@things-factory/spc 7.0.0-alpha.6 → 7.0.0-alpha.8

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (81) hide show
  1. package/client/pages/spc-chart-page.ts +251 -47
  2. package/dist-client/pages/spc-chart-page.d.ts +21 -3
  3. package/dist-client/pages/spc-chart-page.js +234 -46
  4. package/dist-client/pages/spc-chart-page.js.map +1 -1
  5. package/dist-client/tsconfig.tsbuildinfo +1 -1
  6. package/dist-server/controllers/rules/cp-cpk.js +21 -0
  7. package/dist-server/controllers/rules/cp-cpk.js.map +1 -0
  8. package/dist-server/controllers/spc-chart/c.js +26 -0
  9. package/dist-server/controllers/spc-chart/c.js.map +1 -0
  10. package/dist-server/controllers/{spc-/bchart → spc-chart}/histogram.js +1 -2
  11. package/dist-server/controllers/spc-chart/histogram.js.map +1 -0
  12. package/dist-server/controllers/spc-chart/i.js +26 -0
  13. package/dist-server/controllers/spc-chart/i.js.map +1 -0
  14. package/dist-server/controllers/{spc-/bchart → spc-chart}/index.js +17 -17
  15. package/dist-server/controllers/spc-chart/index.js.map +1 -0
  16. package/dist-server/controllers/{spc-/bchart → spc-chart}/mr.js +12 -11
  17. package/dist-server/controllers/spc-chart/mr.js.map +1 -0
  18. package/dist-server/controllers/spc-chart/np.js +26 -0
  19. package/dist-server/controllers/spc-chart/np.js.map +1 -0
  20. package/dist-server/controllers/spc-chart/p.js +25 -0
  21. package/dist-server/controllers/spc-chart/p.js.map +1 -0
  22. package/dist-server/controllers/{spc-/bchart → spc-chart}/pareto.js +1 -2
  23. package/dist-server/controllers/spc-chart/pareto.js.map +1 -0
  24. package/dist-server/controllers/{spc-/bchart → spc-chart}/r.js +15 -11
  25. package/dist-server/controllers/spc-chart/r.js.map +1 -0
  26. package/dist-server/controllers/{spc-/bchart → spc-chart}/u.js +14 -11
  27. package/dist-server/controllers/spc-chart/u.js.map +1 -0
  28. package/dist-server/controllers/spc-chart/x-bar-r.js +45 -0
  29. package/dist-server/controllers/spc-chart/x-bar-r.js.map +1 -0
  30. package/dist-server/controllers/spc-chart/x-bar.js +45 -0
  31. package/dist-server/controllers/spc-chart/x-bar.js.map +1 -0
  32. package/dist-server/service/spc-chart/spc-chart-query.js +76 -175
  33. package/dist-server/service/spc-chart/spc-chart-query.js.map +1 -1
  34. package/dist-server/service/spc-chart/spc-chart-type.js +71 -85
  35. package/dist-server/service/spc-chart/spc-chart-type.js.map +1 -1
  36. package/dist-server/tsconfig.tsbuildinfo +1 -1
  37. package/package.json +5 -4
  38. package/server/controllers/rules/cp-cpk.ts +29 -0
  39. package/server/controllers/spc-chart/c.ts +31 -0
  40. package/server/controllers/{spc-/bchart → spc-chart}/histogram.ts +1 -3
  41. package/server/controllers/spc-chart/i.ts +31 -0
  42. package/server/controllers/{spc-/bchart → spc-chart}/index.ts +17 -17
  43. package/server/controllers/spc-chart/mr.ts +30 -0
  44. package/server/controllers/spc-chart/np.ts +30 -0
  45. package/server/controllers/spc-chart/p.ts +29 -0
  46. package/server/controllers/{spc-/bchart → spc-chart}/pareto.ts +1 -3
  47. package/server/controllers/spc-chart/r.ts +34 -0
  48. package/server/controllers/spc-chart/u.ts +31 -0
  49. package/server/controllers/spc-chart/x-bar-r.ts +53 -0
  50. package/server/controllers/spc-chart/x-bar.ts +53 -0
  51. package/server/service/spc-chart/spc-chart-query.ts +87 -177
  52. package/server/service/spc-chart/spc-chart-type.ts +57 -55
  53. package/translations/en.json +3 -1
  54. package/translations/ja.json +3 -1
  55. package/translations/ko.json +3 -1
  56. package/translations/ms.json +3 -1
  57. package/translations/zh.json +3 -1
  58. package/dist-server/controllers/spc-/bchart/c.js +0 -21
  59. package/dist-server/controllers/spc-/bchart/c.js.map +0 -1
  60. package/dist-server/controllers/spc-/bchart/histogram.js.map +0 -1
  61. package/dist-server/controllers/spc-/bchart/i.js +0 -23
  62. package/dist-server/controllers/spc-/bchart/i.js.map +0 -1
  63. package/dist-server/controllers/spc-/bchart/index.js.map +0 -1
  64. package/dist-server/controllers/spc-/bchart/mr.js.map +0 -1
  65. package/dist-server/controllers/spc-/bchart/np.js +0 -23
  66. package/dist-server/controllers/spc-/bchart/np.js.map +0 -1
  67. package/dist-server/controllers/spc-/bchart/p.js +0 -22
  68. package/dist-server/controllers/spc-/bchart/p.js.map +0 -1
  69. package/dist-server/controllers/spc-/bchart/pareto.js.map +0 -1
  70. package/dist-server/controllers/spc-/bchart/r.js.map +0 -1
  71. package/dist-server/controllers/spc-/bchart/u.js.map +0 -1
  72. package/dist-server/controllers/spc-/bchart/x-bar.js +0 -50
  73. package/dist-server/controllers/spc-/bchart/x-bar.js.map +0 -1
  74. package/server/controllers/spc-/bchart/c.ts +0 -31
  75. package/server/controllers/spc-/bchart/i.ts +0 -35
  76. package/server/controllers/spc-/bchart/mr.ts +0 -37
  77. package/server/controllers/spc-/bchart/np.ts +0 -35
  78. package/server/controllers/spc-/bchart/p.ts +0 -34
  79. package/server/controllers/spc-/bchart/r.ts +0 -40
  80. package/server/controllers/spc-/bchart/u.ts +0 -36
  81. package/server/controllers/spc-/bchart/x-bar.ts +0 -70
@@ -1,50 +0,0 @@
1
- "use strict";
2
- Object.defineProperty(exports, "__esModule", { value: true });
3
- exports.calculateXBarAnalysisResult = void 0;
4
- function getA2Value(sampleSize) {
5
- const a2Values = {
6
- 2: 1.88,
7
- 3: 1.023,
8
- 4: 0.729,
9
- 5: 0.577,
10
- 6: 0.483
11
- // 다른 샘플 크기에 대한 A2 값 추가...
12
- };
13
- return a2Values[sampleSize] || 0; // 샘플 크기에 대한 A2 값이 정의되지 않은 경우 0을 반환
14
- }
15
- function calculateXBarAnalysisResult(samples, variableName) {
16
- // 샘플 그룹별로 데이터를 분류합니다.
17
- const groupedSamples = samples.reduce((acc, sample) => {
18
- acc[sample.groupId] = acc[sample.groupId] || [];
19
- acc[sample.groupId].push(sample.value);
20
- return acc;
21
- }, {});
22
- // 각 샘플 그룹의 평균을 계산합니다.
23
- const groupMeans = Object.values(groupedSamples).map(values => {
24
- return values.reduce((sum, val) => sum + val, 0) / values.length;
25
- });
26
- // 전체 평균(중심선, CL), 상한 제어선(UCL), 하한 제어선(LCL)을 계산합니다.
27
- const overallMean = groupMeans.reduce((sum, val) => sum + val, 0) / groupMeans.length;
28
- const standardDeviation = Math.sqrt(groupMeans.reduce((sum, mean) => sum + Math.pow(mean - overallMean, 2), 0) / groupMeans.length);
29
- const sampleSize = Object.values(groupedSamples)[0].length; // 샘플 크기 추정(모든 그룹이 같은 크기를 가정)
30
- const A2 = getA2Value(sampleSize);
31
- const UCL = overallMean + A2 * standardDeviation;
32
- const LCL = overallMean - A2 * standardDeviation;
33
- return {
34
- chartType: 'X-bar',
35
- variables: [
36
- {
37
- name: variableName,
38
- stats: {
39
- mean: overallMean,
40
- UCL: UCL,
41
- LCL: LCL,
42
- CL: overallMean
43
- },
44
- samples: samples
45
- }
46
- ]
47
- };
48
- }
49
- exports.calculateXBarAnalysisResult = calculateXBarAnalysisResult;
50
- //# sourceMappingURL=x-bar.js.map
@@ -1 +0,0 @@
1
- {"version":3,"file":"x-bar.js","sourceRoot":"","sources":["../../../server/controllers/spc-\bchart/x-bar.ts"],"names":[],"mappings":";;;AAmBA,SAAS,UAAU,CAAC,UAAkB;IACpC,MAAM,QAAQ,GAA8B;QAC1C,CAAC,EAAE,IAAI;QACP,CAAC,EAAE,KAAK;QACR,CAAC,EAAE,KAAK;QACR,CAAC,EAAE,KAAK;QACR,CAAC,EAAE,KAAK;QACR,0BAA0B;KAC3B,CAAA;IAED,OAAO,QAAQ,CAAC,UAAU,CAAC,IAAI,CAAC,CAAA,CAAC,mCAAmC;AACtE,CAAC;AAED,SAAgB,2BAA2B,CAAC,OAAiB,EAAE,YAAoB;IACjF,sBAAsB;IACtB,MAAM,cAAc,GAAG,OAAO,CAAC,MAAM,CAAC,CAAC,GAAG,EAAE,MAAM,EAAE,EAAE;QACpD,GAAG,CAAC,MAAM,CAAC,OAAO,CAAC,GAAG,GAAG,CAAC,MAAM,CAAC,OAAO,CAAC,IAAI,EAAE,CAAA;QAC/C,GAAG,CAAC,MAAM,CAAC,OAAO,CAAC,CAAC,IAAI,CAAC,MAAM,CAAC,KAAK,CAAC,CAAA;QACtC,OAAO,GAAG,CAAA;IACZ,CAAC,EAAE,EAA8B,CAAC,CAAA;IAElC,sBAAsB;IACtB,MAAM,UAAU,GAAG,MAAM,CAAC,MAAM,CAAC,cAAc,CAAC,CAAC,GAAG,CAAC,MAAM,CAAC,EAAE;QAC5D,OAAO,MAAM,CAAC,MAAM,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,EAAE,CAAC,GAAG,GAAG,GAAG,EAAE,CAAC,CAAC,GAAG,MAAM,CAAC,MAAM,CAAA;IAClE,CAAC,CAAC,CAAA;IAEF,mDAAmD;IACnD,MAAM,WAAW,GAAG,UAAU,CAAC,MAAM,CAAC,CAAC,GAAG,EAAE,GAAG,EAAE,EAAE,CAAC,GAAG,GAAG,GAAG,EAAE,CAAC,CAAC,GAAG,UAAU,CAAC,MAAM,CAAA;IACrF,MAAM,iBAAiB,GAAG,IAAI,CAAC,IAAI,CAAC,UAAU,CAAC,MAAM,CAAC,CAAC,GAAG,EAAE,IAAI,EAAE,EAAE,CAAC,GAAG,GAAG,IAAI,CAAC,GAAG,CAAC,IAAI,GAAG,WAAW,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,UAAU,CAAC,MAAM,CAAC,CAAA;IACnI,MAAM,UAAU,GAAG,MAAM,CAAC,MAAM,CAAC,cAAc,CAAC,CAAC,CAAC,CAAC,CAAC,MAAM,CAAA,CAAC,6BAA6B;IAExF,MAAM,EAAE,GAAG,UAAU,CAAC,UAAU,CAAC,CAAA;IACjC,MAAM,GAAG,GAAG,WAAW,GAAG,EAAE,GAAG,iBAAiB,CAAA;IAChD,MAAM,GAAG,GAAG,WAAW,GAAG,EAAE,GAAG,iBAAiB,CAAA;IAEhD,OAAO;QACL,SAAS,EAAE,OAAO;QAClB,SAAS,EAAE;YACT;gBACE,IAAI,EAAE,YAAY;gBAClB,KAAK,EAAE;oBACL,IAAI,EAAE,WAAW;oBACjB,GAAG,EAAE,GAAG;oBACR,GAAG,EAAE,GAAG;oBACR,EAAE,EAAE,WAAW;iBAChB;gBACD,OAAO,EAAE,OAAO;aACjB;SACF;KACF,CAAA;AACH,CAAC;AArCD,kEAqCC","sourcesContent":["interface Sample {\n groupId: string // 샘플 그룹 ID\n value: number // 샘플 값\n}\n\ninterface XBarChartResult {\n chartType: 'X-bar'\n variables: Array<{\n name: string\n stats: {\n mean: number\n UCL: number\n LCL: number\n CL: number\n }\n samples: Sample[]\n }>\n}\n\nfunction getA2Value(sampleSize: number): number {\n const a2Values: { [key: number]: number } = {\n 2: 1.88,\n 3: 1.023,\n 4: 0.729,\n 5: 0.577,\n 6: 0.483\n // 다른 샘플 크기에 대한 A2 값 추가...\n }\n\n return a2Values[sampleSize] || 0 // 샘플 크기에 대한 A2 값이 정의되지 않은 경우 0을 반환\n}\n\nexport function calculateXBarAnalysisResult(samples: Sample[], variableName: string): XBarChartResult {\n // 샘플 그룹별로 데이터를 분류합니다.\n const groupedSamples = samples.reduce((acc, sample) => {\n acc[sample.groupId] = acc[sample.groupId] || []\n acc[sample.groupId].push(sample.value)\n return acc\n }, {} as Record<string, number[]>)\n\n // 각 샘플 그룹의 평균을 계산합니다.\n const groupMeans = Object.values(groupedSamples).map(values => {\n return values.reduce((sum, val) => sum + val, 0) / values.length\n })\n\n // 전체 평균(중심선, CL), 상한 제어선(UCL), 하한 제어선(LCL)을 계산합니다.\n const overallMean = groupMeans.reduce((sum, val) => sum + val, 0) / groupMeans.length\n const standardDeviation = Math.sqrt(groupMeans.reduce((sum, mean) => sum + Math.pow(mean - overallMean, 2), 0) / groupMeans.length)\n const sampleSize = Object.values(groupedSamples)[0].length // 샘플 크기 추정(모든 그룹이 같은 크기를 가정)\n\n const A2 = getA2Value(sampleSize)\n const UCL = overallMean + A2 * standardDeviation\n const LCL = overallMean - A2 * standardDeviation\n\n return {\n chartType: 'X-bar',\n variables: [\n {\n name: variableName,\n stats: {\n mean: overallMean,\n UCL: UCL,\n LCL: LCL,\n CL: overallMean\n },\n samples: samples\n }\n ]\n }\n}\n"]}
@@ -1,31 +0,0 @@
1
- interface CChartData {
2
- period: string // 샘플 기간 또는 단위 식별자
3
- defects: number // 해당 기간 또는 단위에서 발생한 결함 수
4
- }
5
-
6
- interface CChartResult {
7
- CBar: number // 평균 결함 수
8
- UCL: number // 상한 제어선
9
- LCL: number // 하한 제어선
10
- data: CChartData[] // 입력된 결함 데이터
11
- }
12
-
13
- export function calculateCChart(data: CChartData[]): CChartResult {
14
- // 총 결함 수를 계산합니다.
15
- const totalDefects = data.reduce((sum, { defects }) => sum + defects, 0)
16
-
17
- // 평균 결함 수(C-bar)를 계산합니다.
18
- const CBar = totalDefects / data.length
19
-
20
- // 상한 제어선(UCL)과 하한 제어선(LCL)을 계산합니다.
21
- // 포아송 분포를 가정할 때, UCL = C-bar + 3*sqrt(C-bar), LCL = C-bar - 3*sqrt(C-bar) (단, LCL이 음수인 경우 0으로 설정)
22
- const UCL = CBar + 3 * Math.sqrt(CBar)
23
- const LCL = Math.max(CBar - 3 * Math.sqrt(CBar), 0)
24
-
25
- return {
26
- CBar,
27
- UCL,
28
- LCL,
29
- data
30
- }
31
- }
@@ -1,35 +0,0 @@
1
- interface ISample {
2
- sampleId: string
3
- value: number // 개별 측정값
4
- }
5
-
6
- interface IChartResult {
7
- chartType: 'I'
8
- variableName: string
9
- CL: number // 중심선
10
- UCL: number // 상한 제어선
11
- LCL: number // 하한 제어선
12
- samples: ISample[] // 개별 측정값 배열
13
- }
14
-
15
- export function calculateIChartAnalysisResult(samples: ISample[], variableName: string): IChartResult {
16
- // 개별 측정값의 평균을 계산하여 중심선(CL)을 구합니다.
17
- const CL = samples.reduce((acc, sample) => acc + sample.value, 0) / samples.length
18
-
19
- // 개별 측정값의 표준편차를 계산합니다.
20
- const standardDeviation = Math.sqrt(samples.reduce((acc, sample) => acc + Math.pow(sample.value - CL, 2), 0) / samples.length)
21
-
22
- // 공정 변동을 고려하여 상한 제어선(UCL)과 하한 제어선(LCL)을 계산합니다.
23
- // 여기서는 3시그마(3 * 표준편차)를 사용합니다. 상황에 따라 적절한 시그마 수준을 조정할 수 있습니다.
24
- const UCL = CL + 3 * standardDeviation
25
- const LCL = CL - 3 * standardDeviation
26
-
27
- return {
28
- chartType: 'I',
29
- variableName,
30
- CL,
31
- UCL,
32
- LCL,
33
- samples
34
- }
35
- }
@@ -1,37 +0,0 @@
1
- interface MRSample {
2
- sampleId: string
3
- value: number // 측정값
4
- }
5
-
6
- interface MRChartResult {
7
- chartType: 'MR'
8
- variableName: string
9
- CL: number // 중심선
10
- UCL: number // 상한 제어선
11
- LCL: number // 하한 제어선 (MR 차트에서는 일반적으로 0으로 설정됩니다)
12
- movingRanges: number[] // 연속된 측정값 간의 변동 범위
13
- }
14
-
15
- export function calculateMRChartAnalysisResult(samples: MRSample[], variableName: string): MRChartResult {
16
- // 연속된 측정값 간의 변동 범위를 계산합니다.
17
- const movingRanges = samples.slice(1).map((sample, index) => Math.abs(sample.value - samples[index].value))
18
-
19
- // 변동 범위의 평균을 계산하여 중심선(CL)을 구합니다.
20
- const CL = movingRanges.reduce((acc, range) => acc + range, 0) / movingRanges.length
21
-
22
- // 공정 변동을 고려하여 상한 제어선(UCL)을 계산합니다.
23
- // MR 차트에서는 3.267 * MR-Bar을 사용합니다 (2개의 측정값을 사용하는 경우).
24
- const UCL = 3.267 * CL
25
-
26
- // MR 차트에서 하한 제어선(LCL)은 일반적으로 사용되지 않거나 0으로 설정됩니다.
27
- const LCL = 0 // 하한 제어선
28
-
29
- return {
30
- chartType: 'MR',
31
- variableName,
32
- CL,
33
- UCL,
34
- LCL,
35
- movingRanges
36
- }
37
- }
@@ -1,35 +0,0 @@
1
- interface NPSampleGroup {
2
- groupId: string
3
- nonConforming: number // 각 샘플 그룹의 불량품 수
4
- totalUnits: number // 샘플 그룹의 총 단위 수
5
- }
6
-
7
- interface NPChartResult {
8
- chartType: 'NP'
9
- variableName: string
10
- NPBar: number // 샘플 그룹의 평균 불량품 수
11
- UCL: number
12
- LCL: number
13
- sampleGroups: NPSampleGroup[]
14
- }
15
-
16
- export function calculateNPChartAnalysisResult(sampleGroups: NPSampleGroup[], variableName: string): NPChartResult {
17
- const totalNonConforming = sampleGroups.reduce((acc, group) => acc + group.nonConforming, 0)
18
- const totalUnits = sampleGroups.reduce((acc, group) => acc + group.totalUnits, 0)
19
- const NPBar = totalNonConforming / sampleGroups.length // 평균 불량품 수
20
-
21
- // p 차트 공식을 사용하여 UCL과 LCL을 계산합니다.
22
- const pBar = totalNonConforming / totalUnits // 전체 불량품 비율
23
- const UCL = NPBar + 3 * Math.sqrt(NPBar * (1 - pBar))
24
- let LCL = NPBar - 3 * Math.sqrt(NPBar * (1 - pBar))
25
- LCL = LCL < 0 ? 0 : LCL // LCL이 음수인 경우 0으로 설정
26
-
27
- return {
28
- chartType: 'NP',
29
- variableName,
30
- NPBar,
31
- UCL,
32
- LCL,
33
- sampleGroups
34
- }
35
- }
@@ -1,34 +0,0 @@
1
- interface PSampleGroup {
2
- groupId: string // 샘플 그룹 ID
3
- defectiveUnits: number // 그룹 내 결함 있는 단위 수
4
- totalUnits: number // 그룹 내 총 단위 수
5
- }
6
-
7
- interface PChartResult {
8
- chartType: 'P'
9
- variableName: string
10
- PBar: number // 결함 있는 단위의 평균 비율
11
- UCL: number // 상한 제어선
12
- LCL: number // 하한 제어선
13
- sampleGroups: PSampleGroup[]
14
- }
15
-
16
- export function calculatePChartAnalysisResult(sampleGroups: PSampleGroup[], variableName: string): PChartResult {
17
- // 결함 있는 단위의 평균 비율(PBar)을 계산합니다.
18
- const totalDefectiveUnits = sampleGroups.reduce((acc, group) => acc + group.defectiveUnits, 0)
19
- const totalUnits = sampleGroups.reduce((acc, group) => acc + group.totalUnits, 0)
20
- const PBar = totalDefectiveUnits / totalUnits
21
-
22
- // 샘플 그룹의 크기(n)에 따라 UCL과 LCL을 계산합니다.
23
- const UCL = PBar + 3 * Math.sqrt((PBar * (1 - PBar)) / totalUnits)
24
- const LCL = PBar - 3 * Math.sqrt((PBar * (1 - PBar)) / totalUnits) < 0 ? 0 : PBar - 3 * Math.sqrt((PBar * (1 - PBar)) / totalUnits) // LCL이 음수가 되지 않도록 처리
25
-
26
- return {
27
- chartType: 'P',
28
- variableName,
29
- PBar,
30
- UCL,
31
- LCL,
32
- sampleGroups
33
- }
34
- }
@@ -1,40 +0,0 @@
1
- interface SampleGroup {
2
- groupId: string
3
- values: number[]
4
- }
5
-
6
- interface RChartResult {
7
- chartType: 'R'
8
- variableName: string
9
- RBar: number
10
- UCL: number
11
- LCL: number
12
- sampleGroups: SampleGroup[]
13
- }
14
-
15
- export function calculateRChartAnalysisResult(sampleGroups: SampleGroup[], variableName: string): RChartResult {
16
- // 각 샘플 그룹의 범위를 계산합니다.
17
- const ranges = sampleGroups.map(group => Math.max(...group.values) - Math.min(...group.values))
18
-
19
- // 모든 샘플 그룹의 범위의 평균값(R-bar)을 계산합니다.
20
- const RBar = ranges.reduce((acc, cur) => acc + cur, 0) / ranges.length
21
-
22
- // 샘플 그룹의 크기(n)에 따라 D3와 D4 값을 설정합니다.
23
- // 예시에서는 n=5인 경우의 D3와 D4 값을 사용합니다. 실제 구현에서는 샘플 크기에 맞는 값을 사용해야 합니다.
24
- const n = sampleGroups[0].values.length // 가정: 모든 샘플 그룹의 크기가 동일합니다.
25
- const D3 = 0 // n=5에 대한 D3 값
26
- const D4 = 2.114 // n=5에 대한 D4 값
27
-
28
- // UCL과 LCL을 계산합니다.
29
- const UCL = D4 * RBar
30
- const LCL = D3 * RBar // D3가 0인 경우, LCL은 0이 됩니다.
31
-
32
- return {
33
- chartType: 'R',
34
- variableName,
35
- RBar,
36
- UCL,
37
- LCL,
38
- sampleGroups
39
- }
40
- }
@@ -1,36 +0,0 @@
1
- interface USampleGroup {
2
- groupId: string
3
- defects: number // 그룹 내의 총 결함 수
4
- units: number // 그룹 내의 단위 수
5
- }
6
-
7
- interface UChartResult {
8
- chartType: 'U'
9
- variableName: string
10
- UBar: number // 단위당 결함 수의 평균
11
- UCL: number // 상한 제어선
12
- LCL: number // 하한 제어선
13
- sampleGroups: USampleGroup[]
14
- }
15
-
16
- export function calculateUChartAnalysisResult(sampleGroups: USampleGroup[], variableName: string): UChartResult {
17
- // 단위당 결함 수의 평균(UBar)을 계산합니다.
18
- const totalDefects = sampleGroups.reduce((acc, group) => acc + group.defects, 0)
19
- const totalUnits = sampleGroups.reduce((acc, group) => acc + group.units, 0)
20
- const UBar = totalDefects / totalUnits
21
-
22
- // 샘플 그룹의 크기(n)에 따라 상수를 결정합니다. 여기서는 일반적인 상수 값을 사용합니다.
23
- const n = sampleGroups.length // 샘플 그룹의 수
24
- // UCL과 LCL 계산을 위한 상수. 실제 값은 샘플 크기와 분포에 따라 달라질 수 있습니다.
25
- const UCL = UBar + 3 * Math.sqrt(UBar / totalUnits)
26
- const LCL = UBar - 3 * Math.sqrt(UBar / totalUnits) < 0 ? 0 : UBar - 3 * Math.sqrt(UBar / totalUnits) // LCL이 음수가 되지 않도록 처리
27
-
28
- return {
29
- chartType: 'U',
30
- variableName,
31
- UBar,
32
- UCL,
33
- LCL,
34
- sampleGroups
35
- }
36
- }
@@ -1,70 +0,0 @@
1
- interface Sample {
2
- groupId: string // 샘플 그룹 ID
3
- value: number // 샘플 값
4
- }
5
-
6
- interface XBarChartResult {
7
- chartType: 'X-bar'
8
- variables: Array<{
9
- name: string
10
- stats: {
11
- mean: number
12
- UCL: number
13
- LCL: number
14
- CL: number
15
- }
16
- samples: Sample[]
17
- }>
18
- }
19
-
20
- function getA2Value(sampleSize: number): number {
21
- const a2Values: { [key: number]: number } = {
22
- 2: 1.88,
23
- 3: 1.023,
24
- 4: 0.729,
25
- 5: 0.577,
26
- 6: 0.483
27
- // 다른 샘플 크기에 대한 A2 값 추가...
28
- }
29
-
30
- return a2Values[sampleSize] || 0 // 샘플 크기에 대한 A2 값이 정의되지 않은 경우 0을 반환
31
- }
32
-
33
- export function calculateXBarAnalysisResult(samples: Sample[], variableName: string): XBarChartResult {
34
- // 샘플 그룹별로 데이터를 분류합니다.
35
- const groupedSamples = samples.reduce((acc, sample) => {
36
- acc[sample.groupId] = acc[sample.groupId] || []
37
- acc[sample.groupId].push(sample.value)
38
- return acc
39
- }, {} as Record<string, number[]>)
40
-
41
- // 각 샘플 그룹의 평균을 계산합니다.
42
- const groupMeans = Object.values(groupedSamples).map(values => {
43
- return values.reduce((sum, val) => sum + val, 0) / values.length
44
- })
45
-
46
- // 전체 평균(중심선, CL), 상한 제어선(UCL), 하한 제어선(LCL)을 계산합니다.
47
- const overallMean = groupMeans.reduce((sum, val) => sum + val, 0) / groupMeans.length
48
- const standardDeviation = Math.sqrt(groupMeans.reduce((sum, mean) => sum + Math.pow(mean - overallMean, 2), 0) / groupMeans.length)
49
- const sampleSize = Object.values(groupedSamples)[0].length // 샘플 크기 추정(모든 그룹이 같은 크기를 가정)
50
-
51
- const A2 = getA2Value(sampleSize)
52
- const UCL = overallMean + A2 * standardDeviation
53
- const LCL = overallMean - A2 * standardDeviation
54
-
55
- return {
56
- chartType: 'X-bar',
57
- variables: [
58
- {
59
- name: variableName,
60
- stats: {
61
- mean: overallMean,
62
- UCL: UCL,
63
- LCL: LCL,
64
- CL: overallMean
65
- },
66
- samples: samples
67
- }
68
- ]
69
- }
70
- }