,KAAK,CAAC;AAAA,MAC/B,IAAI,eAAI,KAAK,IAAI,KAAK,GAAG,KAAK,IAAI,KAAK,CAAC;AAAA,MACxC,IAAI,eAAI,KAAK,GAAG,KAAK,IAAI,KAAK,CAAC;AAAA,MAC/B,IAAI,eAAI,KAAK,IAAI,KAAK,IAAI,GAAG,KAAK,IAAI,KAAK,IAAI,CAAC;AAAA,IACjD;AAAA,EACD;AAAA;AAAA,EAGA,IAAI,QAA2B;AAC9B,UAAM,EAAE,QAAQ,IAAI;AACpB,WAAO;AAAA,MACN,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,IACxB;AAAA,EACD;AAAA;AAAA,EAGA,IAAI,OAAY;AACf,WAAO,IAAI,eAAI,KAAK,GAAG,KAAK,CAAC;AAAA,EAC9B;AAAA,EAEA,UAAU;AACT,SAAK,QAAI,0BAAY,KAAK,CAAC;AAC3B,SAAK,QAAI,0BAAY,KAAK,CAAC;AAC3B,SAAK,QAAI,0BAAY,KAAK,CAAC;AAC3B,SAAK,QAAI,0BAAY,KAAK,CAAC;AAC3B,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAQ;AACb,SAAK,IAAI,EAAE;AACX,SAAK,IAAI,EAAE;AACX,SAAK,IAAI,EAAE;AACX,SAAK,IAAI,EAAE;AACX,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG;AAC/B,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,GAAQ;AACd,UAAM,OAAO,KAAK,IAAI,KAAK,GAAG,EAAE,CAAC;AACjC,UAAM,OAAO,KAAK,IAAI,KAAK,GAAG,EAAE,CAAC;AACjC,UAAM,OAAO,KAAK,IAAI,KAAK,IAAI,KAAK,GAAG,EAAE,IAAI,EAAE,CAAC;AAChD,UAAM,OAAO,KAAK,IAAI,KAAK,IAAI,KAAK,GAAG,EAAE,IAAI,EAAE,CAAC;AAEhD,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI,OAAO;AAChB,SAAK,IAAI,OAAO;AAChB,WAAO;AAAA,EACR;AAAA,EAEA,SAAS,GAAW;AACnB,SAAK,KAAK;AACV,SAAK,KAAK;AACV,SAAK,KAAK,IAAI;AACd,SAAK,KAAK,IAAI;AACd,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW;AAChB,SAAK,KAAK;AACV,SAAK,KAAK;AACV,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,QAAQ;AACP,UAAM,EAAE,GAAG,GAAG,GAAG,EAAE,IAAI;AACvB,WAAO,IAAI,IAAI,GAAG,GAAG,GAAG,CAAC;AAAA,EAC1B;AAAA,EAEA,UAAU,OAAgB;AACzB,SAAK,KAAK,MAAM;AAChB,SAAK,KAAK,MAAM;AAChB,WAAO;AAAA,EACR;AAAA,EAEA,WAAW,MAAc;AACxB,UAAM,OAAO,KAAK,MAAM,KAAK,IAAI,IAAI,IAAI;AACzC,UAAM,OAAO,KAAK,MAAM,KAAK,IAAI,IAAI,IAAI;AACzC,UAAM,OAAO,KAAK,OAAO,KAAK,IAAI,KAAK,KAAK,IAAI,IAAI;AACpD,UAAM,OAAO,KAAK,OAAO,KAAK,IAAI,KAAK,KAAK,IAAI,IAAI;AACpD,SAAK,OAAO;AACZ,SAAK,OAAO;AACZ,SAAK,QAAQ,KAAK,IAAI,GAAG,OAAO,IAAI;AACpC,SAAK,SAAS,KAAK,IAAI,GAAG,OAAO,IAAI;AAAA,EACtC;AAAA,EAEA,SAAS,GAAQ;AAChB,WAAO,IAAI,SAAS,MAAM,CAAC;AAAA,EAC5B;AAAA,EAEA,SAAS,GAAQ;AAChB,WAAO,IAAI,SAAS,MAAM,CAAC;AAAA,EAC5B;AAAA,EAEA,SAAS,GAAQ;AAChB,WAAO,IAAI,SAAS,MAAM,CAAC;AAAA,EAC5B;AAAA,EAEA,cAAc,GAAY,SAAS,GAAG;AACrC,WAAO,IAAI,cAAc,MAAM,GAAG,MAAM;AAAA,EACzC;AAAA,EAEA,eAAe,QAAyC;AACvD,YAAQ,QAAQ;AAAA,MACf,KAAK;AACJ,eAAO,IAAI,eAAI,KAAK,GAAG,KAAK,CAAC;AAAA,MAC9B,KAAK;AACJ,eAAO,IAAI,eAAI,KAAK,IAAI,KAAK,GAAG,KAAK,CAAC;AAAA,MACvC,KAAK;AACJ,eAAO,IAAI,eAAI,KAAK,GAAG,KAAK,IAAI,KAAK,CAAC;AAAA,MACvC,KAAK;AACJ,eAAO,IAAI,eAAI,KAAK,IAAI,KAAK,GAAG,KAAK,IAAI,KAAK,CAAC;AAAA,MAChD,KAAK;AACJ,eAAO,IAAI,eAAI,KAAK,IAAI,KAAK,IAAI,GAAG,KAAK,CAAC;AAAA,MAC3C,KAAK;AACJ,eAAO,IAAI,eAAI,KAAK,IAAI,KAAK,GAAG,KAAK,IAAI,KAAK,IAAI,CAAC;AAAA,MACpD,KAAK;AACJ,eAAO,IAAI,eAAI,KAAK,IAAI,KAAK,IAAI,GAAG,KAAK,IAAI,KAAK,CAAC;AAAA,MACpD,KAAK;AACJ,eAAO,IAAI,eAAI,KAAK,GAAG,KAAK,IAAI,KAAK,IAAI,CAAC;AAAA,IAC5C;AAAA,EACD;AAAA,EAEA,SAAmB;AAClB,WAAO,EAAE,GAAG,KAAK,GAAG,GAAG,KAAK,GAAG,GAAG,KAAK,GAAG,GAAG,KAAK,EAAE;AAAA,EACrD;AAAA,EAEA,OAAO,QAAkD,IAAY,IAAY;AAChF,UAAM,EAAE,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AACvD,QAAI,EAAE,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AAKrD,YAAQ,QAAQ;AAAA,MACf,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,eAAe;AACnB,eAAO;AACP;AAAA,MACD;AAAA,MACA,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,gBAAgB;AACpB,eAAO;AACP;AAAA,MACD;AAAA,IACD;AACA,YAAQ,QAAQ;AAAA,MACf,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,aAAa;AACjB,eAAO;AACP;AAAA,MACD;AAAA,MACA,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,gBAAgB;AACpB,eAAO;AACP;AAAA,MACD;AAAA,IACD;AAEA,UAAM,UAAU,MAAM,QAAQ,MAAM;AACpC,UAAM,UAAU,MAAM,QAAQ,MAAM;AAEpC,UAAM,QAAQ,SAAS;AACvB,UAAM,QAAQ,SAAS;AAEvB,QAAI,OAAO;AACV,YAAM,IAAI;AACV,YAAM;AACN,YAAM;AAAA,IACP;AAEA,QAAI,OAAO;AACV,YAAM,IAAI;AACV,YAAM;AACN,YAAM;AAAA,IACP;AAEA,SAAK,OAAO;AACZ,SAAK,OAAO;AACZ,SAAK,QAAQ,KAAK,IAAI,MAAM,GAAG;AAC/B,SAAK,SAAS,KAAK,IAAI,MAAM,GAAG;AAAA,EACjC;AAAA,EAEA,MAAM,KAAe;AACpB,UAAM,OAAO,KAAK,IAAI,KAAK,GAAG,IAAI,CAAC;AACnC,UAAM,OAAO,KAAK,IAAI,KAAK,GAAG,IAAI,CAAC;AACnC,UAAM,OAAO,KAAK,IAAI,KAAK,IAAI,KAAK,GAAG,IAAI,IAAI,IAAI,CAAC;AACpD,UAAM,OAAO,KAAK,IAAI,KAAK,IAAI,KAAK,GAAG,IAAI,IAAI,IAAI,CAAC;AAEpD,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,QAAQ,OAAO;AACpB,SAAK,SAAS,OAAO;AAErB,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,KAAK,KAAe;AAC1B,WAAO,IAAI,IAAI,IAAI,GAAG,IAAI,GAAG,IAAI,GAAG,IAAI,CAAC;AAAA,EAC1C;AAAA,EAEA,OAAO,WAAW,QAAiB,MAAe;AACjD,WAAO,IAAI,IAAI,OAAO,IAAI,KAAK,IAAI,GAAG,OAAO,IAAI,KAAK,IAAI,GAAG,KAAK,GAAG,KAAK,CAAC;AAAA,EAC5E;AAAA,EAEA,OAAO,WAAW,QAAmB;AACpC,QAAI,OAAO,WAAW,EAAG,QAAO,IAAI,IAAI;AACxC,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI;AACJ,aAAS,IAAI,GAAG,IAAI,OAAO,QAAQ,IAAI,GAAG,KAAK;AAC9C,cAAQ,OAAO,CAAC;AAChB,aAAO,KAAK,IAAI,MAAM,GAAG,IAAI;AAC7B,aAAO,KAAK,IAAI,MAAM,GAAG,IAAI;AAC7B,aAAO,KAAK,IAAI,MAAM,GAAG,IAAI;AAC7B,aAAO,KAAK,IAAI,MAAM,GAAG,IAAI;AAAA,IAC9B;AAEA,WAAO,IAAI,IAAI,MAAM,MAAM,OAAO,MAAM,OAAO,IAAI;AAAA,EACpD;AAAA,EAEA,OAAO,OAAO,GAAQ,GAAQ;AAC7B,UAAM,OAAO,KAAK,IAAI,EAAE,MAAM,EAAE,IAAI;AACpC,UAAM,OAAO,KAAK,IAAI,EAAE,MAAM,EAAE,IAAI;AACpC,UAAM,OAAO,KAAK,IAAI,EAAE,MAAM,EAAE,IAAI;AACpC,UAAM,OAAO,KAAK,IAAI,EAAE,MAAM,EAAE,IAAI;AAEpC,WAAO,IAAI,IAAI,MAAM,MAAM,OAAO,MAAM,OAAO,IAAI;AAAA,EACpD;AAAA,EAEA,OAAO,SAAS,GAAQ,GAAW;AAClC,WAAO,IAAI,IAAI,EAAE,OAAO,GAAG,EAAE,OAAO,GAAG,EAAE,QAAQ,IAAI,GAAG,EAAE,SAAS,IAAI,CAAC;AAAA,EACzE;AAAA,EAEA,OAAO,SAAS,GAAQ,GAAQ;AAC/B,WAAO,EAAE,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE;AAAA,EAC9E;AAAA,EAEA,OAAO,SAAS,GAAQ,GAAQ;AAC/B,WAAO,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE,QAAQ,EAAE,OAAO,EAAE;AAAA,EAC5E;AAAA,EAEA,OAAO,sBAAsB,GAAQ,GAAQ,WAAoB;AAChE,eACC,+BAAiB,EAAE,MAAM,EAAE,MAAM,SAAS,SAC1C,+BAAiB,EAAE,MAAM,EAAE,MAAM,SAAS,SAC1C,+BAAiB,EAAE,MAAM,EAAE,MAAM,SAAS,SAC1C,+BAAiB,EAAE,MAAM,EAAE,MAAM,SAAS;AAAA,EAE5C;AAAA,EAEA,OAAO,SAAS,GAAQ,GAAQ;AAC/B,WAAO,IAAI,SAAS,GAAG,CAAC,KAAK,IAAI,SAAS,GAAG,CAAC;AAAA,EAC/C;AAAA,EAEA,OAAO,cAAc,GAAQ,GAAY,SAAS,GAAG;AACpD,WAAO,EACN,EAAE,IAAI,EAAE,OAAO,UACf,EAAE,IAAI,EAAE,OAAO,UACf,EAAE,IAAI,EAAE,OAAO,UACf,EAAE,IAAI,EAAE,OAAO;AAAA,EAEjB;AAAA,EAEA,OAAO,OAAO,OAAc;AAC3B,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI,OAAO;AACX,QAAI,OAAO;AAEX,aAAS,IAAI,GAAG,IAAI,MAAM,QAAQ,KAAK;AACtC,YAAM,IAAI,MAAM,CAAC;AACjB,aAAO,KAAK,IAAI,MAAM,EAAE,IAAI;AAC5B,aAAO,KAAK,IAAI,MAAM,EAAE,IAAI;AAC5B,aAAO,KAAK,IAAI,MAAM,EAAE,IAAI;AAC5B,aAAO,KAAK,IAAI,MAAM,EAAE,IAAI;AAAA,IAC7B;AAEA,WAAO,IAAI,IAAI,MAAM,MAAM,OAAO,MAAM,OAAO,IAAI;AAAA,EACpD;AAAA,EAEA,OAAO,MAAM,GAAQ,QAAQ,GAAG;AAC/B,UAAM,EAAE,QAAQ,IAAI;AACpB,QAAI,OAAO;AAAA,IAEX;AAEA,WAAO;AAAA,MACN,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,MACvB,CAAC,QAAQ,CAAC,GAAG,QAAQ,CAAC,CAAC;AAAA,IACxB;AAAA,EACD;AAAA,EAEA,OAAO,OACN,KACA,QACA,IACA,IACA,sBAAsB,OACrB;AACD,UAAM,EAAE,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AACvD,QAAI,EAAE,MAAM,KAAK,MAAM,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AAKrD,YAAQ,QAAQ;AAAA,MACf,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,eAAe;AACnB,eAAO;AACP;AAAA,MACD;AAAA,MACA,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,gBAAgB;AACpB,eAAO;AACP;AAAA,MACD;AAAA,IACD;AACA,YAAQ,QAAQ;AAAA,MACf,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,aAAa;AACjB,eAAO;AACP;AAAA,MACD;AAAA,MACA,KAAK;AAAA,MACL,KAAK;AAAA,MACL,KAAK,gBAAgB;AACpB,eAAO;AACP;AAAA,MACD;AAAA,IACD;AAEA,UAAM,UAAU,MAAM,QAAQ,MAAM;AACpC,UAAM,UAAU,MAAM,QAAQ,MAAM;AAEpC,UAAM,QAAQ,SAAS;AACvB,UAAM,QAAQ,SAAS;AAOvB,QAAI,qBAAqB;AACxB,YAAM,eAAe,MAAM,QAAQ,MAAM;AACzC,YAAM,KAAK,KAAK,IAAI,MAAM,GAAG;AAC7B,YAAM,KAAK,KAAK,IAAI,MAAM,GAAG;AAC7B,YAAM,KAAK,MAAM,SAAS,IAAI,IAAI,OAAO,IAAI;AAC7C,YAAM,KAAK,MAAM,SAAS,IAAI,IAAI,MAAM;AACxC,YAAM,SAAS,cAAc,KAAK;AAElC,cAAQ,QAAQ;AAAA,QACf,KAAK,YAAY;AAChB,cAAI,OAAQ,OAAM,MAAM;AAAA,cACnB,OAAM,MAAM;AACjB;AAAA,QACD;AAAA,QACA,KAAK,aAAa;AACjB,cAAI,OAAQ,OAAM,MAAM;AAAA,cACnB,OAAM,MAAM;AACjB;AAAA,QACD;AAAA,QACA,KAAK,gBAAgB;AACpB,cAAI,OAAQ,OAAM,MAAM;AAAA,cACnB,OAAM,MAAM;AACjB;AAAA,QACD;AAAA,QACA,KAAK,eAAe;AACnB,cAAI,OAAQ,OAAM,MAAM;AAAA,cACnB,OAAM,MAAM;AACjB;AAAA,QACD;AAAA,QACA,KAAK;AAAA,QACL,KAAK,OAAO;AACX,gBAAM,KAAK,MAAM,OAAO;AACxB,gBAAM,IAAI,KAAK;AACf,gBAAM,IAAI,IAAI;AACd,gBAAM,IAAI,IAAI;AACd;AAAA,QACD;AAAA,QACA,KAAK;AAAA,QACL,KAAK,SAAS;AACb,gBAAM,KAAK,MAAM,OAAO;AACxB,gBAAM,IAAI,KAAK;AACf,gBAAM,IAAI,IAAI;AACd,gBAAM,IAAI,IAAI;AACd;AAAA,QACD;AAAA,MACD;AAAA,IACD;AAEA,QAAI,OAAO;AACV,YAAM,IAAI;AACV,YAAM;AACN,YAAM;AAAA,IACP;AAEA,QAAI,OAAO;AACV,YAAM,IAAI;AACV,YAAM;AACN,YAAM;AAAA,IACP;AAEA,UAAM,QAAQ,IAAI,IAAI,KAAK,KAAK,KAAK,IAAI,MAAM,GAAG,GAAG,KAAK,IAAI,MAAM,GAAG,CAAC;AAExE,WAAO;AAAA,MACN,KAAK;AAAA,MACL,QAAQ,EAAG,MAAM,QAAQ,IAAI,SAAU,SAAS,IAAI,IAAI,KAAK,QAAQ,CAAC;AAAA,MACtE,QAAQ,EAAG,MAAM,SAAS,IAAI,UAAW,SAAS,IAAI,IAAI,KAAK,QAAQ,CAAC;AAAA,IACzE;AAAA,EACD;AAAA,EAEA,OAAO,OAAuB;AAC7B,WAAO,IAAI,OAAO,MAAM,KAAK;AAAA,EAC9B;AAAA,EAEA,OAAO,OAAO,GAAmB,GAAmB;AACnD,WAAO,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,EAAE,KAAK,EAAE,MAAM,EAAE;AAAA,EAC/D;AAAA,EAEA,UAAU;AACT,SAAK,IAAI,KAAK,IAAI,GAAG,KAAK,CAAC;AAC3B,SAAK,IAAI,KAAK,IAAI,GAAG,KAAK,CAAC;AAC3B,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,QAAQ,OAAuB;AACrC,WAAO,IAAI,IAAI,MAAM,GAAG,MAAM,GAAG,KAAK,IAAI,GAAG,MAAM,CAAC,GAAG,KAAK,IAAI,GAAG,MAAM,CAAC,CAAC;AAAA,EAC5E;AACD;AAGO,SAAS,qBAAqB,QAAyB;AAC7D,UAAQ,QAAQ;AAAA,IACf,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR;AACC,aAAO;AAAA,EACT;AACD;AAGO,SAAS,qBAAqB,QAAyB;AAC7D,UAAQ,QAAQ;AAAA,IACf,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR,KAAK;AACJ,aAAO;AAAA,IACR;AACC,aAAO;AAAA,EACT;AACD;AAEA,MAAM,4BAA4B;AAAA,EACjC;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AACD;AAGO,SAAS,sBAAsB,QAAyB,UAAmC;AAEjG,aAAW,WAAW;AACtB,QAAM,WAAW,KAAK,MAAM,YAAY,kBAAK,EAAE;AAE/C,QAAM,eAAe,0BAA0B,QAAQ,MAAM;AAC7D,SAAO,2BAA2B,eAAe,YAAY,0BAA0B,MAAM;AAC9F;AAGO,SAAS,kBAAkB,WAAiD;AAClF,SACC,cAAc,cACd,cAAc,eACd,cAAc,kBACd,cAAc;AAEhB;AAGO,MAAM,oCAAoC;AAAA,EAChD,iBAAiB;AAAA,EACjB,kBAAkB;AAAA,EAClB,qBAAqB;AAAA,EACrB,oBAAoB;AAAA,EACpB,eAAe;AAChB;",
|
|
6
6
|
"names": []
|
|
7
7
|
}
|
|
@@ -208,10 +208,6 @@ class Vec {
|
|
|
208
208
|
equalsXY(x, y) {
|
|
209
209
|
return Vec.EqualsXY(this, x, y);
|
|
210
210
|
}
|
|
211
|
-
/** @deprecated use `uni` instead */
|
|
212
|
-
norm() {
|
|
213
|
-
return this.uni();
|
|
214
|
-
}
|
|
215
211
|
toFixed() {
|
|
216
212
|
this.x = (0, import_utils.toFixed)(this.x);
|
|
217
213
|
this.y = (0, import_utils.toFixed)(this.y);
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
{
|
|
2
2
|
"version": 3,
|
|
3
3
|
"sources": ["../../../src/lib/primitives/Vec.ts"],
|
|
4
|
-
"sourcesContent": ["import { VecModel } from '@tldraw/tlschema'\nimport { EASINGS } from './easings'\nimport { clamp, toFixed } from './utils'\n\n/** @public */\nexport type VecLike = Vec | VecModel\n\n/** @public */\nexport class Vec {\n\tconstructor(\n\t\tpublic x = 0,\n\t\tpublic y = 0,\n\t\tpublic z = 1\n\t) {}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget pressure() {\n\t\treturn this.z\n\t}\n\n\tset(x = this.x, y = this.y, z = this.z) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\tsetTo({ x = 0, y = 0, z = 1 }: VecLike) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\trot(r: number) {\n\t\tif (r === 0) return this\n\t\tconst { x, y } = this\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = x * c - y * s\n\t\tthis.y = x * s + y * c\n\t\treturn this\n\t}\n\n\trotWith(C: VecLike, r: number) {\n\t\tif (r === 0) return this\n\t\tconst x = this.x - C.x\n\t\tconst y = this.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = C.x + (x * c - y * s)\n\t\tthis.y = C.y + (x * s + y * c)\n\t\treturn this\n\t}\n\n\tclone(): Vec {\n\t\tconst { x, y, z } = this\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tsub(V: VecLike) {\n\t\tthis.x -= V.x\n\t\tthis.y -= V.y\n\t\treturn this\n\t}\n\n\tsubXY(x: number, y: number) {\n\t\tthis.x -= x\n\t\tthis.y -= y\n\t\treturn this\n\t}\n\n\tsubScalar(n: number) {\n\t\tthis.x -= n\n\t\tthis.y -= n\n\t\t// this.z -= n\n\n\t\treturn this\n\t}\n\n\tadd(V: VecLike) {\n\t\tthis.x += V.x\n\t\tthis.y += V.y\n\t\treturn this\n\t}\n\n\taddXY(x: number, y: number) {\n\t\tthis.x += x\n\t\tthis.y += y\n\t\treturn this\n\t}\n\n\taddScalar(n: number) {\n\t\tthis.x += n\n\t\tthis.y += n\n\t\t// this.z += n\n\n\t\treturn this\n\t}\n\n\tclamp(min: number, max?: number) {\n\t\tthis.x = Math.max(this.x, min)\n\t\tthis.y = Math.max(this.y, min)\n\t\tif (max !== undefined) {\n\t\t\tthis.x = Math.min(this.x, max)\n\t\t\tthis.y = Math.min(this.y, max)\n\t\t}\n\t\treturn this\n\t}\n\n\tdiv(t: number) {\n\t\tthis.x /= t\n\t\tthis.y /= t\n\t\t// this.z /= t\n\t\treturn this\n\t}\n\n\tdivV(V: VecLike) {\n\t\tthis.x /= V.x\n\t\tthis.y /= V.y\n\t\t// this.z /= V.z\n\t\treturn this\n\t}\n\n\tmul(t: number) {\n\t\tthis.x *= t\n\t\tthis.y *= t\n\t\t// this.z *= t\n\t\treturn this\n\t}\n\n\tmulV(V: VecLike) {\n\t\tthis.x *= V.x\n\t\tthis.y *= V.y\n\t\t// this.z *= V.z\n\t\treturn this\n\t}\n\n\tabs() {\n\t\tthis.x = Math.abs(this.x)\n\t\tthis.y = Math.abs(this.y)\n\t\treturn this\n\t}\n\n\tnudge(B: VecLike, distance: number) {\n\t\tconst tan = Vec.Tan(B, this)\n\t\treturn this.add(tan.mul(distance))\n\t}\n\n\tneg() {\n\t\tthis.x *= -1\n\t\tthis.y *= -1\n\t\t// this.z *= -1\n\t\treturn this\n\t}\n\n\tcross(V: VecLike) {\n\t\tthis.x = this.y * V.z! - this.z * V.y\n\t\tthis.y = this.z * V.x - this.x * V.z!\n\t\t// this.z = this.x * V.y - this.y * V.x\n\t\treturn this\n\t}\n\n\tdpr(V: VecLike): number {\n\t\treturn Vec.Dpr(this, V)\n\t}\n\n\tcpr(V: VecLike) {\n\t\treturn Vec.Cpr(this, V)\n\t}\n\n\tlen2(): number {\n\t\treturn Vec.Len2(this)\n\t}\n\n\tlen(): number {\n\t\treturn Vec.Len(this)\n\t}\n\n\tpry(V: VecLike): number {\n\t\treturn Vec.Pry(this, V)\n\t}\n\n\tper() {\n\t\tconst { x, y } = this\n\t\tthis.x = y\n\t\tthis.y = -x\n\t\treturn this\n\t}\n\n\tuni() {\n\t\tconst l = this.len()\n\t\tif (l === 0) return this\n\t\tthis.x /= l\n\t\tthis.y /= l\n\t\treturn this\n\t}\n\n\ttan(V: VecLike): Vec {\n\t\treturn this.sub(V).uni()\n\t}\n\n\tdist(V: VecLike): number {\n\t\treturn Vec.Dist(this, V)\n\t}\n\n\tdistanceToLineSegment(A: VecLike, B: VecLike): number {\n\t\treturn Vec.DistanceToLineSegment(A, B, this)\n\t}\n\n\tslope(B: VecLike): number {\n\t\treturn Vec.Slope(this, B)\n\t}\n\n\tsnapToGrid(gridSize: number) {\n\t\tthis.x = Math.round(this.x / gridSize) * gridSize\n\t\tthis.y = Math.round(this.y / gridSize) * gridSize\n\t\treturn this\n\t}\n\n\tangle(B: VecLike): number {\n\t\treturn Vec.Angle(this, B)\n\t}\n\n\ttoAngle() {\n\t\treturn Vec.ToAngle(this)\n\t}\n\n\tlrp(B: VecLike, t: number): Vec {\n\t\tthis.x = this.x + (B.x - this.x) * t\n\t\tthis.y = this.y + (B.y - this.y) * t\n\t\treturn this\n\t}\n\n\tequals(B: VecLike) {\n\t\treturn Vec.Equals(this, B)\n\t}\n\n\tequalsXY(x: number, y: number) {\n\t\treturn Vec.EqualsXY(this, x, y)\n\t}\n\n\t/** @deprecated use `uni` instead */\n\tnorm() {\n\t\treturn this.uni()\n\t}\n\n\ttoFixed() {\n\t\tthis.x = toFixed(this.x)\n\t\tthis.y = toFixed(this.y)\n\t\treturn this\n\t}\n\n\ttoString() {\n\t\treturn Vec.ToString(Vec.ToFixed(this))\n\t}\n\n\ttoJson(): VecModel {\n\t\treturn Vec.ToJson(this)\n\t}\n\n\ttoArray(): number[] {\n\t\treturn Vec.ToArray(this)\n\t}\n\n\tstatic Add(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x + B.x, A.y + B.y)\n\t}\n\n\tstatic AddXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x + x, A.y + y)\n\t}\n\n\tstatic Sub(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x - B.x, A.y - B.y)\n\t}\n\n\tstatic SubXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x - x, A.y - y)\n\t}\n\n\tstatic AddScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x + n, A.y + n)\n\t}\n\n\tstatic SubScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x - n, A.y - n)\n\t}\n\n\tstatic Div(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x / t, A.y / t)\n\t}\n\n\tstatic Mul(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x * t, A.y * t)\n\t}\n\n\tstatic DivV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x / B.x, A.y / B.y)\n\t}\n\n\tstatic MulV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x * B.x, A.y * B.y)\n\t}\n\n\tstatic Neg(A: VecLike): Vec {\n\t\treturn new Vec(-A.x, -A.y)\n\t}\n\n\t/**\n\t * Get the perpendicular vector to A.\n\t */\n\tstatic Per(A: VecLike): Vec {\n\t\treturn new Vec(A.y, -A.x)\n\t}\n\n\tstatic Abs(A: VecLike): Vec {\n\t\treturn new Vec(Math.abs(A.x), Math.abs(A.y))\n\t}\n\n\t// Get the distance between two points.\n\tstatic Dist(A: VecLike, B: VecLike): number {\n\t\treturn ((A.y - B.y) ** 2 + (A.x - B.x) ** 2) ** 0.5\n\t}\n\n\t// Get the Manhattan distance between two points.\n\tstatic ManhattanDist(A: VecLike, B: VecLike): number {\n\t\treturn Math.abs(A.x - B.x) + Math.abs(A.y - B.y)\n\t}\n\n\t// Get whether a distance between two points is less than a number. This is faster to calulate than using `Vec.Dist(a, b) < n`.\n\tstatic DistMin(A: VecLike, B: VecLike, n: number): boolean {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y) < n ** 2\n\t}\n\n\t// Get the squared distance between two points. This is faster to calculate (no square root) so useful for \"minimum distance\" checks where the actual measurement does not matter.\n\tstatic Dist2(A: VecLike, B: VecLike): number {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y)\n\t}\n\n\t/**\n\t * Dot product of two vectors which is used to calculate the angle between them.\n\t */\n\tstatic Dpr(A: VecLike, B: VecLike): number {\n\t\treturn A.x * B.x + A.y * B.y\n\t}\n\n\tstatic Cross(A: VecLike, V: VecLike) {\n\t\treturn new Vec(\n\t\t\tA.y * V.z! - A.z! * V.y,\n\t\t\tA.z! * V.x - A.x * V.z!\n\t\t\t// A.z = A.x * V.y - A.y * V.x\n\t\t)\n\t}\n\n\t/**\n\t * Cross product of two vectors which is used to calculate the area of a parallelogram.\n\t */\n\tstatic Cpr(A: VecLike, B: VecLike) {\n\t\treturn A.x * B.y - B.x * A.y\n\t}\n\n\tstatic Len2(A: VecLike): number {\n\t\treturn A.x * A.x + A.y * A.y\n\t}\n\n\tstatic Len(A: VecLike): number {\n\t\treturn (A.x * A.x + A.y * A.y) ** 0.5\n\t}\n\n\t/**\n\t * Get the projection of A onto B.\n\t */\n\tstatic Pry(A: VecLike, B: VecLike): number {\n\t\treturn Vec.Dpr(A, B) / Vec.Len(B)\n\t}\n\n\t/**\n\t * Get the unit vector of A.\n\t */\n\tstatic Uni(A: VecLike) {\n\t\tconst l = Vec.Len(A)\n\t\treturn new Vec(l === 0 ? 0 : A.x / l, l === 0 ? 0 : A.y / l)\n\t}\n\n\tstatic Tan(A: VecLike, B: VecLike): Vec {\n\t\treturn Vec.Uni(Vec.Sub(A, B))\n\t}\n\n\tstatic Min(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.min(A.x, B.x), Math.min(A.y, B.y))\n\t}\n\n\tstatic Max(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.max(A.x, B.x), Math.max(A.y, B.y))\n\t}\n\n\tstatic From({ x, y, z = 1 }: VecModel) {\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tstatic FromArray(v: number[]): Vec {\n\t\treturn new Vec(v[0], v[1])\n\t}\n\n\tstatic Rot(A: VecLike, r = 0): Vec {\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(A.x * c - A.y * s, A.x * s + A.y * c)\n\t}\n\n\tstatic RotWith(A: VecLike, C: VecLike, r: number): Vec {\n\t\tconst x = A.x - C.x\n\t\tconst y = A.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(C.x + (x * c - y * s), C.y + (x * s + y * c))\n\t}\n\n\t/**\n\t * Get the nearest point on a line with a known unit vector that passes through point A\n\t *\n\t * ```ts\n\t * Vec.nearestPointOnLineThroughPoint(A, u, Point)\n\t * ```\n\t *\n\t * @param A - Any point on the line\n\t * @param u - The unit vector for the line.\n\t * @param P - A point not on the line to test.\n\t */\n\tstatic NearestPointOnLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): Vec {\n\t\treturn Vec.Mul(u, Vec.Sub(P, A).pry(u)).add(A)\n\t}\n\n\tstatic NearestPointOnLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): Vec {\n\t\tif (Vec.Equals(A, P)) return Vec.From(P)\n\t\tif (Vec.Equals(B, P)) return Vec.From(P)\n\n\t\tconst u = Vec.Tan(B, A)\n\t\tconst C = Vec.Add(A, Vec.Mul(u, Vec.Sub(P, A).pry(u)))\n\n\t\tif (clamp) {\n\t\t\tif (C.x < Math.min(A.x, B.x)) return Vec.Cast(A.x < B.x ? A : B)\n\t\t\tif (C.x > Math.max(A.x, B.x)) return Vec.Cast(A.x > B.x ? A : B)\n\t\t\tif (C.y < Math.min(A.y, B.y)) return Vec.Cast(A.y < B.y ? A : B)\n\t\t\tif (C.y > Math.max(A.y, B.y)) return Vec.Cast(A.y > B.y ? A : B)\n\t\t}\n\n\t\treturn C\n\t}\n\n\tstatic DistanceToLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineThroughPoint(A, u, P))\n\t}\n\n\tstatic DistanceToLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineSegment(A, B, P, clamp))\n\t}\n\n\tstatic Snap(A: VecLike, step = 1) {\n\t\treturn new Vec(Math.round(A.x / step) * step, Math.round(A.y / step) * step)\n\t}\n\n\tstatic Cast(A: VecLike): Vec {\n\t\tif (A instanceof Vec) return A\n\t\treturn Vec.From(A)\n\t}\n\n\tstatic Slope(A: VecLike, B: VecLike): number {\n\t\tif (A.x === B.y) return NaN\n\t\treturn (A.y - B.y) / (A.x - B.x)\n\t}\n\n\tstatic IsNaN(A: VecLike): boolean {\n\t\treturn isNaN(A.x) || isNaN(A.y)\n\t}\n\n\t/**\n\t * Get the angle from position A to position B.\n\t */\n\tstatic Angle(A: VecLike, B: VecLike): number {\n\t\treturn Math.atan2(B.y - A.y, B.x - A.x)\n\t}\n\n\t/**\n\t * Get the angle between vector A and vector B. This will return the smallest angle between the\n\t * two vectors, between -\u03C0 and \u03C0. The sign indicates direction of angle.\n\t */\n\tstatic AngleBetween(A: VecLike, B: VecLike): number {\n\t\tconst p = A.x * B.x + A.y * B.y\n\t\tconst n = Math.sqrt(\n\t\t\t(Math.pow(A.x, 2) + Math.pow(A.y, 2)) * (Math.pow(B.x, 2) + Math.pow(B.y, 2))\n\t\t)\n\t\tconst sign = A.x * B.y - A.y * B.x < 0 ? -1 : 1\n\t\tconst angle = sign * Math.acos(clamp(p / n, -1, 1))\n\n\t\treturn angle\n\t}\n\n\t/**\n\t * Linearly interpolate between two points.\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param t - The interpolation value between 0 and 1.\n\t * @returns The interpolated point.\n\t */\n\tstatic Lrp(A: VecLike, B: VecLike, t: number): Vec {\n\t\treturn Vec.Sub(B, A).mul(t).add(A)\n\t}\n\n\tstatic Med(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec((A.x + B.x) / 2, (A.y + B.y) / 2)\n\t}\n\n\tstatic Equals(A: VecLike, B: VecLike): boolean {\n\t\treturn Math.abs(A.x - B.x) < 0.0001 && Math.abs(A.y - B.y) < 0.0001\n\t}\n\n\tstatic EqualsXY(A: VecLike, x: number, y: number): boolean {\n\t\treturn A.x === x && A.y === y\n\t}\n\n\tstatic Clockwise(A: VecLike, B: VecLike, C: VecLike): boolean {\n\t\treturn (C.x - A.x) * (B.y - A.y) - (B.x - A.x) * (C.y - A.y) < 0\n\t}\n\n\tstatic Rescale(A: VecLike, n: number) {\n\t\tconst l = Vec.Len(A)\n\t\treturn new Vec((n * A.x) / l, (n * A.y) / l)\n\t}\n\n\tstatic ScaleWithOrigin(A: VecLike, scale: number, origin: VecLike) {\n\t\treturn Vec.Sub(A, origin).mul(scale).add(origin)\n\t}\n\n\tstatic ToFixed(A: VecLike) {\n\t\treturn new Vec(toFixed(A.x), toFixed(A.y))\n\t}\n\n\tstatic ToInt(A: VecLike) {\n\t\treturn new Vec(\n\t\t\tparseInt(A.x.toFixed(0)),\n\t\t\tparseInt(A.y.toFixed(0)),\n\t\t\tparseInt((A.z ?? 0).toFixed(0))\n\t\t)\n\t}\n\n\tstatic ToCss(A: VecLike) {\n\t\treturn `${A.x},${A.y}`\n\t}\n\n\tstatic Nudge(A: VecLike, B: VecLike, distance: number) {\n\t\treturn Vec.Add(A, Vec.Tan(B, A).mul(distance))\n\t}\n\n\tstatic ToString(A: VecLike) {\n\t\treturn `${A.x}, ${A.y}`\n\t}\n\n\tstatic ToAngle(A: VecLike) {\n\t\tlet r = Math.atan2(A.y, A.x)\n\t\tif (r < 0) r += Math.PI * 2\n\n\t\treturn r\n\t}\n\n\tstatic FromAngle(r: number, length = 1) {\n\t\treturn new Vec(Math.cos(r) * length, Math.sin(r) * length)\n\t}\n\n\tstatic ToArray(A: VecLike) {\n\t\treturn [A.x, A.y, A.z!]\n\t}\n\n\tstatic ToJson(A: VecLike) {\n\t\tconst { x, y, z } = A\n\t\treturn { x, y, z }\n\t}\n\n\tstatic Average(arr: VecLike[]) {\n\t\tconst len = arr.length\n\t\tconst avg = new Vec(0, 0)\n\t\tif (len === 0) {\n\t\t\treturn avg\n\t\t}\n\t\tfor (let i = 0; i < len; i++) {\n\t\t\tavg.add(arr[i])\n\t\t}\n\t\treturn avg.div(len)\n\t}\n\n\tstatic Clamp(A: Vec, min: number, max?: number) {\n\t\tif (max === undefined) {\n\t\t\treturn new Vec(Math.min(Math.max(A.x, min)), Math.min(Math.max(A.y, min)))\n\t\t}\n\n\t\treturn new Vec(Math.min(Math.max(A.x, min), max), Math.min(Math.max(A.y, min), max))\n\t}\n\n\t/**\n\t * Get an array of points (with simulated pressure) between two points.\n\t *\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param steps - The number of points to return.\n\t */\n\tstatic PointsBetween(A: VecModel, B: VecModel, steps = 6): Vec[] {\n\t\tconst results: Vec[] = []\n\n\t\tfor (let i = 0; i < steps; i++) {\n\t\t\tconst t = EASINGS.easeInQuad(i / (steps - 1))\n\t\t\tconst point = Vec.Lrp(A, B, t)\n\t\t\tpoint.z = Math.min(1, 0.5 + Math.abs(0.5 - ease(t)) * 0.65)\n\t\t\tresults.push(point)\n\t\t}\n\n\t\treturn results\n\t}\n\n\tstatic SnapToGrid(A: VecLike, gridSize = 8) {\n\t\treturn new Vec(Math.round(A.x / gridSize) * gridSize, Math.round(A.y / gridSize) * gridSize)\n\t}\n}\n\nconst ease = (t: number) => (t < 0.5 ? 2 * t * t : -1 + (4 - 2 * t) * t)\n"],
|
|
5
|
-
"mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AACA,qBAAwB;AACxB,mBAA+B;AAMxB,MAAM,IAAI;AAAA,EAChB,YACQ,IAAI,GACJ,IAAI,GACJ,IAAI,GACV;AAHM;AACA;AACA;AAAA,EACL;AAAA;AAAA,EAGH,IAAI,WAAW;AACd,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,IAAI,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,EAAE,GAAY;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,WAAO;AAAA,EACR;AAAA,EAEA,QAAQ,GAAY,GAAW;AAC9B,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,WAAO;AAAA,EACR;AAAA,EAEA,QAAa;AACZ,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,KAAa,KAAc;AAChC,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,QAAI,QAAQ,QAAW;AACtB,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAAA,IAC9B;AACA,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY,UAAkB;AACnC,UAAM,MAAM,IAAI,IAAI,GAAG,IAAI;AAC3B,WAAO,KAAK,IAAI,IAAI,IAAI,QAAQ,CAAC;AAAA,EAClC;AAAA,EAEA,MAAM;AACL,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY;AACjB,SAAK,IAAI,KAAK,IAAI,EAAE,IAAK,KAAK,IAAI,EAAE;AACpC,SAAK,IAAI,KAAK,IAAI,EAAE,IAAI,KAAK,IAAI,EAAE;AAEnC,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,OAAe;AACd,WAAO,IAAI,KAAK,IAAI;AAAA,EACrB;AAAA,EAEA,MAAc;AACb,WAAO,IAAI,IAAI,IAAI;AAAA,EACpB;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,MAAM;AACL,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,SAAK,IAAI;AACT,SAAK,IAAI,CAAC;AACV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,UAAM,IAAI,KAAK,IAAI;AACnB,QAAI,MAAM,EAAG,QAAO;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAiB;AACpB,WAAO,KAAK,IAAI,CAAC,EAAE,IAAI;AAAA,EACxB;AAAA,EAEA,KAAK,GAAoB;AACxB,WAAO,IAAI,KAAK,MAAM,CAAC;AAAA,EACxB;AAAA,EAEA,sBAAsB,GAAY,GAAoB;AACrD,WAAO,IAAI,sBAAsB,GAAG,GAAG,IAAI;AAAA,EAC5C;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,WAAW,UAAkB;AAC5B,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,UAAU;AACT,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,IAAI,GAAY,GAAgB;AAC/B,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,GAAY;AAClB,WAAO,IAAI,OAAO,MAAM,CAAC;AAAA,EAC1B;AAAA,EAEA,SAAS,GAAW,GAAW;AAC9B,WAAO,IAAI,SAAS,MAAM,GAAG,CAAC;AAAA,EAC/B;AAAA;AAAA,EAGA,OAAO;AACN,WAAO,KAAK,IAAI;AAAA,EACjB;AAAA,EAEA,UAAU;AACT,SAAK,QAAI,sBAAQ,KAAK,CAAC;AACvB,SAAK,QAAI,sBAAQ,KAAK,CAAC;AACvB,WAAO;AAAA,EACR;AAAA,EAEA,WAAW;AACV,WAAO,IAAI,SAAS,IAAI,QAAQ,IAAI,CAAC;AAAA,EACtC;AAAA,EAEA,SAAmB;AAClB,WAAO,IAAI,OAAO,IAAI;AAAA,EACvB;AAAA,EAEA,UAAoB;AACnB,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EAC1B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EACzB;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,CAAC,CAAC;AAAA,EAC5C;AAAA;AAAA,EAGA,OAAO,KAAK,GAAY,GAAoB;AAC3C,aAAS,EAAE,IAAI,EAAE,MAAM,KAAK,EAAE,IAAI,EAAE,MAAM,MAAM;AAAA,EACjD;AAAA;AAAA,EAGA,OAAO,cAAc,GAAY,GAAoB;AACpD,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC;AAAA,EAChD;AAAA;AAAA,EAGA,OAAO,QAAQ,GAAY,GAAY,GAAoB;AAC1D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK,KAAK;AAAA,EACrE;AAAA;AAAA,EAGA,OAAO,MAAM,GAAY,GAAoB;AAC5C,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC3D;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY;AACpC,WAAO,IAAI;AAAA,MACV,EAAE,IAAI,EAAE,IAAK,EAAE,IAAK,EAAE;AAAA,MACtB,EAAE,IAAK,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA;AAAA,IAEtB;AAAA,EACD;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAY;AAClC,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,KAAK,GAAoB;AAC/B,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,IAAI,GAAoB;AAC9B,YAAQ,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAAA,EACnC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,IAAI,IAAI,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC;AAAA,EACjC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY;AACtB,UAAM,IAAI,IAAI,IAAI,CAAC;AACnB,WAAO,IAAI,IAAI,MAAM,IAAI,IAAI,EAAE,IAAI,GAAG,MAAM,IAAI,IAAI,EAAE,IAAI,CAAC;AAAA,EAC5D;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,IAAI,IAAI,GAAG,CAAC,CAAC;AAAA,EAC7B;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,KAAK,EAAE,GAAG,GAAG,IAAI,EAAE,GAAa;AACtC,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,OAAO,UAAU,GAAkB;AAClC,WAAO,IAAI,IAAI,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC;AAAA,EAC1B;AAAA,EAEA,OAAO,IAAI,GAAY,IAAI,GAAQ;AAClC,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,IAAI,EAAE,IAAI,CAAC;AAAA,EACpD;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAY,GAAgB;AACtD,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,EAAE;AAAA,EAC5D;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAaA,OAAO,+BAA+B,GAAY,GAAY,GAAiB;AAC9E,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,0BAA0B,GAAY,GAAY,GAAYA,SAAQ,MAAW;AACvF,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AACvC,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AAEvC,UAAM,IAAI,IAAI,IAAI,GAAG,CAAC;AACtB,UAAM,IAAI,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;AAErD,QAAIA,QAAO;AACV,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAAA,IAChE;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,2BAA2B,GAAY,GAAY,GAAoB;AAC7E,WAAO,IAAI,KAAK,GAAG,IAAI,+BAA+B,GAAG,GAAG,CAAC,CAAC;AAAA,EAC/D;AAAA,EAEA,OAAO,sBAAsB,GAAY,GAAY,GAAYA,SAAQ,MAAc;AACtF,WAAO,IAAI,KAAK,GAAG,IAAI,0BAA0B,GAAG,GAAG,GAAGA,MAAK,CAAC;AAAA,EACjE;AAAA,EAEA,OAAO,KAAK,GAAY,OAAO,GAAG;AACjC,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,MAAM,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,IAAI;AAAA,EAC5E;AAAA,EAEA,OAAO,KAAK,GAAiB;AAC5B,QAAI,aAAa,IAAK,QAAO;AAC7B,WAAO,IAAI,KAAK,CAAC;AAAA,EAClB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAoB;AAC5C,QAAI,EAAE,MAAM,EAAE,EAAG,QAAO;AACxB,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC/B;AAAA,EAEA,OAAO,MAAM,GAAqB;AACjC,WAAO,MAAM,EAAE,CAAC,KAAK,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,MAAM,GAAY,GAAoB;AAC5C,WAAO,KAAK,MAAM,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACvC;AAAA;AAAA;AAAA;AAAA;AAAA,EAMA,OAAO,aAAa,GAAY,GAAoB;AACnD,UAAM,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAC9B,UAAM,IAAI,KAAK;AAAA,OACb,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC,MAAM,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC;AAAA,IAC5E;AACA,UAAM,OAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,IAAI,KAAK;AAC9C,UAAM,QAAQ,OAAO,KAAK,SAAK,oBAAM,IAAI,GAAG,IAAI,CAAC,CAAC;AAElD,WAAO;AAAA,EACR;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,IAAI,GAAY,GAAY,GAAgB;AAClD,WAAO,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,IAAI,CAAC;AAAA,EAClC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,KAAK,EAAE,IAAI,EAAE,KAAK,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC;AAAA,EAChD;AAAA,EAEA,OAAO,OAAO,GAAY,GAAqB;AAC9C,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,QAAU,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI;AAAA,EAC9D;AAAA,EAEA,OAAO,SAAS,GAAY,GAAW,GAAoB;AAC1D,WAAO,EAAE,MAAM,KAAK,EAAE,MAAM;AAAA,EAC7B;AAAA,EAEA,OAAO,UAAU,GAAY,GAAY,GAAqB;AAC7D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK;AAAA,EAChE;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAW;AACrC,UAAM,IAAI,IAAI,IAAI,CAAC;AACnB,WAAO,IAAI,IAAK,IAAI,EAAE,IAAK,GAAI,IAAI,EAAE,IAAK,CAAC;AAAA,EAC5C;AAAA,EAEA,OAAO,gBAAgB,GAAY,OAAe,QAAiB;AAClE,WAAO,IAAI,IAAI,GAAG,MAAM,EAAE,IAAI,KAAK,EAAE,IAAI,MAAM;AAAA,EAChD;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,IAAI,QAAI,sBAAQ,EAAE,CAAC,OAAG,sBAAQ,EAAE,CAAC,CAAC;AAAA,EAC1C;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,IAAI;AAAA,MACV,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,UAAU,EAAE,KAAK,GAAG,QAAQ,CAAC,CAAC;AAAA,IAC/B;AAAA,EACD;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,GAAG,EAAE,CAAC,IAAI,EAAE,CAAC;AAAA,EACrB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY,UAAkB;AACtD,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,QAAQ,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,SAAS,GAAY;AAC3B,WAAO,GAAG,EAAE,CAAC,KAAK,EAAE,CAAC;AAAA,EACtB;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,QAAI,IAAI,KAAK,MAAM,EAAE,GAAG,EAAE,CAAC;AAC3B,QAAI,IAAI,EAAG,MAAK,KAAK,KAAK;AAE1B,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,UAAU,GAAW,SAAS,GAAG;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,CAAC,IAAI,QAAQ,KAAK,IAAI,CAAC,IAAI,MAAM;AAAA,EAC1D;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,CAAE;AAAA,EACvB;AAAA,EAEA,OAAO,OAAO,GAAY;AACzB,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,EAAE,GAAG,GAAG,EAAE;AAAA,EAClB;AAAA,EAEA,OAAO,QAAQ,KAAgB;AAC9B,UAAM,MAAM,IAAI;AAChB,UAAM,MAAM,IAAI,IAAI,GAAG,CAAC;AACxB,QAAI,QAAQ,GAAG;AACd,aAAO;AAAA,IACR;AACA,aAAS,IAAI,GAAG,IAAI,KAAK,KAAK;AAC7B,UAAI,IAAI,IAAI,CAAC,CAAC;AAAA,IACf;AACA,WAAO,IAAI,IAAI,GAAG;AAAA,EACnB;AAAA,EAEA,OAAO,MAAM,GAAQ,KAAa,KAAc;AAC/C,QAAI,QAAQ,QAAW;AACtB,aAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,CAAC;AAAA,IAC1E;AAEA,WAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,CAAC;AAAA,EACpF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,cAAc,GAAa,GAAa,QAAQ,GAAU;AAChE,UAAM,UAAiB,CAAC;AAExB,aAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC/B,YAAM,IAAI,uBAAQ,WAAW,KAAK,QAAQ,EAAE;AAC5C,YAAM,QAAQ,IAAI,IAAI,GAAG,GAAG,CAAC;AAC7B,YAAM,IAAI,KAAK,IAAI,GAAG,MAAM,KAAK,IAAI,MAAM,KAAK,CAAC,CAAC,IAAI,IAAI;AAC1D,cAAQ,KAAK,KAAK;AAAA,IACnB;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,WAAW,GAAY,WAAW,GAAG;AAC3C,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,UAAU,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,QAAQ;AAAA,EAC5F;AACD;AAEA,MAAM,OAAO,CAAC,MAAe,IAAI,MAAM,IAAI,IAAI,IAAI,MAAM,IAAI,IAAI,KAAK;",
|
|
4
|
+
"sourcesContent": ["import { VecModel } from '@tldraw/tlschema'\nimport { EASINGS } from './easings'\nimport { clamp, toFixed } from './utils'\n\n/** @public */\nexport type VecLike = Vec | VecModel\n\n/** @public */\nexport class Vec {\n\tconstructor(\n\t\tpublic x = 0,\n\t\tpublic y = 0,\n\t\tpublic z = 1\n\t) {}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget pressure() {\n\t\treturn this.z\n\t}\n\n\tset(x = this.x, y = this.y, z = this.z) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\tsetTo({ x = 0, y = 0, z = 1 }: VecLike) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\trot(r: number) {\n\t\tif (r === 0) return this\n\t\tconst { x, y } = this\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = x * c - y * s\n\t\tthis.y = x * s + y * c\n\t\treturn this\n\t}\n\n\trotWith(C: VecLike, r: number) {\n\t\tif (r === 0) return this\n\t\tconst x = this.x - C.x\n\t\tconst y = this.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = C.x + (x * c - y * s)\n\t\tthis.y = C.y + (x * s + y * c)\n\t\treturn this\n\t}\n\n\tclone(): Vec {\n\t\tconst { x, y, z } = this\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tsub(V: VecLike) {\n\t\tthis.x -= V.x\n\t\tthis.y -= V.y\n\t\treturn this\n\t}\n\n\tsubXY(x: number, y: number) {\n\t\tthis.x -= x\n\t\tthis.y -= y\n\t\treturn this\n\t}\n\n\tsubScalar(n: number) {\n\t\tthis.x -= n\n\t\tthis.y -= n\n\t\t// this.z -= n\n\n\t\treturn this\n\t}\n\n\tadd(V: VecLike) {\n\t\tthis.x += V.x\n\t\tthis.y += V.y\n\t\treturn this\n\t}\n\n\taddXY(x: number, y: number) {\n\t\tthis.x += x\n\t\tthis.y += y\n\t\treturn this\n\t}\n\n\taddScalar(n: number) {\n\t\tthis.x += n\n\t\tthis.y += n\n\t\t// this.z += n\n\n\t\treturn this\n\t}\n\n\tclamp(min: number, max?: number) {\n\t\tthis.x = Math.max(this.x, min)\n\t\tthis.y = Math.max(this.y, min)\n\t\tif (max !== undefined) {\n\t\t\tthis.x = Math.min(this.x, max)\n\t\t\tthis.y = Math.min(this.y, max)\n\t\t}\n\t\treturn this\n\t}\n\n\tdiv(t: number) {\n\t\tthis.x /= t\n\t\tthis.y /= t\n\t\t// this.z /= t\n\t\treturn this\n\t}\n\n\tdivV(V: VecLike) {\n\t\tthis.x /= V.x\n\t\tthis.y /= V.y\n\t\t// this.z /= V.z\n\t\treturn this\n\t}\n\n\tmul(t: number) {\n\t\tthis.x *= t\n\t\tthis.y *= t\n\t\t// this.z *= t\n\t\treturn this\n\t}\n\n\tmulV(V: VecLike) {\n\t\tthis.x *= V.x\n\t\tthis.y *= V.y\n\t\t// this.z *= V.z\n\t\treturn this\n\t}\n\n\tabs() {\n\t\tthis.x = Math.abs(this.x)\n\t\tthis.y = Math.abs(this.y)\n\t\treturn this\n\t}\n\n\tnudge(B: VecLike, distance: number) {\n\t\tconst tan = Vec.Tan(B, this)\n\t\treturn this.add(tan.mul(distance))\n\t}\n\n\tneg() {\n\t\tthis.x *= -1\n\t\tthis.y *= -1\n\t\t// this.z *= -1\n\t\treturn this\n\t}\n\n\tcross(V: VecLike) {\n\t\tthis.x = this.y * V.z! - this.z * V.y\n\t\tthis.y = this.z * V.x - this.x * V.z!\n\t\t// this.z = this.x * V.y - this.y * V.x\n\t\treturn this\n\t}\n\n\tdpr(V: VecLike): number {\n\t\treturn Vec.Dpr(this, V)\n\t}\n\n\tcpr(V: VecLike) {\n\t\treturn Vec.Cpr(this, V)\n\t}\n\n\tlen2(): number {\n\t\treturn Vec.Len2(this)\n\t}\n\n\tlen(): number {\n\t\treturn Vec.Len(this)\n\t}\n\n\tpry(V: VecLike): number {\n\t\treturn Vec.Pry(this, V)\n\t}\n\n\tper() {\n\t\tconst { x, y } = this\n\t\tthis.x = y\n\t\tthis.y = -x\n\t\treturn this\n\t}\n\n\tuni() {\n\t\tconst l = this.len()\n\t\tif (l === 0) return this\n\t\tthis.x /= l\n\t\tthis.y /= l\n\t\treturn this\n\t}\n\n\ttan(V: VecLike): Vec {\n\t\treturn this.sub(V).uni()\n\t}\n\n\tdist(V: VecLike): number {\n\t\treturn Vec.Dist(this, V)\n\t}\n\n\tdistanceToLineSegment(A: VecLike, B: VecLike): number {\n\t\treturn Vec.DistanceToLineSegment(A, B, this)\n\t}\n\n\tslope(B: VecLike): number {\n\t\treturn Vec.Slope(this, B)\n\t}\n\n\tsnapToGrid(gridSize: number) {\n\t\tthis.x = Math.round(this.x / gridSize) * gridSize\n\t\tthis.y = Math.round(this.y / gridSize) * gridSize\n\t\treturn this\n\t}\n\n\tangle(B: VecLike): number {\n\t\treturn Vec.Angle(this, B)\n\t}\n\n\ttoAngle() {\n\t\treturn Vec.ToAngle(this)\n\t}\n\n\tlrp(B: VecLike, t: number): Vec {\n\t\tthis.x = this.x + (B.x - this.x) * t\n\t\tthis.y = this.y + (B.y - this.y) * t\n\t\treturn this\n\t}\n\n\tequals(B: VecLike) {\n\t\treturn Vec.Equals(this, B)\n\t}\n\n\tequalsXY(x: number, y: number) {\n\t\treturn Vec.EqualsXY(this, x, y)\n\t}\n\n\ttoFixed() {\n\t\tthis.x = toFixed(this.x)\n\t\tthis.y = toFixed(this.y)\n\t\treturn this\n\t}\n\n\ttoString() {\n\t\treturn Vec.ToString(Vec.ToFixed(this))\n\t}\n\n\ttoJson(): VecModel {\n\t\treturn Vec.ToJson(this)\n\t}\n\n\ttoArray(): number[] {\n\t\treturn Vec.ToArray(this)\n\t}\n\n\tstatic Add(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x + B.x, A.y + B.y)\n\t}\n\n\tstatic AddXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x + x, A.y + y)\n\t}\n\n\tstatic Sub(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x - B.x, A.y - B.y)\n\t}\n\n\tstatic SubXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x - x, A.y - y)\n\t}\n\n\tstatic AddScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x + n, A.y + n)\n\t}\n\n\tstatic SubScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x - n, A.y - n)\n\t}\n\n\tstatic Div(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x / t, A.y / t)\n\t}\n\n\tstatic Mul(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x * t, A.y * t)\n\t}\n\n\tstatic DivV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x / B.x, A.y / B.y)\n\t}\n\n\tstatic MulV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x * B.x, A.y * B.y)\n\t}\n\n\tstatic Neg(A: VecLike): Vec {\n\t\treturn new Vec(-A.x, -A.y)\n\t}\n\n\t/**\n\t * Get the perpendicular vector to A.\n\t */\n\tstatic Per(A: VecLike): Vec {\n\t\treturn new Vec(A.y, -A.x)\n\t}\n\n\tstatic Abs(A: VecLike): Vec {\n\t\treturn new Vec(Math.abs(A.x), Math.abs(A.y))\n\t}\n\n\t// Get the distance between two points.\n\tstatic Dist(A: VecLike, B: VecLike): number {\n\t\treturn ((A.y - B.y) ** 2 + (A.x - B.x) ** 2) ** 0.5\n\t}\n\n\t// Get the Manhattan distance between two points.\n\tstatic ManhattanDist(A: VecLike, B: VecLike): number {\n\t\treturn Math.abs(A.x - B.x) + Math.abs(A.y - B.y)\n\t}\n\n\t// Get whether a distance between two points is less than a number. This is faster to calulate than using `Vec.Dist(a, b) < n`.\n\tstatic DistMin(A: VecLike, B: VecLike, n: number): boolean {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y) < n ** 2\n\t}\n\n\t// Get the squared distance between two points. This is faster to calculate (no square root) so useful for \"minimum distance\" checks where the actual measurement does not matter.\n\tstatic Dist2(A: VecLike, B: VecLike): number {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y)\n\t}\n\n\t/**\n\t * Dot product of two vectors which is used to calculate the angle between them.\n\t */\n\tstatic Dpr(A: VecLike, B: VecLike): number {\n\t\treturn A.x * B.x + A.y * B.y\n\t}\n\n\tstatic Cross(A: VecLike, V: VecLike) {\n\t\treturn new Vec(\n\t\t\tA.y * V.z! - A.z! * V.y,\n\t\t\tA.z! * V.x - A.x * V.z!\n\t\t\t// A.z = A.x * V.y - A.y * V.x\n\t\t)\n\t}\n\n\t/**\n\t * Cross product of two vectors which is used to calculate the area of a parallelogram.\n\t */\n\tstatic Cpr(A: VecLike, B: VecLike) {\n\t\treturn A.x * B.y - B.x * A.y\n\t}\n\n\tstatic Len2(A: VecLike): number {\n\t\treturn A.x * A.x + A.y * A.y\n\t}\n\n\tstatic Len(A: VecLike): number {\n\t\treturn (A.x * A.x + A.y * A.y) ** 0.5\n\t}\n\n\t/**\n\t * Get the projection of A onto B.\n\t */\n\tstatic Pry(A: VecLike, B: VecLike): number {\n\t\treturn Vec.Dpr(A, B) / Vec.Len(B)\n\t}\n\n\t/**\n\t * Get the unit vector of A.\n\t */\n\tstatic Uni(A: VecLike) {\n\t\tconst l = Vec.Len(A)\n\t\treturn new Vec(l === 0 ? 0 : A.x / l, l === 0 ? 0 : A.y / l)\n\t}\n\n\tstatic Tan(A: VecLike, B: VecLike): Vec {\n\t\treturn Vec.Uni(Vec.Sub(A, B))\n\t}\n\n\tstatic Min(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.min(A.x, B.x), Math.min(A.y, B.y))\n\t}\n\n\tstatic Max(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.max(A.x, B.x), Math.max(A.y, B.y))\n\t}\n\n\tstatic From({ x, y, z = 1 }: VecModel) {\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tstatic FromArray(v: number[]): Vec {\n\t\treturn new Vec(v[0], v[1])\n\t}\n\n\tstatic Rot(A: VecLike, r = 0): Vec {\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(A.x * c - A.y * s, A.x * s + A.y * c)\n\t}\n\n\tstatic RotWith(A: VecLike, C: VecLike, r: number): Vec {\n\t\tconst x = A.x - C.x\n\t\tconst y = A.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(C.x + (x * c - y * s), C.y + (x * s + y * c))\n\t}\n\n\t/**\n\t * Get the nearest point on a line with a known unit vector that passes through point A\n\t *\n\t * ```ts\n\t * Vec.nearestPointOnLineThroughPoint(A, u, Point)\n\t * ```\n\t *\n\t * @param A - Any point on the line\n\t * @param u - The unit vector for the line.\n\t * @param P - A point not on the line to test.\n\t */\n\tstatic NearestPointOnLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): Vec {\n\t\treturn Vec.Mul(u, Vec.Sub(P, A).pry(u)).add(A)\n\t}\n\n\tstatic NearestPointOnLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): Vec {\n\t\tif (Vec.Equals(A, P)) return Vec.From(P)\n\t\tif (Vec.Equals(B, P)) return Vec.From(P)\n\n\t\tconst u = Vec.Tan(B, A)\n\t\tconst C = Vec.Add(A, Vec.Mul(u, Vec.Sub(P, A).pry(u)))\n\n\t\tif (clamp) {\n\t\t\tif (C.x < Math.min(A.x, B.x)) return Vec.Cast(A.x < B.x ? A : B)\n\t\t\tif (C.x > Math.max(A.x, B.x)) return Vec.Cast(A.x > B.x ? A : B)\n\t\t\tif (C.y < Math.min(A.y, B.y)) return Vec.Cast(A.y < B.y ? A : B)\n\t\t\tif (C.y > Math.max(A.y, B.y)) return Vec.Cast(A.y > B.y ? A : B)\n\t\t}\n\n\t\treturn C\n\t}\n\n\tstatic DistanceToLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineThroughPoint(A, u, P))\n\t}\n\n\tstatic DistanceToLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineSegment(A, B, P, clamp))\n\t}\n\n\tstatic Snap(A: VecLike, step = 1) {\n\t\treturn new Vec(Math.round(A.x / step) * step, Math.round(A.y / step) * step)\n\t}\n\n\tstatic Cast(A: VecLike): Vec {\n\t\tif (A instanceof Vec) return A\n\t\treturn Vec.From(A)\n\t}\n\n\tstatic Slope(A: VecLike, B: VecLike): number {\n\t\tif (A.x === B.y) return NaN\n\t\treturn (A.y - B.y) / (A.x - B.x)\n\t}\n\n\tstatic IsNaN(A: VecLike): boolean {\n\t\treturn isNaN(A.x) || isNaN(A.y)\n\t}\n\n\t/**\n\t * Get the angle from position A to position B.\n\t */\n\tstatic Angle(A: VecLike, B: VecLike): number {\n\t\treturn Math.atan2(B.y - A.y, B.x - A.x)\n\t}\n\n\t/**\n\t * Get the angle between vector A and vector B. This will return the smallest angle between the\n\t * two vectors, between -\u03C0 and \u03C0. The sign indicates direction of angle.\n\t */\n\tstatic AngleBetween(A: VecLike, B: VecLike): number {\n\t\tconst p = A.x * B.x + A.y * B.y\n\t\tconst n = Math.sqrt(\n\t\t\t(Math.pow(A.x, 2) + Math.pow(A.y, 2)) * (Math.pow(B.x, 2) + Math.pow(B.y, 2))\n\t\t)\n\t\tconst sign = A.x * B.y - A.y * B.x < 0 ? -1 : 1\n\t\tconst angle = sign * Math.acos(clamp(p / n, -1, 1))\n\n\t\treturn angle\n\t}\n\n\t/**\n\t * Linearly interpolate between two points.\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param t - The interpolation value between 0 and 1.\n\t * @returns The interpolated point.\n\t */\n\tstatic Lrp(A: VecLike, B: VecLike, t: number): Vec {\n\t\treturn Vec.Sub(B, A).mul(t).add(A)\n\t}\n\n\tstatic Med(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec((A.x + B.x) / 2, (A.y + B.y) / 2)\n\t}\n\n\tstatic Equals(A: VecLike, B: VecLike): boolean {\n\t\treturn Math.abs(A.x - B.x) < 0.0001 && Math.abs(A.y - B.y) < 0.0001\n\t}\n\n\tstatic EqualsXY(A: VecLike, x: number, y: number): boolean {\n\t\treturn A.x === x && A.y === y\n\t}\n\n\tstatic Clockwise(A: VecLike, B: VecLike, C: VecLike): boolean {\n\t\treturn (C.x - A.x) * (B.y - A.y) - (B.x - A.x) * (C.y - A.y) < 0\n\t}\n\n\tstatic Rescale(A: VecLike, n: number) {\n\t\tconst l = Vec.Len(A)\n\t\treturn new Vec((n * A.x) / l, (n * A.y) / l)\n\t}\n\n\tstatic ScaleWithOrigin(A: VecLike, scale: number, origin: VecLike) {\n\t\treturn Vec.Sub(A, origin).mul(scale).add(origin)\n\t}\n\n\tstatic ToFixed(A: VecLike) {\n\t\treturn new Vec(toFixed(A.x), toFixed(A.y))\n\t}\n\n\tstatic ToInt(A: VecLike) {\n\t\treturn new Vec(\n\t\t\tparseInt(A.x.toFixed(0)),\n\t\t\tparseInt(A.y.toFixed(0)),\n\t\t\tparseInt((A.z ?? 0).toFixed(0))\n\t\t)\n\t}\n\n\tstatic ToCss(A: VecLike) {\n\t\treturn `${A.x},${A.y}`\n\t}\n\n\tstatic Nudge(A: VecLike, B: VecLike, distance: number) {\n\t\treturn Vec.Add(A, Vec.Tan(B, A).mul(distance))\n\t}\n\n\tstatic ToString(A: VecLike) {\n\t\treturn `${A.x}, ${A.y}`\n\t}\n\n\tstatic ToAngle(A: VecLike) {\n\t\tlet r = Math.atan2(A.y, A.x)\n\t\tif (r < 0) r += Math.PI * 2\n\n\t\treturn r\n\t}\n\n\tstatic FromAngle(r: number, length = 1) {\n\t\treturn new Vec(Math.cos(r) * length, Math.sin(r) * length)\n\t}\n\n\tstatic ToArray(A: VecLike) {\n\t\treturn [A.x, A.y, A.z!]\n\t}\n\n\tstatic ToJson(A: VecLike) {\n\t\tconst { x, y, z } = A\n\t\treturn { x, y, z }\n\t}\n\n\tstatic Average(arr: VecLike[]) {\n\t\tconst len = arr.length\n\t\tconst avg = new Vec(0, 0)\n\t\tif (len === 0) {\n\t\t\treturn avg\n\t\t}\n\t\tfor (let i = 0; i < len; i++) {\n\t\t\tavg.add(arr[i])\n\t\t}\n\t\treturn avg.div(len)\n\t}\n\n\tstatic Clamp(A: Vec, min: number, max?: number) {\n\t\tif (max === undefined) {\n\t\t\treturn new Vec(Math.min(Math.max(A.x, min)), Math.min(Math.max(A.y, min)))\n\t\t}\n\n\t\treturn new Vec(Math.min(Math.max(A.x, min), max), Math.min(Math.max(A.y, min), max))\n\t}\n\n\t/**\n\t * Get an array of points (with simulated pressure) between two points.\n\t *\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param steps - The number of points to return.\n\t */\n\tstatic PointsBetween(A: VecModel, B: VecModel, steps = 6): Vec[] {\n\t\tconst results: Vec[] = []\n\n\t\tfor (let i = 0; i < steps; i++) {\n\t\t\tconst t = EASINGS.easeInQuad(i / (steps - 1))\n\t\t\tconst point = Vec.Lrp(A, B, t)\n\t\t\tpoint.z = Math.min(1, 0.5 + Math.abs(0.5 - ease(t)) * 0.65)\n\t\t\tresults.push(point)\n\t\t}\n\n\t\treturn results\n\t}\n\n\tstatic SnapToGrid(A: VecLike, gridSize = 8) {\n\t\treturn new Vec(Math.round(A.x / gridSize) * gridSize, Math.round(A.y / gridSize) * gridSize)\n\t}\n}\n\nconst ease = (t: number) => (t < 0.5 ? 2 * t * t : -1 + (4 - 2 * t) * t)\n"],
|
|
5
|
+
"mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AACA,qBAAwB;AACxB,mBAA+B;AAMxB,MAAM,IAAI;AAAA,EAChB,YACQ,IAAI,GACJ,IAAI,GACJ,IAAI,GACV;AAHM;AACA;AACA;AAAA,EACL;AAAA;AAAA,EAGH,IAAI,WAAW;AACd,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,IAAI,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,EAAE,GAAY;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,WAAO;AAAA,EACR;AAAA,EAEA,QAAQ,GAAY,GAAW;AAC9B,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,WAAO;AAAA,EACR;AAAA,EAEA,QAAa;AACZ,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,KAAa,KAAc;AAChC,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,QAAI,QAAQ,QAAW;AACtB,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAAA,IAC9B;AACA,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY,UAAkB;AACnC,UAAM,MAAM,IAAI,IAAI,GAAG,IAAI;AAC3B,WAAO,KAAK,IAAI,IAAI,IAAI,QAAQ,CAAC;AAAA,EAClC;AAAA,EAEA,MAAM;AACL,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY;AACjB,SAAK,IAAI,KAAK,IAAI,EAAE,IAAK,KAAK,IAAI,EAAE;AACpC,SAAK,IAAI,KAAK,IAAI,EAAE,IAAI,KAAK,IAAI,EAAE;AAEnC,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,OAAe;AACd,WAAO,IAAI,KAAK,IAAI;AAAA,EACrB;AAAA,EAEA,MAAc;AACb,WAAO,IAAI,IAAI,IAAI;AAAA,EACpB;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,MAAM;AACL,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,SAAK,IAAI;AACT,SAAK,IAAI,CAAC;AACV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,UAAM,IAAI,KAAK,IAAI;AACnB,QAAI,MAAM,EAAG,QAAO;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAiB;AACpB,WAAO,KAAK,IAAI,CAAC,EAAE,IAAI;AAAA,EACxB;AAAA,EAEA,KAAK,GAAoB;AACxB,WAAO,IAAI,KAAK,MAAM,CAAC;AAAA,EACxB;AAAA,EAEA,sBAAsB,GAAY,GAAoB;AACrD,WAAO,IAAI,sBAAsB,GAAG,GAAG,IAAI;AAAA,EAC5C;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,WAAW,UAAkB;AAC5B,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,UAAU;AACT,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,IAAI,GAAY,GAAgB;AAC/B,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,GAAY;AAClB,WAAO,IAAI,OAAO,MAAM,CAAC;AAAA,EAC1B;AAAA,EAEA,SAAS,GAAW,GAAW;AAC9B,WAAO,IAAI,SAAS,MAAM,GAAG,CAAC;AAAA,EAC/B;AAAA,EAEA,UAAU;AACT,SAAK,QAAI,sBAAQ,KAAK,CAAC;AACvB,SAAK,QAAI,sBAAQ,KAAK,CAAC;AACvB,WAAO;AAAA,EACR;AAAA,EAEA,WAAW;AACV,WAAO,IAAI,SAAS,IAAI,QAAQ,IAAI,CAAC;AAAA,EACtC;AAAA,EAEA,SAAmB;AAClB,WAAO,IAAI,OAAO,IAAI;AAAA,EACvB;AAAA,EAEA,UAAoB;AACnB,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EAC1B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EACzB;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,CAAC,CAAC;AAAA,EAC5C;AAAA;AAAA,EAGA,OAAO,KAAK,GAAY,GAAoB;AAC3C,aAAS,EAAE,IAAI,EAAE,MAAM,KAAK,EAAE,IAAI,EAAE,MAAM,MAAM;AAAA,EACjD;AAAA;AAAA,EAGA,OAAO,cAAc,GAAY,GAAoB;AACpD,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC;AAAA,EAChD;AAAA;AAAA,EAGA,OAAO,QAAQ,GAAY,GAAY,GAAoB;AAC1D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK,KAAK;AAAA,EACrE;AAAA;AAAA,EAGA,OAAO,MAAM,GAAY,GAAoB;AAC5C,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC3D;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY;AACpC,WAAO,IAAI;AAAA,MACV,EAAE,IAAI,EAAE,IAAK,EAAE,IAAK,EAAE;AAAA,MACtB,EAAE,IAAK,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA;AAAA,IAEtB;AAAA,EACD;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAY;AAClC,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,KAAK,GAAoB;AAC/B,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,IAAI,GAAoB;AAC9B,YAAQ,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAAA,EACnC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,IAAI,IAAI,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC;AAAA,EACjC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY;AACtB,UAAM,IAAI,IAAI,IAAI,CAAC;AACnB,WAAO,IAAI,IAAI,MAAM,IAAI,IAAI,EAAE,IAAI,GAAG,MAAM,IAAI,IAAI,EAAE,IAAI,CAAC;AAAA,EAC5D;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,IAAI,IAAI,GAAG,CAAC,CAAC;AAAA,EAC7B;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,KAAK,EAAE,GAAG,GAAG,IAAI,EAAE,GAAa;AACtC,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,OAAO,UAAU,GAAkB;AAClC,WAAO,IAAI,IAAI,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC;AAAA,EAC1B;AAAA,EAEA,OAAO,IAAI,GAAY,IAAI,GAAQ;AAClC,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,IAAI,EAAE,IAAI,CAAC;AAAA,EACpD;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAY,GAAgB;AACtD,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,EAAE;AAAA,EAC5D;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAaA,OAAO,+BAA+B,GAAY,GAAY,GAAiB;AAC9E,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,0BAA0B,GAAY,GAAY,GAAYA,SAAQ,MAAW;AACvF,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AACvC,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AAEvC,UAAM,IAAI,IAAI,IAAI,GAAG,CAAC;AACtB,UAAM,IAAI,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;AAErD,QAAIA,QAAO;AACV,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAAA,IAChE;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,2BAA2B,GAAY,GAAY,GAAoB;AAC7E,WAAO,IAAI,KAAK,GAAG,IAAI,+BAA+B,GAAG,GAAG,CAAC,CAAC;AAAA,EAC/D;AAAA,EAEA,OAAO,sBAAsB,GAAY,GAAY,GAAYA,SAAQ,MAAc;AACtF,WAAO,IAAI,KAAK,GAAG,IAAI,0BAA0B,GAAG,GAAG,GAAGA,MAAK,CAAC;AAAA,EACjE;AAAA,EAEA,OAAO,KAAK,GAAY,OAAO,GAAG;AACjC,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,MAAM,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,IAAI;AAAA,EAC5E;AAAA,EAEA,OAAO,KAAK,GAAiB;AAC5B,QAAI,aAAa,IAAK,QAAO;AAC7B,WAAO,IAAI,KAAK,CAAC;AAAA,EAClB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAoB;AAC5C,QAAI,EAAE,MAAM,EAAE,EAAG,QAAO;AACxB,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC/B;AAAA,EAEA,OAAO,MAAM,GAAqB;AACjC,WAAO,MAAM,EAAE,CAAC,KAAK,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,MAAM,GAAY,GAAoB;AAC5C,WAAO,KAAK,MAAM,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACvC;AAAA;AAAA;AAAA;AAAA;AAAA,EAMA,OAAO,aAAa,GAAY,GAAoB;AACnD,UAAM,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAC9B,UAAM,IAAI,KAAK;AAAA,OACb,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC,MAAM,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC;AAAA,IAC5E;AACA,UAAM,OAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,IAAI,KAAK;AAC9C,UAAM,QAAQ,OAAO,KAAK,SAAK,oBAAM,IAAI,GAAG,IAAI,CAAC,CAAC;AAElD,WAAO;AAAA,EACR;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,IAAI,GAAY,GAAY,GAAgB;AAClD,WAAO,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,IAAI,CAAC;AAAA,EAClC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,KAAK,EAAE,IAAI,EAAE,KAAK,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC;AAAA,EAChD;AAAA,EAEA,OAAO,OAAO,GAAY,GAAqB;AAC9C,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,QAAU,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI;AAAA,EAC9D;AAAA,EAEA,OAAO,SAAS,GAAY,GAAW,GAAoB;AAC1D,WAAO,EAAE,MAAM,KAAK,EAAE,MAAM;AAAA,EAC7B;AAAA,EAEA,OAAO,UAAU,GAAY,GAAY,GAAqB;AAC7D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK;AAAA,EAChE;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAW;AACrC,UAAM,IAAI,IAAI,IAAI,CAAC;AACnB,WAAO,IAAI,IAAK,IAAI,EAAE,IAAK,GAAI,IAAI,EAAE,IAAK,CAAC;AAAA,EAC5C;AAAA,EAEA,OAAO,gBAAgB,GAAY,OAAe,QAAiB;AAClE,WAAO,IAAI,IAAI,GAAG,MAAM,EAAE,IAAI,KAAK,EAAE,IAAI,MAAM;AAAA,EAChD;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,IAAI,QAAI,sBAAQ,EAAE,CAAC,OAAG,sBAAQ,EAAE,CAAC,CAAC;AAAA,EAC1C;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,IAAI;AAAA,MACV,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,UAAU,EAAE,KAAK,GAAG,QAAQ,CAAC,CAAC;AAAA,IAC/B;AAAA,EACD;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,GAAG,EAAE,CAAC,IAAI,EAAE,CAAC;AAAA,EACrB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY,UAAkB;AACtD,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,QAAQ,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,SAAS,GAAY;AAC3B,WAAO,GAAG,EAAE,CAAC,KAAK,EAAE,CAAC;AAAA,EACtB;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,QAAI,IAAI,KAAK,MAAM,EAAE,GAAG,EAAE,CAAC;AAC3B,QAAI,IAAI,EAAG,MAAK,KAAK,KAAK;AAE1B,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,UAAU,GAAW,SAAS,GAAG;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,CAAC,IAAI,QAAQ,KAAK,IAAI,CAAC,IAAI,MAAM;AAAA,EAC1D;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,CAAE;AAAA,EACvB;AAAA,EAEA,OAAO,OAAO,GAAY;AACzB,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,EAAE,GAAG,GAAG,EAAE;AAAA,EAClB;AAAA,EAEA,OAAO,QAAQ,KAAgB;AAC9B,UAAM,MAAM,IAAI;AAChB,UAAM,MAAM,IAAI,IAAI,GAAG,CAAC;AACxB,QAAI,QAAQ,GAAG;AACd,aAAO;AAAA,IACR;AACA,aAAS,IAAI,GAAG,IAAI,KAAK,KAAK;AAC7B,UAAI,IAAI,IAAI,CAAC,CAAC;AAAA,IACf;AACA,WAAO,IAAI,IAAI,GAAG;AAAA,EACnB;AAAA,EAEA,OAAO,MAAM,GAAQ,KAAa,KAAc;AAC/C,QAAI,QAAQ,QAAW;AACtB,aAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,CAAC;AAAA,IAC1E;AAEA,WAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,CAAC;AAAA,EACpF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,cAAc,GAAa,GAAa,QAAQ,GAAU;AAChE,UAAM,UAAiB,CAAC;AAExB,aAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC/B,YAAM,IAAI,uBAAQ,WAAW,KAAK,QAAQ,EAAE;AAC5C,YAAM,QAAQ,IAAI,IAAI,GAAG,GAAG,CAAC;AAC7B,YAAM,IAAI,KAAK,IAAI,GAAG,MAAM,KAAK,IAAI,MAAM,KAAK,CAAC,CAAC,IAAI,IAAI;AAC1D,cAAQ,KAAK,KAAK;AAAA,IACnB;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,WAAW,GAAY,WAAW,GAAG;AAC3C,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,UAAU,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,QAAQ;AAAA,EAC5F;AACD;AAEA,MAAM,OAAO,CAAC,MAAe,IAAI,MAAM,IAAI,IAAI,IAAI,MAAM,IAAI,IAAI,KAAK;",
|
|
6
6
|
"names": ["clamp"]
|
|
7
7
|
}
|
|
@@ -45,10 +45,16 @@ class Geometry2d {
|
|
|
45
45
|
isLabel = false;
|
|
46
46
|
isEmptyLabel = false;
|
|
47
47
|
isInternal = false;
|
|
48
|
+
excludeFromShapeBounds = false;
|
|
48
49
|
debugColor;
|
|
49
50
|
ignore;
|
|
50
51
|
constructor(opts) {
|
|
51
|
-
const {
|
|
52
|
+
const {
|
|
53
|
+
isLabel = false,
|
|
54
|
+
isEmptyLabel = false,
|
|
55
|
+
isInternal = false,
|
|
56
|
+
excludeFromShapeBounds = false
|
|
57
|
+
} = opts;
|
|
52
58
|
this.isFilled = opts.isFilled;
|
|
53
59
|
this.isClosed = opts.isClosed;
|
|
54
60
|
this.debugColor = opts.debugColor;
|
|
@@ -56,6 +62,7 @@ class Geometry2d {
|
|
|
56
62
|
this.isLabel = isLabel;
|
|
57
63
|
this.isEmptyLabel = isEmptyLabel;
|
|
58
64
|
this.isInternal = isInternal;
|
|
65
|
+
this.excludeFromShapeBounds = excludeFromShapeBounds;
|
|
59
66
|
}
|
|
60
67
|
isExcludedByFilter(filters) {
|
|
61
68
|
if (!filters) return false;
|
|
@@ -166,28 +173,36 @@ class Geometry2d {
|
|
|
166
173
|
const distanceAlongRoute = closestSegment.distanceToStart + import_Vec.Vec.Dist(closestSegment.start, closestSegment.nearestPoint);
|
|
167
174
|
return distanceAlongRoute / length;
|
|
168
175
|
}
|
|
169
|
-
/** @deprecated Iterate the vertices instead. */
|
|
170
|
-
nearestPointOnLineSegment(A, B) {
|
|
171
|
-
const { vertices } = this;
|
|
172
|
-
let nearest;
|
|
173
|
-
let dist = Infinity;
|
|
174
|
-
let d, p, q;
|
|
175
|
-
for (let i = 0; i < vertices.length; i++) {
|
|
176
|
-
p = vertices[i];
|
|
177
|
-
q = import_Vec.Vec.NearestPointOnLineSegment(A, B, p, true);
|
|
178
|
-
d = import_Vec.Vec.Dist2(p, q);
|
|
179
|
-
if (d < dist) {
|
|
180
|
-
dist = d;
|
|
181
|
-
nearest = q;
|
|
182
|
-
}
|
|
183
|
-
}
|
|
184
|
-
if (!nearest) throw Error("nearest point not found");
|
|
185
|
-
return nearest;
|
|
186
|
-
}
|
|
187
176
|
isPointInBounds(point, margin = 0) {
|
|
188
177
|
const { bounds } = this;
|
|
189
178
|
return !(point.x < bounds.minX - margin || point.y < bounds.minY - margin || point.x > bounds.maxX + margin || point.y > bounds.maxY + margin);
|
|
190
179
|
}
|
|
180
|
+
overlapsPolygon(_polygon) {
|
|
181
|
+
const polygon = _polygon.map((v) => import_Vec.Vec.From(v));
|
|
182
|
+
const { vertices, center, isFilled, isEmptyLabel, isClosed } = this;
|
|
183
|
+
if (isEmptyLabel) return false;
|
|
184
|
+
if (vertices.some((v) => (0, import_utils2.pointInPolygon)(v, polygon))) {
|
|
185
|
+
return true;
|
|
186
|
+
}
|
|
187
|
+
if (isClosed) {
|
|
188
|
+
if (isFilled) {
|
|
189
|
+
if ((0, import_utils2.pointInPolygon)(center, polygon)) {
|
|
190
|
+
return true;
|
|
191
|
+
}
|
|
192
|
+
if (polygon.every((v) => (0, import_utils2.pointInPolygon)(v, vertices))) {
|
|
193
|
+
return true;
|
|
194
|
+
}
|
|
195
|
+
}
|
|
196
|
+
if ((0, import_intersect.polygonsIntersect)(polygon, vertices)) {
|
|
197
|
+
return true;
|
|
198
|
+
}
|
|
199
|
+
} else {
|
|
200
|
+
if ((0, import_intersect.polygonIntersectsPolyline)(polygon, vertices)) {
|
|
201
|
+
return true;
|
|
202
|
+
}
|
|
203
|
+
}
|
|
204
|
+
return false;
|
|
205
|
+
}
|
|
191
206
|
transform(transform, opts) {
|
|
192
207
|
return new TransformedGeometry2d(this, transform, opts);
|
|
193
208
|
}
|
|
@@ -199,8 +214,20 @@ class Geometry2d {
|
|
|
199
214
|
}
|
|
200
215
|
return this._vertices;
|
|
201
216
|
}
|
|
217
|
+
getBoundsVertices() {
|
|
218
|
+
if (this.excludeFromShapeBounds) return [];
|
|
219
|
+
return this.vertices;
|
|
220
|
+
}
|
|
221
|
+
_boundsVertices;
|
|
222
|
+
// eslint-disable-next-line no-restricted-syntax
|
|
223
|
+
get boundsVertices() {
|
|
224
|
+
if (!this._boundsVertices) {
|
|
225
|
+
this._boundsVertices = this.getBoundsVertices();
|
|
226
|
+
}
|
|
227
|
+
return this._boundsVertices;
|
|
228
|
+
}
|
|
202
229
|
getBounds() {
|
|
203
|
-
return import_Box.Box.FromPoints(this.
|
|
230
|
+
return import_Box.Box.FromPoints(this.boundsVertices);
|
|
204
231
|
}
|
|
205
232
|
_bounds;
|
|
206
233
|
// eslint-disable-next-line no-restricted-syntax
|
|
@@ -295,6 +322,9 @@ class TransformedGeometry2d extends Geometry2d {
|
|
|
295
322
|
getVertices(filters) {
|
|
296
323
|
return this.geometry.getVertices(filters).map((v) => import_Mat.Mat.applyToPoint(this.matrix, v));
|
|
297
324
|
}
|
|
325
|
+
getBoundsVertices() {
|
|
326
|
+
return this.geometry.getBoundsVertices().map((v) => import_Mat.Mat.applyToPoint(this.matrix, v));
|
|
327
|
+
}
|
|
298
328
|
nearestPoint(point, filters) {
|
|
299
329
|
return import_Mat.Mat.applyToPoint(
|
|
300
330
|
this.matrix,
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
{
|
|
2
2
|
"version": 3,
|
|
3
3
|
"sources": ["../../../../src/lib/primitives/geometry/Geometry2d.ts"],
|
|
4
|
-
"sourcesContent": ["import { assert, invLerp } from '@tldraw/utils'\nimport { Box } from '../Box'\nimport { Mat, MatModel } from '../Mat'\nimport { Vec, VecLike } from '../Vec'\nimport {\n\tintersectCirclePolygon,\n\tintersectCirclePolyline,\n\tintersectLineSegmentPolygon,\n\tintersectLineSegmentPolyline,\n\tintersectPolys,\n\tlinesIntersect,\n} from '../intersect'\nimport { approximately, pointInPolygon } from '../utils'\n\n/**\n * Filter geometry within a group.\n *\n * Filters are ignored when called directly on primitive geometries, but can be used to narrow down\n * the results of an operation on `Group2d` geometries.\n *\n * @public\n */\nexport interface Geometry2dFilters {\n\treadonly includeLabels?: boolean\n\treadonly includeInternal?: boolean\n}\n\n/** @public */\nexport const Geometry2dFilters: {\n\tEXCLUDE_NON_STANDARD: Geometry2dFilters\n\tINCLUDE_ALL: Geometry2dFilters\n\tEXCLUDE_LABELS: Geometry2dFilters\n\tEXCLUDE_INTERNAL: Geometry2dFilters\n} = {\n\tEXCLUDE_NON_STANDARD: {\n\t\tincludeLabels: false,\n\t\tincludeInternal: false,\n\t},\n\tINCLUDE_ALL: { includeLabels: true, includeInternal: true },\n\tEXCLUDE_LABELS: { includeLabels: false, includeInternal: true },\n\tEXCLUDE_INTERNAL: { includeLabels: true, includeInternal: false },\n}\n\n/** @public */\nexport interface TransformedGeometry2dOptions {\n\tisLabel?: boolean\n\tisEmptyLabel?: boolean\n\tisInternal?: boolean\n\tdebugColor?: string\n\tignore?: boolean\n}\n\n/** @public */\nexport interface Geometry2dOptions extends TransformedGeometry2dOptions {\n\tisFilled: boolean\n\tisClosed: boolean\n}\n\n/** @public */\nexport abstract class Geometry2d {\n\t// todo: consider making accessors for these too, so that they can be overridden in subclasses by geometries with more complex logic\n\tisFilled = false\n\tisClosed = true\n\tisLabel = false\n\tisEmptyLabel = false\n\tisInternal = false\n\tdebugColor?: string\n\tignore?: boolean\n\n\tconstructor(opts: Geometry2dOptions) {\n\t\tconst { isLabel = false, isEmptyLabel = false, isInternal = false } = opts\n\t\tthis.isFilled = opts.isFilled\n\t\tthis.isClosed = opts.isClosed\n\t\tthis.debugColor = opts.debugColor\n\t\tthis.ignore = opts.ignore\n\t\tthis.isLabel = isLabel\n\t\tthis.isEmptyLabel = isEmptyLabel\n\t\tthis.isInternal = isInternal\n\t}\n\n\tisExcludedByFilter(filters?: Geometry2dFilters) {\n\t\tif (!filters) return false\n\t\tif (this.isLabel && !filters.includeLabels) return true\n\t\tif (this.isInternal && !filters.includeInternal) return true\n\t\treturn false\n\t}\n\n\tabstract getVertices(filters: Geometry2dFilters): Vec[]\n\n\tabstract nearestPoint(point: VecLike, _filters?: Geometry2dFilters): Vec\n\n\thitTestPoint(point: VecLike, margin = 0, hitInside = false, _filters?: Geometry2dFilters) {\n\t\t// First check whether the point is inside\n\t\tif (this.isClosed && (this.isFilled || hitInside) && pointInPolygon(point, this.vertices)) {\n\t\t\treturn true\n\t\t}\n\t\t// Then check whether the distance is within the margin\n\t\treturn Vec.Dist2(point, this.nearestPoint(point)) <= margin * margin\n\t}\n\n\tdistanceToPoint(point: VecLike, hitInside = false, filters?: Geometry2dFilters) {\n\t\treturn (\n\t\t\tVec.Dist(point, this.nearestPoint(point, filters)) *\n\t\t\t(this.isClosed && (this.isFilled || hitInside) && pointInPolygon(point, this.vertices)\n\t\t\t\t? -1\n\t\t\t\t: 1)\n\t\t)\n\t}\n\n\tdistanceToLineSegment(A: VecLike, B: VecLike, filters?: Geometry2dFilters) {\n\t\tif (Vec.Equals(A, B)) return this.distanceToPoint(A, false, filters)\n\t\tconst { vertices } = this\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet d: number, p: Vec, q: Vec\n\t\tconst nextLimit = this.isClosed ? vertices.length : vertices.length - 1\n\t\tfor (let i = 0; i < vertices.length; i++) {\n\t\t\tp = vertices[i]\n\t\t\tif (i < nextLimit) {\n\t\t\t\tconst next = vertices[(i + 1) % vertices.length]\n\t\t\t\tif (linesIntersect(A, B, p, next)) return 0\n\t\t\t}\n\t\t\tq = Vec.NearestPointOnLineSegment(A, B, p, true)\n\t\t\td = Vec.Dist2(p, q)\n\t\t\tif (d < dist) {\n\t\t\t\tdist = d\n\t\t\t\tnearest = q\n\t\t\t}\n\t\t}\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn this.isClosed && this.isFilled && pointInPolygon(nearest, this.vertices) ? -dist : dist\n\t}\n\n\thitTestLineSegment(A: VecLike, B: VecLike, distance = 0, filters?: Geometry2dFilters): boolean {\n\t\treturn this.distanceToLineSegment(A, B, filters) <= distance\n\t}\n\n\tintersectLineSegment(A: VecLike, B: VecLike, _filters?: Geometry2dFilters): VecLike[] {\n\t\tconst intersections = this.isClosed\n\t\t\t? intersectLineSegmentPolygon(A, B, this.vertices)\n\t\t\t: intersectLineSegmentPolyline(A, B, this.vertices)\n\n\t\treturn intersections ?? []\n\t}\n\n\tintersectCircle(center: VecLike, radius: number, _filters?: Geometry2dFilters): VecLike[] {\n\t\tconst intersections = this.isClosed\n\t\t\t? intersectCirclePolygon(center, radius, this.vertices)\n\t\t\t: intersectCirclePolyline(center, radius, this.vertices)\n\n\t\treturn intersections ?? []\n\t}\n\n\tintersectPolygon(polygon: VecLike[], _filters?: Geometry2dFilters): VecLike[] {\n\t\treturn intersectPolys(polygon, this.vertices, true, this.isClosed)\n\t}\n\n\tintersectPolyline(polyline: VecLike[], _filters?: Geometry2dFilters): VecLike[] {\n\t\treturn intersectPolys(polyline, this.vertices, false, this.isClosed)\n\t}\n\n\t/**\n\t * Find a point along the edge of the geometry that is a fraction `t` along the entire way round.\n\t */\n\tinterpolateAlongEdge(t: number, _filters?: Geometry2dFilters): Vec {\n\t\tconst { vertices } = this\n\n\t\tif (t <= 0) return vertices[0]\n\n\t\tconst distanceToTravel = t * this.length\n\t\tlet distanceTraveled = 0\n\n\t\tfor (let i = 0; i < (this.isClosed ? vertices.length : vertices.length - 1); i++) {\n\t\t\tconst curr = vertices[i]\n\t\t\tconst next = vertices[(i + 1) % vertices.length]\n\t\t\tconst dist = Vec.Dist(curr, next)\n\t\t\tconst newDistanceTraveled = distanceTraveled + dist\n\t\t\tif (newDistanceTraveled >= distanceToTravel) {\n\t\t\t\tconst p = Vec.Lrp(\n\t\t\t\t\tcurr,\n\t\t\t\t\tnext,\n\t\t\t\t\tinvLerp(distanceTraveled, newDistanceTraveled, distanceToTravel)\n\t\t\t\t)\n\t\t\t\treturn p\n\t\t\t}\n\t\t\tdistanceTraveled = newDistanceTraveled\n\t\t}\n\n\t\treturn this.isClosed ? vertices[0] : vertices[vertices.length - 1]\n\t}\n\n\t/**\n\t * Take `point`, find the closest point to it on the edge of the geometry, and return how far\n\t * along the edge it is as a fraction of the total length.\n\t */\n\tuninterpolateAlongEdge(point: VecLike, _filters?: Geometry2dFilters): number {\n\t\tconst { vertices, length } = this\n\t\tlet closestSegment = null\n\t\tlet closestDistance = Infinity\n\t\tlet distanceTraveled = 0\n\n\t\tfor (let i = 0; i < (this.isClosed ? vertices.length : vertices.length - 1); i++) {\n\t\t\tconst curr = vertices[i]\n\t\t\tconst next = vertices[(i + 1) % vertices.length]\n\n\t\t\tconst nearestPoint = Vec.NearestPointOnLineSegment(curr, next, point, true)\n\t\t\tconst distance = Vec.Dist(nearestPoint, point)\n\n\t\t\tif (distance < closestDistance) {\n\t\t\t\tclosestDistance = distance\n\t\t\t\tclosestSegment = {\n\t\t\t\t\tstart: curr,\n\t\t\t\t\tend: next,\n\t\t\t\t\tnearestPoint,\n\t\t\t\t\tdistanceToStart: distanceTraveled,\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tdistanceTraveled += Vec.Dist(curr, next)\n\t\t}\n\n\t\tassert(closestSegment)\n\n\t\tconst distanceAlongRoute =\n\t\t\tclosestSegment.distanceToStart + Vec.Dist(closestSegment.start, closestSegment.nearestPoint)\n\n\t\treturn distanceAlongRoute / length\n\t}\n\n\t/** @deprecated Iterate the vertices instead. */\n\tnearestPointOnLineSegment(A: VecLike, B: VecLike): Vec {\n\t\tconst { vertices } = this\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet d: number, p: Vec, q: Vec\n\t\tfor (let i = 0; i < vertices.length; i++) {\n\t\t\tp = vertices[i]\n\t\t\tq = Vec.NearestPointOnLineSegment(A, B, p, true)\n\t\t\td = Vec.Dist2(p, q)\n\t\t\tif (d < dist) {\n\t\t\t\tdist = d\n\t\t\t\tnearest = q\n\t\t\t}\n\t\t}\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn nearest\n\t}\n\n\tisPointInBounds(point: VecLike, margin = 0) {\n\t\tconst { bounds } = this\n\t\treturn !(\n\t\t\tpoint.x < bounds.minX - margin ||\n\t\t\tpoint.y < bounds.minY - margin ||\n\t\t\tpoint.x > bounds.maxX + margin ||\n\t\t\tpoint.y > bounds.maxY + margin\n\t\t)\n\t}\n\n\ttransform(transform: MatModel, opts?: TransformedGeometry2dOptions): Geometry2d {\n\t\treturn new TransformedGeometry2d(this, transform, opts)\n\t}\n\n\tprivate _vertices: Vec[] | undefined\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget vertices(): Vec[] {\n\t\tif (!this._vertices) {\n\t\t\tthis._vertices = this.getVertices(Geometry2dFilters.EXCLUDE_LABELS)\n\t\t}\n\n\t\treturn this._vertices\n\t}\n\n\tgetBounds() {\n\t\treturn Box.FromPoints(this.vertices)\n\t}\n\n\tprivate _bounds: Box | undefined\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget bounds(): Box {\n\t\tif (!this._bounds) {\n\t\t\tthis._bounds = this.getBounds()\n\t\t}\n\t\treturn this._bounds\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget center() {\n\t\treturn this.bounds.center\n\t}\n\n\tprivate _area: number | undefined\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget area() {\n\t\tif (!this._area) {\n\t\t\tthis._area = this.getArea()\n\t\t}\n\t\treturn this._area\n\t}\n\n\tgetArea() {\n\t\tif (!this.isClosed) {\n\t\t\treturn 0\n\t\t}\n\t\tconst { vertices } = this\n\t\tlet area = 0\n\t\tfor (let i = 0, n = vertices.length; i < n; i++) {\n\t\t\tconst curr = vertices[i]\n\t\t\tconst next = vertices[(i + 1) % n]\n\t\t\tarea += curr.x * next.y - next.x * curr.y\n\t\t}\n\t\treturn area / 2\n\t}\n\n\ttoSimpleSvgPath() {\n\t\tlet path = ''\n\n\t\tconst { vertices } = this\n\t\tconst n = vertices.length\n\n\t\tif (n === 0) return path\n\n\t\tpath += `M${vertices[0].x},${vertices[0].y}`\n\n\t\tfor (let i = 1; i < n; i++) {\n\t\t\tpath += `L${vertices[i].x},${vertices[i].y}`\n\t\t}\n\n\t\tif (this.isClosed) {\n\t\t\tpath += 'Z'\n\t\t}\n\n\t\treturn path\n\t}\n\n\tprivate _length?: number\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget length() {\n\t\tif (this._length) return this._length\n\t\tthis._length = this.getLength(Geometry2dFilters.EXCLUDE_LABELS)\n\t\treturn this._length\n\t}\n\n\tgetLength(_filters?: Geometry2dFilters) {\n\t\tconst vertices = this.getVertices(_filters ?? Geometry2dFilters.EXCLUDE_LABELS)\n\t\tif (vertices.length === 0) return 0\n\t\tlet prev = vertices[0]\n\t\tlet length = 0\n\t\tfor (let i = 1; i < vertices.length; i++) {\n\t\t\tconst next = vertices[i]\n\t\t\tlength += Vec.Dist(prev, next)\n\t\t\tprev = next\n\t\t}\n\t\tif (this.isClosed) {\n\t\t\tlength += Vec.Dist(vertices[vertices.length - 1], vertices[0])\n\t\t}\n\t\treturn length\n\t}\n\n\tabstract getSvgPathData(first: boolean): string\n}\n\n// =================================================================================================\n// Because Geometry2d.transform depends on TransformedGeometry2d, we need to define it here instead\n// of in its own files. This prevents a circular import error.\n// =================================================================================================\n\n/** @public */\nexport class TransformedGeometry2d extends Geometry2d {\n\tprivate readonly inverse: MatModel\n\tprivate readonly decomposed\n\n\tconstructor(\n\t\tprivate readonly geometry: Geometry2d,\n\t\tprivate readonly matrix: MatModel,\n\t\topts?: TransformedGeometry2dOptions\n\t) {\n\t\tsuper(geometry)\n\t\tthis.inverse = Mat.Inverse(matrix)\n\t\tthis.decomposed = Mat.Decompose(matrix)\n\n\t\tif (opts) {\n\t\t\tif (opts.isLabel != null) this.isLabel = opts.isLabel\n\t\t\tif (opts.isInternal != null) this.isInternal = opts.isInternal\n\t\t\tif (opts.debugColor != null) this.debugColor = opts.debugColor\n\t\t\tif (opts.ignore != null) this.ignore = opts.ignore\n\t\t}\n\n\t\tassert(\n\t\t\tapproximately(this.decomposed.scaleX, this.decomposed.scaleY),\n\t\t\t'non-uniform scaling is not yet supported'\n\t\t)\n\t}\n\n\tgetVertices(filters: Geometry2dFilters): Vec[] {\n\t\treturn this.geometry.getVertices(filters).map((v) => Mat.applyToPoint(this.matrix, v))\n\t}\n\n\tnearestPoint(point: VecLike, filters?: Geometry2dFilters): Vec {\n\t\treturn Mat.applyToPoint(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.nearestPoint(Mat.applyToPoint(this.inverse, point), filters)\n\t\t)\n\t}\n\n\toverride hitTestPoint(\n\t\tpoint: VecLike,\n\t\tmargin = 0,\n\t\thitInside?: boolean,\n\t\tfilters?: Geometry2dFilters\n\t): boolean {\n\t\treturn this.geometry.hitTestPoint(\n\t\t\tMat.applyToPoint(this.inverse, point),\n\t\t\tmargin / this.decomposed.scaleX,\n\t\t\thitInside,\n\t\t\tfilters\n\t\t)\n\t}\n\n\toverride distanceToPoint(point: VecLike, hitInside = false, filters?: Geometry2dFilters) {\n\t\treturn (\n\t\t\tthis.geometry.distanceToPoint(Mat.applyToPoint(this.inverse, point), hitInside, filters) *\n\t\t\tthis.decomposed.scaleX\n\t\t)\n\t}\n\n\toverride distanceToLineSegment(A: VecLike, B: VecLike, filters?: Geometry2dFilters) {\n\t\treturn (\n\t\t\tthis.geometry.distanceToLineSegment(\n\t\t\t\tMat.applyToPoint(this.inverse, A),\n\t\t\t\tMat.applyToPoint(this.inverse, B),\n\t\t\t\tfilters\n\t\t\t) * this.decomposed.scaleX\n\t\t)\n\t}\n\n\toverride hitTestLineSegment(\n\t\tA: VecLike,\n\t\tB: VecLike,\n\t\tdistance = 0,\n\t\tfilters?: Geometry2dFilters\n\t): boolean {\n\t\treturn this.geometry.hitTestLineSegment(\n\t\t\tMat.applyToPoint(this.inverse, A),\n\t\t\tMat.applyToPoint(this.inverse, B),\n\t\t\tdistance / this.decomposed.scaleX,\n\t\t\tfilters\n\t\t)\n\t}\n\n\toverride intersectLineSegment(A: VecLike, B: VecLike, filters?: Geometry2dFilters) {\n\t\treturn Mat.applyToPoints(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.intersectLineSegment(\n\t\t\t\tMat.applyToPoint(this.inverse, A),\n\t\t\t\tMat.applyToPoint(this.inverse, B),\n\t\t\t\tfilters\n\t\t\t)\n\t\t)\n\t}\n\n\toverride intersectCircle(center: VecLike, radius: number, filters?: Geometry2dFilters) {\n\t\treturn Mat.applyToPoints(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.intersectCircle(\n\t\t\t\tMat.applyToPoint(this.inverse, center),\n\t\t\t\tradius / this.decomposed.scaleX,\n\t\t\t\tfilters\n\t\t\t)\n\t\t)\n\t}\n\n\toverride intersectPolygon(polygon: VecLike[], filters?: Geometry2dFilters): VecLike[] {\n\t\treturn Mat.applyToPoints(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.intersectPolygon(Mat.applyToPoints(this.inverse, polygon), filters)\n\t\t)\n\t}\n\n\toverride intersectPolyline(polyline: VecLike[], filters?: Geometry2dFilters): VecLike[] {\n\t\treturn Mat.applyToPoints(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.intersectPolyline(Mat.applyToPoints(this.inverse, polyline), filters)\n\t\t)\n\t}\n\n\toverride transform(transform: MatModel, opts?: TransformedGeometry2dOptions): Geometry2d {\n\t\treturn new TransformedGeometry2d(this.geometry, Mat.Multiply(transform, this.matrix), {\n\t\t\tisLabel: opts?.isLabel ?? this.isLabel,\n\t\t\tisInternal: opts?.isInternal ?? this.isInternal,\n\t\t\tdebugColor: opts?.debugColor ?? this.debugColor,\n\t\t\tignore: opts?.ignore ?? this.ignore,\n\t\t})\n\t}\n\n\tgetSvgPathData(): string {\n\t\tthrow new Error('Cannot get SVG path data for transformed geometry.')\n\t}\n}\n"],
|
|
5
|
-
"mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mBAAgC;AAChC,iBAAoB;AACpB,iBAA8B;AAC9B,iBAA6B;AAC7B,
|
|
4
|
+
"sourcesContent": ["import { assert, invLerp } from '@tldraw/utils'\nimport { Box } from '../Box'\nimport { Mat, MatModel } from '../Mat'\nimport { Vec, VecLike } from '../Vec'\nimport {\n\tintersectCirclePolygon,\n\tintersectCirclePolyline,\n\tintersectLineSegmentPolygon,\n\tintersectLineSegmentPolyline,\n\tintersectPolys,\n\tlinesIntersect,\n\tpolygonIntersectsPolyline,\n\tpolygonsIntersect,\n} from '../intersect'\nimport { approximately, pointInPolygon } from '../utils'\n\n/**\n * Filter geometry within a group.\n *\n * Filters are ignored when called directly on primitive geometries, but can be used to narrow down\n * the results of an operation on `Group2d` geometries.\n *\n * @public\n */\nexport interface Geometry2dFilters {\n\treadonly includeLabels?: boolean\n\treadonly includeInternal?: boolean\n}\n\n/** @public */\nexport const Geometry2dFilters: {\n\tEXCLUDE_NON_STANDARD: Geometry2dFilters\n\tINCLUDE_ALL: Geometry2dFilters\n\tEXCLUDE_LABELS: Geometry2dFilters\n\tEXCLUDE_INTERNAL: Geometry2dFilters\n} = {\n\tEXCLUDE_NON_STANDARD: {\n\t\tincludeLabels: false,\n\t\tincludeInternal: false,\n\t},\n\tINCLUDE_ALL: { includeLabels: true, includeInternal: true },\n\tEXCLUDE_LABELS: { includeLabels: false, includeInternal: true },\n\tEXCLUDE_INTERNAL: { includeLabels: true, includeInternal: false },\n}\n\n/** @public */\nexport interface TransformedGeometry2dOptions {\n\tisLabel?: boolean\n\tisEmptyLabel?: boolean\n\tisInternal?: boolean\n\tdebugColor?: string\n\tignore?: boolean\n\texcludeFromShapeBounds?: boolean\n}\n\n/** @public */\nexport interface Geometry2dOptions extends TransformedGeometry2dOptions {\n\tisFilled: boolean\n\tisClosed: boolean\n}\n\n/** @public */\nexport abstract class Geometry2d {\n\t// todo: consider making accessors for these too, so that they can be overridden in subclasses by geometries with more complex logic\n\tisFilled = false\n\tisClosed = true\n\tisLabel = false\n\tisEmptyLabel = false\n\tisInternal = false\n\texcludeFromShapeBounds = false\n\tdebugColor?: string\n\tignore?: boolean\n\n\tconstructor(opts: Geometry2dOptions) {\n\t\tconst {\n\t\t\tisLabel = false,\n\t\t\tisEmptyLabel = false,\n\t\t\tisInternal = false,\n\t\t\texcludeFromShapeBounds = false,\n\t\t} = opts\n\t\tthis.isFilled = opts.isFilled\n\t\tthis.isClosed = opts.isClosed\n\t\tthis.debugColor = opts.debugColor\n\t\tthis.ignore = opts.ignore\n\t\tthis.isLabel = isLabel\n\t\tthis.isEmptyLabel = isEmptyLabel\n\t\tthis.isInternal = isInternal\n\t\tthis.excludeFromShapeBounds = excludeFromShapeBounds\n\t}\n\n\tisExcludedByFilter(filters?: Geometry2dFilters) {\n\t\tif (!filters) return false\n\t\tif (this.isLabel && !filters.includeLabels) return true\n\t\tif (this.isInternal && !filters.includeInternal) return true\n\t\treturn false\n\t}\n\n\tabstract getVertices(filters: Geometry2dFilters): Vec[]\n\n\tabstract nearestPoint(point: VecLike, _filters?: Geometry2dFilters): Vec\n\n\thitTestPoint(point: VecLike, margin = 0, hitInside = false, _filters?: Geometry2dFilters) {\n\t\t// First check whether the point is inside\n\t\tif (this.isClosed && (this.isFilled || hitInside) && pointInPolygon(point, this.vertices)) {\n\t\t\treturn true\n\t\t}\n\t\t// Then check whether the distance is within the margin\n\t\treturn Vec.Dist2(point, this.nearestPoint(point)) <= margin * margin\n\t}\n\n\tdistanceToPoint(point: VecLike, hitInside = false, filters?: Geometry2dFilters) {\n\t\treturn (\n\t\t\tVec.Dist(point, this.nearestPoint(point, filters)) *\n\t\t\t(this.isClosed && (this.isFilled || hitInside) && pointInPolygon(point, this.vertices)\n\t\t\t\t? -1\n\t\t\t\t: 1)\n\t\t)\n\t}\n\n\tdistanceToLineSegment(A: VecLike, B: VecLike, filters?: Geometry2dFilters) {\n\t\tif (Vec.Equals(A, B)) return this.distanceToPoint(A, false, filters)\n\t\tconst { vertices } = this\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet d: number, p: Vec, q: Vec\n\t\tconst nextLimit = this.isClosed ? vertices.length : vertices.length - 1\n\t\tfor (let i = 0; i < vertices.length; i++) {\n\t\t\tp = vertices[i]\n\t\t\tif (i < nextLimit) {\n\t\t\t\tconst next = vertices[(i + 1) % vertices.length]\n\t\t\t\tif (linesIntersect(A, B, p, next)) return 0\n\t\t\t}\n\t\t\tq = Vec.NearestPointOnLineSegment(A, B, p, true)\n\t\t\td = Vec.Dist2(p, q)\n\t\t\tif (d < dist) {\n\t\t\t\tdist = d\n\t\t\t\tnearest = q\n\t\t\t}\n\t\t}\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn this.isClosed && this.isFilled && pointInPolygon(nearest, this.vertices) ? -dist : dist\n\t}\n\n\thitTestLineSegment(A: VecLike, B: VecLike, distance = 0, filters?: Geometry2dFilters): boolean {\n\t\treturn this.distanceToLineSegment(A, B, filters) <= distance\n\t}\n\n\tintersectLineSegment(A: VecLike, B: VecLike, _filters?: Geometry2dFilters): VecLike[] {\n\t\tconst intersections = this.isClosed\n\t\t\t? intersectLineSegmentPolygon(A, B, this.vertices)\n\t\t\t: intersectLineSegmentPolyline(A, B, this.vertices)\n\n\t\treturn intersections ?? []\n\t}\n\n\tintersectCircle(center: VecLike, radius: number, _filters?: Geometry2dFilters): VecLike[] {\n\t\tconst intersections = this.isClosed\n\t\t\t? intersectCirclePolygon(center, radius, this.vertices)\n\t\t\t: intersectCirclePolyline(center, radius, this.vertices)\n\n\t\treturn intersections ?? []\n\t}\n\n\tintersectPolygon(polygon: VecLike[], _filters?: Geometry2dFilters): VecLike[] {\n\t\treturn intersectPolys(polygon, this.vertices, true, this.isClosed)\n\t}\n\n\tintersectPolyline(polyline: VecLike[], _filters?: Geometry2dFilters): VecLike[] {\n\t\treturn intersectPolys(polyline, this.vertices, false, this.isClosed)\n\t}\n\n\t/**\n\t * Find a point along the edge of the geometry that is a fraction `t` along the entire way round.\n\t */\n\tinterpolateAlongEdge(t: number, _filters?: Geometry2dFilters): Vec {\n\t\tconst { vertices } = this\n\n\t\tif (t <= 0) return vertices[0]\n\n\t\tconst distanceToTravel = t * this.length\n\t\tlet distanceTraveled = 0\n\n\t\tfor (let i = 0; i < (this.isClosed ? vertices.length : vertices.length - 1); i++) {\n\t\t\tconst curr = vertices[i]\n\t\t\tconst next = vertices[(i + 1) % vertices.length]\n\t\t\tconst dist = Vec.Dist(curr, next)\n\t\t\tconst newDistanceTraveled = distanceTraveled + dist\n\t\t\tif (newDistanceTraveled >= distanceToTravel) {\n\t\t\t\tconst p = Vec.Lrp(\n\t\t\t\t\tcurr,\n\t\t\t\t\tnext,\n\t\t\t\t\tinvLerp(distanceTraveled, newDistanceTraveled, distanceToTravel)\n\t\t\t\t)\n\t\t\t\treturn p\n\t\t\t}\n\t\t\tdistanceTraveled = newDistanceTraveled\n\t\t}\n\n\t\treturn this.isClosed ? vertices[0] : vertices[vertices.length - 1]\n\t}\n\n\t/**\n\t * Take `point`, find the closest point to it on the edge of the geometry, and return how far\n\t * along the edge it is as a fraction of the total length.\n\t */\n\tuninterpolateAlongEdge(point: VecLike, _filters?: Geometry2dFilters): number {\n\t\tconst { vertices, length } = this\n\t\tlet closestSegment = null\n\t\tlet closestDistance = Infinity\n\t\tlet distanceTraveled = 0\n\n\t\tfor (let i = 0; i < (this.isClosed ? vertices.length : vertices.length - 1); i++) {\n\t\t\tconst curr = vertices[i]\n\t\t\tconst next = vertices[(i + 1) % vertices.length]\n\n\t\t\tconst nearestPoint = Vec.NearestPointOnLineSegment(curr, next, point, true)\n\t\t\tconst distance = Vec.Dist(nearestPoint, point)\n\n\t\t\tif (distance < closestDistance) {\n\t\t\t\tclosestDistance = distance\n\t\t\t\tclosestSegment = {\n\t\t\t\t\tstart: curr,\n\t\t\t\t\tend: next,\n\t\t\t\t\tnearestPoint,\n\t\t\t\t\tdistanceToStart: distanceTraveled,\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tdistanceTraveled += Vec.Dist(curr, next)\n\t\t}\n\n\t\tassert(closestSegment)\n\n\t\tconst distanceAlongRoute =\n\t\t\tclosestSegment.distanceToStart + Vec.Dist(closestSegment.start, closestSegment.nearestPoint)\n\n\t\treturn distanceAlongRoute / length\n\t}\n\n\tisPointInBounds(point: VecLike, margin = 0) {\n\t\tconst { bounds } = this\n\t\treturn !(\n\t\t\tpoint.x < bounds.minX - margin ||\n\t\t\tpoint.y < bounds.minY - margin ||\n\t\t\tpoint.x > bounds.maxX + margin ||\n\t\t\tpoint.y > bounds.maxY + margin\n\t\t)\n\t}\n\n\toverlapsPolygon(_polygon: VecLike[]): boolean {\n\t\tconst polygon = _polygon.map((v) => Vec.From(v))\n\n\t\t// Otherwise, check if the geometry itself overlaps the polygon\n\t\tconst { vertices, center, isFilled, isEmptyLabel, isClosed } = this\n\n\t\t// We'll do things in order of cheapest to most expensive checks\n\n\t\t// Skip empty labels\n\t\tif (isEmptyLabel) return false\n\n\t\t// If any of the geometry's vertices are inside the polygon, it's inside\n\t\tif (vertices.some((v) => pointInPolygon(v, polygon))) {\n\t\t\treturn true\n\t\t}\n\n\t\t// If the geometry is filled and closed and its center is inside the polygon, it's inside\n\t\tif (isClosed) {\n\t\t\tif (isFilled) {\n\t\t\t\t// If closed and filled, check if the center is inside the polygon\n\t\t\t\tif (pointInPolygon(center, polygon)) {\n\t\t\t\t\treturn true\n\t\t\t\t}\n\n\t\t\t\t// ..then, slightly more expensive check, see the geometry covers the entire polygon but not its center\n\t\t\t\tif (polygon.every((v) => pointInPolygon(v, vertices))) {\n\t\t\t\t\treturn true\n\t\t\t\t}\n\t\t\t}\n\n\t\t\t// If any the geometry's vertices intersect the edge of the polygon, it's inside.\n\t\t\t// for example when a rotated rectangle is moved over the corner of a parent rectangle\n\t\t\t// If the geometry is closed, intersect as a polygon\n\t\t\tif (polygonsIntersect(polygon, vertices)) {\n\t\t\t\treturn true\n\t\t\t}\n\t\t} else {\n\t\t\t// If the geometry is not closed, intersect as a polyline\n\t\t\tif (polygonIntersectsPolyline(polygon, vertices)) {\n\t\t\t\treturn true\n\t\t\t}\n\t\t}\n\n\t\t// If none of the above checks passed, the geometry is outside the polygon\n\t\treturn false\n\t}\n\n\ttransform(transform: MatModel, opts?: TransformedGeometry2dOptions): Geometry2d {\n\t\treturn new TransformedGeometry2d(this, transform, opts)\n\t}\n\n\tprivate _vertices: Vec[] | undefined\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget vertices(): Vec[] {\n\t\tif (!this._vertices) {\n\t\t\tthis._vertices = this.getVertices(Geometry2dFilters.EXCLUDE_LABELS)\n\t\t}\n\n\t\treturn this._vertices\n\t}\n\n\tgetBoundsVertices(): Vec[] {\n\t\tif (this.excludeFromShapeBounds) return []\n\t\treturn this.vertices\n\t}\n\n\tprivate _boundsVertices: Vec[] | undefined\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget boundsVertices(): Vec[] {\n\t\tif (!this._boundsVertices) {\n\t\t\tthis._boundsVertices = this.getBoundsVertices()\n\t\t}\n\t\treturn this._boundsVertices\n\t}\n\n\tgetBounds() {\n\t\treturn Box.FromPoints(this.boundsVertices)\n\t}\n\n\tprivate _bounds: Box | undefined\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget bounds(): Box {\n\t\tif (!this._bounds) {\n\t\t\tthis._bounds = this.getBounds()\n\t\t}\n\t\treturn this._bounds\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget center() {\n\t\treturn this.bounds.center\n\t}\n\n\tprivate _area: number | undefined\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget area() {\n\t\tif (!this._area) {\n\t\t\tthis._area = this.getArea()\n\t\t}\n\t\treturn this._area\n\t}\n\n\tgetArea() {\n\t\tif (!this.isClosed) {\n\t\t\treturn 0\n\t\t}\n\t\tconst { vertices } = this\n\t\tlet area = 0\n\t\tfor (let i = 0, n = vertices.length; i < n; i++) {\n\t\t\tconst curr = vertices[i]\n\t\t\tconst next = vertices[(i + 1) % n]\n\t\t\tarea += curr.x * next.y - next.x * curr.y\n\t\t}\n\t\treturn area / 2\n\t}\n\n\ttoSimpleSvgPath() {\n\t\tlet path = ''\n\n\t\tconst { vertices } = this\n\t\tconst n = vertices.length\n\n\t\tif (n === 0) return path\n\n\t\tpath += `M${vertices[0].x},${vertices[0].y}`\n\n\t\tfor (let i = 1; i < n; i++) {\n\t\t\tpath += `L${vertices[i].x},${vertices[i].y}`\n\t\t}\n\n\t\tif (this.isClosed) {\n\t\t\tpath += 'Z'\n\t\t}\n\n\t\treturn path\n\t}\n\n\tprivate _length?: number\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget length() {\n\t\tif (this._length) return this._length\n\t\tthis._length = this.getLength(Geometry2dFilters.EXCLUDE_LABELS)\n\t\treturn this._length\n\t}\n\n\tgetLength(_filters?: Geometry2dFilters) {\n\t\tconst vertices = this.getVertices(_filters ?? Geometry2dFilters.EXCLUDE_LABELS)\n\t\tif (vertices.length === 0) return 0\n\t\tlet prev = vertices[0]\n\t\tlet length = 0\n\t\tfor (let i = 1; i < vertices.length; i++) {\n\t\t\tconst next = vertices[i]\n\t\t\tlength += Vec.Dist(prev, next)\n\t\t\tprev = next\n\t\t}\n\t\tif (this.isClosed) {\n\t\t\tlength += Vec.Dist(vertices[vertices.length - 1], vertices[0])\n\t\t}\n\t\treturn length\n\t}\n\n\tabstract getSvgPathData(first: boolean): string\n}\n\n// =================================================================================================\n// Because Geometry2d.transform depends on TransformedGeometry2d, we need to define it here instead\n// of in its own files. This prevents a circular import error.\n// =================================================================================================\n\n/** @public */\nexport class TransformedGeometry2d extends Geometry2d {\n\tprivate readonly inverse: MatModel\n\tprivate readonly decomposed\n\n\tconstructor(\n\t\tprivate readonly geometry: Geometry2d,\n\t\tprivate readonly matrix: MatModel,\n\t\topts?: TransformedGeometry2dOptions\n\t) {\n\t\tsuper(geometry)\n\t\tthis.inverse = Mat.Inverse(matrix)\n\t\tthis.decomposed = Mat.Decompose(matrix)\n\n\t\tif (opts) {\n\t\t\tif (opts.isLabel != null) this.isLabel = opts.isLabel\n\t\t\tif (opts.isInternal != null) this.isInternal = opts.isInternal\n\t\t\tif (opts.debugColor != null) this.debugColor = opts.debugColor\n\t\t\tif (opts.ignore != null) this.ignore = opts.ignore\n\t\t}\n\n\t\tassert(\n\t\t\tapproximately(this.decomposed.scaleX, this.decomposed.scaleY),\n\t\t\t'non-uniform scaling is not yet supported'\n\t\t)\n\t}\n\n\tgetVertices(filters: Geometry2dFilters): Vec[] {\n\t\treturn this.geometry.getVertices(filters).map((v) => Mat.applyToPoint(this.matrix, v))\n\t}\n\n\tgetBoundsVertices(): Vec[] {\n\t\treturn this.geometry.getBoundsVertices().map((v) => Mat.applyToPoint(this.matrix, v))\n\t}\n\n\tnearestPoint(point: VecLike, filters?: Geometry2dFilters): Vec {\n\t\treturn Mat.applyToPoint(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.nearestPoint(Mat.applyToPoint(this.inverse, point), filters)\n\t\t)\n\t}\n\n\toverride hitTestPoint(\n\t\tpoint: VecLike,\n\t\tmargin = 0,\n\t\thitInside?: boolean,\n\t\tfilters?: Geometry2dFilters\n\t): boolean {\n\t\treturn this.geometry.hitTestPoint(\n\t\t\tMat.applyToPoint(this.inverse, point),\n\t\t\tmargin / this.decomposed.scaleX,\n\t\t\thitInside,\n\t\t\tfilters\n\t\t)\n\t}\n\n\toverride distanceToPoint(point: VecLike, hitInside = false, filters?: Geometry2dFilters) {\n\t\treturn (\n\t\t\tthis.geometry.distanceToPoint(Mat.applyToPoint(this.inverse, point), hitInside, filters) *\n\t\t\tthis.decomposed.scaleX\n\t\t)\n\t}\n\n\toverride distanceToLineSegment(A: VecLike, B: VecLike, filters?: Geometry2dFilters) {\n\t\treturn (\n\t\t\tthis.geometry.distanceToLineSegment(\n\t\t\t\tMat.applyToPoint(this.inverse, A),\n\t\t\t\tMat.applyToPoint(this.inverse, B),\n\t\t\t\tfilters\n\t\t\t) * this.decomposed.scaleX\n\t\t)\n\t}\n\n\toverride hitTestLineSegment(\n\t\tA: VecLike,\n\t\tB: VecLike,\n\t\tdistance = 0,\n\t\tfilters?: Geometry2dFilters\n\t): boolean {\n\t\treturn this.geometry.hitTestLineSegment(\n\t\t\tMat.applyToPoint(this.inverse, A),\n\t\t\tMat.applyToPoint(this.inverse, B),\n\t\t\tdistance / this.decomposed.scaleX,\n\t\t\tfilters\n\t\t)\n\t}\n\n\toverride intersectLineSegment(A: VecLike, B: VecLike, filters?: Geometry2dFilters) {\n\t\treturn Mat.applyToPoints(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.intersectLineSegment(\n\t\t\t\tMat.applyToPoint(this.inverse, A),\n\t\t\t\tMat.applyToPoint(this.inverse, B),\n\t\t\t\tfilters\n\t\t\t)\n\t\t)\n\t}\n\n\toverride intersectCircle(center: VecLike, radius: number, filters?: Geometry2dFilters) {\n\t\treturn Mat.applyToPoints(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.intersectCircle(\n\t\t\t\tMat.applyToPoint(this.inverse, center),\n\t\t\t\tradius / this.decomposed.scaleX,\n\t\t\t\tfilters\n\t\t\t)\n\t\t)\n\t}\n\n\toverride intersectPolygon(polygon: VecLike[], filters?: Geometry2dFilters): VecLike[] {\n\t\treturn Mat.applyToPoints(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.intersectPolygon(Mat.applyToPoints(this.inverse, polygon), filters)\n\t\t)\n\t}\n\n\toverride intersectPolyline(polyline: VecLike[], filters?: Geometry2dFilters): VecLike[] {\n\t\treturn Mat.applyToPoints(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.intersectPolyline(Mat.applyToPoints(this.inverse, polyline), filters)\n\t\t)\n\t}\n\n\toverride transform(transform: MatModel, opts?: TransformedGeometry2dOptions): Geometry2d {\n\t\treturn new TransformedGeometry2d(this.geometry, Mat.Multiply(transform, this.matrix), {\n\t\t\tisLabel: opts?.isLabel ?? this.isLabel,\n\t\t\tisInternal: opts?.isInternal ?? this.isInternal,\n\t\t\tdebugColor: opts?.debugColor ?? this.debugColor,\n\t\t\tignore: opts?.ignore ?? this.ignore,\n\t\t})\n\t}\n\n\tgetSvgPathData(): string {\n\t\tthrow new Error('Cannot get SVG path data for transformed geometry.')\n\t}\n}\n"],
|
|
5
|
+
"mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mBAAgC;AAChC,iBAAoB;AACpB,iBAA8B;AAC9B,iBAA6B;AAC7B,uBASO;AACP,IAAAA,gBAA8C;AAgBvC,MAAM,oBAKT;AAAA,EACH,sBAAsB;AAAA,IACrB,eAAe;AAAA,IACf,iBAAiB;AAAA,EAClB;AAAA,EACA,aAAa,EAAE,eAAe,MAAM,iBAAiB,KAAK;AAAA,EAC1D,gBAAgB,EAAE,eAAe,OAAO,iBAAiB,KAAK;AAAA,EAC9D,kBAAkB,EAAE,eAAe,MAAM,iBAAiB,MAAM;AACjE;AAmBO,MAAe,WAAW;AAAA;AAAA,EAEhC,WAAW;AAAA,EACX,WAAW;AAAA,EACX,UAAU;AAAA,EACV,eAAe;AAAA,EACf,aAAa;AAAA,EACb,yBAAyB;AAAA,EACzB;AAAA,EACA;AAAA,EAEA,YAAY,MAAyB;AACpC,UAAM;AAAA,MACL,UAAU;AAAA,MACV,eAAe;AAAA,MACf,aAAa;AAAA,MACb,yBAAyB;AAAA,IAC1B,IAAI;AACJ,SAAK,WAAW,KAAK;AACrB,SAAK,WAAW,KAAK;AACrB,SAAK,aAAa,KAAK;AACvB,SAAK,SAAS,KAAK;AACnB,SAAK,UAAU;AACf,SAAK,eAAe;AACpB,SAAK,aAAa;AAClB,SAAK,yBAAyB;AAAA,EAC/B;AAAA,EAEA,mBAAmB,SAA6B;AAC/C,QAAI,CAAC,QAAS,QAAO;AACrB,QAAI,KAAK,WAAW,CAAC,QAAQ,cAAe,QAAO;AACnD,QAAI,KAAK,cAAc,CAAC,QAAQ,gBAAiB,QAAO;AACxD,WAAO;AAAA,EACR;AAAA,EAMA,aAAa,OAAgB,SAAS,GAAG,YAAY,OAAO,UAA8B;AAEzF,QAAI,KAAK,aAAa,KAAK,YAAY,kBAAc,8BAAe,OAAO,KAAK,QAAQ,GAAG;AAC1F,aAAO;AAAA,IACR;AAEA,WAAO,eAAI,MAAM,OAAO,KAAK,aAAa,KAAK,CAAC,KAAK,SAAS;AAAA,EAC/D;AAAA,EAEA,gBAAgB,OAAgB,YAAY,OAAO,SAA6B;AAC/E,WACC,eAAI,KAAK,OAAO,KAAK,aAAa,OAAO,OAAO,CAAC,KAChD,KAAK,aAAa,KAAK,YAAY,kBAAc,8BAAe,OAAO,KAAK,QAAQ,IAClF,KACA;AAAA,EAEL;AAAA,EAEA,sBAAsB,GAAY,GAAY,SAA6B;AAC1E,QAAI,eAAI,OAAO,GAAG,CAAC,EAAG,QAAO,KAAK,gBAAgB,GAAG,OAAO,OAAO;AACnE,UAAM,EAAE,SAAS,IAAI;AACrB,QAAI;AACJ,QAAI,OAAO;AACX,QAAI,GAAW,GAAQ;AACvB,UAAM,YAAY,KAAK,WAAW,SAAS,SAAS,SAAS,SAAS;AACtE,aAAS,IAAI,GAAG,IAAI,SAAS,QAAQ,KAAK;AACzC,UAAI,SAAS,CAAC;AACd,UAAI,IAAI,WAAW;AAClB,cAAM,OAAO,UAAU,IAAI,KAAK,SAAS,MAAM;AAC/C,gBAAI,iCAAe,GAAG,GAAG,GAAG,IAAI,EAAG,QAAO;AAAA,MAC3C;AACA,UAAI,eAAI,0BAA0B,GAAG,GAAG,GAAG,IAAI;AAC/C,UAAI,eAAI,MAAM,GAAG,CAAC;AAClB,UAAI,IAAI,MAAM;AACb,eAAO;AACP,kBAAU;AAAA,MACX;AAAA,IACD;AACA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO,KAAK,YAAY,KAAK,gBAAY,8BAAe,SAAS,KAAK,QAAQ,IAAI,CAAC,OAAO;AAAA,EAC3F;AAAA,EAEA,mBAAmB,GAAY,GAAY,WAAW,GAAG,SAAsC;AAC9F,WAAO,KAAK,sBAAsB,GAAG,GAAG,OAAO,KAAK;AAAA,EACrD;AAAA,EAEA,qBAAqB,GAAY,GAAY,UAAyC;AACrF,UAAM,gBAAgB,KAAK,eACxB,8CAA4B,GAAG,GAAG,KAAK,QAAQ,QAC/C,+CAA6B,GAAG,GAAG,KAAK,QAAQ;AAEnD,WAAO,iBAAiB,CAAC;AAAA,EAC1B;AAAA,EAEA,gBAAgB,QAAiB,QAAgB,UAAyC;AACzF,UAAM,gBAAgB,KAAK,eACxB,yCAAuB,QAAQ,QAAQ,KAAK,QAAQ,QACpD,0CAAwB,QAAQ,QAAQ,KAAK,QAAQ;AAExD,WAAO,iBAAiB,CAAC;AAAA,EAC1B;AAAA,EAEA,iBAAiB,SAAoB,UAAyC;AAC7E,eAAO,iCAAe,SAAS,KAAK,UAAU,MAAM,KAAK,QAAQ;AAAA,EAClE;AAAA,EAEA,kBAAkB,UAAqB,UAAyC;AAC/E,eAAO,iCAAe,UAAU,KAAK,UAAU,OAAO,KAAK,QAAQ;AAAA,EACpE;AAAA;AAAA;AAAA;AAAA,EAKA,qBAAqB,GAAW,UAAmC;AAClE,UAAM,EAAE,SAAS,IAAI;AAErB,QAAI,KAAK,EAAG,QAAO,SAAS,CAAC;AAE7B,UAAM,mBAAmB,IAAI,KAAK;AAClC,QAAI,mBAAmB;AAEvB,aAAS,IAAI,GAAG,KAAK,KAAK,WAAW,SAAS,SAAS,SAAS,SAAS,IAAI,KAAK;AACjF,YAAM,OAAO,SAAS,CAAC;AACvB,YAAM,OAAO,UAAU,IAAI,KAAK,SAAS,MAAM;AAC/C,YAAM,OAAO,eAAI,KAAK,MAAM,IAAI;AAChC,YAAM,sBAAsB,mBAAmB;AAC/C,UAAI,uBAAuB,kBAAkB;AAC5C,cAAM,IAAI,eAAI;AAAA,UACb;AAAA,UACA;AAAA,cACA,sBAAQ,kBAAkB,qBAAqB,gBAAgB;AAAA,QAChE;AACA,eAAO;AAAA,MACR;AACA,yBAAmB;AAAA,IACpB;AAEA,WAAO,KAAK,WAAW,SAAS,CAAC,IAAI,SAAS,SAAS,SAAS,CAAC;AAAA,EAClE;AAAA;AAAA;AAAA;AAAA;AAAA,EAMA,uBAAuB,OAAgB,UAAsC;AAC5E,UAAM,EAAE,UAAU,OAAO,IAAI;AAC7B,QAAI,iBAAiB;AACrB,QAAI,kBAAkB;AACtB,QAAI,mBAAmB;AAEvB,aAAS,IAAI,GAAG,KAAK,KAAK,WAAW,SAAS,SAAS,SAAS,SAAS,IAAI,KAAK;AACjF,YAAM,OAAO,SAAS,CAAC;AACvB,YAAM,OAAO,UAAU,IAAI,KAAK,SAAS,MAAM;AAE/C,YAAM,eAAe,eAAI,0BAA0B,MAAM,MAAM,OAAO,IAAI;AAC1E,YAAM,WAAW,eAAI,KAAK,cAAc,KAAK;AAE7C,UAAI,WAAW,iBAAiB;AAC/B,0BAAkB;AAClB,yBAAiB;AAAA,UAChB,OAAO;AAAA,UACP,KAAK;AAAA,UACL;AAAA,UACA,iBAAiB;AAAA,QAClB;AAAA,MACD;AAEA,0BAAoB,eAAI,KAAK,MAAM,IAAI;AAAA,IACxC;AAEA,6BAAO,cAAc;AAErB,UAAM,qBACL,eAAe,kBAAkB,eAAI,KAAK,eAAe,OAAO,eAAe,YAAY;AAE5F,WAAO,qBAAqB;AAAA,EAC7B;AAAA,EAEA,gBAAgB,OAAgB,SAAS,GAAG;AAC3C,UAAM,EAAE,OAAO,IAAI;AACnB,WAAO,EACN,MAAM,IAAI,OAAO,OAAO,UACxB,MAAM,IAAI,OAAO,OAAO,UACxB,MAAM,IAAI,OAAO,OAAO,UACxB,MAAM,IAAI,OAAO,OAAO;AAAA,EAE1B;AAAA,EAEA,gBAAgB,UAA8B;AAC7C,UAAM,UAAU,SAAS,IAAI,CAAC,MAAM,eAAI,KAAK,CAAC,CAAC;AAG/C,UAAM,EAAE,UAAU,QAAQ,UAAU,cAAc,SAAS,IAAI;AAK/D,QAAI,aAAc,QAAO;AAGzB,QAAI,SAAS,KAAK,CAAC,UAAM,8BAAe,GAAG,OAAO,CAAC,GAAG;AACrD,aAAO;AAAA,IACR;AAGA,QAAI,UAAU;AACb,UAAI,UAAU;AAEb,gBAAI,8BAAe,QAAQ,OAAO,GAAG;AACpC,iBAAO;AAAA,QACR;AAGA,YAAI,QAAQ,MAAM,CAAC,UAAM,8BAAe,GAAG,QAAQ,CAAC,GAAG;AACtD,iBAAO;AAAA,QACR;AAAA,MACD;AAKA,cAAI,oCAAkB,SAAS,QAAQ,GAAG;AACzC,eAAO;AAAA,MACR;AAAA,IACD,OAAO;AAEN,cAAI,4CAA0B,SAAS,QAAQ,GAAG;AACjD,eAAO;AAAA,MACR;AAAA,IACD;AAGA,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,WAAqB,MAAiD;AAC/E,WAAO,IAAI,sBAAsB,MAAM,WAAW,IAAI;AAAA,EACvD;AAAA,EAEQ;AAAA;AAAA,EAGR,IAAI,WAAkB;AACrB,QAAI,CAAC,KAAK,WAAW;AACpB,WAAK,YAAY,KAAK,YAAY,kBAAkB,cAAc;AAAA,IACnE;AAEA,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,oBAA2B;AAC1B,QAAI,KAAK,uBAAwB,QAAO,CAAC;AACzC,WAAO,KAAK;AAAA,EACb;AAAA,EAEQ;AAAA;AAAA,EAGR,IAAI,iBAAwB;AAC3B,QAAI,CAAC,KAAK,iBAAiB;AAC1B,WAAK,kBAAkB,KAAK,kBAAkB;AAAA,IAC/C;AACA,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,YAAY;AACX,WAAO,eAAI,WAAW,KAAK,cAAc;AAAA,EAC1C;AAAA,EAEQ;AAAA;AAAA,EAGR,IAAI,SAAc;AACjB,QAAI,CAAC,KAAK,SAAS;AAClB,WAAK,UAAU,KAAK,UAAU;AAAA,IAC/B;AACA,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,SAAS;AACZ,WAAO,KAAK,OAAO;AAAA,EACpB;AAAA,EAEQ;AAAA;AAAA,EAGR,IAAI,OAAO;AACV,QAAI,CAAC,KAAK,OAAO;AAChB,WAAK,QAAQ,KAAK,QAAQ;AAAA,IAC3B;AACA,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,UAAU;AACT,QAAI,CAAC,KAAK,UAAU;AACnB,aAAO;AAAA,IACR;AACA,UAAM,EAAE,SAAS,IAAI;AACrB,QAAI,OAAO;AACX,aAAS,IAAI,GAAG,IAAI,SAAS,QAAQ,IAAI,GAAG,KAAK;AAChD,YAAM,OAAO,SAAS,CAAC;AACvB,YAAM,OAAO,UAAU,IAAI,KAAK,CAAC;AACjC,cAAQ,KAAK,IAAI,KAAK,IAAI,KAAK,IAAI,KAAK;AAAA,IACzC;AACA,WAAO,OAAO;AAAA,EACf;AAAA,EAEA,kBAAkB;AACjB,QAAI,OAAO;AAEX,UAAM,EAAE,SAAS,IAAI;AACrB,UAAM,IAAI,SAAS;AAEnB,QAAI,MAAM,EAAG,QAAO;AAEpB,YAAQ,IAAI,SAAS,CAAC,EAAE,CAAC,IAAI,SAAS,CAAC,EAAE,CAAC;AAE1C,aAAS,IAAI,GAAG,IAAI,GAAG,KAAK;AAC3B,cAAQ,IAAI,SAAS,CAAC,EAAE,CAAC,IAAI,SAAS,CAAC,EAAE,CAAC;AAAA,IAC3C;AAEA,QAAI,KAAK,UAAU;AAClB,cAAQ;AAAA,IACT;AAEA,WAAO;AAAA,EACR;AAAA,EAEQ;AAAA;AAAA,EAGR,IAAI,SAAS;AACZ,QAAI,KAAK,QAAS,QAAO,KAAK;AAC9B,SAAK,UAAU,KAAK,UAAU,kBAAkB,cAAc;AAC9D,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,UAAU,UAA8B;AACvC,UAAM,WAAW,KAAK,YAAY,YAAY,kBAAkB,cAAc;AAC9E,QAAI,SAAS,WAAW,EAAG,QAAO;AAClC,QAAI,OAAO,SAAS,CAAC;AACrB,QAAI,SAAS;AACb,aAAS,IAAI,GAAG,IAAI,SAAS,QAAQ,KAAK;AACzC,YAAM,OAAO,SAAS,CAAC;AACvB,gBAAU,eAAI,KAAK,MAAM,IAAI;AAC7B,aAAO;AAAA,IACR;AACA,QAAI,KAAK,UAAU;AAClB,gBAAU,eAAI,KAAK,SAAS,SAAS,SAAS,CAAC,GAAG,SAAS,CAAC,CAAC;AAAA,IAC9D;AACA,WAAO;AAAA,EACR;AAGD;AAQO,MAAM,8BAA8B,WAAW;AAAA,EAIrD,YACkB,UACA,QACjB,MACC;AACD,UAAM,QAAQ;AAJG;AACA;AAIjB,SAAK,UAAU,eAAI,QAAQ,MAAM;AACjC,SAAK,aAAa,eAAI,UAAU,MAAM;AAEtC,QAAI,MAAM;AACT,UAAI,KAAK,WAAW,KAAM,MAAK,UAAU,KAAK;AAC9C,UAAI,KAAK,cAAc,KAAM,MAAK,aAAa,KAAK;AACpD,UAAI,KAAK,cAAc,KAAM,MAAK,aAAa,KAAK;AACpD,UAAI,KAAK,UAAU,KAAM,MAAK,SAAS,KAAK;AAAA,IAC7C;AAEA;AAAA,UACC,6BAAc,KAAK,WAAW,QAAQ,KAAK,WAAW,MAAM;AAAA,MAC5D;AAAA,IACD;AAAA,EACD;AAAA,EAvBiB;AAAA,EACA;AAAA,EAwBjB,YAAY,SAAmC;AAC9C,WAAO,KAAK,SAAS,YAAY,OAAO,EAAE,IAAI,CAAC,MAAM,eAAI,aAAa,KAAK,QAAQ,CAAC,CAAC;AAAA,EACtF;AAAA,EAEA,oBAA2B;AAC1B,WAAO,KAAK,SAAS,kBAAkB,EAAE,IAAI,CAAC,MAAM,eAAI,aAAa,KAAK,QAAQ,CAAC,CAAC;AAAA,EACrF;AAAA,EAEA,aAAa,OAAgB,SAAkC;AAC9D,WAAO,eAAI;AAAA,MACV,KAAK;AAAA,MACL,KAAK,SAAS,aAAa,eAAI,aAAa,KAAK,SAAS,KAAK,GAAG,OAAO;AAAA,IAC1E;AAAA,EACD;AAAA,EAES,aACR,OACA,SAAS,GACT,WACA,SACU;AACV,WAAO,KAAK,SAAS;AAAA,MACpB,eAAI,aAAa,KAAK,SAAS,KAAK;AAAA,MACpC,SAAS,KAAK,WAAW;AAAA,MACzB;AAAA,MACA;AAAA,IACD;AAAA,EACD;AAAA,EAES,gBAAgB,OAAgB,YAAY,OAAO,SAA6B;AACxF,WACC,KAAK,SAAS,gBAAgB,eAAI,aAAa,KAAK,SAAS,KAAK,GAAG,WAAW,OAAO,IACvF,KAAK,WAAW;AAAA,EAElB;AAAA,EAES,sBAAsB,GAAY,GAAY,SAA6B;AACnF,WACC,KAAK,SAAS;AAAA,MACb,eAAI,aAAa,KAAK,SAAS,CAAC;AAAA,MAChC,eAAI,aAAa,KAAK,SAAS,CAAC;AAAA,MAChC;AAAA,IACD,IAAI,KAAK,WAAW;AAAA,EAEtB;AAAA,EAES,mBACR,GACA,GACA,WAAW,GACX,SACU;AACV,WAAO,KAAK,SAAS;AAAA,MACpB,eAAI,aAAa,KAAK,SAAS,CAAC;AAAA,MAChC,eAAI,aAAa,KAAK,SAAS,CAAC;AAAA,MAChC,WAAW,KAAK,WAAW;AAAA,MAC3B;AAAA,IACD;AAAA,EACD;AAAA,EAES,qBAAqB,GAAY,GAAY,SAA6B;AAClF,WAAO,eAAI;AAAA,MACV,KAAK;AAAA,MACL,KAAK,SAAS;AAAA,QACb,eAAI,aAAa,KAAK,SAAS,CAAC;AAAA,QAChC,eAAI,aAAa,KAAK,SAAS,CAAC;AAAA,QAChC;AAAA,MACD;AAAA,IACD;AAAA,EACD;AAAA,EAES,gBAAgB,QAAiB,QAAgB,SAA6B;AACtF,WAAO,eAAI;AAAA,MACV,KAAK;AAAA,MACL,KAAK,SAAS;AAAA,QACb,eAAI,aAAa,KAAK,SAAS,MAAM;AAAA,QACrC,SAAS,KAAK,WAAW;AAAA,QACzB;AAAA,MACD;AAAA,IACD;AAAA,EACD;AAAA,EAES,iBAAiB,SAAoB,SAAwC;AACrF,WAAO,eAAI;AAAA,MACV,KAAK;AAAA,MACL,KAAK,SAAS,iBAAiB,eAAI,cAAc,KAAK,SAAS,OAAO,GAAG,OAAO;AAAA,IACjF;AAAA,EACD;AAAA,EAES,kBAAkB,UAAqB,SAAwC;AACvF,WAAO,eAAI;AAAA,MACV,KAAK;AAAA,MACL,KAAK,SAAS,kBAAkB,eAAI,cAAc,KAAK,SAAS,QAAQ,GAAG,OAAO;AAAA,IACnF;AAAA,EACD;AAAA,EAES,UAAU,WAAqB,MAAiD;AACxF,WAAO,IAAI,sBAAsB,KAAK,UAAU,eAAI,SAAS,WAAW,KAAK,MAAM,GAAG;AAAA,MACrF,SAAS,MAAM,WAAW,KAAK;AAAA,MAC/B,YAAY,MAAM,cAAc,KAAK;AAAA,MACrC,YAAY,MAAM,cAAc,KAAK;AAAA,MACrC,QAAQ,MAAM,UAAU,KAAK;AAAA,IAC9B,CAAC;AAAA,EACF;AAAA,EAEA,iBAAyB;AACxB,UAAM,IAAI,MAAM,oDAAoD;AAAA,EACrE;AACD;",
|
|
6
6
|
"names": ["import_utils"]
|
|
7
7
|
}
|
|
@@ -99,6 +99,10 @@ class Group2d extends import_Geometry2d.Geometry2d {
|
|
|
99
99
|
return child.intersectCircle(center, radius, filters);
|
|
100
100
|
});
|
|
101
101
|
}
|
|
102
|
+
getBoundsVertices() {
|
|
103
|
+
if (this.excludeFromShapeBounds) return [];
|
|
104
|
+
return this.children.flatMap((child) => child.getBoundsVertices());
|
|
105
|
+
}
|
|
102
106
|
intersectPolygon(polygon, filters) {
|
|
103
107
|
return this.children.flatMap((child) => {
|
|
104
108
|
if (child.isExcludedByFilter(filters)) return import_state.EMPTY_ARRAY;
|
|
@@ -174,7 +178,7 @@ class Group2d extends import_Geometry2d.Geometry2d {
|
|
|
174
178
|
for (const child of this.children) {
|
|
175
179
|
path += child.toSimpleSvgPath();
|
|
176
180
|
}
|
|
177
|
-
const corners = import_Box.Box.FromPoints(this.
|
|
181
|
+
const corners = import_Box.Box.FromPoints(this.boundsVertices).corners;
|
|
178
182
|
for (let i = 0, n = corners.length; i < n; i++) {
|
|
179
183
|
const corner = corners[i];
|
|
180
184
|
const prevCorner = corners[(i - 1 + n) % n];
|
|
@@ -199,5 +203,8 @@ class Group2d extends import_Geometry2d.Geometry2d {
|
|
|
199
203
|
getSvgPathData() {
|
|
200
204
|
return this.children.map((c, i) => c.isLabel ? "" : c.getSvgPathData(i === 0)).join(" ");
|
|
201
205
|
}
|
|
206
|
+
overlapsPolygon(polygon) {
|
|
207
|
+
return this.children.some((child) => child.overlapsPolygon(polygon));
|
|
208
|
+
}
|
|
202
209
|
}
|
|
203
210
|
//# sourceMappingURL=Group2d.js.map
|