@tldraw/editor 3.16.0-canary.c7d3f7d5729d → 3.16.0-canary.ca33603d9bda

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (45) hide show
  1. package/dist-cjs/index.d.ts +3 -101
  2. package/dist-cjs/index.js +1 -5
  3. package/dist-cjs/index.js.map +2 -2
  4. package/dist-cjs/lib/TldrawEditor.js +0 -4
  5. package/dist-cjs/lib/TldrawEditor.js.map +2 -2
  6. package/dist-cjs/lib/editor/Editor.js +3 -99
  7. package/dist-cjs/lib/editor/Editor.js.map +2 -2
  8. package/dist-cjs/lib/editor/types/misc-types.js.map +1 -1
  9. package/dist-cjs/lib/primitives/Vec.js +0 -4
  10. package/dist-cjs/lib/primitives/Vec.js.map +2 -2
  11. package/dist-cjs/lib/primitives/geometry/Geometry2d.js +26 -18
  12. package/dist-cjs/lib/primitives/geometry/Geometry2d.js.map +2 -2
  13. package/dist-cjs/lib/primitives/geometry/Group2d.js +3 -0
  14. package/dist-cjs/lib/primitives/geometry/Group2d.js.map +2 -2
  15. package/dist-cjs/lib/utils/reparenting.js +2 -35
  16. package/dist-cjs/lib/utils/reparenting.js.map +3 -3
  17. package/dist-cjs/version.js +3 -3
  18. package/dist-cjs/version.js.map +1 -1
  19. package/dist-esm/index.d.mts +3 -101
  20. package/dist-esm/index.mjs +1 -5
  21. package/dist-esm/index.mjs.map +2 -2
  22. package/dist-esm/lib/TldrawEditor.mjs +0 -4
  23. package/dist-esm/lib/TldrawEditor.mjs.map +2 -2
  24. package/dist-esm/lib/editor/Editor.mjs +3 -99
  25. package/dist-esm/lib/editor/Editor.mjs.map +2 -2
  26. package/dist-esm/lib/primitives/Vec.mjs +0 -4
  27. package/dist-esm/lib/primitives/Vec.mjs.map +2 -2
  28. package/dist-esm/lib/primitives/geometry/Geometry2d.mjs +29 -19
  29. package/dist-esm/lib/primitives/geometry/Geometry2d.mjs.map +2 -2
  30. package/dist-esm/lib/primitives/geometry/Group2d.mjs +3 -0
  31. package/dist-esm/lib/primitives/geometry/Group2d.mjs.map +2 -2
  32. package/dist-esm/lib/utils/reparenting.mjs +3 -40
  33. package/dist-esm/lib/utils/reparenting.mjs.map +2 -2
  34. package/dist-esm/version.mjs +3 -3
  35. package/dist-esm/version.mjs.map +1 -1
  36. package/package.json +7 -7
  37. package/src/index.ts +0 -9
  38. package/src/lib/TldrawEditor.tsx +0 -11
  39. package/src/lib/editor/Editor.ts +1 -125
  40. package/src/lib/editor/types/misc-types.ts +0 -6
  41. package/src/lib/primitives/Vec.ts +0 -5
  42. package/src/lib/primitives/geometry/Geometry2d.ts +49 -19
  43. package/src/lib/primitives/geometry/Group2d.ts +4 -0
  44. package/src/lib/utils/reparenting.ts +3 -69
  45. package/src/version.ts +3 -3
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "version": 3,
3
3
  "sources": ["../../../../src/lib/editor/types/misc-types.ts"],
4
- "sourcesContent": ["import { BoxModel, TLShape } from '@tldraw/tlschema'\nimport { Box } from '../../primitives/Box'\nimport { VecLike } from '../../primitives/Vec'\n\n/** @public */\nexport type RequiredKeys<T, K extends keyof T> = Required<Pick<T, K>> & Omit<T, K>\n/** @public */\nexport type OptionalKeys<T, K extends keyof T> = Omit<T, K> & Partial<Pick<T, K>>\n\n/** @public */\nexport type TLExportType = 'svg' | 'png' | 'jpeg' | 'webp'\n\n/** @public */\nexport interface TLSvgExportOptions {\n\t/**\n\t * The bounding box, in page coordinates, of the area being exported.\n\t */\n\tbounds?: Box\n\t/**\n\t * The logical scale of the export. This scales the resulting size of the SVG being generated.\n\t */\n\tscale?: number\n\t/**\n\t * When exporting an SVG, the expected pixel ratio of the export will be passed in to\n\t * {@link @tldraw/tlschema#TLAssetStore.resolve} as the `dpr` property, so that assets can be\n\t * downscaled to the appropriate resolution.\n\t *\n\t * When exporting to a bitmap image format, the size of the resulting image will be multiplied\n\t * by this number.\n\t *\n\t * For SVG exports, this defaults to undefined - which means we'll request original-quality\n\t * assets. For bitmap exports, this defaults to 2.\n\t */\n\tpixelRatio?: number\n\n\t/**\n\t * Should the background color be included in the export? If false, the generated image will be\n\t * transparent (if exporting to a format that supports transparency).\n\t */\n\tbackground?: boolean\n\n\t/**\n\t * How much padding to include around the bounds of exports? Defaults to 32px.\n\t */\n\tpadding?: number\n\n\t/**\n\t * Should the export be rendered in dark mode (true) or light mode (false)? Defaults to the\n\t * current instance's dark mode setting.\n\t */\n\tdarkMode?: boolean\n\n\t/**\n\t * The\n\t * {@link https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/preserveAspectRatio | `preserveAspectRatio` }\n\t * attribute of the SVG element.\n\t */\n\tpreserveAspectRatio?: React.SVGAttributes<SVGSVGElement>['preserveAspectRatio']\n}\n\n/** @public */\nexport interface TLImageExportOptions extends TLSvgExportOptions {\n\t/**\n\t * If the export is being converted to a lossy bitmap format (e.g. jpeg), this is the quality of\n\t * the export. This is a number between 0 and 1.\n\t */\n\tquality?: number\n\n\t/**\n\t * The format to export as. Defaults to 'png'.\n\t */\n\tformat?: TLExportType\n}\n\n/**\n * @public\n * @deprecated use {@link TLImageExportOptions} instead\n */\nexport type TLSvgOptions = TLImageExportOptions\n\n/** @public */\nexport interface TLCameraMoveOptions {\n\t/** Whether to move the camera immediately, rather than on the next tick. */\n\timmediate?: boolean\n\t/** Whether to force the camera to move, even if the user's camera options have locked the camera. */\n\tforce?: boolean\n\t/** Whether to reset the camera to its default position and zoom. */\n\treset?: boolean\n\t/** An (optional) animation to use. */\n\tanimation?: {\n\t\t/** The time the animation should take to arrive at the specified camera coordinates. */\n\t\tduration?: number\n\t\t/** An easing function to apply to the animation's progress from start to end. */\n\t\teasing?(t: number): number\n\t}\n}\n\n/** @public */\nexport interface TLCameraOptions {\n\t/** Whether the camera is locked. */\n\tisLocked: boolean\n\t/** The speed of a scroll wheel / trackpad pan. Default is 1. */\n\tpanSpeed: number\n\t/** The speed of a scroll wheel / trackpad zoom. Default is 1. */\n\tzoomSpeed: number\n\t/** The steps that a user can zoom between with zoom in / zoom out. The first and last value will determine the min and max zoom. */\n\tzoomSteps: number[]\n\t/** Controls whether the wheel pans or zooms.\n\t *\n\t * - `zoom`: The wheel will zoom in and out.\n\t * - `pan`: The wheel will pan the camera.\n\t * - `none`: The wheel will do nothing.\n\t */\n\twheelBehavior: 'zoom' | 'pan' | 'none'\n\t/** The camera constraints. */\n\tconstraints?: TLCameraConstraints\n}\n\n/** @public */\nexport interface TLCameraConstraints {\n\t/** The bounds (in page space) of the constrained space */\n\tbounds: BoxModel\n\t/** The padding inside of the viewport (in screen space) */\n\tpadding: VecLike\n\t/** The origin for placement. Used to position the bounds within the viewport when an axis is fixed or contained and zoom is below the axis fit. */\n\torigin: VecLike\n\t/** The camera's initial zoom, used also when the camera is reset.\n\t *\n\t * - `default`: Sets the initial zoom to 100%.\n\t * - `fit-x`: The x axis will completely fill the viewport bounds.\n\t * - `fit-y`: The y axis will completely fill the viewport bounds.\n\t * - `fit-min`: The smaller axis will completely fill the viewport bounds.\n\t * - `fit-max`: The larger axis will completely fill the viewport bounds.\n\t * - `fit-x-100`: The x axis will completely fill the viewport bounds, or 100% zoom, whichever is smaller.\n\t * - `fit-y-100`: The y axis will completely fill the viewport bounds, or 100% zoom, whichever is smaller.\n\t * - `fit-min-100`: The smaller axis will completely fill the viewport bounds, or 100% zoom, whichever is smaller.\n\t * - `fit-max-100`: The larger axis will completely fill the viewport bounds, or 100% zoom, whichever is smaller.\n\t */\n\tinitialZoom:\n\t\t| 'fit-min'\n\t\t| 'fit-max'\n\t\t| 'fit-x'\n\t\t| 'fit-y'\n\t\t| 'fit-min-100'\n\t\t| 'fit-max-100'\n\t\t| 'fit-x-100'\n\t\t| 'fit-y-100'\n\t\t| 'default'\n\t/** The camera's base for its zoom steps.\n\t *\n\t * - `default`: Sets the initial zoom to 100%.\n\t * - `fit-x`: The x axis will completely fill the viewport bounds.\n\t * - `fit-y`: The y axis will completely fill the viewport bounds.\n\t * - `fit-min`: The smaller axis will completely fill the viewport bounds.\n\t * - `fit-max`: The larger axis will completely fill the viewport bounds.\n\t * - `fit-x-100`: The x axis will completely fill the viewport bounds, or 100% zoom, whichever is smaller.\n\t * - `fit-y-100`: The y axis will completely fill the viewport bounds, or 100% zoom, whichever is smaller.\n\t * - `fit-min-100`: The smaller axis will completely fill the viewport bounds, or 100% zoom, whichever is smaller.\n\t * - `fit-max-100`: The larger axis will completely fill the viewport bounds, or 100% zoom, whichever is smaller.\n\t */\n\tbaseZoom:\n\t\t| 'fit-min'\n\t\t| 'fit-max'\n\t\t| 'fit-x'\n\t\t| 'fit-y'\n\t\t| 'fit-min-100'\n\t\t| 'fit-max-100'\n\t\t| 'fit-x-100'\n\t\t| 'fit-y-100'\n\t\t| 'default'\n\t/** The behavior for the constraints for both axes or each axis individually.\n\t *\n\t * - `free`: The bounds are ignored when moving the camera.\n\t * - 'fixed': The bounds will be positioned within the viewport based on the origin\n\t * - `contain`: The 'fixed' behavior will be used when the zoom is below the zoom level at which the bounds would fill the viewport; and when above this zoom, the bounds will use the 'inside' behavior.\n\t * - `inside`: The bounds will stay completely within the viewport.\n\t * - `outside`: The bounds will stay touching the viewport.\n\t */\n\tbehavior:\n\t\t| 'free'\n\t\t| 'fixed'\n\t\t| 'inside'\n\t\t| 'outside'\n\t\t| 'contain'\n\t\t| {\n\t\t\t\tx: 'free' | 'fixed' | 'inside' | 'outside' | 'contain'\n\t\t\t\ty: 'free' | 'fixed' | 'inside' | 'outside' | 'contain'\n\t\t }\n}\n\n/** @public */\nexport interface TLUpdatePointerOptions {\n\t/** Whether to update the pointer immediately, rather than on the next tick. */\n\timmediate?: boolean\n\t/**\n\t * The point, in screen-space, to update the pointer to. Defaults to the position of the last\n\t * pointer event.\n\t */\n\tpoint?: VecLike\n\tpointerId?: number\n\tctrlKey?: boolean\n\taltKey?: boolean\n\tshiftKey?: boolean\n\tmetaKey?: boolean\n\taccelKey?: boolean\n\tisPen?: boolean\n\tbutton?: number\n}\n\n/**\n * Options to {@link Editor.getShapeAtPoint}.\n *\n * @public\n */\nexport interface TLGetShapeAtPointOptions {\n\t/**\n\t * The margin to apply to the shape.\n\t * If a number, it will be applied to both the inside and outside of the shape.\n\t * If an array, the first element will be applied to the inside of the shape, and the second element will be applied to the outside.\n\t *\n\t * @example\n\t * ```ts\n\t * // Get the shape at the center of the screen\n\t * const shape = editor.getShapeAtProps({\n\t * margin: 10,\n\t * })\n\t *\n\t * // Get the shape at the center of the screen with a 10px inner margin and a 5px outer margin\n\t * const shape = editor.getShapeAtProps({\n\t * margin: [10, 5],\n\t * })\n\t * ```\n\t */\n\tmargin?: number | [number, number]\n\t/**\n\t * Whether to register hits inside of shapes (beyond the margin), such as the inside of a solid shape.\n\t */\n\thitInside?: boolean\n\t/**\n\t * Whether to register hits on locked shapes.\n\t */\n\thitLocked?: boolean\n\t/**\n\t * Whether to register hits on labels.\n\t */\n\thitLabels?: boolean\n\t/**\n\t * Whether to only return hits on shapes that are currently being rendered.\n\t * todo: rename this to hitCulled or hitNotRendering\n\t */\n\trenderingOnly?: boolean\n\t/**\n\t * Whether to register hits on the inside of frame shapes.\n\t * todo: rename this to hitInsideFrames\n\t */\n\thitFrameInside?: boolean\n\t/**\n\t * A filter function to apply to the shapes.\n\t */\n\tfilter?(shape: TLShape): boolean\n}\n"],
4
+ "sourcesContent": ["import { BoxModel, TLShape } from '@tldraw/tlschema'\nimport { Box } from '../../primitives/Box'\nimport { VecLike } from '../../primitives/Vec'\n\n/** @public */\nexport type RequiredKeys<T, K extends keyof T> = Required<Pick<T, K>> & Omit<T, K>\n/** @public */\nexport type OptionalKeys<T, K extends keyof T> = Omit<T, K> & Partial<Pick<T, K>>\n\n/** @public */\nexport type TLExportType = 'svg' | 'png' | 'jpeg' | 'webp'\n\n/** @public */\nexport interface TLSvgExportOptions {\n\t/**\n\t * The bounding box, in page coordinates, of the area being exported.\n\t */\n\tbounds?: Box\n\t/**\n\t * The logical scale of the export. This scales the resulting size of the SVG being generated.\n\t */\n\tscale?: number\n\t/**\n\t * When exporting an SVG, the expected pixel ratio of the export will be passed in to\n\t * {@link @tldraw/tlschema#TLAssetStore.resolve} as the `dpr` property, so that assets can be\n\t * downscaled to the appropriate resolution.\n\t *\n\t * When exporting to a bitmap image format, the size of the resulting image will be multiplied\n\t * by this number.\n\t *\n\t * For SVG exports, this defaults to undefined - which means we'll request original-quality\n\t * assets. For bitmap exports, this defaults to 2.\n\t */\n\tpixelRatio?: number\n\n\t/**\n\t * Should the background color be included in the export? If false, the generated image will be\n\t * transparent (if exporting to a format that supports transparency).\n\t */\n\tbackground?: boolean\n\n\t/**\n\t * How much padding to include around the bounds of exports? Defaults to 32px.\n\t */\n\tpadding?: number\n\n\t/**\n\t * Should the export be rendered in dark mode (true) or light mode (false)? Defaults to the\n\t * current instance's dark mode setting.\n\t */\n\tdarkMode?: boolean\n\n\t/**\n\t * The\n\t * {@link https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/preserveAspectRatio | `preserveAspectRatio` }\n\t * attribute of the SVG element.\n\t */\n\tpreserveAspectRatio?: React.SVGAttributes<SVGSVGElement>['preserveAspectRatio']\n}\n\n/** @public */\nexport interface TLImageExportOptions extends TLSvgExportOptions {\n\t/**\n\t * If the export is being converted to a lossy bitmap format (e.g. jpeg), this is the quality of\n\t * the export. This is a number between 0 and 1.\n\t */\n\tquality?: number\n\n\t/**\n\t * The format to export as. Defaults to 'png'.\n\t */\n\tformat?: TLExportType\n}\n\n/** @public */\nexport interface TLCameraMoveOptions {\n\t/** Whether to move the camera immediately, rather than on the next tick. */\n\timmediate?: boolean\n\t/** Whether to force the camera to move, even if the user's camera options have locked the camera. */\n\tforce?: boolean\n\t/** Whether to reset the camera to its default position and zoom. */\n\treset?: boolean\n\t/** An (optional) animation to use. */\n\tanimation?: {\n\t\t/** The time the animation should take to arrive at the specified camera coordinates. */\n\t\tduration?: number\n\t\t/** An easing function to apply to the animation's progress from start to end. */\n\t\teasing?(t: number): number\n\t}\n}\n\n/** @public */\nexport interface TLCameraOptions {\n\t/** Whether the camera is locked. */\n\tisLocked: boolean\n\t/** The speed of a scroll wheel / trackpad pan. Default is 1. */\n\tpanSpeed: number\n\t/** The speed of a scroll wheel / trackpad zoom. Default is 1. */\n\tzoomSpeed: number\n\t/** The steps that a user can zoom between with zoom in / zoom out. The first and last value will determine the min and max zoom. */\n\tzoomSteps: number[]\n\t/** Controls whether the wheel pans or zooms.\n\t *\n\t * - `zoom`: The wheel will zoom in and out.\n\t * - `pan`: The wheel will pan the camera.\n\t * - `none`: The wheel will do nothing.\n\t */\n\twheelBehavior: 'zoom' | 'pan' | 'none'\n\t/** The camera constraints. */\n\tconstraints?: TLCameraConstraints\n}\n\n/** @public */\nexport interface TLCameraConstraints {\n\t/** The bounds (in page space) of the constrained space */\n\tbounds: BoxModel\n\t/** The padding inside of the viewport (in screen space) */\n\tpadding: VecLike\n\t/** The origin for placement. Used to position the bounds within the viewport when an axis is fixed or contained and zoom is below the axis fit. */\n\torigin: VecLike\n\t/** The camera's initial zoom, used also when the camera is reset.\n\t *\n\t * - `default`: Sets the initial zoom to 100%.\n\t * - `fit-x`: The x axis will completely fill the viewport bounds.\n\t * - `fit-y`: The y axis will completely fill the viewport bounds.\n\t * - `fit-min`: The smaller axis will completely fill the viewport bounds.\n\t * - `fit-max`: The larger axis will completely fill the viewport bounds.\n\t * - `fit-x-100`: The x axis will completely fill the viewport bounds, or 100% zoom, whichever is smaller.\n\t * - `fit-y-100`: The y axis will completely fill the viewport bounds, or 100% zoom, whichever is smaller.\n\t * - `fit-min-100`: The smaller axis will completely fill the viewport bounds, or 100% zoom, whichever is smaller.\n\t * - `fit-max-100`: The larger axis will completely fill the viewport bounds, or 100% zoom, whichever is smaller.\n\t */\n\tinitialZoom:\n\t\t| 'fit-min'\n\t\t| 'fit-max'\n\t\t| 'fit-x'\n\t\t| 'fit-y'\n\t\t| 'fit-min-100'\n\t\t| 'fit-max-100'\n\t\t| 'fit-x-100'\n\t\t| 'fit-y-100'\n\t\t| 'default'\n\t/** The camera's base for its zoom steps.\n\t *\n\t * - `default`: Sets the initial zoom to 100%.\n\t * - `fit-x`: The x axis will completely fill the viewport bounds.\n\t * - `fit-y`: The y axis will completely fill the viewport bounds.\n\t * - `fit-min`: The smaller axis will completely fill the viewport bounds.\n\t * - `fit-max`: The larger axis will completely fill the viewport bounds.\n\t * - `fit-x-100`: The x axis will completely fill the viewport bounds, or 100% zoom, whichever is smaller.\n\t * - `fit-y-100`: The y axis will completely fill the viewport bounds, or 100% zoom, whichever is smaller.\n\t * - `fit-min-100`: The smaller axis will completely fill the viewport bounds, or 100% zoom, whichever is smaller.\n\t * - `fit-max-100`: The larger axis will completely fill the viewport bounds, or 100% zoom, whichever is smaller.\n\t */\n\tbaseZoom:\n\t\t| 'fit-min'\n\t\t| 'fit-max'\n\t\t| 'fit-x'\n\t\t| 'fit-y'\n\t\t| 'fit-min-100'\n\t\t| 'fit-max-100'\n\t\t| 'fit-x-100'\n\t\t| 'fit-y-100'\n\t\t| 'default'\n\t/** The behavior for the constraints for both axes or each axis individually.\n\t *\n\t * - `free`: The bounds are ignored when moving the camera.\n\t * - 'fixed': The bounds will be positioned within the viewport based on the origin\n\t * - `contain`: The 'fixed' behavior will be used when the zoom is below the zoom level at which the bounds would fill the viewport; and when above this zoom, the bounds will use the 'inside' behavior.\n\t * - `inside`: The bounds will stay completely within the viewport.\n\t * - `outside`: The bounds will stay touching the viewport.\n\t */\n\tbehavior:\n\t\t| 'free'\n\t\t| 'fixed'\n\t\t| 'inside'\n\t\t| 'outside'\n\t\t| 'contain'\n\t\t| {\n\t\t\t\tx: 'free' | 'fixed' | 'inside' | 'outside' | 'contain'\n\t\t\t\ty: 'free' | 'fixed' | 'inside' | 'outside' | 'contain'\n\t\t }\n}\n\n/** @public */\nexport interface TLUpdatePointerOptions {\n\t/** Whether to update the pointer immediately, rather than on the next tick. */\n\timmediate?: boolean\n\t/**\n\t * The point, in screen-space, to update the pointer to. Defaults to the position of the last\n\t * pointer event.\n\t */\n\tpoint?: VecLike\n\tpointerId?: number\n\tctrlKey?: boolean\n\taltKey?: boolean\n\tshiftKey?: boolean\n\tmetaKey?: boolean\n\taccelKey?: boolean\n\tisPen?: boolean\n\tbutton?: number\n}\n\n/**\n * Options to {@link Editor.getShapeAtPoint}.\n *\n * @public\n */\nexport interface TLGetShapeAtPointOptions {\n\t/**\n\t * The margin to apply to the shape.\n\t * If a number, it will be applied to both the inside and outside of the shape.\n\t * If an array, the first element will be applied to the inside of the shape, and the second element will be applied to the outside.\n\t *\n\t * @example\n\t * ```ts\n\t * // Get the shape at the center of the screen\n\t * const shape = editor.getShapeAtProps({\n\t * margin: 10,\n\t * })\n\t *\n\t * // Get the shape at the center of the screen with a 10px inner margin and a 5px outer margin\n\t * const shape = editor.getShapeAtProps({\n\t * margin: [10, 5],\n\t * })\n\t * ```\n\t */\n\tmargin?: number | [number, number]\n\t/**\n\t * Whether to register hits inside of shapes (beyond the margin), such as the inside of a solid shape.\n\t */\n\thitInside?: boolean\n\t/**\n\t * Whether to register hits on locked shapes.\n\t */\n\thitLocked?: boolean\n\t/**\n\t * Whether to register hits on labels.\n\t */\n\thitLabels?: boolean\n\t/**\n\t * Whether to only return hits on shapes that are currently being rendered.\n\t * todo: rename this to hitCulled or hitNotRendering\n\t */\n\trenderingOnly?: boolean\n\t/**\n\t * Whether to register hits on the inside of frame shapes.\n\t * todo: rename this to hitInsideFrames\n\t */\n\thitFrameInside?: boolean\n\t/**\n\t * A filter function to apply to the shapes.\n\t */\n\tfilter?(shape: TLShape): boolean\n}\n"],
5
5
  "mappings": ";;;;;;;;;;;;;;AAAA;AAAA;",
6
6
  "names": []
7
7
  }
@@ -208,10 +208,6 @@ class Vec {
208
208
  equalsXY(x, y) {
209
209
  return Vec.EqualsXY(this, x, y);
210
210
  }
211
- /** @deprecated use `uni` instead */
212
- norm() {
213
- return this.uni();
214
- }
215
211
  toFixed() {
216
212
  this.x = (0, import_utils.toFixed)(this.x);
217
213
  this.y = (0, import_utils.toFixed)(this.y);
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "version": 3,
3
3
  "sources": ["../../../src/lib/primitives/Vec.ts"],
4
- "sourcesContent": ["import { VecModel } from '@tldraw/tlschema'\nimport { EASINGS } from './easings'\nimport { clamp, toFixed } from './utils'\n\n/** @public */\nexport type VecLike = Vec | VecModel\n\n/** @public */\nexport class Vec {\n\tconstructor(\n\t\tpublic x = 0,\n\t\tpublic y = 0,\n\t\tpublic z = 1\n\t) {}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget pressure() {\n\t\treturn this.z\n\t}\n\n\tset(x = this.x, y = this.y, z = this.z) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\tsetTo({ x = 0, y = 0, z = 1 }: VecLike) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\trot(r: number) {\n\t\tif (r === 0) return this\n\t\tconst { x, y } = this\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = x * c - y * s\n\t\tthis.y = x * s + y * c\n\t\treturn this\n\t}\n\n\trotWith(C: VecLike, r: number) {\n\t\tif (r === 0) return this\n\t\tconst x = this.x - C.x\n\t\tconst y = this.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = C.x + (x * c - y * s)\n\t\tthis.y = C.y + (x * s + y * c)\n\t\treturn this\n\t}\n\n\tclone(): Vec {\n\t\tconst { x, y, z } = this\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tsub(V: VecLike) {\n\t\tthis.x -= V.x\n\t\tthis.y -= V.y\n\t\treturn this\n\t}\n\n\tsubXY(x: number, y: number) {\n\t\tthis.x -= x\n\t\tthis.y -= y\n\t\treturn this\n\t}\n\n\tsubScalar(n: number) {\n\t\tthis.x -= n\n\t\tthis.y -= n\n\t\t// this.z -= n\n\n\t\treturn this\n\t}\n\n\tadd(V: VecLike) {\n\t\tthis.x += V.x\n\t\tthis.y += V.y\n\t\treturn this\n\t}\n\n\taddXY(x: number, y: number) {\n\t\tthis.x += x\n\t\tthis.y += y\n\t\treturn this\n\t}\n\n\taddScalar(n: number) {\n\t\tthis.x += n\n\t\tthis.y += n\n\t\t// this.z += n\n\n\t\treturn this\n\t}\n\n\tclamp(min: number, max?: number) {\n\t\tthis.x = Math.max(this.x, min)\n\t\tthis.y = Math.max(this.y, min)\n\t\tif (max !== undefined) {\n\t\t\tthis.x = Math.min(this.x, max)\n\t\t\tthis.y = Math.min(this.y, max)\n\t\t}\n\t\treturn this\n\t}\n\n\tdiv(t: number) {\n\t\tthis.x /= t\n\t\tthis.y /= t\n\t\t// this.z /= t\n\t\treturn this\n\t}\n\n\tdivV(V: VecLike) {\n\t\tthis.x /= V.x\n\t\tthis.y /= V.y\n\t\t// this.z /= V.z\n\t\treturn this\n\t}\n\n\tmul(t: number) {\n\t\tthis.x *= t\n\t\tthis.y *= t\n\t\t// this.z *= t\n\t\treturn this\n\t}\n\n\tmulV(V: VecLike) {\n\t\tthis.x *= V.x\n\t\tthis.y *= V.y\n\t\t// this.z *= V.z\n\t\treturn this\n\t}\n\n\tabs() {\n\t\tthis.x = Math.abs(this.x)\n\t\tthis.y = Math.abs(this.y)\n\t\treturn this\n\t}\n\n\tnudge(B: VecLike, distance: number) {\n\t\tconst tan = Vec.Tan(B, this)\n\t\treturn this.add(tan.mul(distance))\n\t}\n\n\tneg() {\n\t\tthis.x *= -1\n\t\tthis.y *= -1\n\t\t// this.z *= -1\n\t\treturn this\n\t}\n\n\tcross(V: VecLike) {\n\t\tthis.x = this.y * V.z! - this.z * V.y\n\t\tthis.y = this.z * V.x - this.x * V.z!\n\t\t// this.z = this.x * V.y - this.y * V.x\n\t\treturn this\n\t}\n\n\tdpr(V: VecLike): number {\n\t\treturn Vec.Dpr(this, V)\n\t}\n\n\tcpr(V: VecLike) {\n\t\treturn Vec.Cpr(this, V)\n\t}\n\n\tlen2(): number {\n\t\treturn Vec.Len2(this)\n\t}\n\n\tlen(): number {\n\t\treturn Vec.Len(this)\n\t}\n\n\tpry(V: VecLike): number {\n\t\treturn Vec.Pry(this, V)\n\t}\n\n\tper() {\n\t\tconst { x, y } = this\n\t\tthis.x = y\n\t\tthis.y = -x\n\t\treturn this\n\t}\n\n\tuni() {\n\t\tconst l = this.len()\n\t\tif (l === 0) return this\n\t\tthis.x /= l\n\t\tthis.y /= l\n\t\treturn this\n\t}\n\n\ttan(V: VecLike): Vec {\n\t\treturn this.sub(V).uni()\n\t}\n\n\tdist(V: VecLike): number {\n\t\treturn Vec.Dist(this, V)\n\t}\n\n\tdistanceToLineSegment(A: VecLike, B: VecLike): number {\n\t\treturn Vec.DistanceToLineSegment(A, B, this)\n\t}\n\n\tslope(B: VecLike): number {\n\t\treturn Vec.Slope(this, B)\n\t}\n\n\tsnapToGrid(gridSize: number) {\n\t\tthis.x = Math.round(this.x / gridSize) * gridSize\n\t\tthis.y = Math.round(this.y / gridSize) * gridSize\n\t\treturn this\n\t}\n\n\tangle(B: VecLike): number {\n\t\treturn Vec.Angle(this, B)\n\t}\n\n\ttoAngle() {\n\t\treturn Vec.ToAngle(this)\n\t}\n\n\tlrp(B: VecLike, t: number): Vec {\n\t\tthis.x = this.x + (B.x - this.x) * t\n\t\tthis.y = this.y + (B.y - this.y) * t\n\t\treturn this\n\t}\n\n\tequals(B: VecLike) {\n\t\treturn Vec.Equals(this, B)\n\t}\n\n\tequalsXY(x: number, y: number) {\n\t\treturn Vec.EqualsXY(this, x, y)\n\t}\n\n\t/** @deprecated use `uni` instead */\n\tnorm() {\n\t\treturn this.uni()\n\t}\n\n\ttoFixed() {\n\t\tthis.x = toFixed(this.x)\n\t\tthis.y = toFixed(this.y)\n\t\treturn this\n\t}\n\n\ttoString() {\n\t\treturn Vec.ToString(Vec.ToFixed(this))\n\t}\n\n\ttoJson(): VecModel {\n\t\treturn Vec.ToJson(this)\n\t}\n\n\ttoArray(): number[] {\n\t\treturn Vec.ToArray(this)\n\t}\n\n\tstatic Add(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x + B.x, A.y + B.y)\n\t}\n\n\tstatic AddXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x + x, A.y + y)\n\t}\n\n\tstatic Sub(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x - B.x, A.y - B.y)\n\t}\n\n\tstatic SubXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x - x, A.y - y)\n\t}\n\n\tstatic AddScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x + n, A.y + n)\n\t}\n\n\tstatic SubScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x - n, A.y - n)\n\t}\n\n\tstatic Div(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x / t, A.y / t)\n\t}\n\n\tstatic Mul(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x * t, A.y * t)\n\t}\n\n\tstatic DivV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x / B.x, A.y / B.y)\n\t}\n\n\tstatic MulV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x * B.x, A.y * B.y)\n\t}\n\n\tstatic Neg(A: VecLike): Vec {\n\t\treturn new Vec(-A.x, -A.y)\n\t}\n\n\t/**\n\t * Get the perpendicular vector to A.\n\t */\n\tstatic Per(A: VecLike): Vec {\n\t\treturn new Vec(A.y, -A.x)\n\t}\n\n\tstatic Abs(A: VecLike): Vec {\n\t\treturn new Vec(Math.abs(A.x), Math.abs(A.y))\n\t}\n\n\t// Get the distance between two points.\n\tstatic Dist(A: VecLike, B: VecLike): number {\n\t\treturn ((A.y - B.y) ** 2 + (A.x - B.x) ** 2) ** 0.5\n\t}\n\n\t// Get the Manhattan distance between two points.\n\tstatic ManhattanDist(A: VecLike, B: VecLike): number {\n\t\treturn Math.abs(A.x - B.x) + Math.abs(A.y - B.y)\n\t}\n\n\t// Get whether a distance between two points is less than a number. This is faster to calulate than using `Vec.Dist(a, b) < n`.\n\tstatic DistMin(A: VecLike, B: VecLike, n: number): boolean {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y) < n ** 2\n\t}\n\n\t// Get the squared distance between two points. This is faster to calculate (no square root) so useful for \"minimum distance\" checks where the actual measurement does not matter.\n\tstatic Dist2(A: VecLike, B: VecLike): number {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y)\n\t}\n\n\t/**\n\t * Dot product of two vectors which is used to calculate the angle between them.\n\t */\n\tstatic Dpr(A: VecLike, B: VecLike): number {\n\t\treturn A.x * B.x + A.y * B.y\n\t}\n\n\tstatic Cross(A: VecLike, V: VecLike) {\n\t\treturn new Vec(\n\t\t\tA.y * V.z! - A.z! * V.y,\n\t\t\tA.z! * V.x - A.x * V.z!\n\t\t\t// A.z = A.x * V.y - A.y * V.x\n\t\t)\n\t}\n\n\t/**\n\t * Cross product of two vectors which is used to calculate the area of a parallelogram.\n\t */\n\tstatic Cpr(A: VecLike, B: VecLike) {\n\t\treturn A.x * B.y - B.x * A.y\n\t}\n\n\tstatic Len2(A: VecLike): number {\n\t\treturn A.x * A.x + A.y * A.y\n\t}\n\n\tstatic Len(A: VecLike): number {\n\t\treturn (A.x * A.x + A.y * A.y) ** 0.5\n\t}\n\n\t/**\n\t * Get the projection of A onto B.\n\t */\n\tstatic Pry(A: VecLike, B: VecLike): number {\n\t\treturn Vec.Dpr(A, B) / Vec.Len(B)\n\t}\n\n\t/**\n\t * Get the unit vector of A.\n\t */\n\tstatic Uni(A: VecLike) {\n\t\tconst l = Vec.Len(A)\n\t\treturn new Vec(l === 0 ? 0 : A.x / l, l === 0 ? 0 : A.y / l)\n\t}\n\n\tstatic Tan(A: VecLike, B: VecLike): Vec {\n\t\treturn Vec.Uni(Vec.Sub(A, B))\n\t}\n\n\tstatic Min(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.min(A.x, B.x), Math.min(A.y, B.y))\n\t}\n\n\tstatic Max(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.max(A.x, B.x), Math.max(A.y, B.y))\n\t}\n\n\tstatic From({ x, y, z = 1 }: VecModel) {\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tstatic FromArray(v: number[]): Vec {\n\t\treturn new Vec(v[0], v[1])\n\t}\n\n\tstatic Rot(A: VecLike, r = 0): Vec {\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(A.x * c - A.y * s, A.x * s + A.y * c)\n\t}\n\n\tstatic RotWith(A: VecLike, C: VecLike, r: number): Vec {\n\t\tconst x = A.x - C.x\n\t\tconst y = A.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(C.x + (x * c - y * s), C.y + (x * s + y * c))\n\t}\n\n\t/**\n\t * Get the nearest point on a line with a known unit vector that passes through point A\n\t *\n\t * ```ts\n\t * Vec.nearestPointOnLineThroughPoint(A, u, Point)\n\t * ```\n\t *\n\t * @param A - Any point on the line\n\t * @param u - The unit vector for the line.\n\t * @param P - A point not on the line to test.\n\t */\n\tstatic NearestPointOnLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): Vec {\n\t\treturn Vec.Mul(u, Vec.Sub(P, A).pry(u)).add(A)\n\t}\n\n\tstatic NearestPointOnLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): Vec {\n\t\tif (Vec.Equals(A, P)) return Vec.From(P)\n\t\tif (Vec.Equals(B, P)) return Vec.From(P)\n\n\t\tconst u = Vec.Tan(B, A)\n\t\tconst C = Vec.Add(A, Vec.Mul(u, Vec.Sub(P, A).pry(u)))\n\n\t\tif (clamp) {\n\t\t\tif (C.x < Math.min(A.x, B.x)) return Vec.Cast(A.x < B.x ? A : B)\n\t\t\tif (C.x > Math.max(A.x, B.x)) return Vec.Cast(A.x > B.x ? A : B)\n\t\t\tif (C.y < Math.min(A.y, B.y)) return Vec.Cast(A.y < B.y ? A : B)\n\t\t\tif (C.y > Math.max(A.y, B.y)) return Vec.Cast(A.y > B.y ? A : B)\n\t\t}\n\n\t\treturn C\n\t}\n\n\tstatic DistanceToLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineThroughPoint(A, u, P))\n\t}\n\n\tstatic DistanceToLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineSegment(A, B, P, clamp))\n\t}\n\n\tstatic Snap(A: VecLike, step = 1) {\n\t\treturn new Vec(Math.round(A.x / step) * step, Math.round(A.y / step) * step)\n\t}\n\n\tstatic Cast(A: VecLike): Vec {\n\t\tif (A instanceof Vec) return A\n\t\treturn Vec.From(A)\n\t}\n\n\tstatic Slope(A: VecLike, B: VecLike): number {\n\t\tif (A.x === B.y) return NaN\n\t\treturn (A.y - B.y) / (A.x - B.x)\n\t}\n\n\tstatic IsNaN(A: VecLike): boolean {\n\t\treturn isNaN(A.x) || isNaN(A.y)\n\t}\n\n\t/**\n\t * Get the angle from position A to position B.\n\t */\n\tstatic Angle(A: VecLike, B: VecLike): number {\n\t\treturn Math.atan2(B.y - A.y, B.x - A.x)\n\t}\n\n\t/**\n\t * Get the angle between vector A and vector B. This will return the smallest angle between the\n\t * two vectors, between -\u03C0 and \u03C0. The sign indicates direction of angle.\n\t */\n\tstatic AngleBetween(A: VecLike, B: VecLike): number {\n\t\tconst p = A.x * B.x + A.y * B.y\n\t\tconst n = Math.sqrt(\n\t\t\t(Math.pow(A.x, 2) + Math.pow(A.y, 2)) * (Math.pow(B.x, 2) + Math.pow(B.y, 2))\n\t\t)\n\t\tconst sign = A.x * B.y - A.y * B.x < 0 ? -1 : 1\n\t\tconst angle = sign * Math.acos(clamp(p / n, -1, 1))\n\n\t\treturn angle\n\t}\n\n\t/**\n\t * Linearly interpolate between two points.\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param t - The interpolation value between 0 and 1.\n\t * @returns The interpolated point.\n\t */\n\tstatic Lrp(A: VecLike, B: VecLike, t: number): Vec {\n\t\treturn Vec.Sub(B, A).mul(t).add(A)\n\t}\n\n\tstatic Med(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec((A.x + B.x) / 2, (A.y + B.y) / 2)\n\t}\n\n\tstatic Equals(A: VecLike, B: VecLike): boolean {\n\t\treturn Math.abs(A.x - B.x) < 0.0001 && Math.abs(A.y - B.y) < 0.0001\n\t}\n\n\tstatic EqualsXY(A: VecLike, x: number, y: number): boolean {\n\t\treturn A.x === x && A.y === y\n\t}\n\n\tstatic Clockwise(A: VecLike, B: VecLike, C: VecLike): boolean {\n\t\treturn (C.x - A.x) * (B.y - A.y) - (B.x - A.x) * (C.y - A.y) < 0\n\t}\n\n\tstatic Rescale(A: VecLike, n: number) {\n\t\tconst l = Vec.Len(A)\n\t\treturn new Vec((n * A.x) / l, (n * A.y) / l)\n\t}\n\n\tstatic ScaleWithOrigin(A: VecLike, scale: number, origin: VecLike) {\n\t\treturn Vec.Sub(A, origin).mul(scale).add(origin)\n\t}\n\n\tstatic ToFixed(A: VecLike) {\n\t\treturn new Vec(toFixed(A.x), toFixed(A.y))\n\t}\n\n\tstatic ToInt(A: VecLike) {\n\t\treturn new Vec(\n\t\t\tparseInt(A.x.toFixed(0)),\n\t\t\tparseInt(A.y.toFixed(0)),\n\t\t\tparseInt((A.z ?? 0).toFixed(0))\n\t\t)\n\t}\n\n\tstatic ToCss(A: VecLike) {\n\t\treturn `${A.x},${A.y}`\n\t}\n\n\tstatic Nudge(A: VecLike, B: VecLike, distance: number) {\n\t\treturn Vec.Add(A, Vec.Tan(B, A).mul(distance))\n\t}\n\n\tstatic ToString(A: VecLike) {\n\t\treturn `${A.x}, ${A.y}`\n\t}\n\n\tstatic ToAngle(A: VecLike) {\n\t\tlet r = Math.atan2(A.y, A.x)\n\t\tif (r < 0) r += Math.PI * 2\n\n\t\treturn r\n\t}\n\n\tstatic FromAngle(r: number, length = 1) {\n\t\treturn new Vec(Math.cos(r) * length, Math.sin(r) * length)\n\t}\n\n\tstatic ToArray(A: VecLike) {\n\t\treturn [A.x, A.y, A.z!]\n\t}\n\n\tstatic ToJson(A: VecLike) {\n\t\tconst { x, y, z } = A\n\t\treturn { x, y, z }\n\t}\n\n\tstatic Average(arr: VecLike[]) {\n\t\tconst len = arr.length\n\t\tconst avg = new Vec(0, 0)\n\t\tif (len === 0) {\n\t\t\treturn avg\n\t\t}\n\t\tfor (let i = 0; i < len; i++) {\n\t\t\tavg.add(arr[i])\n\t\t}\n\t\treturn avg.div(len)\n\t}\n\n\tstatic Clamp(A: Vec, min: number, max?: number) {\n\t\tif (max === undefined) {\n\t\t\treturn new Vec(Math.min(Math.max(A.x, min)), Math.min(Math.max(A.y, min)))\n\t\t}\n\n\t\treturn new Vec(Math.min(Math.max(A.x, min), max), Math.min(Math.max(A.y, min), max))\n\t}\n\n\t/**\n\t * Get an array of points (with simulated pressure) between two points.\n\t *\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param steps - The number of points to return.\n\t */\n\tstatic PointsBetween(A: VecModel, B: VecModel, steps = 6): Vec[] {\n\t\tconst results: Vec[] = []\n\n\t\tfor (let i = 0; i < steps; i++) {\n\t\t\tconst t = EASINGS.easeInQuad(i / (steps - 1))\n\t\t\tconst point = Vec.Lrp(A, B, t)\n\t\t\tpoint.z = Math.min(1, 0.5 + Math.abs(0.5 - ease(t)) * 0.65)\n\t\t\tresults.push(point)\n\t\t}\n\n\t\treturn results\n\t}\n\n\tstatic SnapToGrid(A: VecLike, gridSize = 8) {\n\t\treturn new Vec(Math.round(A.x / gridSize) * gridSize, Math.round(A.y / gridSize) * gridSize)\n\t}\n}\n\nconst ease = (t: number) => (t < 0.5 ? 2 * t * t : -1 + (4 - 2 * t) * t)\n"],
5
- "mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AACA,qBAAwB;AACxB,mBAA+B;AAMxB,MAAM,IAAI;AAAA,EAChB,YACQ,IAAI,GACJ,IAAI,GACJ,IAAI,GACV;AAHM;AACA;AACA;AAAA,EACL;AAAA;AAAA,EAGH,IAAI,WAAW;AACd,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,IAAI,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,EAAE,GAAY;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,WAAO;AAAA,EACR;AAAA,EAEA,QAAQ,GAAY,GAAW;AAC9B,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,WAAO;AAAA,EACR;AAAA,EAEA,QAAa;AACZ,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,KAAa,KAAc;AAChC,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,QAAI,QAAQ,QAAW;AACtB,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAAA,IAC9B;AACA,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY,UAAkB;AACnC,UAAM,MAAM,IAAI,IAAI,GAAG,IAAI;AAC3B,WAAO,KAAK,IAAI,IAAI,IAAI,QAAQ,CAAC;AAAA,EAClC;AAAA,EAEA,MAAM;AACL,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY;AACjB,SAAK,IAAI,KAAK,IAAI,EAAE,IAAK,KAAK,IAAI,EAAE;AACpC,SAAK,IAAI,KAAK,IAAI,EAAE,IAAI,KAAK,IAAI,EAAE;AAEnC,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,OAAe;AACd,WAAO,IAAI,KAAK,IAAI;AAAA,EACrB;AAAA,EAEA,MAAc;AACb,WAAO,IAAI,IAAI,IAAI;AAAA,EACpB;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,MAAM;AACL,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,SAAK,IAAI;AACT,SAAK,IAAI,CAAC;AACV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,UAAM,IAAI,KAAK,IAAI;AACnB,QAAI,MAAM,EAAG,QAAO;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAiB;AACpB,WAAO,KAAK,IAAI,CAAC,EAAE,IAAI;AAAA,EACxB;AAAA,EAEA,KAAK,GAAoB;AACxB,WAAO,IAAI,KAAK,MAAM,CAAC;AAAA,EACxB;AAAA,EAEA,sBAAsB,GAAY,GAAoB;AACrD,WAAO,IAAI,sBAAsB,GAAG,GAAG,IAAI;AAAA,EAC5C;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,WAAW,UAAkB;AAC5B,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,UAAU;AACT,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,IAAI,GAAY,GAAgB;AAC/B,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,GAAY;AAClB,WAAO,IAAI,OAAO,MAAM,CAAC;AAAA,EAC1B;AAAA,EAEA,SAAS,GAAW,GAAW;AAC9B,WAAO,IAAI,SAAS,MAAM,GAAG,CAAC;AAAA,EAC/B;AAAA;AAAA,EAGA,OAAO;AACN,WAAO,KAAK,IAAI;AAAA,EACjB;AAAA,EAEA,UAAU;AACT,SAAK,QAAI,sBAAQ,KAAK,CAAC;AACvB,SAAK,QAAI,sBAAQ,KAAK,CAAC;AACvB,WAAO;AAAA,EACR;AAAA,EAEA,WAAW;AACV,WAAO,IAAI,SAAS,IAAI,QAAQ,IAAI,CAAC;AAAA,EACtC;AAAA,EAEA,SAAmB;AAClB,WAAO,IAAI,OAAO,IAAI;AAAA,EACvB;AAAA,EAEA,UAAoB;AACnB,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EAC1B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EACzB;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,CAAC,CAAC;AAAA,EAC5C;AAAA;AAAA,EAGA,OAAO,KAAK,GAAY,GAAoB;AAC3C,aAAS,EAAE,IAAI,EAAE,MAAM,KAAK,EAAE,IAAI,EAAE,MAAM,MAAM;AAAA,EACjD;AAAA;AAAA,EAGA,OAAO,cAAc,GAAY,GAAoB;AACpD,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC;AAAA,EAChD;AAAA;AAAA,EAGA,OAAO,QAAQ,GAAY,GAAY,GAAoB;AAC1D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK,KAAK;AAAA,EACrE;AAAA;AAAA,EAGA,OAAO,MAAM,GAAY,GAAoB;AAC5C,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC3D;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY;AACpC,WAAO,IAAI;AAAA,MACV,EAAE,IAAI,EAAE,IAAK,EAAE,IAAK,EAAE;AAAA,MACtB,EAAE,IAAK,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA;AAAA,IAEtB;AAAA,EACD;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAY;AAClC,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,KAAK,GAAoB;AAC/B,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,IAAI,GAAoB;AAC9B,YAAQ,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAAA,EACnC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,IAAI,IAAI,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC;AAAA,EACjC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY;AACtB,UAAM,IAAI,IAAI,IAAI,CAAC;AACnB,WAAO,IAAI,IAAI,MAAM,IAAI,IAAI,EAAE,IAAI,GAAG,MAAM,IAAI,IAAI,EAAE,IAAI,CAAC;AAAA,EAC5D;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,IAAI,IAAI,GAAG,CAAC,CAAC;AAAA,EAC7B;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,KAAK,EAAE,GAAG,GAAG,IAAI,EAAE,GAAa;AACtC,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,OAAO,UAAU,GAAkB;AAClC,WAAO,IAAI,IAAI,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC;AAAA,EAC1B;AAAA,EAEA,OAAO,IAAI,GAAY,IAAI,GAAQ;AAClC,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,IAAI,EAAE,IAAI,CAAC;AAAA,EACpD;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAY,GAAgB;AACtD,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,EAAE;AAAA,EAC5D;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAaA,OAAO,+BAA+B,GAAY,GAAY,GAAiB;AAC9E,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,0BAA0B,GAAY,GAAY,GAAYA,SAAQ,MAAW;AACvF,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AACvC,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AAEvC,UAAM,IAAI,IAAI,IAAI,GAAG,CAAC;AACtB,UAAM,IAAI,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;AAErD,QAAIA,QAAO;AACV,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAAA,IAChE;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,2BAA2B,GAAY,GAAY,GAAoB;AAC7E,WAAO,IAAI,KAAK,GAAG,IAAI,+BAA+B,GAAG,GAAG,CAAC,CAAC;AAAA,EAC/D;AAAA,EAEA,OAAO,sBAAsB,GAAY,GAAY,GAAYA,SAAQ,MAAc;AACtF,WAAO,IAAI,KAAK,GAAG,IAAI,0BAA0B,GAAG,GAAG,GAAGA,MAAK,CAAC;AAAA,EACjE;AAAA,EAEA,OAAO,KAAK,GAAY,OAAO,GAAG;AACjC,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,MAAM,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,IAAI;AAAA,EAC5E;AAAA,EAEA,OAAO,KAAK,GAAiB;AAC5B,QAAI,aAAa,IAAK,QAAO;AAC7B,WAAO,IAAI,KAAK,CAAC;AAAA,EAClB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAoB;AAC5C,QAAI,EAAE,MAAM,EAAE,EAAG,QAAO;AACxB,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC/B;AAAA,EAEA,OAAO,MAAM,GAAqB;AACjC,WAAO,MAAM,EAAE,CAAC,KAAK,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,MAAM,GAAY,GAAoB;AAC5C,WAAO,KAAK,MAAM,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACvC;AAAA;AAAA;AAAA;AAAA;AAAA,EAMA,OAAO,aAAa,GAAY,GAAoB;AACnD,UAAM,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAC9B,UAAM,IAAI,KAAK;AAAA,OACb,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC,MAAM,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC;AAAA,IAC5E;AACA,UAAM,OAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,IAAI,KAAK;AAC9C,UAAM,QAAQ,OAAO,KAAK,SAAK,oBAAM,IAAI,GAAG,IAAI,CAAC,CAAC;AAElD,WAAO;AAAA,EACR;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,IAAI,GAAY,GAAY,GAAgB;AAClD,WAAO,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,IAAI,CAAC;AAAA,EAClC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,KAAK,EAAE,IAAI,EAAE,KAAK,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC;AAAA,EAChD;AAAA,EAEA,OAAO,OAAO,GAAY,GAAqB;AAC9C,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,QAAU,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI;AAAA,EAC9D;AAAA,EAEA,OAAO,SAAS,GAAY,GAAW,GAAoB;AAC1D,WAAO,EAAE,MAAM,KAAK,EAAE,MAAM;AAAA,EAC7B;AAAA,EAEA,OAAO,UAAU,GAAY,GAAY,GAAqB;AAC7D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK;AAAA,EAChE;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAW;AACrC,UAAM,IAAI,IAAI,IAAI,CAAC;AACnB,WAAO,IAAI,IAAK,IAAI,EAAE,IAAK,GAAI,IAAI,EAAE,IAAK,CAAC;AAAA,EAC5C;AAAA,EAEA,OAAO,gBAAgB,GAAY,OAAe,QAAiB;AAClE,WAAO,IAAI,IAAI,GAAG,MAAM,EAAE,IAAI,KAAK,EAAE,IAAI,MAAM;AAAA,EAChD;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,IAAI,QAAI,sBAAQ,EAAE,CAAC,OAAG,sBAAQ,EAAE,CAAC,CAAC;AAAA,EAC1C;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,IAAI;AAAA,MACV,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,UAAU,EAAE,KAAK,GAAG,QAAQ,CAAC,CAAC;AAAA,IAC/B;AAAA,EACD;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,GAAG,EAAE,CAAC,IAAI,EAAE,CAAC;AAAA,EACrB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY,UAAkB;AACtD,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,QAAQ,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,SAAS,GAAY;AAC3B,WAAO,GAAG,EAAE,CAAC,KAAK,EAAE,CAAC;AAAA,EACtB;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,QAAI,IAAI,KAAK,MAAM,EAAE,GAAG,EAAE,CAAC;AAC3B,QAAI,IAAI,EAAG,MAAK,KAAK,KAAK;AAE1B,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,UAAU,GAAW,SAAS,GAAG;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,CAAC,IAAI,QAAQ,KAAK,IAAI,CAAC,IAAI,MAAM;AAAA,EAC1D;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,CAAE;AAAA,EACvB;AAAA,EAEA,OAAO,OAAO,GAAY;AACzB,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,EAAE,GAAG,GAAG,EAAE;AAAA,EAClB;AAAA,EAEA,OAAO,QAAQ,KAAgB;AAC9B,UAAM,MAAM,IAAI;AAChB,UAAM,MAAM,IAAI,IAAI,GAAG,CAAC;AACxB,QAAI,QAAQ,GAAG;AACd,aAAO;AAAA,IACR;AACA,aAAS,IAAI,GAAG,IAAI,KAAK,KAAK;AAC7B,UAAI,IAAI,IAAI,CAAC,CAAC;AAAA,IACf;AACA,WAAO,IAAI,IAAI,GAAG;AAAA,EACnB;AAAA,EAEA,OAAO,MAAM,GAAQ,KAAa,KAAc;AAC/C,QAAI,QAAQ,QAAW;AACtB,aAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,CAAC;AAAA,IAC1E;AAEA,WAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,CAAC;AAAA,EACpF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,cAAc,GAAa,GAAa,QAAQ,GAAU;AAChE,UAAM,UAAiB,CAAC;AAExB,aAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC/B,YAAM,IAAI,uBAAQ,WAAW,KAAK,QAAQ,EAAE;AAC5C,YAAM,QAAQ,IAAI,IAAI,GAAG,GAAG,CAAC;AAC7B,YAAM,IAAI,KAAK,IAAI,GAAG,MAAM,KAAK,IAAI,MAAM,KAAK,CAAC,CAAC,IAAI,IAAI;AAC1D,cAAQ,KAAK,KAAK;AAAA,IACnB;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,WAAW,GAAY,WAAW,GAAG;AAC3C,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,UAAU,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,QAAQ;AAAA,EAC5F;AACD;AAEA,MAAM,OAAO,CAAC,MAAe,IAAI,MAAM,IAAI,IAAI,IAAI,MAAM,IAAI,IAAI,KAAK;",
4
+ "sourcesContent": ["import { VecModel } from '@tldraw/tlschema'\nimport { EASINGS } from './easings'\nimport { clamp, toFixed } from './utils'\n\n/** @public */\nexport type VecLike = Vec | VecModel\n\n/** @public */\nexport class Vec {\n\tconstructor(\n\t\tpublic x = 0,\n\t\tpublic y = 0,\n\t\tpublic z = 1\n\t) {}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget pressure() {\n\t\treturn this.z\n\t}\n\n\tset(x = this.x, y = this.y, z = this.z) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\tsetTo({ x = 0, y = 0, z = 1 }: VecLike) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\trot(r: number) {\n\t\tif (r === 0) return this\n\t\tconst { x, y } = this\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = x * c - y * s\n\t\tthis.y = x * s + y * c\n\t\treturn this\n\t}\n\n\trotWith(C: VecLike, r: number) {\n\t\tif (r === 0) return this\n\t\tconst x = this.x - C.x\n\t\tconst y = this.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = C.x + (x * c - y * s)\n\t\tthis.y = C.y + (x * s + y * c)\n\t\treturn this\n\t}\n\n\tclone(): Vec {\n\t\tconst { x, y, z } = this\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tsub(V: VecLike) {\n\t\tthis.x -= V.x\n\t\tthis.y -= V.y\n\t\treturn this\n\t}\n\n\tsubXY(x: number, y: number) {\n\t\tthis.x -= x\n\t\tthis.y -= y\n\t\treturn this\n\t}\n\n\tsubScalar(n: number) {\n\t\tthis.x -= n\n\t\tthis.y -= n\n\t\t// this.z -= n\n\n\t\treturn this\n\t}\n\n\tadd(V: VecLike) {\n\t\tthis.x += V.x\n\t\tthis.y += V.y\n\t\treturn this\n\t}\n\n\taddXY(x: number, y: number) {\n\t\tthis.x += x\n\t\tthis.y += y\n\t\treturn this\n\t}\n\n\taddScalar(n: number) {\n\t\tthis.x += n\n\t\tthis.y += n\n\t\t// this.z += n\n\n\t\treturn this\n\t}\n\n\tclamp(min: number, max?: number) {\n\t\tthis.x = Math.max(this.x, min)\n\t\tthis.y = Math.max(this.y, min)\n\t\tif (max !== undefined) {\n\t\t\tthis.x = Math.min(this.x, max)\n\t\t\tthis.y = Math.min(this.y, max)\n\t\t}\n\t\treturn this\n\t}\n\n\tdiv(t: number) {\n\t\tthis.x /= t\n\t\tthis.y /= t\n\t\t// this.z /= t\n\t\treturn this\n\t}\n\n\tdivV(V: VecLike) {\n\t\tthis.x /= V.x\n\t\tthis.y /= V.y\n\t\t// this.z /= V.z\n\t\treturn this\n\t}\n\n\tmul(t: number) {\n\t\tthis.x *= t\n\t\tthis.y *= t\n\t\t// this.z *= t\n\t\treturn this\n\t}\n\n\tmulV(V: VecLike) {\n\t\tthis.x *= V.x\n\t\tthis.y *= V.y\n\t\t// this.z *= V.z\n\t\treturn this\n\t}\n\n\tabs() {\n\t\tthis.x = Math.abs(this.x)\n\t\tthis.y = Math.abs(this.y)\n\t\treturn this\n\t}\n\n\tnudge(B: VecLike, distance: number) {\n\t\tconst tan = Vec.Tan(B, this)\n\t\treturn this.add(tan.mul(distance))\n\t}\n\n\tneg() {\n\t\tthis.x *= -1\n\t\tthis.y *= -1\n\t\t// this.z *= -1\n\t\treturn this\n\t}\n\n\tcross(V: VecLike) {\n\t\tthis.x = this.y * V.z! - this.z * V.y\n\t\tthis.y = this.z * V.x - this.x * V.z!\n\t\t// this.z = this.x * V.y - this.y * V.x\n\t\treturn this\n\t}\n\n\tdpr(V: VecLike): number {\n\t\treturn Vec.Dpr(this, V)\n\t}\n\n\tcpr(V: VecLike) {\n\t\treturn Vec.Cpr(this, V)\n\t}\n\n\tlen2(): number {\n\t\treturn Vec.Len2(this)\n\t}\n\n\tlen(): number {\n\t\treturn Vec.Len(this)\n\t}\n\n\tpry(V: VecLike): number {\n\t\treturn Vec.Pry(this, V)\n\t}\n\n\tper() {\n\t\tconst { x, y } = this\n\t\tthis.x = y\n\t\tthis.y = -x\n\t\treturn this\n\t}\n\n\tuni() {\n\t\tconst l = this.len()\n\t\tif (l === 0) return this\n\t\tthis.x /= l\n\t\tthis.y /= l\n\t\treturn this\n\t}\n\n\ttan(V: VecLike): Vec {\n\t\treturn this.sub(V).uni()\n\t}\n\n\tdist(V: VecLike): number {\n\t\treturn Vec.Dist(this, V)\n\t}\n\n\tdistanceToLineSegment(A: VecLike, B: VecLike): number {\n\t\treturn Vec.DistanceToLineSegment(A, B, this)\n\t}\n\n\tslope(B: VecLike): number {\n\t\treturn Vec.Slope(this, B)\n\t}\n\n\tsnapToGrid(gridSize: number) {\n\t\tthis.x = Math.round(this.x / gridSize) * gridSize\n\t\tthis.y = Math.round(this.y / gridSize) * gridSize\n\t\treturn this\n\t}\n\n\tangle(B: VecLike): number {\n\t\treturn Vec.Angle(this, B)\n\t}\n\n\ttoAngle() {\n\t\treturn Vec.ToAngle(this)\n\t}\n\n\tlrp(B: VecLike, t: number): Vec {\n\t\tthis.x = this.x + (B.x - this.x) * t\n\t\tthis.y = this.y + (B.y - this.y) * t\n\t\treturn this\n\t}\n\n\tequals(B: VecLike) {\n\t\treturn Vec.Equals(this, B)\n\t}\n\n\tequalsXY(x: number, y: number) {\n\t\treturn Vec.EqualsXY(this, x, y)\n\t}\n\n\ttoFixed() {\n\t\tthis.x = toFixed(this.x)\n\t\tthis.y = toFixed(this.y)\n\t\treturn this\n\t}\n\n\ttoString() {\n\t\treturn Vec.ToString(Vec.ToFixed(this))\n\t}\n\n\ttoJson(): VecModel {\n\t\treturn Vec.ToJson(this)\n\t}\n\n\ttoArray(): number[] {\n\t\treturn Vec.ToArray(this)\n\t}\n\n\tstatic Add(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x + B.x, A.y + B.y)\n\t}\n\n\tstatic AddXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x + x, A.y + y)\n\t}\n\n\tstatic Sub(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x - B.x, A.y - B.y)\n\t}\n\n\tstatic SubXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x - x, A.y - y)\n\t}\n\n\tstatic AddScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x + n, A.y + n)\n\t}\n\n\tstatic SubScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x - n, A.y - n)\n\t}\n\n\tstatic Div(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x / t, A.y / t)\n\t}\n\n\tstatic Mul(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x * t, A.y * t)\n\t}\n\n\tstatic DivV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x / B.x, A.y / B.y)\n\t}\n\n\tstatic MulV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x * B.x, A.y * B.y)\n\t}\n\n\tstatic Neg(A: VecLike): Vec {\n\t\treturn new Vec(-A.x, -A.y)\n\t}\n\n\t/**\n\t * Get the perpendicular vector to A.\n\t */\n\tstatic Per(A: VecLike): Vec {\n\t\treturn new Vec(A.y, -A.x)\n\t}\n\n\tstatic Abs(A: VecLike): Vec {\n\t\treturn new Vec(Math.abs(A.x), Math.abs(A.y))\n\t}\n\n\t// Get the distance between two points.\n\tstatic Dist(A: VecLike, B: VecLike): number {\n\t\treturn ((A.y - B.y) ** 2 + (A.x - B.x) ** 2) ** 0.5\n\t}\n\n\t// Get the Manhattan distance between two points.\n\tstatic ManhattanDist(A: VecLike, B: VecLike): number {\n\t\treturn Math.abs(A.x - B.x) + Math.abs(A.y - B.y)\n\t}\n\n\t// Get whether a distance between two points is less than a number. This is faster to calulate than using `Vec.Dist(a, b) < n`.\n\tstatic DistMin(A: VecLike, B: VecLike, n: number): boolean {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y) < n ** 2\n\t}\n\n\t// Get the squared distance between two points. This is faster to calculate (no square root) so useful for \"minimum distance\" checks where the actual measurement does not matter.\n\tstatic Dist2(A: VecLike, B: VecLike): number {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y)\n\t}\n\n\t/**\n\t * Dot product of two vectors which is used to calculate the angle between them.\n\t */\n\tstatic Dpr(A: VecLike, B: VecLike): number {\n\t\treturn A.x * B.x + A.y * B.y\n\t}\n\n\tstatic Cross(A: VecLike, V: VecLike) {\n\t\treturn new Vec(\n\t\t\tA.y * V.z! - A.z! * V.y,\n\t\t\tA.z! * V.x - A.x * V.z!\n\t\t\t// A.z = A.x * V.y - A.y * V.x\n\t\t)\n\t}\n\n\t/**\n\t * Cross product of two vectors which is used to calculate the area of a parallelogram.\n\t */\n\tstatic Cpr(A: VecLike, B: VecLike) {\n\t\treturn A.x * B.y - B.x * A.y\n\t}\n\n\tstatic Len2(A: VecLike): number {\n\t\treturn A.x * A.x + A.y * A.y\n\t}\n\n\tstatic Len(A: VecLike): number {\n\t\treturn (A.x * A.x + A.y * A.y) ** 0.5\n\t}\n\n\t/**\n\t * Get the projection of A onto B.\n\t */\n\tstatic Pry(A: VecLike, B: VecLike): number {\n\t\treturn Vec.Dpr(A, B) / Vec.Len(B)\n\t}\n\n\t/**\n\t * Get the unit vector of A.\n\t */\n\tstatic Uni(A: VecLike) {\n\t\tconst l = Vec.Len(A)\n\t\treturn new Vec(l === 0 ? 0 : A.x / l, l === 0 ? 0 : A.y / l)\n\t}\n\n\tstatic Tan(A: VecLike, B: VecLike): Vec {\n\t\treturn Vec.Uni(Vec.Sub(A, B))\n\t}\n\n\tstatic Min(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.min(A.x, B.x), Math.min(A.y, B.y))\n\t}\n\n\tstatic Max(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.max(A.x, B.x), Math.max(A.y, B.y))\n\t}\n\n\tstatic From({ x, y, z = 1 }: VecModel) {\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tstatic FromArray(v: number[]): Vec {\n\t\treturn new Vec(v[0], v[1])\n\t}\n\n\tstatic Rot(A: VecLike, r = 0): Vec {\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(A.x * c - A.y * s, A.x * s + A.y * c)\n\t}\n\n\tstatic RotWith(A: VecLike, C: VecLike, r: number): Vec {\n\t\tconst x = A.x - C.x\n\t\tconst y = A.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(C.x + (x * c - y * s), C.y + (x * s + y * c))\n\t}\n\n\t/**\n\t * Get the nearest point on a line with a known unit vector that passes through point A\n\t *\n\t * ```ts\n\t * Vec.nearestPointOnLineThroughPoint(A, u, Point)\n\t * ```\n\t *\n\t * @param A - Any point on the line\n\t * @param u - The unit vector for the line.\n\t * @param P - A point not on the line to test.\n\t */\n\tstatic NearestPointOnLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): Vec {\n\t\treturn Vec.Mul(u, Vec.Sub(P, A).pry(u)).add(A)\n\t}\n\n\tstatic NearestPointOnLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): Vec {\n\t\tif (Vec.Equals(A, P)) return Vec.From(P)\n\t\tif (Vec.Equals(B, P)) return Vec.From(P)\n\n\t\tconst u = Vec.Tan(B, A)\n\t\tconst C = Vec.Add(A, Vec.Mul(u, Vec.Sub(P, A).pry(u)))\n\n\t\tif (clamp) {\n\t\t\tif (C.x < Math.min(A.x, B.x)) return Vec.Cast(A.x < B.x ? A : B)\n\t\t\tif (C.x > Math.max(A.x, B.x)) return Vec.Cast(A.x > B.x ? A : B)\n\t\t\tif (C.y < Math.min(A.y, B.y)) return Vec.Cast(A.y < B.y ? A : B)\n\t\t\tif (C.y > Math.max(A.y, B.y)) return Vec.Cast(A.y > B.y ? A : B)\n\t\t}\n\n\t\treturn C\n\t}\n\n\tstatic DistanceToLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineThroughPoint(A, u, P))\n\t}\n\n\tstatic DistanceToLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineSegment(A, B, P, clamp))\n\t}\n\n\tstatic Snap(A: VecLike, step = 1) {\n\t\treturn new Vec(Math.round(A.x / step) * step, Math.round(A.y / step) * step)\n\t}\n\n\tstatic Cast(A: VecLike): Vec {\n\t\tif (A instanceof Vec) return A\n\t\treturn Vec.From(A)\n\t}\n\n\tstatic Slope(A: VecLike, B: VecLike): number {\n\t\tif (A.x === B.y) return NaN\n\t\treturn (A.y - B.y) / (A.x - B.x)\n\t}\n\n\tstatic IsNaN(A: VecLike): boolean {\n\t\treturn isNaN(A.x) || isNaN(A.y)\n\t}\n\n\t/**\n\t * Get the angle from position A to position B.\n\t */\n\tstatic Angle(A: VecLike, B: VecLike): number {\n\t\treturn Math.atan2(B.y - A.y, B.x - A.x)\n\t}\n\n\t/**\n\t * Get the angle between vector A and vector B. This will return the smallest angle between the\n\t * two vectors, between -\u03C0 and \u03C0. The sign indicates direction of angle.\n\t */\n\tstatic AngleBetween(A: VecLike, B: VecLike): number {\n\t\tconst p = A.x * B.x + A.y * B.y\n\t\tconst n = Math.sqrt(\n\t\t\t(Math.pow(A.x, 2) + Math.pow(A.y, 2)) * (Math.pow(B.x, 2) + Math.pow(B.y, 2))\n\t\t)\n\t\tconst sign = A.x * B.y - A.y * B.x < 0 ? -1 : 1\n\t\tconst angle = sign * Math.acos(clamp(p / n, -1, 1))\n\n\t\treturn angle\n\t}\n\n\t/**\n\t * Linearly interpolate between two points.\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param t - The interpolation value between 0 and 1.\n\t * @returns The interpolated point.\n\t */\n\tstatic Lrp(A: VecLike, B: VecLike, t: number): Vec {\n\t\treturn Vec.Sub(B, A).mul(t).add(A)\n\t}\n\n\tstatic Med(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec((A.x + B.x) / 2, (A.y + B.y) / 2)\n\t}\n\n\tstatic Equals(A: VecLike, B: VecLike): boolean {\n\t\treturn Math.abs(A.x - B.x) < 0.0001 && Math.abs(A.y - B.y) < 0.0001\n\t}\n\n\tstatic EqualsXY(A: VecLike, x: number, y: number): boolean {\n\t\treturn A.x === x && A.y === y\n\t}\n\n\tstatic Clockwise(A: VecLike, B: VecLike, C: VecLike): boolean {\n\t\treturn (C.x - A.x) * (B.y - A.y) - (B.x - A.x) * (C.y - A.y) < 0\n\t}\n\n\tstatic Rescale(A: VecLike, n: number) {\n\t\tconst l = Vec.Len(A)\n\t\treturn new Vec((n * A.x) / l, (n * A.y) / l)\n\t}\n\n\tstatic ScaleWithOrigin(A: VecLike, scale: number, origin: VecLike) {\n\t\treturn Vec.Sub(A, origin).mul(scale).add(origin)\n\t}\n\n\tstatic ToFixed(A: VecLike) {\n\t\treturn new Vec(toFixed(A.x), toFixed(A.y))\n\t}\n\n\tstatic ToInt(A: VecLike) {\n\t\treturn new Vec(\n\t\t\tparseInt(A.x.toFixed(0)),\n\t\t\tparseInt(A.y.toFixed(0)),\n\t\t\tparseInt((A.z ?? 0).toFixed(0))\n\t\t)\n\t}\n\n\tstatic ToCss(A: VecLike) {\n\t\treturn `${A.x},${A.y}`\n\t}\n\n\tstatic Nudge(A: VecLike, B: VecLike, distance: number) {\n\t\treturn Vec.Add(A, Vec.Tan(B, A).mul(distance))\n\t}\n\n\tstatic ToString(A: VecLike) {\n\t\treturn `${A.x}, ${A.y}`\n\t}\n\n\tstatic ToAngle(A: VecLike) {\n\t\tlet r = Math.atan2(A.y, A.x)\n\t\tif (r < 0) r += Math.PI * 2\n\n\t\treturn r\n\t}\n\n\tstatic FromAngle(r: number, length = 1) {\n\t\treturn new Vec(Math.cos(r) * length, Math.sin(r) * length)\n\t}\n\n\tstatic ToArray(A: VecLike) {\n\t\treturn [A.x, A.y, A.z!]\n\t}\n\n\tstatic ToJson(A: VecLike) {\n\t\tconst { x, y, z } = A\n\t\treturn { x, y, z }\n\t}\n\n\tstatic Average(arr: VecLike[]) {\n\t\tconst len = arr.length\n\t\tconst avg = new Vec(0, 0)\n\t\tif (len === 0) {\n\t\t\treturn avg\n\t\t}\n\t\tfor (let i = 0; i < len; i++) {\n\t\t\tavg.add(arr[i])\n\t\t}\n\t\treturn avg.div(len)\n\t}\n\n\tstatic Clamp(A: Vec, min: number, max?: number) {\n\t\tif (max === undefined) {\n\t\t\treturn new Vec(Math.min(Math.max(A.x, min)), Math.min(Math.max(A.y, min)))\n\t\t}\n\n\t\treturn new Vec(Math.min(Math.max(A.x, min), max), Math.min(Math.max(A.y, min), max))\n\t}\n\n\t/**\n\t * Get an array of points (with simulated pressure) between two points.\n\t *\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param steps - The number of points to return.\n\t */\n\tstatic PointsBetween(A: VecModel, B: VecModel, steps = 6): Vec[] {\n\t\tconst results: Vec[] = []\n\n\t\tfor (let i = 0; i < steps; i++) {\n\t\t\tconst t = EASINGS.easeInQuad(i / (steps - 1))\n\t\t\tconst point = Vec.Lrp(A, B, t)\n\t\t\tpoint.z = Math.min(1, 0.5 + Math.abs(0.5 - ease(t)) * 0.65)\n\t\t\tresults.push(point)\n\t\t}\n\n\t\treturn results\n\t}\n\n\tstatic SnapToGrid(A: VecLike, gridSize = 8) {\n\t\treturn new Vec(Math.round(A.x / gridSize) * gridSize, Math.round(A.y / gridSize) * gridSize)\n\t}\n}\n\nconst ease = (t: number) => (t < 0.5 ? 2 * t * t : -1 + (4 - 2 * t) * t)\n"],
5
+ "mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AACA,qBAAwB;AACxB,mBAA+B;AAMxB,MAAM,IAAI;AAAA,EAChB,YACQ,IAAI,GACJ,IAAI,GACJ,IAAI,GACV;AAHM;AACA;AACA;AAAA,EACL;AAAA;AAAA,EAGH,IAAI,WAAW;AACd,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,IAAI,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,EAAE,GAAY;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,WAAO;AAAA,EACR;AAAA,EAEA,QAAQ,GAAY,GAAW;AAC9B,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,WAAO;AAAA,EACR;AAAA,EAEA,QAAa;AACZ,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,KAAa,KAAc;AAChC,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,QAAI,QAAQ,QAAW;AACtB,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAAA,IAC9B;AACA,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY,UAAkB;AACnC,UAAM,MAAM,IAAI,IAAI,GAAG,IAAI;AAC3B,WAAO,KAAK,IAAI,IAAI,IAAI,QAAQ,CAAC;AAAA,EAClC;AAAA,EAEA,MAAM;AACL,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY;AACjB,SAAK,IAAI,KAAK,IAAI,EAAE,IAAK,KAAK,IAAI,EAAE;AACpC,SAAK,IAAI,KAAK,IAAI,EAAE,IAAI,KAAK,IAAI,EAAE;AAEnC,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,OAAe;AACd,WAAO,IAAI,KAAK,IAAI;AAAA,EACrB;AAAA,EAEA,MAAc;AACb,WAAO,IAAI,IAAI,IAAI;AAAA,EACpB;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,MAAM;AACL,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,SAAK,IAAI;AACT,SAAK,IAAI,CAAC;AACV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,UAAM,IAAI,KAAK,IAAI;AACnB,QAAI,MAAM,EAAG,QAAO;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAiB;AACpB,WAAO,KAAK,IAAI,CAAC,EAAE,IAAI;AAAA,EACxB;AAAA,EAEA,KAAK,GAAoB;AACxB,WAAO,IAAI,KAAK,MAAM,CAAC;AAAA,EACxB;AAAA,EAEA,sBAAsB,GAAY,GAAoB;AACrD,WAAO,IAAI,sBAAsB,GAAG,GAAG,IAAI;AAAA,EAC5C;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,WAAW,UAAkB;AAC5B,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,UAAU;AACT,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,IAAI,GAAY,GAAgB;AAC/B,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,GAAY;AAClB,WAAO,IAAI,OAAO,MAAM,CAAC;AAAA,EAC1B;AAAA,EAEA,SAAS,GAAW,GAAW;AAC9B,WAAO,IAAI,SAAS,MAAM,GAAG,CAAC;AAAA,EAC/B;AAAA,EAEA,UAAU;AACT,SAAK,QAAI,sBAAQ,KAAK,CAAC;AACvB,SAAK,QAAI,sBAAQ,KAAK,CAAC;AACvB,WAAO;AAAA,EACR;AAAA,EAEA,WAAW;AACV,WAAO,IAAI,SAAS,IAAI,QAAQ,IAAI,CAAC;AAAA,EACtC;AAAA,EAEA,SAAmB;AAClB,WAAO,IAAI,OAAO,IAAI;AAAA,EACvB;AAAA,EAEA,UAAoB;AACnB,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EAC1B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EACzB;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,CAAC,CAAC;AAAA,EAC5C;AAAA;AAAA,EAGA,OAAO,KAAK,GAAY,GAAoB;AAC3C,aAAS,EAAE,IAAI,EAAE,MAAM,KAAK,EAAE,IAAI,EAAE,MAAM,MAAM;AAAA,EACjD;AAAA;AAAA,EAGA,OAAO,cAAc,GAAY,GAAoB;AACpD,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC;AAAA,EAChD;AAAA;AAAA,EAGA,OAAO,QAAQ,GAAY,GAAY,GAAoB;AAC1D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK,KAAK;AAAA,EACrE;AAAA;AAAA,EAGA,OAAO,MAAM,GAAY,GAAoB;AAC5C,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC3D;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY;AACpC,WAAO,IAAI;AAAA,MACV,EAAE,IAAI,EAAE,IAAK,EAAE,IAAK,EAAE;AAAA,MACtB,EAAE,IAAK,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA;AAAA,IAEtB;AAAA,EACD;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAY;AAClC,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,KAAK,GAAoB;AAC/B,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,IAAI,GAAoB;AAC9B,YAAQ,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAAA,EACnC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,IAAI,IAAI,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC;AAAA,EACjC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY;AACtB,UAAM,IAAI,IAAI,IAAI,CAAC;AACnB,WAAO,IAAI,IAAI,MAAM,IAAI,IAAI,EAAE,IAAI,GAAG,MAAM,IAAI,IAAI,EAAE,IAAI,CAAC;AAAA,EAC5D;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,IAAI,IAAI,GAAG,CAAC,CAAC;AAAA,EAC7B;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,KAAK,EAAE,GAAG,GAAG,IAAI,EAAE,GAAa;AACtC,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,OAAO,UAAU,GAAkB;AAClC,WAAO,IAAI,IAAI,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC;AAAA,EAC1B;AAAA,EAEA,OAAO,IAAI,GAAY,IAAI,GAAQ;AAClC,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,IAAI,EAAE,IAAI,CAAC;AAAA,EACpD;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAY,GAAgB;AACtD,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,EAAE;AAAA,EAC5D;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAaA,OAAO,+BAA+B,GAAY,GAAY,GAAiB;AAC9E,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,0BAA0B,GAAY,GAAY,GAAYA,SAAQ,MAAW;AACvF,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AACvC,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AAEvC,UAAM,IAAI,IAAI,IAAI,GAAG,CAAC;AACtB,UAAM,IAAI,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;AAErD,QAAIA,QAAO;AACV,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAAA,IAChE;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,2BAA2B,GAAY,GAAY,GAAoB;AAC7E,WAAO,IAAI,KAAK,GAAG,IAAI,+BAA+B,GAAG,GAAG,CAAC,CAAC;AAAA,EAC/D;AAAA,EAEA,OAAO,sBAAsB,GAAY,GAAY,GAAYA,SAAQ,MAAc;AACtF,WAAO,IAAI,KAAK,GAAG,IAAI,0BAA0B,GAAG,GAAG,GAAGA,MAAK,CAAC;AAAA,EACjE;AAAA,EAEA,OAAO,KAAK,GAAY,OAAO,GAAG;AACjC,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,MAAM,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,IAAI;AAAA,EAC5E;AAAA,EAEA,OAAO,KAAK,GAAiB;AAC5B,QAAI,aAAa,IAAK,QAAO;AAC7B,WAAO,IAAI,KAAK,CAAC;AAAA,EAClB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAoB;AAC5C,QAAI,EAAE,MAAM,EAAE,EAAG,QAAO;AACxB,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC/B;AAAA,EAEA,OAAO,MAAM,GAAqB;AACjC,WAAO,MAAM,EAAE,CAAC,KAAK,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,MAAM,GAAY,GAAoB;AAC5C,WAAO,KAAK,MAAM,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACvC;AAAA;AAAA;AAAA;AAAA;AAAA,EAMA,OAAO,aAAa,GAAY,GAAoB;AACnD,UAAM,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAC9B,UAAM,IAAI,KAAK;AAAA,OACb,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC,MAAM,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC;AAAA,IAC5E;AACA,UAAM,OAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,IAAI,KAAK;AAC9C,UAAM,QAAQ,OAAO,KAAK,SAAK,oBAAM,IAAI,GAAG,IAAI,CAAC,CAAC;AAElD,WAAO;AAAA,EACR;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,IAAI,GAAY,GAAY,GAAgB;AAClD,WAAO,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,IAAI,CAAC;AAAA,EAClC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,KAAK,EAAE,IAAI,EAAE,KAAK,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC;AAAA,EAChD;AAAA,EAEA,OAAO,OAAO,GAAY,GAAqB;AAC9C,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,QAAU,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI;AAAA,EAC9D;AAAA,EAEA,OAAO,SAAS,GAAY,GAAW,GAAoB;AAC1D,WAAO,EAAE,MAAM,KAAK,EAAE,MAAM;AAAA,EAC7B;AAAA,EAEA,OAAO,UAAU,GAAY,GAAY,GAAqB;AAC7D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK;AAAA,EAChE;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAW;AACrC,UAAM,IAAI,IAAI,IAAI,CAAC;AACnB,WAAO,IAAI,IAAK,IAAI,EAAE,IAAK,GAAI,IAAI,EAAE,IAAK,CAAC;AAAA,EAC5C;AAAA,EAEA,OAAO,gBAAgB,GAAY,OAAe,QAAiB;AAClE,WAAO,IAAI,IAAI,GAAG,MAAM,EAAE,IAAI,KAAK,EAAE,IAAI,MAAM;AAAA,EAChD;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,IAAI,QAAI,sBAAQ,EAAE,CAAC,OAAG,sBAAQ,EAAE,CAAC,CAAC;AAAA,EAC1C;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,IAAI;AAAA,MACV,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,UAAU,EAAE,KAAK,GAAG,QAAQ,CAAC,CAAC;AAAA,IAC/B;AAAA,EACD;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,GAAG,EAAE,CAAC,IAAI,EAAE,CAAC;AAAA,EACrB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY,UAAkB;AACtD,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,QAAQ,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,SAAS,GAAY;AAC3B,WAAO,GAAG,EAAE,CAAC,KAAK,EAAE,CAAC;AAAA,EACtB;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,QAAI,IAAI,KAAK,MAAM,EAAE,GAAG,EAAE,CAAC;AAC3B,QAAI,IAAI,EAAG,MAAK,KAAK,KAAK;AAE1B,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,UAAU,GAAW,SAAS,GAAG;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,CAAC,IAAI,QAAQ,KAAK,IAAI,CAAC,IAAI,MAAM;AAAA,EAC1D;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,CAAE;AAAA,EACvB;AAAA,EAEA,OAAO,OAAO,GAAY;AACzB,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,EAAE,GAAG,GAAG,EAAE;AAAA,EAClB;AAAA,EAEA,OAAO,QAAQ,KAAgB;AAC9B,UAAM,MAAM,IAAI;AAChB,UAAM,MAAM,IAAI,IAAI,GAAG,CAAC;AACxB,QAAI,QAAQ,GAAG;AACd,aAAO;AAAA,IACR;AACA,aAAS,IAAI,GAAG,IAAI,KAAK,KAAK;AAC7B,UAAI,IAAI,IAAI,CAAC,CAAC;AAAA,IACf;AACA,WAAO,IAAI,IAAI,GAAG;AAAA,EACnB;AAAA,EAEA,OAAO,MAAM,GAAQ,KAAa,KAAc;AAC/C,QAAI,QAAQ,QAAW;AACtB,aAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,CAAC;AAAA,IAC1E;AAEA,WAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,CAAC;AAAA,EACpF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,cAAc,GAAa,GAAa,QAAQ,GAAU;AAChE,UAAM,UAAiB,CAAC;AAExB,aAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC/B,YAAM,IAAI,uBAAQ,WAAW,KAAK,QAAQ,EAAE;AAC5C,YAAM,QAAQ,IAAI,IAAI,GAAG,GAAG,CAAC;AAC7B,YAAM,IAAI,KAAK,IAAI,GAAG,MAAM,KAAK,IAAI,MAAM,KAAK,CAAC,CAAC,IAAI,IAAI;AAC1D,cAAQ,KAAK,KAAK;AAAA,IACnB;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,WAAW,GAAY,WAAW,GAAG;AAC3C,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,UAAU,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,QAAQ;AAAA,EAC5F;AACD;AAEA,MAAM,OAAO,CAAC,MAAe,IAAI,MAAM,IAAI,IAAI,IAAI,MAAM,IAAI,IAAI,KAAK;",
6
6
  "names": ["clamp"]
7
7
  }
@@ -166,28 +166,36 @@ class Geometry2d {
166
166
  const distanceAlongRoute = closestSegment.distanceToStart + import_Vec.Vec.Dist(closestSegment.start, closestSegment.nearestPoint);
167
167
  return distanceAlongRoute / length;
168
168
  }
169
- /** @deprecated Iterate the vertices instead. */
170
- nearestPointOnLineSegment(A, B) {
171
- const { vertices } = this;
172
- let nearest;
173
- let dist = Infinity;
174
- let d, p, q;
175
- for (let i = 0; i < vertices.length; i++) {
176
- p = vertices[i];
177
- q = import_Vec.Vec.NearestPointOnLineSegment(A, B, p, true);
178
- d = import_Vec.Vec.Dist2(p, q);
179
- if (d < dist) {
180
- dist = d;
181
- nearest = q;
182
- }
183
- }
184
- if (!nearest) throw Error("nearest point not found");
185
- return nearest;
186
- }
187
169
  isPointInBounds(point, margin = 0) {
188
170
  const { bounds } = this;
189
171
  return !(point.x < bounds.minX - margin || point.y < bounds.minY - margin || point.x > bounds.maxX + margin || point.y > bounds.maxY + margin);
190
172
  }
173
+ overlapsPolygon(_polygon) {
174
+ const polygon = _polygon.map((v) => import_Vec.Vec.From(v));
175
+ const { vertices, center, isFilled, isEmptyLabel, isClosed } = this;
176
+ if (isEmptyLabel) return false;
177
+ if (vertices.some((v) => (0, import_utils2.pointInPolygon)(v, polygon))) {
178
+ return true;
179
+ }
180
+ if (isClosed) {
181
+ if (isFilled) {
182
+ if ((0, import_utils2.pointInPolygon)(center, polygon)) {
183
+ return true;
184
+ }
185
+ if (polygon.every((v) => (0, import_utils2.pointInPolygon)(v, vertices))) {
186
+ return true;
187
+ }
188
+ }
189
+ if ((0, import_intersect.polygonsIntersect)(polygon, vertices)) {
190
+ return true;
191
+ }
192
+ } else {
193
+ if ((0, import_intersect.polygonIntersectsPolyline)(polygon, vertices)) {
194
+ return true;
195
+ }
196
+ }
197
+ return false;
198
+ }
191
199
  transform(transform, opts) {
192
200
  return new TransformedGeometry2d(this, transform, opts);
193
201
  }
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "version": 3,
3
3
  "sources": ["../../../../src/lib/primitives/geometry/Geometry2d.ts"],
4
- "sourcesContent": ["import { assert, invLerp } from '@tldraw/utils'\nimport { Box } from '../Box'\nimport { Mat, MatModel } from '../Mat'\nimport { Vec, VecLike } from '../Vec'\nimport {\n\tintersectCirclePolygon,\n\tintersectCirclePolyline,\n\tintersectLineSegmentPolygon,\n\tintersectLineSegmentPolyline,\n\tintersectPolys,\n\tlinesIntersect,\n} from '../intersect'\nimport { approximately, pointInPolygon } from '../utils'\n\n/**\n * Filter geometry within a group.\n *\n * Filters are ignored when called directly on primitive geometries, but can be used to narrow down\n * the results of an operation on `Group2d` geometries.\n *\n * @public\n */\nexport interface Geometry2dFilters {\n\treadonly includeLabels?: boolean\n\treadonly includeInternal?: boolean\n}\n\n/** @public */\nexport const Geometry2dFilters: {\n\tEXCLUDE_NON_STANDARD: Geometry2dFilters\n\tINCLUDE_ALL: Geometry2dFilters\n\tEXCLUDE_LABELS: Geometry2dFilters\n\tEXCLUDE_INTERNAL: Geometry2dFilters\n} = {\n\tEXCLUDE_NON_STANDARD: {\n\t\tincludeLabels: false,\n\t\tincludeInternal: false,\n\t},\n\tINCLUDE_ALL: { includeLabels: true, includeInternal: true },\n\tEXCLUDE_LABELS: { includeLabels: false, includeInternal: true },\n\tEXCLUDE_INTERNAL: { includeLabels: true, includeInternal: false },\n}\n\n/** @public */\nexport interface TransformedGeometry2dOptions {\n\tisLabel?: boolean\n\tisEmptyLabel?: boolean\n\tisInternal?: boolean\n\tdebugColor?: string\n\tignore?: boolean\n}\n\n/** @public */\nexport interface Geometry2dOptions extends TransformedGeometry2dOptions {\n\tisFilled: boolean\n\tisClosed: boolean\n}\n\n/** @public */\nexport abstract class Geometry2d {\n\t// todo: consider making accessors for these too, so that they can be overridden in subclasses by geometries with more complex logic\n\tisFilled = false\n\tisClosed = true\n\tisLabel = false\n\tisEmptyLabel = false\n\tisInternal = false\n\tdebugColor?: string\n\tignore?: boolean\n\n\tconstructor(opts: Geometry2dOptions) {\n\t\tconst { isLabel = false, isEmptyLabel = false, isInternal = false } = opts\n\t\tthis.isFilled = opts.isFilled\n\t\tthis.isClosed = opts.isClosed\n\t\tthis.debugColor = opts.debugColor\n\t\tthis.ignore = opts.ignore\n\t\tthis.isLabel = isLabel\n\t\tthis.isEmptyLabel = isEmptyLabel\n\t\tthis.isInternal = isInternal\n\t}\n\n\tisExcludedByFilter(filters?: Geometry2dFilters) {\n\t\tif (!filters) return false\n\t\tif (this.isLabel && !filters.includeLabels) return true\n\t\tif (this.isInternal && !filters.includeInternal) return true\n\t\treturn false\n\t}\n\n\tabstract getVertices(filters: Geometry2dFilters): Vec[]\n\n\tabstract nearestPoint(point: VecLike, _filters?: Geometry2dFilters): Vec\n\n\thitTestPoint(point: VecLike, margin = 0, hitInside = false, _filters?: Geometry2dFilters) {\n\t\t// First check whether the point is inside\n\t\tif (this.isClosed && (this.isFilled || hitInside) && pointInPolygon(point, this.vertices)) {\n\t\t\treturn true\n\t\t}\n\t\t// Then check whether the distance is within the margin\n\t\treturn Vec.Dist2(point, this.nearestPoint(point)) <= margin * margin\n\t}\n\n\tdistanceToPoint(point: VecLike, hitInside = false, filters?: Geometry2dFilters) {\n\t\treturn (\n\t\t\tVec.Dist(point, this.nearestPoint(point, filters)) *\n\t\t\t(this.isClosed && (this.isFilled || hitInside) && pointInPolygon(point, this.vertices)\n\t\t\t\t? -1\n\t\t\t\t: 1)\n\t\t)\n\t}\n\n\tdistanceToLineSegment(A: VecLike, B: VecLike, filters?: Geometry2dFilters) {\n\t\tif (Vec.Equals(A, B)) return this.distanceToPoint(A, false, filters)\n\t\tconst { vertices } = this\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet d: number, p: Vec, q: Vec\n\t\tconst nextLimit = this.isClosed ? vertices.length : vertices.length - 1\n\t\tfor (let i = 0; i < vertices.length; i++) {\n\t\t\tp = vertices[i]\n\t\t\tif (i < nextLimit) {\n\t\t\t\tconst next = vertices[(i + 1) % vertices.length]\n\t\t\t\tif (linesIntersect(A, B, p, next)) return 0\n\t\t\t}\n\t\t\tq = Vec.NearestPointOnLineSegment(A, B, p, true)\n\t\t\td = Vec.Dist2(p, q)\n\t\t\tif (d < dist) {\n\t\t\t\tdist = d\n\t\t\t\tnearest = q\n\t\t\t}\n\t\t}\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn this.isClosed && this.isFilled && pointInPolygon(nearest, this.vertices) ? -dist : dist\n\t}\n\n\thitTestLineSegment(A: VecLike, B: VecLike, distance = 0, filters?: Geometry2dFilters): boolean {\n\t\treturn this.distanceToLineSegment(A, B, filters) <= distance\n\t}\n\n\tintersectLineSegment(A: VecLike, B: VecLike, _filters?: Geometry2dFilters): VecLike[] {\n\t\tconst intersections = this.isClosed\n\t\t\t? intersectLineSegmentPolygon(A, B, this.vertices)\n\t\t\t: intersectLineSegmentPolyline(A, B, this.vertices)\n\n\t\treturn intersections ?? []\n\t}\n\n\tintersectCircle(center: VecLike, radius: number, _filters?: Geometry2dFilters): VecLike[] {\n\t\tconst intersections = this.isClosed\n\t\t\t? intersectCirclePolygon(center, radius, this.vertices)\n\t\t\t: intersectCirclePolyline(center, radius, this.vertices)\n\n\t\treturn intersections ?? []\n\t}\n\n\tintersectPolygon(polygon: VecLike[], _filters?: Geometry2dFilters): VecLike[] {\n\t\treturn intersectPolys(polygon, this.vertices, true, this.isClosed)\n\t}\n\n\tintersectPolyline(polyline: VecLike[], _filters?: Geometry2dFilters): VecLike[] {\n\t\treturn intersectPolys(polyline, this.vertices, false, this.isClosed)\n\t}\n\n\t/**\n\t * Find a point along the edge of the geometry that is a fraction `t` along the entire way round.\n\t */\n\tinterpolateAlongEdge(t: number, _filters?: Geometry2dFilters): Vec {\n\t\tconst { vertices } = this\n\n\t\tif (t <= 0) return vertices[0]\n\n\t\tconst distanceToTravel = t * this.length\n\t\tlet distanceTraveled = 0\n\n\t\tfor (let i = 0; i < (this.isClosed ? vertices.length : vertices.length - 1); i++) {\n\t\t\tconst curr = vertices[i]\n\t\t\tconst next = vertices[(i + 1) % vertices.length]\n\t\t\tconst dist = Vec.Dist(curr, next)\n\t\t\tconst newDistanceTraveled = distanceTraveled + dist\n\t\t\tif (newDistanceTraveled >= distanceToTravel) {\n\t\t\t\tconst p = Vec.Lrp(\n\t\t\t\t\tcurr,\n\t\t\t\t\tnext,\n\t\t\t\t\tinvLerp(distanceTraveled, newDistanceTraveled, distanceToTravel)\n\t\t\t\t)\n\t\t\t\treturn p\n\t\t\t}\n\t\t\tdistanceTraveled = newDistanceTraveled\n\t\t}\n\n\t\treturn this.isClosed ? vertices[0] : vertices[vertices.length - 1]\n\t}\n\n\t/**\n\t * Take `point`, find the closest point to it on the edge of the geometry, and return how far\n\t * along the edge it is as a fraction of the total length.\n\t */\n\tuninterpolateAlongEdge(point: VecLike, _filters?: Geometry2dFilters): number {\n\t\tconst { vertices, length } = this\n\t\tlet closestSegment = null\n\t\tlet closestDistance = Infinity\n\t\tlet distanceTraveled = 0\n\n\t\tfor (let i = 0; i < (this.isClosed ? vertices.length : vertices.length - 1); i++) {\n\t\t\tconst curr = vertices[i]\n\t\t\tconst next = vertices[(i + 1) % vertices.length]\n\n\t\t\tconst nearestPoint = Vec.NearestPointOnLineSegment(curr, next, point, true)\n\t\t\tconst distance = Vec.Dist(nearestPoint, point)\n\n\t\t\tif (distance < closestDistance) {\n\t\t\t\tclosestDistance = distance\n\t\t\t\tclosestSegment = {\n\t\t\t\t\tstart: curr,\n\t\t\t\t\tend: next,\n\t\t\t\t\tnearestPoint,\n\t\t\t\t\tdistanceToStart: distanceTraveled,\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tdistanceTraveled += Vec.Dist(curr, next)\n\t\t}\n\n\t\tassert(closestSegment)\n\n\t\tconst distanceAlongRoute =\n\t\t\tclosestSegment.distanceToStart + Vec.Dist(closestSegment.start, closestSegment.nearestPoint)\n\n\t\treturn distanceAlongRoute / length\n\t}\n\n\t/** @deprecated Iterate the vertices instead. */\n\tnearestPointOnLineSegment(A: VecLike, B: VecLike): Vec {\n\t\tconst { vertices } = this\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet d: number, p: Vec, q: Vec\n\t\tfor (let i = 0; i < vertices.length; i++) {\n\t\t\tp = vertices[i]\n\t\t\tq = Vec.NearestPointOnLineSegment(A, B, p, true)\n\t\t\td = Vec.Dist2(p, q)\n\t\t\tif (d < dist) {\n\t\t\t\tdist = d\n\t\t\t\tnearest = q\n\t\t\t}\n\t\t}\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn nearest\n\t}\n\n\tisPointInBounds(point: VecLike, margin = 0) {\n\t\tconst { bounds } = this\n\t\treturn !(\n\t\t\tpoint.x < bounds.minX - margin ||\n\t\t\tpoint.y < bounds.minY - margin ||\n\t\t\tpoint.x > bounds.maxX + margin ||\n\t\t\tpoint.y > bounds.maxY + margin\n\t\t)\n\t}\n\n\ttransform(transform: MatModel, opts?: TransformedGeometry2dOptions): Geometry2d {\n\t\treturn new TransformedGeometry2d(this, transform, opts)\n\t}\n\n\tprivate _vertices: Vec[] | undefined\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget vertices(): Vec[] {\n\t\tif (!this._vertices) {\n\t\t\tthis._vertices = this.getVertices(Geometry2dFilters.EXCLUDE_LABELS)\n\t\t}\n\n\t\treturn this._vertices\n\t}\n\n\tgetBounds() {\n\t\treturn Box.FromPoints(this.vertices)\n\t}\n\n\tprivate _bounds: Box | undefined\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget bounds(): Box {\n\t\tif (!this._bounds) {\n\t\t\tthis._bounds = this.getBounds()\n\t\t}\n\t\treturn this._bounds\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget center() {\n\t\treturn this.bounds.center\n\t}\n\n\tprivate _area: number | undefined\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget area() {\n\t\tif (!this._area) {\n\t\t\tthis._area = this.getArea()\n\t\t}\n\t\treturn this._area\n\t}\n\n\tgetArea() {\n\t\tif (!this.isClosed) {\n\t\t\treturn 0\n\t\t}\n\t\tconst { vertices } = this\n\t\tlet area = 0\n\t\tfor (let i = 0, n = vertices.length; i < n; i++) {\n\t\t\tconst curr = vertices[i]\n\t\t\tconst next = vertices[(i + 1) % n]\n\t\t\tarea += curr.x * next.y - next.x * curr.y\n\t\t}\n\t\treturn area / 2\n\t}\n\n\ttoSimpleSvgPath() {\n\t\tlet path = ''\n\n\t\tconst { vertices } = this\n\t\tconst n = vertices.length\n\n\t\tif (n === 0) return path\n\n\t\tpath += `M${vertices[0].x},${vertices[0].y}`\n\n\t\tfor (let i = 1; i < n; i++) {\n\t\t\tpath += `L${vertices[i].x},${vertices[i].y}`\n\t\t}\n\n\t\tif (this.isClosed) {\n\t\t\tpath += 'Z'\n\t\t}\n\n\t\treturn path\n\t}\n\n\tprivate _length?: number\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget length() {\n\t\tif (this._length) return this._length\n\t\tthis._length = this.getLength(Geometry2dFilters.EXCLUDE_LABELS)\n\t\treturn this._length\n\t}\n\n\tgetLength(_filters?: Geometry2dFilters) {\n\t\tconst vertices = this.getVertices(_filters ?? Geometry2dFilters.EXCLUDE_LABELS)\n\t\tif (vertices.length === 0) return 0\n\t\tlet prev = vertices[0]\n\t\tlet length = 0\n\t\tfor (let i = 1; i < vertices.length; i++) {\n\t\t\tconst next = vertices[i]\n\t\t\tlength += Vec.Dist(prev, next)\n\t\t\tprev = next\n\t\t}\n\t\tif (this.isClosed) {\n\t\t\tlength += Vec.Dist(vertices[vertices.length - 1], vertices[0])\n\t\t}\n\t\treturn length\n\t}\n\n\tabstract getSvgPathData(first: boolean): string\n}\n\n// =================================================================================================\n// Because Geometry2d.transform depends on TransformedGeometry2d, we need to define it here instead\n// of in its own files. This prevents a circular import error.\n// =================================================================================================\n\n/** @public */\nexport class TransformedGeometry2d extends Geometry2d {\n\tprivate readonly inverse: MatModel\n\tprivate readonly decomposed\n\n\tconstructor(\n\t\tprivate readonly geometry: Geometry2d,\n\t\tprivate readonly matrix: MatModel,\n\t\topts?: TransformedGeometry2dOptions\n\t) {\n\t\tsuper(geometry)\n\t\tthis.inverse = Mat.Inverse(matrix)\n\t\tthis.decomposed = Mat.Decompose(matrix)\n\n\t\tif (opts) {\n\t\t\tif (opts.isLabel != null) this.isLabel = opts.isLabel\n\t\t\tif (opts.isInternal != null) this.isInternal = opts.isInternal\n\t\t\tif (opts.debugColor != null) this.debugColor = opts.debugColor\n\t\t\tif (opts.ignore != null) this.ignore = opts.ignore\n\t\t}\n\n\t\tassert(\n\t\t\tapproximately(this.decomposed.scaleX, this.decomposed.scaleY),\n\t\t\t'non-uniform scaling is not yet supported'\n\t\t)\n\t}\n\n\tgetVertices(filters: Geometry2dFilters): Vec[] {\n\t\treturn this.geometry.getVertices(filters).map((v) => Mat.applyToPoint(this.matrix, v))\n\t}\n\n\tnearestPoint(point: VecLike, filters?: Geometry2dFilters): Vec {\n\t\treturn Mat.applyToPoint(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.nearestPoint(Mat.applyToPoint(this.inverse, point), filters)\n\t\t)\n\t}\n\n\toverride hitTestPoint(\n\t\tpoint: VecLike,\n\t\tmargin = 0,\n\t\thitInside?: boolean,\n\t\tfilters?: Geometry2dFilters\n\t): boolean {\n\t\treturn this.geometry.hitTestPoint(\n\t\t\tMat.applyToPoint(this.inverse, point),\n\t\t\tmargin / this.decomposed.scaleX,\n\t\t\thitInside,\n\t\t\tfilters\n\t\t)\n\t}\n\n\toverride distanceToPoint(point: VecLike, hitInside = false, filters?: Geometry2dFilters) {\n\t\treturn (\n\t\t\tthis.geometry.distanceToPoint(Mat.applyToPoint(this.inverse, point), hitInside, filters) *\n\t\t\tthis.decomposed.scaleX\n\t\t)\n\t}\n\n\toverride distanceToLineSegment(A: VecLike, B: VecLike, filters?: Geometry2dFilters) {\n\t\treturn (\n\t\t\tthis.geometry.distanceToLineSegment(\n\t\t\t\tMat.applyToPoint(this.inverse, A),\n\t\t\t\tMat.applyToPoint(this.inverse, B),\n\t\t\t\tfilters\n\t\t\t) * this.decomposed.scaleX\n\t\t)\n\t}\n\n\toverride hitTestLineSegment(\n\t\tA: VecLike,\n\t\tB: VecLike,\n\t\tdistance = 0,\n\t\tfilters?: Geometry2dFilters\n\t): boolean {\n\t\treturn this.geometry.hitTestLineSegment(\n\t\t\tMat.applyToPoint(this.inverse, A),\n\t\t\tMat.applyToPoint(this.inverse, B),\n\t\t\tdistance / this.decomposed.scaleX,\n\t\t\tfilters\n\t\t)\n\t}\n\n\toverride intersectLineSegment(A: VecLike, B: VecLike, filters?: Geometry2dFilters) {\n\t\treturn Mat.applyToPoints(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.intersectLineSegment(\n\t\t\t\tMat.applyToPoint(this.inverse, A),\n\t\t\t\tMat.applyToPoint(this.inverse, B),\n\t\t\t\tfilters\n\t\t\t)\n\t\t)\n\t}\n\n\toverride intersectCircle(center: VecLike, radius: number, filters?: Geometry2dFilters) {\n\t\treturn Mat.applyToPoints(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.intersectCircle(\n\t\t\t\tMat.applyToPoint(this.inverse, center),\n\t\t\t\tradius / this.decomposed.scaleX,\n\t\t\t\tfilters\n\t\t\t)\n\t\t)\n\t}\n\n\toverride intersectPolygon(polygon: VecLike[], filters?: Geometry2dFilters): VecLike[] {\n\t\treturn Mat.applyToPoints(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.intersectPolygon(Mat.applyToPoints(this.inverse, polygon), filters)\n\t\t)\n\t}\n\n\toverride intersectPolyline(polyline: VecLike[], filters?: Geometry2dFilters): VecLike[] {\n\t\treturn Mat.applyToPoints(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.intersectPolyline(Mat.applyToPoints(this.inverse, polyline), filters)\n\t\t)\n\t}\n\n\toverride transform(transform: MatModel, opts?: TransformedGeometry2dOptions): Geometry2d {\n\t\treturn new TransformedGeometry2d(this.geometry, Mat.Multiply(transform, this.matrix), {\n\t\t\tisLabel: opts?.isLabel ?? this.isLabel,\n\t\t\tisInternal: opts?.isInternal ?? this.isInternal,\n\t\t\tdebugColor: opts?.debugColor ?? this.debugColor,\n\t\t\tignore: opts?.ignore ?? this.ignore,\n\t\t})\n\t}\n\n\tgetSvgPathData(): string {\n\t\tthrow new Error('Cannot get SVG path data for transformed geometry.')\n\t}\n}\n"],
5
- "mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mBAAgC;AAChC,iBAAoB;AACpB,iBAA8B;AAC9B,iBAA6B;AAC7B,uBAOO;AACP,IAAAA,gBAA8C;AAgBvC,MAAM,oBAKT;AAAA,EACH,sBAAsB;AAAA,IACrB,eAAe;AAAA,IACf,iBAAiB;AAAA,EAClB;AAAA,EACA,aAAa,EAAE,eAAe,MAAM,iBAAiB,KAAK;AAAA,EAC1D,gBAAgB,EAAE,eAAe,OAAO,iBAAiB,KAAK;AAAA,EAC9D,kBAAkB,EAAE,eAAe,MAAM,iBAAiB,MAAM;AACjE;AAkBO,MAAe,WAAW;AAAA;AAAA,EAEhC,WAAW;AAAA,EACX,WAAW;AAAA,EACX,UAAU;AAAA,EACV,eAAe;AAAA,EACf,aAAa;AAAA,EACb;AAAA,EACA;AAAA,EAEA,YAAY,MAAyB;AACpC,UAAM,EAAE,UAAU,OAAO,eAAe,OAAO,aAAa,MAAM,IAAI;AACtE,SAAK,WAAW,KAAK;AACrB,SAAK,WAAW,KAAK;AACrB,SAAK,aAAa,KAAK;AACvB,SAAK,SAAS,KAAK;AACnB,SAAK,UAAU;AACf,SAAK,eAAe;AACpB,SAAK,aAAa;AAAA,EACnB;AAAA,EAEA,mBAAmB,SAA6B;AAC/C,QAAI,CAAC,QAAS,QAAO;AACrB,QAAI,KAAK,WAAW,CAAC,QAAQ,cAAe,QAAO;AACnD,QAAI,KAAK,cAAc,CAAC,QAAQ,gBAAiB,QAAO;AACxD,WAAO;AAAA,EACR;AAAA,EAMA,aAAa,OAAgB,SAAS,GAAG,YAAY,OAAO,UAA8B;AAEzF,QAAI,KAAK,aAAa,KAAK,YAAY,kBAAc,8BAAe,OAAO,KAAK,QAAQ,GAAG;AAC1F,aAAO;AAAA,IACR;AAEA,WAAO,eAAI,MAAM,OAAO,KAAK,aAAa,KAAK,CAAC,KAAK,SAAS;AAAA,EAC/D;AAAA,EAEA,gBAAgB,OAAgB,YAAY,OAAO,SAA6B;AAC/E,WACC,eAAI,KAAK,OAAO,KAAK,aAAa,OAAO,OAAO,CAAC,KAChD,KAAK,aAAa,KAAK,YAAY,kBAAc,8BAAe,OAAO,KAAK,QAAQ,IAClF,KACA;AAAA,EAEL;AAAA,EAEA,sBAAsB,GAAY,GAAY,SAA6B;AAC1E,QAAI,eAAI,OAAO,GAAG,CAAC,EAAG,QAAO,KAAK,gBAAgB,GAAG,OAAO,OAAO;AACnE,UAAM,EAAE,SAAS,IAAI;AACrB,QAAI;AACJ,QAAI,OAAO;AACX,QAAI,GAAW,GAAQ;AACvB,UAAM,YAAY,KAAK,WAAW,SAAS,SAAS,SAAS,SAAS;AACtE,aAAS,IAAI,GAAG,IAAI,SAAS,QAAQ,KAAK;AACzC,UAAI,SAAS,CAAC;AACd,UAAI,IAAI,WAAW;AAClB,cAAM,OAAO,UAAU,IAAI,KAAK,SAAS,MAAM;AAC/C,gBAAI,iCAAe,GAAG,GAAG,GAAG,IAAI,EAAG,QAAO;AAAA,MAC3C;AACA,UAAI,eAAI,0BAA0B,GAAG,GAAG,GAAG,IAAI;AAC/C,UAAI,eAAI,MAAM,GAAG,CAAC;AAClB,UAAI,IAAI,MAAM;AACb,eAAO;AACP,kBAAU;AAAA,MACX;AAAA,IACD;AACA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO,KAAK,YAAY,KAAK,gBAAY,8BAAe,SAAS,KAAK,QAAQ,IAAI,CAAC,OAAO;AAAA,EAC3F;AAAA,EAEA,mBAAmB,GAAY,GAAY,WAAW,GAAG,SAAsC;AAC9F,WAAO,KAAK,sBAAsB,GAAG,GAAG,OAAO,KAAK;AAAA,EACrD;AAAA,EAEA,qBAAqB,GAAY,GAAY,UAAyC;AACrF,UAAM,gBAAgB,KAAK,eACxB,8CAA4B,GAAG,GAAG,KAAK,QAAQ,QAC/C,+CAA6B,GAAG,GAAG,KAAK,QAAQ;AAEnD,WAAO,iBAAiB,CAAC;AAAA,EAC1B;AAAA,EAEA,gBAAgB,QAAiB,QAAgB,UAAyC;AACzF,UAAM,gBAAgB,KAAK,eACxB,yCAAuB,QAAQ,QAAQ,KAAK,QAAQ,QACpD,0CAAwB,QAAQ,QAAQ,KAAK,QAAQ;AAExD,WAAO,iBAAiB,CAAC;AAAA,EAC1B;AAAA,EAEA,iBAAiB,SAAoB,UAAyC;AAC7E,eAAO,iCAAe,SAAS,KAAK,UAAU,MAAM,KAAK,QAAQ;AAAA,EAClE;AAAA,EAEA,kBAAkB,UAAqB,UAAyC;AAC/E,eAAO,iCAAe,UAAU,KAAK,UAAU,OAAO,KAAK,QAAQ;AAAA,EACpE;AAAA;AAAA;AAAA;AAAA,EAKA,qBAAqB,GAAW,UAAmC;AAClE,UAAM,EAAE,SAAS,IAAI;AAErB,QAAI,KAAK,EAAG,QAAO,SAAS,CAAC;AAE7B,UAAM,mBAAmB,IAAI,KAAK;AAClC,QAAI,mBAAmB;AAEvB,aAAS,IAAI,GAAG,KAAK,KAAK,WAAW,SAAS,SAAS,SAAS,SAAS,IAAI,KAAK;AACjF,YAAM,OAAO,SAAS,CAAC;AACvB,YAAM,OAAO,UAAU,IAAI,KAAK,SAAS,MAAM;AAC/C,YAAM,OAAO,eAAI,KAAK,MAAM,IAAI;AAChC,YAAM,sBAAsB,mBAAmB;AAC/C,UAAI,uBAAuB,kBAAkB;AAC5C,cAAM,IAAI,eAAI;AAAA,UACb;AAAA,UACA;AAAA,cACA,sBAAQ,kBAAkB,qBAAqB,gBAAgB;AAAA,QAChE;AACA,eAAO;AAAA,MACR;AACA,yBAAmB;AAAA,IACpB;AAEA,WAAO,KAAK,WAAW,SAAS,CAAC,IAAI,SAAS,SAAS,SAAS,CAAC;AAAA,EAClE;AAAA;AAAA;AAAA;AAAA;AAAA,EAMA,uBAAuB,OAAgB,UAAsC;AAC5E,UAAM,EAAE,UAAU,OAAO,IAAI;AAC7B,QAAI,iBAAiB;AACrB,QAAI,kBAAkB;AACtB,QAAI,mBAAmB;AAEvB,aAAS,IAAI,GAAG,KAAK,KAAK,WAAW,SAAS,SAAS,SAAS,SAAS,IAAI,KAAK;AACjF,YAAM,OAAO,SAAS,CAAC;AACvB,YAAM,OAAO,UAAU,IAAI,KAAK,SAAS,MAAM;AAE/C,YAAM,eAAe,eAAI,0BAA0B,MAAM,MAAM,OAAO,IAAI;AAC1E,YAAM,WAAW,eAAI,KAAK,cAAc,KAAK;AAE7C,UAAI,WAAW,iBAAiB;AAC/B,0BAAkB;AAClB,yBAAiB;AAAA,UAChB,OAAO;AAAA,UACP,KAAK;AAAA,UACL;AAAA,UACA,iBAAiB;AAAA,QAClB;AAAA,MACD;AAEA,0BAAoB,eAAI,KAAK,MAAM,IAAI;AAAA,IACxC;AAEA,6BAAO,cAAc;AAErB,UAAM,qBACL,eAAe,kBAAkB,eAAI,KAAK,eAAe,OAAO,eAAe,YAAY;AAE5F,WAAO,qBAAqB;AAAA,EAC7B;AAAA;AAAA,EAGA,0BAA0B,GAAY,GAAiB;AACtD,UAAM,EAAE,SAAS,IAAI;AACrB,QAAI;AACJ,QAAI,OAAO;AACX,QAAI,GAAW,GAAQ;AACvB,aAAS,IAAI,GAAG,IAAI,SAAS,QAAQ,KAAK;AACzC,UAAI,SAAS,CAAC;AACd,UAAI,eAAI,0BAA0B,GAAG,GAAG,GAAG,IAAI;AAC/C,UAAI,eAAI,MAAM,GAAG,CAAC;AAClB,UAAI,IAAI,MAAM;AACb,eAAO;AACP,kBAAU;AAAA,MACX;AAAA,IACD;AACA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO;AAAA,EACR;AAAA,EAEA,gBAAgB,OAAgB,SAAS,GAAG;AAC3C,UAAM,EAAE,OAAO,IAAI;AACnB,WAAO,EACN,MAAM,IAAI,OAAO,OAAO,UACxB,MAAM,IAAI,OAAO,OAAO,UACxB,MAAM,IAAI,OAAO,OAAO,UACxB,MAAM,IAAI,OAAO,OAAO;AAAA,EAE1B;AAAA,EAEA,UAAU,WAAqB,MAAiD;AAC/E,WAAO,IAAI,sBAAsB,MAAM,WAAW,IAAI;AAAA,EACvD;AAAA,EAEQ;AAAA;AAAA,EAGR,IAAI,WAAkB;AACrB,QAAI,CAAC,KAAK,WAAW;AACpB,WAAK,YAAY,KAAK,YAAY,kBAAkB,cAAc;AAAA,IACnE;AAEA,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,YAAY;AACX,WAAO,eAAI,WAAW,KAAK,QAAQ;AAAA,EACpC;AAAA,EAEQ;AAAA;AAAA,EAGR,IAAI,SAAc;AACjB,QAAI,CAAC,KAAK,SAAS;AAClB,WAAK,UAAU,KAAK,UAAU;AAAA,IAC/B;AACA,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,SAAS;AACZ,WAAO,KAAK,OAAO;AAAA,EACpB;AAAA,EAEQ;AAAA;AAAA,EAGR,IAAI,OAAO;AACV,QAAI,CAAC,KAAK,OAAO;AAChB,WAAK,QAAQ,KAAK,QAAQ;AAAA,IAC3B;AACA,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,UAAU;AACT,QAAI,CAAC,KAAK,UAAU;AACnB,aAAO;AAAA,IACR;AACA,UAAM,EAAE,SAAS,IAAI;AACrB,QAAI,OAAO;AACX,aAAS,IAAI,GAAG,IAAI,SAAS,QAAQ,IAAI,GAAG,KAAK;AAChD,YAAM,OAAO,SAAS,CAAC;AACvB,YAAM,OAAO,UAAU,IAAI,KAAK,CAAC;AACjC,cAAQ,KAAK,IAAI,KAAK,IAAI,KAAK,IAAI,KAAK;AAAA,IACzC;AACA,WAAO,OAAO;AAAA,EACf;AAAA,EAEA,kBAAkB;AACjB,QAAI,OAAO;AAEX,UAAM,EAAE,SAAS,IAAI;AACrB,UAAM,IAAI,SAAS;AAEnB,QAAI,MAAM,EAAG,QAAO;AAEpB,YAAQ,IAAI,SAAS,CAAC,EAAE,CAAC,IAAI,SAAS,CAAC,EAAE,CAAC;AAE1C,aAAS,IAAI,GAAG,IAAI,GAAG,KAAK;AAC3B,cAAQ,IAAI,SAAS,CAAC,EAAE,CAAC,IAAI,SAAS,CAAC,EAAE,CAAC;AAAA,IAC3C;AAEA,QAAI,KAAK,UAAU;AAClB,cAAQ;AAAA,IACT;AAEA,WAAO;AAAA,EACR;AAAA,EAEQ;AAAA;AAAA,EAGR,IAAI,SAAS;AACZ,QAAI,KAAK,QAAS,QAAO,KAAK;AAC9B,SAAK,UAAU,KAAK,UAAU,kBAAkB,cAAc;AAC9D,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,UAAU,UAA8B;AACvC,UAAM,WAAW,KAAK,YAAY,YAAY,kBAAkB,cAAc;AAC9E,QAAI,SAAS,WAAW,EAAG,QAAO;AAClC,QAAI,OAAO,SAAS,CAAC;AACrB,QAAI,SAAS;AACb,aAAS,IAAI,GAAG,IAAI,SAAS,QAAQ,KAAK;AACzC,YAAM,OAAO,SAAS,CAAC;AACvB,gBAAU,eAAI,KAAK,MAAM,IAAI;AAC7B,aAAO;AAAA,IACR;AACA,QAAI,KAAK,UAAU;AAClB,gBAAU,eAAI,KAAK,SAAS,SAAS,SAAS,CAAC,GAAG,SAAS,CAAC,CAAC;AAAA,IAC9D;AACA,WAAO;AAAA,EACR;AAGD;AAQO,MAAM,8BAA8B,WAAW;AAAA,EAIrD,YACkB,UACA,QACjB,MACC;AACD,UAAM,QAAQ;AAJG;AACA;AAIjB,SAAK,UAAU,eAAI,QAAQ,MAAM;AACjC,SAAK,aAAa,eAAI,UAAU,MAAM;AAEtC,QAAI,MAAM;AACT,UAAI,KAAK,WAAW,KAAM,MAAK,UAAU,KAAK;AAC9C,UAAI,KAAK,cAAc,KAAM,MAAK,aAAa,KAAK;AACpD,UAAI,KAAK,cAAc,KAAM,MAAK,aAAa,KAAK;AACpD,UAAI,KAAK,UAAU,KAAM,MAAK,SAAS,KAAK;AAAA,IAC7C;AAEA;AAAA,UACC,6BAAc,KAAK,WAAW,QAAQ,KAAK,WAAW,MAAM;AAAA,MAC5D;AAAA,IACD;AAAA,EACD;AAAA,EAvBiB;AAAA,EACA;AAAA,EAwBjB,YAAY,SAAmC;AAC9C,WAAO,KAAK,SAAS,YAAY,OAAO,EAAE,IAAI,CAAC,MAAM,eAAI,aAAa,KAAK,QAAQ,CAAC,CAAC;AAAA,EACtF;AAAA,EAEA,aAAa,OAAgB,SAAkC;AAC9D,WAAO,eAAI;AAAA,MACV,KAAK;AAAA,MACL,KAAK,SAAS,aAAa,eAAI,aAAa,KAAK,SAAS,KAAK,GAAG,OAAO;AAAA,IAC1E;AAAA,EACD;AAAA,EAES,aACR,OACA,SAAS,GACT,WACA,SACU;AACV,WAAO,KAAK,SAAS;AAAA,MACpB,eAAI,aAAa,KAAK,SAAS,KAAK;AAAA,MACpC,SAAS,KAAK,WAAW;AAAA,MACzB;AAAA,MACA;AAAA,IACD;AAAA,EACD;AAAA,EAES,gBAAgB,OAAgB,YAAY,OAAO,SAA6B;AACxF,WACC,KAAK,SAAS,gBAAgB,eAAI,aAAa,KAAK,SAAS,KAAK,GAAG,WAAW,OAAO,IACvF,KAAK,WAAW;AAAA,EAElB;AAAA,EAES,sBAAsB,GAAY,GAAY,SAA6B;AACnF,WACC,KAAK,SAAS;AAAA,MACb,eAAI,aAAa,KAAK,SAAS,CAAC;AAAA,MAChC,eAAI,aAAa,KAAK,SAAS,CAAC;AAAA,MAChC;AAAA,IACD,IAAI,KAAK,WAAW;AAAA,EAEtB;AAAA,EAES,mBACR,GACA,GACA,WAAW,GACX,SACU;AACV,WAAO,KAAK,SAAS;AAAA,MACpB,eAAI,aAAa,KAAK,SAAS,CAAC;AAAA,MAChC,eAAI,aAAa,KAAK,SAAS,CAAC;AAAA,MAChC,WAAW,KAAK,WAAW;AAAA,MAC3B;AAAA,IACD;AAAA,EACD;AAAA,EAES,qBAAqB,GAAY,GAAY,SAA6B;AAClF,WAAO,eAAI;AAAA,MACV,KAAK;AAAA,MACL,KAAK,SAAS;AAAA,QACb,eAAI,aAAa,KAAK,SAAS,CAAC;AAAA,QAChC,eAAI,aAAa,KAAK,SAAS,CAAC;AAAA,QAChC;AAAA,MACD;AAAA,IACD;AAAA,EACD;AAAA,EAES,gBAAgB,QAAiB,QAAgB,SAA6B;AACtF,WAAO,eAAI;AAAA,MACV,KAAK;AAAA,MACL,KAAK,SAAS;AAAA,QACb,eAAI,aAAa,KAAK,SAAS,MAAM;AAAA,QACrC,SAAS,KAAK,WAAW;AAAA,QACzB;AAAA,MACD;AAAA,IACD;AAAA,EACD;AAAA,EAES,iBAAiB,SAAoB,SAAwC;AACrF,WAAO,eAAI;AAAA,MACV,KAAK;AAAA,MACL,KAAK,SAAS,iBAAiB,eAAI,cAAc,KAAK,SAAS,OAAO,GAAG,OAAO;AAAA,IACjF;AAAA,EACD;AAAA,EAES,kBAAkB,UAAqB,SAAwC;AACvF,WAAO,eAAI;AAAA,MACV,KAAK;AAAA,MACL,KAAK,SAAS,kBAAkB,eAAI,cAAc,KAAK,SAAS,QAAQ,GAAG,OAAO;AAAA,IACnF;AAAA,EACD;AAAA,EAES,UAAU,WAAqB,MAAiD;AACxF,WAAO,IAAI,sBAAsB,KAAK,UAAU,eAAI,SAAS,WAAW,KAAK,MAAM,GAAG;AAAA,MACrF,SAAS,MAAM,WAAW,KAAK;AAAA,MAC/B,YAAY,MAAM,cAAc,KAAK;AAAA,MACrC,YAAY,MAAM,cAAc,KAAK;AAAA,MACrC,QAAQ,MAAM,UAAU,KAAK;AAAA,IAC9B,CAAC;AAAA,EACF;AAAA,EAEA,iBAAyB;AACxB,UAAM,IAAI,MAAM,oDAAoD;AAAA,EACrE;AACD;",
4
+ "sourcesContent": ["import { assert, invLerp } from '@tldraw/utils'\nimport { Box } from '../Box'\nimport { Mat, MatModel } from '../Mat'\nimport { Vec, VecLike } from '../Vec'\nimport {\n\tintersectCirclePolygon,\n\tintersectCirclePolyline,\n\tintersectLineSegmentPolygon,\n\tintersectLineSegmentPolyline,\n\tintersectPolys,\n\tlinesIntersect,\n\tpolygonIntersectsPolyline,\n\tpolygonsIntersect,\n} from '../intersect'\nimport { approximately, pointInPolygon } from '../utils'\n\n/**\n * Filter geometry within a group.\n *\n * Filters are ignored when called directly on primitive geometries, but can be used to narrow down\n * the results of an operation on `Group2d` geometries.\n *\n * @public\n */\nexport interface Geometry2dFilters {\n\treadonly includeLabels?: boolean\n\treadonly includeInternal?: boolean\n}\n\n/** @public */\nexport const Geometry2dFilters: {\n\tEXCLUDE_NON_STANDARD: Geometry2dFilters\n\tINCLUDE_ALL: Geometry2dFilters\n\tEXCLUDE_LABELS: Geometry2dFilters\n\tEXCLUDE_INTERNAL: Geometry2dFilters\n} = {\n\tEXCLUDE_NON_STANDARD: {\n\t\tincludeLabels: false,\n\t\tincludeInternal: false,\n\t},\n\tINCLUDE_ALL: { includeLabels: true, includeInternal: true },\n\tEXCLUDE_LABELS: { includeLabels: false, includeInternal: true },\n\tEXCLUDE_INTERNAL: { includeLabels: true, includeInternal: false },\n}\n\n/** @public */\nexport interface TransformedGeometry2dOptions {\n\tisLabel?: boolean\n\tisEmptyLabel?: boolean\n\tisInternal?: boolean\n\tdebugColor?: string\n\tignore?: boolean\n}\n\n/** @public */\nexport interface Geometry2dOptions extends TransformedGeometry2dOptions {\n\tisFilled: boolean\n\tisClosed: boolean\n}\n\n/** @public */\nexport abstract class Geometry2d {\n\t// todo: consider making accessors for these too, so that they can be overridden in subclasses by geometries with more complex logic\n\tisFilled = false\n\tisClosed = true\n\tisLabel = false\n\tisEmptyLabel = false\n\tisInternal = false\n\tdebugColor?: string\n\tignore?: boolean\n\n\tconstructor(opts: Geometry2dOptions) {\n\t\tconst { isLabel = false, isEmptyLabel = false, isInternal = false } = opts\n\t\tthis.isFilled = opts.isFilled\n\t\tthis.isClosed = opts.isClosed\n\t\tthis.debugColor = opts.debugColor\n\t\tthis.ignore = opts.ignore\n\t\tthis.isLabel = isLabel\n\t\tthis.isEmptyLabel = isEmptyLabel\n\t\tthis.isInternal = isInternal\n\t}\n\n\tisExcludedByFilter(filters?: Geometry2dFilters) {\n\t\tif (!filters) return false\n\t\tif (this.isLabel && !filters.includeLabels) return true\n\t\tif (this.isInternal && !filters.includeInternal) return true\n\t\treturn false\n\t}\n\n\tabstract getVertices(filters: Geometry2dFilters): Vec[]\n\n\tabstract nearestPoint(point: VecLike, _filters?: Geometry2dFilters): Vec\n\n\thitTestPoint(point: VecLike, margin = 0, hitInside = false, _filters?: Geometry2dFilters) {\n\t\t// First check whether the point is inside\n\t\tif (this.isClosed && (this.isFilled || hitInside) && pointInPolygon(point, this.vertices)) {\n\t\t\treturn true\n\t\t}\n\t\t// Then check whether the distance is within the margin\n\t\treturn Vec.Dist2(point, this.nearestPoint(point)) <= margin * margin\n\t}\n\n\tdistanceToPoint(point: VecLike, hitInside = false, filters?: Geometry2dFilters) {\n\t\treturn (\n\t\t\tVec.Dist(point, this.nearestPoint(point, filters)) *\n\t\t\t(this.isClosed && (this.isFilled || hitInside) && pointInPolygon(point, this.vertices)\n\t\t\t\t? -1\n\t\t\t\t: 1)\n\t\t)\n\t}\n\n\tdistanceToLineSegment(A: VecLike, B: VecLike, filters?: Geometry2dFilters) {\n\t\tif (Vec.Equals(A, B)) return this.distanceToPoint(A, false, filters)\n\t\tconst { vertices } = this\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet d: number, p: Vec, q: Vec\n\t\tconst nextLimit = this.isClosed ? vertices.length : vertices.length - 1\n\t\tfor (let i = 0; i < vertices.length; i++) {\n\t\t\tp = vertices[i]\n\t\t\tif (i < nextLimit) {\n\t\t\t\tconst next = vertices[(i + 1) % vertices.length]\n\t\t\t\tif (linesIntersect(A, B, p, next)) return 0\n\t\t\t}\n\t\t\tq = Vec.NearestPointOnLineSegment(A, B, p, true)\n\t\t\td = Vec.Dist2(p, q)\n\t\t\tif (d < dist) {\n\t\t\t\tdist = d\n\t\t\t\tnearest = q\n\t\t\t}\n\t\t}\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn this.isClosed && this.isFilled && pointInPolygon(nearest, this.vertices) ? -dist : dist\n\t}\n\n\thitTestLineSegment(A: VecLike, B: VecLike, distance = 0, filters?: Geometry2dFilters): boolean {\n\t\treturn this.distanceToLineSegment(A, B, filters) <= distance\n\t}\n\n\tintersectLineSegment(A: VecLike, B: VecLike, _filters?: Geometry2dFilters): VecLike[] {\n\t\tconst intersections = this.isClosed\n\t\t\t? intersectLineSegmentPolygon(A, B, this.vertices)\n\t\t\t: intersectLineSegmentPolyline(A, B, this.vertices)\n\n\t\treturn intersections ?? []\n\t}\n\n\tintersectCircle(center: VecLike, radius: number, _filters?: Geometry2dFilters): VecLike[] {\n\t\tconst intersections = this.isClosed\n\t\t\t? intersectCirclePolygon(center, radius, this.vertices)\n\t\t\t: intersectCirclePolyline(center, radius, this.vertices)\n\n\t\treturn intersections ?? []\n\t}\n\n\tintersectPolygon(polygon: VecLike[], _filters?: Geometry2dFilters): VecLike[] {\n\t\treturn intersectPolys(polygon, this.vertices, true, this.isClosed)\n\t}\n\n\tintersectPolyline(polyline: VecLike[], _filters?: Geometry2dFilters): VecLike[] {\n\t\treturn intersectPolys(polyline, this.vertices, false, this.isClosed)\n\t}\n\n\t/**\n\t * Find a point along the edge of the geometry that is a fraction `t` along the entire way round.\n\t */\n\tinterpolateAlongEdge(t: number, _filters?: Geometry2dFilters): Vec {\n\t\tconst { vertices } = this\n\n\t\tif (t <= 0) return vertices[0]\n\n\t\tconst distanceToTravel = t * this.length\n\t\tlet distanceTraveled = 0\n\n\t\tfor (let i = 0; i < (this.isClosed ? vertices.length : vertices.length - 1); i++) {\n\t\t\tconst curr = vertices[i]\n\t\t\tconst next = vertices[(i + 1) % vertices.length]\n\t\t\tconst dist = Vec.Dist(curr, next)\n\t\t\tconst newDistanceTraveled = distanceTraveled + dist\n\t\t\tif (newDistanceTraveled >= distanceToTravel) {\n\t\t\t\tconst p = Vec.Lrp(\n\t\t\t\t\tcurr,\n\t\t\t\t\tnext,\n\t\t\t\t\tinvLerp(distanceTraveled, newDistanceTraveled, distanceToTravel)\n\t\t\t\t)\n\t\t\t\treturn p\n\t\t\t}\n\t\t\tdistanceTraveled = newDistanceTraveled\n\t\t}\n\n\t\treturn this.isClosed ? vertices[0] : vertices[vertices.length - 1]\n\t}\n\n\t/**\n\t * Take `point`, find the closest point to it on the edge of the geometry, and return how far\n\t * along the edge it is as a fraction of the total length.\n\t */\n\tuninterpolateAlongEdge(point: VecLike, _filters?: Geometry2dFilters): number {\n\t\tconst { vertices, length } = this\n\t\tlet closestSegment = null\n\t\tlet closestDistance = Infinity\n\t\tlet distanceTraveled = 0\n\n\t\tfor (let i = 0; i < (this.isClosed ? vertices.length : vertices.length - 1); i++) {\n\t\t\tconst curr = vertices[i]\n\t\t\tconst next = vertices[(i + 1) % vertices.length]\n\n\t\t\tconst nearestPoint = Vec.NearestPointOnLineSegment(curr, next, point, true)\n\t\t\tconst distance = Vec.Dist(nearestPoint, point)\n\n\t\t\tif (distance < closestDistance) {\n\t\t\t\tclosestDistance = distance\n\t\t\t\tclosestSegment = {\n\t\t\t\t\tstart: curr,\n\t\t\t\t\tend: next,\n\t\t\t\t\tnearestPoint,\n\t\t\t\t\tdistanceToStart: distanceTraveled,\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tdistanceTraveled += Vec.Dist(curr, next)\n\t\t}\n\n\t\tassert(closestSegment)\n\n\t\tconst distanceAlongRoute =\n\t\t\tclosestSegment.distanceToStart + Vec.Dist(closestSegment.start, closestSegment.nearestPoint)\n\n\t\treturn distanceAlongRoute / length\n\t}\n\n\tisPointInBounds(point: VecLike, margin = 0) {\n\t\tconst { bounds } = this\n\t\treturn !(\n\t\t\tpoint.x < bounds.minX - margin ||\n\t\t\tpoint.y < bounds.minY - margin ||\n\t\t\tpoint.x > bounds.maxX + margin ||\n\t\t\tpoint.y > bounds.maxY + margin\n\t\t)\n\t}\n\n\toverlapsPolygon(_polygon: VecLike[]): boolean {\n\t\tconst polygon = _polygon.map((v) => Vec.From(v))\n\n\t\t// Otherwise, check if the geometry itself overlaps the polygon\n\t\tconst { vertices, center, isFilled, isEmptyLabel, isClosed } = this\n\n\t\t// We'll do things in order of cheapest to most expensive checks\n\n\t\t// Skip empty labels\n\t\tif (isEmptyLabel) return false\n\n\t\t// If any of the geometry's vertices are inside the polygon, it's inside\n\t\tif (vertices.some((v) => pointInPolygon(v, polygon))) {\n\t\t\treturn true\n\t\t}\n\n\t\t// If the geometry is filled and closed and its center is inside the polygon, it's inside\n\t\tif (isClosed) {\n\t\t\tif (isFilled) {\n\t\t\t\t// If closed and filled, check if the center is inside the polygon\n\t\t\t\tif (pointInPolygon(center, polygon)) {\n\t\t\t\t\treturn true\n\t\t\t\t}\n\n\t\t\t\t// ..then, slightly more expensive check, see the geometry covers the entire polygon but not its center\n\t\t\t\tif (polygon.every((v) => pointInPolygon(v, vertices))) {\n\t\t\t\t\treturn true\n\t\t\t\t}\n\t\t\t}\n\n\t\t\t// If any the geometry's vertices intersect the edge of the polygon, it's inside.\n\t\t\t// for example when a rotated rectangle is moved over the corner of a parent rectangle\n\t\t\t// If the geometry is closed, intersect as a polygon\n\t\t\tif (polygonsIntersect(polygon, vertices)) {\n\t\t\t\treturn true\n\t\t\t}\n\t\t} else {\n\t\t\t// If the geometry is not closed, intersect as a polyline\n\t\t\tif (polygonIntersectsPolyline(polygon, vertices)) {\n\t\t\t\treturn true\n\t\t\t}\n\t\t}\n\n\t\t// If none of the above checks passed, the geometry is outside the polygon\n\t\treturn false\n\t}\n\n\ttransform(transform: MatModel, opts?: TransformedGeometry2dOptions): Geometry2d {\n\t\treturn new TransformedGeometry2d(this, transform, opts)\n\t}\n\n\tprivate _vertices: Vec[] | undefined\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget vertices(): Vec[] {\n\t\tif (!this._vertices) {\n\t\t\tthis._vertices = this.getVertices(Geometry2dFilters.EXCLUDE_LABELS)\n\t\t}\n\n\t\treturn this._vertices\n\t}\n\n\tgetBounds() {\n\t\treturn Box.FromPoints(this.vertices)\n\t}\n\n\tprivate _bounds: Box | undefined\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget bounds(): Box {\n\t\tif (!this._bounds) {\n\t\t\tthis._bounds = this.getBounds()\n\t\t}\n\t\treturn this._bounds\n\t}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget center() {\n\t\treturn this.bounds.center\n\t}\n\n\tprivate _area: number | undefined\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget area() {\n\t\tif (!this._area) {\n\t\t\tthis._area = this.getArea()\n\t\t}\n\t\treturn this._area\n\t}\n\n\tgetArea() {\n\t\tif (!this.isClosed) {\n\t\t\treturn 0\n\t\t}\n\t\tconst { vertices } = this\n\t\tlet area = 0\n\t\tfor (let i = 0, n = vertices.length; i < n; i++) {\n\t\t\tconst curr = vertices[i]\n\t\t\tconst next = vertices[(i + 1) % n]\n\t\t\tarea += curr.x * next.y - next.x * curr.y\n\t\t}\n\t\treturn area / 2\n\t}\n\n\ttoSimpleSvgPath() {\n\t\tlet path = ''\n\n\t\tconst { vertices } = this\n\t\tconst n = vertices.length\n\n\t\tif (n === 0) return path\n\n\t\tpath += `M${vertices[0].x},${vertices[0].y}`\n\n\t\tfor (let i = 1; i < n; i++) {\n\t\t\tpath += `L${vertices[i].x},${vertices[i].y}`\n\t\t}\n\n\t\tif (this.isClosed) {\n\t\t\tpath += 'Z'\n\t\t}\n\n\t\treturn path\n\t}\n\n\tprivate _length?: number\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget length() {\n\t\tif (this._length) return this._length\n\t\tthis._length = this.getLength(Geometry2dFilters.EXCLUDE_LABELS)\n\t\treturn this._length\n\t}\n\n\tgetLength(_filters?: Geometry2dFilters) {\n\t\tconst vertices = this.getVertices(_filters ?? Geometry2dFilters.EXCLUDE_LABELS)\n\t\tif (vertices.length === 0) return 0\n\t\tlet prev = vertices[0]\n\t\tlet length = 0\n\t\tfor (let i = 1; i < vertices.length; i++) {\n\t\t\tconst next = vertices[i]\n\t\t\tlength += Vec.Dist(prev, next)\n\t\t\tprev = next\n\t\t}\n\t\tif (this.isClosed) {\n\t\t\tlength += Vec.Dist(vertices[vertices.length - 1], vertices[0])\n\t\t}\n\t\treturn length\n\t}\n\n\tabstract getSvgPathData(first: boolean): string\n}\n\n// =================================================================================================\n// Because Geometry2d.transform depends on TransformedGeometry2d, we need to define it here instead\n// of in its own files. This prevents a circular import error.\n// =================================================================================================\n\n/** @public */\nexport class TransformedGeometry2d extends Geometry2d {\n\tprivate readonly inverse: MatModel\n\tprivate readonly decomposed\n\n\tconstructor(\n\t\tprivate readonly geometry: Geometry2d,\n\t\tprivate readonly matrix: MatModel,\n\t\topts?: TransformedGeometry2dOptions\n\t) {\n\t\tsuper(geometry)\n\t\tthis.inverse = Mat.Inverse(matrix)\n\t\tthis.decomposed = Mat.Decompose(matrix)\n\n\t\tif (opts) {\n\t\t\tif (opts.isLabel != null) this.isLabel = opts.isLabel\n\t\t\tif (opts.isInternal != null) this.isInternal = opts.isInternal\n\t\t\tif (opts.debugColor != null) this.debugColor = opts.debugColor\n\t\t\tif (opts.ignore != null) this.ignore = opts.ignore\n\t\t}\n\n\t\tassert(\n\t\t\tapproximately(this.decomposed.scaleX, this.decomposed.scaleY),\n\t\t\t'non-uniform scaling is not yet supported'\n\t\t)\n\t}\n\n\tgetVertices(filters: Geometry2dFilters): Vec[] {\n\t\treturn this.geometry.getVertices(filters).map((v) => Mat.applyToPoint(this.matrix, v))\n\t}\n\n\tnearestPoint(point: VecLike, filters?: Geometry2dFilters): Vec {\n\t\treturn Mat.applyToPoint(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.nearestPoint(Mat.applyToPoint(this.inverse, point), filters)\n\t\t)\n\t}\n\n\toverride hitTestPoint(\n\t\tpoint: VecLike,\n\t\tmargin = 0,\n\t\thitInside?: boolean,\n\t\tfilters?: Geometry2dFilters\n\t): boolean {\n\t\treturn this.geometry.hitTestPoint(\n\t\t\tMat.applyToPoint(this.inverse, point),\n\t\t\tmargin / this.decomposed.scaleX,\n\t\t\thitInside,\n\t\t\tfilters\n\t\t)\n\t}\n\n\toverride distanceToPoint(point: VecLike, hitInside = false, filters?: Geometry2dFilters) {\n\t\treturn (\n\t\t\tthis.geometry.distanceToPoint(Mat.applyToPoint(this.inverse, point), hitInside, filters) *\n\t\t\tthis.decomposed.scaleX\n\t\t)\n\t}\n\n\toverride distanceToLineSegment(A: VecLike, B: VecLike, filters?: Geometry2dFilters) {\n\t\treturn (\n\t\t\tthis.geometry.distanceToLineSegment(\n\t\t\t\tMat.applyToPoint(this.inverse, A),\n\t\t\t\tMat.applyToPoint(this.inverse, B),\n\t\t\t\tfilters\n\t\t\t) * this.decomposed.scaleX\n\t\t)\n\t}\n\n\toverride hitTestLineSegment(\n\t\tA: VecLike,\n\t\tB: VecLike,\n\t\tdistance = 0,\n\t\tfilters?: Geometry2dFilters\n\t): boolean {\n\t\treturn this.geometry.hitTestLineSegment(\n\t\t\tMat.applyToPoint(this.inverse, A),\n\t\t\tMat.applyToPoint(this.inverse, B),\n\t\t\tdistance / this.decomposed.scaleX,\n\t\t\tfilters\n\t\t)\n\t}\n\n\toverride intersectLineSegment(A: VecLike, B: VecLike, filters?: Geometry2dFilters) {\n\t\treturn Mat.applyToPoints(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.intersectLineSegment(\n\t\t\t\tMat.applyToPoint(this.inverse, A),\n\t\t\t\tMat.applyToPoint(this.inverse, B),\n\t\t\t\tfilters\n\t\t\t)\n\t\t)\n\t}\n\n\toverride intersectCircle(center: VecLike, radius: number, filters?: Geometry2dFilters) {\n\t\treturn Mat.applyToPoints(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.intersectCircle(\n\t\t\t\tMat.applyToPoint(this.inverse, center),\n\t\t\t\tradius / this.decomposed.scaleX,\n\t\t\t\tfilters\n\t\t\t)\n\t\t)\n\t}\n\n\toverride intersectPolygon(polygon: VecLike[], filters?: Geometry2dFilters): VecLike[] {\n\t\treturn Mat.applyToPoints(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.intersectPolygon(Mat.applyToPoints(this.inverse, polygon), filters)\n\t\t)\n\t}\n\n\toverride intersectPolyline(polyline: VecLike[], filters?: Geometry2dFilters): VecLike[] {\n\t\treturn Mat.applyToPoints(\n\t\t\tthis.matrix,\n\t\t\tthis.geometry.intersectPolyline(Mat.applyToPoints(this.inverse, polyline), filters)\n\t\t)\n\t}\n\n\toverride transform(transform: MatModel, opts?: TransformedGeometry2dOptions): Geometry2d {\n\t\treturn new TransformedGeometry2d(this.geometry, Mat.Multiply(transform, this.matrix), {\n\t\t\tisLabel: opts?.isLabel ?? this.isLabel,\n\t\t\tisInternal: opts?.isInternal ?? this.isInternal,\n\t\t\tdebugColor: opts?.debugColor ?? this.debugColor,\n\t\t\tignore: opts?.ignore ?? this.ignore,\n\t\t})\n\t}\n\n\tgetSvgPathData(): string {\n\t\tthrow new Error('Cannot get SVG path data for transformed geometry.')\n\t}\n}\n"],
5
+ "mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mBAAgC;AAChC,iBAAoB;AACpB,iBAA8B;AAC9B,iBAA6B;AAC7B,uBASO;AACP,IAAAA,gBAA8C;AAgBvC,MAAM,oBAKT;AAAA,EACH,sBAAsB;AAAA,IACrB,eAAe;AAAA,IACf,iBAAiB;AAAA,EAClB;AAAA,EACA,aAAa,EAAE,eAAe,MAAM,iBAAiB,KAAK;AAAA,EAC1D,gBAAgB,EAAE,eAAe,OAAO,iBAAiB,KAAK;AAAA,EAC9D,kBAAkB,EAAE,eAAe,MAAM,iBAAiB,MAAM;AACjE;AAkBO,MAAe,WAAW;AAAA;AAAA,EAEhC,WAAW;AAAA,EACX,WAAW;AAAA,EACX,UAAU;AAAA,EACV,eAAe;AAAA,EACf,aAAa;AAAA,EACb;AAAA,EACA;AAAA,EAEA,YAAY,MAAyB;AACpC,UAAM,EAAE,UAAU,OAAO,eAAe,OAAO,aAAa,MAAM,IAAI;AACtE,SAAK,WAAW,KAAK;AACrB,SAAK,WAAW,KAAK;AACrB,SAAK,aAAa,KAAK;AACvB,SAAK,SAAS,KAAK;AACnB,SAAK,UAAU;AACf,SAAK,eAAe;AACpB,SAAK,aAAa;AAAA,EACnB;AAAA,EAEA,mBAAmB,SAA6B;AAC/C,QAAI,CAAC,QAAS,QAAO;AACrB,QAAI,KAAK,WAAW,CAAC,QAAQ,cAAe,QAAO;AACnD,QAAI,KAAK,cAAc,CAAC,QAAQ,gBAAiB,QAAO;AACxD,WAAO;AAAA,EACR;AAAA,EAMA,aAAa,OAAgB,SAAS,GAAG,YAAY,OAAO,UAA8B;AAEzF,QAAI,KAAK,aAAa,KAAK,YAAY,kBAAc,8BAAe,OAAO,KAAK,QAAQ,GAAG;AAC1F,aAAO;AAAA,IACR;AAEA,WAAO,eAAI,MAAM,OAAO,KAAK,aAAa,KAAK,CAAC,KAAK,SAAS;AAAA,EAC/D;AAAA,EAEA,gBAAgB,OAAgB,YAAY,OAAO,SAA6B;AAC/E,WACC,eAAI,KAAK,OAAO,KAAK,aAAa,OAAO,OAAO,CAAC,KAChD,KAAK,aAAa,KAAK,YAAY,kBAAc,8BAAe,OAAO,KAAK,QAAQ,IAClF,KACA;AAAA,EAEL;AAAA,EAEA,sBAAsB,GAAY,GAAY,SAA6B;AAC1E,QAAI,eAAI,OAAO,GAAG,CAAC,EAAG,QAAO,KAAK,gBAAgB,GAAG,OAAO,OAAO;AACnE,UAAM,EAAE,SAAS,IAAI;AACrB,QAAI;AACJ,QAAI,OAAO;AACX,QAAI,GAAW,GAAQ;AACvB,UAAM,YAAY,KAAK,WAAW,SAAS,SAAS,SAAS,SAAS;AACtE,aAAS,IAAI,GAAG,IAAI,SAAS,QAAQ,KAAK;AACzC,UAAI,SAAS,CAAC;AACd,UAAI,IAAI,WAAW;AAClB,cAAM,OAAO,UAAU,IAAI,KAAK,SAAS,MAAM;AAC/C,gBAAI,iCAAe,GAAG,GAAG,GAAG,IAAI,EAAG,QAAO;AAAA,MAC3C;AACA,UAAI,eAAI,0BAA0B,GAAG,GAAG,GAAG,IAAI;AAC/C,UAAI,eAAI,MAAM,GAAG,CAAC;AAClB,UAAI,IAAI,MAAM;AACb,eAAO;AACP,kBAAU;AAAA,MACX;AAAA,IACD;AACA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO,KAAK,YAAY,KAAK,gBAAY,8BAAe,SAAS,KAAK,QAAQ,IAAI,CAAC,OAAO;AAAA,EAC3F;AAAA,EAEA,mBAAmB,GAAY,GAAY,WAAW,GAAG,SAAsC;AAC9F,WAAO,KAAK,sBAAsB,GAAG,GAAG,OAAO,KAAK;AAAA,EACrD;AAAA,EAEA,qBAAqB,GAAY,GAAY,UAAyC;AACrF,UAAM,gBAAgB,KAAK,eACxB,8CAA4B,GAAG,GAAG,KAAK,QAAQ,QAC/C,+CAA6B,GAAG,GAAG,KAAK,QAAQ;AAEnD,WAAO,iBAAiB,CAAC;AAAA,EAC1B;AAAA,EAEA,gBAAgB,QAAiB,QAAgB,UAAyC;AACzF,UAAM,gBAAgB,KAAK,eACxB,yCAAuB,QAAQ,QAAQ,KAAK,QAAQ,QACpD,0CAAwB,QAAQ,QAAQ,KAAK,QAAQ;AAExD,WAAO,iBAAiB,CAAC;AAAA,EAC1B;AAAA,EAEA,iBAAiB,SAAoB,UAAyC;AAC7E,eAAO,iCAAe,SAAS,KAAK,UAAU,MAAM,KAAK,QAAQ;AAAA,EAClE;AAAA,EAEA,kBAAkB,UAAqB,UAAyC;AAC/E,eAAO,iCAAe,UAAU,KAAK,UAAU,OAAO,KAAK,QAAQ;AAAA,EACpE;AAAA;AAAA;AAAA;AAAA,EAKA,qBAAqB,GAAW,UAAmC;AAClE,UAAM,EAAE,SAAS,IAAI;AAErB,QAAI,KAAK,EAAG,QAAO,SAAS,CAAC;AAE7B,UAAM,mBAAmB,IAAI,KAAK;AAClC,QAAI,mBAAmB;AAEvB,aAAS,IAAI,GAAG,KAAK,KAAK,WAAW,SAAS,SAAS,SAAS,SAAS,IAAI,KAAK;AACjF,YAAM,OAAO,SAAS,CAAC;AACvB,YAAM,OAAO,UAAU,IAAI,KAAK,SAAS,MAAM;AAC/C,YAAM,OAAO,eAAI,KAAK,MAAM,IAAI;AAChC,YAAM,sBAAsB,mBAAmB;AAC/C,UAAI,uBAAuB,kBAAkB;AAC5C,cAAM,IAAI,eAAI;AAAA,UACb;AAAA,UACA;AAAA,cACA,sBAAQ,kBAAkB,qBAAqB,gBAAgB;AAAA,QAChE;AACA,eAAO;AAAA,MACR;AACA,yBAAmB;AAAA,IACpB;AAEA,WAAO,KAAK,WAAW,SAAS,CAAC,IAAI,SAAS,SAAS,SAAS,CAAC;AAAA,EAClE;AAAA;AAAA;AAAA;AAAA;AAAA,EAMA,uBAAuB,OAAgB,UAAsC;AAC5E,UAAM,EAAE,UAAU,OAAO,IAAI;AAC7B,QAAI,iBAAiB;AACrB,QAAI,kBAAkB;AACtB,QAAI,mBAAmB;AAEvB,aAAS,IAAI,GAAG,KAAK,KAAK,WAAW,SAAS,SAAS,SAAS,SAAS,IAAI,KAAK;AACjF,YAAM,OAAO,SAAS,CAAC;AACvB,YAAM,OAAO,UAAU,IAAI,KAAK,SAAS,MAAM;AAE/C,YAAM,eAAe,eAAI,0BAA0B,MAAM,MAAM,OAAO,IAAI;AAC1E,YAAM,WAAW,eAAI,KAAK,cAAc,KAAK;AAE7C,UAAI,WAAW,iBAAiB;AAC/B,0BAAkB;AAClB,yBAAiB;AAAA,UAChB,OAAO;AAAA,UACP,KAAK;AAAA,UACL;AAAA,UACA,iBAAiB;AAAA,QAClB;AAAA,MACD;AAEA,0BAAoB,eAAI,KAAK,MAAM,IAAI;AAAA,IACxC;AAEA,6BAAO,cAAc;AAErB,UAAM,qBACL,eAAe,kBAAkB,eAAI,KAAK,eAAe,OAAO,eAAe,YAAY;AAE5F,WAAO,qBAAqB;AAAA,EAC7B;AAAA,EAEA,gBAAgB,OAAgB,SAAS,GAAG;AAC3C,UAAM,EAAE,OAAO,IAAI;AACnB,WAAO,EACN,MAAM,IAAI,OAAO,OAAO,UACxB,MAAM,IAAI,OAAO,OAAO,UACxB,MAAM,IAAI,OAAO,OAAO,UACxB,MAAM,IAAI,OAAO,OAAO;AAAA,EAE1B;AAAA,EAEA,gBAAgB,UAA8B;AAC7C,UAAM,UAAU,SAAS,IAAI,CAAC,MAAM,eAAI,KAAK,CAAC,CAAC;AAG/C,UAAM,EAAE,UAAU,QAAQ,UAAU,cAAc,SAAS,IAAI;AAK/D,QAAI,aAAc,QAAO;AAGzB,QAAI,SAAS,KAAK,CAAC,UAAM,8BAAe,GAAG,OAAO,CAAC,GAAG;AACrD,aAAO;AAAA,IACR;AAGA,QAAI,UAAU;AACb,UAAI,UAAU;AAEb,gBAAI,8BAAe,QAAQ,OAAO,GAAG;AACpC,iBAAO;AAAA,QACR;AAGA,YAAI,QAAQ,MAAM,CAAC,UAAM,8BAAe,GAAG,QAAQ,CAAC,GAAG;AACtD,iBAAO;AAAA,QACR;AAAA,MACD;AAKA,cAAI,oCAAkB,SAAS,QAAQ,GAAG;AACzC,eAAO;AAAA,MACR;AAAA,IACD,OAAO;AAEN,cAAI,4CAA0B,SAAS,QAAQ,GAAG;AACjD,eAAO;AAAA,MACR;AAAA,IACD;AAGA,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,WAAqB,MAAiD;AAC/E,WAAO,IAAI,sBAAsB,MAAM,WAAW,IAAI;AAAA,EACvD;AAAA,EAEQ;AAAA;AAAA,EAGR,IAAI,WAAkB;AACrB,QAAI,CAAC,KAAK,WAAW;AACpB,WAAK,YAAY,KAAK,YAAY,kBAAkB,cAAc;AAAA,IACnE;AAEA,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,YAAY;AACX,WAAO,eAAI,WAAW,KAAK,QAAQ;AAAA,EACpC;AAAA,EAEQ;AAAA;AAAA,EAGR,IAAI,SAAc;AACjB,QAAI,CAAC,KAAK,SAAS;AAClB,WAAK,UAAU,KAAK,UAAU;AAAA,IAC/B;AACA,WAAO,KAAK;AAAA,EACb;AAAA;AAAA,EAGA,IAAI,SAAS;AACZ,WAAO,KAAK,OAAO;AAAA,EACpB;AAAA,EAEQ;AAAA;AAAA,EAGR,IAAI,OAAO;AACV,QAAI,CAAC,KAAK,OAAO;AAChB,WAAK,QAAQ,KAAK,QAAQ;AAAA,IAC3B;AACA,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,UAAU;AACT,QAAI,CAAC,KAAK,UAAU;AACnB,aAAO;AAAA,IACR;AACA,UAAM,EAAE,SAAS,IAAI;AACrB,QAAI,OAAO;AACX,aAAS,IAAI,GAAG,IAAI,SAAS,QAAQ,IAAI,GAAG,KAAK;AAChD,YAAM,OAAO,SAAS,CAAC;AACvB,YAAM,OAAO,UAAU,IAAI,KAAK,CAAC;AACjC,cAAQ,KAAK,IAAI,KAAK,IAAI,KAAK,IAAI,KAAK;AAAA,IACzC;AACA,WAAO,OAAO;AAAA,EACf;AAAA,EAEA,kBAAkB;AACjB,QAAI,OAAO;AAEX,UAAM,EAAE,SAAS,IAAI;AACrB,UAAM,IAAI,SAAS;AAEnB,QAAI,MAAM,EAAG,QAAO;AAEpB,YAAQ,IAAI,SAAS,CAAC,EAAE,CAAC,IAAI,SAAS,CAAC,EAAE,CAAC;AAE1C,aAAS,IAAI,GAAG,IAAI,GAAG,KAAK;AAC3B,cAAQ,IAAI,SAAS,CAAC,EAAE,CAAC,IAAI,SAAS,CAAC,EAAE,CAAC;AAAA,IAC3C;AAEA,QAAI,KAAK,UAAU;AAClB,cAAQ;AAAA,IACT;AAEA,WAAO;AAAA,EACR;AAAA,EAEQ;AAAA;AAAA,EAGR,IAAI,SAAS;AACZ,QAAI,KAAK,QAAS,QAAO,KAAK;AAC9B,SAAK,UAAU,KAAK,UAAU,kBAAkB,cAAc;AAC9D,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,UAAU,UAA8B;AACvC,UAAM,WAAW,KAAK,YAAY,YAAY,kBAAkB,cAAc;AAC9E,QAAI,SAAS,WAAW,EAAG,QAAO;AAClC,QAAI,OAAO,SAAS,CAAC;AACrB,QAAI,SAAS;AACb,aAAS,IAAI,GAAG,IAAI,SAAS,QAAQ,KAAK;AACzC,YAAM,OAAO,SAAS,CAAC;AACvB,gBAAU,eAAI,KAAK,MAAM,IAAI;AAC7B,aAAO;AAAA,IACR;AACA,QAAI,KAAK,UAAU;AAClB,gBAAU,eAAI,KAAK,SAAS,SAAS,SAAS,CAAC,GAAG,SAAS,CAAC,CAAC;AAAA,IAC9D;AACA,WAAO;AAAA,EACR;AAGD;AAQO,MAAM,8BAA8B,WAAW;AAAA,EAIrD,YACkB,UACA,QACjB,MACC;AACD,UAAM,QAAQ;AAJG;AACA;AAIjB,SAAK,UAAU,eAAI,QAAQ,MAAM;AACjC,SAAK,aAAa,eAAI,UAAU,MAAM;AAEtC,QAAI,MAAM;AACT,UAAI,KAAK,WAAW,KAAM,MAAK,UAAU,KAAK;AAC9C,UAAI,KAAK,cAAc,KAAM,MAAK,aAAa,KAAK;AACpD,UAAI,KAAK,cAAc,KAAM,MAAK,aAAa,KAAK;AACpD,UAAI,KAAK,UAAU,KAAM,MAAK,SAAS,KAAK;AAAA,IAC7C;AAEA;AAAA,UACC,6BAAc,KAAK,WAAW,QAAQ,KAAK,WAAW,MAAM;AAAA,MAC5D;AAAA,IACD;AAAA,EACD;AAAA,EAvBiB;AAAA,EACA;AAAA,EAwBjB,YAAY,SAAmC;AAC9C,WAAO,KAAK,SAAS,YAAY,OAAO,EAAE,IAAI,CAAC,MAAM,eAAI,aAAa,KAAK,QAAQ,CAAC,CAAC;AAAA,EACtF;AAAA,EAEA,aAAa,OAAgB,SAAkC;AAC9D,WAAO,eAAI;AAAA,MACV,KAAK;AAAA,MACL,KAAK,SAAS,aAAa,eAAI,aAAa,KAAK,SAAS,KAAK,GAAG,OAAO;AAAA,IAC1E;AAAA,EACD;AAAA,EAES,aACR,OACA,SAAS,GACT,WACA,SACU;AACV,WAAO,KAAK,SAAS;AAAA,MACpB,eAAI,aAAa,KAAK,SAAS,KAAK;AAAA,MACpC,SAAS,KAAK,WAAW;AAAA,MACzB;AAAA,MACA;AAAA,IACD;AAAA,EACD;AAAA,EAES,gBAAgB,OAAgB,YAAY,OAAO,SAA6B;AACxF,WACC,KAAK,SAAS,gBAAgB,eAAI,aAAa,KAAK,SAAS,KAAK,GAAG,WAAW,OAAO,IACvF,KAAK,WAAW;AAAA,EAElB;AAAA,EAES,sBAAsB,GAAY,GAAY,SAA6B;AACnF,WACC,KAAK,SAAS;AAAA,MACb,eAAI,aAAa,KAAK,SAAS,CAAC;AAAA,MAChC,eAAI,aAAa,KAAK,SAAS,CAAC;AAAA,MAChC;AAAA,IACD,IAAI,KAAK,WAAW;AAAA,EAEtB;AAAA,EAES,mBACR,GACA,GACA,WAAW,GACX,SACU;AACV,WAAO,KAAK,SAAS;AAAA,MACpB,eAAI,aAAa,KAAK,SAAS,CAAC;AAAA,MAChC,eAAI,aAAa,KAAK,SAAS,CAAC;AAAA,MAChC,WAAW,KAAK,WAAW;AAAA,MAC3B;AAAA,IACD;AAAA,EACD;AAAA,EAES,qBAAqB,GAAY,GAAY,SAA6B;AAClF,WAAO,eAAI;AAAA,MACV,KAAK;AAAA,MACL,KAAK,SAAS;AAAA,QACb,eAAI,aAAa,KAAK,SAAS,CAAC;AAAA,QAChC,eAAI,aAAa,KAAK,SAAS,CAAC;AAAA,QAChC;AAAA,MACD;AAAA,IACD;AAAA,EACD;AAAA,EAES,gBAAgB,QAAiB,QAAgB,SAA6B;AACtF,WAAO,eAAI;AAAA,MACV,KAAK;AAAA,MACL,KAAK,SAAS;AAAA,QACb,eAAI,aAAa,KAAK,SAAS,MAAM;AAAA,QACrC,SAAS,KAAK,WAAW;AAAA,QACzB;AAAA,MACD;AAAA,IACD;AAAA,EACD;AAAA,EAES,iBAAiB,SAAoB,SAAwC;AACrF,WAAO,eAAI;AAAA,MACV,KAAK;AAAA,MACL,KAAK,SAAS,iBAAiB,eAAI,cAAc,KAAK,SAAS,OAAO,GAAG,OAAO;AAAA,IACjF;AAAA,EACD;AAAA,EAES,kBAAkB,UAAqB,SAAwC;AACvF,WAAO,eAAI;AAAA,MACV,KAAK;AAAA,MACL,KAAK,SAAS,kBAAkB,eAAI,cAAc,KAAK,SAAS,QAAQ,GAAG,OAAO;AAAA,IACnF;AAAA,EACD;AAAA,EAES,UAAU,WAAqB,MAAiD;AACxF,WAAO,IAAI,sBAAsB,KAAK,UAAU,eAAI,SAAS,WAAW,KAAK,MAAM,GAAG;AAAA,MACrF,SAAS,MAAM,WAAW,KAAK;AAAA,MAC/B,YAAY,MAAM,cAAc,KAAK;AAAA,MACrC,YAAY,MAAM,cAAc,KAAK;AAAA,MACrC,QAAQ,MAAM,UAAU,KAAK;AAAA,IAC9B,CAAC;AAAA,EACF;AAAA,EAEA,iBAAyB;AACxB,UAAM,IAAI,MAAM,oDAAoD;AAAA,EACrE;AACD;",
6
6
  "names": ["import_utils"]
7
7
  }
@@ -199,5 +199,8 @@ class Group2d extends import_Geometry2d.Geometry2d {
199
199
  getSvgPathData() {
200
200
  return this.children.map((c, i) => c.isLabel ? "" : c.getSvgPathData(i === 0)).join(" ");
201
201
  }
202
+ overlapsPolygon(polygon) {
203
+ return this.children.some((child) => child.overlapsPolygon(polygon));
204
+ }
202
205
  }
203
206
  //# sourceMappingURL=Group2d.js.map
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "version": 3,
3
3
  "sources": ["../../../../src/lib/primitives/geometry/Group2d.ts"],
4
- "sourcesContent": ["import { EMPTY_ARRAY } from '@tldraw/state'\nimport { assert, invLerp, lerp } from '@tldraw/utils'\nimport { Box } from '../Box'\nimport { Mat } from '../Mat'\nimport { Vec, VecLike } from '../Vec'\nimport { Geometry2d, Geometry2dFilters, Geometry2dOptions } from './Geometry2d'\n\n/** @public */\nexport class Group2d extends Geometry2d {\n\tchildren: Geometry2d[] = []\n\tignoredChildren: Geometry2d[] = []\n\n\tconstructor(\n\t\tconfig: Omit<Geometry2dOptions, 'isClosed' | 'isFilled'> & {\n\t\t\tchildren: Geometry2d[]\n\t\t}\n\t) {\n\t\tsuper({ ...config, isClosed: true, isFilled: false })\n\n\t\tconst addChildren = (children: Geometry2d[]) => {\n\t\t\tfor (const child of children) {\n\t\t\t\tif (child instanceof Group2d) {\n\t\t\t\t\taddChildren(child.children)\n\t\t\t\t} else if (child.ignore) {\n\t\t\t\t\tthis.ignoredChildren.push(child)\n\t\t\t\t} else {\n\t\t\t\t\tthis.children.push(child)\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\taddChildren(config.children)\n\n\t\tif (this.children.length === 0) throw Error('Group2d must have at least one child')\n\t}\n\n\toverride getVertices(filters: Geometry2dFilters): Vec[] {\n\t\tif (this.isExcludedByFilter(filters)) return []\n\t\treturn this.children\n\t\t\t.filter((c) => !c.isExcludedByFilter(filters))\n\t\t\t.flatMap((c) => c.getVertices(filters))\n\t}\n\n\toverride nearestPoint(point: VecLike, filters?: Geometry2dFilters): Vec {\n\t\tlet dist = Infinity\n\t\tlet nearest: Vec | undefined\n\n\t\tconst { children } = this\n\n\t\tif (children.length === 0) {\n\t\t\tthrow Error('no children')\n\t\t}\n\n\t\tlet p: Vec\n\t\tlet d: number\n\t\tfor (const child of children) {\n\t\t\tif (child.isExcludedByFilter(filters)) continue\n\t\t\tp = child.nearestPoint(point, filters)\n\t\t\td = Vec.Dist2(p, point)\n\t\t\tif (d < dist) {\n\t\t\t\tdist = d\n\t\t\t\tnearest = p\n\t\t\t}\n\t\t}\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn nearest\n\t}\n\n\toverride distanceToPoint(point: VecLike, hitInside = false, filters?: Geometry2dFilters) {\n\t\tlet smallestDistance = Infinity\n\t\tfor (const child of this.children) {\n\t\t\tif (child.isExcludedByFilter(filters)) continue\n\t\t\tconst distance = child.distanceToPoint(point, hitInside, filters)\n\t\t\tif (distance < smallestDistance) {\n\t\t\t\tsmallestDistance = distance\n\t\t\t}\n\t\t}\n\t\treturn smallestDistance\n\t}\n\n\toverride hitTestPoint(\n\t\tpoint: VecLike,\n\t\tmargin: number,\n\t\thitInside: boolean,\n\t\tfilters = Geometry2dFilters.EXCLUDE_LABELS\n\t): boolean {\n\t\treturn !!this.children\n\t\t\t.filter((c) => !c.isExcludedByFilter(filters))\n\t\t\t.find((c) => c.hitTestPoint(point, margin, hitInside))\n\t}\n\n\toverride hitTestLineSegment(\n\t\tA: VecLike,\n\t\tB: VecLike,\n\t\tzoom: number,\n\t\tfilters = Geometry2dFilters.EXCLUDE_LABELS\n\t): boolean {\n\t\treturn !!this.children\n\t\t\t.filter((c) => !c.isExcludedByFilter(filters))\n\t\t\t.find((c) => c.hitTestLineSegment(A, B, zoom))\n\t}\n\n\toverride intersectLineSegment(A: VecLike, B: VecLike, filters?: Geometry2dFilters) {\n\t\treturn this.children.flatMap((child) => {\n\t\t\tif (child.isExcludedByFilter(filters)) return EMPTY_ARRAY\n\t\t\treturn child.intersectLineSegment(A, B, filters)\n\t\t})\n\t}\n\n\toverride intersectCircle(center: VecLike, radius: number, filters?: Geometry2dFilters) {\n\t\treturn this.children.flatMap((child) => {\n\t\t\tif (child.isExcludedByFilter(filters)) return EMPTY_ARRAY\n\t\t\treturn child.intersectCircle(center, radius, filters)\n\t\t})\n\t}\n\n\toverride intersectPolygon(polygon: VecLike[], filters?: Geometry2dFilters) {\n\t\treturn this.children.flatMap((child) => {\n\t\t\tif (child.isExcludedByFilter(filters)) return EMPTY_ARRAY\n\t\t\treturn child.intersectPolygon(polygon, filters)\n\t\t})\n\t}\n\n\toverride intersectPolyline(polyline: VecLike[], filters?: Geometry2dFilters) {\n\t\treturn this.children.flatMap((child) => {\n\t\t\tif (child.isExcludedByFilter(filters)) return EMPTY_ARRAY\n\t\t\treturn child.intersectPolyline(polyline, filters)\n\t\t})\n\t}\n\n\toverride interpolateAlongEdge(t: number, filters?: Geometry2dFilters): Vec {\n\t\tconst totalLength = this.getLength(filters)\n\n\t\tconst distanceToTravel = t * totalLength\n\t\tlet distanceTraveled = 0\n\t\tfor (const child of this.children) {\n\t\t\tif (child.isExcludedByFilter(filters)) continue\n\t\t\tconst childLength = child.length\n\t\t\tconst newDistanceTraveled = distanceTraveled + childLength\n\t\t\tif (newDistanceTraveled >= distanceToTravel) {\n\t\t\t\treturn child.interpolateAlongEdge(\n\t\t\t\t\tinvLerp(distanceTraveled, newDistanceTraveled, distanceToTravel),\n\t\t\t\t\tfilters\n\t\t\t\t)\n\t\t\t}\n\t\t\tdistanceTraveled = newDistanceTraveled\n\t\t}\n\n\t\treturn this.children[this.children.length - 1].interpolateAlongEdge(1, filters)\n\t}\n\n\toverride uninterpolateAlongEdge(point: VecLike, filters?: Geometry2dFilters): number {\n\t\tconst totalLength = this.getLength(filters)\n\n\t\tlet closestChild = null\n\t\tlet closestDistance = Infinity\n\t\tlet distanceTraveled = 0\n\n\t\tfor (const child of this.children) {\n\t\t\tif (child.isExcludedByFilter(filters)) continue\n\t\t\tconst childLength = child.getLength(filters)\n\t\t\tconst newDistanceTraveled = distanceTraveled + childLength\n\n\t\t\tconst distance = child.distanceToPoint(point, false, filters)\n\t\t\tif (distance < closestDistance) {\n\t\t\t\tclosestDistance = distance\n\t\t\t\tclosestChild = {\n\t\t\t\t\tstartLength: distanceTraveled,\n\t\t\t\t\tendLength: newDistanceTraveled,\n\t\t\t\t\tchild,\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tdistanceTraveled = newDistanceTraveled\n\t\t}\n\n\t\tassert(closestChild)\n\n\t\tconst normalizedDistanceInChild = closestChild.child.uninterpolateAlongEdge(point, filters)\n\t\tconst childTLength = lerp(\n\t\t\tclosestChild.startLength,\n\t\t\tclosestChild.endLength,\n\t\t\tnormalizedDistanceInChild\n\t\t)\n\t\treturn childTLength / totalLength\n\t}\n\n\toverride transform(transform: Mat): Geometry2d {\n\t\treturn new Group2d({\n\t\t\tchildren: this.children.map((c) => c.transform(transform)),\n\t\t\tisLabel: this.isLabel,\n\t\t\tdebugColor: this.debugColor,\n\t\t\tignore: this.ignore,\n\t\t})\n\t}\n\n\tgetArea() {\n\t\t// todo: this is a temporary solution, assuming that the first child defines the group size; we would want to flatten the group and then find the area of the hull polygon\n\t\treturn this.children[0].area\n\t}\n\n\ttoSimpleSvgPath() {\n\t\tlet path = ''\n\t\tfor (const child of this.children) {\n\t\t\tpath += child.toSimpleSvgPath()\n\t\t}\n\n\t\tconst corners = Box.FromPoints(this.vertices).corners\n\t\t// draw just a few pixels around each corner, e.g. an L shape for the bottom left\n\n\t\tfor (let i = 0, n = corners.length; i < n; i++) {\n\t\t\tconst corner = corners[i]\n\t\t\tconst prevCorner = corners[(i - 1 + n) % n]\n\t\t\tconst prevDist = corner.dist(prevCorner)\n\t\t\tconst nextCorner = corners[(i + 1) % n]\n\t\t\tconst nextDist = corner.dist(nextCorner)\n\n\t\t\tconst A = corner.clone().lrp(prevCorner, 4 / prevDist)\n\t\t\tconst B = corner\n\t\t\tconst C = corner.clone().lrp(nextCorner, 4 / nextDist)\n\n\t\t\tpath += `M${A.x},${A.y} L${B.x},${B.y} L${C.x},${C.y} `\n\t\t}\n\t\treturn path\n\t}\n\n\tgetLength(filters?: Geometry2dFilters): number {\n\t\tlet length = 0\n\t\tfor (const child of this.children) {\n\t\t\tif (child.isExcludedByFilter(filters)) continue\n\t\t\tlength += child.length\n\t\t}\n\t\treturn length\n\t}\n\n\tgetSvgPathData(): string {\n\t\treturn this.children.map((c, i) => (c.isLabel ? '' : c.getSvgPathData(i === 0))).join(' ')\n\t}\n}\n"],
5
- "mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mBAA4B;AAC5B,mBAAsC;AACtC,iBAAoB;AAEpB,iBAA6B;AAC7B,wBAAiE;AAG1D,MAAM,gBAAgB,6BAAW;AAAA,EACvC,WAAyB,CAAC;AAAA,EAC1B,kBAAgC,CAAC;AAAA,EAEjC,YACC,QAGC;AACD,UAAM,EAAE,GAAG,QAAQ,UAAU,MAAM,UAAU,MAAM,CAAC;AAEpD,UAAM,cAAc,CAAC,aAA2B;AAC/C,iBAAW,SAAS,UAAU;AAC7B,YAAI,iBAAiB,SAAS;AAC7B,sBAAY,MAAM,QAAQ;AAAA,QAC3B,WAAW,MAAM,QAAQ;AACxB,eAAK,gBAAgB,KAAK,KAAK;AAAA,QAChC,OAAO;AACN,eAAK,SAAS,KAAK,KAAK;AAAA,QACzB;AAAA,MACD;AAAA,IACD;AAEA,gBAAY,OAAO,QAAQ;AAE3B,QAAI,KAAK,SAAS,WAAW,EAAG,OAAM,MAAM,sCAAsC;AAAA,EACnF;AAAA,EAES,YAAY,SAAmC;AACvD,QAAI,KAAK,mBAAmB,OAAO,EAAG,QAAO,CAAC;AAC9C,WAAO,KAAK,SACV,OAAO,CAAC,MAAM,CAAC,EAAE,mBAAmB,OAAO,CAAC,EAC5C,QAAQ,CAAC,MAAM,EAAE,YAAY,OAAO,CAAC;AAAA,EACxC;AAAA,EAES,aAAa,OAAgB,SAAkC;AACvE,QAAI,OAAO;AACX,QAAI;AAEJ,UAAM,EAAE,SAAS,IAAI;AAErB,QAAI,SAAS,WAAW,GAAG;AAC1B,YAAM,MAAM,aAAa;AAAA,IAC1B;AAEA,QAAI;AACJ,QAAI;AACJ,eAAW,SAAS,UAAU;AAC7B,UAAI,MAAM,mBAAmB,OAAO,EAAG;AACvC,UAAI,MAAM,aAAa,OAAO,OAAO;AACrC,UAAI,eAAI,MAAM,GAAG,KAAK;AACtB,UAAI,IAAI,MAAM;AACb,eAAO;AACP,kBAAU;AAAA,MACX;AAAA,IACD;AACA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO;AAAA,EACR;AAAA,EAES,gBAAgB,OAAgB,YAAY,OAAO,SAA6B;AACxF,QAAI,mBAAmB;AACvB,eAAW,SAAS,KAAK,UAAU;AAClC,UAAI,MAAM,mBAAmB,OAAO,EAAG;AACvC,YAAM,WAAW,MAAM,gBAAgB,OAAO,WAAW,OAAO;AAChE,UAAI,WAAW,kBAAkB;AAChC,2BAAmB;AAAA,MACpB;AAAA,IACD;AACA,WAAO;AAAA,EACR;AAAA,EAES,aACR,OACA,QACA,WACA,UAAU,oCAAkB,gBAClB;AACV,WAAO,CAAC,CAAC,KAAK,SACZ,OAAO,CAAC,MAAM,CAAC,EAAE,mBAAmB,OAAO,CAAC,EAC5C,KAAK,CAAC,MAAM,EAAE,aAAa,OAAO,QAAQ,SAAS,CAAC;AAAA,EACvD;AAAA,EAES,mBACR,GACA,GACA,MACA,UAAU,oCAAkB,gBAClB;AACV,WAAO,CAAC,CAAC,KAAK,SACZ,OAAO,CAAC,MAAM,CAAC,EAAE,mBAAmB,OAAO,CAAC,EAC5C,KAAK,CAAC,MAAM,EAAE,mBAAmB,GAAG,GAAG,IAAI,CAAC;AAAA,EAC/C;AAAA,EAES,qBAAqB,GAAY,GAAY,SAA6B;AAClF,WAAO,KAAK,SAAS,QAAQ,CAAC,UAAU;AACvC,UAAI,MAAM,mBAAmB,OAAO,EAAG,QAAO;AAC9C,aAAO,MAAM,qBAAqB,GAAG,GAAG,OAAO;AAAA,IAChD,CAAC;AAAA,EACF;AAAA,EAES,gBAAgB,QAAiB,QAAgB,SAA6B;AACtF,WAAO,KAAK,SAAS,QAAQ,CAAC,UAAU;AACvC,UAAI,MAAM,mBAAmB,OAAO,EAAG,QAAO;AAC9C,aAAO,MAAM,gBAAgB,QAAQ,QAAQ,OAAO;AAAA,IACrD,CAAC;AAAA,EACF;AAAA,EAES,iBAAiB,SAAoB,SAA6B;AAC1E,WAAO,KAAK,SAAS,QAAQ,CAAC,UAAU;AACvC,UAAI,MAAM,mBAAmB,OAAO,EAAG,QAAO;AAC9C,aAAO,MAAM,iBAAiB,SAAS,OAAO;AAAA,IAC/C,CAAC;AAAA,EACF;AAAA,EAES,kBAAkB,UAAqB,SAA6B;AAC5E,WAAO,KAAK,SAAS,QAAQ,CAAC,UAAU;AACvC,UAAI,MAAM,mBAAmB,OAAO,EAAG,QAAO;AAC9C,aAAO,MAAM,kBAAkB,UAAU,OAAO;AAAA,IACjD,CAAC;AAAA,EACF;AAAA,EAES,qBAAqB,GAAW,SAAkC;AAC1E,UAAM,cAAc,KAAK,UAAU,OAAO;AAE1C,UAAM,mBAAmB,IAAI;AAC7B,QAAI,mBAAmB;AACvB,eAAW,SAAS,KAAK,UAAU;AAClC,UAAI,MAAM,mBAAmB,OAAO,EAAG;AACvC,YAAM,cAAc,MAAM;AAC1B,YAAM,sBAAsB,mBAAmB;AAC/C,UAAI,uBAAuB,kBAAkB;AAC5C,eAAO,MAAM;AAAA,cACZ,sBAAQ,kBAAkB,qBAAqB,gBAAgB;AAAA,UAC/D;AAAA,QACD;AAAA,MACD;AACA,yBAAmB;AAAA,IACpB;AAEA,WAAO,KAAK,SAAS,KAAK,SAAS,SAAS,CAAC,EAAE,qBAAqB,GAAG,OAAO;AAAA,EAC/E;AAAA,EAES,uBAAuB,OAAgB,SAAqC;AACpF,UAAM,cAAc,KAAK,UAAU,OAAO;AAE1C,QAAI,eAAe;AACnB,QAAI,kBAAkB;AACtB,QAAI,mBAAmB;AAEvB,eAAW,SAAS,KAAK,UAAU;AAClC,UAAI,MAAM,mBAAmB,OAAO,EAAG;AACvC,YAAM,cAAc,MAAM,UAAU,OAAO;AAC3C,YAAM,sBAAsB,mBAAmB;AAE/C,YAAM,WAAW,MAAM,gBAAgB,OAAO,OAAO,OAAO;AAC5D,UAAI,WAAW,iBAAiB;AAC/B,0BAAkB;AAClB,uBAAe;AAAA,UACd,aAAa;AAAA,UACb,WAAW;AAAA,UACX;AAAA,QACD;AAAA,MACD;AAEA,yBAAmB;AAAA,IACpB;AAEA,6BAAO,YAAY;AAEnB,UAAM,4BAA4B,aAAa,MAAM,uBAAuB,OAAO,OAAO;AAC1F,UAAM,mBAAe;AAAA,MACpB,aAAa;AAAA,MACb,aAAa;AAAA,MACb;AAAA,IACD;AACA,WAAO,eAAe;AAAA,EACvB;AAAA,EAES,UAAU,WAA4B;AAC9C,WAAO,IAAI,QAAQ;AAAA,MAClB,UAAU,KAAK,SAAS,IAAI,CAAC,MAAM,EAAE,UAAU,SAAS,CAAC;AAAA,MACzD,SAAS,KAAK;AAAA,MACd,YAAY,KAAK;AAAA,MACjB,QAAQ,KAAK;AAAA,IACd,CAAC;AAAA,EACF;AAAA,EAEA,UAAU;AAET,WAAO,KAAK,SAAS,CAAC,EAAE;AAAA,EACzB;AAAA,EAEA,kBAAkB;AACjB,QAAI,OAAO;AACX,eAAW,SAAS,KAAK,UAAU;AAClC,cAAQ,MAAM,gBAAgB;AAAA,IAC/B;AAEA,UAAM,UAAU,eAAI,WAAW,KAAK,QAAQ,EAAE;AAG9C,aAAS,IAAI,GAAG,IAAI,QAAQ,QAAQ,IAAI,GAAG,KAAK;AAC/C,YAAM,SAAS,QAAQ,CAAC;AACxB,YAAM,aAAa,SAAS,IAAI,IAAI,KAAK,CAAC;AAC1C,YAAM,WAAW,OAAO,KAAK,UAAU;AACvC,YAAM,aAAa,SAAS,IAAI,KAAK,CAAC;AACtC,YAAM,WAAW,OAAO,KAAK,UAAU;AAEvC,YAAM,IAAI,OAAO,MAAM,EAAE,IAAI,YAAY,IAAI,QAAQ;AACrD,YAAM,IAAI;AACV,YAAM,IAAI,OAAO,MAAM,EAAE,IAAI,YAAY,IAAI,QAAQ;AAErD,cAAQ,IAAI,EAAE,CAAC,IAAI,EAAE,CAAC,KAAK,EAAE,CAAC,IAAI,EAAE,CAAC,KAAK,EAAE,CAAC,IAAI,EAAE,CAAC;AAAA,IACrD;AACA,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,SAAqC;AAC9C,QAAI,SAAS;AACb,eAAW,SAAS,KAAK,UAAU;AAClC,UAAI,MAAM,mBAAmB,OAAO,EAAG;AACvC,gBAAU,MAAM;AAAA,IACjB;AACA,WAAO;AAAA,EACR;AAAA,EAEA,iBAAyB;AACxB,WAAO,KAAK,SAAS,IAAI,CAAC,GAAG,MAAO,EAAE,UAAU,KAAK,EAAE,eAAe,MAAM,CAAC,CAAE,EAAE,KAAK,GAAG;AAAA,EAC1F;AACD;",
4
+ "sourcesContent": ["import { EMPTY_ARRAY } from '@tldraw/state'\nimport { assert, invLerp, lerp } from '@tldraw/utils'\nimport { Box } from '../Box'\nimport { Mat } from '../Mat'\nimport { Vec, VecLike } from '../Vec'\nimport { Geometry2d, Geometry2dFilters, Geometry2dOptions } from './Geometry2d'\n\n/** @public */\nexport class Group2d extends Geometry2d {\n\tchildren: Geometry2d[] = []\n\tignoredChildren: Geometry2d[] = []\n\n\tconstructor(\n\t\tconfig: Omit<Geometry2dOptions, 'isClosed' | 'isFilled'> & {\n\t\t\tchildren: Geometry2d[]\n\t\t}\n\t) {\n\t\tsuper({ ...config, isClosed: true, isFilled: false })\n\n\t\tconst addChildren = (children: Geometry2d[]) => {\n\t\t\tfor (const child of children) {\n\t\t\t\tif (child instanceof Group2d) {\n\t\t\t\t\taddChildren(child.children)\n\t\t\t\t} else if (child.ignore) {\n\t\t\t\t\tthis.ignoredChildren.push(child)\n\t\t\t\t} else {\n\t\t\t\t\tthis.children.push(child)\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\n\t\taddChildren(config.children)\n\n\t\tif (this.children.length === 0) throw Error('Group2d must have at least one child')\n\t}\n\n\toverride getVertices(filters: Geometry2dFilters): Vec[] {\n\t\tif (this.isExcludedByFilter(filters)) return []\n\t\treturn this.children\n\t\t\t.filter((c) => !c.isExcludedByFilter(filters))\n\t\t\t.flatMap((c) => c.getVertices(filters))\n\t}\n\n\toverride nearestPoint(point: VecLike, filters?: Geometry2dFilters): Vec {\n\t\tlet dist = Infinity\n\t\tlet nearest: Vec | undefined\n\n\t\tconst { children } = this\n\n\t\tif (children.length === 0) {\n\t\t\tthrow Error('no children')\n\t\t}\n\n\t\tlet p: Vec\n\t\tlet d: number\n\t\tfor (const child of children) {\n\t\t\tif (child.isExcludedByFilter(filters)) continue\n\t\t\tp = child.nearestPoint(point, filters)\n\t\t\td = Vec.Dist2(p, point)\n\t\t\tif (d < dist) {\n\t\t\t\tdist = d\n\t\t\t\tnearest = p\n\t\t\t}\n\t\t}\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn nearest\n\t}\n\n\toverride distanceToPoint(point: VecLike, hitInside = false, filters?: Geometry2dFilters) {\n\t\tlet smallestDistance = Infinity\n\t\tfor (const child of this.children) {\n\t\t\tif (child.isExcludedByFilter(filters)) continue\n\t\t\tconst distance = child.distanceToPoint(point, hitInside, filters)\n\t\t\tif (distance < smallestDistance) {\n\t\t\t\tsmallestDistance = distance\n\t\t\t}\n\t\t}\n\t\treturn smallestDistance\n\t}\n\n\toverride hitTestPoint(\n\t\tpoint: VecLike,\n\t\tmargin: number,\n\t\thitInside: boolean,\n\t\tfilters = Geometry2dFilters.EXCLUDE_LABELS\n\t): boolean {\n\t\treturn !!this.children\n\t\t\t.filter((c) => !c.isExcludedByFilter(filters))\n\t\t\t.find((c) => c.hitTestPoint(point, margin, hitInside))\n\t}\n\n\toverride hitTestLineSegment(\n\t\tA: VecLike,\n\t\tB: VecLike,\n\t\tzoom: number,\n\t\tfilters = Geometry2dFilters.EXCLUDE_LABELS\n\t): boolean {\n\t\treturn !!this.children\n\t\t\t.filter((c) => !c.isExcludedByFilter(filters))\n\t\t\t.find((c) => c.hitTestLineSegment(A, B, zoom))\n\t}\n\n\toverride intersectLineSegment(A: VecLike, B: VecLike, filters?: Geometry2dFilters) {\n\t\treturn this.children.flatMap((child) => {\n\t\t\tif (child.isExcludedByFilter(filters)) return EMPTY_ARRAY\n\t\t\treturn child.intersectLineSegment(A, B, filters)\n\t\t})\n\t}\n\n\toverride intersectCircle(center: VecLike, radius: number, filters?: Geometry2dFilters) {\n\t\treturn this.children.flatMap((child) => {\n\t\t\tif (child.isExcludedByFilter(filters)) return EMPTY_ARRAY\n\t\t\treturn child.intersectCircle(center, radius, filters)\n\t\t})\n\t}\n\n\toverride intersectPolygon(polygon: VecLike[], filters?: Geometry2dFilters) {\n\t\treturn this.children.flatMap((child) => {\n\t\t\tif (child.isExcludedByFilter(filters)) return EMPTY_ARRAY\n\t\t\treturn child.intersectPolygon(polygon, filters)\n\t\t})\n\t}\n\n\toverride intersectPolyline(polyline: VecLike[], filters?: Geometry2dFilters) {\n\t\treturn this.children.flatMap((child) => {\n\t\t\tif (child.isExcludedByFilter(filters)) return EMPTY_ARRAY\n\t\t\treturn child.intersectPolyline(polyline, filters)\n\t\t})\n\t}\n\n\toverride interpolateAlongEdge(t: number, filters?: Geometry2dFilters): Vec {\n\t\tconst totalLength = this.getLength(filters)\n\n\t\tconst distanceToTravel = t * totalLength\n\t\tlet distanceTraveled = 0\n\t\tfor (const child of this.children) {\n\t\t\tif (child.isExcludedByFilter(filters)) continue\n\t\t\tconst childLength = child.length\n\t\t\tconst newDistanceTraveled = distanceTraveled + childLength\n\t\t\tif (newDistanceTraveled >= distanceToTravel) {\n\t\t\t\treturn child.interpolateAlongEdge(\n\t\t\t\t\tinvLerp(distanceTraveled, newDistanceTraveled, distanceToTravel),\n\t\t\t\t\tfilters\n\t\t\t\t)\n\t\t\t}\n\t\t\tdistanceTraveled = newDistanceTraveled\n\t\t}\n\n\t\treturn this.children[this.children.length - 1].interpolateAlongEdge(1, filters)\n\t}\n\n\toverride uninterpolateAlongEdge(point: VecLike, filters?: Geometry2dFilters): number {\n\t\tconst totalLength = this.getLength(filters)\n\n\t\tlet closestChild = null\n\t\tlet closestDistance = Infinity\n\t\tlet distanceTraveled = 0\n\n\t\tfor (const child of this.children) {\n\t\t\tif (child.isExcludedByFilter(filters)) continue\n\t\t\tconst childLength = child.getLength(filters)\n\t\t\tconst newDistanceTraveled = distanceTraveled + childLength\n\n\t\t\tconst distance = child.distanceToPoint(point, false, filters)\n\t\t\tif (distance < closestDistance) {\n\t\t\t\tclosestDistance = distance\n\t\t\t\tclosestChild = {\n\t\t\t\t\tstartLength: distanceTraveled,\n\t\t\t\t\tendLength: newDistanceTraveled,\n\t\t\t\t\tchild,\n\t\t\t\t}\n\t\t\t}\n\n\t\t\tdistanceTraveled = newDistanceTraveled\n\t\t}\n\n\t\tassert(closestChild)\n\n\t\tconst normalizedDistanceInChild = closestChild.child.uninterpolateAlongEdge(point, filters)\n\t\tconst childTLength = lerp(\n\t\t\tclosestChild.startLength,\n\t\t\tclosestChild.endLength,\n\t\t\tnormalizedDistanceInChild\n\t\t)\n\t\treturn childTLength / totalLength\n\t}\n\n\toverride transform(transform: Mat): Geometry2d {\n\t\treturn new Group2d({\n\t\t\tchildren: this.children.map((c) => c.transform(transform)),\n\t\t\tisLabel: this.isLabel,\n\t\t\tdebugColor: this.debugColor,\n\t\t\tignore: this.ignore,\n\t\t})\n\t}\n\n\tgetArea() {\n\t\t// todo: this is a temporary solution, assuming that the first child defines the group size; we would want to flatten the group and then find the area of the hull polygon\n\t\treturn this.children[0].area\n\t}\n\n\ttoSimpleSvgPath() {\n\t\tlet path = ''\n\t\tfor (const child of this.children) {\n\t\t\tpath += child.toSimpleSvgPath()\n\t\t}\n\n\t\tconst corners = Box.FromPoints(this.vertices).corners\n\t\t// draw just a few pixels around each corner, e.g. an L shape for the bottom left\n\n\t\tfor (let i = 0, n = corners.length; i < n; i++) {\n\t\t\tconst corner = corners[i]\n\t\t\tconst prevCorner = corners[(i - 1 + n) % n]\n\t\t\tconst prevDist = corner.dist(prevCorner)\n\t\t\tconst nextCorner = corners[(i + 1) % n]\n\t\t\tconst nextDist = corner.dist(nextCorner)\n\n\t\t\tconst A = corner.clone().lrp(prevCorner, 4 / prevDist)\n\t\t\tconst B = corner\n\t\t\tconst C = corner.clone().lrp(nextCorner, 4 / nextDist)\n\n\t\t\tpath += `M${A.x},${A.y} L${B.x},${B.y} L${C.x},${C.y} `\n\t\t}\n\t\treturn path\n\t}\n\n\tgetLength(filters?: Geometry2dFilters): number {\n\t\tlet length = 0\n\t\tfor (const child of this.children) {\n\t\t\tif (child.isExcludedByFilter(filters)) continue\n\t\t\tlength += child.length\n\t\t}\n\t\treturn length\n\t}\n\n\tgetSvgPathData(): string {\n\t\treturn this.children.map((c, i) => (c.isLabel ? '' : c.getSvgPathData(i === 0))).join(' ')\n\t}\n\n\toverlapsPolygon(polygon: VecLike[]): boolean {\n\t\treturn this.children.some((child) => child.overlapsPolygon(polygon))\n\t}\n}\n"],
5
+ "mappings": ";;;;;;;;;;;;;;;;;;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,mBAA4B;AAC5B,mBAAsC;AACtC,iBAAoB;AAEpB,iBAA6B;AAC7B,wBAAiE;AAG1D,MAAM,gBAAgB,6BAAW;AAAA,EACvC,WAAyB,CAAC;AAAA,EAC1B,kBAAgC,CAAC;AAAA,EAEjC,YACC,QAGC;AACD,UAAM,EAAE,GAAG,QAAQ,UAAU,MAAM,UAAU,MAAM,CAAC;AAEpD,UAAM,cAAc,CAAC,aAA2B;AAC/C,iBAAW,SAAS,UAAU;AAC7B,YAAI,iBAAiB,SAAS;AAC7B,sBAAY,MAAM,QAAQ;AAAA,QAC3B,WAAW,MAAM,QAAQ;AACxB,eAAK,gBAAgB,KAAK,KAAK;AAAA,QAChC,OAAO;AACN,eAAK,SAAS,KAAK,KAAK;AAAA,QACzB;AAAA,MACD;AAAA,IACD;AAEA,gBAAY,OAAO,QAAQ;AAE3B,QAAI,KAAK,SAAS,WAAW,EAAG,OAAM,MAAM,sCAAsC;AAAA,EACnF;AAAA,EAES,YAAY,SAAmC;AACvD,QAAI,KAAK,mBAAmB,OAAO,EAAG,QAAO,CAAC;AAC9C,WAAO,KAAK,SACV,OAAO,CAAC,MAAM,CAAC,EAAE,mBAAmB,OAAO,CAAC,EAC5C,QAAQ,CAAC,MAAM,EAAE,YAAY,OAAO,CAAC;AAAA,EACxC;AAAA,EAES,aAAa,OAAgB,SAAkC;AACvE,QAAI,OAAO;AACX,QAAI;AAEJ,UAAM,EAAE,SAAS,IAAI;AAErB,QAAI,SAAS,WAAW,GAAG;AAC1B,YAAM,MAAM,aAAa;AAAA,IAC1B;AAEA,QAAI;AACJ,QAAI;AACJ,eAAW,SAAS,UAAU;AAC7B,UAAI,MAAM,mBAAmB,OAAO,EAAG;AACvC,UAAI,MAAM,aAAa,OAAO,OAAO;AACrC,UAAI,eAAI,MAAM,GAAG,KAAK;AACtB,UAAI,IAAI,MAAM;AACb,eAAO;AACP,kBAAU;AAAA,MACX;AAAA,IACD;AACA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO;AAAA,EACR;AAAA,EAES,gBAAgB,OAAgB,YAAY,OAAO,SAA6B;AACxF,QAAI,mBAAmB;AACvB,eAAW,SAAS,KAAK,UAAU;AAClC,UAAI,MAAM,mBAAmB,OAAO,EAAG;AACvC,YAAM,WAAW,MAAM,gBAAgB,OAAO,WAAW,OAAO;AAChE,UAAI,WAAW,kBAAkB;AAChC,2BAAmB;AAAA,MACpB;AAAA,IACD;AACA,WAAO;AAAA,EACR;AAAA,EAES,aACR,OACA,QACA,WACA,UAAU,oCAAkB,gBAClB;AACV,WAAO,CAAC,CAAC,KAAK,SACZ,OAAO,CAAC,MAAM,CAAC,EAAE,mBAAmB,OAAO,CAAC,EAC5C,KAAK,CAAC,MAAM,EAAE,aAAa,OAAO,QAAQ,SAAS,CAAC;AAAA,EACvD;AAAA,EAES,mBACR,GACA,GACA,MACA,UAAU,oCAAkB,gBAClB;AACV,WAAO,CAAC,CAAC,KAAK,SACZ,OAAO,CAAC,MAAM,CAAC,EAAE,mBAAmB,OAAO,CAAC,EAC5C,KAAK,CAAC,MAAM,EAAE,mBAAmB,GAAG,GAAG,IAAI,CAAC;AAAA,EAC/C;AAAA,EAES,qBAAqB,GAAY,GAAY,SAA6B;AAClF,WAAO,KAAK,SAAS,QAAQ,CAAC,UAAU;AACvC,UAAI,MAAM,mBAAmB,OAAO,EAAG,QAAO;AAC9C,aAAO,MAAM,qBAAqB,GAAG,GAAG,OAAO;AAAA,IAChD,CAAC;AAAA,EACF;AAAA,EAES,gBAAgB,QAAiB,QAAgB,SAA6B;AACtF,WAAO,KAAK,SAAS,QAAQ,CAAC,UAAU;AACvC,UAAI,MAAM,mBAAmB,OAAO,EAAG,QAAO;AAC9C,aAAO,MAAM,gBAAgB,QAAQ,QAAQ,OAAO;AAAA,IACrD,CAAC;AAAA,EACF;AAAA,EAES,iBAAiB,SAAoB,SAA6B;AAC1E,WAAO,KAAK,SAAS,QAAQ,CAAC,UAAU;AACvC,UAAI,MAAM,mBAAmB,OAAO,EAAG,QAAO;AAC9C,aAAO,MAAM,iBAAiB,SAAS,OAAO;AAAA,IAC/C,CAAC;AAAA,EACF;AAAA,EAES,kBAAkB,UAAqB,SAA6B;AAC5E,WAAO,KAAK,SAAS,QAAQ,CAAC,UAAU;AACvC,UAAI,MAAM,mBAAmB,OAAO,EAAG,QAAO;AAC9C,aAAO,MAAM,kBAAkB,UAAU,OAAO;AAAA,IACjD,CAAC;AAAA,EACF;AAAA,EAES,qBAAqB,GAAW,SAAkC;AAC1E,UAAM,cAAc,KAAK,UAAU,OAAO;AAE1C,UAAM,mBAAmB,IAAI;AAC7B,QAAI,mBAAmB;AACvB,eAAW,SAAS,KAAK,UAAU;AAClC,UAAI,MAAM,mBAAmB,OAAO,EAAG;AACvC,YAAM,cAAc,MAAM;AAC1B,YAAM,sBAAsB,mBAAmB;AAC/C,UAAI,uBAAuB,kBAAkB;AAC5C,eAAO,MAAM;AAAA,cACZ,sBAAQ,kBAAkB,qBAAqB,gBAAgB;AAAA,UAC/D;AAAA,QACD;AAAA,MACD;AACA,yBAAmB;AAAA,IACpB;AAEA,WAAO,KAAK,SAAS,KAAK,SAAS,SAAS,CAAC,EAAE,qBAAqB,GAAG,OAAO;AAAA,EAC/E;AAAA,EAES,uBAAuB,OAAgB,SAAqC;AACpF,UAAM,cAAc,KAAK,UAAU,OAAO;AAE1C,QAAI,eAAe;AACnB,QAAI,kBAAkB;AACtB,QAAI,mBAAmB;AAEvB,eAAW,SAAS,KAAK,UAAU;AAClC,UAAI,MAAM,mBAAmB,OAAO,EAAG;AACvC,YAAM,cAAc,MAAM,UAAU,OAAO;AAC3C,YAAM,sBAAsB,mBAAmB;AAE/C,YAAM,WAAW,MAAM,gBAAgB,OAAO,OAAO,OAAO;AAC5D,UAAI,WAAW,iBAAiB;AAC/B,0BAAkB;AAClB,uBAAe;AAAA,UACd,aAAa;AAAA,UACb,WAAW;AAAA,UACX;AAAA,QACD;AAAA,MACD;AAEA,yBAAmB;AAAA,IACpB;AAEA,6BAAO,YAAY;AAEnB,UAAM,4BAA4B,aAAa,MAAM,uBAAuB,OAAO,OAAO;AAC1F,UAAM,mBAAe;AAAA,MACpB,aAAa;AAAA,MACb,aAAa;AAAA,MACb;AAAA,IACD;AACA,WAAO,eAAe;AAAA,EACvB;AAAA,EAES,UAAU,WAA4B;AAC9C,WAAO,IAAI,QAAQ;AAAA,MAClB,UAAU,KAAK,SAAS,IAAI,CAAC,MAAM,EAAE,UAAU,SAAS,CAAC;AAAA,MACzD,SAAS,KAAK;AAAA,MACd,YAAY,KAAK;AAAA,MACjB,QAAQ,KAAK;AAAA,IACd,CAAC;AAAA,EACF;AAAA,EAEA,UAAU;AAET,WAAO,KAAK,SAAS,CAAC,EAAE;AAAA,EACzB;AAAA,EAEA,kBAAkB;AACjB,QAAI,OAAO;AACX,eAAW,SAAS,KAAK,UAAU;AAClC,cAAQ,MAAM,gBAAgB;AAAA,IAC/B;AAEA,UAAM,UAAU,eAAI,WAAW,KAAK,QAAQ,EAAE;AAG9C,aAAS,IAAI,GAAG,IAAI,QAAQ,QAAQ,IAAI,GAAG,KAAK;AAC/C,YAAM,SAAS,QAAQ,CAAC;AACxB,YAAM,aAAa,SAAS,IAAI,IAAI,KAAK,CAAC;AAC1C,YAAM,WAAW,OAAO,KAAK,UAAU;AACvC,YAAM,aAAa,SAAS,IAAI,KAAK,CAAC;AACtC,YAAM,WAAW,OAAO,KAAK,UAAU;AAEvC,YAAM,IAAI,OAAO,MAAM,EAAE,IAAI,YAAY,IAAI,QAAQ;AACrD,YAAM,IAAI;AACV,YAAM,IAAI,OAAO,MAAM,EAAE,IAAI,YAAY,IAAI,QAAQ;AAErD,cAAQ,IAAI,EAAE,CAAC,IAAI,EAAE,CAAC,KAAK,EAAE,CAAC,IAAI,EAAE,CAAC,KAAK,EAAE,CAAC,IAAI,EAAE,CAAC;AAAA,IACrD;AACA,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,SAAqC;AAC9C,QAAI,SAAS;AACb,eAAW,SAAS,KAAK,UAAU;AAClC,UAAI,MAAM,mBAAmB,OAAO,EAAG;AACvC,gBAAU,MAAM;AAAA,IACjB;AACA,WAAO;AAAA,EACR;AAAA,EAEA,iBAAyB;AACxB,WAAO,KAAK,SAAS,IAAI,CAAC,GAAG,MAAO,EAAE,UAAU,KAAK,EAAE,eAAe,MAAM,CAAC,CAAE,EAAE,KAAK,GAAG;AAAA,EAC1F;AAAA,EAEA,gBAAgB,SAA6B;AAC5C,WAAO,KAAK,SAAS,KAAK,CAAC,UAAU,MAAM,gBAAgB,OAAO,CAAC;AAAA,EACpE;AACD;",
6
6
  "names": []
7
7
  }
@@ -18,16 +18,13 @@ var __copyProps = (to, from, except, desc) => {
18
18
  var __toCommonJS = (mod) => __copyProps(__defProp({}, "__esModule", { value: true }), mod);
19
19
  var reparenting_exports = {};
20
20
  __export(reparenting_exports, {
21
- doesGeometryOverlapPolygon: () => doesGeometryOverlapPolygon,
22
21
  getDroppedShapesToNewParents: () => getDroppedShapesToNewParents,
23
22
  kickoutOccludedShapes: () => kickoutOccludedShapes
24
23
  });
25
24
  module.exports = __toCommonJS(reparenting_exports);
26
25
  var import_state = require("@tldraw/state");
27
26
  var import_utils = require("@tldraw/utils");
28
- var import_Group2d = require("../primitives/geometry/Group2d");
29
27
  var import_intersect = require("../primitives/intersect");
30
- var import_utils2 = require("../primitives/utils");
31
28
  function kickoutOccludedShapes(editor, shapeIds, opts) {
32
29
  const parentsToCheck = /* @__PURE__ */ new Set();
33
30
  for (const id of shapeIds) {
@@ -123,39 +120,9 @@ function getOverlappingShapes(editor, shape, otherShapes) {
123
120
  if (!shapePageBounds || !parentPageBounds.includes(shapePageBounds)) return false;
124
121
  const parentPolygonInShapeShape = editor.getShapePageTransform(childId).clone().invert().applyToPoints(parentPagePolygon);
125
122
  const geometry = editor.getShapeGeometry(childId);
126
- return doesGeometryOverlapPolygon(geometry, parentPolygonInShapeShape);
123
+ return geometry.overlapsPolygon(parentPolygonInShapeShape);
127
124
  });
128
125
  }
129
- function doesGeometryOverlapPolygon(geometry, parentCornersInShapeSpace) {
130
- if (geometry instanceof import_Group2d.Group2d) {
131
- return geometry.children.some(
132
- (childGeometry) => doesGeometryOverlapPolygon(childGeometry, parentCornersInShapeSpace)
133
- );
134
- }
135
- const { vertices, center, isFilled, isEmptyLabel, isClosed } = geometry;
136
- if (isEmptyLabel) return false;
137
- if (vertices.some((v) => (0, import_utils2.pointInPolygon)(v, parentCornersInShapeSpace))) {
138
- return true;
139
- }
140
- if (isClosed) {
141
- if (isFilled) {
142
- if ((0, import_utils2.pointInPolygon)(center, parentCornersInShapeSpace)) {
143
- return true;
144
- }
145
- if (parentCornersInShapeSpace.every((v) => (0, import_utils2.pointInPolygon)(v, vertices))) {
146
- return true;
147
- }
148
- }
149
- if ((0, import_intersect.polygonsIntersect)(parentCornersInShapeSpace, vertices)) {
150
- return true;
151
- }
152
- } else {
153
- if ((0, import_intersect.polygonIntersectsPolyline)(parentCornersInShapeSpace, vertices)) {
154
- return true;
155
- }
156
- }
157
- return false;
158
- }
159
126
  function getDroppedShapesToNewParents(editor, shapes, cb) {
160
127
  const shapesToActuallyCheck = new Set(shapes);
161
128
  const movingGroups = /* @__PURE__ */ new Set();
@@ -208,7 +175,7 @@ function getDroppedShapesToNewParents(editor, shapes, cb) {
208
175
  if (shapeGroupId !== parentShapeContainingGroupId) continue shapeCheck;
209
176
  if (editor.findShapeAncestor(parentShape, (s) => shape.id === s.id)) continue shapeCheck;
210
177
  const parentPolygonInShapeSpace = editor.getShapePageTransform(shape).clone().invert().applyToPoints(parentPagePolygon);
211
- if (doesGeometryOverlapPolygon(editor.getShapeGeometry(shape), parentPolygonInShapeSpace)) {
178
+ if (editor.getShapeGeometry(shape).overlapsPolygon(parentPolygonInShapeSpace)) {
212
179
  if (!editor.getShapeUtil(parentShape).canReceiveNewChildrenOfType?.(parentShape, shape.type))
213
180
  continue shapeCheck;
214
181
  if (shape.parentId !== parentShape.id) {