@tldraw/editor 3.13.0-canary.88076103433b → 3.13.0-canary.8e04030e54fe
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist-cjs/index.d.ts +98 -83
- package/dist-cjs/index.js +22 -7
- package/dist-cjs/index.js.map +2 -2
- package/dist-cjs/lib/components/default-components/DefaultCanvas.js +5 -9
- package/dist-cjs/lib/components/default-components/DefaultCanvas.js.map +2 -2
- package/dist-cjs/lib/editor/Editor.js +7 -19
- package/dist-cjs/lib/editor/Editor.js.map +2 -2
- package/dist-cjs/lib/editor/managers/SnapManager/HandleSnaps.js.map +2 -2
- package/dist-cjs/lib/editor/shapes/ShapeUtil.js +1 -1
- package/dist-cjs/lib/editor/shapes/ShapeUtil.js.map +2 -2
- package/dist-cjs/lib/editor/shapes/shared/getPerfectDashProps.js.map +2 -2
- package/dist-cjs/lib/hooks/useEditorComponents.js +2 -1
- package/dist-cjs/lib/hooks/useEditorComponents.js.map +2 -2
- package/dist-cjs/lib/primitives/Box.js +0 -16
- package/dist-cjs/lib/primitives/Box.js.map +2 -2
- package/dist-cjs/lib/primitives/Mat.js +1 -1
- package/dist-cjs/lib/primitives/Mat.js.map +2 -2
- package/dist-cjs/lib/primitives/Vec.js +0 -20
- package/dist-cjs/lib/primitives/Vec.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Arc2d.js +2 -2
- package/dist-cjs/lib/primitives/geometry/Arc2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Circle2d.js +1 -1
- package/dist-cjs/lib/primitives/geometry/Circle2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/CubicBezier2d.js +1 -1
- package/dist-cjs/lib/primitives/geometry/CubicBezier2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/CubicSpline2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Edge2d.js +1 -1
- package/dist-cjs/lib/primitives/geometry/Edge2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Ellipse2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Geometry2d.js +20 -91
- package/dist-cjs/lib/primitives/geometry/Geometry2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Group2d.js +2 -55
- package/dist-cjs/lib/primitives/geometry/Group2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Point2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Polyline2d.js.map +2 -2
- package/dist-cjs/lib/primitives/geometry/Stadium2d.js.map +2 -2
- package/dist-cjs/lib/utils/debug-flags.js +2 -5
- package/dist-cjs/lib/utils/debug-flags.js.map +2 -2
- package/dist-cjs/version.js +3 -3
- package/dist-cjs/version.js.map +1 -1
- package/dist-esm/index.d.mts +98 -83
- package/dist-esm/index.mjs +41 -9
- package/dist-esm/index.mjs.map +2 -2
- package/dist-esm/lib/components/default-components/DefaultCanvas.mjs +5 -9
- package/dist-esm/lib/components/default-components/DefaultCanvas.mjs.map +2 -2
- package/dist-esm/lib/editor/Editor.mjs +7 -19
- package/dist-esm/lib/editor/Editor.mjs.map +2 -2
- package/dist-esm/lib/editor/managers/SnapManager/HandleSnaps.mjs.map +2 -2
- package/dist-esm/lib/editor/shapes/ShapeUtil.mjs +1 -1
- package/dist-esm/lib/editor/shapes/ShapeUtil.mjs.map +2 -2
- package/dist-esm/lib/editor/shapes/shared/getPerfectDashProps.mjs.map +2 -2
- package/dist-esm/lib/hooks/useEditorComponents.mjs +4 -1
- package/dist-esm/lib/hooks/useEditorComponents.mjs.map +2 -2
- package/dist-esm/lib/primitives/Box.mjs +0 -16
- package/dist-esm/lib/primitives/Box.mjs.map +2 -2
- package/dist-esm/lib/primitives/Mat.mjs +1 -1
- package/dist-esm/lib/primitives/Mat.mjs.map +2 -2
- package/dist-esm/lib/primitives/Vec.mjs +0 -20
- package/dist-esm/lib/primitives/Vec.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Arc2d.mjs +2 -2
- package/dist-esm/lib/primitives/geometry/Arc2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Circle2d.mjs +1 -1
- package/dist-esm/lib/primitives/geometry/Circle2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/CubicBezier2d.mjs +1 -1
- package/dist-esm/lib/primitives/geometry/CubicBezier2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/CubicSpline2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Edge2d.mjs +1 -1
- package/dist-esm/lib/primitives/geometry/Edge2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Ellipse2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Geometry2d.mjs +21 -92
- package/dist-esm/lib/primitives/geometry/Geometry2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Group2d.mjs +2 -55
- package/dist-esm/lib/primitives/geometry/Group2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Point2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Polyline2d.mjs.map +2 -2
- package/dist-esm/lib/primitives/geometry/Stadium2d.mjs.map +2 -2
- package/dist-esm/lib/utils/debug-flags.mjs +2 -5
- package/dist-esm/lib/utils/debug-flags.mjs.map +2 -2
- package/dist-esm/version.mjs +3 -3
- package/dist-esm/version.mjs.map +1 -1
- package/editor.css +4 -36
- package/package.json +7 -7
- package/src/index.ts +31 -16
- package/src/lib/components/default-components/DefaultCanvas.tsx +5 -9
- package/src/lib/editor/Editor.test.ts +1 -1
- package/src/lib/editor/Editor.ts +7 -19
- package/src/lib/editor/managers/SnapManager/HandleSnaps.ts +1 -0
- package/src/lib/editor/shapes/ShapeUtil.ts +2 -10
- package/src/lib/editor/shapes/shared/getPerfectDashProps.ts +9 -9
- package/src/lib/hooks/useEditorComponents.tsx +5 -2
- package/src/lib/primitives/Box.ts +0 -20
- package/src/lib/primitives/Mat.ts +4 -5
- package/src/lib/primitives/Vec.ts +0 -23
- package/src/lib/primitives/geometry/Arc2d.ts +5 -5
- package/src/lib/primitives/geometry/Circle2d.ts +4 -4
- package/src/lib/primitives/geometry/CubicBezier2d.ts +4 -4
- package/src/lib/primitives/geometry/CubicSpline2d.ts +3 -3
- package/src/lib/primitives/geometry/Edge2d.ts +3 -3
- package/src/lib/primitives/geometry/Ellipse2d.ts +3 -3
- package/src/lib/primitives/geometry/Geometry2d.ts +35 -123
- package/src/lib/primitives/geometry/Group2d.ts +7 -70
- package/src/lib/primitives/geometry/Point2d.ts +2 -2
- package/src/lib/primitives/geometry/Polyline2d.ts +3 -3
- package/src/lib/primitives/geometry/Stadium2d.ts +3 -3
- package/src/lib/test/currentToolIdMask.test.ts +1 -1
- package/src/lib/test/user.test.ts +1 -1
- package/src/lib/utils/debug-flags.ts +2 -7
- package/src/lib/utils/sync/LocalIndexedDb.test.ts +1 -1
- package/src/lib/utils/sync/TLLocalSyncClient.test.ts +1 -1
- package/src/version.ts +3 -3
- package/src/lib/primitives/geometry/Geometry2d.test.ts +0 -42
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
{
|
|
2
2
|
"version": 3,
|
|
3
3
|
"sources": ["../../../src/lib/primitives/Vec.ts"],
|
|
4
|
-
"sourcesContent": ["import { VecModel } from '@tldraw/tlschema'\nimport { EASINGS } from './easings'\nimport { toFixed } from './utils'\n\n/** @public */\nexport type VecLike = Vec | VecModel\n\n/** @public */\nexport class Vec {\n\tconstructor(\n\t\tpublic x = 0,\n\t\tpublic y = 0,\n\t\tpublic z = 1\n\t) {}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget pressure() {\n\t\treturn this.z\n\t}\n\n\tset(x = this.x, y = this.y, z = this.z) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\tsetTo({ x = 0, y = 0, z = 1 }: VecLike) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\trot(r: number) {\n\t\tif (r === 0) return this\n\t\tconst { x, y } = this\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = x * c - y * s\n\t\tthis.y = x * s + y * c\n\t\treturn this\n\t}\n\n\trotWith(C: VecLike, r: number) {\n\t\tif (r === 0) return this\n\t\tconst x = this.x - C.x\n\t\tconst y = this.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = C.x + (x * c - y * s)\n\t\tthis.y = C.y + (x * s + y * c)\n\t\treturn this\n\t}\n\n\tclone(): Vec {\n\t\tconst { x, y, z } = this\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tsub(V: VecLike) {\n\t\tthis.x -= V.x\n\t\tthis.y -= V.y\n\t\treturn this\n\t}\n\n\tsubXY(x: number, y: number) {\n\t\tthis.x -= x\n\t\tthis.y -= y\n\t\treturn this\n\t}\n\n\tsubScalar(n: number) {\n\t\tthis.x -= n\n\t\tthis.y -= n\n\t\t// this.z -= n\n\n\t\treturn this\n\t}\n\n\tadd(V: VecLike) {\n\t\tthis.x += V.x\n\t\tthis.y += V.y\n\t\treturn this\n\t}\n\n\taddXY(x: number, y: number) {\n\t\tthis.x += x\n\t\tthis.y += y\n\t\treturn this\n\t}\n\n\taddScalar(n: number) {\n\t\tthis.x += n\n\t\tthis.y += n\n\t\t// this.z += n\n\n\t\treturn this\n\t}\n\n\tclamp(min: number, max?: number) {\n\t\tthis.x = Math.max(this.x, min)\n\t\tthis.y = Math.max(this.y, min)\n\t\tif (max !== undefined) {\n\t\t\tthis.x = Math.min(this.x, max)\n\t\t\tthis.y = Math.min(this.y, max)\n\t\t}\n\t\treturn this\n\t}\n\n\tdiv(t: number) {\n\t\tthis.x /= t\n\t\tthis.y /= t\n\t\t// this.z /= t\n\t\treturn this\n\t}\n\n\tdivV(V: VecLike) {\n\t\tthis.x /= V.x\n\t\tthis.y /= V.y\n\t\t// this.z /= V.z\n\t\treturn this\n\t}\n\n\tmul(t: number) {\n\t\tthis.x *= t\n\t\tthis.y *= t\n\t\t// this.z *= t\n\t\treturn this\n\t}\n\n\tmulV(V: VecLike) {\n\t\tthis.x *= V.x\n\t\tthis.y *= V.y\n\t\t// this.z *= V.z\n\t\treturn this\n\t}\n\n\tabs() {\n\t\tthis.x = Math.abs(this.x)\n\t\tthis.y = Math.abs(this.y)\n\t\treturn this\n\t}\n\n\tnudge(B: VecLike, distance: number) {\n\t\tconst tan = Vec.Tan(B, this)\n\t\treturn this.add(tan.mul(distance))\n\t}\n\n\tneg() {\n\t\tthis.x *= -1\n\t\tthis.y *= -1\n\t\t// this.z *= -1\n\t\treturn this\n\t}\n\n\tcross(V: VecLike) {\n\t\tthis.x = this.y * V.z! - this.z * V.y\n\t\tthis.y = this.z * V.x - this.x * V.z!\n\t\t// this.z = this.x * V.y - this.y * V.x\n\t\treturn this\n\t}\n\n\tdpr(V: VecLike): number {\n\t\treturn Vec.Dpr(this, V)\n\t}\n\n\tcpr(V: VecLike) {\n\t\treturn Vec.Cpr(this, V)\n\t}\n\n\tlen2(): number {\n\t\treturn Vec.Len2(this)\n\t}\n\n\tlen(): number {\n\t\treturn Vec.Len(this)\n\t}\n\n\tpry(V: VecLike): number {\n\t\treturn Vec.Pry(this, V)\n\t}\n\n\tper() {\n\t\tconst { x, y } = this\n\t\tthis.x = y\n\t\tthis.y = -x\n\t\treturn this\n\t}\n\n\tuni() {\n\t\treturn Vec.Uni(this)\n\t}\n\n\ttan(V: VecLike): Vec {\n\t\treturn Vec.Tan(this, V)\n\t}\n\n\tdist(V: VecLike): number {\n\t\treturn Vec.Dist(this, V)\n\t}\n\n\tdistanceToLineSegment(A: VecLike, B: VecLike): number {\n\t\treturn Vec.DistanceToLineSegment(A, B, this)\n\t}\n\n\tslope(B: VecLike): number {\n\t\treturn Vec.Slope(this, B)\n\t}\n\n\tsnapToGrid(gridSize: number) {\n\t\tthis.x = Math.round(this.x / gridSize) * gridSize\n\t\tthis.y = Math.round(this.y / gridSize) * gridSize\n\t\treturn this\n\t}\n\n\tangle(B: VecLike): number {\n\t\treturn Vec.Angle(this, B)\n\t}\n\n\ttoAngle() {\n\t\treturn Vec.ToAngle(this)\n\t}\n\n\tlrp(B: VecLike, t: number): Vec {\n\t\tthis.x = this.x + (B.x - this.x) * t\n\t\tthis.y = this.y + (B.y - this.y) * t\n\t\treturn this\n\t}\n\n\tequals(B: VecLike) {\n\t\treturn Vec.Equals(this, B)\n\t}\n\n\tequalsXY(x: number, y: number) {\n\t\treturn Vec.EqualsXY(this, x, y)\n\t}\n\n\tnorm() {\n\t\tconst l = this.len()\n\t\tthis.x = l === 0 ? 0 : this.x / l\n\t\tthis.y = l === 0 ? 0 : this.y / l\n\t\treturn this\n\t}\n\n\ttoFixed() {\n\t\treturn Vec.ToFixed(this)\n\t}\n\n\ttoString() {\n\t\treturn Vec.ToString(Vec.ToFixed(this))\n\t}\n\n\ttoJson(): VecModel {\n\t\treturn Vec.ToJson(this)\n\t}\n\n\ttoArray(): number[] {\n\t\treturn Vec.ToArray(this)\n\t}\n\n\tstatic Add(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x + B.x, A.y + B.y)\n\t}\n\n\tstatic AddXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x + x, A.y + y)\n\t}\n\n\tstatic Sub(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x - B.x, A.y - B.y)\n\t}\n\n\tstatic SubXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x - x, A.y - y)\n\t}\n\n\tstatic AddScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x + n, A.y + n)\n\t}\n\n\tstatic SubScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x - n, A.y - n)\n\t}\n\n\tstatic Div(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x / t, A.y / t)\n\t}\n\n\tstatic Mul(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x * t, A.y * t)\n\t}\n\n\tstatic DivV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x / B.x, A.y / B.y)\n\t}\n\n\tstatic MulV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x * B.x, A.y * B.y)\n\t}\n\n\tstatic Neg(A: VecLike): Vec {\n\t\treturn new Vec(-A.x, -A.y)\n\t}\n\n\t/**\n\t * Get the perpendicular vector to A.\n\t */\n\tstatic Per(A: VecLike): Vec {\n\t\treturn new Vec(A.y, -A.x)\n\t}\n\n\tstatic Abs(A: VecLike): Vec {\n\t\treturn new Vec(Math.abs(A.x), Math.abs(A.y))\n\t}\n\n\t// Get the distance between two points.\n\tstatic Dist(A: VecLike, B: VecLike): number {\n\t\treturn ((A.y - B.y) ** 2 + (A.x - B.x) ** 2) ** 0.5\n\t}\n\n\t// Get the Manhattan distance between two points.\n\tstatic ManhattanDist(A: VecLike, B: VecLike): number {\n\t\treturn Math.abs(A.x - B.x) + Math.abs(A.y - B.y)\n\t}\n\n\t// Get whether a distance between two points is less than a number. This is faster to calulate than using `Vec.Dist(a, b) < n`.\n\tstatic DistMin(A: VecLike, B: VecLike, n: number): boolean {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y) < n ** 2\n\t}\n\n\t// Get the squared distance between two points. This is faster to calculate (no square root) so useful for \"minimum distance\" checks where the actual measurement does not matter.\n\tstatic Dist2(A: VecLike, B: VecLike): number {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y)\n\t}\n\n\t/**\n\t * Dot product of two vectors which is used to calculate the angle between them.\n\t */\n\tstatic Dpr(A: VecLike, B: VecLike): number {\n\t\treturn A.x * B.x + A.y * B.y\n\t}\n\n\tstatic Cross(A: VecLike, V: VecLike) {\n\t\treturn new Vec(\n\t\t\tA.y * V.z! - A.z! * V.y,\n\t\t\tA.z! * V.x - A.x * V.z!\n\t\t\t// A.z = A.x * V.y - A.y * V.x\n\t\t)\n\t}\n\n\t/**\n\t * Cross product of two vectors which is used to calculate the area of a parallelogram.\n\t */\n\tstatic Cpr(A: VecLike, B: VecLike) {\n\t\treturn A.x * B.y - B.x * A.y\n\t}\n\n\tstatic Len2(A: VecLike): number {\n\t\treturn A.x * A.x + A.y * A.y\n\t}\n\n\tstatic Len(A: VecLike): number {\n\t\treturn (A.x * A.x + A.y * A.y) ** 0.5\n\t}\n\n\t/**\n\t * Get the projection of A onto B.\n\t */\n\tstatic Pry(A: VecLike, B: VecLike): number {\n\t\treturn Vec.Dpr(A, B) / Vec.Len(B)\n\t}\n\n\t/**\n\t * Get the unit vector of A.\n\t */\n\tstatic Uni(A: VecLike) {\n\t\treturn Vec.Div(A, Vec.Len(A))\n\t}\n\n\tstatic Tan(A: VecLike, B: VecLike): Vec {\n\t\treturn Vec.Uni(Vec.Sub(A, B))\n\t}\n\n\tstatic Min(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.min(A.x, B.x), Math.min(A.y, B.y))\n\t}\n\n\tstatic Max(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.max(A.x, B.x), Math.max(A.y, B.y))\n\t}\n\n\tstatic From({ x, y, z = 1 }: VecModel) {\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tstatic FromArray(v: number[]): Vec {\n\t\treturn new Vec(v[0], v[1])\n\t}\n\n\tstatic Rot(A: VecLike, r = 0): Vec {\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(A.x * c - A.y * s, A.x * s + A.y * c)\n\t}\n\n\tstatic RotWith(A: VecLike, C: VecLike, r: number): Vec {\n\t\tconst x = A.x - C.x\n\t\tconst y = A.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(C.x + (x * c - y * s), C.y + (x * s + y * c))\n\t}\n\n\t/**\n\t * Get the nearest point on a line with a known unit vector that passes through point A\n\t *\n\t * ```ts\n\t * Vec.nearestPointOnLineThroughPoint(A, u, Point)\n\t * ```\n\t *\n\t * @param A - Any point on the line\n\t * @param u - The unit vector for the line.\n\t * @param P - A point not on the line to test.\n\t */\n\tstatic NearestPointOnLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): Vec {\n\t\treturn Vec.Mul(u, Vec.Sub(P, A).pry(u)).add(A)\n\t}\n\n\tstatic NearestPointOnLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): Vec {\n\t\tif (Vec.Equals(A, P)) return Vec.From(P)\n\t\tif (Vec.Equals(B, P)) return Vec.From(P)\n\n\t\tconst u = Vec.Tan(B, A)\n\t\tconst C = Vec.Add(A, Vec.Mul(u, Vec.Sub(P, A).pry(u)))\n\n\t\tif (clamp) {\n\t\t\tif (C.x < Math.min(A.x, B.x)) return Vec.Cast(A.x < B.x ? A : B)\n\t\t\tif (C.x > Math.max(A.x, B.x)) return Vec.Cast(A.x > B.x ? A : B)\n\t\t\tif (C.y < Math.min(A.y, B.y)) return Vec.Cast(A.y < B.y ? A : B)\n\t\t\tif (C.y > Math.max(A.y, B.y)) return Vec.Cast(A.y > B.y ? A : B)\n\t\t}\n\n\t\treturn C\n\t}\n\n\tstatic DistanceToLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineThroughPoint(A, u, P))\n\t}\n\n\tstatic DistanceToLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineSegment(A, B, P, clamp))\n\t}\n\n\tstatic Snap(A: VecLike, step = 1) {\n\t\treturn new Vec(Math.round(A.x / step) * step, Math.round(A.y / step) * step)\n\t}\n\n\tstatic Cast(A: VecLike): Vec {\n\t\tif (A instanceof Vec) return A\n\t\treturn Vec.From(A)\n\t}\n\n\tstatic Slope(A: VecLike, B: VecLike): number {\n\t\tif (A.x === B.y) return NaN\n\t\treturn (A.y - B.y) / (A.x - B.x)\n\t}\n\n\tstatic IsNaN(A: VecLike): boolean {\n\t\treturn isNaN(A.x) || isNaN(A.y)\n\t}\n\n\t/**\n\t * Get the angle from position A to position B.\n\t */\n\tstatic Angle(A: VecLike, B: VecLike): number {\n\t\treturn Math.atan2(B.y - A.y, B.x - A.x)\n\t}\n\n\t/**\n\t * Get the angle between vector A and vector B. This will return the smallest angle between the\n\t * two vectors, between -\u03C0 and \u03C0. The sign indicates direction of angle.\n\t */\n\tstatic AngleBetween(A: VecLike, B: VecLike): number {\n\t\tconst p = A.x * B.x + A.y * B.y\n\t\tconst n = Math.sqrt(\n\t\t\t(Math.pow(A.x, 2) + Math.pow(A.y, 2)) * (Math.pow(B.x, 2) + Math.pow(B.y, 2))\n\t\t)\n\t\tconst sign = A.x * B.y - A.y * B.x < 0 ? -1 : 1\n\t\tconst angle = sign * Math.acos(p / n)\n\n\t\treturn angle\n\t}\n\n\t/**\n\t * Linearly interpolate between two points.\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param t - The interpolation value between 0 and 1.\n\t * @returns The interpolated point.\n\t */\n\tstatic Lrp(A: VecLike, B: VecLike, t: number): Vec {\n\t\treturn Vec.Sub(B, A).mul(t).add(A)\n\t}\n\n\tstatic Med(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec((A.x + B.x) / 2, (A.y + B.y) / 2)\n\t}\n\n\tstatic Equals(A: VecLike, B: VecLike): boolean {\n\t\treturn Math.abs(A.x - B.x) < 0.0001 && Math.abs(A.y - B.y) < 0.0001\n\t}\n\n\tstatic EqualsXY(A: VecLike, x: number, y: number): boolean {\n\t\treturn A.x === x && A.y === y\n\t}\n\n\tstatic Clockwise(A: VecLike, B: VecLike, C: VecLike): boolean {\n\t\treturn (C.x - A.x) * (B.y - A.y) - (B.x - A.x) * (C.y - A.y) < 0\n\t}\n\n\tstatic Rescale(A: VecLike, n: number) {\n\t\tconst l = Vec.Len(A)\n\t\treturn new Vec((n * A.x) / l, (n * A.y) / l)\n\t}\n\n\tstatic ScaleWithOrigin(A: VecLike, scale: number, origin: VecLike) {\n\t\treturn Vec.Sub(A, origin).mul(scale).add(origin)\n\t}\n\n\tstatic ToFixed(A: VecLike) {\n\t\treturn new Vec(toFixed(A.x), toFixed(A.y))\n\t}\n\n\tstatic ToInt(A: VecLike) {\n\t\treturn new Vec(\n\t\t\tparseInt(A.x.toFixed(0)),\n\t\t\tparseInt(A.y.toFixed(0)),\n\t\t\tparseInt((A.z ?? 0).toFixed(0))\n\t\t)\n\t}\n\n\tstatic ToCss(A: VecLike) {\n\t\treturn `${A.x},${A.y}`\n\t}\n\n\tstatic Nudge(A: VecLike, B: VecLike, distance: number) {\n\t\treturn Vec.Add(A, Vec.Tan(B, A).mul(distance))\n\t}\n\n\tstatic ToString(A: VecLike) {\n\t\treturn `${A.x}, ${A.y}`\n\t}\n\n\tstatic ToAngle(A: VecLike) {\n\t\tlet r = Math.atan2(A.y, A.x)\n\t\tif (r < 0) r += Math.PI * 2\n\n\t\treturn r\n\t}\n\n\tstatic FromAngle(r: number, length = 1) {\n\t\treturn new Vec(Math.cos(r) * length, Math.sin(r) * length)\n\t}\n\n\tstatic ToArray(A: VecLike) {\n\t\treturn [A.x, A.y, A.z!]\n\t}\n\n\tstatic ToJson(A: VecLike) {\n\t\tconst { x, y, z } = A\n\t\treturn { x, y, z }\n\t}\n\n\tstatic Average(arr: VecLike[]) {\n\t\tconst len = arr.length\n\t\tconst avg = new Vec(0, 0)\n\t\tif (len === 0) {\n\t\t\treturn avg\n\t\t}\n\t\tfor (let i = 0; i < len; i++) {\n\t\t\tavg.add(arr[i])\n\t\t}\n\t\treturn avg.div(len)\n\t}\n\n\tstatic Clamp(A: Vec, min: number, max?: number) {\n\t\tif (max === undefined) {\n\t\t\treturn new Vec(Math.min(Math.max(A.x, min)), Math.min(Math.max(A.y, min)))\n\t\t}\n\n\t\treturn new Vec(Math.min(Math.max(A.x, min), max), Math.min(Math.max(A.y, min), max))\n\t}\n\n\t/**\n\t * Get an array of points (with simulated pressure) between two points.\n\t *\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param steps - The number of points to return.\n\t */\n\tstatic PointsBetween(A: VecModel, B: VecModel, steps = 6): Vec[] {\n\t\tconst results: Vec[] = []\n\n\t\tfor (let i = 0; i < steps; i++) {\n\t\t\tconst t = EASINGS.easeInQuad(i / (steps - 1))\n\t\t\tconst point = Vec.Lrp(A, B, t)\n\t\t\tpoint.z = Math.min(1, 0.5 + Math.abs(0.5 - ease(t)) * 0.65)\n\t\t\tresults.push(point)\n\t\t}\n\n\t\treturn results\n\t}\n\n\tstatic SnapToGrid(A: VecLike, gridSize = 8) {\n\t\treturn new Vec(Math.round(A.x / gridSize) * gridSize, Math.round(A.y / gridSize) * gridSize)\n\t}\n}\n\nconst ease = (t: number) => (t < 0.5 ? 2 * t * t : -1 + (4 - 2 * t) * t)\n"],
|
|
5
|
-
"mappings": "AACA,SAAS,eAAe;AACxB,SAAS,eAAe;AAMjB,MAAM,IAAI;AAAA,EAChB,YACQ,IAAI,GACJ,IAAI,GACJ,IAAI,GACV;AAHM;AACA;AACA;AAAA,EACL;AAAA;AAAA,EAGH,IAAI,WAAW;AACd,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,IAAI,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,EAAE,GAAY;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,WAAO;AAAA,EACR;AAAA,EAEA,QAAQ,GAAY,GAAW;AAC9B,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,WAAO;AAAA,EACR;AAAA,EAEA,QAAa;AACZ,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,KAAa,KAAc;AAChC,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,QAAI,QAAQ,QAAW;AACtB,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAAA,IAC9B;AACA,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY,UAAkB;AACnC,UAAM,MAAM,IAAI,IAAI,GAAG,IAAI;AAC3B,WAAO,KAAK,IAAI,IAAI,IAAI,QAAQ,CAAC;AAAA,EAClC;AAAA,EAEA,MAAM;AACL,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY;AACjB,SAAK,IAAI,KAAK,IAAI,EAAE,IAAK,KAAK,IAAI,EAAE;AACpC,SAAK,IAAI,KAAK,IAAI,EAAE,IAAI,KAAK,IAAI,EAAE;AAEnC,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,OAAe;AACd,WAAO,IAAI,KAAK,IAAI;AAAA,EACrB;AAAA,EAEA,MAAc;AACb,WAAO,IAAI,IAAI,IAAI;AAAA,EACpB;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,MAAM;AACL,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,SAAK,IAAI;AACT,SAAK,IAAI,CAAC;AACV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,WAAO,IAAI,IAAI,IAAI;AAAA,EACpB;AAAA,EAEA,IAAI,GAAiB;AACpB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,KAAK,GAAoB;AACxB,WAAO,IAAI,KAAK,MAAM,CAAC;AAAA,EACxB;AAAA,EAEA,sBAAsB,GAAY,GAAoB;AACrD,WAAO,IAAI,sBAAsB,GAAG,GAAG,IAAI;AAAA,EAC5C;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,WAAW,UAAkB;AAC5B,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,UAAU;AACT,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,IAAI,GAAY,GAAgB;AAC/B,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,GAAY;AAClB,WAAO,IAAI,OAAO,MAAM,CAAC;AAAA,EAC1B;AAAA,EAEA,SAAS,GAAW,GAAW;AAC9B,WAAO,IAAI,SAAS,MAAM,GAAG,CAAC;AAAA,EAC/B;AAAA,EAEA,OAAO;AACN,UAAM,IAAI,KAAK,IAAI;AACnB,SAAK,IAAI,MAAM,IAAI,IAAI,KAAK,IAAI;AAChC,SAAK,IAAI,MAAM,IAAI,IAAI,KAAK,IAAI;AAChC,WAAO;AAAA,EACR;AAAA,EAEA,UAAU;AACT,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,WAAW;AACV,WAAO,IAAI,SAAS,IAAI,QAAQ,IAAI,CAAC;AAAA,EACtC;AAAA,EAEA,SAAmB;AAClB,WAAO,IAAI,OAAO,IAAI;AAAA,EACvB;AAAA,EAEA,UAAoB;AACnB,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EAC1B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EACzB;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,CAAC,CAAC;AAAA,EAC5C;AAAA;AAAA,EAGA,OAAO,KAAK,GAAY,GAAoB;AAC3C,aAAS,EAAE,IAAI,EAAE,MAAM,KAAK,EAAE,IAAI,EAAE,MAAM,MAAM;AAAA,EACjD;AAAA;AAAA,EAGA,OAAO,cAAc,GAAY,GAAoB;AACpD,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC;AAAA,EAChD;AAAA;AAAA,EAGA,OAAO,QAAQ,GAAY,GAAY,GAAoB;AAC1D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK,KAAK;AAAA,EACrE;AAAA;AAAA,EAGA,OAAO,MAAM,GAAY,GAAoB;AAC5C,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC3D;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY;AACpC,WAAO,IAAI;AAAA,MACV,EAAE,IAAI,EAAE,IAAK,EAAE,IAAK,EAAE;AAAA,MACtB,EAAE,IAAK,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA;AAAA,IAEtB;AAAA,EACD;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAY;AAClC,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,KAAK,GAAoB;AAC/B,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,IAAI,GAAoB;AAC9B,YAAQ,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAAA,EACnC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,IAAI,IAAI,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC;AAAA,EACjC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY;AACtB,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,CAAC,CAAC;AAAA,EAC7B;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,IAAI,IAAI,GAAG,CAAC,CAAC;AAAA,EAC7B;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,KAAK,EAAE,GAAG,GAAG,IAAI,EAAE,GAAa;AACtC,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,OAAO,UAAU,GAAkB;AAClC,WAAO,IAAI,IAAI,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC;AAAA,EAC1B;AAAA,EAEA,OAAO,IAAI,GAAY,IAAI,GAAQ;AAClC,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,IAAI,EAAE,IAAI,CAAC;AAAA,EACpD;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAY,GAAgB;AACtD,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,EAAE;AAAA,EAC5D;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAaA,OAAO,+BAA+B,GAAY,GAAY,GAAiB;AAC9E,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,0BAA0B,GAAY,GAAY,GAAY,QAAQ,MAAW;AACvF,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AACvC,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AAEvC,UAAM,IAAI,IAAI,IAAI,GAAG,CAAC;AACtB,UAAM,IAAI,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;AAErD,QAAI,OAAO;AACV,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAAA,IAChE;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,2BAA2B,GAAY,GAAY,GAAoB;AAC7E,WAAO,IAAI,KAAK,GAAG,IAAI,+BAA+B,GAAG,GAAG,CAAC,CAAC;AAAA,EAC/D;AAAA,EAEA,OAAO,sBAAsB,GAAY,GAAY,GAAY,QAAQ,MAAc;AACtF,WAAO,IAAI,KAAK,GAAG,IAAI,0BAA0B,GAAG,GAAG,GAAG,KAAK,CAAC;AAAA,EACjE;AAAA,EAEA,OAAO,KAAK,GAAY,OAAO,GAAG;AACjC,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,MAAM,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,IAAI;AAAA,EAC5E;AAAA,EAEA,OAAO,KAAK,GAAiB;AAC5B,QAAI,aAAa,IAAK,QAAO;AAC7B,WAAO,IAAI,KAAK,CAAC;AAAA,EAClB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAoB;AAC5C,QAAI,EAAE,MAAM,EAAE,EAAG,QAAO;AACxB,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC/B;AAAA,EAEA,OAAO,MAAM,GAAqB;AACjC,WAAO,MAAM,EAAE,CAAC,KAAK,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,MAAM,GAAY,GAAoB;AAC5C,WAAO,KAAK,MAAM,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACvC;AAAA;AAAA;AAAA;AAAA;AAAA,EAMA,OAAO,aAAa,GAAY,GAAoB;AACnD,UAAM,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAC9B,UAAM,IAAI,KAAK;AAAA,OACb,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC,MAAM,KAAK,IAAI,EAAE,GAAG,CAAC,IAAI,KAAK,IAAI,EAAE,GAAG,CAAC;AAAA,IAC5E;AACA,UAAM,OAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,IAAI,KAAK;AAC9C,UAAM,QAAQ,OAAO,KAAK,KAAK,IAAI,CAAC;AAEpC,WAAO;AAAA,EACR;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,IAAI,GAAY,GAAY,GAAgB;AAClD,WAAO,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,IAAI,CAAC;AAAA,EAClC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,KAAK,EAAE,IAAI,EAAE,KAAK,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC;AAAA,EAChD;AAAA,EAEA,OAAO,OAAO,GAAY,GAAqB;AAC9C,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,QAAU,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI;AAAA,EAC9D;AAAA,EAEA,OAAO,SAAS,GAAY,GAAW,GAAoB;AAC1D,WAAO,EAAE,MAAM,KAAK,EAAE,MAAM;AAAA,EAC7B;AAAA,EAEA,OAAO,UAAU,GAAY,GAAY,GAAqB;AAC7D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK;AAAA,EAChE;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAW;AACrC,UAAM,IAAI,IAAI,IAAI,CAAC;AACnB,WAAO,IAAI,IAAK,IAAI,EAAE,IAAK,GAAI,IAAI,EAAE,IAAK,CAAC;AAAA,EAC5C;AAAA,EAEA,OAAO,gBAAgB,GAAY,OAAe,QAAiB;AAClE,WAAO,IAAI,IAAI,GAAG,MAAM,EAAE,IAAI,KAAK,EAAE,IAAI,MAAM;AAAA,EAChD;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,IAAI,IAAI,QAAQ,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,CAAC;AAAA,EAC1C;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,IAAI;AAAA,MACV,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,UAAU,EAAE,KAAK,GAAG,QAAQ,CAAC,CAAC;AAAA,IAC/B;AAAA,EACD;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,GAAG,EAAE,CAAC,IAAI,EAAE,CAAC;AAAA,EACrB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY,UAAkB;AACtD,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,QAAQ,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,SAAS,GAAY;AAC3B,WAAO,GAAG,EAAE,CAAC,KAAK,EAAE,CAAC;AAAA,EACtB;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,QAAI,IAAI,KAAK,MAAM,EAAE,GAAG,EAAE,CAAC;AAC3B,QAAI,IAAI,EAAG,MAAK,KAAK,KAAK;AAE1B,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,UAAU,GAAW,SAAS,GAAG;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,CAAC,IAAI,QAAQ,KAAK,IAAI,CAAC,IAAI,MAAM;AAAA,EAC1D;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,CAAE;AAAA,EACvB;AAAA,EAEA,OAAO,OAAO,GAAY;AACzB,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,EAAE,GAAG,GAAG,EAAE;AAAA,EAClB;AAAA,EAEA,OAAO,QAAQ,KAAgB;AAC9B,UAAM,MAAM,IAAI;AAChB,UAAM,MAAM,IAAI,IAAI,GAAG,CAAC;AACxB,QAAI,QAAQ,GAAG;AACd,aAAO;AAAA,IACR;AACA,aAAS,IAAI,GAAG,IAAI,KAAK,KAAK;AAC7B,UAAI,IAAI,IAAI,CAAC,CAAC;AAAA,IACf;AACA,WAAO,IAAI,IAAI,GAAG;AAAA,EACnB;AAAA,EAEA,OAAO,MAAM,GAAQ,KAAa,KAAc;AAC/C,QAAI,QAAQ,QAAW;AACtB,aAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,CAAC;AAAA,IAC1E;AAEA,WAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,CAAC;AAAA,EACpF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,cAAc,GAAa,GAAa,QAAQ,GAAU;AAChE,UAAM,UAAiB,CAAC;AAExB,aAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC/B,YAAM,IAAI,QAAQ,WAAW,KAAK,QAAQ,EAAE;AAC5C,YAAM,QAAQ,IAAI,IAAI,GAAG,GAAG,CAAC;AAC7B,YAAM,IAAI,KAAK,IAAI,GAAG,MAAM,KAAK,IAAI,MAAM,KAAK,CAAC,CAAC,IAAI,IAAI;AAC1D,cAAQ,KAAK,KAAK;AAAA,IACnB;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,WAAW,GAAY,WAAW,GAAG;AAC3C,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,UAAU,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,QAAQ;AAAA,EAC5F;AACD;AAEA,MAAM,OAAO,CAAC,MAAe,IAAI,MAAM,IAAI,IAAI,IAAI,MAAM,IAAI,IAAI,KAAK;",
|
|
4
|
+
"sourcesContent": ["import { VecModel } from '@tldraw/tlschema'\nimport { EASINGS } from './easings'\nimport { toFixed } from './utils'\n\n/** @public */\nexport type VecLike = Vec | VecModel\n\n/** @public */\nexport class Vec {\n\tconstructor(\n\t\tpublic x = 0,\n\t\tpublic y = 0,\n\t\tpublic z = 1\n\t) {}\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget pressure() {\n\t\treturn this.z\n\t}\n\n\tset(x = this.x, y = this.y, z = this.z) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\tsetTo({ x = 0, y = 0, z = 1 }: VecLike) {\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis.z = z\n\t\treturn this\n\t}\n\n\trot(r: number) {\n\t\tif (r === 0) return this\n\t\tconst { x, y } = this\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = x * c - y * s\n\t\tthis.y = x * s + y * c\n\t\treturn this\n\t}\n\n\trotWith(C: VecLike, r: number) {\n\t\tif (r === 0) return this\n\t\tconst x = this.x - C.x\n\t\tconst y = this.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\tthis.x = C.x + (x * c - y * s)\n\t\tthis.y = C.y + (x * s + y * c)\n\t\treturn this\n\t}\n\n\tclone(): Vec {\n\t\tconst { x, y, z } = this\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tsub(V: VecLike) {\n\t\tthis.x -= V.x\n\t\tthis.y -= V.y\n\t\treturn this\n\t}\n\n\tsubXY(x: number, y: number) {\n\t\tthis.x -= x\n\t\tthis.y -= y\n\t\treturn this\n\t}\n\n\tsubScalar(n: number) {\n\t\tthis.x -= n\n\t\tthis.y -= n\n\t\t// this.z -= n\n\n\t\treturn this\n\t}\n\n\tadd(V: VecLike) {\n\t\tthis.x += V.x\n\t\tthis.y += V.y\n\t\treturn this\n\t}\n\n\taddXY(x: number, y: number) {\n\t\tthis.x += x\n\t\tthis.y += y\n\t\treturn this\n\t}\n\n\taddScalar(n: number) {\n\t\tthis.x += n\n\t\tthis.y += n\n\t\t// this.z += n\n\n\t\treturn this\n\t}\n\n\tclamp(min: number, max?: number) {\n\t\tthis.x = Math.max(this.x, min)\n\t\tthis.y = Math.max(this.y, min)\n\t\tif (max !== undefined) {\n\t\t\tthis.x = Math.min(this.x, max)\n\t\t\tthis.y = Math.min(this.y, max)\n\t\t}\n\t\treturn this\n\t}\n\n\tdiv(t: number) {\n\t\tthis.x /= t\n\t\tthis.y /= t\n\t\t// this.z /= t\n\t\treturn this\n\t}\n\n\tdivV(V: VecLike) {\n\t\tthis.x /= V.x\n\t\tthis.y /= V.y\n\t\t// this.z /= V.z\n\t\treturn this\n\t}\n\n\tmul(t: number) {\n\t\tthis.x *= t\n\t\tthis.y *= t\n\t\t// this.z *= t\n\t\treturn this\n\t}\n\n\tmulV(V: VecLike) {\n\t\tthis.x *= V.x\n\t\tthis.y *= V.y\n\t\t// this.z *= V.z\n\t\treturn this\n\t}\n\n\tabs() {\n\t\tthis.x = Math.abs(this.x)\n\t\tthis.y = Math.abs(this.y)\n\t\treturn this\n\t}\n\n\tnudge(B: VecLike, distance: number) {\n\t\tconst tan = Vec.Tan(B, this)\n\t\treturn this.add(tan.mul(distance))\n\t}\n\n\tneg() {\n\t\tthis.x *= -1\n\t\tthis.y *= -1\n\t\t// this.z *= -1\n\t\treturn this\n\t}\n\n\tcross(V: VecLike) {\n\t\tthis.x = this.y * V.z! - this.z * V.y\n\t\tthis.y = this.z * V.x - this.x * V.z!\n\t\t// this.z = this.x * V.y - this.y * V.x\n\t\treturn this\n\t}\n\n\tdpr(V: VecLike): number {\n\t\treturn Vec.Dpr(this, V)\n\t}\n\n\tcpr(V: VecLike) {\n\t\treturn Vec.Cpr(this, V)\n\t}\n\n\tlen2(): number {\n\t\treturn Vec.Len2(this)\n\t}\n\n\tlen(): number {\n\t\treturn Vec.Len(this)\n\t}\n\n\tpry(V: VecLike): number {\n\t\treturn Vec.Pry(this, V)\n\t}\n\n\tper() {\n\t\tconst { x, y } = this\n\t\tthis.x = y\n\t\tthis.y = -x\n\t\treturn this\n\t}\n\n\tuni() {\n\t\treturn Vec.Uni(this)\n\t}\n\n\ttan(V: VecLike): Vec {\n\t\treturn Vec.Tan(this, V)\n\t}\n\n\tdist(V: VecLike): number {\n\t\treturn Vec.Dist(this, V)\n\t}\n\n\tdistanceToLineSegment(A: VecLike, B: VecLike): number {\n\t\treturn Vec.DistanceToLineSegment(A, B, this)\n\t}\n\n\tslope(B: VecLike): number {\n\t\treturn Vec.Slope(this, B)\n\t}\n\n\tsnapToGrid(gridSize: number) {\n\t\tthis.x = Math.round(this.x / gridSize) * gridSize\n\t\tthis.y = Math.round(this.y / gridSize) * gridSize\n\t\treturn this\n\t}\n\n\tangle(B: VecLike): number {\n\t\treturn Vec.Angle(this, B)\n\t}\n\n\ttoAngle() {\n\t\treturn Vec.ToAngle(this)\n\t}\n\n\tlrp(B: VecLike, t: number): Vec {\n\t\tthis.x = this.x + (B.x - this.x) * t\n\t\tthis.y = this.y + (B.y - this.y) * t\n\t\treturn this\n\t}\n\n\tequals(B: VecLike) {\n\t\treturn Vec.Equals(this, B)\n\t}\n\n\tequalsXY(x: number, y: number) {\n\t\treturn Vec.EqualsXY(this, x, y)\n\t}\n\n\tnorm() {\n\t\tconst l = this.len()\n\t\tthis.x = l === 0 ? 0 : this.x / l\n\t\tthis.y = l === 0 ? 0 : this.y / l\n\t\treturn this\n\t}\n\n\ttoFixed() {\n\t\treturn Vec.ToFixed(this)\n\t}\n\n\ttoString() {\n\t\treturn Vec.ToString(Vec.ToFixed(this))\n\t}\n\n\ttoJson(): VecModel {\n\t\treturn Vec.ToJson(this)\n\t}\n\n\ttoArray(): number[] {\n\t\treturn Vec.ToArray(this)\n\t}\n\n\tstatic Add(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x + B.x, A.y + B.y)\n\t}\n\n\tstatic AddXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x + x, A.y + y)\n\t}\n\n\tstatic Sub(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x - B.x, A.y - B.y)\n\t}\n\n\tstatic SubXY(A: VecLike, x: number, y: number): Vec {\n\t\treturn new Vec(A.x - x, A.y - y)\n\t}\n\n\tstatic AddScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x + n, A.y + n)\n\t}\n\n\tstatic SubScalar(A: VecLike, n: number): Vec {\n\t\treturn new Vec(A.x - n, A.y - n)\n\t}\n\n\tstatic Div(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x / t, A.y / t)\n\t}\n\n\tstatic Mul(A: VecLike, t: number): Vec {\n\t\treturn new Vec(A.x * t, A.y * t)\n\t}\n\n\tstatic DivV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x / B.x, A.y / B.y)\n\t}\n\n\tstatic MulV(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(A.x * B.x, A.y * B.y)\n\t}\n\n\tstatic Neg(A: VecLike): Vec {\n\t\treturn new Vec(-A.x, -A.y)\n\t}\n\n\t/**\n\t * Get the perpendicular vector to A.\n\t */\n\tstatic Per(A: VecLike): Vec {\n\t\treturn new Vec(A.y, -A.x)\n\t}\n\n\tstatic Abs(A: VecLike): Vec {\n\t\treturn new Vec(Math.abs(A.x), Math.abs(A.y))\n\t}\n\n\t// Get the distance between two points.\n\tstatic Dist(A: VecLike, B: VecLike): number {\n\t\treturn ((A.y - B.y) ** 2 + (A.x - B.x) ** 2) ** 0.5\n\t}\n\n\t// Get whether a distance between two points is less than a number. This is faster to calulate than using `Vec.Dist(a, b) < n`.\n\tstatic DistMin(A: VecLike, B: VecLike, n: number): boolean {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y) < n ** 2\n\t}\n\n\t// Get the squared distance between two points. This is faster to calculate (no square root) so useful for \"minimum distance\" checks where the actual measurement does not matter.\n\tstatic Dist2(A: VecLike, B: VecLike): number {\n\t\treturn (A.x - B.x) * (A.x - B.x) + (A.y - B.y) * (A.y - B.y)\n\t}\n\n\t/**\n\t * Dot product of two vectors which is used to calculate the angle between them.\n\t */\n\tstatic Dpr(A: VecLike, B: VecLike): number {\n\t\treturn A.x * B.x + A.y * B.y\n\t}\n\n\tstatic Cross(A: VecLike, V: VecLike) {\n\t\treturn new Vec(\n\t\t\tA.y * V.z! - A.z! * V.y,\n\t\t\tA.z! * V.x - A.x * V.z!\n\t\t\t// A.z = A.x * V.y - A.y * V.x\n\t\t)\n\t}\n\n\t/**\n\t * Cross product of two vectors which is used to calculate the area of a parallelogram.\n\t */\n\tstatic Cpr(A: VecLike, B: VecLike) {\n\t\treturn A.x * B.y - B.x * A.y\n\t}\n\n\tstatic Len2(A: VecLike): number {\n\t\treturn A.x * A.x + A.y * A.y\n\t}\n\n\tstatic Len(A: VecLike): number {\n\t\treturn (A.x * A.x + A.y * A.y) ** 0.5\n\t}\n\n\t/**\n\t * Get the projection of A onto B.\n\t */\n\tstatic Pry(A: VecLike, B: VecLike): number {\n\t\treturn Vec.Dpr(A, B) / Vec.Len(B)\n\t}\n\n\t/**\n\t * Get the unit vector of A.\n\t */\n\tstatic Uni(A: VecLike) {\n\t\treturn Vec.Div(A, Vec.Len(A))\n\t}\n\n\tstatic Tan(A: VecLike, B: VecLike): Vec {\n\t\treturn Vec.Uni(Vec.Sub(A, B))\n\t}\n\n\tstatic Min(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.min(A.x, B.x), Math.min(A.y, B.y))\n\t}\n\n\tstatic Max(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec(Math.max(A.x, B.x), Math.max(A.y, B.y))\n\t}\n\n\tstatic From({ x, y, z = 1 }: VecModel) {\n\t\treturn new Vec(x, y, z)\n\t}\n\n\tstatic FromArray(v: number[]): Vec {\n\t\treturn new Vec(v[0], v[1])\n\t}\n\n\tstatic Rot(A: VecLike, r = 0): Vec {\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(A.x * c - A.y * s, A.x * s + A.y * c)\n\t}\n\n\tstatic RotWith(A: VecLike, C: VecLike, r: number): Vec {\n\t\tconst x = A.x - C.x\n\t\tconst y = A.y - C.y\n\t\tconst s = Math.sin(r)\n\t\tconst c = Math.cos(r)\n\t\treturn new Vec(C.x + (x * c - y * s), C.y + (x * s + y * c))\n\t}\n\n\t/**\n\t * Get the nearest point on a line with a known unit vector that passes through point A\n\t *\n\t * ```ts\n\t * Vec.nearestPointOnLineThroughPoint(A, u, Point)\n\t * ```\n\t *\n\t * @param A - Any point on the line\n\t * @param u - The unit vector for the line.\n\t * @param P - A point not on the line to test.\n\t */\n\tstatic NearestPointOnLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): Vec {\n\t\treturn Vec.Mul(u, Vec.Sub(P, A).pry(u)).add(A)\n\t}\n\n\tstatic NearestPointOnLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): Vec {\n\t\tif (Vec.Equals(A, P)) return Vec.From(P)\n\t\tif (Vec.Equals(B, P)) return Vec.From(P)\n\n\t\tconst u = Vec.Tan(B, A)\n\t\tconst C = Vec.Add(A, Vec.Mul(u, Vec.Sub(P, A).pry(u)))\n\n\t\tif (clamp) {\n\t\t\tif (C.x < Math.min(A.x, B.x)) return Vec.Cast(A.x < B.x ? A : B)\n\t\t\tif (C.x > Math.max(A.x, B.x)) return Vec.Cast(A.x > B.x ? A : B)\n\t\t\tif (C.y < Math.min(A.y, B.y)) return Vec.Cast(A.y < B.y ? A : B)\n\t\t\tif (C.y > Math.max(A.y, B.y)) return Vec.Cast(A.y > B.y ? A : B)\n\t\t}\n\n\t\treturn C\n\t}\n\n\tstatic DistanceToLineThroughPoint(A: VecLike, u: VecLike, P: VecLike): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineThroughPoint(A, u, P))\n\t}\n\n\tstatic DistanceToLineSegment(A: VecLike, B: VecLike, P: VecLike, clamp = true): number {\n\t\treturn Vec.Dist(P, Vec.NearestPointOnLineSegment(A, B, P, clamp))\n\t}\n\n\tstatic Snap(A: VecLike, step = 1) {\n\t\treturn new Vec(Math.round(A.x / step) * step, Math.round(A.y / step) * step)\n\t}\n\n\tstatic Cast(A: VecLike): Vec {\n\t\tif (A instanceof Vec) return A\n\t\treturn Vec.From(A)\n\t}\n\n\tstatic Slope(A: VecLike, B: VecLike): number {\n\t\tif (A.x === B.y) return NaN\n\t\treturn (A.y - B.y) / (A.x - B.x)\n\t}\n\n\tstatic IsNaN(A: VecLike): boolean {\n\t\treturn isNaN(A.x) || isNaN(A.y)\n\t}\n\n\tstatic Angle(A: VecLike, B: VecLike): number {\n\t\treturn Math.atan2(B.y - A.y, B.x - A.x)\n\t}\n\n\t/**\n\t * Linearly interpolate between two points.\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param t - The interpolation value between 0 and 1.\n\t * @returns The interpolated point.\n\t */\n\tstatic Lrp(A: VecLike, B: VecLike, t: number): Vec {\n\t\treturn Vec.Sub(B, A).mul(t).add(A)\n\t}\n\n\tstatic Med(A: VecLike, B: VecLike): Vec {\n\t\treturn new Vec((A.x + B.x) / 2, (A.y + B.y) / 2)\n\t}\n\n\tstatic Equals(A: VecLike, B: VecLike): boolean {\n\t\treturn Math.abs(A.x - B.x) < 0.0001 && Math.abs(A.y - B.y) < 0.0001\n\t}\n\n\tstatic EqualsXY(A: VecLike, x: number, y: number): boolean {\n\t\treturn A.x === x && A.y === y\n\t}\n\n\tstatic Clockwise(A: VecLike, B: VecLike, C: VecLike): boolean {\n\t\treturn (C.x - A.x) * (B.y - A.y) - (B.x - A.x) * (C.y - A.y) < 0\n\t}\n\n\tstatic Rescale(A: VecLike, n: number) {\n\t\tconst l = Vec.Len(A)\n\t\treturn new Vec((n * A.x) / l, (n * A.y) / l)\n\t}\n\n\tstatic ScaleWithOrigin(A: VecLike, scale: number, origin: VecLike) {\n\t\treturn Vec.Sub(A, origin).mul(scale).add(origin)\n\t}\n\n\tstatic ToFixed(A: VecLike) {\n\t\treturn new Vec(toFixed(A.x), toFixed(A.y))\n\t}\n\n\tstatic ToInt(A: VecLike) {\n\t\treturn new Vec(\n\t\t\tparseInt(A.x.toFixed(0)),\n\t\t\tparseInt(A.y.toFixed(0)),\n\t\t\tparseInt((A.z ?? 0).toFixed(0))\n\t\t)\n\t}\n\n\tstatic ToCss(A: VecLike) {\n\t\treturn `${A.x},${A.y}`\n\t}\n\n\tstatic Nudge(A: VecLike, B: VecLike, distance: number) {\n\t\treturn Vec.Add(A, Vec.Tan(B, A).mul(distance))\n\t}\n\n\tstatic ToString(A: VecLike) {\n\t\treturn `${A.x}, ${A.y}`\n\t}\n\n\tstatic ToAngle(A: VecLike) {\n\t\tlet r = Math.atan2(A.y, A.x)\n\t\tif (r < 0) r += Math.PI * 2\n\n\t\treturn r\n\t}\n\n\tstatic FromAngle(r: number, length = 1) {\n\t\treturn new Vec(Math.cos(r) * length, Math.sin(r) * length)\n\t}\n\n\tstatic ToArray(A: VecLike) {\n\t\treturn [A.x, A.y, A.z!]\n\t}\n\n\tstatic ToJson(A: VecLike) {\n\t\tconst { x, y, z } = A\n\t\treturn { x, y, z }\n\t}\n\n\tstatic Average(arr: VecLike[]) {\n\t\tconst len = arr.length\n\t\tconst avg = new Vec(0, 0)\n\t\tif (len === 0) {\n\t\t\treturn avg\n\t\t}\n\t\tfor (let i = 0; i < len; i++) {\n\t\t\tavg.add(arr[i])\n\t\t}\n\t\treturn avg.div(len)\n\t}\n\n\tstatic Clamp(A: Vec, min: number, max?: number) {\n\t\tif (max === undefined) {\n\t\t\treturn new Vec(Math.min(Math.max(A.x, min)), Math.min(Math.max(A.y, min)))\n\t\t}\n\n\t\treturn new Vec(Math.min(Math.max(A.x, min), max), Math.min(Math.max(A.y, min), max))\n\t}\n\n\t/**\n\t * Get an array of points (with simulated pressure) between two points.\n\t *\n\t * @param A - The first point.\n\t * @param B - The second point.\n\t * @param steps - The number of points to return.\n\t */\n\tstatic PointsBetween(A: VecModel, B: VecModel, steps = 6): Vec[] {\n\t\tconst results: Vec[] = []\n\n\t\tfor (let i = 0; i < steps; i++) {\n\t\t\tconst t = EASINGS.easeInQuad(i / (steps - 1))\n\t\t\tconst point = Vec.Lrp(A, B, t)\n\t\t\tpoint.z = Math.min(1, 0.5 + Math.abs(0.5 - ease(t)) * 0.65)\n\t\t\tresults.push(point)\n\t\t}\n\n\t\treturn results\n\t}\n\n\tstatic SnapToGrid(A: VecLike, gridSize = 8) {\n\t\treturn new Vec(Math.round(A.x / gridSize) * gridSize, Math.round(A.y / gridSize) * gridSize)\n\t}\n}\n\nconst ease = (t: number) => (t < 0.5 ? 2 * t * t : -1 + (4 - 2 * t) * t)\n"],
|
|
5
|
+
"mappings": "AACA,SAAS,eAAe;AACxB,SAAS,eAAe;AAMjB,MAAM,IAAI;AAAA,EAChB,YACQ,IAAI,GACJ,IAAI,GACJ,IAAI,GACV;AAHM;AACA;AACA;AAAA,EACL;AAAA;AAAA,EAGH,IAAI,WAAW;AACd,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,IAAI,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG,IAAI,KAAK,GAAG;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,EAAE,IAAI,GAAG,IAAI,GAAG,IAAI,EAAE,GAAY;AACvC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,SAAK,IAAI,IAAI,IAAI,IAAI;AACrB,WAAO;AAAA,EACR;AAAA,EAEA,QAAQ,GAAY,GAAW;AAC9B,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,EAAE;AACrB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,SAAK,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI;AAC5B,WAAO;AAAA,EACR;AAAA,EAEA,QAAa;AACZ,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAY;AACf,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AACZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAW,GAAW;AAC3B,SAAK,KAAK;AACV,SAAK,KAAK;AACV,WAAO;AAAA,EACR;AAAA,EAEA,UAAU,GAAW;AACpB,SAAK,KAAK;AACV,SAAK,KAAK;AAGV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,KAAa,KAAc;AAChC,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,SAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,QAAI,QAAQ,QAAW;AACtB,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAC7B,WAAK,IAAI,KAAK,IAAI,KAAK,GAAG,GAAG;AAAA,IAC9B;AACA,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAW;AACd,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,KAAK,GAAY;AAChB,SAAK,KAAK,EAAE;AACZ,SAAK,KAAK,EAAE;AAEZ,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,SAAK,IAAI,KAAK,IAAI,KAAK,CAAC;AACxB,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY,UAAkB;AACnC,UAAM,MAAM,IAAI,IAAI,GAAG,IAAI;AAC3B,WAAO,KAAK,IAAI,IAAI,IAAI,QAAQ,CAAC;AAAA,EAClC;AAAA,EAEA,MAAM;AACL,SAAK,KAAK;AACV,SAAK,KAAK;AAEV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAY;AACjB,SAAK,IAAI,KAAK,IAAI,EAAE,IAAK,KAAK,IAAI,EAAE;AACpC,SAAK,IAAI,KAAK,IAAI,EAAE,IAAI,KAAK,IAAI,EAAE;AAEnC,WAAO;AAAA,EACR;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,IAAI,GAAY;AACf,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,OAAe;AACd,WAAO,IAAI,KAAK,IAAI;AAAA,EACrB;AAAA,EAEA,MAAc;AACb,WAAO,IAAI,IAAI,IAAI;AAAA,EACpB;AAAA,EAEA,IAAI,GAAoB;AACvB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,MAAM;AACL,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,SAAK,IAAI;AACT,SAAK,IAAI,CAAC;AACV,WAAO;AAAA,EACR;AAAA,EAEA,MAAM;AACL,WAAO,IAAI,IAAI,IAAI;AAAA,EACpB;AAAA,EAEA,IAAI,GAAiB;AACpB,WAAO,IAAI,IAAI,MAAM,CAAC;AAAA,EACvB;AAAA,EAEA,KAAK,GAAoB;AACxB,WAAO,IAAI,KAAK,MAAM,CAAC;AAAA,EACxB;AAAA,EAEA,sBAAsB,GAAY,GAAoB;AACrD,WAAO,IAAI,sBAAsB,GAAG,GAAG,IAAI;AAAA,EAC5C;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,WAAW,UAAkB;AAC5B,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,SAAK,IAAI,KAAK,MAAM,KAAK,IAAI,QAAQ,IAAI;AACzC,WAAO;AAAA,EACR;AAAA,EAEA,MAAM,GAAoB;AACzB,WAAO,IAAI,MAAM,MAAM,CAAC;AAAA,EACzB;AAAA,EAEA,UAAU;AACT,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,IAAI,GAAY,GAAgB;AAC/B,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,SAAK,IAAI,KAAK,KAAK,EAAE,IAAI,KAAK,KAAK;AACnC,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,GAAY;AAClB,WAAO,IAAI,OAAO,MAAM,CAAC;AAAA,EAC1B;AAAA,EAEA,SAAS,GAAW,GAAW;AAC9B,WAAO,IAAI,SAAS,MAAM,GAAG,CAAC;AAAA,EAC/B;AAAA,EAEA,OAAO;AACN,UAAM,IAAI,KAAK,IAAI;AACnB,SAAK,IAAI,MAAM,IAAI,IAAI,KAAK,IAAI;AAChC,SAAK,IAAI,MAAM,IAAI,IAAI,KAAK,IAAI;AAChC,WAAO;AAAA,EACR;AAAA,EAEA,UAAU;AACT,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,WAAW;AACV,WAAO,IAAI,SAAS,IAAI,QAAQ,IAAI,CAAC;AAAA,EACtC;AAAA,EAEA,SAAmB;AAClB,WAAO,IAAI,OAAO,IAAI;AAAA,EACvB;AAAA,EAEA,UAAoB;AACnB,WAAO,IAAI,QAAQ,IAAI;AAAA,EACxB;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,MAAM,GAAY,GAAW,GAAgB;AACnD,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,UAAU,GAAY,GAAgB;AAC5C,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAgB;AACtC,WAAO,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,CAAC;AAAA,EAChC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,KAAK,GAAY,GAAiB;AACxC,WAAO,IAAI,IAAI,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACpC;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EAC1B;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,EAAE,GAAG,CAAC,EAAE,CAAC;AAAA,EACzB;AAAA,EAEA,OAAO,IAAI,GAAiB;AAC3B,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,CAAC,CAAC;AAAA,EAC5C;AAAA;AAAA,EAGA,OAAO,KAAK,GAAY,GAAoB;AAC3C,aAAS,EAAE,IAAI,EAAE,MAAM,KAAK,EAAE,IAAI,EAAE,MAAM,MAAM;AAAA,EACjD;AAAA;AAAA,EAGA,OAAO,QAAQ,GAAY,GAAY,GAAoB;AAC1D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK,KAAK;AAAA,EACrE;AAAA;AAAA,EAGA,OAAO,MAAM,GAAY,GAAoB;AAC5C,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC3D;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY;AACpC,WAAO,IAAI;AAAA,MACV,EAAE,IAAI,EAAE,IAAK,EAAE,IAAK,EAAE;AAAA,MACtB,EAAE,IAAK,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA;AAAA,IAEtB;AAAA,EACD;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAY;AAClC,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,KAAK,GAAoB;AAC/B,WAAO,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE;AAAA,EAC5B;AAAA,EAEA,OAAO,IAAI,GAAoB;AAC9B,YAAQ,EAAE,IAAI,EAAE,IAAI,EAAE,IAAI,EAAE,MAAM;AAAA,EACnC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY,GAAoB;AAC1C,WAAO,IAAI,IAAI,GAAG,CAAC,IAAI,IAAI,IAAI,CAAC;AAAA,EACjC;AAAA;AAAA;AAAA;AAAA,EAKA,OAAO,IAAI,GAAY;AACtB,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,CAAC,CAAC;AAAA,EAC7B;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,IAAI,IAAI,GAAG,CAAC,CAAC;AAAA,EAC7B;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,CAAC;AAAA,EACtD;AAAA,EAEA,OAAO,KAAK,EAAE,GAAG,GAAG,IAAI,EAAE,GAAa;AACtC,WAAO,IAAI,IAAI,GAAG,GAAG,CAAC;AAAA,EACvB;AAAA,EAEA,OAAO,UAAU,GAAkB;AAClC,WAAO,IAAI,IAAI,EAAE,CAAC,GAAG,EAAE,CAAC,CAAC;AAAA,EAC1B;AAAA,EAEA,OAAO,IAAI,GAAY,IAAI,GAAQ;AAClC,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,IAAI,IAAI,EAAE,IAAI,GAAG,EAAE,IAAI,IAAI,EAAE,IAAI,CAAC;AAAA,EACpD;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAY,GAAgB;AACtD,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,EAAE,IAAI,EAAE;AAClB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,UAAM,IAAI,KAAK,IAAI,CAAC;AACpB,WAAO,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,IAAI,EAAE,KAAK,IAAI,IAAI,IAAI,EAAE;AAAA,EAC5D;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAaA,OAAO,+BAA+B,GAAY,GAAY,GAAiB;AAC9E,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,EAAE,IAAI,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,0BAA0B,GAAY,GAAY,GAAY,QAAQ,MAAW;AACvF,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AACvC,QAAI,IAAI,OAAO,GAAG,CAAC,EAAG,QAAO,IAAI,KAAK,CAAC;AAEvC,UAAM,IAAI,IAAI,IAAI,GAAG,CAAC;AACtB,UAAM,IAAI,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,CAAC,CAAC;AAErD,QAAI,OAAO;AACV,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAC/D,UAAI,EAAE,IAAI,KAAK,IAAI,EAAE,GAAG,EAAE,CAAC,EAAG,QAAO,IAAI,KAAK,EAAE,IAAI,EAAE,IAAI,IAAI,CAAC;AAAA,IAChE;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,2BAA2B,GAAY,GAAY,GAAoB;AAC7E,WAAO,IAAI,KAAK,GAAG,IAAI,+BAA+B,GAAG,GAAG,CAAC,CAAC;AAAA,EAC/D;AAAA,EAEA,OAAO,sBAAsB,GAAY,GAAY,GAAY,QAAQ,MAAc;AACtF,WAAO,IAAI,KAAK,GAAG,IAAI,0BAA0B,GAAG,GAAG,GAAG,KAAK,CAAC;AAAA,EACjE;AAAA,EAEA,OAAO,KAAK,GAAY,OAAO,GAAG;AACjC,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,MAAM,KAAK,MAAM,EAAE,IAAI,IAAI,IAAI,IAAI;AAAA,EAC5E;AAAA,EAEA,OAAO,KAAK,GAAiB;AAC5B,QAAI,aAAa,IAAK,QAAO;AAC7B,WAAO,IAAI,KAAK,CAAC;AAAA,EAClB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAoB;AAC5C,QAAI,EAAE,MAAM,EAAE,EAAG,QAAO;AACxB,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE;AAAA,EAC/B;AAAA,EAEA,OAAO,MAAM,GAAqB;AACjC,WAAO,MAAM,EAAE,CAAC,KAAK,MAAM,EAAE,CAAC;AAAA,EAC/B;AAAA,EAEA,OAAO,MAAM,GAAY,GAAoB;AAC5C,WAAO,KAAK,MAAM,EAAE,IAAI,EAAE,GAAG,EAAE,IAAI,EAAE,CAAC;AAAA,EACvC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,IAAI,GAAY,GAAY,GAAgB;AAClD,WAAO,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,CAAC,EAAE,IAAI,CAAC;AAAA,EAClC;AAAA,EAEA,OAAO,IAAI,GAAY,GAAiB;AACvC,WAAO,IAAI,KAAK,EAAE,IAAI,EAAE,KAAK,IAAI,EAAE,IAAI,EAAE,KAAK,CAAC;AAAA,EAChD;AAAA,EAEA,OAAO,OAAO,GAAY,GAAqB;AAC9C,WAAO,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI,QAAU,KAAK,IAAI,EAAE,IAAI,EAAE,CAAC,IAAI;AAAA,EAC9D;AAAA,EAEA,OAAO,SAAS,GAAY,GAAW,GAAoB;AAC1D,WAAO,EAAE,MAAM,KAAK,EAAE,MAAM;AAAA,EAC7B;AAAA,EAEA,OAAO,UAAU,GAAY,GAAY,GAAqB;AAC7D,YAAQ,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,MAAM,EAAE,IAAI,EAAE,KAAK;AAAA,EAChE;AAAA,EAEA,OAAO,QAAQ,GAAY,GAAW;AACrC,UAAM,IAAI,IAAI,IAAI,CAAC;AACnB,WAAO,IAAI,IAAK,IAAI,EAAE,IAAK,GAAI,IAAI,EAAE,IAAK,CAAC;AAAA,EAC5C;AAAA,EAEA,OAAO,gBAAgB,GAAY,OAAe,QAAiB;AAClE,WAAO,IAAI,IAAI,GAAG,MAAM,EAAE,IAAI,KAAK,EAAE,IAAI,MAAM;AAAA,EAChD;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,IAAI,IAAI,QAAQ,EAAE,CAAC,GAAG,QAAQ,EAAE,CAAC,CAAC;AAAA,EAC1C;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,IAAI;AAAA,MACV,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,SAAS,EAAE,EAAE,QAAQ,CAAC,CAAC;AAAA,MACvB,UAAU,EAAE,KAAK,GAAG,QAAQ,CAAC,CAAC;AAAA,IAC/B;AAAA,EACD;AAAA,EAEA,OAAO,MAAM,GAAY;AACxB,WAAO,GAAG,EAAE,CAAC,IAAI,EAAE,CAAC;AAAA,EACrB;AAAA,EAEA,OAAO,MAAM,GAAY,GAAY,UAAkB;AACtD,WAAO,IAAI,IAAI,GAAG,IAAI,IAAI,GAAG,CAAC,EAAE,IAAI,QAAQ,CAAC;AAAA,EAC9C;AAAA,EAEA,OAAO,SAAS,GAAY;AAC3B,WAAO,GAAG,EAAE,CAAC,KAAK,EAAE,CAAC;AAAA,EACtB;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,QAAI,IAAI,KAAK,MAAM,EAAE,GAAG,EAAE,CAAC;AAC3B,QAAI,IAAI,EAAG,MAAK,KAAK,KAAK;AAE1B,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,UAAU,GAAW,SAAS,GAAG;AACvC,WAAO,IAAI,IAAI,KAAK,IAAI,CAAC,IAAI,QAAQ,KAAK,IAAI,CAAC,IAAI,MAAM;AAAA,EAC1D;AAAA,EAEA,OAAO,QAAQ,GAAY;AAC1B,WAAO,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,CAAE;AAAA,EACvB;AAAA,EAEA,OAAO,OAAO,GAAY;AACzB,UAAM,EAAE,GAAG,GAAG,EAAE,IAAI;AACpB,WAAO,EAAE,GAAG,GAAG,EAAE;AAAA,EAClB;AAAA,EAEA,OAAO,QAAQ,KAAgB;AAC9B,UAAM,MAAM,IAAI;AAChB,UAAM,MAAM,IAAI,IAAI,GAAG,CAAC;AACxB,QAAI,QAAQ,GAAG;AACd,aAAO;AAAA,IACR;AACA,aAAS,IAAI,GAAG,IAAI,KAAK,KAAK;AAC7B,UAAI,IAAI,IAAI,CAAC,CAAC;AAAA,IACf;AACA,WAAO,IAAI,IAAI,GAAG;AAAA,EACnB;AAAA,EAEA,OAAO,MAAM,GAAQ,KAAa,KAAc;AAC/C,QAAI,QAAQ,QAAW;AACtB,aAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,CAAC,CAAC;AAAA,IAC1E;AAEA,WAAO,IAAI,IAAI,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,GAAG,KAAK,IAAI,KAAK,IAAI,EAAE,GAAG,GAAG,GAAG,GAAG,CAAC;AAAA,EACpF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,OAAO,cAAc,GAAa,GAAa,QAAQ,GAAU;AAChE,UAAM,UAAiB,CAAC;AAExB,aAAS,IAAI,GAAG,IAAI,OAAO,KAAK;AAC/B,YAAM,IAAI,QAAQ,WAAW,KAAK,QAAQ,EAAE;AAC5C,YAAM,QAAQ,IAAI,IAAI,GAAG,GAAG,CAAC;AAC7B,YAAM,IAAI,KAAK,IAAI,GAAG,MAAM,KAAK,IAAI,MAAM,KAAK,CAAC,CAAC,IAAI,IAAI;AAC1D,cAAQ,KAAK,KAAK;AAAA,IACnB;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,OAAO,WAAW,GAAY,WAAW,GAAG;AAC3C,WAAO,IAAI,IAAI,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,UAAU,KAAK,MAAM,EAAE,IAAI,QAAQ,IAAI,QAAQ;AAAA,EAC5F;AACD;AAEA,MAAM,OAAO,CAAC,MAAe,IAAI,MAAM,IAAI,IAAI,IAAI,MAAM,IAAI,IAAI,KAAK;",
|
|
6
6
|
"names": []
|
|
7
7
|
}
|
|
@@ -32,7 +32,7 @@ class Arc2d extends Geometry2d {
|
|
|
32
32
|
const t = getPointInArcT(measure, angleStart, angleEnd, _center.angle(point));
|
|
33
33
|
if (t <= 0) return A;
|
|
34
34
|
if (t >= 1) return B;
|
|
35
|
-
const P =
|
|
35
|
+
const P = _center.clone().add(point.clone().sub(_center).uni().mul(radius));
|
|
36
36
|
let nearest;
|
|
37
37
|
let dist = Infinity;
|
|
38
38
|
let d;
|
|
@@ -70,7 +70,7 @@ class Arc2d extends Geometry2d {
|
|
|
70
70
|
return `${first ? `M${start.toFixed()}` : ``} A${radius} ${radius} 0 ${largeArcFlag} ${sweepFlag} ${end.toFixed()}`;
|
|
71
71
|
}
|
|
72
72
|
getLength() {
|
|
73
|
-
return
|
|
73
|
+
return this.measure * this.radius;
|
|
74
74
|
}
|
|
75
75
|
}
|
|
76
76
|
export {
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
{
|
|
2
2
|
"version": 3,
|
|
3
3
|
"sources": ["../../../../src/lib/primitives/geometry/Arc2d.ts"],
|
|
4
|
-
"sourcesContent": ["import { Vec
|
|
5
|
-
"mappings": "AAAA,SAAS,
|
|
4
|
+
"sourcesContent": ["import { Vec } from '../Vec'\nimport { intersectLineSegmentCircle } from '../intersect'\nimport { getArcMeasure, getPointInArcT, getPointOnCircle } from '../utils'\nimport { Geometry2d, Geometry2dOptions } from './Geometry2d'\nimport { getVerticesCountForLength } from './geometry-constants'\n\n/** @public */\nexport class Arc2d extends Geometry2d {\n\t_center: Vec\n\tradius: number\n\tstart: Vec\n\tend: Vec\n\tlargeArcFlag: number\n\tsweepFlag: number\n\n\tmeasure: number\n\tangleStart: number\n\tangleEnd: number\n\n\tconstructor(\n\t\tconfig: Omit<Geometry2dOptions, 'isFilled' | 'isClosed'> & {\n\t\t\tcenter: Vec\n\t\t\tstart: Vec\n\t\t\tend: Vec\n\t\t\tsweepFlag: number\n\t\t\tlargeArcFlag: number\n\t\t}\n\t) {\n\t\tsuper({ ...config, isFilled: false, isClosed: false })\n\t\tconst { center, sweepFlag, largeArcFlag, start, end } = config\n\t\tif (start.equals(end)) throw Error(`Arc must have different start and end points.`)\n\n\t\t// ensure that the start and end are clockwise\n\t\tthis.angleStart = Vec.Angle(center, start)\n\t\tthis.angleEnd = Vec.Angle(center, end)\n\t\tthis.radius = Vec.Dist(center, start)\n\t\tthis.measure = getArcMeasure(this.angleStart, this.angleEnd, sweepFlag, largeArcFlag)\n\n\t\tthis.start = start\n\t\tthis.end = end\n\n\t\tthis.sweepFlag = sweepFlag\n\t\tthis.largeArcFlag = largeArcFlag\n\t\tthis._center = center\n\t}\n\n\tnearestPoint(point: Vec): Vec {\n\t\tconst { _center, measure, radius, angleEnd, angleStart, start: A, end: B } = this\n\t\tconst t = getPointInArcT(measure, angleStart, angleEnd, _center.angle(point))\n\t\tif (t <= 0) return A\n\t\tif (t >= 1) return B\n\n\t\t// Get the point (P) on the arc, then pick the nearest of A, B, and P\n\t\tconst P = _center.clone().add(point.clone().sub(_center).uni().mul(radius))\n\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet d: number\n\t\tfor (const p of [A, B, P]) {\n\t\t\td = Vec.Dist2(point, p)\n\t\t\tif (d < dist) {\n\t\t\t\tnearest = p\n\t\t\t\tdist = d\n\t\t\t}\n\t\t}\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn nearest\n\t}\n\n\thitTestLineSegment(A: Vec, B: Vec): boolean {\n\t\tconst { _center, radius, measure, angleStart, angleEnd } = this\n\t\tconst intersection = intersectLineSegmentCircle(A, B, _center, radius)\n\t\tif (intersection === null) return false\n\n\t\treturn intersection.some((p) => {\n\t\t\tconst result = getPointInArcT(measure, angleStart, angleEnd, _center.angle(p))\n\t\t\treturn result >= 0 && result <= 1\n\t\t})\n\t}\n\n\tgetVertices(): Vec[] {\n\t\tconst { _center, measure, length, radius, angleStart } = this\n\t\tconst vertices: Vec[] = []\n\t\tfor (let i = 0, n = getVerticesCountForLength(Math.abs(length)); i < n + 1; i++) {\n\t\t\tconst t = (i / n) * measure\n\t\t\tconst angle = angleStart + t\n\t\t\tvertices.push(getPointOnCircle(_center, radius, angle))\n\t\t}\n\t\treturn vertices\n\t}\n\n\tgetSvgPathData(first = true) {\n\t\tconst { start, end, radius, largeArcFlag, sweepFlag } = this\n\t\treturn `${first ? `M${start.toFixed()}` : ``} A${radius} ${radius} 0 ${largeArcFlag} ${sweepFlag} ${end.toFixed()}`\n\t}\n\n\toverride getLength() {\n\t\treturn this.measure * this.radius\n\t}\n}\n"],
|
|
5
|
+
"mappings": "AAAA,SAAS,WAAW;AACpB,SAAS,kCAAkC;AAC3C,SAAS,eAAe,gBAAgB,wBAAwB;AAChE,SAAS,kBAAqC;AAC9C,SAAS,iCAAiC;AAGnC,MAAM,cAAc,WAAW;AAAA,EACrC;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EAEA;AAAA,EACA;AAAA,EACA;AAAA,EAEA,YACC,QAOC;AACD,UAAM,EAAE,GAAG,QAAQ,UAAU,OAAO,UAAU,MAAM,CAAC;AACrD,UAAM,EAAE,QAAQ,WAAW,cAAc,OAAO,IAAI,IAAI;AACxD,QAAI,MAAM,OAAO,GAAG,EAAG,OAAM,MAAM,+CAA+C;AAGlF,SAAK,aAAa,IAAI,MAAM,QAAQ,KAAK;AACzC,SAAK,WAAW,IAAI,MAAM,QAAQ,GAAG;AACrC,SAAK,SAAS,IAAI,KAAK,QAAQ,KAAK;AACpC,SAAK,UAAU,cAAc,KAAK,YAAY,KAAK,UAAU,WAAW,YAAY;AAEpF,SAAK,QAAQ;AACb,SAAK,MAAM;AAEX,SAAK,YAAY;AACjB,SAAK,eAAe;AACpB,SAAK,UAAU;AAAA,EAChB;AAAA,EAEA,aAAa,OAAiB;AAC7B,UAAM,EAAE,SAAS,SAAS,QAAQ,UAAU,YAAY,OAAO,GAAG,KAAK,EAAE,IAAI;AAC7E,UAAM,IAAI,eAAe,SAAS,YAAY,UAAU,QAAQ,MAAM,KAAK,CAAC;AAC5E,QAAI,KAAK,EAAG,QAAO;AACnB,QAAI,KAAK,EAAG,QAAO;AAGnB,UAAM,IAAI,QAAQ,MAAM,EAAE,IAAI,MAAM,MAAM,EAAE,IAAI,OAAO,EAAE,IAAI,EAAE,IAAI,MAAM,CAAC;AAE1E,QAAI;AACJ,QAAI,OAAO;AACX,QAAI;AACJ,eAAW,KAAK,CAAC,GAAG,GAAG,CAAC,GAAG;AAC1B,UAAI,IAAI,MAAM,OAAO,CAAC;AACtB,UAAI,IAAI,MAAM;AACb,kBAAU;AACV,eAAO;AAAA,MACR;AAAA,IACD;AACA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO;AAAA,EACR;AAAA,EAEA,mBAAmB,GAAQ,GAAiB;AAC3C,UAAM,EAAE,SAAS,QAAQ,SAAS,YAAY,SAAS,IAAI;AAC3D,UAAM,eAAe,2BAA2B,GAAG,GAAG,SAAS,MAAM;AACrE,QAAI,iBAAiB,KAAM,QAAO;AAElC,WAAO,aAAa,KAAK,CAAC,MAAM;AAC/B,YAAM,SAAS,eAAe,SAAS,YAAY,UAAU,QAAQ,MAAM,CAAC,CAAC;AAC7E,aAAO,UAAU,KAAK,UAAU;AAAA,IACjC,CAAC;AAAA,EACF;AAAA,EAEA,cAAqB;AACpB,UAAM,EAAE,SAAS,SAAS,QAAQ,QAAQ,WAAW,IAAI;AACzD,UAAM,WAAkB,CAAC;AACzB,aAAS,IAAI,GAAG,IAAI,0BAA0B,KAAK,IAAI,MAAM,CAAC,GAAG,IAAI,IAAI,GAAG,KAAK;AAChF,YAAM,IAAK,IAAI,IAAK;AACpB,YAAM,QAAQ,aAAa;AAC3B,eAAS,KAAK,iBAAiB,SAAS,QAAQ,KAAK,CAAC;AAAA,IACvD;AACA,WAAO;AAAA,EACR;AAAA,EAEA,eAAe,QAAQ,MAAM;AAC5B,UAAM,EAAE,OAAO,KAAK,QAAQ,cAAc,UAAU,IAAI;AACxD,WAAO,GAAG,QAAQ,IAAI,MAAM,QAAQ,CAAC,KAAK,EAAE,KAAK,MAAM,IAAI,MAAM,MAAM,YAAY,IAAI,SAAS,IAAI,IAAI,QAAQ,CAAC;AAAA,EAClH;AAAA,EAES,YAAY;AACpB,WAAO,KAAK,UAAU,KAAK;AAAA,EAC5B;AACD;",
|
|
6
6
|
"names": []
|
|
7
7
|
}
|
|
@@ -34,7 +34,7 @@ class Circle2d extends Geometry2d {
|
|
|
34
34
|
nearestPoint(point) {
|
|
35
35
|
const { _center, radius } = this;
|
|
36
36
|
if (_center.equals(point)) return Vec.AddXY(_center, radius, 0);
|
|
37
|
-
return
|
|
37
|
+
return _center.clone().add(point.clone().sub(_center).uni().mul(radius));
|
|
38
38
|
}
|
|
39
39
|
hitTestLineSegment(A, B, distance = 0) {
|
|
40
40
|
const { _center, radius } = this;
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
{
|
|
2
2
|
"version": 3,
|
|
3
3
|
"sources": ["../../../../src/lib/primitives/geometry/Circle2d.ts"],
|
|
4
|
-
"sourcesContent": ["import { Box } from '../Box'\nimport { Vec
|
|
5
|
-
"mappings": "AAAA,SAAS,WAAW;AACpB,SAAS,
|
|
4
|
+
"sourcesContent": ["import { Box } from '../Box'\nimport { Vec } from '../Vec'\nimport { intersectLineSegmentCircle } from '../intersect'\nimport { PI2, getPointOnCircle } from '../utils'\nimport { Geometry2d, Geometry2dOptions } from './Geometry2d'\nimport { getVerticesCountForLength } from './geometry-constants'\n\n/** @public */\nexport class Circle2d extends Geometry2d {\n\t_center: Vec\n\tradius: number\n\tx: number\n\ty: number\n\n\tconstructor(\n\t\tpublic config: Omit<Geometry2dOptions, 'isClosed'> & {\n\t\t\tx?: number\n\t\t\ty?: number\n\t\t\tradius: number\n\t\t\tisFilled: boolean\n\t\t}\n\t) {\n\t\tsuper({ isClosed: true, ...config })\n\t\tconst { x = 0, y = 0, radius } = config\n\t\tthis.x = x\n\t\tthis.y = y\n\t\tthis._center = new Vec(radius + x, radius + y)\n\t\tthis.radius = radius\n\t}\n\n\tgetBounds() {\n\t\treturn new Box(this.x, this.y, this.radius * 2, this.radius * 2)\n\t}\n\n\tgetVertices(): Vec[] {\n\t\tconst { _center, radius } = this\n\t\tconst perimeter = PI2 * radius\n\t\tconst vertices: Vec[] = []\n\t\tfor (let i = 0, n = getVerticesCountForLength(perimeter); i < n; i++) {\n\t\t\tconst angle = (i / n) * PI2\n\t\t\tvertices.push(getPointOnCircle(_center, radius, angle))\n\t\t}\n\t\treturn vertices\n\t}\n\n\tnearestPoint(point: Vec): Vec {\n\t\tconst { _center, radius } = this\n\t\tif (_center.equals(point)) return Vec.AddXY(_center, radius, 0)\n\t\treturn _center.clone().add(point.clone().sub(_center).uni().mul(radius))\n\t}\n\n\thitTestLineSegment(A: Vec, B: Vec, distance = 0): boolean {\n\t\tconst { _center, radius } = this\n\t\treturn intersectLineSegmentCircle(A, B, _center, radius + distance) !== null\n\t}\n\n\tgetSvgPathData(): string {\n\t\tconst { _center, radius } = this\n\t\treturn `M${_center.x + radius},${_center.y} a${radius},${radius} 0 1,0 ${radius * 2},0a${radius},${radius} 0 1,0 -${radius * 2},0`\n\t}\n}\n"],
|
|
5
|
+
"mappings": "AAAA,SAAS,WAAW;AACpB,SAAS,WAAW;AACpB,SAAS,kCAAkC;AAC3C,SAAS,KAAK,wBAAwB;AACtC,SAAS,kBAAqC;AAC9C,SAAS,iCAAiC;AAGnC,MAAM,iBAAiB,WAAW;AAAA,EAMxC,YACQ,QAMN;AACD,UAAM,EAAE,UAAU,MAAM,GAAG,OAAO,CAAC;AAP5B;AAQP,UAAM,EAAE,IAAI,GAAG,IAAI,GAAG,OAAO,IAAI;AACjC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,UAAU,IAAI,IAAI,SAAS,GAAG,SAAS,CAAC;AAC7C,SAAK,SAAS;AAAA,EACf;AAAA,EAnBA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EAkBA,YAAY;AACX,WAAO,IAAI,IAAI,KAAK,GAAG,KAAK,GAAG,KAAK,SAAS,GAAG,KAAK,SAAS,CAAC;AAAA,EAChE;AAAA,EAEA,cAAqB;AACpB,UAAM,EAAE,SAAS,OAAO,IAAI;AAC5B,UAAM,YAAY,MAAM;AACxB,UAAM,WAAkB,CAAC;AACzB,aAAS,IAAI,GAAG,IAAI,0BAA0B,SAAS,GAAG,IAAI,GAAG,KAAK;AACrE,YAAM,QAAS,IAAI,IAAK;AACxB,eAAS,KAAK,iBAAiB,SAAS,QAAQ,KAAK,CAAC;AAAA,IACvD;AACA,WAAO;AAAA,EACR;AAAA,EAEA,aAAa,OAAiB;AAC7B,UAAM,EAAE,SAAS,OAAO,IAAI;AAC5B,QAAI,QAAQ,OAAO,KAAK,EAAG,QAAO,IAAI,MAAM,SAAS,QAAQ,CAAC;AAC9D,WAAO,QAAQ,MAAM,EAAE,IAAI,MAAM,MAAM,EAAE,IAAI,OAAO,EAAE,IAAI,EAAE,IAAI,MAAM,CAAC;AAAA,EACxE;AAAA,EAEA,mBAAmB,GAAQ,GAAQ,WAAW,GAAY;AACzD,UAAM,EAAE,SAAS,OAAO,IAAI;AAC5B,WAAO,2BAA2B,GAAG,GAAG,SAAS,SAAS,QAAQ,MAAM;AAAA,EACzE;AAAA,EAEA,iBAAyB;AACxB,UAAM,EAAE,SAAS,OAAO,IAAI;AAC5B,WAAO,IAAI,QAAQ,IAAI,MAAM,IAAI,QAAQ,CAAC,KAAK,MAAM,IAAI,MAAM,UAAU,SAAS,CAAC,MAAM,MAAM,IAAI,MAAM,WAAW,SAAS,CAAC;AAAA,EAC/H;AACD;",
|
|
6
6
|
"names": []
|
|
7
7
|
}
|
|
@@ -57,7 +57,7 @@ class CubicBezier2d extends Polyline2d {
|
|
|
57
57
|
(1 - t) * (1 - t) * (1 - t) * a.y + 3 * ((1 - t) * (1 - t)) * t * b.y + 3 * (1 - t) * (t * t) * c.y + t * t * t * d.y
|
|
58
58
|
);
|
|
59
59
|
}
|
|
60
|
-
getLength(
|
|
60
|
+
getLength(precision = 32) {
|
|
61
61
|
let n1, p1 = this.a, length = 0;
|
|
62
62
|
for (let i = 1; i <= precision; i++) {
|
|
63
63
|
n1 = CubicBezier2d.GetAtT(this, i / precision);
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
{
|
|
2
2
|
"version": 3,
|
|
3
3
|
"sources": ["../../../../src/lib/primitives/geometry/CubicBezier2d.ts"],
|
|
4
|
-
"sourcesContent": ["import { Vec
|
|
5
|
-
"mappings": "AAAA,SAAS,
|
|
4
|
+
"sourcesContent": ["import { Vec } from '../Vec'\nimport { Geometry2dOptions } from './Geometry2d'\nimport { Polyline2d } from './Polyline2d'\n\n/** @public */\nexport class CubicBezier2d extends Polyline2d {\n\ta: Vec\n\tb: Vec\n\tc: Vec\n\td: Vec\n\n\tconstructor(\n\t\tconfig: Omit<Geometry2dOptions, 'isFilled' | 'isClosed'> & {\n\t\t\tstart: Vec\n\t\t\tcp1: Vec\n\t\t\tcp2: Vec\n\t\t\tend: Vec\n\t\t}\n\t) {\n\t\tconst { start: a, cp1: b, cp2: c, end: d } = config\n\t\tsuper({ ...config, points: [a, d] })\n\n\t\tthis.a = a\n\t\tthis.b = b\n\t\tthis.c = c\n\t\tthis.d = d\n\t}\n\n\toverride getVertices() {\n\t\tconst vertices = [] as Vec[]\n\t\tconst { a, b, c, d } = this\n\t\t// we'll always use ten vertices for each bezier curve\n\t\tfor (let i = 0, n = 10; i <= n; i++) {\n\t\t\tconst t = i / n\n\t\t\tvertices.push(\n\t\t\t\tnew Vec(\n\t\t\t\t\t(1 - t) * (1 - t) * (1 - t) * a.x +\n\t\t\t\t\t\t3 * ((1 - t) * (1 - t)) * t * b.x +\n\t\t\t\t\t\t3 * (1 - t) * (t * t) * c.x +\n\t\t\t\t\t\tt * t * t * d.x,\n\t\t\t\t\t(1 - t) * (1 - t) * (1 - t) * a.y +\n\t\t\t\t\t\t3 * ((1 - t) * (1 - t)) * t * b.y +\n\t\t\t\t\t\t3 * (1 - t) * (t * t) * c.y +\n\t\t\t\t\t\tt * t * t * d.y\n\t\t\t\t)\n\t\t\t)\n\t\t}\n\t\treturn vertices\n\t}\n\n\tmidPoint() {\n\t\treturn CubicBezier2d.GetAtT(this, 0.5)\n\t}\n\n\tnearestPoint(A: Vec): Vec {\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet d: number\n\t\tlet p: Vec\n\t\tfor (const edge of this.segments) {\n\t\t\tp = edge.nearestPoint(A)\n\t\t\td = Vec.Dist2(p, A)\n\t\t\tif (d < dist) {\n\t\t\t\tnearest = p\n\t\t\t\tdist = d\n\t\t\t}\n\t\t}\n\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn nearest\n\t}\n\n\tgetSvgPathData(first = true) {\n\t\tconst { a, b, c, d } = this\n\t\treturn `${first ? `M ${a.toFixed()} ` : ``} C${b.toFixed()} ${c.toFixed()} ${d.toFixed()}`\n\t}\n\n\tstatic GetAtT(segment: CubicBezier2d, t: number) {\n\t\tconst { a, b, c, d } = segment\n\t\treturn new Vec(\n\t\t\t(1 - t) * (1 - t) * (1 - t) * a.x +\n\t\t\t\t3 * ((1 - t) * (1 - t)) * t * b.x +\n\t\t\t\t3 * (1 - t) * (t * t) * c.x +\n\t\t\t\tt * t * t * d.x,\n\t\t\t(1 - t) * (1 - t) * (1 - t) * a.y +\n\t\t\t\t3 * ((1 - t) * (1 - t)) * t * b.y +\n\t\t\t\t3 * (1 - t) * (t * t) * c.y +\n\t\t\t\tt * t * t * d.y\n\t\t)\n\t}\n\n\toverride getLength(precision = 32) {\n\t\tlet n1: Vec,\n\t\t\tp1 = this.a,\n\t\t\tlength = 0\n\t\tfor (let i = 1; i <= precision; i++) {\n\t\t\tn1 = CubicBezier2d.GetAtT(this, i / precision)\n\t\t\tlength += Vec.Dist(p1, n1)\n\t\t\tp1 = n1\n\t\t}\n\t\treturn length\n\t}\n}\n"],
|
|
5
|
+
"mappings": "AAAA,SAAS,WAAW;AAEpB,SAAS,kBAAkB;AAGpB,MAAM,sBAAsB,WAAW;AAAA,EAC7C;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EAEA,YACC,QAMC;AACD,UAAM,EAAE,OAAO,GAAG,KAAK,GAAG,KAAK,GAAG,KAAK,EAAE,IAAI;AAC7C,UAAM,EAAE,GAAG,QAAQ,QAAQ,CAAC,GAAG,CAAC,EAAE,CAAC;AAEnC,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AACT,SAAK,IAAI;AAAA,EACV;AAAA,EAES,cAAc;AACtB,UAAM,WAAW,CAAC;AAClB,UAAM,EAAE,GAAG,GAAG,GAAG,EAAE,IAAI;AAEvB,aAAS,IAAI,GAAG,IAAI,IAAI,KAAK,GAAG,KAAK;AACpC,YAAM,IAAI,IAAI;AACd,eAAS;AAAA,QACR,IAAI;AAAA,WACF,IAAI,MAAM,IAAI,MAAM,IAAI,KAAK,EAAE,IAC/B,MAAM,IAAI,MAAM,IAAI,MAAM,IAAI,EAAE,IAChC,KAAK,IAAI,MAAM,IAAI,KAAK,EAAE,IAC1B,IAAI,IAAI,IAAI,EAAE;AAAA,WACd,IAAI,MAAM,IAAI,MAAM,IAAI,KAAK,EAAE,IAC/B,MAAM,IAAI,MAAM,IAAI,MAAM,IAAI,EAAE,IAChC,KAAK,IAAI,MAAM,IAAI,KAAK,EAAE,IAC1B,IAAI,IAAI,IAAI,EAAE;AAAA,QAChB;AAAA,MACD;AAAA,IACD;AACA,WAAO;AAAA,EACR;AAAA,EAEA,WAAW;AACV,WAAO,cAAc,OAAO,MAAM,GAAG;AAAA,EACtC;AAAA,EAEA,aAAa,GAAa;AACzB,QAAI;AACJ,QAAI,OAAO;AACX,QAAI;AACJ,QAAI;AACJ,eAAW,QAAQ,KAAK,UAAU;AACjC,UAAI,KAAK,aAAa,CAAC;AACvB,UAAI,IAAI,MAAM,GAAG,CAAC;AAClB,UAAI,IAAI,MAAM;AACb,kBAAU;AACV,eAAO;AAAA,MACR;AAAA,IACD;AAEA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO;AAAA,EACR;AAAA,EAEA,eAAe,QAAQ,MAAM;AAC5B,UAAM,EAAE,GAAG,GAAG,GAAG,EAAE,IAAI;AACvB,WAAO,GAAG,QAAQ,KAAK,EAAE,QAAQ,CAAC,MAAM,EAAE,KAAK,EAAE,QAAQ,CAAC,IAAI,EAAE,QAAQ,CAAC,IAAI,EAAE,QAAQ,CAAC;AAAA,EACzF;AAAA,EAEA,OAAO,OAAO,SAAwB,GAAW;AAChD,UAAM,EAAE,GAAG,GAAG,GAAG,EAAE,IAAI;AACvB,WAAO,IAAI;AAAA,OACT,IAAI,MAAM,IAAI,MAAM,IAAI,KAAK,EAAE,IAC/B,MAAM,IAAI,MAAM,IAAI,MAAM,IAAI,EAAE,IAChC,KAAK,IAAI,MAAM,IAAI,KAAK,EAAE,IAC1B,IAAI,IAAI,IAAI,EAAE;AAAA,OACd,IAAI,MAAM,IAAI,MAAM,IAAI,KAAK,EAAE,IAC/B,MAAM,IAAI,MAAM,IAAI,MAAM,IAAI,EAAE,IAChC,KAAK,IAAI,MAAM,IAAI,KAAK,EAAE,IAC1B,IAAI,IAAI,IAAI,EAAE;AAAA,IAChB;AAAA,EACD;AAAA,EAES,UAAU,YAAY,IAAI;AAClC,QAAI,IACH,KAAK,KAAK,GACV,SAAS;AACV,aAAS,IAAI,GAAG,KAAK,WAAW,KAAK;AACpC,WAAK,cAAc,OAAO,MAAM,IAAI,SAAS;AAC7C,gBAAU,IAAI,KAAK,IAAI,EAAE;AACzB,WAAK;AAAA,IACN;AACA,WAAO;AAAA,EACR;AACD;",
|
|
6
6
|
"names": []
|
|
7
7
|
}
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
{
|
|
2
2
|
"version": 3,
|
|
3
3
|
"sources": ["../../../../src/lib/primitives/geometry/CubicSpline2d.ts"],
|
|
4
|
-
"sourcesContent": ["import { Vec
|
|
5
|
-
"mappings": "AAAA,SAAS,
|
|
4
|
+
"sourcesContent": ["import { Vec } from '../Vec'\nimport { CubicBezier2d } from './CubicBezier2d'\nimport { Geometry2d, Geometry2dOptions } from './Geometry2d'\n\n/** @public */\nexport class CubicSpline2d extends Geometry2d {\n\tpoints: Vec[]\n\n\tconstructor(config: Omit<Geometry2dOptions, 'isClosed' | 'isFilled'> & { points: Vec[] }) {\n\t\tsuper({ ...config, isClosed: false, isFilled: false })\n\t\tconst { points } = config\n\n\t\tthis.points = points\n\t}\n\n\t_segments?: CubicBezier2d[]\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget segments() {\n\t\tif (!this._segments) {\n\t\t\tthis._segments = []\n\t\t\tconst { points } = this\n\n\t\t\tconst len = points.length\n\t\t\tconst last = len - 2\n\t\t\tconst k = 1.25\n\n\t\t\tfor (let i = 0; i < len - 1; i++) {\n\t\t\t\tconst p0 = i === 0 ? points[0] : points[i - 1]\n\t\t\t\tconst p1 = points[i]\n\t\t\t\tconst p2 = points[i + 1]\n\t\t\t\tconst p3 = i === last ? p2 : points[i + 2]\n\t\t\t\tconst start = p1,\n\t\t\t\t\tcp1 =\n\t\t\t\t\t\ti === 0 ? p0 : new Vec(p1.x + ((p2.x - p0.x) / 6) * k, p1.y + ((p2.y - p0.y) / 6) * k),\n\t\t\t\t\tcp2 =\n\t\t\t\t\t\ti === last\n\t\t\t\t\t\t\t? p2\n\t\t\t\t\t\t\t: new Vec(p2.x - ((p3.x - p1.x) / 6) * k, p2.y - ((p3.y - p1.y) / 6) * k),\n\t\t\t\t\tend = p2\n\n\t\t\t\tthis._segments.push(new CubicBezier2d({ start, cp1, cp2, end }))\n\t\t\t}\n\t\t}\n\n\t\treturn this._segments\n\t}\n\n\toverride getLength() {\n\t\treturn this.segments.reduce((acc, segment) => acc + segment.length, 0)\n\t}\n\n\tgetVertices() {\n\t\tconst vertices = this.segments.reduce((acc, segment) => {\n\t\t\treturn acc.concat(segment.vertices)\n\t\t}, [] as Vec[])\n\t\tvertices.push(this.points[this.points.length - 1])\n\t\treturn vertices\n\t}\n\n\tnearestPoint(A: Vec): Vec {\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet d: number\n\t\tlet p: Vec\n\t\tfor (const segment of this.segments) {\n\t\t\tp = segment.nearestPoint(A)\n\t\t\td = Vec.Dist2(p, A)\n\t\t\tif (d < dist) {\n\t\t\t\tnearest = p\n\t\t\t\tdist = d\n\t\t\t}\n\t\t}\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn nearest\n\t}\n\n\thitTestLineSegment(A: Vec, B: Vec): boolean {\n\t\treturn this.segments.some((segment) => segment.hitTestLineSegment(A, B))\n\t}\n\n\tgetSvgPathData() {\n\t\tlet d = this.segments.reduce((d, segment, i) => {\n\t\t\treturn d + segment.getSvgPathData(i === 0)\n\t\t}, '')\n\n\t\tif (this.isClosed) {\n\t\t\td += 'Z'\n\t\t}\n\n\t\treturn d\n\t}\n}\n"],
|
|
5
|
+
"mappings": "AAAA,SAAS,WAAW;AACpB,SAAS,qBAAqB;AAC9B,SAAS,kBAAqC;AAGvC,MAAM,sBAAsB,WAAW;AAAA,EAC7C;AAAA,EAEA,YAAY,QAA8E;AACzF,UAAM,EAAE,GAAG,QAAQ,UAAU,OAAO,UAAU,MAAM,CAAC;AACrD,UAAM,EAAE,OAAO,IAAI;AAEnB,SAAK,SAAS;AAAA,EACf;AAAA,EAEA;AAAA;AAAA,EAGA,IAAI,WAAW;AACd,QAAI,CAAC,KAAK,WAAW;AACpB,WAAK,YAAY,CAAC;AAClB,YAAM,EAAE,OAAO,IAAI;AAEnB,YAAM,MAAM,OAAO;AACnB,YAAM,OAAO,MAAM;AACnB,YAAM,IAAI;AAEV,eAAS,IAAI,GAAG,IAAI,MAAM,GAAG,KAAK;AACjC,cAAM,KAAK,MAAM,IAAI,OAAO,CAAC,IAAI,OAAO,IAAI,CAAC;AAC7C,cAAM,KAAK,OAAO,CAAC;AACnB,cAAM,KAAK,OAAO,IAAI,CAAC;AACvB,cAAM,KAAK,MAAM,OAAO,KAAK,OAAO,IAAI,CAAC;AACzC,cAAM,QAAQ,IACb,MACC,MAAM,IAAI,KAAK,IAAI,IAAI,GAAG,KAAM,GAAG,IAAI,GAAG,KAAK,IAAK,GAAG,GAAG,KAAM,GAAG,IAAI,GAAG,KAAK,IAAK,CAAC,GACtF,MACC,MAAM,OACH,KACA,IAAI,IAAI,GAAG,KAAM,GAAG,IAAI,GAAG,KAAK,IAAK,GAAG,GAAG,KAAM,GAAG,IAAI,GAAG,KAAK,IAAK,CAAC,GAC1E,MAAM;AAEP,aAAK,UAAU,KAAK,IAAI,cAAc,EAAE,OAAO,KAAK,KAAK,IAAI,CAAC,CAAC;AAAA,MAChE;AAAA,IACD;AAEA,WAAO,KAAK;AAAA,EACb;AAAA,EAES,YAAY;AACpB,WAAO,KAAK,SAAS,OAAO,CAAC,KAAK,YAAY,MAAM,QAAQ,QAAQ,CAAC;AAAA,EACtE;AAAA,EAEA,cAAc;AACb,UAAM,WAAW,KAAK,SAAS,OAAO,CAAC,KAAK,YAAY;AACvD,aAAO,IAAI,OAAO,QAAQ,QAAQ;AAAA,IACnC,GAAG,CAAC,CAAU;AACd,aAAS,KAAK,KAAK,OAAO,KAAK,OAAO,SAAS,CAAC,CAAC;AACjD,WAAO;AAAA,EACR;AAAA,EAEA,aAAa,GAAa;AACzB,QAAI;AACJ,QAAI,OAAO;AACX,QAAI;AACJ,QAAI;AACJ,eAAW,WAAW,KAAK,UAAU;AACpC,UAAI,QAAQ,aAAa,CAAC;AAC1B,UAAI,IAAI,MAAM,GAAG,CAAC;AAClB,UAAI,IAAI,MAAM;AACb,kBAAU;AACV,eAAO;AAAA,MACR;AAAA,IACD;AACA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO;AAAA,EACR;AAAA,EAEA,mBAAmB,GAAQ,GAAiB;AAC3C,WAAO,KAAK,SAAS,KAAK,CAAC,YAAY,QAAQ,mBAAmB,GAAG,CAAC,CAAC;AAAA,EACxE;AAAA,EAEA,iBAAiB;AAChB,QAAI,IAAI,KAAK,SAAS,OAAO,CAACA,IAAG,SAAS,MAAM;AAC/C,aAAOA,KAAI,QAAQ,eAAe,MAAM,CAAC;AAAA,IAC1C,GAAG,EAAE;AAEL,QAAI,KAAK,UAAU;AAClB,WAAK;AAAA,IACN;AAEA,WAAO;AAAA,EACR;AACD;",
|
|
6
6
|
"names": ["d"]
|
|
7
7
|
}
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
{
|
|
2
2
|
"version": 3,
|
|
3
3
|
"sources": ["../../../../src/lib/primitives/geometry/Edge2d.ts"],
|
|
4
|
-
"sourcesContent": ["import {
|
|
5
|
-
"mappings": "AAAA,SAAS,sBAAsB;AAC/B,SAAS,
|
|
4
|
+
"sourcesContent": ["import { Vec } from '../Vec'\nimport { linesIntersect } from '../intersect'\nimport { Geometry2d } from './Geometry2d'\n\n/** @public */\nexport class Edge2d extends Geometry2d {\n\tstart: Vec\n\tend: Vec\n\td: Vec\n\tu: Vec\n\tul: number\n\n\tconstructor(config: { start: Vec; end: Vec }) {\n\t\tsuper({ ...config, isClosed: false, isFilled: false })\n\t\tconst { start, end } = config\n\n\t\tthis.start = start\n\t\tthis.end = end\n\n\t\tthis.d = start.clone().sub(end) // the delta from start to end\n\t\tthis.u = this.d.clone().uni() // the unit vector of the edge\n\t\tthis.ul = this.u.len() // the length of the unit vector\n\t}\n\n\toverride getLength() {\n\t\treturn this.d.len()\n\t}\n\n\tmidPoint(): Vec {\n\t\treturn this.start.lrp(this.end, 0.5)\n\t}\n\n\toverride getVertices(): Vec[] {\n\t\treturn [this.start, this.end]\n\t}\n\n\toverride nearestPoint(point: Vec): Vec {\n\t\tconst { start, end, d, u, ul: l } = this\n\t\tif (d.len() === 0) return start // start and end are the same\n\t\tif (l === 0) return start // no length in the unit vector\n\t\tconst k = Vec.Sub(point, start).dpr(u) / l\n\t\tconst cx = start.x + u.x * k\n\t\tif (cx < Math.min(start.x, end.x)) return start.x < end.x ? start : end\n\t\tif (cx > Math.max(start.x, end.x)) return start.x > end.x ? start : end\n\t\tconst cy = start.y + u.y * k\n\t\tif (cy < Math.min(start.y, end.y)) return start.y < end.y ? start : end\n\t\tif (cy > Math.max(start.y, end.y)) return start.y > end.y ? start : end\n\t\treturn new Vec(cx, cy)\n\t}\n\n\toverride hitTestLineSegment(A: Vec, B: Vec, distance = 0): boolean {\n\t\treturn (\n\t\t\tlinesIntersect(A, B, this.start, this.end) || this.distanceToLineSegment(A, B) <= distance\n\t\t)\n\t}\n\n\tgetSvgPathData(first = true) {\n\t\tconst { start, end } = this\n\t\treturn `${first ? `M${start.toFixed()}` : ``} L${end.toFixed()}`\n\t}\n}\n"],
|
|
5
|
+
"mappings": "AAAA,SAAS,WAAW;AACpB,SAAS,sBAAsB;AAC/B,SAAS,kBAAkB;AAGpB,MAAM,eAAe,WAAW;AAAA,EACtC;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EACA;AAAA,EAEA,YAAY,QAAkC;AAC7C,UAAM,EAAE,GAAG,QAAQ,UAAU,OAAO,UAAU,MAAM,CAAC;AACrD,UAAM,EAAE,OAAO,IAAI,IAAI;AAEvB,SAAK,QAAQ;AACb,SAAK,MAAM;AAEX,SAAK,IAAI,MAAM,MAAM,EAAE,IAAI,GAAG;AAC9B,SAAK,IAAI,KAAK,EAAE,MAAM,EAAE,IAAI;AAC5B,SAAK,KAAK,KAAK,EAAE,IAAI;AAAA,EACtB;AAAA,EAES,YAAY;AACpB,WAAO,KAAK,EAAE,IAAI;AAAA,EACnB;AAAA,EAEA,WAAgB;AACf,WAAO,KAAK,MAAM,IAAI,KAAK,KAAK,GAAG;AAAA,EACpC;AAAA,EAES,cAAqB;AAC7B,WAAO,CAAC,KAAK,OAAO,KAAK,GAAG;AAAA,EAC7B;AAAA,EAES,aAAa,OAAiB;AACtC,UAAM,EAAE,OAAO,KAAK,GAAG,GAAG,IAAI,EAAE,IAAI;AACpC,QAAI,EAAE,IAAI,MAAM,EAAG,QAAO;AAC1B,QAAI,MAAM,EAAG,QAAO;AACpB,UAAM,IAAI,IAAI,IAAI,OAAO,KAAK,EAAE,IAAI,CAAC,IAAI;AACzC,UAAM,KAAK,MAAM,IAAI,EAAE,IAAI;AAC3B,QAAI,KAAK,KAAK,IAAI,MAAM,GAAG,IAAI,CAAC,EAAG,QAAO,MAAM,IAAI,IAAI,IAAI,QAAQ;AACpE,QAAI,KAAK,KAAK,IAAI,MAAM,GAAG,IAAI,CAAC,EAAG,QAAO,MAAM,IAAI,IAAI,IAAI,QAAQ;AACpE,UAAM,KAAK,MAAM,IAAI,EAAE,IAAI;AAC3B,QAAI,KAAK,KAAK,IAAI,MAAM,GAAG,IAAI,CAAC,EAAG,QAAO,MAAM,IAAI,IAAI,IAAI,QAAQ;AACpE,QAAI,KAAK,KAAK,IAAI,MAAM,GAAG,IAAI,CAAC,EAAG,QAAO,MAAM,IAAI,IAAI,IAAI,QAAQ;AACpE,WAAO,IAAI,IAAI,IAAI,EAAE;AAAA,EACtB;AAAA,EAES,mBAAmB,GAAQ,GAAQ,WAAW,GAAY;AAClE,WACC,eAAe,GAAG,GAAG,KAAK,OAAO,KAAK,GAAG,KAAK,KAAK,sBAAsB,GAAG,CAAC,KAAK;AAAA,EAEpF;AAAA,EAEA,eAAe,QAAQ,MAAM;AAC5B,UAAM,EAAE,OAAO,IAAI,IAAI;AACvB,WAAO,GAAG,QAAQ,IAAI,MAAM,QAAQ,CAAC,KAAK,EAAE,KAAK,IAAI,QAAQ,CAAC;AAAA,EAC/D;AACD;",
|
|
6
6
|
"names": []
|
|
7
7
|
}
|
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
{
|
|
2
2
|
"version": 3,
|
|
3
3
|
"sources": ["../../../../src/lib/primitives/geometry/Ellipse2d.ts"],
|
|
4
|
-
"sourcesContent": ["import { Box } from '../Box'\nimport { Vec
|
|
5
|
-
"mappings": "AAAA,SAAS,WAAW;AACpB,SAAS,
|
|
4
|
+
"sourcesContent": ["import { Box } from '../Box'\nimport { Vec } from '../Vec'\nimport { PI, PI2, perimeterOfEllipse } from '../utils'\nimport { Edge2d } from './Edge2d'\nimport { Geometry2d, Geometry2dOptions } from './Geometry2d'\nimport { getVerticesCountForLength } from './geometry-constants'\n\n/** @public */\nexport class Ellipse2d extends Geometry2d {\n\tw: number\n\th: number\n\n\tconstructor(\n\t\tpublic config: Omit<Geometry2dOptions, 'isClosed'> & {\n\t\t\twidth: number\n\t\t\theight: number\n\t\t}\n\t) {\n\t\tsuper({ ...config, isClosed: true })\n\t\tconst { width, height } = config\n\t\tthis.w = width\n\t\tthis.h = height\n\t}\n\n\t_edges?: Edge2d[]\n\n\t// eslint-disable-next-line no-restricted-syntax\n\tget edges() {\n\t\tif (!this._edges) {\n\t\t\tconst { vertices } = this\n\t\t\tthis._edges = []\n\t\t\tfor (let i = 0, n = vertices.length; i < n; i++) {\n\t\t\t\tconst start = vertices[i]\n\t\t\t\tconst end = vertices[(i + 1) % n]\n\t\t\t\tthis._edges.push(new Edge2d({ start, end }))\n\t\t\t}\n\t\t}\n\n\t\treturn this._edges\n\t}\n\n\tgetVertices() {\n\t\t// Perimeter of the ellipse\n\t\tconst w = Math.max(1, this.w)\n\t\tconst h = Math.max(1, this.h)\n\t\tconst cx = w / 2\n\t\tconst cy = h / 2\n\t\tconst q = Math.pow(cx - cy, 2) / Math.pow(cx + cy, 2)\n\t\tconst p = PI * (cx + cy) * (1 + (3 * q) / (10 + Math.sqrt(4 - 3 * q)))\n\t\t// Number of points\n\t\tconst len = getVerticesCountForLength(p)\n\t\t// Size of step\n\t\tconst step = PI2 / len\n\n\t\tconst a = Math.cos(step)\n\t\tconst b = Math.sin(step)\n\n\t\tlet sin = 0\n\t\tlet cos = 1\n\t\tlet ts = 0\n\t\tlet tc = 1\n\n\t\tconst vertices = Array(len)\n\n\t\tfor (let i = 0; i < len; i++) {\n\t\t\tvertices[i] = new Vec(cx + cx * cos, cy + cy * sin)\n\t\t\tts = b * cos + a * sin\n\t\t\ttc = a * cos - b * sin\n\t\t\tsin = ts\n\t\t\tcos = tc\n\t\t}\n\n\t\treturn vertices\n\t}\n\n\tnearestPoint(A: Vec): Vec {\n\t\tlet nearest: Vec | undefined\n\t\tlet dist = Infinity\n\t\tlet d: number\n\t\tlet p: Vec\n\t\tfor (const edge of this.edges) {\n\t\t\tp = edge.nearestPoint(A)\n\t\t\td = Vec.Dist2(p, A)\n\t\t\tif (d < dist) {\n\t\t\t\tnearest = p\n\t\t\t\tdist = d\n\t\t\t}\n\t\t}\n\t\tif (!nearest) throw Error('nearest point not found')\n\t\treturn nearest\n\t}\n\n\thitTestLineSegment(A: Vec, B: Vec): boolean {\n\t\treturn this.edges.some((edge) => edge.hitTestLineSegment(A, B))\n\t}\n\n\tgetBounds() {\n\t\treturn new Box(0, 0, this.w, this.h)\n\t}\n\n\tgetLength(): number {\n\t\tconst { w, h } = this\n\t\tconst cx = w / 2\n\t\tconst cy = h / 2\n\t\tconst rx = Math.max(0, cx)\n\t\tconst ry = Math.max(0, cy)\n\t\treturn perimeterOfEllipse(rx, ry)\n\t}\n\n\tgetSvgPathData(first = false) {\n\t\tconst { w, h } = this\n\t\tconst cx = w / 2\n\t\tconst cy = h / 2\n\t\tconst rx = Math.max(0, cx)\n\t\tconst ry = Math.max(0, cy)\n\t\treturn `${first ? `M${cx - rx},${cy}` : ``} a${rx},${ry},0,1,1,${rx * 2},0a${rx},${ry},0,1,1,-${rx * 2},0`\n\t}\n}\n"],
|
|
5
|
+
"mappings": "AAAA,SAAS,WAAW;AACpB,SAAS,WAAW;AACpB,SAAS,IAAI,KAAK,0BAA0B;AAC5C,SAAS,cAAc;AACvB,SAAS,kBAAqC;AAC9C,SAAS,iCAAiC;AAGnC,MAAM,kBAAkB,WAAW;AAAA,EAIzC,YACQ,QAIN;AACD,UAAM,EAAE,GAAG,QAAQ,UAAU,KAAK,CAAC;AAL5B;AAMP,UAAM,EAAE,OAAO,OAAO,IAAI;AAC1B,SAAK,IAAI;AACT,SAAK,IAAI;AAAA,EACV;AAAA,EAbA;AAAA,EACA;AAAA,EAcA;AAAA;AAAA,EAGA,IAAI,QAAQ;AACX,QAAI,CAAC,KAAK,QAAQ;AACjB,YAAM,EAAE,SAAS,IAAI;AACrB,WAAK,SAAS,CAAC;AACf,eAAS,IAAI,GAAG,IAAI,SAAS,QAAQ,IAAI,GAAG,KAAK;AAChD,cAAM,QAAQ,SAAS,CAAC;AACxB,cAAM,MAAM,UAAU,IAAI,KAAK,CAAC;AAChC,aAAK,OAAO,KAAK,IAAI,OAAO,EAAE,OAAO,IAAI,CAAC,CAAC;AAAA,MAC5C;AAAA,IACD;AAEA,WAAO,KAAK;AAAA,EACb;AAAA,EAEA,cAAc;AAEb,UAAM,IAAI,KAAK,IAAI,GAAG,KAAK,CAAC;AAC5B,UAAM,IAAI,KAAK,IAAI,GAAG,KAAK,CAAC;AAC5B,UAAM,KAAK,IAAI;AACf,UAAM,KAAK,IAAI;AACf,UAAM,IAAI,KAAK,IAAI,KAAK,IAAI,CAAC,IAAI,KAAK,IAAI,KAAK,IAAI,CAAC;AACpD,UAAM,IAAI,MAAM,KAAK,OAAO,IAAK,IAAI,KAAM,KAAK,KAAK,KAAK,IAAI,IAAI,CAAC;AAEnE,UAAM,MAAM,0BAA0B,CAAC;AAEvC,UAAM,OAAO,MAAM;AAEnB,UAAM,IAAI,KAAK,IAAI,IAAI;AACvB,UAAM,IAAI,KAAK,IAAI,IAAI;AAEvB,QAAI,MAAM;AACV,QAAI,MAAM;AACV,QAAI,KAAK;AACT,QAAI,KAAK;AAET,UAAM,WAAW,MAAM,GAAG;AAE1B,aAAS,IAAI,GAAG,IAAI,KAAK,KAAK;AAC7B,eAAS,CAAC,IAAI,IAAI,IAAI,KAAK,KAAK,KAAK,KAAK,KAAK,GAAG;AAClD,WAAK,IAAI,MAAM,IAAI;AACnB,WAAK,IAAI,MAAM,IAAI;AACnB,YAAM;AACN,YAAM;AAAA,IACP;AAEA,WAAO;AAAA,EACR;AAAA,EAEA,aAAa,GAAa;AACzB,QAAI;AACJ,QAAI,OAAO;AACX,QAAI;AACJ,QAAI;AACJ,eAAW,QAAQ,KAAK,OAAO;AAC9B,UAAI,KAAK,aAAa,CAAC;AACvB,UAAI,IAAI,MAAM,GAAG,CAAC;AAClB,UAAI,IAAI,MAAM;AACb,kBAAU;AACV,eAAO;AAAA,MACR;AAAA,IACD;AACA,QAAI,CAAC,QAAS,OAAM,MAAM,yBAAyB;AACnD,WAAO;AAAA,EACR;AAAA,EAEA,mBAAmB,GAAQ,GAAiB;AAC3C,WAAO,KAAK,MAAM,KAAK,CAAC,SAAS,KAAK,mBAAmB,GAAG,CAAC,CAAC;AAAA,EAC/D;AAAA,EAEA,YAAY;AACX,WAAO,IAAI,IAAI,GAAG,GAAG,KAAK,GAAG,KAAK,CAAC;AAAA,EACpC;AAAA,EAEA,YAAoB;AACnB,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,KAAK,IAAI;AACf,UAAM,KAAK,IAAI;AACf,UAAM,KAAK,KAAK,IAAI,GAAG,EAAE;AACzB,UAAM,KAAK,KAAK,IAAI,GAAG,EAAE;AACzB,WAAO,mBAAmB,IAAI,EAAE;AAAA,EACjC;AAAA,EAEA,eAAe,QAAQ,OAAO;AAC7B,UAAM,EAAE,GAAG,EAAE,IAAI;AACjB,UAAM,KAAK,IAAI;AACf,UAAM,KAAK,IAAI;AACf,UAAM,KAAK,KAAK,IAAI,GAAG,EAAE;AACzB,UAAM,KAAK,KAAK,IAAI,GAAG,EAAE;AACzB,WAAO,GAAG,QAAQ,IAAI,KAAK,EAAE,IAAI,EAAE,KAAK,EAAE,KAAK,EAAE,IAAI,EAAE,UAAU,KAAK,CAAC,MAAM,EAAE,IAAI,EAAE,WAAW,KAAK,CAAC;AAAA,EACvG;AACD;",
|
|
6
6
|
"names": []
|
|
7
7
|
}
|
|
@@ -1,4 +1,4 @@
|
|
|
1
|
-
import { assert
|
|
1
|
+
import { assert } from "@tldraw/utils";
|
|
2
2
|
import { Box } from "../Box.mjs";
|
|
3
3
|
import { Mat } from "../Mat.mjs";
|
|
4
4
|
import { Vec } from "../Vec.mjs";
|
|
@@ -47,10 +47,10 @@ class Geometry2d {
|
|
|
47
47
|
return Vec.Dist2(point, this.nearestPoint(point)) <= margin * margin;
|
|
48
48
|
}
|
|
49
49
|
distanceToPoint(point, hitInside = false, filters) {
|
|
50
|
-
return
|
|
50
|
+
return point.dist(this.nearestPoint(point, filters)) * (this.isClosed && (this.isFilled || hitInside) && pointInPolygon(point, this.vertices) ? -1 : 1);
|
|
51
51
|
}
|
|
52
52
|
distanceToLineSegment(A, B, filters) {
|
|
53
|
-
if (
|
|
53
|
+
if (A.equals(B)) return this.distanceToPoint(A, false, filters);
|
|
54
54
|
const { vertices } = this;
|
|
55
55
|
let nearest;
|
|
56
56
|
let dist = Infinity;
|
|
@@ -84,60 +84,6 @@ class Geometry2d {
|
|
|
84
84
|
intersectPolyline(polyline, _filters) {
|
|
85
85
|
return intersectPolys(polyline, this.vertices, false, this.isClosed);
|
|
86
86
|
}
|
|
87
|
-
/**
|
|
88
|
-
* Find a point along the edge of the geometry that is a fraction `t` along the entire way round.
|
|
89
|
-
*/
|
|
90
|
-
interpolateAlongEdge(t, _filters) {
|
|
91
|
-
const { vertices } = this;
|
|
92
|
-
if (t <= 0) return vertices[0];
|
|
93
|
-
const distanceToTravel = t * this.length;
|
|
94
|
-
let distanceTraveled = 0;
|
|
95
|
-
for (let i = 0; i < (this.isClosed ? vertices.length : vertices.length - 1); i++) {
|
|
96
|
-
const curr = vertices[i];
|
|
97
|
-
const next = vertices[(i + 1) % vertices.length];
|
|
98
|
-
const dist = Vec.Dist(curr, next);
|
|
99
|
-
const newDistanceTraveled = distanceTraveled + dist;
|
|
100
|
-
if (newDistanceTraveled >= distanceToTravel) {
|
|
101
|
-
const p = Vec.Lrp(
|
|
102
|
-
curr,
|
|
103
|
-
next,
|
|
104
|
-
invLerp(distanceTraveled, newDistanceTraveled, distanceToTravel)
|
|
105
|
-
);
|
|
106
|
-
return p;
|
|
107
|
-
}
|
|
108
|
-
distanceTraveled = newDistanceTraveled;
|
|
109
|
-
}
|
|
110
|
-
return this.isClosed ? vertices[0] : vertices[vertices.length - 1];
|
|
111
|
-
}
|
|
112
|
-
/**
|
|
113
|
-
* Take `point`, find the closest point to it on the edge of the geometry, and return how far
|
|
114
|
-
* along the edge it is as a fraction of the total length.
|
|
115
|
-
*/
|
|
116
|
-
uninterpolateAlongEdge(point, _filters) {
|
|
117
|
-
const { vertices, length } = this;
|
|
118
|
-
let closestSegment = null;
|
|
119
|
-
let closestDistance = Infinity;
|
|
120
|
-
let distanceTraveled = 0;
|
|
121
|
-
for (let i = 0; i < (this.isClosed ? vertices.length : vertices.length - 1); i++) {
|
|
122
|
-
const curr = vertices[i];
|
|
123
|
-
const next = vertices[(i + 1) % vertices.length];
|
|
124
|
-
const nearestPoint = Vec.NearestPointOnLineSegment(curr, next, point, true);
|
|
125
|
-
const distance = Vec.Dist(nearestPoint, point);
|
|
126
|
-
if (distance < closestDistance) {
|
|
127
|
-
closestDistance = distance;
|
|
128
|
-
closestSegment = {
|
|
129
|
-
start: curr,
|
|
130
|
-
end: next,
|
|
131
|
-
nearestPoint,
|
|
132
|
-
distanceToStart: distanceTraveled
|
|
133
|
-
};
|
|
134
|
-
}
|
|
135
|
-
distanceTraveled += Vec.Dist(curr, next);
|
|
136
|
-
}
|
|
137
|
-
assert(closestSegment);
|
|
138
|
-
const distanceAlongRoute = closestSegment.distanceToStart + Vec.Dist(closestSegment.start, closestSegment.nearestPoint);
|
|
139
|
-
return distanceAlongRoute / length;
|
|
140
|
-
}
|
|
141
87
|
/** @deprecated Iterate the vertices instead. */
|
|
142
88
|
nearestPointOnLineSegment(A, B) {
|
|
143
89
|
const { vertices } = this;
|
|
@@ -225,23 +171,18 @@ class Geometry2d {
|
|
|
225
171
|
// eslint-disable-next-line no-restricted-syntax
|
|
226
172
|
get length() {
|
|
227
173
|
if (this._length) return this._length;
|
|
228
|
-
this._length = this.getLength(
|
|
174
|
+
this._length = this.getLength();
|
|
229
175
|
return this._length;
|
|
230
176
|
}
|
|
231
|
-
getLength(
|
|
232
|
-
const vertices = this
|
|
233
|
-
|
|
234
|
-
let prev = vertices[0];
|
|
235
|
-
let length = 0;
|
|
177
|
+
getLength() {
|
|
178
|
+
const { vertices } = this;
|
|
179
|
+
let n1, p1 = vertices[0], length = 0;
|
|
236
180
|
for (let i = 1; i < vertices.length; i++) {
|
|
237
|
-
|
|
238
|
-
length += Vec.
|
|
239
|
-
|
|
240
|
-
}
|
|
241
|
-
if (this.isClosed) {
|
|
242
|
-
length += Vec.Dist(vertices[vertices.length - 1], vertices[0]);
|
|
181
|
+
n1 = vertices[i];
|
|
182
|
+
length += Vec.Dist2(p1, n1);
|
|
183
|
+
p1 = n1;
|
|
243
184
|
}
|
|
244
|
-
return length;
|
|
185
|
+
return Math.sqrt(length);
|
|
245
186
|
}
|
|
246
187
|
}
|
|
247
188
|
class TransformedGeometry2d extends Geometry2d {
|
|
@@ -300,36 +241,24 @@ class TransformedGeometry2d extends Geometry2d {
|
|
|
300
241
|
);
|
|
301
242
|
}
|
|
302
243
|
intersectLineSegment(A, B, filters) {
|
|
303
|
-
return
|
|
304
|
-
this.
|
|
305
|
-
this.
|
|
306
|
-
|
|
307
|
-
Mat.applyToPoint(this.inverse, B),
|
|
308
|
-
filters
|
|
309
|
-
)
|
|
244
|
+
return this.geometry.intersectLineSegment(
|
|
245
|
+
Mat.applyToPoint(this.inverse, A),
|
|
246
|
+
Mat.applyToPoint(this.inverse, B),
|
|
247
|
+
filters
|
|
310
248
|
);
|
|
311
249
|
}
|
|
312
250
|
intersectCircle(center, radius, filters) {
|
|
313
|
-
return
|
|
314
|
-
this.
|
|
315
|
-
this.
|
|
316
|
-
|
|
317
|
-
radius / this.decomposed.scaleX,
|
|
318
|
-
filters
|
|
319
|
-
)
|
|
251
|
+
return this.geometry.intersectCircle(
|
|
252
|
+
Mat.applyToPoint(this.inverse, center),
|
|
253
|
+
radius / this.decomposed.scaleX,
|
|
254
|
+
filters
|
|
320
255
|
);
|
|
321
256
|
}
|
|
322
257
|
intersectPolygon(polygon, filters) {
|
|
323
|
-
return Mat.applyToPoints(
|
|
324
|
-
this.matrix,
|
|
325
|
-
this.geometry.intersectPolygon(Mat.applyToPoints(this.inverse, polygon), filters)
|
|
326
|
-
);
|
|
258
|
+
return this.geometry.intersectPolygon(Mat.applyToPoints(this.inverse, polygon), filters);
|
|
327
259
|
}
|
|
328
260
|
intersectPolyline(polyline, filters) {
|
|
329
|
-
return Mat.applyToPoints(
|
|
330
|
-
this.matrix,
|
|
331
|
-
this.geometry.intersectPolyline(Mat.applyToPoints(this.inverse, polyline), filters)
|
|
332
|
-
);
|
|
261
|
+
return this.geometry.intersectPolyline(Mat.applyToPoints(this.inverse, polyline), filters);
|
|
333
262
|
}
|
|
334
263
|
transform(transform, opts) {
|
|
335
264
|
return new TransformedGeometry2d(this.geometry, Mat.Multiply(transform, this.matrix), {
|