@things-factory/spc 8.0.6 → 9.0.0-beta.12

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,171 +0,0 @@
1
- const result = {
2
- dataset: {
3
- id: 'aaa',
4
- name: 'bbb'
5
- },
6
- query: {},
7
- analysisResults: [
8
- {
9
- chartType: 'Xbar',
10
- variables: [
11
- {
12
- name: 'variable1',
13
- stats: {
14
- mean: 22,
15
- UCL: 25,
16
- LCL: 19,
17
- CL: 22
18
- },
19
- samples: [
20
- { x: '1', values: 22 },
21
- { x: '2', values: 23 }
22
- ]
23
- }
24
- ]
25
- },
26
- {
27
- chartType: 'R',
28
- variables: [
29
- {
30
- name: 'variable2',
31
- stats: {
32
- range: 1.3,
33
- UCL: 2.1,
34
- LCL: 0.5,
35
- CL: 1.3
36
- },
37
- samples: [
38
- { x: '1', value: 1.2 },
39
- { x: '2', value: 1.3 }
40
- ]
41
- }
42
- ]
43
- },
44
- {
45
- chartType: 'p',
46
- variables: [
47
- {
48
- name: 'variable3',
49
- stats: {
50
- proportion: 0.05,
51
- UCL: 0.1,
52
- LCL: 0.01
53
- },
54
- samples: [
55
- { x: '1', value: 0.05 },
56
- { x: '2', value: 0.06 }
57
- ]
58
- }
59
- ]
60
- },
61
- {
62
- chartType: 'np',
63
- variables: [
64
- {
65
- name: 'variable4',
66
- stats: {
67
- nonconforming: 5,
68
- UCL: 10,
69
- LCL: 1
70
- },
71
- samples: [
72
- { x: '1', value: 5 },
73
- { x: '2', value: 4 }
74
- ]
75
- }
76
- ]
77
- },
78
- {
79
- chartType: 'c',
80
- variables: [
81
- {
82
- name: 'variable5',
83
- stats: {
84
- count: 20,
85
- UCL: 25,
86
- LCL: 15
87
- },
88
- samples: [
89
- { x: '1', value: 20 },
90
- { x: '2', value: 21 }
91
- ]
92
- }
93
- ]
94
- },
95
- {
96
- chartType: 'u',
97
- variables: [
98
- {
99
- name: 'variable6',
100
- stats: {
101
- defectsPerUnit: 1.2,
102
- UCL: 1.5,
103
- LCL: 0.9
104
- },
105
- samples: [
106
- { x: '1', value: 1.2 },
107
- { x: '2', value: 1.1 }
108
- ]
109
- }
110
- ]
111
- },
112
- {
113
- chartType: 'I',
114
- variables: [
115
- {
116
- name: 'variable7',
117
- stats: {
118
- individualValue: 10,
119
- UCL: 12,
120
- LCL: 8
121
- },
122
- samples: [
123
- { x: '1', value: 10 },
124
- { x: '2', value: 11 }
125
- ]
126
- }
127
- ]
128
- },
129
- {
130
- chartType: 'MR',
131
- variables: [
132
- {
133
- name: 'variable8',
134
- stats: {
135
- movingRange: 2,
136
- UCL: 3,
137
- LCL: 1
138
- },
139
- samples: [
140
- { x: '1', value: 2 },
141
- { x: '2', value: 2.5 }
142
- ]
143
- }
144
- ]
145
- },
146
- {
147
- chartType: 'Histogram',
148
- variables: [
149
- {
150
- name: 'variable9',
151
- bins: [
152
- { binRange: '0-1', count: 5 },
153
- { binRange: '1-2', count: 10 }
154
- ]
155
- }
156
- ]
157
- },
158
- {
159
- chartType: 'Pareto',
160
- variables: [
161
- {
162
- name: 'defectType',
163
- categories: [
164
- { category: 'Scratch', count: 20 },
165
- { category: 'Dent', count: 15 }
166
- ]
167
- }
168
- ]
169
- }
170
- ]
171
- }
@@ -1,30 +0,0 @@
1
- import { SPCChartPlot, SPCChartAnalysis } from '../../service/spc-chart/spc-chart-type'
2
-
3
- export function calculateMRChartAnalysisResult(plots: SPCChartPlot[]): SPCChartAnalysis {
4
- // 각 샘플의 평균을 계산
5
- plots = plots.map((plot, index) => ({
6
- ...plot,
7
- i: plot.values[0],
8
- mr: index == 0 ? 0 : Math.abs(plot.values[0] - plots[index - 1].values[0])
9
- }))
10
-
11
- // 변동 범위의 평균을 계산하여 중심선(CL)을 구합니다.
12
- const cl = plots.slice(1).reduce((acc, plot) => acc + plot.mr, 0) / (plots.length - 1)
13
-
14
- // 공정 변동을 고려하여 상한 제어선(UCL)을 계산합니다.
15
- // MR 차트에서는 3.267 * MR-Bar을 사용합니다 (2개의 측정값을 사용하는 경우).
16
- const ucl = 3.267 * cl
17
-
18
- // MR 차트에서 하한 제어선(LCL)은 일반적으로 사용되지 않거나 0으로 설정됩니다.
19
- const lcl = 0 // 하한 제어선
20
-
21
- return {
22
- chartType: 'MR',
23
- controlLimits: {
24
- cl,
25
- ucl,
26
- lcl
27
- },
28
- plots
29
- }
30
- }
@@ -1,30 +0,0 @@
1
- import { SPCChartPlot, SPCChartAnalysis } from '../../service/spc-chart/spc-chart-type'
2
-
3
- export function calculateNPChartAnalysisResult(plots: SPCChartPlot[]): SPCChartAnalysis {
4
- // 각 샘플의 평균을 계산
5
- plots = plots.map(plot => ({
6
- ...plot,
7
- defects: plot.values.reduce((sum, v) => sum + v, 0),
8
- n: plot.values.length
9
- }))
10
-
11
- const totalNonConforming = plots.reduce((acc, plot) => acc + plot.defects, 0)
12
- const totalUnits = plots.reduce((acc, plot) => acc + plot.n, 0)
13
- const NPBar = totalNonConforming / plots.length // 평균 불량품 수
14
-
15
- // p 차트 공식을 사용하여 UCL과 LCL을 계산합니다.
16
- const pBar = totalNonConforming / totalUnits // 전체 불량품 비율
17
- const ucl = NPBar + 3 * Math.sqrt(NPBar * (1 - pBar))
18
- let lcl = NPBar - 3 * Math.sqrt(NPBar * (1 - pBar))
19
- lcl = lcl < 0 ? 0 : lcl // LCL이 음수인 경우 0으로 설정
20
-
21
- return {
22
- chartType: 'NP',
23
- controlLimits: {
24
- ucl,
25
- lcl,
26
- cl: NPBar
27
- },
28
- plots
29
- }
30
- }
@@ -1,29 +0,0 @@
1
- import { SPCChartPlot, SPCChartAnalysis } from '../../service/spc-chart/spc-chart-type'
2
-
3
- export function calculatePChartAnalysisResult(plots: SPCChartPlot[]): SPCChartAnalysis {
4
- // 각 샘플의 평균을 계산
5
- plots = plots.map(plot => ({
6
- ...plot,
7
- defects: plot.values.reduce((sum, v) => sum + v, 0),
8
- n: plot.values.length
9
- }))
10
-
11
- // 결함 있는 단위의 평균 비율(PBar)을 계산합니다.
12
- const totalDefectiveUnits = plots.reduce((acc, plot) => acc + plot.defects, 0)
13
- const totalUnits = plots.reduce((acc, plot) => acc + plot.n, 0)
14
- const PBar = totalDefectiveUnits / totalUnits
15
-
16
- // 샘플 그룹의 크기(n)에 따라 UCL과 LCL을 계산합니다.
17
- const ucl = PBar + 3 * Math.sqrt((PBar * (1 - PBar)) / totalUnits)
18
- const lcl = PBar - 3 * Math.sqrt((PBar * (1 - PBar)) / totalUnits) < 0 ? 0 : PBar - 3 * Math.sqrt((PBar * (1 - PBar)) / totalUnits) // LCL이 음수가 되지 않도록 처리
19
-
20
- return {
21
- chartType: 'P',
22
- controlLimits: {
23
- ucl,
24
- lcl,
25
- cl: PBar
26
- },
27
- plots
28
- }
29
- }
@@ -1,32 +0,0 @@
1
- interface ParetoCategory {
2
- category: string // 카테고리 이름
3
- count: number // 해당 카테고리의 데이터 개수 또는 중요도
4
- }
5
-
6
- interface ParetoResult {
7
- chartType: 'Pareto'
8
- categories: ParetoCategory[] // Pareto 차트에 표시될 카테고리 및 중요도 정보
9
- }
10
-
11
- export function calculatePareto(data: { category: string }[]): ParetoResult {
12
- // 각 카테고리별 데이터 개수 계산
13
- const categoryCounts: { [category: string]: number } = {}
14
- data.forEach(item => {
15
- const category = item.category
16
- categoryCounts[category] = (categoryCounts[category] || 0) + 1
17
- })
18
-
19
- // 카테고리와 데이터 개수를 배열로 변환
20
- const categories: ParetoCategory[] = Object.keys(categoryCounts).map(category => ({
21
- category,
22
- count: categoryCounts[category]
23
- }))
24
-
25
- // 데이터 개수에 따라 내림차순으로 정렬
26
- categories.sort((a, b) => b.count - a.count)
27
-
28
- return {
29
- chartType: 'Pareto',
30
- categories
31
- }
32
- }
@@ -1,34 +0,0 @@
1
- import { SPCChartPlot, SPCChartAnalysis } from '../../service/spc-chart/spc-chart-type'
2
-
3
- export function calculateRChartAnalysisResult(plots: SPCChartPlot[]): SPCChartAnalysis {
4
- // 각 샘플 그룹의 범위를 계산합니다.
5
- plots = plots.map(plot => {
6
- return {
7
- ...plot,
8
- r: Math.max(...plot.values) - Math.min(...plot.values)
9
- }
10
- })
11
-
12
- // 모든 샘플 그룹의 범위의 평균값(R-bar)을 계산합니다.
13
- const RBar = plots.reduce((acc, plot) => acc + plot.r, 0) / plots.length
14
-
15
- // 샘플 그룹의 크기(n)에 따라 D3와 D4 값을 설정합니다.
16
- // 예시에서는 n=5인 경우의 D3와 D4 값을 사용합니다. 실제 구현에서는 샘플 크기에 맞는 값을 사용해야 합니다.
17
- const n = plots[0]?.values.length // 샘플 크기 추정(모든 그룹이 같은 크기를 가정)
18
- const D3 = 0 // n=5에 대한 D3 값
19
- const D4 = 2.114 // n=5에 대한 D4 값
20
-
21
- // UCL과 LCL을 계산합니다.
22
- const ucl = D4 * RBar
23
- const lcl = D3 * RBar // D3가 0인 경우, LCL은 0이 됩니다.
24
-
25
- return {
26
- chartType: 'R',
27
- controlLimits: {
28
- ucl,
29
- lcl,
30
- cl: RBar
31
- },
32
- plots
33
- }
34
- }
@@ -1,31 +0,0 @@
1
- import { SPCChartPlot, SPCChartAnalysis } from '../../service/spc-chart/spc-chart-type'
2
-
3
- export function calculateUChartAnalysisResult(plots: SPCChartPlot[]): SPCChartAnalysis {
4
- // 각 샘플의 평균을 계산
5
- plots = plots.map(plot => ({
6
- ...plot,
7
- defects: plot.values.map(Boolean).length,
8
- n: plot.values.length
9
- }))
10
-
11
- // 단위당 결함 수의 평균(UBar)을 계산합니다.
12
- const totalDefects = plots.reduce((acc, plot) => acc + plot.defects, 0)
13
- const totalUnits = plots.reduce((acc, plot) => acc + plot.n, 0)
14
- const UBar = totalDefects / totalUnits
15
-
16
- // 샘플 그룹의 크기(n)에 따라 상수를 결정합니다. 여기서는 일반적인 상수 값을 사용합니다.
17
- const n = plots.length // 샘플 그룹의 수
18
- // UCL과 LCL 계산을 위한 상수. 실제 값은 샘플 크기와 분포에 따라 달라질 수 있습니다.
19
- const ucl = UBar + 3 * Math.sqrt(UBar / totalUnits)
20
- const lcl = UBar - 3 * Math.sqrt(UBar / totalUnits) < 0 ? 0 : UBar - 3 * Math.sqrt(UBar / totalUnits) // LCL이 음수가 되지 않도록 처리
21
-
22
- return {
23
- chartType: 'U',
24
- controlLimits: {
25
- ucl,
26
- lcl,
27
- cl: UBar
28
- },
29
- plots
30
- }
31
- }
@@ -1,53 +0,0 @@
1
- import { SPCChartPlot, SPCChartAnalysis } from '../../service/spc-chart/spc-chart-type'
2
-
3
- function getA2Value(sampleSize: number): number {
4
- const a2Values: { [key: number]: number } = {
5
- 2: 1.88,
6
- 3: 1.023,
7
- 4: 0.729,
8
- 5: 0.577,
9
- 6: 0.483
10
- // 다른 샘플 크기에 대한 A2 값 추가...
11
- }
12
-
13
- return a2Values[sampleSize] || 0 // 샘플 크기에 대한 A2 값이 정의되지 않은 경우 0을 반환
14
- }
15
-
16
- export function calculateXBarAnalysisResult(plots: SPCChartPlot[]): SPCChartAnalysis {
17
- // 각 샘플의 평균을 계산
18
- plots = plots.map(plot => ({
19
- ...plot,
20
- xbar: plot.values ? plot.values.reduce((sum, val) => sum + val, 0) / plot.values.length : 0,
21
- r: Math.max(...plot.values) - Math.min(...plot.values)
22
- }))
23
-
24
- const plotSize = plots[0]?.values?.length // 샘플 크기 추정(모든 그룹이 같은 크기를 가정)
25
-
26
- // 각 샘플의 범위(R) 계산
27
- const ranges = plots.map(plot => {
28
- if (plot.values) {
29
- return Math.max(...plot.values) - Math.min(...plot.values)
30
- }
31
- return 0
32
- })
33
-
34
- // 범위(R)의 평균 계산
35
- const averageRange = ranges.reduce((sum, r) => sum + r, 0) / ranges.length
36
-
37
- // 전체 평균(중심선, CL) 계산
38
- const overallMean = plots.reduce((sum, plot) => sum + plot.xbar, 0) / plots.length
39
-
40
- const A2 = getA2Value(plotSize)
41
- const ucl = overallMean + A2 * averageRange
42
- const lcl = overallMean - A2 * averageRange
43
-
44
- return {
45
- chartType: 'Xbar',
46
- controlLimits: {
47
- ucl,
48
- lcl,
49
- cl: overallMean
50
- },
51
- plots
52
- }
53
- }
@@ -1,53 +0,0 @@
1
- import { SPCChartPlot, SPCChartAnalysis } from '../../service/spc-chart/spc-chart-type'
2
-
3
- function getA2Value(sampleSize: number): number {
4
- const a2Values: { [key: number]: number } = {
5
- 2: 1.88,
6
- 3: 1.023,
7
- 4: 0.729,
8
- 5: 0.577,
9
- 6: 0.483
10
- // 다른 샘플 크기에 대한 A2 값 추가...
11
- }
12
-
13
- return a2Values[sampleSize] || 0 // 샘플 크기에 대한 A2 값이 정의되지 않은 경우 0을 반환
14
- }
15
-
16
- export function calculateXBarAnalysisResult(plots: SPCChartPlot[]): SPCChartAnalysis {
17
- // 각 샘플의 평균을 계산
18
- plots = plots.map(plot => ({
19
- ...plot,
20
- xbar: plot.values ? plot.values.reduce((sum, val) => sum + val, 0) / plot.values.length : 0,
21
- r: Math.max(...plot.values) - Math.min(...plot.values)
22
- }))
23
-
24
- const plotSize = plots[0]?.values?.length // 샘플 크기 추정(모든 그룹이 같은 크기를 가정)
25
-
26
- // 각 샘플의 범위(R) 계산
27
- const ranges = plots.map(plot => {
28
- if (plot.values) {
29
- return Math.max(...plot.values) - Math.min(...plot.values)
30
- }
31
- return 0
32
- })
33
-
34
- // 범위(R)의 평균 계산
35
- const averageRange = ranges.reduce((sum, r) => sum + r, 0) / ranges.length
36
-
37
- // 전체 평균(중심선, CL) 계산
38
- const overallMean = plots.reduce((sum, plot) => sum + plot.xbar, 0) / plots.length
39
-
40
- const A2 = getA2Value(plotSize)
41
- const ucl = overallMean + A2 * averageRange
42
- const lcl = overallMean - A2 * averageRange
43
-
44
- return {
45
- chartType: 'Xbar',
46
- controlLimits: {
47
- ucl,
48
- lcl,
49
- cl: overallMean
50
- },
51
- plots
52
- }
53
- }
package/server/index.ts DELETED
@@ -1,10 +0,0 @@
1
- export * from './service'
2
-
3
- import { DataUseCase } from '@things-factory/dataset'
4
- import { DataUseCaseSPC } from './controllers'
5
-
6
- process.on('bootstrap-module-start' as any, async ({ app, config, schema }: any) => {
7
- DataUseCase.registerUseCase('SPC', new DataUseCaseSPC())
8
-
9
- console.log('[spc:bootstrap] SPC has just registered as a DataUseCase.')
10
- })
@@ -1,21 +0,0 @@
1
- /* EXPORT ENTITY TYPES */
2
-
3
- /* IMPORT ENTITIES AND RESOLVERS */
4
- import { entities as SpcChartEntities, resolvers as SpcChartResolvers, subscribers as SpcChartSubscribers } from './spc-chart'
5
-
6
- export const entities = [
7
- /* ENTITIES */
8
- ...SpcChartEntities
9
- ]
10
-
11
- export const subscribers = [
12
- /* SUBSCRIBERS */
13
- ...SpcChartSubscribers
14
- ]
15
-
16
- export const schema = {
17
- resolverClasses: [
18
- /* RESOLVER CLASSES */
19
- ...SpcChartResolvers
20
- ]
21
- }
@@ -1,5 +0,0 @@
1
- import { SpcChartQuery } from './spc-chart-query'
2
-
3
- export const entities = []
4
- export const resolvers = [SpcChartQuery]
5
- export const subscribers = []
@@ -1,102 +0,0 @@
1
- import { Resolver, Query, Arg, Ctx } from 'type-graphql'
2
- import { Between, In } from 'typeorm'
3
-
4
- import { getRepository } from '@things-factory/shell'
5
- import { User } from '@things-factory/auth-base'
6
- import { DataSet, DataSample } from '@things-factory/dataset'
7
-
8
- import { SPCChartAnalysis, SPCChartAnalysisResult } from './spc-chart-type'
9
- import { calculateXBarAnalysisResult } from '../../controllers/spc-chart/x-bar'
10
- import { calculateRChartAnalysisResult } from '../../controllers/spc-chart/r'
11
- import { calculateIChartAnalysisResult } from '../../controllers/spc-chart/i'
12
- import { calculateMRChartAnalysisResult } from '../../controllers/spc-chart/mr'
13
- import { calculateUChartAnalysisResult } from '../../controllers/spc-chart/u'
14
- import { calculateCChartAnalysisResult } from '../../controllers/spc-chart/c'
15
- import { calculatePChartAnalysisResult } from '../../controllers/spc-chart/p'
16
- import { calculateNPChartAnalysisResult } from '../../controllers/spc-chart/np'
17
-
18
- @Resolver(DataSet)
19
- export class SpcChartQuery {
20
- @Query(returns => SPCChartAnalysisResult!, { nullable: true, description: 'To fetch a SpcChart' })
21
- async spcChart(
22
- @Arg('dataSetId') dataSetId: string,
23
- @Arg('variable') variable: string,
24
- @Arg('chartType') chartType: string,
25
- @Arg('fromDate') fromDate: string,
26
- @Arg('toDate') toDate: string,
27
- @Ctx() context: ResolverContext
28
- ): Promise<SPCChartAnalysisResult> {
29
- const { domain } = context.state
30
-
31
- const dataSet = (await getRepository(DataSet).findOne({
32
- where: { domain: { id: In([domain.id, domain.parentId].filter(Boolean)) }, id: dataSetId }
33
- })) as DataSet
34
-
35
- if (!dataSet) {
36
- throw 'no given dataset'
37
- }
38
-
39
- const dataItem = dataSet.dataItems.find(dataItem => dataItem.name == variable)
40
-
41
- if (!dataItem) {
42
- throw 'no given variables in the dataset'
43
- }
44
-
45
- // TODO timezone
46
- const fromTime = new Date(fromDate) /* default: 30days before */
47
- const toTime = new Date(toDate) /* default: today */
48
-
49
- const dataSamples = (await getRepository(DataSample).find({
50
- where: {
51
- dataSet: { id: dataSet.id },
52
- createdAt: Between(fromTime, toTime)
53
- }
54
- })) as DataSample[]
55
-
56
- const tag = dataItem.tag
57
- const samples = dataSamples
58
- .map(dataSample => {
59
- const data = dataSample.data[tag]
60
-
61
- return {
62
- x: dataSample.createdAt,
63
- values: Array.isArray(data) ? data : [data]
64
- }
65
- })
66
- .filter(sample => {
67
- const { x, values } = sample
68
- return x && values && values.length > 0 && values.every(v => v ?? false)
69
- })
70
-
71
- const charts = [] as SPCChartAnalysis[]
72
-
73
- switch (chartType) {
74
- case 'Xbar-R':
75
- charts.push(calculateXBarAnalysisResult(samples as any))
76
- charts.push(calculateRChartAnalysisResult(samples as any))
77
- break
78
- case 'I-MR':
79
- charts.push(calculateIChartAnalysisResult(samples as any))
80
- charts.push(calculateMRChartAnalysisResult(samples as any))
81
- break
82
- case 'C':
83
- charts.push(calculateUChartAnalysisResult(samples as any))
84
- break
85
- case 'U':
86
- charts.push(calculateCChartAnalysisResult(samples as any))
87
- break
88
- case 'P':
89
- charts.push(calculatePChartAnalysisResult(samples as any))
90
- break
91
- case 'NP':
92
- charts.push(calculateNPChartAnalysisResult(samples as any))
93
- break
94
- }
95
-
96
- return {
97
- dataSet,
98
- variable,
99
- charts
100
- }
101
- }
102
- }