@thesingularitynetwork/darkswap-sdk 0.1.27 → 0.2.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/darkswap-sdk.cjs.development.js +350 -49
- package/dist/darkswap-sdk.cjs.development.js.map +1 -1
- package/dist/darkswap-sdk.cjs.production.min.js +1 -1
- package/dist/darkswap-sdk.cjs.production.min.js.map +1 -1
- package/dist/darkswap-sdk.esm.js +350 -50
- package/dist/darkswap-sdk.esm.js.map +1 -1
- package/dist/index.d.ts +1 -0
- package/dist/proof/synara/bridgeOrderProof.d.ts +16 -0
- package/dist/types.d.ts +2 -1
- package/package.json +1 -1
- package/dist/test/utils/helpers.d.ts +0 -9
|
@@ -380,6 +380,11 @@ var abi = [
|
|
|
380
380
|
],
|
|
381
381
|
name: "appendMerkleLeaf",
|
|
382
382
|
outputs: [
|
|
383
|
+
{
|
|
384
|
+
internalType: "uint256",
|
|
385
|
+
name: "",
|
|
386
|
+
type: "uint256"
|
|
387
|
+
}
|
|
383
388
|
],
|
|
384
389
|
stateMutability: "nonpayable",
|
|
385
390
|
type: "function"
|
|
@@ -403,6 +408,25 @@ var abi = [
|
|
|
403
408
|
stateMutability: "view",
|
|
404
409
|
type: "function"
|
|
405
410
|
},
|
|
411
|
+
{
|
|
412
|
+
inputs: [
|
|
413
|
+
{
|
|
414
|
+
internalType: "bytes32",
|
|
415
|
+
name: "_noteCommitment",
|
|
416
|
+
type: "bytes32"
|
|
417
|
+
}
|
|
418
|
+
],
|
|
419
|
+
name: "getCommitmentIndex",
|
|
420
|
+
outputs: [
|
|
421
|
+
{
|
|
422
|
+
internalType: "uint256",
|
|
423
|
+
name: "",
|
|
424
|
+
type: "uint256"
|
|
425
|
+
}
|
|
426
|
+
],
|
|
427
|
+
stateMutability: "view",
|
|
428
|
+
type: "function"
|
|
429
|
+
},
|
|
406
430
|
{
|
|
407
431
|
inputs: [
|
|
408
432
|
],
|
|
@@ -566,9 +590,9 @@ var abi = [
|
|
|
566
590
|
name: "noteCommitmentsCreated",
|
|
567
591
|
outputs: [
|
|
568
592
|
{
|
|
569
|
-
internalType: "
|
|
570
|
-
name: "
|
|
571
|
-
type: "
|
|
593
|
+
internalType: "uint256",
|
|
594
|
+
name: "commitmentIndex",
|
|
595
|
+
type: "uint256"
|
|
572
596
|
}
|
|
573
597
|
],
|
|
574
598
|
stateMutability: "view",
|
|
@@ -755,6 +779,11 @@ var abi = [
|
|
|
755
779
|
internalType: "bytes32",
|
|
756
780
|
name: "commitment",
|
|
757
781
|
type: "bytes32"
|
|
782
|
+
},
|
|
783
|
+
{
|
|
784
|
+
internalType: "uint256",
|
|
785
|
+
name: "indexOffset",
|
|
786
|
+
type: "uint256"
|
|
758
787
|
}
|
|
759
788
|
],
|
|
760
789
|
name: "setNoteCommitmentCreated",
|
|
@@ -2386,16 +2415,16 @@ function getNoteOnChainStatus(_x, _x2, _x3) {
|
|
|
2386
2415
|
}
|
|
2387
2416
|
function _getNoteOnChainStatus() {
|
|
2388
2417
|
_getNoteOnChainStatus = _asyncToGenerator(/*#__PURE__*/_regenerator().m(function _callee(darkSwap, note, nullifier) {
|
|
2389
|
-
var contract,
|
|
2418
|
+
var contract, isNotCreated, isSpent, isLocked;
|
|
2390
2419
|
return _regenerator().w(function (_context) {
|
|
2391
2420
|
while (1) switch (_context.n) {
|
|
2392
2421
|
case 0:
|
|
2393
2422
|
contract = getContract(darkSwap.contracts.merkleTreeOperator, darkSwap);
|
|
2394
2423
|
_context.n = 1;
|
|
2395
|
-
return contract.
|
|
2424
|
+
return contract.noteIsNotCreated(note);
|
|
2396
2425
|
case 1:
|
|
2397
|
-
|
|
2398
|
-
if (
|
|
2426
|
+
isNotCreated = _context.v;
|
|
2427
|
+
if (!isNotCreated) {
|
|
2399
2428
|
_context.n = 2;
|
|
2400
2429
|
break;
|
|
2401
2430
|
}
|
|
@@ -4403,6 +4432,7 @@ var depositCircuit = {
|
|
|
4403
4432
|
PROOF_DOMAIN[PROOF_DOMAIN["JOIN"] = 10008] = "JOIN";
|
|
4404
4433
|
PROOF_DOMAIN[PROOF_DOMAIN["TRIPLE_JOIN"] = 10009] = "TRIPLE_JOIN";
|
|
4405
4434
|
PROOF_DOMAIN[PROOF_DOMAIN["RETAIL_SWAP"] = 10010] = "RETAIL_SWAP";
|
|
4435
|
+
PROOF_DOMAIN[PROOF_DOMAIN["RETAIL_BRIDGE_ORDER"] = 20003] = "RETAIL_BRIDGE_ORDER";
|
|
4406
4436
|
})(exports.PROOF_DOMAIN || (exports.PROOF_DOMAIN = {}));
|
|
4407
4437
|
var EMPTY_NULLIFIER = 0n;
|
|
4408
4438
|
var EMPTY_FOOTER = 0n;
|
|
@@ -4650,59 +4680,31 @@ function multiGetMerklePathAndRoot(_x3, _x4) {
|
|
|
4650
4680
|
}
|
|
4651
4681
|
function _multiGetMerklePathAndRoot() {
|
|
4652
4682
|
_multiGetMerklePathAndRoot = _asyncToGenerator(/*#__PURE__*/_regenerator().m(function _callee2(notes, darkSwap) {
|
|
4653
|
-
var contract,
|
|
4683
|
+
var contract, _yield$contract$getMu, root, paths, indexes, results, i;
|
|
4654
4684
|
return _regenerator().w(function (_context2) {
|
|
4655
4685
|
while (1) switch (_context2.n) {
|
|
4656
4686
|
case 0:
|
|
4657
4687
|
contract = getContract$1(darkSwap.contracts.merkleTreeOperator, darkSwap);
|
|
4658
|
-
results = [];
|
|
4659
4688
|
_context2.n = 1;
|
|
4660
|
-
return contract.getMultiMerklePaths(
|
|
4689
|
+
return contract.getMultiMerklePaths(notes.map(function (note) {
|
|
4690
|
+
return hexlify32(note);
|
|
4691
|
+
}));
|
|
4661
4692
|
case 1:
|
|
4662
4693
|
_yield$contract$getMu = _context2.v;
|
|
4663
4694
|
root = _yield$contract$getMu[0];
|
|
4664
4695
|
paths = _yield$contract$getMu[1];
|
|
4665
4696
|
indexes = _yield$contract$getMu[2];
|
|
4666
|
-
results
|
|
4667
|
-
|
|
4668
|
-
|
|
4669
|
-
|
|
4670
|
-
|
|
4671
|
-
|
|
4672
|
-
|
|
4673
|
-
|
|
4674
|
-
|
|
4675
|
-
|
|
4676
|
-
if (!(i < notes.length)) {
|
|
4677
|
-
_context2.n = 6;
|
|
4678
|
-
break;
|
|
4679
|
-
}
|
|
4680
|
-
_context2.n = 3;
|
|
4681
|
-
return contract.getMultiMerklePaths([hexlify32(notes[i])]);
|
|
4682
|
-
case 3:
|
|
4683
|
-
_yield$contract$getMu2 = _context2.v;
|
|
4684
|
-
_root = _yield$contract$getMu2[0];
|
|
4685
|
-
_paths = _yield$contract$getMu2[1];
|
|
4686
|
-
_indexes = _yield$contract$getMu2[2];
|
|
4687
|
-
if (!(_root != results[0].root)) {
|
|
4688
|
-
_context2.n = 4;
|
|
4689
|
-
break;
|
|
4697
|
+
results = [];
|
|
4698
|
+
for (i = 0; i < notes.length; i++) {
|
|
4699
|
+
results.push({
|
|
4700
|
+
noteCommitment: notes[i],
|
|
4701
|
+
path: paths[i],
|
|
4702
|
+
index: indexes[i].map(function (x) {
|
|
4703
|
+
return x ? 1 : 0;
|
|
4704
|
+
}),
|
|
4705
|
+
root: root
|
|
4706
|
+
});
|
|
4690
4707
|
}
|
|
4691
|
-
throw new DarkSwapError('Merkle root not match for multi notes, please try again');
|
|
4692
|
-
case 4:
|
|
4693
|
-
results.push({
|
|
4694
|
-
noteCommitment: notes[i],
|
|
4695
|
-
path: _paths[0],
|
|
4696
|
-
index: _indexes[0].map(function (x) {
|
|
4697
|
-
return x ? 1 : 0;
|
|
4698
|
-
}),
|
|
4699
|
-
root: _root
|
|
4700
|
-
});
|
|
4701
|
-
case 5:
|
|
4702
|
-
i++;
|
|
4703
|
-
_context2.n = 2;
|
|
4704
|
-
break;
|
|
4705
|
-
case 6:
|
|
4706
4708
|
return _context2.a(2, results);
|
|
4707
4709
|
}
|
|
4708
4710
|
}, _callee2);
|
|
@@ -10122,6 +10124,304 @@ function deserializeDarkSwapMessage(serializedMessage) {
|
|
|
10122
10124
|
};
|
|
10123
10125
|
}
|
|
10124
10126
|
|
|
10127
|
+
var noir_version$a = "1.0.0-beta.6+e796dfd67726cbc28eb9991782533b211025928d";
|
|
10128
|
+
var hash$a = "16793290200553875043";
|
|
10129
|
+
var abi$f = {
|
|
10130
|
+
parameters: [
|
|
10131
|
+
{
|
|
10132
|
+
name: "dest_chain",
|
|
10133
|
+
type: {
|
|
10134
|
+
kind: "field"
|
|
10135
|
+
},
|
|
10136
|
+
visibility: "public"
|
|
10137
|
+
},
|
|
10138
|
+
{
|
|
10139
|
+
name: "deposit_id",
|
|
10140
|
+
type: {
|
|
10141
|
+
kind: "field"
|
|
10142
|
+
},
|
|
10143
|
+
visibility: "public"
|
|
10144
|
+
},
|
|
10145
|
+
{
|
|
10146
|
+
name: "bridge_fee_amount",
|
|
10147
|
+
type: {
|
|
10148
|
+
kind: "field"
|
|
10149
|
+
},
|
|
10150
|
+
visibility: "public"
|
|
10151
|
+
},
|
|
10152
|
+
{
|
|
10153
|
+
name: "address",
|
|
10154
|
+
type: {
|
|
10155
|
+
kind: "field"
|
|
10156
|
+
},
|
|
10157
|
+
visibility: "public"
|
|
10158
|
+
},
|
|
10159
|
+
{
|
|
10160
|
+
name: "deposit_out_note",
|
|
10161
|
+
type: {
|
|
10162
|
+
kind: "field"
|
|
10163
|
+
},
|
|
10164
|
+
visibility: "public"
|
|
10165
|
+
},
|
|
10166
|
+
{
|
|
10167
|
+
name: "deposit_out_note_footer",
|
|
10168
|
+
type: {
|
|
10169
|
+
kind: "field"
|
|
10170
|
+
},
|
|
10171
|
+
visibility: "public"
|
|
10172
|
+
},
|
|
10173
|
+
{
|
|
10174
|
+
name: "deposit_out_rho",
|
|
10175
|
+
type: {
|
|
10176
|
+
kind: "field"
|
|
10177
|
+
},
|
|
10178
|
+
visibility: "private"
|
|
10179
|
+
},
|
|
10180
|
+
{
|
|
10181
|
+
name: "out_asset_a",
|
|
10182
|
+
type: {
|
|
10183
|
+
kind: "field"
|
|
10184
|
+
},
|
|
10185
|
+
visibility: "public"
|
|
10186
|
+
},
|
|
10187
|
+
{
|
|
10188
|
+
name: "out_asset_b",
|
|
10189
|
+
type: {
|
|
10190
|
+
kind: "field"
|
|
10191
|
+
},
|
|
10192
|
+
visibility: "public"
|
|
10193
|
+
},
|
|
10194
|
+
{
|
|
10195
|
+
name: "out_amount",
|
|
10196
|
+
type: {
|
|
10197
|
+
kind: "field"
|
|
10198
|
+
},
|
|
10199
|
+
visibility: "public"
|
|
10200
|
+
},
|
|
10201
|
+
{
|
|
10202
|
+
name: "in_asset",
|
|
10203
|
+
type: {
|
|
10204
|
+
kind: "field"
|
|
10205
|
+
},
|
|
10206
|
+
visibility: "private"
|
|
10207
|
+
},
|
|
10208
|
+
{
|
|
10209
|
+
name: "in_amount",
|
|
10210
|
+
type: {
|
|
10211
|
+
kind: "field"
|
|
10212
|
+
},
|
|
10213
|
+
visibility: "private"
|
|
10214
|
+
},
|
|
10215
|
+
{
|
|
10216
|
+
name: "fee_ratio",
|
|
10217
|
+
type: {
|
|
10218
|
+
kind: "field"
|
|
10219
|
+
},
|
|
10220
|
+
visibility: "public"
|
|
10221
|
+
},
|
|
10222
|
+
{
|
|
10223
|
+
name: "fee_amount",
|
|
10224
|
+
type: {
|
|
10225
|
+
kind: "field"
|
|
10226
|
+
},
|
|
10227
|
+
visibility: "private"
|
|
10228
|
+
},
|
|
10229
|
+
{
|
|
10230
|
+
name: "in_note",
|
|
10231
|
+
type: {
|
|
10232
|
+
kind: "field"
|
|
10233
|
+
},
|
|
10234
|
+
visibility: "public"
|
|
10235
|
+
},
|
|
10236
|
+
{
|
|
10237
|
+
name: "in_note_footer",
|
|
10238
|
+
type: {
|
|
10239
|
+
kind: "field"
|
|
10240
|
+
},
|
|
10241
|
+
visibility: "public"
|
|
10242
|
+
},
|
|
10243
|
+
{
|
|
10244
|
+
name: "in_rho",
|
|
10245
|
+
type: {
|
|
10246
|
+
kind: "field"
|
|
10247
|
+
},
|
|
10248
|
+
visibility: "private"
|
|
10249
|
+
},
|
|
10250
|
+
{
|
|
10251
|
+
name: "pub_key",
|
|
10252
|
+
type: {
|
|
10253
|
+
kind: "array",
|
|
10254
|
+
length: 2,
|
|
10255
|
+
type: {
|
|
10256
|
+
kind: "field"
|
|
10257
|
+
}
|
|
10258
|
+
},
|
|
10259
|
+
visibility: "private"
|
|
10260
|
+
},
|
|
10261
|
+
{
|
|
10262
|
+
name: "signature",
|
|
10263
|
+
type: {
|
|
10264
|
+
kind: "array",
|
|
10265
|
+
length: 64,
|
|
10266
|
+
type: {
|
|
10267
|
+
kind: "integer",
|
|
10268
|
+
sign: "unsigned",
|
|
10269
|
+
width: 8
|
|
10270
|
+
}
|
|
10271
|
+
},
|
|
10272
|
+
visibility: "private"
|
|
10273
|
+
}
|
|
10274
|
+
],
|
|
10275
|
+
return_type: null,
|
|
10276
|
+
error_types: {
|
|
10277
|
+
"6485997221020871071": {
|
|
10278
|
+
error_kind: "string",
|
|
10279
|
+
string: "call to assert_max_bit_size"
|
|
10280
|
+
},
|
|
10281
|
+
"14225679739041873922": {
|
|
10282
|
+
error_kind: "string",
|
|
10283
|
+
string: "Index out of bounds"
|
|
10284
|
+
},
|
|
10285
|
+
"17843811134343075018": {
|
|
10286
|
+
error_kind: "string",
|
|
10287
|
+
string: "Stack too deep"
|
|
10288
|
+
}
|
|
10289
|
+
}
|
|
10290
|
+
};
|
|
10291
|
+
var bytecode$f = "H4sIAAAAAAAA/+z9Bbwlu83mjXZOmJmZOTFKVvANMzPHtuwwM58wMzMzMzMzMzMz85X6y7nfOpmem8lk6/255s5O+nTvtdeu9fxLsixLVa7D7Pt/vkret+/rZ/x//n0Y+XPYf/x9XPlzpH967XgHeO34B3jtBAd47YQHeO1EB3jtxAd47SQHeO2kB3jtZAd47eQHeO0UB3jtlAd47VQHeO3UB3jtNAd47bQHeO10B3jt9Ad47QwHeO2MB3jtTAd47cwHeO0sB3jtrAd47WwHeO3sB3jtHAd47ZwHeM0d4DV/gNfCAV6LB3gtHeC1fIDX4ACv4QFeKwd4jQ7w2rkO8Nq5D/DaeQ7w2nkP8Nr5DvDa+Q/w2n8d4LULHOC1Cx7gtQsd4LULH+C1ixzgtYse4LWLHeC1ix/gtUsc4LVLHuC1Sx3gtUsf4LXLHOC1yx7gtcsd4LXLH+C1KxzgtSv+47XD7ft/vg6z73/8OuS1//rH3+4/+/JH3rtjuYN2dF7pH39fed8/QeoPDv6n1678j9d2vw5rCBodpDQwDB99dYFayS7lBsUXn0vmUGIcJRWkRujIpzj8zBTnPw52pf/1Y/V/cSx/5b1jdIf7x/k8aN///Ot/9bP+le7dY+61U15pD8/J7iC6yr5/cryr7PsfR9k/O95eOsu/0Or/xc/dVfZQ11X3zhnc7jnV4x5sfE6vvIfH2stzerV/45z+q8/aPadX+8c5/e+cGQ7aZzMzXP0ff1/jENGHQF593/84M1xjn/3McNAeOsDV9+3dzHCNff93ZvinL3/1fTYzwzX3/ZPjXXOf/czwb8D8y5nhmnuo61r7bGYGPe7Bxuf0Gnt4rL08p9feZzMzXHvf/zsz/M8G+MrpmaVOq2BxnUPEHmKE6+z7H4PF4QxP+kqB5zp7qOu6e3isXfvocQ82ts9epqR7GcT20j7X27e3A+oQ+1xvxz7/HAT+U81HlWMcbd//Gxj3QP9MIbmj76HG6+/b20zvcPv+e5YIe6l7V2+1FFwNjtv20BmsuNvOCd6j47r/pvXo/zDg3H/4tZsl9X/8zbscex2F2h4a00qfnog9jJL7tfY91Dj22cw+etyDDe3OBueV91DjNDqvc+e87tUyb8zpGnevwWAvx9Qh/v+/eLx/mRUfYvc9rFXtedbxb4zNf1mr4n17O6n8n1Cr6vtssqMb7NvIRLUbDHZF73Uw/OfB+586c/uH3sP9m+f2f0XnXtlpL4PVDfZQ1w337dngPNRkosc92NB/eI+P97/hP31in0ScqRRkB1ga+TqZYeCoWNNe+s9eJhB76T83+jfs8O/USW+073/eQdvrwH9IyWHf3h73UKuWG//j75vs+//zVYueiL0OCDfeQ4033be3WcAhDn3TfbarlpsYnNeb7KHGmxmd15v9/ziv7j/7+v8Ghr2218338Fzs2/k6yMCv9upYt9i3dmzSGHILg+Ne8gx7a+t/U9+/TJ5vYsR9KWNu9599+Zv/g3uvY+Ye2tvv5Tn8P2WVfuN9ezuPHPJ1y33/PxIz9599+T0Mfoea/HZF/5ua/+Uq8xb/dPxDjvufBobLnMFm8vt3G8T/zoT1nzLfat+aAWYvbbHrl8p78L5Df/279vlX53wv7XPrnWP5GGVsMPrJM2ak0DxEgJkmQkk8c6qMw6caAw1005cxMMeOMIk7zN2g7TnGxNS6zwFqc4VjlcIwxuAqR2SOBaDGyFBmoRJCnbG4jEgOQqRgZZ9b7/vvvwppL8urljqtJpjb7NvgBLMr2mKCuc2+vZ9gLrd45qkDQdkPt8fcexkQb7tvzQnrckYBUXkP/t/z83+pmf9h772+dPZ2+9actKxsdLt9//03VRx17451qHLw7f/x9x0OEX0I5O33/Y83Vdxhn/1NFUfdQ8e8/f/6sf5leeIOe8f4f8wS+Pb7bDKUO+77J8e74z77myr+DZh/mVHccQ913WnvnOFQUUyPe7DxOb3DHh5rL8/pnf+Nc/rvNAvvvO+/f2awurzxLv/4+66HiD4E8i77/seZ4a777GeGvbyE6S779m5muOu+/zsz/NOXv8s+m5nhbvv+yfHuts9+Zvg3YP7lzHC3PdR19302M4Me92Djc3rXPTzWXp7Te+yzmRnuse+/v9C1l+mZpU6rYHHwIWIPMcLB++xvt/s31hz/rYHn4D3Udc89PNaufe65z/52u71MSfcyiB28h8e61769HVCH2Ode+/7fIPbfdavYXqa3u3rvbSn43gbHvc8eOogV9312TvAeHfd/51qTf8l/iNa9vuZiL5co991nM4j1uH/Z93/GGvV+//j7/vsML2a9zx6eCCt99zNw5vvtocYH7LNxZj3uwYZ2v7/Beb3/Hmp8oNF5feC+/+021L/MRA85r3ttryst3m49ZJzudUZ73z08h//GmP+XdbH77yHjlf7vBYj//HWo+Oz+w6/dJOBB+zYyme4GrF3Rex2wDxm4/4vn4F8OjPv8Q+9e3ya4lyuEf8O5/mXAf9Ae6nrwvj0bnIea8PS4Bxv6z/33+Hj/G/7zL28T3Ev/2cskZy/95yH/hh3+nfruQ/b9j6WrgxYe3w81GkcP/c/Pw3+rnz7MyB8etu+/v96/lwnBAeSaJBsP37fBZGNX9EEGmvc62Xj4vr1fdezlud3LZOPhe2iLR+zhsXb9R4978P/E591/9mVm772c0PfSRo/cOdZ/esHolYwuGH3kvv/+vsleXjC6q/dRloIfZXDcR++hs1lxP3rnBO/RcU36Jodo3esV0l5e9PuYfTaDWI/73903sbrq+7H/+Ptx+wyzr0fv4Ymw0vdYA2d+7B5qfPw+G2fW4x5saPfHGZzXx+2hxicYndcn7LPrmxxyXvfaXtdavG9yyDjd64z2MXt4Dv+NMf8vV2yP20PGa/3fvsk/fx0qPrv/8Gs3CXjivo1MprsBa1f0XgfsQwbu/+I5+JcD49H/0LvXfZO9XCH8G871LwP+E/dQ15P27dngPNSEp8c92NB/HrfHx/vf8J9/WY/eS//ZyyRnL/3nyf+GHf6dOvmT99n3TfbSPk8xGkdP2WffN9nL8/BUI3946r7//r7JXiYEB5Brkmw8bd8Gk41d0QcZaN7rZONp+/Z+1bGX53Yvk42n7aEtnr6Hx9r1Hz3uwf8Tn3f/2ZeZvfdyQt9LGz1j3971Ta5l1Dd5hqG9jyDHOMK+vY+dz9y3t5OJBfczDbiftTi36nuWAfezN2DvZxtwP2fnWGGE0VrzWAJBg8iljO6pTEcIlalIZOE0mmMKnpnl3QV6w4GuUhnZglv1PceA+7mL21uZn2vA/bzFuVXf8wy4n78Bez/fgPsFO8cKvk3JDVLLzaHnEGR16V0GiDlLIuBnyaX7GaJ3wbXUg6w7MRBDKJJaJLLgVn0vMOB+4eL2VuYXGnC/aHFu1fciA+4Xb8DeLzbgfsnOsXyAPmvMobkR0PmUQoswXA+zlxKK1JU4tjl6lyNK8t/diAMLl8EtVS4W3KrvJQbcL13c3sr8UgPuly3OrfpeZsD98g3Y++UG3K/Y1RgdMUpFuDbIPHwlmiPEmXJh13qcvvRMDSCFMVORAQ5IY3rsDSiUbsGt+l5hwP3Kxe2tzK804H7V4tyq71UG3K/egL1fbcD9mp1jeUo9AcXkiAAIXBulZB/7HDGQTN8+5Ik+UqmyRB8pEcbZZJwnlLW5zfyt+l5jwP3axe2tzK814H7d4tyq73UG3K/fgL1fb8D9hl2NuZZEUFLrstDuTjq6NKOnlriOACyVN49RMnRw8jITlpE8O6qYK8j7LLhV3xsMuN+4uL2V+Y0G3G9anFv1vcmA+80bsPebDbjfsnMsL5OwDmWZspMU1BqHSY6T15r6iNG1UGUVDq2mKoO6V5m8G/dJMeSYmk39XPW9xYD7rYvbW5nfasD9tsW5Vd/bDLjfvgF7v92A+x27GjFCB9c50mQPiTgVOVaaVGF0ajKkC80WeLgaGceobaQon9cyOJzVglv1vcOA+52L21uZ32nA/a7FuVXfuwy4370Be7/bgPs9O8cKkmYTSlmNgzS6NTfHFLU+PsEnfQRO4ygL9FxSd9IQR+gp9thZumQJsw8W3KrvPQbc713c3sr8XgPu9y3OrfreZ8D9/g3Y+/0G3B/Y1VhjxMg+zwrcRwjS8Y5BmmYuSJY+Sx01dymac02dZqLiK1cZ9DJ/u5lhWHCrvg8YcH9wcXsr8wcNuD+0OLfq+5AB94c3YO8PG3B/ZOdYoaHerTFCm2k4J/8Ig7nJDJ68LMQx9lD06XRJPiBOSEMigazS3ZAAIK0yk/lb9X3EgPuji9tbmT9qwP2xxblV38cMuD++AXt/3ID7E7saW0jS2AbJt/0YTJE5AsQkZbZe0xitYaJeqqTxLmMvzrOU4Tp2B6BVNwtu1fcJA+5PLm5vZf6kAfenFudWfZ8y4P70Buz9aQPuz+xqzOyldNYzgvyjF58aBJ89xEh1+BrId+QZoeXJ0KdracROnUMe0dnM36rvMwbcn13c3sr8WQPuzy3Orfo+Z8D9+Q3Y+/MG3F/YOVZA32ebpQzClORIpLc0B4aCWWZrGf5uQHA+OS9RIOZBuaKs0yM56Zi7acGt+r5gwP3Fxe2tzF804P7S4tyq70sG3F/egL2/bMD9lX27169BdDQ9e5TVdvK1+T7I9UiIMqxxNuw8OpYuVfUSGpUqUzlQhu4jD5Pxrfq+YsD91cXtrcxfNeD+2uLcqu9rBtxf34C9v27A/Y2dY/mA3XsPkqDn7mLHCVxi8sil+xaLK5PCGB4opJqTo9Sm/AeDHzTSNLm+RfV9w4D7m4vbW5m/acD9rcW5Vd+3DLi/vQF7f9uA+zs7x/JtTiwu4RiAHKWQliZ3GciTamjVyXiPqVDtUnZLIU9fR9ifqQcqAWzGt+r7jgH3dxe3tzJ/14D7e4tzq77vGXB/fwP2/r4B9w92NYKUzzq2VgdI66tPXwhmaEV6ZEyhywK8+1G9VN5iGsQNJudSpDPWcxxULbhV3w8MuH+4uL2V+YcG3D9anFv1/ciA+8cbsPePDbh/sm83P2eZv3urHvOYUkRvs0t5HKXQFqC1SIlqQVmAZzlmyFlmdayQmpTVpXdWTeZv1fcTA+6fLm5vZf6pAffPFudWfT8z4P75Buz9cwPuX+zbvb6FU+dOEEbkCqE36X7BxJ5CqdQcZ1/a3F8yh1lmHzK6q8QBqrOBpPEW3KrvFwbcv1zc3sr8SwPuXy3Orfp+ZcD96w3Y+9cG3L/ZOVZIQ/doTDhlOh4p9dSldu5CghGjHEB+wE4+JTp2naX7LSm8FNXZ99rmyCb3f6u+3xhw/3Zxeyvzbw24f7c4t+r7nQH37zdg798bcP9h51iSZjuQX+khg28tYxypT6mkEcfmmpMqee0tJcTsO4SGqNu65KFXuSB7k/xc9f3BgPuPi9tbmf9owP2nxblV358MuP+8AXv/2YD7LzvH8sVpnWw6TnnSGDI1Vx9zmxxJauRDiucRB8SYIffo02wkc3mTQhvGIgHBglv1/cWA+6+L21uZ/2rA/bfFuVXf3wy4/74Be//dgFsPeMixPIQ5pYKWgo9FMvTswYOsuAvoRS3NV/ajtBxz7SnrpWuztRC6j5N6rmRy/9j+Ax5m77kPc5i17b2f2YD7oMW5Vd9BBtyH3YC9D2vAfbhdbpRJuyY5FlS9Syz0Kn3tEHWj1MJUZRonqAlrcT6OSl3n7Vy6/EpDn032Z1J9hzPgPvzi9lbmwxtwH2FxbtV3BAPuI27A3kc04D7SLneVBpj0u9vwvrnc2IUqxfGEzbfKuQWPLjmsXIP3KUwHsvT2jniUUn0DC27VdyQD7iMvbm9lPrIB91EW51Z9RzHgPuoG7H1UA+6j7ebnocf9t4FWGdZdviKQLLvLTFVGskP0w+c4JyIlaaDl3KWCXkAW7SgzeawW3KrvaAbcR1/c3sp8dAPuYyzOrfqOYcB9zA3Y+5gG3Mc6FHfhIYtr0Ps+5T1SWgPpcufCkqBLmTxODnVM1i0Wu6zCZYUuh5X8XN7DrZv0x1TfsQy4j724vZX52Abcx1mcW/Udx4D7uBuw93ENuI+3y63zNBUpoTkmL+2x1KbUzfUmE5dxzgEyZzt9dCGOlAnbGMgxxs4h1QIm/THVdzwD7uMvbm9lPr4B9wkW51Z9JzDgPuEG7H1CA+4THWb3+hbvg27moM8p6uBCmVUq6iwdM3LNj6zXsTkpsDN6X6RLNpLEAk6yKk8ki3MLbtV3IgPuEy9ub2U+sQH3SRbnVn0nMeA+6QbsfVID7pPtcnMGma+phBl5xlLj9DRb8alHqZjP5KlVN1pJLraA3UnajrnDHL7PBCb5ueo7mQH3yRe3tzKf3ID7FItzq75TGHCfcgP2PqUB96l262vT+TGLQ4id8syxp5i8HJ8iE2CsY8wgM/n0tXoiZEBsOWMjqcONUi24Vd+pDLhPvbi9lfnUBtynWZxb9Z3GgPu0G7D3aQ24T7c7vl3uOchKW/rbOeAA11wE3+VtmFuuSBy4QwmepR8WpO5G0iLjJIEAh6zGLbhV3+kMuE+/uL2V+fQG3GdYnFv1ncGA+4wbsPcZDbjPtMsdWUpruboeQ28ysKsjioV68MVJDl5iCThb8rIiH1wSl4IAPFPqEB2aXN+i+s5kwH3mxe2tzGc24D7L4tyq7ywG3GfdgL3PasB9tt35O0AYGIssvblB1+k6MWHAQCkF35lylYpbmlJRc93HEGsrscfqQFpk0WT/VNV3NgPusy9ub2U+uwH3ORbnVn3nMOA+5wbsfU4DbrfLPQaUHkcs3ZPU0CJR6o4TY+Oh95nI6Ja/QqiyOid9uEHoucbmUgiNbfZvUX3OgNsvbm9l9gbcYXFu1RcMuOMG7B0NuNMOdxjaApPBHFxPsgrnMF2tNEAK5xOla1Zb50yQXUmBQpV3M2OR1bms1cmZzN+qLxlw58XtrczZgBsW51Z9YMCNG7A3GnCX3fxchzdHz6HG4mVAD1dJmuI9QQhUQ5BWuCzBkxwjSW7uhox7dnO0XCBDNdkfWfUVA25a3N7KTAbc51qcW/Wdy4D73Buw97kNuM+zy91qJOmRyXCuDfT+TwiepJKew+w8UpF+GOOMQUpqOCSDH1X63pRTz2OCzfpb9Z3HgPu8i9tbmc9rwH2+xblV3/kMuM+/AXuf34D7v3bzc5JWWHNZlt+adcs4b9wdNC9FtzmzTNXSE+dJMEsCmeFLdxkDez97naU0C+79+gy4L7C4vZX5AgbcF1ycW/Vd0ID7Qhuw94UMuC98qPkbgmTsJL/uKnRA0h3WfNcnf3sZ3rGij52kg1Za9VM+MU/Mzs/ha3bN5Po11XdhA+6LLG5vZb6IAfdFF+dWfRc14L7YBux9MQPui+/O30362CSDWX4Po5fsnEOHGclzSlRGJGmLYx7cG+cupfUpAz0AR31EWfUm+bnqu7gB9yUWt7cyX8KA+5KLc6u+SxpwX2oD9r6UAfeld8d3LSS9b6mXJ9e1au4DOknSAbnsf+KBT9lFlpQcoc3YUWZ051ny+FhLSib3j6m+SxtwX2ZxeyvzZQy4L7s4t+q7rAH35TZg78sZcF9+t34uyfbggWOMplslY4lFBvesHThkp48cy1l+WNk7aYi1WEEO5hB6LVhs7i9RfZc34L7C4vZW5isYcF9xcW7Vd0UD7ittwN5XMuC+8i53l0Rbm9tNhnComKL3uY0cA3FOWfrhVFxwRTL3SVx78iBpeoDsJ7URTOprqu/KBtxXWdzeynwVA+6rLs6t+q5qwH21Ddj7agbcV9/Nz0t0cQR9ZujwOjWPKOW02jBAjQMzs+PK1OaovqYYAD2RvC2kSHJEk/Gt+q5uwH2Nxe2tzNcw4L7m4tyq75oG3NfagL2vZcB97UPV16TdVbzvVQZ4zd47ScRRjp364AhhtDEZO/vhi0zyCCRN8JjloGNKC9xk/a36rm3AfZ3F7a3M1zHgvu7i3Krvugbc19uAva9nwH39Q6+/gwzujERzhFGLVM+xu1rYFYhNlt7dDUnFpa42PMl0nlyQb5zuiT6hJQtu1Xd9A+66uL2VuRpwt8W5VV8z4O4bsHc34OZd7uRw5NQIqhwhdnA0a0TCFoJUyyMH6YtHyJWz9MVyIWl7A7iAwRFIy8yCW/WxAfdY3N7KPAy45+Lcqm8acN9gA/a+gQH3DXfn7xol+c65OX2emKy9ewkhdCJMIbXuk5OMPAxuM7VSZWynTiOXGJoU2wZ5C27Vd0MD7hstbm9lvpEB940X51Z9NzbgvskG7H0TA+6b7q6/CYKM7iy9L5nHPfYs+XdN1LyM5sqFsk/yrZPPGagtsZY5ZyrJNy2vsQW36rupAffNFre3Mt/MgPvmi3OrvpsbcN9iA/a+hQH3LQ+1/k4l5uK8XnyaQ25Jd27JURL2LGM9lToT5KH3ivIg9iDv16tYc+SKVE32T1V9tzTgvtXi9lbmWxlw33pxbtV3awPu22zA3rcx4L7t7vzNqc7BWNGVkUkOWhIjQKAwQ5dpumcuWY4CUlZPnPWJZDP7QRGoyvstuFXfbQ24b7e4vZX5dgbct1+cW/Xd3oD7Dhuw9x0MuO+4O39Lebw5mZVlXV0ARkDfOcjEPD1OlOw9zdp0je5KaZSHVNy6rLuZQpfDV5Pnj6m+Oxpw32lxeyvznQy477w4t+q7swH3XTZg77sYcN91d/4GdDJqR5ohVmQsUNnLf1vMsYZZmpTbgDq2XKr0xRh12Z08yMfExDbXn6u+uxpw321xeyvz3Qy47744t+q7uwH3PTZg73sYcB+8y52GTN6sk7Nr3hdZjEfvoI6Qu0sJqz5pjLgDQ+hz4Bw9sDTLI09J6oPJ/WOq72AD7nsubm9lvqcB970W51Z99zLgvvcG7H1vA+777HLzjDFmrj5OqaRNyE43UsQsTTMsBULydfQ+ZyyTqbVKQT58FgJiHM5kf2TVdx8D7vsubm9lvq8B9/0W51Z99zPgvv8G7H1/A+4HHKq+NueE0CiUMLrLzc+aZN4mfewgjzaodohy4MiheTdSajTcHJ6GpOfD5PkGqu8BBtwPXNzeyvxAA+4HLc6t+h5kwP3gDdj7wQbcD9nlLqOPkIo+T0z+z7IaB6KWpaCGnchJOo4YfKstU4OMrflYhhx7DABKJv1v1fcQA+6HLm5vZX6oAffDFudWfQ8z4H74Buz9cAPuR+zO393XVjw3cNgqAreJfsrvZumOZWjTl6iPCi2+xwbsJ0ffvEzvDsvMaHL9mup7hAH3Ixe3tzI/0oD7UYtzq75HGXA/egP2frQB92N2uT0PmEVW2vK/EbNvM/VapUUWGxcY8g/dJ7VIau5zb0VW5ykMJ29rTb412d9B9T3GgPuxi9tbmR9rwP24xblV3+MMuB+/AXs/3oD7Cbvzd2QuLSPMGgpEWWlDYogdcXIJs4Lnih5zjCXoJaklgMfROKfaRksm/W/V9wQD7icubm9lfqIB95MW51Z9TzLgfvIG7P1kA+6n7HB7IL1ObWSfW+hjFJaEnEiycfQBI4iMipPCbDHpY4xmjoGH/DTW2pvN/g6q7ykG3E9d3N7K/FQD7qctzq36nmbA/fQN2PvpBtzP2OUeXZpdrVAZOm4rUZWx7goHWYZLLZ3CyM4XWaX3QsQ5J+6e9ZlkfTRXTbhV3zMMuJ+5uL2V+ZkG3M9anFv1PcuA+9kbsPezDbifs8vN3TEMhDpbjYjMQHFw6glrmjSH3jUmkzrPzNJHm+xghllQa3L6+GALbtX3HAPu5y5ub2V+rgH38xbnVn3PM+B+/gbs/XwD7hccanzrTi1SCM+ROhQZ4qz7LIKU1AJ5jiFSkuwdq0ziVLEN6ZL7xIWiK00K6hbcqu8FBtwvXNzeyvxCA+4XLc6t+l5kwP3iDdj7xQbcL9ldfyN7dAOjltAG6dYOMU29dYRjD2WWPKZPLfiOMSf55UBFl+kIhDLDm+zPpPpeYsD90sXtrcwvNeB+2eLcqu9lBtwv34C9X27A/YpdbhpSLnecnGTherV5jUkOL+W27nuL0jOTH+WeWDplwDMWyEF6Zq4FmJLTmzw/VPW9woD7lYvbW5lfacD9qsW5Vd+rDLhfvQF7v9qA+zU73KFlaW5TkjaZrLml5+0y1YQJG4bZvYfpiHqSOroU1or3zC0lN/XyNTm2N7k+VfW9xoD7tYvbW5lfa8D9usW5Vd/rDLhfvwF7v96A+w2HOdT1LbozMhUcumOLTtjdhRwGIbciDTAsAIVlJqcuBbaOOradRAVpgYcWTfpjqu8NBtxvXNzeyvxGA+43Lc6t+t5kwP3mDdj7zQbcb9ldf1dpfhWC6UPqnErwsw1XqtTanIztCKFL6S0l8NTHdBgKppkikvbUZogW3KrvLQbcb13c3sr8VgPuty3OrfreZsD99g3Y++0G3O/YHd86OdfpRh16f7cMdGiyAm+TkxbbfE/yIdj0JjMCH7UtRhjCkPdkGd8m3KrvHQbc71zc3sr8TgPudy3OrfreZcD97g3Y+90G3O/ZHd88ORfEAKOnFDLk0RJOydGjrMIdxNQgQ2DfwHkKlNDL6C+ArtbkvEn9XPW9x4D7vYvbW5nfa8D9vsW5Vd/7DLjfvwF7v9+A+wO74zthJZdalzZZjRNgNEa9VNUHpOxQZAxwoaRQXUIZ4JO9J45+SDGdgsn4Vn0fMOD+4OL2VuYPGnB/aHFu1fchA+4Pb8DeHzbg/sihuCFIlTyN0mSAJwQvxx2h1sZUfQUcvbs8KUAbPbdW+2iYg6zHYcjvmdxfovo+YsD90cXtrcwfNeD+2OLcqu9jBtwf34C9P27A/Ykd7lDc1A1RvQxh12D/xg1xQC2x1Na6l2q5NMRG0i3RQ2AHWDPMPMiVJDU2k/2ZVN8nDLg/ubi9lfmTBtyfWpxb9X3KgPvTG7D3pw24P7M7vqWOxi7WBg2TT5RHYuxtyDiv0KebutdiLTKkQ2EfOeOE6uRdvUhlzpn0x1TfZwy4P7u4vZX5swbcn1ucW/V9zoD78xuw9+cNuL+wO76r7rs0knclByYAkBU5eZT52VfdVDFhaQgujhb3b6IsEz1BjFwCdB4m87fq+4IB9xcXt7cyf9GA+0uLc6u+Lxlwf3kD9v6yAfdXdutrFaXLPSvNiS0CS1quC+wBuc9eZBA73fVcr19r2deWMeWR5/DcY2ZqJvszqb6vGHB/dXF7K/NXDbi/tji36vuaAffXN2Dvrxtwf+NQ629gP3C4SPt3cJFGGJc5gIaXUd4rSyGNYpeFeJYPSUX6Y+SbNMvnjCk1k/3PVd83DLi/ubi9lfmbBtzfWpxb9X3LgPvbG7D3tw24v7PLPavu5iAL7uGliN5zdPJGqnVKIl6IpcgWWbrhMOfozcliPTI0GdhdPtahyfPHVN93DLi/u7i9lfm7BtzfW5xb9X3PgPv7G7D39w24f7DLPWSsZoh51iy/7UqgLr8cQ08RfJsVpdHNM7nmsk/dOeZYMcYinz09mVyfqvp+YMD9w8Xtrcw/NOD+0eLcqu9HBtw/3oC9f2zA/ZPd/Dw2Nyr6Vlrj2BsEraOPHPLMvbSYe5tDimlOZ/QQk9baE+TceaKXpN6CW/X9xID7p4vbW5l/asD9s8W5Vd/PDLh/vgF7/9yA+xeHqp/3IU2vwG1yAEgZyEVpic9I3nn59TCRdCPFESUd96lQmm12lI+pMtZN7v9Wfb8w4P7l4vZW5l8acP9qcW7V9ysD7l9vwN6/NuD+zS537HH/HSXsA9cZUghzNPa5phz8jJKUZ3IZe6hzsnwEdMBZo0ztvUeb55eovt8YcP92cXsr828NuH+3OLfq+50B9+83YO/fG3D/YYfbI4Msq2XKDqT3eDtplHGWRTjmGFqR4V60mD6BmVjLbdIKb7VAbxSyiLDgVn1/MOD+4+L2VuY/GnD/aXFu1fcnA+4/b8Defzbg/ssuN2WXXZRfSD7CSB1jS5KZ1+ZcaRNClmpal9a3jPqBOIk6OOgVJa+HyCbjW/X9xYD7r4vbW5n/asD9t8W5Vd/fDLj/vgF7/92Ae99BO/O369XJ0rtSbt1TQRm0EaW4BuBLSBCH6xRG9SHwhFTy9D2NXAmBmlTZLbhVn/7Za+7DHLS2vfczG3AftDi36jvIgPuwG7D3YQ24D7fDHWhC7BTzmCOENELMnFuSY5aMRYaxdM9kTqcaU+BUHZNM61TGxIzcwOT6NdV3OAPuwy9ub2U+vAH3ERbnVn1HMOA+4gbsfUQD7iPtzt/DB31+yZhTxu/+Z4OW1kkKat315KtnDBGlwKbrbZjsyA0prUEEaLIszxbcqu9IBtxHXtzeynxkA+6jLM6t+o5iwH3UDdhbNR60x8c9wh6ew6Mtfg5V39EMfOfoG+A+ugH3MRbnVn3HMOA+5gbsfUwD7mPt5vojjNY0AwgETRbypQxd008nq/XKJImB5zSaJPnBM7O8WwvxONBVSflNcgHVdywD7mMvbm9lPrYB93EW51Z9xzHgPu4G7H1cA+7j7Y5v32b3ObXcHHrevx2Ed1KpiznH4vwsuXSv95i64FrqgXzFQAyheI7J5Fo41Xc8A+7jL25vZT6+AfcJFudWfScw4D7hBux9QgPuE+2u5QN0fbJoaG4EdD6l0KTn5nrYf6tpwT45tjl6H7qf2+xuxIGFy+CWKps8q1D1nciA+8SL21uZT2zAfZLFuVXfSQy4T7oBe5/UgPtku9zREaNu4dQg8/CVSIrycaasO730OH3pupsEpDBmKjLAAaVG57E3oFBMem2q72QG3Cdf3N7KfHID7lMszq36TmHAfcoN2PuUBtyn2p2/KfUEFJMjAiBwbUiXzcc+RwzSWu8+5Ik+UqmyRB8pEcbZZJwnlLW5zfyt+k5lwH3qxe2tzKc24D7N4tyq7zQG3KfdgL1Pa8B9ul3uXEsiKKl1WWjvf644zeipJa4jAEvlzWOUDB2cvMyEZSQvHbeKuYK8z4Jb9Z3OgPv0i9tbmU9vwH2GxblV3xkMuM+4AXuf0YD7TLvzt0zCOpRlyk5SUGscJjlOXmvqI0bXQpVVOLSaqgzqXmXybtwnxZBjajb1c9V3JgPuMy9ub2U+swH3WRbnVn1nMeA+6wbsfVYD7rPtcmOEDq5z1KcgQCJORY6VJlUYnZoM6UKzBR6uRsYxahspyue1DA5nteBWfWcz4D774vZW5rMbcJ9jcW7Vdw4D7nNuwN7nNOB2O9xB0mxCKatxkEa35uaYotbHJ/hEoXndQSJBLqk7aYgj9BR77CxdsoTZm+zlpvqcAbdf3N7K7A24w+Lcqi8YcMcN2DsacKdd7hojRvZ5VuA+QpCOdwzSNHNBsvRZ6qi6KytwTZ1mouIrVxn0Mn+7mcHkWeKqLxlw58XtrczZgBsW51Z9YMCNG7A3GnCX3fm7oQT4MkKbaciPZIQP5iYzePKyEMfYQyHu8oG5xQlpSCSQVbrTJ45Lq8xk/lZ9xYCbFre3MpMB97kW51Z95zLgPvcG7H1uA+7z7HK3kKSxDZJv+zGYInMEiEnKbL2mMVrDRL1USeN1R5jiPEsZrmN3AFp1s+BWfecx4D7v4vZW5vMacJ9vcW7Vdz4D7vNvwN7nN+D+r13uzF5KZz2j7qnei08Ngs8eYqQ6fA3kO/KM0PJkffhRSyN26hzyiM5m/t6vz4D7AovbW5kvYMB9wcW5Vd8FDbgvtAF7X8iA+8K7+Tn6PtssZRCmJEciGDgCQ8Ess7UMfzcgyFpBygG1xzwoV5R1eiQnHXNnslej6ruwAfdFFre3Ml/EgPuii3OrvosacF9sA/a+mAH3xXe4PUF0ND17lNV28rX5Psj1SIgyrHE27Dw6li5V9RIalSpTOVCG7iMPk/Gt+i5uwH2Jxe2tzJcw4L7k4tyq75IG3JfagL0vZcB96d3xHbB770ES9Nxd7DiBS0weuXTfYnFlUhjDA4VUc3KU2pT/YPCDRrLZK0L1XdqA+zKL21uZL2PAfdnFuVXfZQ24L7cBe1/OgPvyu+O7zYnFJRwDUJ9UmNPkLgN5Ug2tOhnvMRWqXcpuKeTp6wj7M/VAJYDN+FZ9lzfgvsLi9lbmKxhwX3FxbtV3RQPuK23A3lcy4L7yLjdI+axja3WAtL769IVghlakR8YUuizAux/VS+UtpkHcYHIuRTpjPcdB1YJb9V3ZgPsqi9tbma9iwH3VxblV31UNuK+2AXtfzYD76ofKz1nm796qPnp0ShG9zS7lcZRCW4DWIiWqBYdurR5HyFlmdayQmpTVpXdWTeZv1Xd1A+5rLG5vZb6GAfc1F+dWfdc04L7WBux9LQPuax+0e30Lp86dIIzIFUJv0v2CiT2FUqk5zr7oEwulZA6zzD5kdFeJA1RnA0njLbhV37UNuK+zuL2V+ToG3NddnFv1XdeA+3obsPf1DLivvzu+02BZdiecMh2PlHrqUjt3IcGIUQ4gP2AnnxIdu87S/ZYUXorq7Httc2ST+79V3/UNuOvi9lbmasDdFudWfc2Au2/A3t2Am3fz8z4cyK/0kMG3ljGO1KdU0ohjc81Jlbz2lhJi9l0fVIq6rUseepULsjfJz1UfG3CPxe2tzMOAey7OrfqmAfcNNmDvGxhw33B3fBendbLpOOVJY8jUXH3MbXIkqZEPKZ5HHBBjhtyjT7Pps0qbFNowFgkIFtyq74YG3Dda3N7KfCMD7hsvzq36bmzAfZMN2PsmBtw33R3fEOaUCloKPhbJ0LMHD7LiLqAXtTRf2Y/Scsy1p6yXrs3WQug+Tuq5ksn9Y6rvpgbcN1vc3sp8MwPumy/OrfpubsB9iw3Y+xYG3Lfc5UaZtGuSY0HVu8RCr9LXDlE3Si1MVaZxgpqwFufjqNR13s6ly6809NlkfybVd0sD7lstbm9lvpUB960X51Z9tzbgvs0G7H0bA+7b7nJXaYBJv7sN75vLjV2oUhxP2HyrnFvw6JLDyjV4n8J0IEtv74hHKdU3sOBWfbc14L7d4vZW5tsZcN9+cW7Vd3sD7jtswN53MOC+425+HnrcfxtolWHd5SsCybK7zFRlJDtEP3yOcyJSkgZazl0q6AVk0Y4yk8dqwa367mjAfafF7a3MdzLgvvPi3Krvzgbcd9mAve9iwH3XQ3EXHrK4Br3vU94jpTWQLncuLAm6lMmjPod4TNYtFruswmWFLoeV/Fzew62b9MdU310NuO+2uL2V+W4G3HdfnFv13d2A+x4bsPc9DLgP3uXWeZqKlNAck5f2WGpT6uZ6k4nLOOcAmbPdLFRwpEzYxkCOMXYOqRYw6Y+pvoMNuO+5uL2V+Z4G3PdanFv13cuA+94bsPe9Dbjvc9Du9S3eB93MQZ9T1MGFMqtU1Fk6ZuSaH1mvY3NSYGf0vkiXbCSJBZxkVZ5IFucW3KrvPgbc913c3sp8XwPu+y3OrfruZ8B9/w3Y+/4G3A/Y5eYMMl9TCTPyjKXG6Wm24lOPUjGfyVOrbrSSXGwBu5O0HXOHOXyfCUzyc9X3AAPuBy5ub2V+oAH3gxbnVn0PMuB+8Abs/WAD7ofs1tem82MWhxA75ZljTzF5OT5FJsBYx5hBZvLpa/VEyIDYcsZGUocbxaS+pvoeYsD90MXtrcwPNeB+2OLcqu9hBtwP34C9H27A/Yjd8e1yz0FW2tLfzgEHuOYi+C5vw9xyReLAHUrwLP2wIHU3khYZJwkEOGQ1bsGt+h5hwP3Ixe2tzI804H7U4tyq71EG3I/egL0fbcD9mF3uyFJay9X1GHqTgV0dUSzUgy9OcvASS8DZkpcV+eCSuBQE4JlSh+jQ5PoW1fcYA+7HLm5vZX6sAffjFudWfY8z4H78Buz9eAPuJ+zO3wHCwFhk6c0Nuk7XiQkDBkop+M6Uq1Tc0pSKmus+hlhbiT1WB9Iiiyb7p6q+JxhwP3FxeyvzEw24n7Q4t+p7kgH3kzdg7ycbcD9ll3sMKD2OWLonqaFFotQdJ8bGQ+8zkdEtf4VQZXVO+nCD0HONzaUQGtvs36L6nmLA/dTF7a3MTzXgftri3KrvaQbcT9+AvZ9uwP2MHe4wtAUmgzm4nmQVzmG6WmmAFM4nStests6ZILuSAoUq72bGIqtzWauTM5m/Vd8zDLifubi9lfmZBtzPWpxb9T3LgPvZG7D3sw24n7Obn+vw5ug51Fi8DOjhKklTvCcIgWoI0gqXJXiSYyTJzd2Qcc9ujpYLZKgm+yOrvucYcD93cXsr83MNuJ+3OLfqe54B9/M3YO/nG3C/YJe71UjSI5PhXBvo/Z8QPEklPYfZeaQi/TDGGYOU1HBIBj+q9L0pp57HBJv1t+p7gQH3Cxe3tzK/0ID7RYtzq74XGXC/eAP2frEB90t283OSVlhzWZbfmnXLOG/cHTQvRbc5s0zV0hPnSTBLApnhS3cZA3s/e52lNAtu1fcSA+6XLm5vZX6pAffLFudWfS8z4H75Buz9cgPuVxxq/obgXCH5dVehA5LusOa7Pvnby/COFX3sJB200qqf8ol5YnZ+Dl+zaybXr6m+Vxhwv3JxeyvzKw24X7U4t+p7lQH3qzdg71cbcL9md/5u0scmGczyexi9ZOccOsxInlOiMiJJWxzz4N44dymtTxnoATjqI8qqN8nPVd9rDLhfu7i9lfm1BtyvW5xb9b3OgPv1G7D36w2437A7vmsh6X1LvTy5rlVzH9BJkg7IZf8TD3zKLrKk5Ahtxo4yozvPksfHWlIyuX9M9b3BgPuNi9tbmd9owP2mxblV35sMuN+8AXu/2YD7LTvcXpLtwQPHGE23SsYSiwzuWTtwyE4fOZaz/LCyd9IQa7GCHMwh9Fqw2NxfovreYsD91sXtrcxvNeB+2+Lcqu9tBtxv34C9327A/Y5d7i6Jtja3mwzhUDFF73MbOQbinLL0w6m44Ipk7pO49uRB0vQA2U9qIzQLbtX3DgPudy5ub2V+pwH3uxbnVn3vMuB+9wbs/W4D7vfs5uclujiCPjN0eJ2aR5RyWm0YoMaBmdlxZWpzVF9TDICeSN4WUiQ5osn4Vn3vMeB+7+L2Vub3GnC/b3Fu1fc+A+73b8De7zfg/sCh6mvS7ire9yoDvGbvnSTiKMdOfXCEMNqYjJ398EUmeQSSJnjMctAxpQVusv5WfR8w4P7g4vZW5g8acH9ocW7V9yED7g9vwN4fNuD+yKHX30EGd0aiOcKoRarn2F0t7ArEJkvv7oak4lJXG55kOk8uyDdO90Sf0JIFt+r7iAH3Rxe3tzJ/1ID7Y4tzq76PGXB/fAP2/rgB9yd2uZPDkVMjqHKE2MHRrBEJWwhSLY8cpC8eIVfO0hfLhaTtDeACBkcgLTMLbtX3CQPuTy5ub2X+pAH3pxbnVn2fMuD+9Abs/WkD7s/szt81SvKdc3P6PDFZe/cSQuhEmEJq3ScnGXkY3GZqpcrYTp1GLjE0KbYN8hbcqu8zBtyfXdzeyvxZA+7PLc6t+j5nwP35Ddj78wbcX9hdfxMEGd1Zel8yj3vsWfLvmqh5Gc2VC2Wf5FsnnzNQW2Itc85Ukm9aXmMLbtX3BQPuLy5ub2X+ogH3lxbnVn1fMuD+8gbs/WUD7q8cav2dSszFeb34NIfcku7ckqMk7FnGeip1JshD7xXlQexB3q9XsebIFama7J+q+r5iwP3Vxe2tzF814P7a4tyq72sG3F/fgL2/bsD9jd35m1Odg7GiKyOTHLQkRoBAYYYu03TPXLIcBaSsnjjrE8lm9oMiUJX3W3Crvm8YcH9zcXsr8zcNuL+1OLfq+5YB97c3YO9vG3B/Z3f+lvJ4czIry7q6AIyAvnOQiXl6nCjZe5q16RrdldIoD6m4dVl3M4Uuh68mzx9Tfd8x4P7u4vZW5u8acH9vcW7V9z0D7u9vwN7fN+D+we78Dehk1I40Q6zIWKCyl/+2mGMNszQptwF1bLlU6Ysx6rI7eZCPiYltrj9XfT8w4P7h4vZW5h8acP9ocW7V9yMD7h9vwN4/NuD+yS53GjJ5s07OrnlfZDEevYM6Qu4uJaz6pDHiDgyhz4Fz9MDSLI88JakPJvePqb6fGHD/dHF7K/NPDbh/tji36vuZAffPN2Dvnxtw/2KXm2eMMXP1cUolbUJ2upEiZmmaYSkQkq+j9zljmUytVQry4bMQEONwJvsjq75fGHD/cnF7K/MvDbh/tTi36vuVAfevN2DvXxtw/+ZQ9bU5J4RGoYTRXW5+1iTzNuljB3m0QbVDlANHDs27kVKj4ebwNCQ9HybPN1B9vzHg/u3i9lbm3xpw/25xbtX3OwPu32/A3r834P7DLncZfYRU9Hli8n+W1TgQtSwFNexETtJxxOBbbZkaZGzNxzLk2GMAUDLpf6u+Pxhw/3FxeyvzHw24/7Q4t+r7kwH3nzdg7z8bcP9ld/7uvrbiuYHDVhG4TfRTfjdLdyxDm75EfVRo8T02YD85+uZlendYZkaT69dU318MuP+6uL2V+a8G3H9bnFv1/c2A++8bsPffDbj3HXZHo+cBs8hKW/43YvZtpl6rtMhi4wJD/qH7pBZJzX3urcjqPIXh5G2tybcm+zuoPv2z19yHOeza9t7PbMB90OLcqu8gA+7DbsDehzXgPtwOd4jMpWWEWUOBKCttSAyxI04uYVbwXNFjjrEEvSS1BPA4GudU22jJpP+t+g5nwH34xe2tzIc34D7C4tyq7wgG3EfcgL2PaMB9pB1uD6TXqY3scwt9jMKSkBNJNo4+YASRUXFSmC0mfYzRzDHwkJ/GWnuz2d9B9R3JgPvIi9tbmY9swH2UxblV31EMuI+6AXsf1YD7aLvco0uzqxUqQ8dtJaoy1l3hIMtwqaVTGNn5Iqv0Xog458Tdsz6TrI/mqgm36juaAffRF7e3Mh/dgPsYi3OrvmMYcB9zA/Y+pgH3sXa5uTuGgVBnqxGRGSgOTj1hTZPm0LvGZFLnmVn6aJMdzDALak1OHx9swa36jmXAfezF7a3MxzbgPs7i3KrvOAbcx92AvY9rwH28Q41v3alFCuE5UociQ5x1n0WQklogzzFESpK9Y5VJnCq2IV1yn7hQdKVJQd2CW/Udz4D7+IvbW5mPb8B9gsW5Vd8JDLhPuAF7n9CA+0S7629kj25g1BLaIN3aIaapt45w7KHMksf0qQXfMeYkvxyo6DIdgVBmeJP9mVTfiQy4T7y4vZX5xAbcJ1mcW/WdxID7pBuw90kNuE+2y01DyuWOk5MsXK82rzHJ4aXc1n1vUXpm8qPcE0unDHjGAjlIz8y1AFNyepPnh6q+kxlwn3xxeyvzyQ24T7E4t+o7hQH3KTdg71MacJ9qtz/WsjS3KUmbTNbc0vN2mWrChA3D7N7DdEQ9SR1dCmvFe+aWkpt6+Zoc25tcn6r6TmXAferF7a3MpzbgPs3i3KrvNAbcp92AvU9rwH26Q1/fojsjU8GhO7bohN1dyGEQcivSAMMCUFhmcupSYOuoY9tJVJAWeGjRpD+m+k5nwH36xe2tzKc34D7D4tyq7wwG3GfcgL3PaMB9pt31d5XmVyGYPqTOqQQ/23ClSq3NydiOELqU3lICT31Mh6FgmikiaU9thmjBrfrOZMB95sXtrcxnNuA+y+Lcqu8sBtxn3YC9z2rAfbZDXd8ik3OdbtSh93fLQIcmK/A2OWmxzfckH4JNbzIj8FHbYoQhDHlPlvFtwq36zmbAffbF7a3MZzfgPsfi3KrvHAbc59yAvc9pwO12xzdPzgUxwOgphQx5tIRTcvQoq3AHMTXIENg3cJ4CJfQy+gugqzU5b1I/V33OgNsvbm9l9gbcYXFu1RcMuOMG7B0NuNPu+E5YyaXWpU1W4wQYjVEvVfUBKTsUGQNcKClUl1AG+GTviaMfUkynYDK+VV8y4M6L21uZswE3LM6t+sCAGzdgbzTgLofihiBV8jRKkwGeELwcd4RaG1P1FXD07vKkAG303Frto2EOsh6HIb9ncn+J6isG3LS4vZWZDLjPtTi36juXAfe5N2Dvcxtwn2e3P1bc1A1RvQxh12D/xg1xQC2x1Na6l2q5NMRG0i3RQ2AHWDPMPMiVJDU2k/2ZVN95DLjPu7i9lfm8BtznW5xb9Z3PgPv8G7D3+Q24/2t3fEsdjV2sDRomnyiPxNjbkHFeoU83da/FWmRIh8I+csYJ1cm7epHKnDPpj+3XZ8B9gcXtrcwXMOC+4OLcqu+CBtwX2oC9L2TAfeHd8V1136WRvCs5MAGArMjJo8zPvuqmiglLQ3BxtLh/E2WZ6Ali5BKg8zCZv1XfhQ24L7K4vZX5IgbcF12cW/Vd1ID7Yhuw98UMuC9+qP43Spd7VpoTWwSWtFwX2ANyn73IIHa667lev9ayry1jyiPP4bnHzNRM9mdSfRc34L7E4vZW5ksYcF9ycW7Vd0kD7kttwN6XMuC+9KHW38B+4HCR9u/gIo0wLnMADS+jvFeWQhrFLgvxLB+SivTHyDdpls8ZU2om+5+rvksbcF9mcXsr82UMuC+7OLfqu6wB9+U2YO/LGXBffpd7Vt3NQRbcw0sRvefo5I1U65REvBBLkS2ydMNhztGbk8V6ZGgysLt8rEOT54+pvssbcF9hcXsr8xUMuK+4OLfqu6IB95U2YO8rGXBfeZd7yFjNEPOsWX7blUBdfjmGniL4NitKo5tncs1ln7pzzLFijEU+e3oyuT5V9V3ZgPsqi9tbma9iwH3VxblV31UNuK+2AXtfzYD76rv5eWxuVPSttMaxNwhaRx855Jl7aTH3NocU05zO6CEmrbUnyLnzRC9JvQW36ru6Afc1Fre3Ml/DgPuai3OrvmsacF9rA/a+lgH3tQ9VP+9Dml6B2+QAkDKQi9ISn5G88/LrYSLpRoojSjruU6E02+woH1NlrJvc/636rm3AfZ3F7a3M1zHgvu7i3Krvugbc19uAva9nwH39Xe7Y4/47StgHrjOkEOZo7HNNOfgZJSnP5DL2UOdk+QjogLNGmdp7jzbPL1F91zfgrovbW5mrAXdbnFv1NQPuvgF7dwNu3u2PIYMsq2XKDqT3eDtplHGWRTjmGFqR4V60mD6BmVjLbdIKb7VAbxSyiLDgVn1swD0Wt7cyDwPuuTi36psG3DfYgL1vYMB9w11uyi67KL+QfISROsaWJDOvzbnSJoQs1bQurW8Z9QNxEnVw0CtKXg+RTca36ruhAfeNFre3Mt/IgPvGi3OrvhsbcN9kA/a+iQH3TXfnb9erk6V3pdy6p4IyaCNKcQ3Al5AgDtcpjOpD4Amp5Ol7GrkSAjWpsltwq76bGnDfbHF7K/PNDLhvvji36ru5AfctNmDvWxhw33K3vkYTYqeYxxwhpBFi5tySHLNkLDKMpXsmczrVmAKn6phkWqcyJmbkBibXr6m+Wxpw32pxeyvzrQy4b704t+q7tQH3bTZg79sYcN92d/4ePujzS8acMn73Pxu0tE5SUOuuJ189Y4goBTZdb8NkR25IaQ0iQJNlebbgVn23NeC+3eL2VubbGXDffnFu1Xd7A+47bMDed7Cop55hb7kP+TrcHvMfew+PdbSD9u783XHv/MbvtS322geV9Y4GPninxceeMt/JgPvOi3OrvjsbcN9lA/ZWjYfd4+PuZdy5q1HcCSOM1jSzCwRNCjSlDK3VTCdVmMokCZ/nNJos3oJnZnm3NlhwoKuylDPJ8ZT1rgZ+eLfF/VCZ72bAfffFuVXf3Q2477EBe99j8bhzsFXc8W12n1PLzaHn/duPeCeV4ZhzLNJ3K7l0r/c0u+Ba6oF8xUAMoXiOyeTaS2U92MAP77m4HyrzPQ2477U4t+q7lwH3vTdg73svHnfuYxR3fICuT9gNzY2AzqcUmvSeXQ/7b7ku2CfHNkfvQ/c1nN2NOLBwGdxSZZNndirrfQz88L6L+6Ey39eA+36Lc6u++xlw338D9r7/4nHnAVb1neiIUbdYa5B5+EokTbM4U9admHqcvnTd7QVSGDMVCTyAUkP32BtQKN3CHsr6AAM/fODifqjMDzTgftDi3KrvQQbcD96AvR+8eNx5iFW+Q6knoJgcEQCBa0O68z72OWIgSXd8yBN9pFKlBDRSIoyzSfxJKLUfm3xHWR9i4IcPXdwPlfmhBtwPW5xb9T3MgPvhG7D3wxePO4+wyndyLYmgpNalkNMdw6AZPbXEdQRgqTh7jLLSAicvM2EZybOjirmCvM/CHsr6CAM/fOTifqjMjzTgftTi3KrvUQbcj96AvR+9eNx5jFW+I0mLhhhJcZIUkhuHSY6T1x7XiNG1UKXKA62mKsGmV0l2GvdJMeSYmk0/S1kfY+CHj13cD5X5sQbcj1ucW/U9zoD78Ruw9+MXjztPsMp3MEIH1znqU3AgEaciutKkCqNTk1BTaLbAw9XIOEZtI0XR3jI4nNXCHsr6BAM/fOLifqjMTzTgftLi3KrvSQbcT96AvZ+8eNx5ilUfXZZLhFJO5tA96xoLU9R+1QSfKDSvOxslyCV1h1AReoo9dpZuesLsTfYYVdanGPjhUxf3Q2V+qgH30xbnVn1PM+B++gbs/fTF484zrPKdGiNG9nlW4D5C8LPEIM11F2S1NUsdVXcxB66p00xUfOUqwUjyHTczDAt7KOszDPzwmYv7oTI/04D7WYtzq75nGXA/ewP2fvbicec5VvlOQ+dCGaHNNJyTf4TB3CTjSV4KPRh7KMRdxOcWJ6QhEUqqQG5IYJKWukm+o6zPMfDD5y7uh8r8XAPu5y3OrfqeZ8D9/A3Y+/mLx50XWOU7LaQxE8i6yY/BFJkjQExSXu41jdEaJuqlynJMd5wrzrOUnzt2B6DVZgt7KOsLDPzwhYv7oTK/0ID7RYtzq74XGXC/eAP2fvHiceclZn109lIy7hn1WTK9+NQg+OwhRqrD10C+I88ILU/Whz62NGKnziGP6GzyHWV9iYEfvnRxP1Tmlxpwv2xxbtX3MgPul2/A3i9fPO68wmqdhb7PNksZhCmJKoKBIzAUzJLdSFhyA4LzyXmJTjEPyhWlDhTJtS4lHgt7KOsrDPzwlYv7oTK/0oD7VYtzq75XGXC/egP2fvXicec1VtfvEERH07NHqeYkX5vvg1yPhCjhBmfDzqNj6dLlKqFRqZL6AGXoPvIwiTvK+hoDP3zt4n6ozK814H7d4tyq73UG3K/fgL1fv3jceYNV3AnYvfcgC63cXew4gUtMHrl032JxZVIYwwOFVHNylNqU/2Dwg0ay2etMWd9g4IdvXNwPlfmNBtxvWpxb9b3JgPvNG7D3mxePO2+xijttTiwu4RiA+gTwnCZ3CTCTamjVSRyKqVDtUm5OIU9fR9i/4gpUAtjEHWV9i4EfvnVxP1Tmtxpwv21xbtX3NgPut2/A3m9fPO68w6quDFI27thaHSAt8j59IZihFemlM4UuBZ7uR/VScY5pEDeYnEuRDnrPcVC1sIeyvsPAD9+5uB8q8zsNuN+1OLfqe5cB97s3YO93Lx533mO2zmLJd3qrHvOY0tRqs0u7CqXAHKC1SIlqwaGPeIoj5CxZEFZITdpc0mOvJvmOsr7HwA/fu7gfKvN7Dbjftzi36nufAff7N2Dv9y8edz5gdt0gp86dIIzIFUJv0iWHiT2FUqk5zr7oE92lhQWzzD4k6lSJT1RnA1mOWdhDWT9g4IcfXNwPlfmDBtwfWpxb9X3IgPvDG7D3hxePOx+xijtpsJR1Ek5JX0ZKPXXpZbmQYMQoYuQH7ERxdOw6u5ZkKSZNLva9tjmyyf47yvoRAz/86OJ+qMwfNeD+2OLcqu9jBtwf34C9P7543PmE1TqrDwfy8T1k8K1ljCP1KRVk4thcc9K1qr2lhJh9h9AQdRvCPPTqQWRvss5S1k8Y+OEnF/dDZf6kAfenFudWfZ8y4P70Buz96cXjzmes4k5xWh+ejlOeNIakMtXH3CZHkp7VkGZWxAExZsg9+jQbSe7TpMCMsUigsrCHsn7GwA8/u7gfKvNnDbg/tzi36vucAffnN2Dvzy8ed75gFXcgzCmV4xR8LLLSyh48SEWngF4s2HxlP0rLMdeesl6qPFsLofs4qedKJvejK+sXDPzwi4v7oTJ/0YD7S4tzq74vGXB/eQP2/vLicecrVn10lCSnJtEFVe86D72WACHqgyMKU5W0h6AmrMX5OCp1zXNy6fIrDX022edUWb9i4IdfXdwPlfmrBtxfW5xb9X3NgPvrG7D31xePO9+wijtVGuUzSKbjfXO5sQtVmlUJm2+VcwseXXJYuQbvU5gOpLTjHfEopfoGFvZQ1m8Y+OE3F/dDZf6mAfe3FudWfd8y4P72Buz97cXjznfMrt/pcf92F1XCTZevCCRlnTJTlQjjEP3wOc6JSEka7Tl36WgVkKIQSuYTq4U9lPU7Bn743cX9UJm/a8D9vcW5Vd/3DLi/vwF7f3/xuPMDq3zHFR5SvAHd30I+T0rKMLs0yFkWWtK2ipNDHZN1a/cuVR6pAIlEWWfJe7h1kz66sv7AwA9/uLgfKvMPDbh/tDi36vuRAfePN2DvHy8ed35iFXc0r6EipWPH5KWNntqUPpbeHOoyzjlAchw3CxUcKRO2MZBjjJ1DqgVM+ujK+hMDP/zp4n6ozD814P7Z4tyq72cG3D/fgL1/vnjc+YXZdYPeB93kS59X3MGFMqt0uFg66+SaH1mvW3bS8GL0vkg3fSSJUZyk6pNIij8W9lDWXxj44S8X90Nl/qUB968W51Z9vzLg/vUG7P3rxePOb6zyHc4g+Q2VMCPPWGqcnmYrPvUoHayZPLXqRivJxRawO1l+Ye4wh+8zgck6S1l/Y+CHv13cD5X5twbcv1ucW/X9zoD79xuw9+8Xjzt/sKorT+fHLA4hdsozx55i8qKVIhNgrGPMIJnP9LV6ImRAbDljI6k/j2JSV1bWPxj44R8X90Nl/qMB958W51Z9fzLg/vMG7P3nxePOX6zijss9B6nkFOdzwAGuuQi+y/swt1yROHCHEjxL3zxIvZmklc5JAhQOqfZY2ENZ/2Lgh39d3A+V+a8G3H9bnFv1/c2A++8bsPffF487+w5ntM6KLCXlXF2PoTcJONURxUI9+OJkLVViCThb8lLxGVwSl4IAPFPqEB2aXDeorPpnr/3wMIdb2w/3MxtwH7Q4t+o7yID7sBuwt2pcOe4czijuSFE5DIxFSjvcoGt6k5gwYKCUgu9MuUqlOU2pJLvuY4i1ldhjdSCt9GjyPAllPZyBHx5+cT9U5sMbcB9hcW7VdwQD7iNuwN5HXDzuHMkq3xkDSo8jlu5JaseRKHXHibHx0PtDJerIXyFUqf6QPrQv9FxjcymExjb7DSrrkQz88MiL+6EyH9mA+yiLc6u+oxhwH3UD9j7q4nHnaEZxJwxtlUuQCa4nqfJwmK5WGiCNrInSXa+tcybIrqRAocq7mbFI9UdqQeRM8h1lPZqBHx59cT9U5qMbcB9jcW7VdwwD7mNuwN7HXDzuHMtqnaVhh6PnUGPxEmiGqxSS7wlCoBrCZCn3hCR6kqyx3JB4xG6OlgtkqCbPsVHWYxn44bEX90NlPrYB93EW51Z9xzHgPu4G7H3cxePO8azWWa1Gkl66hJnaQPe5gOBJOls5zM4jFembM84YpJSMQ1Zio/aZKKeexwSb+o6yHs/AD4+/uB8q8/ENuE+wOLfqO4EB9wk3YO8TLh53TmS1ziJpmTeXpbyjqyeJP427g+al2DxnltRm5siTYJYEkhGV7jIG9n72OktpFvZQ1hMZ+OGJF/dDZT6xAfdJFudWfScx4D7pBux90sXjzsnM8h0IzhUSKa5CByTdQdn30HzzEnZiRR87Sae9tOqnqM8Ts/Nz+JpdM7leWVlPZuCHJ1/cD5X55Abcp1icW/WdwoD7lBuw9ykXjzunssp3WodIEmREA0YvqywOHWYkzylRGZFCb5gH98a5S6trSgAKwFEfoV69yTpLWU9l4IenXtwPlfnUBtynWZxb9Z3GgPu0G7D3aRePO6eziju10IxF+lfJde1i+YBOFluAXPY/yc+n7CLL0gqhzdhRMiDnWdZjsZaUTO5HV9bTGfjh6Rf3Q2U+vQH3GRbnVn1nMOA+4wbsfcbF486ZrPpZsmgaPHCM0fSRNlhikaAzawcO2ekj0XOWH1b2ThrnLVYQYQ6h14LF5r5QZT2TgR+eeXE/VOYzG3CfZXFu1XcWA+6zbsDeZ1087pzNqr7TZcGkF+c0CS2hYore5zZyDMQ55cKBiguuyApsEteePMhyK0D2k9oIJnVlZT2bgR+efXE/VOazG3CfY3Fu1XcOA+5zbsDe51w87jirdVaJLo7AJabhNZUZUcrItWGAGgdmZseVqc1RfU0xAHoieVtIkUSdSdxRVmfgh35xP1Rmb8AdFudWfcGAO27A3nHxuJPM6srSFi/e9yqBp2bvnSyoUHSmPjhCGG1Mxs5++CJJEQINSjGLwDF7Hib1HWVNBn6YF/dDZc4G3LA4t+oDA27cgL1x8bhT7Oo7QYJORqI5wqhFulnYXS3sCsQmpZ3uhiyppJ48PEn6k1yQb5w+U2tCSxb2UNZi4Ie0uB8qMxlwn2txbtV3LgPuc2/A3udePO6cx6q+kxyOnBpBFTWxg6NZIxK2EKR7FTmAqxFy5Sz981zI1wzgAgZHIK11C3so63kM/PC8i/uhMp/XgPt8i3OrvvMZcJ9/A/Y+/+Jx57+s8p0aZRGVc3P6vHOp7fQSQuhEmEJq3ScnK6swuM3USpWYkzqNXGJoUmQe5C3ssZ/VwA8vsLgfKvMFDLgvuDi36rugAfeFNmDvCy0edy5sVd8hCBJ1svTIJe/x2LOso2qi5iXKVC6UfZJvnWgeqK3zljlnKsk3LSuzhT2U9cIGfniRxf1QmS9iwH3RxblV30UNuC+2AXtfbPG4c3Gz+k4qMRfn9SaIHHJLutNgjrLwyhKDUqkzQR66JwYPYg/yfr2bIkeuSNXkeRLKenEDP7zE4n6ozJcw4L7k4tyq75IG3JfagL0vtXjcubRVvsOpzsFY0ZWRSQSWxAgQKMzQJa3pmUsWRSBtrsRZn5g+sx8Ugaq838IeynppAz+8zOJ+qMyXMeC+7OLcqu+yBtyX24C9L7d43Lm8Vb4j7armJIuRuk0BGAF95yCJzPQ4UVZhadamNSBXSqM8pNLcpa7DFLpIrSbPR1fWyxv44RUW90NlvoIB9xUX51Z9VzTgvtIG7H2lxePOla3yHUAn0WSkGWJFxgKVvfy3xRxrmKVJmRmoY8ulSv+cUcs6yYNIjolt7s9S1isb+OFVFvdDZb6KAfdVF+dWfVc14L7aBux9tcXjztXN+uhDkh3WZMY174sUe6J3UEfI3aWEVZ+ETtyBIfQ5cI4eGIkiT1mcBZP70ZX16gZ+eI3F/VCZr2HAfc3FuVXfNQ24r7UBe19r8bhzbau4wzPGmLn6OKWCPCE73cAdszTXsRQIydfR+5yxTKbWKgUBmYWAGIczeY6Nsl7bwA+vs7gfKvN1DLivuzi36ruuAff1NmDv6y0ed65vVleec0JoFEoY3eXmZ02S51AFSXNGG1Q7RBEZOTTvRkqNhpvD05Bl1jB5bp+yXt/AD+vifqjM1YC7Lc6t+poBd9+AvfvicYet8p0y+gip6PPO5f8s1R4galkKydiJnCyrEINvtWVqkLE1H8sQnWMAUGILeygrG/jhWNwPlXkYcM/FuVXfNOC+wQbsfYPF484NrfKd7msrnhs4bBWB20Q/RUeWLnqGNn2JTnce9D02YD85+uYlHXJYZkaT65WV9YYGfnijxf1QmW9kwH3jxblV340NuG+yAXvfZPG4c1OrfMfzgFmkkiP/GzH7NlOvVVrpsXGBIf/Q50YUWWL53FuR6k8KQ44xW5NvTfb9UtabGvjhzRb3Q2W+mQH3zRfnVn03N+C+xQbsfYvF484trfKdyFxaRpg1FIhSyYHEEDvi5BJmBc8VPeYYS9BbI0oAj6NxTrWNlkyu31HWWxr44a0W90NlvpUB960X51Z9tzbgvs0G7H2bxePOba2uGwTS65JH9rmFPkZhWVgRyaoKfcAI8vaKk8JsMenjjGeOgYf8NNbam82+X8p6WwM/vN3ifqjMtzPgvv3i3Krv9gbcd9iAve+weNy5o9U6a3RpirdCZWg8qURVYpArHKTMI70tCiM7X6QK1AsR55y4e9ZnpvfRXDWxh7Le0cAP77S4HyrznQy477w4t+q7swH3XTZg77ssHnfuanb9TncMA6HOViMiM1AcnHrCmibNoXehSxLEM7P02yc7mGEW1Fq09L9M6jvKelcDP7zb4n6ozHcz4L774tyq7+4G3PfYgL3vsXjcOdgs7ujOgtKYypE6FAk9rPu7g5SSA3mOIVKSVRhWSXqoYhthdJ+4UHSlSYPLwh7KerCBH95zcT9U5nsacN9rcW7Vdy8D7ntvwN73Xjzu3MeqvoPs0Q2MWjoepFt+xTT1lk+OPZRZ8pg+teA7xpzktwMVLQMhEEpGZLLPqbLex8AP77u4HyrzfQ2477c4t+q7nwH3/Tdg7/svHnceYJXv0JD2lePkZDWld2PVmESqlJm77y1Kb11+lHti6agDz1ggB+mtuxZgytpsWthDWR9g4IcPXNwPlfmBBtwPWpxb9T3IgPvBG7D3gxePOw+x6qO3HIunJO10qenExi5TTZiwYZjde5iOqCfpa0lBuXjP3FJyUy9XFp3e5D4JZX2IgR8+dHE/VOaHGnA/bHFu1fcwA+6Hb8DeD1887jzC7rpBfYINFRy6w6AmON2FHAYhtyKNciwAhSXzoS6F5Y4ac5xEq8Y5tGjSR1fWRxj44SMX90NlfqQB96MW51Z9jzLgfvQG7P3oxePOY6zqO1Wa5IVg+pA6pxL8bMOVKjVmJzEnQuhSck4JPPUxHYaCaaaIpL33GaKFPZT1MQZ++NjF/VCZH2vA/bjFuVXf4wy4H78Bez9+8bjzBLPrBiWZqdONOnR/HQlA0KTC0yYnLTL7nkQwNr1pncBHbZ8ThjDkPVnijok9lPUJBn74xMX9UJmfaMD9pMW5Vd+TDLifvAF7P3nxuPMUq7jDk3NBDDB6SiFDHi3hlLVWlCqPg5gaZAjsGzhPgRJ6iUoF0NWanDfpZynrUwz88KmL+6EyP9WA+2mLc6u+pxlwP30D9n764nHnGVZxJ2Ell1qXdnqNE2A0Rr1lwgek7FDePsCFkkJ1CSXwTPaeOPohzS0KJnFHWZ9h4IfPXNwPlfmZBtzPWpxb9T3LgPvZG7D3sxePO8+xqis7CNK1SqM0CTwJwYvGEWptTNVXwNG7y5MCtNFza7WPhjlIvQeG/J7JfaHK+hwDP3zu4n6ozM814H7e4tyq73kG3M/fgL2fv3jceYFVH724qQ+I8BJaXIP9G3rFAbXEUlvrXrpX0jgfSR+pFQI7wJph5kGuJKktm+xzqqwvMPDDFy7uh8r8QgPuFy3OrfpeZMD94g3Y+8WLx52XWMUdqR+zi7VBw+QT5ZEYexsSfyr06abu8V6LhJpQ2EfOOKE6eVcvUpF2Jn10ZX2JgR++dHE/VOaXGnC/bHFu1fcyA+6Xb8DeL1887rzCKu5U3b90JO9KDkwAIBUf8ij5jK+6mXvC0hBcHC3uf9iNJEYEMXIJ0HmY5DvK+goDP3zl4n6ozK804H7V4tyq71UG3K/egL1fvXjceY3Z9TuIJc5Kc2KLwLK80gLOgNxnLxJcnD41S69XbtnXljHlkefw3GNmaib7nCrrawz88LWL+6Eyv9aA+3WLc6u+1xlwv34D9n794nHnDWb1HWA/cLhI+3cclIY5lzmAhpfo0ytLAZlil0JPFsGpSB+dfKsjzBlTaibPz1LWNxj44RsX90NlfqMB95sW51Z9bzLgfvMG7P3mxePOW6z6WbPqLl9S0Blemlo9RycfSrVOWVAVYikuR+4uwJyjNyfFoMjQJOB0QXBo8nx0ZX2LgR++dXE/VOa3GnC/bXFu1fc2A+63b8Deb1887rzDKu4MiSEZYp41ixJXAnUREkNPEXybFQdPnsk1l33qzjHHijEW4ZieTO6TUNZ3GPjhOxf3Q2V+pwH3uxbnVn3vMuB+9wbs/e7F4857rNZZsblR0bfSGsfeIGhfa+SQZ+6lxdzbHFJEdpoBhZi095Ug584TvSzOLOyhrO8x8MP3Lu6HyvxeA+73Lc6t+t5nwP3+Ddj7/YvHnQ+Y9bP6kOZ44DY5AKQM5KKbfUbyzouUMJF0A/cRZVnlU6E02+wokqvEIJP9d5T1AwZ++MHF/VCZP2jA/aHFuVXfhwy4P7wBe3948bjzEat1Vuxx/52g7APXGVIIczT2uaYc/IyyuMrkMvZQ52SRCx1w1iipUO/R5nmhyvoRAz/86OJ+qMwfNeD+2OLcqu9jBtwf34C9P7543PmEVR8dGaRsIylOIN1jx0lDnbMUeTDH0IqEoaLNrQnMxFpmBhdbLdAbhSxAFvZQ1k8Y+OEnF/dDZf6kAfenFudWfZ8y4P70Buz96cXjzmes8h3KLrsoH558hJE6xpZkhVWbc6VNCFmqyD37KtFoIE6iDg56RVmfQWSTuKOsnzHww88u7ofK/FkD7s8tzq36PmfA/fkN2Pvzi8edL1jlO65XJ6WdSrl1TwUlmESUojKALyFBHK5TGNWHwBNSydP3NHIlBGrS9bKwh7J+wcAPv7i4HyrzFw24v7Q4t+r7kgH3lzdg7y8vHne+YlVXpgmxU8xjjhDSCDFzbkn0lYxFwot02SUHohpT4FQdk6RBVMbEjNzA5HplZf2KgR9+dXE/VOavGnB/bXFu1fc1A+6vb8DeX1887nzDKt8ZPujzQsecEleibx5L6ySF5O568tUzhohSWNZ6Dkx25IaUlCECNCn7ZAt7KOs3DPzwm4v7oTJ/04D7W4tzq75vGXB/ewP2/rbF9bFn2FvuQ76OsMf8x97DYx1n744V9jJuf2fvfDC0vbOr32sf2euxoeftOwZj47uLxwRl/q4B9/cW51Z93zPg/v7hbGLh4faYfw9j4aHil/vPvg4Vc/7ja9A3EHO+f4B1wH/K/YPDLRm3/a49wgijNc3+A0GTomcpQ+uf00llszLJosBzGk0KD8Ezs7xbm7w40FUpQ5isA/S8/cAgJvxw8ViozD804P7R4tyq70cG3D/egL1/bBB3frKFuOPb7D6nlptDz/u3vPNOui0x51icnyWX7nVfGBdcSz2QrxiIIRTPMZlcx6/n7ScGfvjTxf1QmX9qwP2zxblV388MuH++AXv/3CDu/GIDcccH6LPGHJobAZ1PKbQI0twN+7eHKdgnxzZH70P3Hp/djTiwcBncUuViYQ89b78w8MNfLu6HyvxLA+5fLc6t+n5lwP3rDdj71wZx5zcbiDsuOmLUbX0bZB6+EknDN86UdZfNHqcvXXfMgxTGTEUCD6D0WTz2BhSKyfUlet5+Y+CHv13cD5X5twbcv1ucW/X9zoD79xuw9+8N4s4ftpDvUOoJKCZHBEDg2igl+9jniIEk3fEhT/SRSpUS0EiJMM4m8Seh1H5s8h09b38w8MM/Lu6HyvxHA+4/Lc6t+v5kwP3nDdj7zwZx5y9byHdyLYmgpNalkNMdw6AZPbXEdQRgqTh7jLLSAicvM2EZybOjirmCvM/CHnre/mLgh39d3A+V+a8G3H9bnFv1/c2A++8bsPffDeLOvsNvIN+RpEVDjKQ4SQrJjcMkx8lrj2vE6FqoUuWBVlOVYNOrJDuN+6QYckzNpp+l503/7LUfHubwa/vhfmYD7oMW51Z9BxlwH3YD9laNex13DreBuOMwQgfXOeqTKiERpyKMaVKF0alJqCk0W+DhamQco7aRopyHlsHhrBb20PN2OAM/PPzifqjMhzfgPsLi3KrvCAbcR9yAvY9oEHeOtIG4E2S5RCjlZA7ds66xMEXtV03wiULzukteglxSdwgVoafYY2fppifM3mTfcT1vRzLwwyMv7ofKfGQD7qMszq36jmLAfdQN2PuoBnHnaFvId2qMGNnnWYH7CMHPEoM0112Q1dYsdVR94gpwTZ1mouIrVwlGku+4mWFY2EPP29EM/PDoi/uhMh/dgPsYi3OrvmMYcB9zA/Y+pkHcOdYW8p2GzoUyQptpOCf/CIO5ScaTvBR6MPZQiLuciNzihDQkQkkVyA0JTNJSN8l39Lwdy8APj724HyrzsQ24j7M4t+o7jgH3cTdg7+MaxJ3jbSHfaSGNmUDWTX4MpsgcAWKS8nKvaYzWMFEvVZZjuhtncZ6l/NyxOwCtNlvYQ8/b8Qz88PiL+6EyH9+A+wSLc6u+Exhwn3AD9j6hQdw50RbiTmYvJeOeUZ8v14tPDYLPHmKkOnwN5DvyjNDyZH2gd0sjduoc8ojOJt/R83YiAz888eJ+qMwnNuA+yeLcqu8kBtwn3YC9T2oQd062hXUW+j7bLGUQpiSEBANHYCiYJbuRsOQGBOeT8xKdYh6UK0odKJJrXUo8FvbQ83YyAz88+eJ+qMwnN+A+xeLcqu8UBtyn3IC9T2kQd061het3CKKj6dmjVHOSr833Qa5HQpRwg7Nh59GxdOlyldCoVEl9gDJ0H3mYxB09b6cy8MNTL+6HynxqA+7TLM6t+k5jwH3aDdj7tAZx53RbiDsBu/ceZKGVu4sdJ3CJySOX7lssrkwKY3igkGpOjlKb8h8MftBINvvh6Xk7nYEfnn5xP1Tm0xtwn2FxbtV3BgPuM27A3mc0iDtn2kLcaXNicQnHAOQoBeQ0uUuAmVRDq07iUEyFapdycwp5+jrC/hVXoBLAJu7oeTuTgR+eeXE/VOYzG3CfZXFu1XcWA+6zbsDeZzWIO2fbQl0ZpGzcsbU6QFrkffpCMEMr0ktnCl0KPN2P6qXiHNMgbjA5lyId9J7joGphDz1vZzPww7Mv7ofKfHYD7nMszq36zmHAfc4N2PucBnHHbWKdxZLv9FY95jGlqdVml3YVSoE5QGuREtWCQx8zF0fIWbIgrJCatLmkx15N8h09b87AD/3ifqjM3oA7LM6t+oIBd9yAvaNB3EmbuG6QU+dOEEbkCqE36ZLDxJ5CqdQcZ1/a3N/CgllmHxJ1qsQnqrOBLMcs7KHnLRn4YV7cD5U5G3DD4tyqDwy4cQP2RoO4U7YQd9JgKesknJK+jJR66tLLciHBiFHA5AfshD46dp1dS7IUkyYX+17bHNlk/x09b8XAD2lxP1RmMuA+1+Lcqu9cBtzn3oC9z20Qd86zhXVWHw4EpYcMvrWMcaQ+pYJMHJtrTrpWtbeUELPvEBqibkOYh149iOxN1ll63s5j4IfnXdwPlfm8BtznW5xb9Z3PgPv8G7D3+Q3izn9tIe4Up/Xh6TjlSWNIKlN9zG1yJOlZDWlmRRwQY4bco0+zkeQ+TQrMGIsEKgt77D9vBn54gcX9UJkvYMB9wcW5Vd8FDbgvtAF7X8gg7lx4C3EHwpxSOU7BxyIrrezBg1R0CujFgs1X9qO0HHPtKeulyrO1ELqPk3quNCzsoeftwgZ+eJHF/VCZL2LAfdHFuVXfRQ24L7YBe1/MIO5cfAt9dJQkpyZhhKp3nYdeS4AQ9cERhalK2kNQE9bifByVuuY5uXT5lYY+m+xzquft4gZ+eInF/VCZL2HAfcnFuVXfJQ24L7UBe1/KIO5cegtxp0qjfAbJdLxvLjd2oUqzKmHzrXJuwaNLDivX4H0K04GUdrwjHqVU38DCHnreLm3gh5dZ3A+V+TIG3JddnFv1XdaA+3IbsPflDOLO5Tdx/U6P+7e7qBJuunxFICnrlJmqRBiH6IfPcU5EStJoz7lLR6uAFIVQMp9YLeyh5+3yBn54hcX9UJmvYMB9xcW5Vd8VDbivtAF7X8kg7lx5C/mOKzykeAO6v4Vol5IyzC4NcpaFlrSt4uRQx2Td2r1LlUcqQIIr6yx5D7du0kfX83ZlAz+8yuJ+qMxXMeC+6uLcqu+qBtxX24C9r2YQd66+hbijeQ0VKR07Ji9t9NSm9LH05lCXcc4BkuO4WajgSJmwjYEcY+wcUi1g0kfX83Z1Az+8xuJ+qMzXMOC+5uLcqu+aBtzX2oC9r2UQd669iesGvQ+6yZc+r7iDC2VW6XCxdNbJNT+yXrfspOHF6H2RbvpIEqM4SdUnkRR/LOyh5+3aBn54ncX9UJmvY8B93cW5Vd91DbivtwF7X88g7lx/C/kOZ5D8hkqYkWcsNU5PsxWfepQO1kyeWnWjleRiC9idLL8wd5jD95nAZJ2l5+36Bn5YF/dDZa4G3G1xbtXXDLj7BuzdDeIOb6GuPJ0fsziE2CnPHHuKyQs3RSbAWMeYQTKf6Wv1RMiA2HLGRlJ/HsWkrqznjQ38cCzuh8o8DLjn4tyqbxpw32AD9r6BQdy54Rbijss9B6nkFOdzwAGuuQi+y/swt1yROHCHEjxL3zxIvZmklc5JAhQOqfZY2EPP2w0N/PBGi/uhMt/IgPvGi3OrvhsbcN9kA/a+iUHcuekW1lmRpaScq+sx9CYBpzqiWKgHX5yspUosAWdLXio+g0viUhCAZ0odokOT6wb1vN3UwA9vtrgfKvPNDLhvvji36ru5AfctNmDvWxjEnVtu4vodCANjkdION+ia3iQmDBgopeA7U65SaU5TKsmu+xhibSX2WB1IKz2aPE9Cz9stDfzwVov7oTLfyoD71otzq75bG3DfZgP2vo1B3LntFvKdMaD0OGLpnqR2HIlSd5wYGw+9P1SijvwVQpXqD+lD+0LPNTaXQmhss9+gnrfbGvjh7Rb3Q2W+nQH37RfnVn23N+C+wwbsfQeDuHPHLfTRh7bKJcgE15NUeThMVysNkEbWROmu19Y5E2RXUqBQ5d3MWKT6I7Ugcib5jp63Oxr44Z0W90NlvpMB950X51Z9dzbgvssG7H0Xg7hz1y2sszTscPQcaixeAs1wlULyPUEIVEOYLOWekIQtyRrLDYlH7OZouUCGOi3soeftrgZ+eLfF/VCZ72bAfffFuVXf3Q2477EBe9/DIO4cvIV1VquRpJcuYaY20H0uIHiSzlYOs/NIRfrmjDMGKSXjkJXYqH0myqnnMcGmvqPn7WADP7zn4n6ozPc04L7X4tyq714G3PfegL3vbRB37rOFdRZJy7y5LOUdXT1J/GncHTQvxeY5s6Q2M0eeBLMkkIyodJcxsPez11lKs7CHnrf7GPjhfRf3Q2W+rwH3/RbnVn33M+C+/wbsfX+DuPOATeQ7EJwrJFiuQgck3UHZ99B88xJ2YkUfO0mnvbTqp5yJPDE7P4ev2TWT65X1vD3AwA8fuLgfKvMDDbgftDi36nuQAfeDN2DvBxvEnYdsId9pHSJJkBEejF5WWRw6zEieU6IyIoXeMA/ujXOXVteUABSAoz5CvXqTdZaet4cY+OFDF/dDZX6oAffDFudWfQ8z4H74Buz9cIO484gtxJ1aaMYi/avkunaxfEAniy1ALvuf5OdTdpFlaYXQZuwoGZDzLOuxWEtKJvej63l7hIEfPnJxP1TmRxpwP2pxbtX3KAPuR2/A3o82iDuP2UI/SxZNgweOMZo+0gZLLBJ0Zu3AITt9JHrO8sPK3knjvMUKAukQei1YbO4L1fP2GAM/fOzifqjMjzXgftzi3KrvcQbcj9+AvR9vEHeesIX6TpcFk16c0yS0hIopep/byDEQ55QLByouuCIrsElce/Igy60A2U9qI5jUlfW8PcHAD5+4uB8q8xMNuJ+0OLfqe5IB95M3YO8nG8Sdp2xhnVWiiyNwiWl4TWVGlDJybRigxoGZ2XFlanNUX1MMgJ5I3hZSJCE1iTt63p5i4IdPXdwPlfmpBtxPW5xb9T3NgPvpG7D30w3izjM2UVeWtnjxvlcJPDV772RBhcKc+uAIYbQxGTv74YskRQg0KMUssGP2PEzqO3renmHgh89c3A+V+ZkG3M9anFv1PcuA+9kbsPezDeLOc7ZR3wkSdDISzRFGLdLNwu5qYVcgNintdDdkSSX15OFJ0p/kgnzj9JlaE1qysIeet+cY+OFzF/dDZX6uAffzFudWfc8z4H7+Buz9fIO484It1HeSw5FTI6hCFjs4mjUiYQtBuleRA7gaIVfO0j/PhXzNAC5gcATSWrewh563Fxj44QsX90NlfqEB94sW51Z9LzLgfvEG7P1ig7jzki3kOzXKIirn5vR551Lb6SWE0IkwhdS6T05WVmFwm6mVKjEndRq5xNCkyDzIW9hDz9tLDPzwpYv7oTK/1ID7ZYtzq76XGXC/fAP2frlB3HnFFuo7BEGiTpYeueQ9HnuWdVRN1LxEmcqFsk/yrRP+gdo6b5lzppJ807IyW9hDz9srDPzwlYv7oTK/0oD7VYtzq75XGXC/egP2frVB3HnNJuo7qcRcnNebIHLILelOgznKwitLDEqlzgR56J4YPIg9yPv1boocuSJVk+dJ6Hl7jYEfvnZxP1Tm1xpwv25xbtX3OgPu12/A3q83iDtv2EK+w6nOwVjRlZFJYEtiBAgUZuiS1vTMJQsdSJsrcdYnps/sB0WgKu+3sIeetzcY+OEbF/dDZX6jAfebFudWfW8y4H7zBuz9ZoO485Yt5DvSrmpOship2xSAEdB3DpLITI8TZRWWZm1aA3KlNMpDKs1d6jpMoQt2NXk+up63txj44VsX90NlfqsB99sW51Z9bzPgfvsG7P12g7jzji3kO4BOoslIM8SKjAUqe/lviznWMEuTMjNQx5ZLlf45o5Z1kgfBj4lt7s/S8/YOAz985+J+qMzvNOB+1+Lcqu9dBtzv3oC9320Qd96ziT76kGSHNZlxzfsixZ7oHdQRcncpYdUnoRN3YAh9DpyjB0aiyFMWZ8HkfnQ9b+8x8MP3Lu6HyvxeA+73Lc6t+t5nwP3+Ddj7/QZx5wNbiDs8Y4yZq49TKsgTstMN3DFLcx1LgZB8Hb3PGctkaq1SkJMyCwExDmfyHBs9bx8w8MMPLu6HyvxBA+4PLc6t+j5kwP3hDdj7wwZx5yObqCvPOSE0CiWM7nLzsybJc6iCpDmjDaodogBHDs27kVKj4ebwNGSZNYaFPfS8fcTADz+6uB8q80cNuD+2OLfq+5gB98c3YO+PG8SdT2wh3ymjj5CKPu9c/s9S7QGilqWQjJ3IybIKMfhWW6YGGVvzsQxhHgOAksn1O3rePmHgh59c3A+V+ZMG3J9anFv1fcqA+9MbsPenDeLOZ7aQ73RfW/HcwGGrCNwm+ilMWbroGdr0JTrdedD32ID95Oibl3TIYZkZTa5X1vP2GQM//OzifqjMnzXg/tzi3Krvcwbcn9+AvT9vEHe+sIV8x/OAWaSSI/8bMfs2U69VWumxcYEh/9DnRhRZYvncW5HqTwrDydtak29N9v3S8/YFAz/84uJ+qMxfNOD+0uLcqu9LBtxf3oC9v2wQd76yhXwnMpeWEWYNBaJUciAxxI44uYRZwXNFjznGEvTWiBLA42icU22jJZPrd/S8fcXAD7+6uB8q81cNuL+2OLfq+5oB99c3YO+vG8Sdb2zhukEgvS55ZJ9b6GMUloUVkayq0AeMIG+vOCnMFpM+znjmGHjIT2Otvdns+6Xn7RsGfvjNxf1Qmb9pwP2txblV37cMuL+9AXt/2yDufGcL66zRpSneCpWh8aQSVYlBrnCQMo/0tiiM7HyRKlAvRJxz4u5Zn5neR3PVxB563r5j4IffXdwPlfm7BtzfW5xb9X3PgPv7G7D39w3izg82cf1OdwwDoc5WIyIzUBycesKaJs2hd6FLEsQzs/TbJzuYYRbUWrT0v0zqO3refmDghz9c3A+V+YcG3D9anFv1/ciA+8cbsPePDeLOTzYRd3RnQWlM5UgdioQe1v3dQUrJgTzHECnJKgyrJD1UsY0wuk9cKLrSpMFlYQ89bz8x8MOfLu6HyvxTA+6fLc6t+n5mwP3zDdj75wZx5xdbqO8ge3QDo5aOB+mWXzFNveWTYw9lljymTy34jjEn+e1ARctACISSEZnsc6rn7RcGfvjLxf1QmX9pwP2rxblV368MuH+9AXv/2iDu/GYL+Q4NaV85Tk5WU3o3Vo1JsKXM3H1vUXrr8qPcE0tHHXjGAjlIb921AFPWZtPCHnrefmPgh79d3A+V+bcG3L9bnFv1/c6A+/cbsPfvDeLOH7bQR285Fk9J2ulS04mNXaaaMGHDMLv3MB1RT9LXkoJy8Z65peSmXq4szH5Y2EPP2x8M/PCPi/uhMv/RgPtPi3Orvj8ZcP95A/b+s0Hc+cs2rhvUJ9hQwaE7DGqC013IYRByK9IoxwJQWDIf6lJY7qgxx0m0apxDiyZ9dD1vfzHww78u7ofK/FcD7r8tzq36/mbA/fcN2PvvBnFn3xE2UN+p0iQvBNOH1DmV4GcbrlSpMTuJORFCl5JzSuCpj+kwFEwzRSTtvc8QLeyh503/7LUfHuYIa/vhfmYD7oMW51Z9BxlwH3YD9laNex13DreFuKPJTJ1u1KH760gAgiYVnjY5aZHZ9yTw2PSmdQIftX1OGMKQ92SJOyb20PN2OAM/PPzifqjMhzfgPsLi3KrvCAbcR9yAvY9oEHeOtIW4w5NzQQwwekohQx4t4ZS1VpQqj4OYGmQI7Bs4T4ESeolKBdDVmpw36WfpeTuSgR8eeXE/VOYjG3AfZXFu1XcUA+6jbsDeRzWIO0fbQtxJWMml1qWdXuMEGI1Rb5nwASk7lLcPcKGkUF1CCTyTvSeOfkhzi4JJ3NHzdjQDPzz64n6ozEc34D7G4tyq7xgG3MfcgL2PaRB3jrWBuOMcBOlapVGaBJ6E4IV3hFobU/UVcPTu8qQAbfTcWu2jYQ5S74Ehv2dyX6iet2MZ+OGxF/dDZT62AfdxFudWfccx4D7uBux9XIO4c7wNxJ1Q3NQHRHgJLa7B/g294oBaYqmtdS/dK2mcj6SP1AqBHWDNMPMgV5LUlk32OdXzdjwDPzz+4n6ozMc34D7B4tyq7wQG3CfcgL1PaBB3TrSFuCP1Y3axNmiYfKI8EmNvQ+JPhT7d1D3ea5FQEwr7yBknVCfv6kUq0s6kj67n7UQGfnjixf1QmU9swH2SxblV30kMuE+6AXuf1CDunGwLcafq/qUjeVdyYAIAqfiQR8lnfNXN3BOWhuDiaHH/w24kMSKIkUuAzsMk39HzdjIDPzz54n6ozCc34D7F4tyq7xQG3KfcgL1PaRB3TrWJ63cQS5yV5sQWgWV5pQWcAbnPXiS4OH1qll6v3LKvLWPKI8/hucfM1Ez2OdXzdioDPzz14n6ozKc24D7N4tyq7zQG3KfdgL1PaxB3TreJ+g6wHzhcpP07DkrDnMscQMNL9OmVpYBMsUuhJwt8KtJHJ9/qCHPGlJrJ87P0vJ3OwA9Pv7gfKvPpDbjPsDi36juDAfcZN2DvMxrEnTNtoZ81q+7yJQWd4aWp1XN0AkC1TllQFWIpLkfuLsCcozcnxaDI0CTgdDkdDk2ej67n7UwGfnjmxf1Qmc9swH2WxblV31kMuM+6AXuf1SDunG0LcWdIDMkQ86xZqFwJ1AUqhp4i+DYrDp48k2su+9SdY44VYyxyTqYnk/sk9LydzcAPz764Hyrz2Q24z7E4t+o7hwH3OTdg73MaxB23hXVWbG5U9K20xrE3CNrXGjnkmXtpMfc2hxSRnWZAISbtfSXIufNEL4szC3voeXMGfugX90Nl9gbcYXFu1RcMuOMG7B0N4k7aRD+rD2mOB26TA0DKQC662Wck77xghYmkG7iPKMsqnwql2WZHwa8Sg6aFPfS8JQM/zIv7oTJnA25YnFv1gQE3bsDeaBB3yhbWWbHH/XeCsg9cZ0ghzNHY55py8DPK4iqTy9hDnZMFHTrgrFFSod6jzfNC9bwVAz+kxf1QmcmA+1yLc6u+cxlwn3sD9j63Qdw5zxb66MggZRtJcQLpHjtOGuqcpciDOYZWJAwVbW5NYCbWMjO42GqB3ihkOTkW9tDzdh4DPzzv4n6ozOc14D7f4tyq73wG3OffgL3PbxB3/msL+Q5ll10UkOQjjNQxtiQrrNokX2sTQpYqcs++SjQaiJOog4NeUdZnENkk7uw/bwZ+eIHF/VCZL2DAfcHFuVXfBQ24L7QBe1/IIO5ceAv5juvVSWmnUm7dU0EJJhGlqAzgS0gQh+sURvUh8IRU8vQ9jVwJgZp0vSzsoeftwgZ+eJHF/VCZL2LAfdHFuVXfRQ24L7YBe1/MIO5cfAt1ZZoQO8U85gghjRAz55aEtWQsEl6kyy45ENWYAqfqmCQNojImZuQGJtcr63m7uIEfXmJxP1TmSxhwX3JxbtV3SQPuS23A3pcyiDuX3kK+M3zQ54WOOSWuRN88ltZJCsnd9eSrZwwRpbCs9RyY7MgNKSlDBGhS9skW9tDzdmkDP7zM4n6ozJcx4L7s4tyq77IG3JdbnFvjjf456J+OGwb22YBd4jJ6SRWzG1xq6y71kKWuOqNUpavzWSuxnVNCN5zUZ+t0FPph9/AcXn7nHHqf9JHlEitIUhVXB3BzvUWcxXvduJSlIyVFG5SelKyHEkhXPPNMExArcNi383WQwbncK+Yr7DJjHJpg6e2oghRyrLIm7DkPF8AHChWpuJ6dq5XSAKghFnSSuEnalshknyC1yRUMxssVFx8vqu+KBtxXWpxbbX0lA+4r7/p5dmXUmT3JMT3KUmPAFOfu7AvGmstwCAxIqcgKJGoMIlmpFAoQJEeoFtyq78oG3FdZ3N7KfBUD7qsuzq36rmrAfbUN2PtqBtxX3+UuRJIclAy6r++ovWTprECOU/q7rvOsJFVM+SHOGGb1aWbJNiSrkL6uVBhMnt+k+q5uwH2Nxe2tzNcw4L7m4tyq75oG3NfagL2vZcB97SPs1g9rQxytylxMspAn5Fi5QnBzDMq6HQK03mNnCowEocl8rs+trdK0mGAyvlXftQ24r7O4vZX5Ogbc112cW/Vd14D7ehuw9/UMuK+/m59X6TWm1qU1KXW6INO2fE8u1Vgm9MG+u8wVGySmQugBinQMpjQt3fAYTPYVUH3XN+Cui9tbmasBd1ucW/U1A+6+AXt3A24+FHcAzAzDy+Td66iYXAOZnjskWW3vv/q7THJ6N3+VPiDMlotUCffvh+/A5Ppu1ccG3GNxeyvzMOCei3OrvmnAfYMN2PsGBtw33J2/+5ACsh99xOCii6FK5Yx4+sCarUslXapvSXxE2mod2hzRSRndjRSaH1inBbfqu6EB940Wt7cy38iA+8aLc6u+Gxtw32QD9r6JAfdNd9ffc7au2XesrlMfAaovyaGnlpK0w5iDrxRdlSQ+zOZkkT5BsvjOtbLDZsGt+m5qwH2zxe2tzDcz4L754tyq7+YG3LfYgL1vYcB9y935e2CWxDxmcD1JN1t3TG8da5ZyW+KeWNbYwaFUylviADmn4bsM9gGVizTLLbhV3y0NuG+1uL2V+VYG3LdenFv13dqA+zYbsPdtDLhvu8vdi+uQ9VksIHl4KKN3KJqKj5D9lMzdU5Zp3bXmqc5OoeScI3fdaIaqyf1Gqu+2Bty3W9zeynw7A+7bL86t+m5vwH2HDdj7Dgbcd9zNzz366QuO4GOOIWGursog90O63TF4JvlVVxrXiTH9P3srhCI/hlqwOpPnTKq+Oxpw32lxeyvznQy477w4t+q7swH3XTZg77sYcN91Nz8P0grz0gZjWV2DjHYu6EYHoB6IqhwIRoQUeksdYqtSXfNSavckgSBJL9yCW/Xd1YD7bovbW5nvZsB998W5Vd/dDbjvsQF738OA++Dd+TtAhC55d+cB2Tfy2LhLM4xpOvA48tDW2cxSWhvSP5MSemmz66NbebpYLbhV38EG3Pdc3N7KfE8D7nstzq367mXAfe8N2PveBtz32Z2/2bs8IOguQpRdhZIH6S5mPnY3k+TslCUpL9DlZ61lzOh7rF4aZ7lJ4m7BrfruY8B938Xtrcz3NeC+3+Lcqu9+Btz334C972/A/YBdbp4YWuxhaiOMZUh3qDP2lCawk3l65jgrckfpx8s63E3qbuQwEsRE1WT9rfoeYMD9wMXtrcwPNOB+0OLcqu9BBtwP3oC9H2zA/ZBDcUeOFDOG2irLmhow++qbz7NIMV073QExJR9DqVJrb0OODCwf60sPxWR8q76HGHA/dHF7K/NDDbgftji36nuYAffDN2DvhxtwP2J3/U1Ny+WcpIIeAQdHGdnVSfpdBnbwMcrIn1XrbTPWAHOMQC7J6jt5oGJyfYvqe4QB9yMXt7cyP9KA+1GLc6u+RxlwP3oD9n60Afdjdrll5V0xlSATctbdxKU75hiCdMhaTNCLl+HvPeYUEKDJRB5kmEu5ncesrZjU11TfYwy4H7u4vZX5sQbcj1ucW/U9zoD78Ruw9+MNuJ9wqOvXHGRpdEfO0taOM+XoR55utFZjzTm6nGmCDPTGI5YUfJAlu6zDh+89RhNu1fcEA+4nLm5vZX6iAfeTFudWfU8y4H7yBuz9ZAPup+zm59XzhBJCHAFyozBrTq70ESn1zr1NmdJLkwmcB6LU1PVh05xl2g+QXDTJz1XfUwy4n7q4vZX5qQbcT1ucW/U9zYD76Ruw99MNuJ9xqOtb6pjs2CU/msMmC+0kZTSorlIL2BnzyCWknOXgMsc7liO7gQmkhk5ssk+j6nuGAfczF7e3Mj/TgPtZi3OrvmcZcD97A/Z+tgH3c3a5m4zm0Ivk3TKyM4MLCaqXVbZ8hgNMNQWqvjfsfnpwCF6+AstvxRKGyf3fqu85BtzPXdzeyvxcA+7nLc6t+p5nwP38Ddj7+QbcL9jljq1S9gCR3PR9uBnZuewj5CS/3UeXT9NLXUYKQ0pvNHxI3MckSs5Xk/qa6nuBAfcLF7e3Mr/QgPtFi3OrvhcZcL94A/Z+sQH3S3bX3zPF1nMuU7JxF33StrcUyHOLjWKX7Hz2OeWI4F3G2UB/gG0g9CaVOZPnN6i+lxhwv3RxeyvzSw24X7Y4t+p7mQH3yzdg75cbcL9id3wzDCyReyrOBedqdiT18TTSGPrcS96/Dbgvcvgh87eU3XhU6pmrTPQzmlzfovpeYcD9ysXtrcyvNOB+1eLcqu9VBtyv3oC9X23A/ZpD9ceYASfpsyNjL1CcDPA+KFfvhiTnU/JxKbz1WmpjyeFjlkN28lHm+SmTuwW36nuNAfdrF7e3Mr/WgPt1i3OrvtcZcL9+A/Z+vQH3G3bnb19K6CMkh9IgoyGN8CAtcWKSzrgcJLVBXUYz1y4LdZ/ROw0CA0kf9JFMnuuo+t5gwP3Gxe2tzG804H7T4tyq700G3G/egL3fbMD9lkP1v53vvcqwloNFKbGhl2PWkUOVcnqUuTxXTj1JDj/kwK0DxjRBs/cwkU24Vd9bDLjfuri9lfmtBtxvW5xb9b3NgPvtG7D32w2437Gbn2PXhw5Kp6tVycBzoTwx1jpajwkdQ009zB4KghThkpd/tBDkmLJmB5dNnm+g+t5hwP3Oxe2tzO804H7X4tyq710G3O/egL3fbcD9nt3x3UaWKXlGxOqQqBRAaZj1CDE0koHsZYXuGxOFwhX15pKWa5QcHXvo0+T6NdX3HgPu9y5ub2V+rwH3+xbnVn3vM+B+/wbs/X4D7g/scstMnTNijBU5YOkpB2mFdWyl+jhqBpCaeZAPgCD1N0naS02YdKeX7qGarL9V3wcMuD+4uL2V+YMG3B9anFv1fciA+8MbsPeHDbg/srv+TpSa1Mxdlmw7Y51I1QMyhp4hQIHuc/DNlVRHQggI0c/eGxHKmnya5Oeq7yMG3B9d3N7K/FED7o8tzq36PmbA/fEN2PvjBtyf2OXO3P3oySMidMfS724YMIYshfMZZ/MxSfu7YKEWefQpQ1tvG5XSuWsy1C24Vd8nDLg/ubi9lfmTBtyfWpxb9X3KgPvTG7D3pw24P7M7f8t8zU76XRW4FxmzKZfah8/DUesl1pS6HJGDHhRcm9jizFzG9BN6Nrm+RfV9xoD7s4vbW5k/a8D9ucW5Vd/nDLg/vwF7f96A+wuHqq95kuHsiszWydfkuQVX0wzOV5hJmmOzOym8+ZFqCdBSkNo6jzicvDM7k/lb9X3BgPuLi9tbmb9owP2lxblV35cMuL+8AXt/2YD7K7vzty6305iYZw3saLrO2UXpbBPUmMBFTlhl8Gdfq9N9k/t0VSb21kMO3WT/VNX3FQPury5ub2X+qgH31xbnVn1fM+D++gbs/XUD7m/sjm+Q2rhM3a2FIfN2Lhw5Ss4es27lUHLIGBsghpZckbkcQpryuZMm1hRs9m9Rfd8w4P7m4vZW5m8acH9rcW7V9y0D7m9vwN7fNuD+zm5+nmVJ7Zs+fEifNeZhpMKtcpLlt9Od0dkFGD4wYk5cnGtlQplON3EZTCbPL1F93zHg/u7i9lbm7xpwf29xbtX3PQPu72/A3t834P7BoernYeSOMkvzyLLM7gShx+yqGzHKyI7BD5bveuWccIKr8kEB5B/M3JJJfU31/cCA+4eL21uZf2jA/aPFuVXfjwy4f7wBe//YgPsnu/l5GGH/7iyFpOU9qqTclZxHltEdpuPmphyzlSBLcB+xYtGnfhMNlKy92qy/Vd9PDLh/uri9lfmnBtw/W5xb9f3MgPvnG7D3zw24f7GbnztZa9dEkm6HDJ5ktOfpkWbVx4YG0u2QGaT6Jn8KMrSQUBbmEhJCQA4m3KrvFwbcv1zc3sr8SwPuXy3Orfp+ZcD96w3Y+9cG3L851PxdHepjSrizPoCo91lSHr6QZ4RJUlvX205ybhEi6NUvJUjHDIjQS8Zucv2a6vuNAfdvF7e3Mv/WgPt3i3Orvt8ZcP9+A/b+vQH3H3bnbxnfUi/LmagkijhHqLNoTU3GdMg1NpSKOTeIdRRXfcyjpihr7yH19lFN6muq7w8G3H9c3N7K/EcD7j8tzq36/mTA/ecN2PvPBtx/2R3f0v0OQRLtjK0m7LXjjFl6XynTGPJ7seh2TLElkGmePIGsvmPy01OQhlm14FZ9fzHg/uvi9lbmvxpw/21xbtX3NwPuv2/A3n834N53xJ38fEi/q0m5zGfs2c/etBmW9EnBs0CMOHDwbLIIbw1b8bJU9xVcdzjn7Db3l6g+/bPX3Ic54tr23s9swH3Q4tyq7yAD7sNuwN6HNeA+3O74jtBGaKNLdyyVQSSDnUOVGjrNlouf7H0JnfV61Rgo1FYotVAHZ59CN9k/VfUdzoD78IvbW5kPb8B9hMW5Vd8RDLiPuAF7H9GA+0i73FNmakYfUimjzyrL8DarpOpjtITJ88wxgS8lU+h6GxnnFmaRqZtk4JMJt+o7kgH3kRe3tzIf2YD7KItzq76jGHAfdQP2PqoB99GOuFtfi5KZ5wwN9pfFaw8US/HdJ330tyzBZTXuEum+yTKpd3JB92Oj7mT0VzRZf6u+oxlwH31xeyvz0Q24j7E4t+o7hgH3MTdg72MacB/rUOtvycRrbjK4u07RDDBmkIV1c7UnljJarOjAoRuljpT0MYRxuBygyno8mYxv1XcsA+5jL25vZT62AfdxFudWfccx4D7uBux9XAPu4+3O31IYh+iCJx9CR0nKkxTR4mAKiZj67FzD/ptCXUwYx2y9DHa686Kk9tAsuFXf8Qy4j7+4vZX5+AbcJ1icW/WdwID7hBuw9wkNuE+0y+09OkeUPaKstDsg1xy5YOwxp8IytCc2qAlir2PW0lxDmPo0hJBjAAtu1XciA+4TL25vZT6xAfdJFudWfScx4D7pBux9UgPuk+3O3y72kiYV5NCaHNll3XFRim1OvpVuGOYa2XFAP2lwb17a4uhkDvdO92K04FZ9JzPgPvni9lbmkxtwn2JxbtV3CgPuU27A3qc04D7Vofvf0GIE6qUVOYQrUIusuj1CCRC4ZeABMnPr8UZD9iDLcuQxo58jmjwfWPWdyoD71IvbW5lPbcB9msW5Vd9pDLhPuwF7n9aA+3S783cKWQ7UUkmxtTo7MbuC2eXmYs7Ojxo9D7023ZO0v7uXj4Ay4+g+1GCyP7LqO50B9+kXt7cyn96A+wyLc6u+Mxhwn3ED9j6jAfeZdrllAucp5TOQQ/QCPcjYjpVyozLnzIBJiuWNMqKM/BapenmrG3rI4KJJfU31ncmA+8yL21uZz2zAfZbFuVXfWQy4z7oBe5/VgPtsu9ycauHup8sDeboQnJTVKJcpP2g9tSo5e5C+WMfGDUL1LB8h5TeZvWVSrxbcqu9sBtxnX9zeynx2A+5zLM6t+s5hwH3ODdj7nAbcbjc/7yHNUKbjKTW0XBlmk9Hrku7NlKUNhgGgVg9DOmKpDyjy8pCpnHKSJrnJ/g6qzxlw+8XtrczegDsszq36ggF33IC9owF32q2v5eibl1V4rB1q81Jk8wy5t+aRqc40KAFTmilWGDX4mKi3yVJdy/LR04Jb9SUD7ry4vZU5G3DD4tyqDwy4cQP2RgPucqj6GteQpaEdG/fgR+Ic9HJVBGl2Q5OS+fSzUaLaI2eIUGeTKX30HHumEi24VV8x4KbF7a3MZMB9rsW5Vd+5DLjPvQF7n9uA+zy787cLLUshTRpjsuh2s8c5vcMWmquhNknMq5u6dbJul9zikPkefU7spSuuzzmw4FZ95zHgPu/i9lbm8xpwn29xbtV3PgPu82/A3uc34P6v3fk7SAqO4DOmQK5MxCSJd8bsK5cRccZeqHdwpSVuAUPEmMKoqbHD6kyuX9uvz4D7AovbW5kvYMB9wcW5Vd8FDbgvtAF7X8iA+8K745t8Hyw/kpa2S6hbrnHyGKTGNiIRTvZFXtS7wCVTp4ERsWUHufmo3XELbtV3YQPuiyxub2W+iAH3RRfnVn0XNeC+2AbsfTED7ovvcuttYJWad8xZ2mEt6sScWk44SusAKcjCdfpWMcY5Si01emmay2GiDHuT/rfqu7gB9yUWt7cyX8KA+5KLc6u+SxpwX2oD9r6UAfeld9ffzFxrSiwN7hqjG667Jvl58BhLyTNUSlJ5xtl45tJrnhmkvC4rdacPNjLZv0X1XdqA+zKL21uZL2PAfdnFuVXfZQ24L7cBe1/OgPvyu+MbZEhLAu6brLuzk1w9Q8c+okziOQaZzfMoIXvfMIbRWhtzVul8sw8QczRZf6u+yxtwX2FxeyvzFQy4r7g4t+q7ogH3lTZg7ysZcF95d3ynOXMiqYXLr1OT5FuGcqYaAvbmOvkykyMCSciLtMYhVgrySdIeQ53ITdbfqu/KBtxXWdzeynwVA+6rLs6t+q5qwH21Ddj7agbcVz/U+O6tgGPCCrF3vYssJoLWfUkzzJ6GzO/T9+p6DBNCYjepMQe9YF3W4Bbcqu/qBtzXWNzeynwNA+5rLs6t+q5pwH2tDdj7Wgbc194d39PNMYgbtSkdsFRclKpanL4wSHZemoOiN5d49jzKAOit5yzpuR9DsvRqwa36rm3AfZ3F7a3M1zHgvu7i3Krvugbc19uAva9nwH393fHtQ5OaWuxB0nSWMcvckZ1Uy3sKPeula1xkiPOUVwPTlMV6JpL3dhiTsgW36ru+AXdd3N7KXA242+Lcqq8ZcPcN2LsbcPOhrm8J3BzrrWOTak7Qmt4hFqVinlxiRp9mTH1/P3x0QBenfIAMeOpupmaSn6s+NuAei9tbmYcB91ycW/VNA+4bbMDeNzDgvuGhr28pLVSZ3HLm7nLrlFBeS1icJ8nI/ZyDqouYUCrqEgx8AwxzYuh1skl/TPXd0ID7RovbW5lvZMB948W5Vd+NDbhvsgF738SA+6aH4pYqGrJUxfOsEZz0w5L3RDU6312akB2M1t0oMtRjlnqbfE6uJWXvdH1uwa36bmrAfbPF7a3MNzPgvvni3Krv5gbct9iAvW9hwH3LQ13f0nssFYHTTBBajz7Wyj63JJX0UcconYp8gPNRyud+NH10SQxd0/TYTPrfqu+WBty3WtzeynwrA+5bL86t+m5twH2bDdj7Ngbct93lTowFW+0loO577uTdSK7yaBm7DGGYbYwqDfHsI+MAzpn6RJncfU+VLLhV320NuG+3uL2V+XYG3LdfnFv13d6A+w4bsPcdDLjvuDt/t0bS4Q5pliTju/QAeXQsfgaa+uCDSigtcE4xVams62MHU5V6XJNkvnGrFtyq744G3Hda3N7KfCcD7jsvzq367mzAfZcN2PsuBtx33a2vYXVlSs1MyubTFWpZ/p3knSTVtqAPHEy56CNGESjXGjy6MaWcPnvPlKfJ/qmq764G3Hdb3N7KfDcD7rsvzq367m7AfY8N2PseBtwH73KPQTJee3e9D4+SkCeAiQTSNu1Jt1aNjhm8k/ckDLnwQOksTt3uxY9kcn2q6jvYgPuei9tbme9pwH2vxblV370MuO+9AXvf24D7PrvzdwpRml1D+t0yN4PXJrgk4gzSCUfpls3QXInSHuue5BgBRyzR9yE19+Hl0y24Vd99DLjvu7i9lfm+Btz3W5xb9d3PgPv+G7D3/Q24H7A7vr28FwI2KZi5WKfz0CUNB2AXWtEGWRv6pOCe9QnBCXOJLWBNJUpMkNFuwa36HmDA/cDF7a3MDzTgftDi3KrvQQbcD96AvR9swP2QXW4vC255e/IxFJJfTtLvLtItC9mxTzL0Z69Zr1+rIAeQQjrN6bN8XziPZNIfU30PMeB+6OL2VuaHGnA/bHFu1fcwA+6Hb8DeDzfgfsQu90yYZCldE1csUjKX1nd3M2OlArIM55J15V2qJOwSAFj6Y9oeH9xS1UvdLLhV3yMMuB+5uL2V+ZEG3I9anFv1PcqA+9EbsPejDbgfs9sfA54FKECTUZ76qKAXoEp1jYOsxTswBM69I8rUnedoDsFN6aZ1nNHJFG/BrfoeY8D92MXtrcyPNeB+3OLcqu9xBtyP34C9H2/A/YTd8Z0L1ehpBO+lbB6ksKabr5VSk0zco3AAxCE98lalV1blmykfHIvvhRCCyfUtqu8JBtxPXNzeyvxEA+4nLc6t+p5kwP3kDdj7yQbcT9nlrqV56XpnSc0rjTiHkwE8k5OGN3uceTo55BwknxRBE3hsjF1Sd32ySTepr6m+pxhwP3VxeyvzUw24n7Y4t+p7mgH30zdg76cbcD/jUPXzSi41QI4oSXefXqprwTV2PjgpqbkcOebYUw66MRPVSVKR0x5ZDDlxsuBWfc8w4H7m4vZW5mcacD9rcW7V9ywD7mdvwN7PNuB+zu74bk5G9KhlylytDxfLLOOboOkdotLoxtam9773mCuFNIob1UEtASgltHl+iep7jgH3cxe3tzI/14D7eYtzq77nGXA/fwP2fr4B9wt219/Tpy7vI0+5dh6Za0ltzJCzbofMiR2O2pI0zeRPl0k9YPJFSnCDmNCkvqb6XmDA/cLF7a3MLzTgftHi3KrvRQbcL96AvV9swP2S3fHtypBhTd1Vrqz3kI3YsMuvuTB4/0NCJVn30FxxsuwGFwcVljQeQtY+uQW36nuJAfdLF7e3Mr/UgPtli3OrvpcZcL98A/Z+uQH3K3bHd3GlcJG1dS8RWXraI9cRkszYcUSYUAr4WKcPXEoLo8thOOcZQ/cRe7DgVn2vMOB+5eL2VuZXGnC/anFu1fcqA+5Xb8Derzbgfs3u+tuxA6mIOxeLNMKhjSZ5uTTNspPjYUaGlmeDUGOcRcrpM9VU56yh6jcm16+pvtcYcL92cXsr82sNuF+3OLfqe50B9+s3YO/XG3C/YZc7jd7K7CQTdJWRmzq7wdL8piRFtQF+SrY+iyy7ZXpvOYSpnxVh+B5DLNWCW/W9wYD7jYvbW5nfaMD9psW5Vd+bDLjfvAF7v9mA+yRn3FvuQ74Ot8f8h93DYx1pD8/fW/bOb/yuLcKQUNqAXWIpipRUMUusLbV1l3rI0o+c0flSnc/SreydpYPhhqMIdToKJvfiK+tbDHzwrYuPPWV+qwH32xbnVn1vM+B++wbsrRoPu8fHPewensN3WMWdnhAkzFBj17Dp9j4TCDg0Lw2WPlqRrukInXLQDbX1QdJc5N+BG9XgTeyhrO8w8MN3Lu6HyvxOA+53Lc6t+t5lwP3uDdj73YvHnfcYxR0/ucBIgylL1Ansu5SSSqjEkvT4iSF75BZjK8Rd5Im6WZqXN0THHU2uzVLW9xj44XsX90Nlfq8B9/sW51Z97zPgfv8G7P3+xePOB6zijiu56kXeukdpzD3G0Hi0NBnnDJ4r6TO+ksupxKkFbZ9IjhE4lyovm1wzpqwfMPDDDy7uh8r8QQPuDy3Orfo+ZMD94Q3Y+8OLx52PGMUd50MoyTnSq9hq7CSlHEl0YnHeYW7kR2oSlnC0Xit3KL33hgA9QqbWTO4FV9aPGPjhRxf3Q2X+qAH3xxbnVn0fM+D++Abs/fHF484nrPIdBKkcF7111TV94GkdUi0exVUAitgHj+yd1JRdirHLqoxYxElHvwXt45vkO8r6CQM//OTifqjMnzTg/tTi3KrvUwbcn96AvT+9eNz5jFW+E7ubAAEmdIkosqjSB0FItJl5pA6BR3SlI6NkQ6N53b+OYsYxpKcFPZnUd5T1MwZ++NnF/VCZP2vA/bnFuVXf5wy4P78Be39+8bjzBat8BzjPWgsmaVDNAZLS6L72eULMiUPmCZiktRV67FrmYRfczDCQXMjZpp+lrF8w8MMvLu6HyvxFA+4vLc6t+r5kwP3lDdj7y4vHna9Y5Ts5TRRxExN6brNI02pwoZhCzUCOCbCVmSBXiUWtYgsxS1ZEwWXvg8mz5pX1KwZ++NXF/VCZv2rA/bXFuVXf1wy4v74Be3998bjzDavrd2KbKfnUHUeoIjFI5jPBd5KCcpSqTqHAXNH13MMcuqNwkYZ6AB8ijmhyD6WyfsPAD7+5uB8q8zcNuL+1OLfq+5YB97c3YO9vLx53vmOV75TUg+utRAk5FNm7WZhmnbW52gZzgzTIFfCj5FKyDz60GgP5Oecgk70RlfU7Bn743cX9UJm/a8D9vcW5Vd/3DLi/vwF7f3/xuPMDq3yHSqmzlDSphw4SeMKUANM69jRrl8b5wIYOe5swpceO+qThlCCG5vskk3xHWX9g4Ic/XNwPlfmHBtw/Wpxb9f3IgPvHG7D3jxePOz+xynckx6GenHwcxSZVnc7JDclvanBuDNEUY8u9iZruvYsUYtWnnksAypj6tLCHsv7EwA9/urgfKvNPDbh/tji36vuZAffPN2Dvny8ed35h1kcfUrCpUjz2CaRm7GKDTiETN/ZFWldZ+lwY0wyzkXOVWotZV1tSco5kk+8o6y8M/PCXi/uhMv/SgPtXi3Orvl8ZcP96A/b+9eJx5zdW66wccy0zSMgZ5H1MBWYA52uYFEVBoc7YJA3C2iGjF32TckacrfYRq4U9lPU3Bn7428X9UJl/a8D9u8W5Vd/vDLh/vwF7/37xuPMHq+t3EFuD0Wb2JUTqVD2TLLQwzirlHNUlzXURFDkmDxjItc48iNFJ590k7ijrHwz88I+L+6Ey/9GA+0+Lc6u+Pxlw/3kD9v7z4nHnL1Zxx1GS4o2TZIddJ4QBQ0rGuckaS/e7iPKvVEKYrrs8ULfkScE3qTdTGSOY2ENZ/2Lgh39d3A+V+a8G3H9bnFv1/c2A++8bsPffF487+45kFHeq5DlpjhoKd6JIKUtrPZSkeU/W5x6EAJ57TuylwlNrS5LzBFlvJYzOJu4oq/7Zaz88zJHW9sP9zAbcBy3OrfoOMuA+7AbsrRpXjjuHM4o7LknzijDzKAwh49C70WHOLuurFIOPIlUvEJSm+nTIEm0goJtNVKaE3eR6ZWU9nIEfHn5xP1TmwxtwH2FxbtV3BAPuI27A3kdcPO4cySrfkeVUyF3+5zlKC6vXyeipdeczS8W5+ywln8Cz9ynSfJCX2uiOC3JPbGIPZT2SgR8eeXE/VOYjG3AfZXFu1XcUA+6jbsDeR1087hzNKO4EGiytqligtACNW5UC8uhNVl7dxyqdLUYuQ1pYXXteBYvUlXFISahWqQU1C3so69EM/PDoi/uhMh/dgPsYi3OrvmMYcB9zA/Y+5uJx51hWcUeEFX1MZaToKs0Wex+ORRdA9eQwte7r8K1AL5BguJioxABScHZYTPbfUdZjGfjhsRf3Q2U+tgH3cRbnVn3HMeA+7gbsfdzF487xzOrKUxZPEmvy1GDjIIyM6EHqy6gpjYdKI5U8h+RFE9CVmDmx1J+HhKJkYg9lPZ6BHx5/cT9U5uMbcJ9gcW7VdwID7hNuwN4nXDzunMgq7kizajRpZLnBCRKNyrW16CK2Tp0i+BQIa2rsvJSRXWkzJwozyFepw+SZgMp6IgM/PPHifqjMJzbgPsni3KrvJAbcJ92AvU+6eNw5mVXcSalUlFVVbpWLpyQZj3cUuzS1RqjAxFyTZDcB9t+vBdI7jy2C5DoNYje5H11ZT2bghydf3A+V+eQG3KdYnFv1ncKA+5QbsPcpF487p7Lqo+eGhJHd/h0uaPomDSueJQL5ifroiFxKLJLhUJ84cm5caDiveRHWYrLPqbKeysAPT724HyrzqQ24T7M4t+o7jQH3aTdg79MuHndOZxV3CkgbPWStHM/eoM3QvMfSssQgFI0jiIzWwbfeWYo9mGgSzpAjVqk3W9hDWU9n4IenX9wPlfn0BtxnWJxb9Z3BgPuMG7D3GRePO2cyu36H22wj80g8KKA004l9Y6ng1MSzS8HHASc3Z5hTulnSYk/S78pUQ8UOJtcNKuuZDPzwzIv7oTKf2YD7LItzq76zGHCfdQP2PuvicedsVn306SRr8fKZAUPwyKxNdXSJeq662kpdGuYFS3FzcEAKEomI8tCOVpom6yxlPZuBH559cT9U5rMbcJ9jcW7Vdw4D7nNuwN7nXDzuOKt1VmiToAQuLTG3oPstc4XmQ9PHZWUfIUGNNThPEniihJo+Wt1/f3rzZGIPZXUGfugX90Nl9gbcYXFu1RcMuOMG7B0XjzvJKt8JgTgGbqCdrdY8zsrInql0zPrc0IFNF1vZdfYoSU/lPhI1mJFaChb2UNZk4Id5cT9U5mzADYtzqz4w4MYN2BsXjzvFKt9pMHhSrEAtNIp6aU7C0iWvAWgxwci11cCu0YQmva+OsYzYU+qSGJHJ9crKWgz8kBb3Q2UmA+5zLc6t+s5lwH3uDdj73IvHnfNY1ZXZV4klUrIZcYQsyy75ZIrSO+9eZsrCrY4UEiMlEckRgKWv1VlPW8RmUldW1vMY+OF5F/dDZT6vAff5FudWfecz4D7/Bux9/sXjzn9Z5TsD05w56HU7NJjSbI55ulhL7TnNqtfx5EraQM8VvOeZi/TSqSJMN0yuG9zPauCHF1jcD5X5AgbcF1ycW/Vd0ID7Qhuw94UWjzsXtoo7fsbJOQWpJntsvZGrsWXtoDcs3jeXPBWJPDm2Cl0yoNFxZikFYY5UTfpZynphAz+8yOJ+qMwXMeC+6OLcqu+iBtwX24C9L7Z43Lm42fU7UjZOMXqM2cUQSg+5eGlhSRG5dh8c+Co9LcDumuQ/oyXvqEuJBz0xZpPnSSjrxQ388BKL+6EyX8KA+5KLc6u+SxpwX2oD9r7U4nHn0lb5Tp/SmIol6xP6XB6hUIYiffKQfOLsg4alMWML0beQfSnkMUgWJIGpg81+g8p6aQM/vMzifqjMlzHgvuzi3Krvsgbcl9uAvS+3eNy5vFUfvU8eE/PMTfdW1mt2fA4YaBCDFzmITbfA4OLnCJL35BaGFITSCIwhmOQ7ynp5Az+8wuJ+qMxXMOC+4uLcqu+KBtxX2oC9r7R43Lmy1TpLkhauoU1ItTMnLx3zWL3utyOfTpg7lewh94ZT2lgdE45BGGePOUtNyMIeynplAz+8yuJ+qMxXMeC+6uLcqu+qBtxX24C9r7Z43Lm61TqLWk9tNiAOLkobfUCQsg7U2WJEJvkvTB9Ty+Qi9klTaj7sKkXHkvaY5DvKenUDP7zG4n6ozNcw4L7m4tyq75oG3NfagL2vtXjcubbVOktWUJLKTIkzo/csWYxEnhKlWT4RKIfYW8oY68TgfNeN36GWlkBWXNX5ZrLvl7Je28APr7O4HyrzdQy4r7s4t+q7rgH39TZg7+stHneub5bvYK1cIk6HMwYPokuvzIFMA2fPgNHlzH6EoKWd3n1PhRFT6iRvMbleWVmvb+CHdXE/VOZqwN0W51Z9zYC7b8DeffG4w1b5DvEYUBt3J8strPo4GxgdJffBFkuEPJosq0R9JhEqSY7jXkdAKftQjCbrLGVlAz8ci/uhMg8D7rk4t+qbBtw32IC9b7B43LmhVdwpNVRXSsFRfG3ycUEfazOrPlRLpko/nNSafWnaUten2Dip8NQEpQ+SvMfEHsp6QwM/vNHifqjMNzLgvvHi3KrvxgbcN9mAvW+yeNy5qVU/KwOR5C8+kD4ZtMi6ivLIcchaq0jDvLiesEQXpd1Fk6FXlnoz9hYzFm9zX6iy3tTAD2+2uB8q880MuG++OLfqu7kB9y02YO9bLB53bmlV35HcRTpUASYFP12QEo9u3E4g7a02kvas0LdEFV3LMFCfKMpdRJaqG2WY1JWV9ZYGfnirxf1QmW9lwH3rxblV360NuG+zAXvfZvG4c1urdRakMpqsrWBmiLHr1l6om/DIv2qB5qj3DswFImcGnohDmu4J6ijSejeJO8p6WwM/vN3ifqjMtzPgvv3i3Krv9gbcd9iAve+weNy5o1ldGSZnSW2Ye5T68pzs65TQM6WHzlnk1TG9GzW3FHmGWdPIrcsfGl1+YGEPZb2jgR/eaXE/VOY7GXDfeXFu1XdnA+67bMDed1k87tzVrr4jhRuaxAnD1IeEdpSAIx2t0jrX5puUkgv3iSzpDREkQPlGBLsgMWpa2ENZ72rgh3db3A+V+W4G3HdfnFv13d2A+x4bsPc9Fo87B1vVd0JwFERJTSyyMM0qDfXELddcAcqcfrZeUTdWhkZJ3l5xILbSCmYbeyjrwQZ+eM/F/VCZ72nAfa/FuVXfvQy4770Be9978bhzH6t8p+SMI02OI3aSUk8roVdiqR/nJvqkvlxml0xIasqiycnya0iaUzBIeQdbt7CHst7HwA/vu7gfKvN9Dbjvtzi36rufAff9N2Dv+y8edx5gVd+R1MWF5lyNM+oOF8lFCF4WWm741Ll7jo05BOxVys7Rtx5gOC4FRO0oFvZQ1gcY+OEDF/dDZX6gAfeDFudWfQ8y4H7wBuz94MXjzkPs6jtuSDsrcgfwRcJPD90FnHGQZDbUsEWcockLVKOT0k5lHmNQLVQCmzxPQlkfYuCHD13cD5X5oQbcD1ucW/U9zID74Ruw98MXjzuPsMp3GsSqt3vW5qKfkumULDGmQmzS6kJK5DtJo91z7SJeH6tFjily1U5XN4k7yvoIAz985OJ+qMyPNOB+1OLcqu9RBtyP3oC9H7143HmMVb5TgzSnwENBx6GTB89YYTSiBt4P8o044sglSMOLpOic/EAfmBCkFG3yfHRlfYyBHz52cT9U5scacD9ucW7V9zgD7sdvwN6PXzzuPMEq30mFXEOpE/c6U5QgVLnNXAczuj54pOFLdJLgBNCnF7s2yXXpsfcSMtjcn6WsTzDwwycu7ofK/EQD7ictzq36nmTA/eQN2PvJi8edp5j10acurkKdUsZhjBhybCVO33mCtLiYoMsCjGeao1CIZUrtxzmRWnuJyeR+dGV9ioEfPnVxP1TmpxpwP21xbtX3NAPup2/A3k9fPO48wyrudNeGy9hFXHK95uSqQxAR0lQP2LLj6mTBhfo00TAxUml6vwRz6gWjyXNslPUZBn74zMX9UJmfacD9rMW5Vd+zDLifvQF7P3vxuPMcq3VWl/pwDKIk1FhAgs6UcrFvnGZwKIVkgIY9a7VnSEGHOHvpcmEEXXoNb/LcPmV9joEfPndxP1Tm5xpwP29xbtX3PAPu52/A3s9fPO68wCrfQZeLFnZ8T2GEkmfGJKHIYWlRApEvAzTDiWFmmBST1IIqNJZQlDGgyfU7yvoCAz984eJ+qMwvNOB+0eLcqu9FBtwv3oC9X7x43HmJVb5TY4TskalOB9pPn9hR/6pzTO1oJe2tN0d5onNctOBDYwgKzkEm1ysr60sM/PCli/uhMr/UgPtli3OrvpcZcL98A/Z++eJx5xVGcSc6EVFnlpxmYm3Uo6gq2jhPjvSBoUheIlHwIYJeosz6iInu6gSonJpJfUdZX2Hgh69c3A+V+ZUG3K9anFv1vcqA+9UbsPerF487r7HKd/yEWLKXFRSJiCE15SxlHddCcaOPWQZRqQ1a81pKnj50kPKOAOT922VY2ENZX2Pgh69d3A+V+bUG3K9bnFv1vc6A+/UbsPfrF487b7C6blAKNkxF7y0PenUySp15eMhTOufkQwvSSafCqQR2yH6WTChdrdJqlhqzzb5fyvoGAz984+J+qMxvNOB+0+Lcqu9NBtxv3oC937x43HmLWR99lAjSJO+lSpTJRff5Ksyuz5zbmG3W5Ks+UhRSjt7J+stHAC0CsazKmoU9lPUtBn741sX9UJnfasD9tsW5Vd/bDLjfvgF7v33xuPMOq7jTJNuRzyqj6gYXocsyShrmRYrKElco+xaphv2hRirP0MBxSjj7HL2POk32dVfWdxj44TsX90NlfqcB97sW51Z97zLgfvcG7P3uxePOe8ziTs0tZx+L3vQ5ZOXEDStWGi5PSYKyy7EiUcAm+U5DjNkH3l9exp7IpI+urO8x8MP3Lu6HyvxeA+73Lc6t+t5nwP3+Ddj7/YvHnQ9Y1XfyqJ6HlypxlSUW+yafiYlllYWhl9RCHYFnrMlNx1GvWeaBmRsnkAWayT6nyvoBAz/84OJ+qMwfNOD+0OLcqu9DBtwf3oC9P7x43PmIVb5THHgnXawUXUhOMpuY6vCk6mIOrUkc8tOBfI2AYXpoOJrkQuQHplAt7KGsHzHww48u7ofK/FED7o8tzq36PmbA/fEN2Pvji8edT1j10Ql6GGWAl06WI9B70VNPejmPhBoHJGutlgsWHFR8YtCYRMCy3Cra/7Kwh7J+wsAPP7m4HyrzJw24P7U4t+r7lAH3pzdg708vHnc+Y3fdIMofKL2HHFLxLnYpKXPNRUo6PriOBBWybjroKJJkQWOMmCiUFBOghT2U9TMGfvjZxf1QmT9rwP25xblV3+cMuD+/AXt/fvG48wWr+k6JHjN5n3r3VKVTPnspeTrvUvBYypSFmJSXB8VSSwqtcHW99uEA5fthYQ9l/YKBH35xcT9U5i8acH9pcW7V9yUD7i9vwN5fXjzufMXsusEKoBWbUarvKeUBjdtwEXsvvYEUk4MEI1lUuewrog8is9aItSWJOybX7yjrVwz88KuL+6Eyf9WA+2uLc6u+rxlwf30D9v764nHnG1Zxp3uQpZaEH1lESZE5p9FknSWrrYbMs0ndJ8OEUcNsHCAxIoU4W5MkKYk8C3so6zcM/PCbi/uhMn/TgPtbi3Orvm8ZcH97A/b+9uJx5ztWcSdQjJxkYSXhRlIa6ZAPzwVmq3pDeg+dWSo81GvszvURXYQodSDIZaSQTOKOsn7HwA+/u7gfKvN3Dbi/tzi36vueAff3N2Dv7y8ed35g1c8aPF1nP7jIgqt3V3rk1jIgD4izcGzTYYmh+DhmKfKXSA0szS32lUyeJ6GsPzDwwx8u7ofK/EMD7h8tzq36fmTA/eMN2PvHi8edn1jFHQjymdKgipEytokg7SqIsthyI+SGIdWaRwCJTcDdNSkz14IcGWOsYZjsg6GsPzHww58u7ofK/FMD7p8tzq36fmbA/fMN2Pvni8edX1jFnQZBwkiSxvmQVlVKnEaQLnkPwAwDdMt3KfYUKTOnUrGMkpv0tKKszjJBNLkfXVl/YeCHv1zcD5X5lwbcv1qcW/X9yoD71xuw968Xjzu/sYo7BQNEloQndKTps5R4ghutNyn2UBjBR2QnrS5Ik0bgHvKoo5IszDJLOdrCHsr6GwM//O3ifqjMvzXg/t3i3Krvdwbcv9+AvX+/eNz5g9n1O+Sim6lHGnP2ErDOPKMkOTnGgFgYIUDBIno5Tu/knVgyBlljaRiysIey/sHAD/+4uB8q8x8NuP+0OLfq+5MB9583YO8/Lx53/mJW3ylZWuYSb5JWdrw+1iZiq1yo9iItrMC5suMK0vHiInUd1NwoItSQmE2en6WsfzHww78u7ofK/FcD7r8tzq36/mbA/fcN2Pvvi8edfUe2iTuOG+kDsVwvEmn0Vk9HQ4vLVKPIDCzrsJlTnEi1pCRhqIrU7jCmKr9g0s9SVv2z1354mCOv7Yf7mQ24D1qcW/UdZMB92A3YWzWuHHcOZxV3ulR3QpZMJvXOtaGnPiCj9NShtyZl5soepYYsK6/Os0nrq7RZS8fhZm0m90ko6+EM/PDwi/uhMh/egPsIi3OrviMYcB9xA/Y+4uJx50hGcSf4ToT6QCyIwQXIvuEQDeCQpMojSRBOB1L9kYa6rMccOJp59Kb3V3gCk7qysh7JwA+PvLgfKvORDbiPsji36juKAfdRN2Dvoy4ed45mFXfKkOIO9DlrwtBmyqQPyfIiNEErPcymm5v6lFlWV9l5khxIFlq9F2KCamEPZT2agR8efXE/VOajG3AfY3Fu1XcMA+5jbsDex1w87hzLap3lufsSRnStSm2Zo4+OYs2UpODTRpHlVKpElGpqDWqsEpxIRLOXXnu3eV6osh7LwA+PvbgfKvOxDbiPszi36juOAfdxN2Dv4y4ed45nFHd8HmOWyTGwK2HCJOewzyHxCCgjpanpjXTaM4oaDwmgcJjdhyS/6k3qysp6PAM/PP7ifqjMxzfgPsHi3KrvBAbcJ9yAvU+4eNw5kVW+gyBRJzD4UUSCrKqiZDmcRy5RCjktB4AsOiKi6G4t1ND8jBJ4kIGdSdxR1hMZ+OGJF/dDZT6xAfdJFudWfScx4D7pBux90sXjzsms4s4YQRZM0sty0fGMkCPLX5HcSKNHWVr1VrusrahTnUXvDfXS65o8fGk9m+w3qKwnM/DDky/uh8p8cgPuUyzOrfpOYcB9yg3Y+5SLx51TmdWVJfJQ4RJqBr3/IeThopfQ48oINCpK/HEoeQ5LGiRdLwLm4ESeg5GKyfXKynoqAz889eJ+qMynNuA+zeLcqu80Btyn3YC9T7t43DmdVX1HcpkITcrJVIMrvUr/XIo41DClMNxMNXpRii6KdBeLNN2lmRUbsq+1BBN7KOvpDPzw9Iv7oTKf3oD7DItzq74zGHCfcQP2PqMB9+3OuLfch3wdcY91HrR35zIcdg/tcqQ9PNaR9/B8nWnv/DmcZO98xO/6W+iUawEMpchswZMge8p5TCgl9ITFt+BlDV3KdNLMLJBkNQ04kLVbYLN+1vN2JoNxdubF44syn9mA+yyLc6u+sxhwn/XINnH1cHvLv2osDId+rsd/Zos7nXH9sXfWA6wp/lPusx3ZJm67/+zL79ojVHA+19wmFpc8NSDnffKQaUQpoo6c9Al2w/dO5HJKswRivawFSm2xWdhDz9vZDGLC2RePhcp8dgPucyzOrfrOYcB9zg3Y+5wGccdtIO5ItdT7lsrsc7oqCWhzmOccXLLeht2zZ5gJJfpEQu4x0ZDyRsExeY5MJnsJ63lzBn7oF/dDZfYG3GFxbtUXDLjjBuwdDeJO2kDccYMkpQmEIfc2G4YQeoFCUZbAufvAgA1G0St4p164MnyVbrEshXskOQMm90DqeUsGfpgX90NlzgbcsDi36gMDbtyAvdEg7pQtrLMmTZzANUZpB3cf5/Somwt3nyX2NBRETMUP9pORIngfe4Y5q081jWhhDz1vxcAPaXE/VGYy4D7X4tyq71wG3OfegL3PbRB3zrOFdVZGrm7/s75xztQk/SFOrQs4SaCR+n6VbIigIo+Zs96ONELHLBmQRCebfEfP23kM/PC8i/uhMp/XgPt8i3OrvvMZcJ9/A/Y+v0Hc+a8trLM8U5UVFUWfpFUILY2WQg+Bhm+Qi6tjatVZSspQU3ZEdSSeKaZW9Ol1FvbYf94M/PACi/uhMl/AgPuCi3OrvgsacF9oA/a+kEHcufAW8p00RsUaqJQwevLNSZjpo0bXSkP5tgfIdYwWuTiWPpcr4HhEqQX5PGz6WXreLmzghxdZ3A+V+SIG3BddnFv1XdSA+2IbsPfFDOLOxbeQ70QoQV6TcvGA6iu2RJQzw6jcNcZAAA4xD4k5dU6QcFQwxcqlyQvZxB563i5u4IeXWNwPlfkSBtyXXJxb9V3SgPtSG7D3pQzizqW3UFeWOs30boyEtYGUdLzUbjCCS6BPv8yYs5/S0BIqHORHYSerrIZS7wnl/8PeWwb7dhT9vxBCICFAEjy4JkFHu6fRB7cI7jYzPYM7wd0lwd3d3S24OyS4u7v77T73/qv2qbrvnt1Vs+reAOHI3r/9/Uz36tWy1gyCyV4zum5HGvjhUYv7oTIfZcB99OLcqu9oA+5jNmDvYwzizrW2kO8ApM49V9izm4z0lifJkHzGHHUzmehKSC4k6TaX5H13NaBEHIk6pU6H3WRPT123axn44bUX90NlvrYB93UW51Z91zHgvu4G7H1dg7hzvS3kO1h91iOiYopY2uguusDgJNYUiUieJCKxS5Qjheal9JKOc+utIUmbp3STfEfX7XoGfnj9xf1Qma9vwH2DxblV3w0MuG+4AXvf0CDu3GgL+Y4MpRLFCpLLyDR9+iZT9My9pipxiAVqhj4dAxH2GqeEnQnUQuKekGe1sIeu240M/PDGi/uhMt/YgPsmi3OrvpsYcN90A/a+qUHcudkW4k5wMdbqaDRJYiSSBPm3m8QlSYnlUglUm0PASpgoQei+AMsIfbYu83aTfEfX7WYGfnjzxf1QmW9uwH2LxblV3y0MuG+5AXvf0iDu3GoLdVZMI+fRdRdPlilWRJidWX6NndqQXnPplEpKUx9ariwNniSTrt4BiBGyhT103W5l4Id1cT9U5mrA3RbnVn3NgLtvwN7dIO7wJp5XliQmDvClTZgTi8ysoszI65DcRzrKOc3mfarUYMxag5IOyHEkQZXVsLCHrhsb+OFY3A+VeRhwz8W5Vd804L71Bux9a4O4c5st1FmSw0BzzfWecplBn9zhMGgGCkO6OSDzK/CQsOTusWHLMlKvsh4z4cRk8tygrtttDPzwtov7oTLf1oD7dotzq77bGXDffgP2vr1B3LnDFvKdEh37WTrErOe3FPm/0GYvqbo5S+UyJNx43UWYW2KIrfbkCdqcEMkm7ui63cHAD++4uB8q8x0NuO+0OLfqu5MB9503YO87G8Sdu2yirzwpAsrcPEpt1WR2VWobLBWWNHfYQ565SiRKjKl2Kbik7SO1GHr9huymiT103e5i4Id3XdwPlfmuBtx3W5xb9d3NgPvuG7D33Q3izj22EHemdywJzig96S6zjeaQdGbOSgJCPPRslgqzJGg59d7q9IwRvIzXO0+TfEfX7R4Gfnjs4n6ozMcacN9zcW7Vd08D7nttwN73Mog7997CPKs4aeE0rjUGjL5UijygukhhIlOTVg9Im6fKiGtAQxmuS1/ZgQ8lEyKBhT103e5t4If3WdwPlfk+Btz3XZxb9d3XgPt+G7D3/Qzizv23EHe8ZC6MpWOsGXRi1bmUWpuUWU6Aq3R3YpIizLkSZwnCSc1VrNVV76rJ/ju6bvc38MMHLO6HyvwAA+4HLs6t+h5owP2gDdj7QQZx58Fb6CuT99JGFvk1Na2lvMzUx6h9cC2JWop6Zq/0dPbsfar7ZVCV9k/hRrVMMKmzdN0ebOCHD1ncD5X5IQbcD12cW/U91ID7YRuw98MM4s7DtxB3JLBILIk5UaJQExM3iC5hkAwHSinD+eaGLARxzKV7fYXU1wSFPSXvLeyh6/ZwAz98xOJ+qMyPMOB+5OLcqu+RBtyP2oC9H2UQdx69hbgTwOeErRCEkDCFCaEVwNlmTJ26A+qNGYBm68WP6UrOsbbeZ4U+Td5H13V7tIEfPmZxP1TmxxhwP3ZxbtX3WAPux23A3o8ziDvHbWGeFdmlFDGURnlM6dpUwtw7ep/BlxzYI/VeG8bSfHCjR0mIUFvQVGI12edU1+04Az88fnE/VObjDbgfvzi36nu8AfcTNmDvJxjEnSduIe4ANkfBuQwukW47GFqj1KcLofiUsQ5ZgcmDcilQZfYlg3Q/pRMk463kuoU9dN2eaOCHT1rcD5X5SQbcT16cW/U92YD7KRuw91MM4s5TtxB3xkxVmjhOlEv/JlQPFYk8UOWG0/eWp/SUQ4HemvMdpa0zKdXhmGSUbmIPXbenGvjh0xb3Q2V+mgH30xfnVn1PN+B+xgbs/QyDuPPMLczROcQigBT7AGHt3RUKSd9AJx9C675om4fcrK0CxBBd7ME1aUHHIbgW9tB1e6aBHz5rcT9U5mcZcD97cW7V92wD7udswN7PMYg7z91CvuO4SHunz557qI59kMAT4kwsPZ82anISlyK2ii234gbPFlzyI9cSWm0mc3Rdt+ca+OHzFvdDZX6eAffzF+dWfc834H7BBuz9AoO488It5DsuheKCPposjWUPDqaUVzIqT26yDK8qV+AoI65e9XHCXqYP0tkZk6ukPMAW9tB1e6GBH75ocT9U5hcZcL94cW7V92ID7pdswN4vMYg7L91CvkMFSy+6sWlAHKP4GcYEKbY6cQ5EzRNHGBRjC2lGfZy5QvOlST9a4o+FPXTdXmrghy9b3A+V+WUG3C9fnFv1vdyA+xUbsPcrDOLOK7fw/E6LMRGmxqWFUZuv2thxvY2UoObhCrAUWII0fOnShUYpsiCFBB2TGyb20HV7pYEfvmpxP1TmVxlwv3pxbtX3agPu12zA3q8xiDuv3UK+I7lO7alLR2eOFgVBcpncE2Y3wkzS5sl6ulaL3jvpPvcqnR2aTVrKIc/qTZ4b1HV7rYEfvm5xP1Tm1xlwv35xbtX3egPuN2zA3m8wiDtv3ERf2fVa08ixeEgeq56IHmVshX6M4IDZyfBKesydMc/ZpjSBCKUGCzL0Ct1knqXr9kYDP3zT4n6ozG8y4H7z4tyq780G3G/ZgL3fYhB33rqJ53coJR84Vu5pImMLEMjXIVDSZcYYmIL0lF2s0v4pUoVh1t2XA/ciRZjJeRK6bm818MO3Le6Hyvw2A+63L86t+t5uwP2ODdj7HQZx551biDvN44AoMy3vdNcvjwTeIafeU8MEOemr6DFLicXQCvsyQTpBmXxxfdrsN6jr9k4DP3zX4n6ozO8y4H734tyq790G3O/ZgL3fYxB33ruFObpkNdTR6cGgQ0qs5qafOiCnIM1llOgTmyvyt1Pm7K1K5SUBp0ClxF03ebewh67bew388ITF/VCZTzDgft/i3KrvfQbc79+Avd9vEHc+sIV5Vi25YABPM/gapuuuDT9qJN13RybslBFqxRx9I405aSTnpTgLIwE5k3NsdN0+YOCHH1zcD5X5gwbcH1qcW/V9yID7wxuw94cN4s5HtlBnSUk1y8yFkdLMXBl0p68qkQeq74PnBFcRom7C7KXFPBFDxsnUWNo7JvmOrttHDPzwo4v7oTJ/1ID7Y4tzq76PGXB/fAP2/rhB3PnEFuqsPGWONfXZQD27D0PS8KLva2HlmBAIIzrsOFrjPEvVjXdia5UDSVlmsu+XrtsnDPzwk4v7oTJ/0oD7U4tzq75PGXB/egP2/rRB3PnMJvIdirmivvUw48SeMXs/ehJeqaZapTgmTB+lCRR9gpJDoJpHlxBVIDqT55V13T5j4IefXdwPlfmzBtyfW5xb9X3OgPvzG7D35w3izhe2kO/glMhT85xVOjuck+OknWYH3DxjoVDrIOn4tJn66DE6WY+YsbuYqINJnaXr9gUDP/zi4n6ozF804P7S4tyq70sG3CduwN4nGsSdk7YQd6C1xCXUJgNy9DRmKDn5yHo4VnUuVYk1kGvsdUhrOZJ3KQapuSIVAmoW9tB1O8nAD7+8uB8q85cNuL+yOLfq+4oB91c3YO+vGsSdr21hnhVLSMg9QqShNRfE6iCU4DFKvzlVLhJr0LeeSiYfcoslTZ21O9CTRS3soev2NQM//PrifqjMXzfg/sbi3KrvGwbc39yAvb9pEHe+tYX+TsmjjdkpyuS8CZP3mvtwxZpCkdSme4hpzzuj6F2IEMKc2TueGWWgZdJX1nX7loEffntxP1Tmbxtwf2dxbtX3HQPu727A3t81iDvf20KdlcCTZDe9Uq+TNPPJnnIciBKBwMlQvQ3np2MmD5UKjtin0+0xsEI2iTu6bt8z8MPvL+6Hyvx9A+4fLM6t+n5gwP3DDdj7hwZx50eb6CuXUvQpZF9iEeAxOGQpqzKxjLkSpwzD1ewCS3UlSyG1VcSUYg2JpQQz6e/ouv3IwA9/vLgfKvOPDbh/sji36vuJAfdPN2DvnxrEnZ9to78TEUgGWGOgNJLBdeytRRfcjFhdKnEGGanL2CuXJsEn9T5QN8towZGrFvbQdfuZgR/+fHE/VOafG3D/YnFu1fcLA+5fbsDevzSIO7/aQn/HRREcJ/MU1hniqBJwghRWQUZXeYTGg/MorZMLqc8WYBKMPmX6hfK3FvbQdfuVgR/+enE/VOZfG3D/ZnFu1fcbA+7fbsDevzWIO7/bQr4DINEj0cTSfB5Uq+Q/AYPriWRo1YiGwKLro4TJvstQK8n3cKNYhhtoYQ9dt98Z+OHvF/dDZf69AfcfFudWfX8w4P7jBuz9R4O486ct9HdEb521Bh4gTWWu0SVHUlqBTM9HD2NQYPTyNZAlyxm1B90YI/TpMQcfLeyh6/YnAz/88+J+qMx/NuD+y+Lcqu8vBtx/3YC9/2oQd/62if4OUpkoUy3gypLGhB4BpwQc6FTGGAkDFWAHnHNP0oT2YSIIaSylTZPzJHTd/mbgh39f3A+V+e8G3P9YnFv1/cOA+58bsPc/DeLOv7aQ7xD2XHobI0u/JrHrBQK6QSOCk/EWZm4NZ6w54cAkLWcaMl7X3Xmw4TCJO7pu/zLww38v7ofK/G8D7v8szq36/mPA/d8N2Pu/BnHnZAdsIN8pycmcvJXu9Qib5LIfIaQwkx+9+dgGFvnF5Nmd9Jilu1NhTh29h1zlDy3soeum/9ttPzz5AWv74R5mA+59FudWffsYcJ9iA/ZWjbsdd/bdQNwJofpWpJYClKBTGFKVRk/Qt7QqwoheyKknPXIiSMGVqMuMKzvvY/R52ryfpeu2r4EfnnJxP1TmUxpw77c4t+rbz4D7VBuw96kM4s6pNxB3JIJgH71zkEE69QE+J3A+ZoTAJQYHofmeJ3aqSTfrmUX3+4pdjy3uaPI+uq7bqQ38cP/F/VCZ9zfgPmBxbtV3gAH3aTZg79MYxJ0DtxB3akiFpbgqZRQOOUVXdSceDl5SHHTIJPP0HF3o0t2JodN0mEcMcTZy2eQcG123Aw388LSL+6Eyn9aA+3SLc6u+0xlwn34D9j69Qdw5aAt1VpV6yfnJxNLqaa1MiSdKMDGjl7IrhkqZWpB4FGLJkEvyEqUqpiB9ZpNz+3TdDjLww4MX90NlPtiA+5DFuVXfIQbcZ9iAvc9gEHfOuIV8R1Kd2KO+h9WwlphkrjUojxRkpsXYUq65Jhqtkg+lD24ybJ8xup4Stmry/I6u2xkN/PBMi/uhMp/JgPvMi3OrvjMbcJ9lA/Y+i0HcOesW8p2Sug9eEh5JZaKeoDULjOlGjTFThtSk2QO9k5stUCLPs8kgPQXmPdsuW9hD1+2sBn54tsX9UJnPZsB96OLcqu9QA+6zb8DeZzeIO+fYQtyRYsnjmHU66OhTCwnAue5nTy41yCl7710kYmnpdAfDuZyKi+yJmU36O7pu5zDww3Mu7ofKfE4D7nMtzq36zmXAfe4N2PvcBnHnPFuIO86NkaWxA1PaNqNMAAhSZg12ugWG/EUuNc6SQqMypOccQ6uz4giOpClk8vyOrtt5DPzwvIv7oTKf14D7fItzq77zGXCffwP2Pr9B3LnAFp4bDDIWhxKoVOrSyYHmqVCssSBKZeUyUWnBg6vQI+Tm82Q363DeFR42+37pul3AwA8vuLgfKvMFDbgvtDi36ruQAfdhG7D3YQZx5/At9JWbJDyx9uGiRywOUbIZ13yS33TNezrEmNwMVb5TJ+u5Qhpjz0i9hwkW9tB1O9zAD49Y3A+V+QgD7gsvzq36LmzAfZEN2PsiBnHnoluIOzRlRM5N+jo19iC/gFoG6nERXubmNeEsUmtJqJEmc6l6lBaBw5AyNn2XwsIeum4XNfDDiy3uh8p8MQPuiy/OrfoubsB9iQ3Y+xIGccdtIu60ASG13EvJMzmfuYcg7Z1SSMoqRvahO651Zsl3ZnSxQcpdH2SGzt1kjq7r5gz80C/uh8rsDbjD4tyqLxhwxw3YOxrEnbSF/k5yoVduOKpnlEFVlWH5DCFMrgRIPIETxizd5NoBUU+UmJMl/sxcOlULe+i6JQM/zIv7oTJnA25YnFv1gQE3bsDeaBB3yhbyHfCjsfMFGVEPziox5yzpTu1F4o8bJUu5lXAMR8NBrejZRWwyU5dcKGcLe+i6FQM/pMX9UJnJgPuSi3OrvksacF9qA/a+lEHcufQW5uhYErdSNLzkPn0duUrfpk+H1OdsUn7pe6PkZsmxljIHDvQjYOtYApq8J6HrdmkDP7zM4n6ozJcx4L7s4tyq77IG3JfbgL0vZxB3/mcTzw3CZM4y1gKiUaWGikzYvD4eOLLDSFFSoAptFmn8YGKZtUvaQ0wxylcGC3vsWTcDP7z84n6ozJc34L7C4tyq7woG3FfcgL2vaBB3rrSF/g6kGkJpsWCEPHn+382bGFvB0oBbj5LpdKnBOIHHkQQvZOn/oIfmkSzsoet2JQM/vPLifqjMVzbgvsri3KrvKgbcV92Ava9qEHeutonnBtv0aeQYogfp6CSGXmJLMimfE2r3LFw1RTeq49hCDTXW6IseXyxxx+T5HV23qxn44dUX90NlvroB9zUW51Z91zDgvuYG7H1Ng7hz5BbiTg2jBWgwYuXOTRg6YU2IGnymKyOmUpoLlST/qQ6QR+zo5nDSEgKTeZau25EGfnjU4n6ozEcZcB+9OLfqO9qA+5gN2PsYg7hzrS3EHVfbkJaNTwCx63ambfScm4zLB5TpM1GnUFuWKXvTLU8dtVQbV907o6FJ3NF1u5aBH157cT9U5msbcF9ncW7Vdx0D7utuwN7XNYg719tCX7lPbNS7F8YWA0zsqcRCNYDvLNNzp6+A9lSn/Kf05D0Jrh631XuIzeQ8CV236xn44fUX90Nlvr4B9w0W51Z9NzDgvuEG7H1Dg7hzoy3EnZR8AGaA4WryFfKYZfgwC/kya88eCBGQ9BytnLAUmNXpPjwj1O5M9sHQdbuRgR/eeHE/VOYbG3DfZHFu1XcTA+6bbsDeNzWIOzfbQtyRobk0i4f0azKTTNF7kkwGYHZpNzvp99CQGOMk1IBL2vIp3bFPhUlGWxNM3kfXdbuZgR/efHE/VOabG3DfYnFu1XcLA+5bbsDetzSIO7faQtyB0rzjkpFjh9Ql/cldYovLpRQZciWeoIf4JR4tI1AOXdrKfug+y8NFk3xH1+1WBn5YF/dDZa4G3G1xbtXXDLj7BuzdDeIOb+L5nVpY+jgDk0QdHaY3aek4PbQYqENvNeY49Xnl0QuHLoGnkJOMiEgmX85kn1NdNzbww7G4HyrzMOCei3OrvmnAfesN2PvWBnHnNpvo79DAgiHVMWKTidZsg6cMsqIfMbQcJiXJg2YYpSO0CSi5T6fSOPuMzuT8LF232xj44W0X90Nlvq0B9+0W51Z9tzPgvv0G7H17g7hzhw3EHdc4QGAXXZiS80jC42qZKYYUAHopLsc9L4fijBBllN6GvrgVc6NJFLrJPEvX7Q4GfnjHxf1Qme9owH2nxblV350MuO+8AXvf2SDu3GULcadix5mxwpRplgNwxGWEVn2SCqtW56FHh+hr7AWjLAYxFz/cIOfiMHlPQtftLgZ+eNfF/VCZ72rAfbfFuVXf3Qy4774Be9/dIO7cYwv9nTlklK5HSOgOykVmWE0n6ExVmjqduEEcQbrMngaUVNv0LiEml1vOIRSTvrKu2z0M/PDYxf1QmY814L7n4tyq754G3PfagL3vZRB37r2F/g46qbAAZXLVJKjUmCTquJqhEHIWzo65zyQVFUyUtk6tnqZrwccoaRGZ7L+j63ZvAz+8z+J+qMz3MeC+7+Lcqu++Btz324C972cQd+6/gbgTXSYfqUXR7SN7Lkonf+o6J31nK0ysTaNSddLacdgwVAjBFaq6J4aFPXTd7m/ghw9Y3A+V+QEG3A9cnFv1PdCA+0EbsPeDDOLOg7dQZyWHNU/MgNhn9qM4HxKH2DPNCQO7k3oLA7L3qWfP0Hk0FP7pAKNJX1nX7cEGfviQxf1QmR9iwP3QxblV30MNuB+2AXs/zCDuPHwLfWWppWoNWCSQ9Em15tjJyZ84h3lKhjNDhsGpTccSiaBV0m1OsytB5urBJO7ouj3cwA8fsbgfKvMjDLgfuTi36nukAfejNmDvRxnEnUdvIe702fQBwSmxRsqmkQWi6MnngpkhOsJSewYOHqTn0ybOAThTDqljz8Vkv0Fdt0cb+OFjFvdDZX6MAfdjF+dWfY814H7cBuz9OIO4c9wW+soQkKDIHD311pweZDNqnSFw6alTZBmnT2q9Bd2Ux+MkDqNKhzm1PLiZPK+s63acgR8ev7gfKvPxBtyPX5xb9T3egPsJG7D3EwzizhO30N+polraxxGThz6wSBvZ9cjTdwkuMjOXTAioFMl6ZKyOKejjPanJl3RqPjX9jN22h67bEw388EmL+6EyP8mA+8mLc6u+JxtwP2UD9n6KAfeJh+0u9//5Z99d1rnP7q1lOsXufVY49S4ynmRki1Ptsi/uv4ufdeAurt9Td+8aTofuni3Cbt6Pd/F69Tv9LZSOLshizz7YU0ZpU+iZCdBkOOOi5xZdkukxlVByxlkygr6D7WrrIVWTHqra86kGMe9pi8d6ZX6aAffTF+dWfU834H7GATZxdb9d5t/FuPr/ufj1v/WRr7v1Y4L68T67fG08cxfrzp1rGIA8yCzOQZcWuUzlkvzeDWJplftQRxxtRJp64LJ3oTd0qfdR2PkOjclkDyFlfaZBfHnW4nFVmZ9lwP3sxblV37MNuJ+zAXs/xyBWPNcoVvgaAmZpW6fENUYe5EqdFRPLcH4yVH0PA2ZJE910sUKtMs3X54ik94TT5DlpZX2uge88b3HfUebnGXA/f3Fu1fd8A+4XbMDeLzCIFS80ihWu9lmHlKMkUaEAS3rKDKKRnR74x/I/qt4l3SFMpmTD6WGkBKESoYYQizVU1hca+M6LFvcdZX6RAfeLF+dWfS824H7JBuz9EoNY8VKrGqSxYwI/aslhInqeoWOC5n13bebeW69SeMwu7a7qavHME3ItiKFhNHnfXFlfauA7L1vcd5T5ZQbcL1+cW/W93ID7FRuw9ysMYsUrrWoQX4eUHK3PKCNs6ULgaCFBajQd65uaKYTcPTX0ACgymxO14NyMWX5pklco6ysNfOdVi/uOMr/KgPvVi3OrvlcbcL9mA/Z+jUGseK1VXjFgptZja5TyyBIkYucSfHBAI9AsvUqCUWoZEQvmMkeWZobkFMFDwW5y7qayvtbAd163uO8o8+sMuF+/OLfqe70B9xs2YO83GMSKN5rlFUH+hED6mF4bmGXMVvWUutym5BBZyo1UGH2PTlqZrYhaF0cfieX3zmYOoqxvNPCdNy3uO8r8JgPuNy/OrfrebMD9lg3Y+y0GseKtVnmF9C97gZIiDGlmVi/lRqitQ455dEkxkMuQCSlCDKRbd7qYpA1KGXwI0smwWENlfauB77xtcd9R5rcZcL99cW7V93YD7ndswN7vMIgV77TKK4aj1FwMrVOaOdeJwMADCcZ0U5/iE7XQagwzS4ioLBVKriHm6IjasFhDZX2nge+8a3HfUeZ3GXC/e3Fu1fduA+73bMDe7zGIFe+1mplKIAjYaIyUnFQWMuWo7BFrjXVQZ/ASF1LvUpA0ST6wxxRcpAAgrc/qq8UaKut7DXznhMV9R5lPMOB+3+Lcqu99Btzv34C9328QKz5gVYNEDg1Q90gJ3mOiET2yk5FomrHUNmbILvQOUnCElGMIMw6u4KCN0bxJXqGsHzDwnQ8u7jvK/EED7g8tzq36PmTA/eEN2PvDBrHiI1Z5RSwo9cWo5GZwKU2SgagI8lSrpBPSxUAvvU+HRaaqvYH0NYiqJBwtBHLZZA2V9SMGvvPRxX1HmT9qwP2xxblV38cMuD++AXt/3CBWfMJsZkoyDnXYMbbpMhdy5CCXPnqpI3UJH703rTtKCT0Ncj1Rki+UCiRnb7IHv7J+wsB3Prm47yjzJw24P7U4t+r7lAH3pzdg708bxIrPWPU2ZRJa5/CeY0IIyWeUX+PIIggmZ+9c7egwD5zkQwp1DN1INseOg1qzWENl/YyB73x2cd9R5s8acH9ucW7V9zkD7s9vwN6fN4gVXzB7vqLnxtqAcMOVyoB+FtUTS5Jo0KtMRFLsXGsFYE9cY/MYpTJBBsGwWENl/YKB73xxcd9R5i8acH9pcW7V9yUD7hM3YO8TDWLFSVb9isqjpzlz8mH6WmJDJ52IAEjUo+utqQo9kpmk1RkGQ47QfI9dwgtVk2exlPUkA9/58uK+o8xfNuD+yuLcqu8rBtxf3YC9v2oQK75mlVckCKENdlxkSFoT+Cwj1Co9zoocpdQIWYao1Y1W5S8S546AoXj5VUrNJlYo69cMfOfri/uOMn/dgPsbi3Orvm8YcH9zA/b+pkGs+JbZc5tF+g+MoTaRJ/lE5p5TDJMSMGUe3nWQrie4KBFEuhrSBJX+xkQuHqTFYbGGyvotA9/59uK+o8zfNuD+zuLcqu87Btzf3YC9v2sQK75nVYPIjCPIoCM6H4MbgXBOIF9gVvmTUpI+wNlnoFj1XfXIrXVXgjQ8ZUziskleoazfM/Cd7y/uO8r8fQPuHyzOrfp+YMD9ww3Y+4cGseJHVnlFilh881N0uNZHwTgjJAkEEbIvWV8W071XR5ckQwYgEjSa96m13LDQ6BZrqKw/MvCdHy/uO8r8YwPunyzOrfp+YsD90w3Y+6cGseJnVv0Kzq4gsBtFXzF1xfXBJcfopuMJUwaqBFAhzTglohBJ5TE8hYhQQnQm+1co688MfOfni/uOMv/cgPsXi3Orvl8YcP9yA/b+pUGs+JVVrJDmhCdJE9yMiYPXV0lhUNSfL0lFpj5QQkKl3F1t8pUk6caIEcos1XeTGkRZf2XgO79e3HeU+dcG3L9ZnFv1/caA+7cbsPdvDWLF76xihQOcQX/siKHl2pB7C1UihPQ2q+hFnFKOkG7fW4uLkUOiICkIhFkBTHqbyvo7A9/5/eK+o8y/N+D+w+Lcqu8PBtx/3IC9/2gQK/5k1dscFOqAya65xqE6huSkdYFu1uAKgPN1ukxIMcZKIL2KqZvz5poLzlQt1lBZ/2TgO39e3HeU+c8G3H9ZnFv1/cWA+68bsPdfDWLF36xihe6KNUJD53CiTENLrboN7wDfY4ZZJKXoM3EHdCFScexQqhTfhm5x4Uz2/FfWvxn4zt8X9x1l/rsB9z8W51Z9/zDg/ucG7P1Pg1jxL6tYIfUGRJ9Sr2P4jqUHdmVmyIFyDpMTdEkh3CxlTvKsClPgMUm+BSBYrKGy/svAd/69uO8o878NuP+zOLfq+48B9383YO//GsSKk53G6vmKAC5wSvrWx4hSV0DrFEnGo6k07iExN5IiBFwMYc9fpFAl4xgRCYfJ3rzKqv/bbd85+WnW9p09zAbc+yzOrfr2MeA+xQbsrRp3O1bsaxQrJHtIozjk5qW6CFKBOBp+6GGFU+oQKTZcmD11P0b0hau+RzZ1Oz2UdoZDkxpEWfc18J1TLu47ynxKA+79FudWffsZcJ9qA/Y+lUGsOLVVrNDNNZvkCtqSCKNX8sEjjRTbzCXKVJSz/E7mphWoeUwpj6B73eBwnb1JDaKspzbwnf0X9x1l3t+A+4DFuVXfAQbcp9mAvU9jECsONIoV0qKIXH0P3tUg49KRZpde5ijkoYUZJdfILtdBjfXEwlgns8dKpTnXoEeLNVTWAw1857SL+44yn9aA+3SLc6u+0xlwn34D9j69Qaw4yKpfkVsZUIL35CVcpDxnkh9a5mAnOUacSWYfefoaMBBCTSwhBalLPULyLSbPbSrrQQa+c/DivqPMBxtwH7I4t+o7xID7DBuw9xkMYsUZrfIKhFQjkEtMHUHmHVJkuJZjTC2OVMAPCSZSlzgv8UN+W1z3GDqnkOWLTHqbynpGA9850+K+o8xnMuA+8+Lcqu/MBtxn2YC9z2IQK85qlVcUfeE8uQI0ShxSjbTAGbr8KsvkYwatSDyM5BJKpIh9SmdDMg4Qsa5DtVhDZT2rge+cbXHfUeazGXAfuji36jvUgPvsG7D32Q1ixTmsepu9hhxaxu489Ylx5I7SrAhc0Y008miSRDj5il5SFMk8WZoaJc0iiUUwySuU9RwGvnPOxX1Hmc9pwH2uxblV37kMuM+9AXuf2yBWnMcqr6g9Uwu+hFAlsYiZAmLpMffqB01fesY8Q/P6/JUUIpDjHFlamy3AlD+zWENlPY+B75x3cd9R5vMacJ9vcW7Vdz4D7vNvwN7nN4gVF7CKFahb+AfomEfPMORnStci5C7FSGkyKeUJVFtJ2tEYLkXqrnUJGoPHCMkkr1DWCxj4zgUX9x1lvqAB94UW51Z9FzLgPmwD9j7MIFYcblWDYMIJkEB6EEiQypgx0ZCpaUCagJ4bxUpdokh0unEFjBD16W8ZnxauJnmFsh5u4DtHLO47ynyEAfeFF+dWfRc24L7IBux9EYNYcVGrOQg0GN5X8Mm1IA2K6jj6/+fdUxmSDOl0EocKIUdXygy5jhg4sksBW24Wa6isFzXwnYst7jvKfDED7osvzq36Lm7AfYkN2PsSBrHCWdUgyUEOg1hPAyk+lgaplRrzjIxZcgrCFPWJ7w4RovQzXfJZN8pC33y16VcoqzPwHb+47yizN+AOi3OrvmDAHTdg72gQK5JVDRJ0y/8xfG2peZCJR3d56v67xVeMvuupIWHOwlKbFJidSeJKBalApD6JJnvdKGsy8J28uO8oczbghsW5VR8YcOMG7I0GsaJY5RWxp5ZQZx7MJYaog9AB7HMojWsaDFw9AZZZC/DEIAkHMPrCgBlMnttU1mLgO7S47ygzGXBfcnFu1XdJA+5LbcDelzKIFZe2yitSKIOpJpi1ptJkviElRkrY5Od7fZsskO+QZgs9+Vizj+yTvmqmPY1mUoMo66UNfOcyi/uOMl/GgPuyi3OrvssacF9uA/a+nEGs+B+zGmT0iqjPSvCcXWqMQDW2nv2AwkPiR/LyC05t5JpCbb4PKUAA3IRapsnevHtYDXzn8ov7jjJf3oD7Cotzq74rGHBfcQP2vqJBrLiSVQ0yW6y6dQWXUlzSDbxbzuyk6qi983TofI8z9Yazt0LYXSiOe0FIxDbvjinrlQx858qL+44yX9mA+yqLc6u+qxhwX3UD9r6qQay4mtkchPStMMdVQ4WXLqaPEj7A91pnD1wyJUA3IvMoknKUMGuQ5if0lmWeatLbVNarGfjO1Rf3HWW+ugH3NRbnVn3XMOC+5gbsfU2DWHGkVQ3iKMzgwXvdNC9xqxGgzJ474oBUybnqQw2evSsUXC1VapUp8maW2apJrFDWIw1856jFfUeZjzLgPnpxbtV3tAH3MRuw9zEGseJaVrEiNuI2ay4cfGtd6g7pRvTYB3dsEWkM+Q3HqFUH1T0HiNQchqQXbVQy6Vco67UMfOfai/uOMl/bgPs6i3OrvusYcF93A/a+rkGsuJ5dvyKxK8MVnW9kiKOT18NK0YOTxKH6xjlVX0btc6TuM+m8NFfwzjcwWUNlvZ6B71x/cd9R5usbcN9gcW7VdwMD7htuwN43NIgVN7LKK3ofAys6QPnh7DnNoF3OAc3HLnkEk5uupZT1gCEuHiX7YGjYeyZXTPbbVNYbGfjOjRf3HWW+sQH3TRbnVn03MeC+6QbsfVODWHEzo1jhA82S44j6kMWQX5eSevC1+DRnpDylfZFwSmuzVZgk9UkeCXNJQDBjZIs1VNabGfjOzRf3HWW+uQH3LRbnVn23MOC+5QbsfUuDWHErq7zC9+yIBuaYPZQo2UPORFVklBwqp+K9/D20QZwn5t6nbwgsvc8MEjAs1lBZb2XgO3Vx31HmasDdFudWfc2Au2/A3t0gVrBZv6JKOgGlltbl0vfoempYU40YoTNFnq7X6aR7IdWKNEELi9Y0QL6JRjbZx1tZ2cB3xuK+o8zDgHsuzq36pgH3rTdg71sbxIrbWOUV0pFoobuo3Up0YdSCKO0IL5MPliZFFxGjyp9IIZKpR+5QslQfdYTcazKJFcp6GwPfue3ivqPMtzXgvt3i3Krvdgbct9+AvW9vECvuYNWvSDLwSGmy9CVkHEoj+ol+NKAgQWIOj/LbmcIYU08Y6i1LGHEo1UmJ3WWT3qay3sHAd+64uO8o8x0NuO+0OLfqu5MB9503YO87G8SKu1jFisHRBwDm7phSTKHOBozE4FPtMvHwo4/OHCdRmzIDCSXn0aorGkRMnq9Q1rsY+M5dF/cdZb6rAffdFudWfXcz4L77Bux9d4NYcQ+rGoQrI8Y4W55FsoWJNc+MIfFoLiHJHJUjhuZyaSEDlhQpTBdSadIR7dNiDZX1Hga+c+zivqPMxxpw33NxbtV3TwPue23A3vcyiBX3tuptgmQJmCBM6VlmaV141+YQJRhicNLMQI/ZS5Lh59AHNUdttUrTs/lMNTSTs4+V9d4GvnOfxX1Hme9jwH3fxblV330NuO+3AXvfzyBW3N8qrwAItfoUfJDGrPQuePYRqUiw6Cl3R72WXvyIIXnKsxdIIwWOMVUnVUm1WENlvb+B7zxgcd9R5gcYcD9wcW7V90AD7gdtwN4PMogVD7bKK3yaBNGX3qrMPih0+aHkdBIiXUzINENkDL5TL9SSRIuKMkFlCROh8DR5vkJZH2zgOw9Z3HeU+SEG3A9dnFv1PdSA+2EbsPfDDGLFw63yioQMXcXVJEVGIJzUBukDmzVwclWPBKA0q4siWmaro4OP8qUtZl+9yXObyvpwA995xOK+o8yPMOB+5OLcqu+RBtyP2oC9H2UQKx5tFStqlfxhxCl9C00aSBqaMglJlLqMRaur3GeKBeQvqIWIZUhRkqHqZlrTRZN+hbI+2sB3HrO47yjzYwy4H7s4t+p7rAH34zZg78cZxIrjrGamPbk445wSLhrS4ASIuTAE10Lt0ycGBmxZ5qPOFd0jKw9HASYUN6fJ8xXKepyB7xy/uO8o8/EG3I9fnFv1Pd6A+wkbsPcTDGLFE636FdJ8GA6lpTlL1i01yUs+MWR6ijIRdbVFPSSdyFPVg8ZChI7JSe9zAMhfm+x1o6xPNPCdJy3uO8r8JAPuJy/OrfqebMD9lA3Y+ykGseKpVrECozQvqw9YnHdRKpEm4SNLa0IaFyT1Rx4egEKkiBI9IgE6nH1mVyrn1C3WUFmfauA7T1vcd5T5aQbcT1+cW/U93YD7GRuw9zMMYsUzzZ6vCLFIrSGBoXCSaSlB46EnERaciKnqOYXMOLnrQxVDRquRfO4cuOqeFxZrqKzPNPCdZy3uO8r8LAPuZy/OrfqebcD9nA3Y+zkGseK5VrEij9mkCVEjw8SpRxMy+omJSYJClSEJuRkzN4kdMhGpIRWpWCpLzzMN501mpsr6XAPfed7ivqPMzzPgfv7i3Krv+QbcL9iAvV9gECteaNXbdDGF1GfP08GcPArlIbMOmaB6qCAjkCEtz1b0xVL59Uj6IJZrLLlFpDFN1lBZX2jgOy9a3HeU+UUG3C9enFv1vdiA+yUbsPdLDGLFS63yipCdh5n7DCA/tgBEqJmyniuEEhSSZ6cT0snJZ1HfcWBMoEVIK7M2izVU1pca+M7LFvcdZX6ZAffLF+dWfS834H7FBuz9CoNY8Uqr5ytig5ix9y6VR65Yeu4p9gy5uBoHhODA+dT9aL2ybkySSg2dnb6znnq1WENlfaWB77xqcd9R5lcZcL96cW7V92oD7tdswN6vMYgVr7V7FstHTGmi1Bn6YAXHMTDXnF2XxMFTaNAgUB896+OaE2BEpCSzEZ/mKBZrqKyvNfCd1y3uO8r8OgPu1y/Orfpeb8D9hg3Y+w0GseKNVv2KgA1lPipzUH2TVDqbc8jQozVXRp5ZxDVuJdXipEkRZ4bqKIPEkYSpR5t30pX1jQa+86bFfUeZ32TA/ebFuVXfmw2437IBe7/FIFa81apfIf1JGYoSkkQDn7OkEZJa5C65BfRKgOimVCjgmUvS/CLK3ydpiI7uJVaYPF+hrG818J23Le47yvw2A+63L86t+t5uwP2ODdj7HQax4p1WeQWAczIEabkQZvLBDx6SMoyegm9cB7bQWoxRqhDdUa+UWoBzKw0AUjdZQ2V9p4HvvGtx31Hmdxlwv3txbtX3bgPu92zA3u8xiBXvtcoruqQJKYqUljhLK7N2SS9crC3m2KUWEbldBiDg3Qy9OJmkZmy1RKKWmU3WUFnfa+A7JyzuO8p8ggH3+xbnVn3vM+B+/wbs/X6DWPEBq94mBfK6y64ek964c+6ZYwweoVSvx6RPbWpik46nb7HFAL73wtBDjeBN9vFW1g8Y+M4HF/cdZf6gAfeHFudWfR8y4P7wBuz9YYNY8RGrWOEwFMe+jjAlj3BJfiJLOgFMBSJBlSpEd86rsVaHuoteJPZR8o7k2gCTd9KV9SMGvvPRxX1HmT9qwP2xxblV38cMuD++AXt/3CBWfMIqVuTaSwpShOSEoWVfs/Pd6R7dxaeeJXnANIuEB0KZnTai0lyI+qeh+WbynqmyfsLAdz65uO8o8ycNuD+1OLfq+5QB96c3YO9PG8SKz1jFitA61N5phpCnC0GqD1+gYC0zo+OKmH0HEIWh03AYC8/iygySiAQyySuU9TMGvvPZxX1HmT9rwP25xblV3+cMuD+/AXt/3iBWfMHs+QquEUcMg9JIXGZqPkOdaTKj04ODWsSQup8hzlljy9Li9A0mTD9HNtlDT1m/YOA7X1zcd5T5iwbcX1qcW/V9yYD7xA3Y+0SDWHGSWb+iTw57dqjoHGco3J10LmQ2GrIDmkXGqFP3uOEeB0WQmSkjl5hqnUB5WKyhsp5k4DtfXtx3lPnLBtxfWZxb9X3FgPurG7D3Vw1ixdesZqbFxdZ7QsSBU6qL6RqPIX0J3ZkXQ9YjhbzTfbC4zhl4sO8cXMKMNQeTOYiyfs3Ad76+uO8o89cNuL+xOLfq+4YB9zc3YO9vGsSKb1nFCqjMlGQkKr1K6V1I8jCYOXnI3hGlXEeFMGsgjJPqSLrPJrlC8h0eoskz3sr6LQPf+fbivqPM3zbg/s7i3KrvOwbc392Avb9rECu+Z9Wv6DLh0H02MZPLUY89JtEI3rmIkk642XoOUpGQ54khet9HLaGO0mJMw6S3qazfM/Cd7y/uO8r8fQPuHyzOrfp+YMD9ww3Y+4cGseJHVv2KGH0hEVKpZmTngxQfLklqQaMSNOllJhmiZu4VhrQyuqQWwVOvjmCm0SzWUFl/ZOA7P17cd5T5xwbcP1mcW/X9xID7pxuw908NYsXPrGJFLxVk/IF9+NoLiiKJFVwkOiQZoObQMTNXyJVLDgOpSw8UXac8izQ4qsUaKuvPDHzn54v7jjL/3ID7F4tzq75fGHD/cgP2/qVBrPiVVQ3iYplTCg/uIJ0I7OACJqzNg+OYC+dS+5i59FTa6BJUqEia0QYIDZFJb1NZf2XgO79e3HeU+dcG3L9ZnFv1/caA+7cbsPdvDWLF76x6m75FGXTIKIQHiCaRwcPlQNmNGPecPRarz5J2pNQ7MLdcodAkiSGlFJNYoay/M/Cd3y/uO8r8ewPuPyzOrfr+YMD9xw3Y+48GseJPVrGCQu+xtYizTIkaMcTJIHNSBzNUX6fMS6eeRuioc4tQXZP/hNmkPtEHLSzWUFn/ZOA7f17cd5T5zwbcf1mcW/X9xYD7rxuw918NYsXfrPoVIZepL4UxtRylFJl5TulzypA0BocjDOla9Di7b75Rmb4S+wbJB5/ks0ye21TWvxn4zt8X9x1l/rsB9z8W51Z9/zDg/ucG7P1Pg1jxL6t+BWDWc8dwkHOZGBibdiMA+oA2BjsY1F2j6nxso6Vao88SV3zALtWJxRoq678MfOffi/uOMv/bgPs/i3Orvv8YcP93ce4j9zvZyY7Zb/e5jzt8fT//r4G9j99l7v/zz767y5+OPWzXPiucuHuf5Xeu3//6PFgjWxy4u7YI+++iXx+4i7oO3kVdh+yi7x64z+75iBpzt3S1C+3e2p+we59VDt3Fa/2kXbzWd/Ee4Xde68GLH0CKc0CXZpSPLueSxBsy9VoclBF6Czk1IIwyVe/oaqM4QsaSKJucN7cnaBy4+/ebkx+49n12D7MB9z6Lc6u+fQy4T3GgzT1tv93lX/WetmwsfNIu5j3Frx8T1I93uz+x7+5dG37nGvoxU4hFZqIQ+4gtO5IeZaw9tdBqCdO3SmNiqjAHNtLjjoUl+F6kzRlNepnKuq9BfDnl4nFVmU9pwL3f4tyqbz8D7lNtwN6nMogVp7aKFaHkQDLvDKNy0ge7XUtjlojoCtaWR/alSWbKPDmHIkEkRkhIOKvvNr1MZT21ge/sv7jvKPP+BtwHLM6t+g4w4D7NBux9GoNYcaBRrHAxBggiTn52IS6tR4dZ8gz0yMh+hAkOXHPUwfXSU3K9tog95Ugpmqyhsh5o4DunXdx3lPm0BtynW5xb9Z3OgPv0G7D36Q1ixUFGsSJImlAkoUAKAdwITDOD9K+oicbYK85GTmakvnYIkm/0iEFCyawhDG4275Uq60EGvnPw4r6jzAcbcB+yOLfqO8SA+wwbsPcZDGLFGa3yiup9HZAyc+wEXOLgLm2LKh1xpOgD+tG9l/qj5NS76516m1Hqluk52+QVynpGA9850+K+o8xnMuA+8+Lcqu/MBtxn2YC9z2IQK85qlVcA+zmlC1GjL7MHh3EiYnAVsVSUIRrJXIxc7RWgJ/nbMVj6Fb1zqB2DxRoq61kNfOdsi/uOMp/NgPvQxblV36EG3GffgL3PbhArzmGVV1AJLeOEAaMBxFTnSG1EiRscA1dfqpsBcXiU7KNCDyNVpzv/90bZZg6irOcw8J1zLu47ynxOA+5zLc6t+s5lwH3uDdj73Aax4jxWeUUBhz07Dq5xgtyZuFfHaSbpXdYQK+cs2Yb82kvE6E2GpbOXga7LhCSbvFeqrOcx8J3zLu47ynxeA+7zLc6t+s5nwH3+Ddj7/Aax4gJWM1MAmYiO1qpuV9E9NBmHggw/ZNRB0vQsegLhQN89jeSkmzGhFylS0pS4MaBarKGyXsDAdy64uO8o8wUNuC+0OLfqu5AB92EbsPdhBrHicKu8osnPrj7n4QPPIU3LxA1w+txp0NRzCkMJXoYhIzI1TEWU19l0K6w4usk5Y8p6uIHvHLG47yjzEQbcF16cW/Vd2ID7Ihuw90UMYsVFrfKKHjPUPBOFmcJwMgBJvmcCCRbDFSezUQ8o8nwkR8lDKiVNbMFjc7Ob5BXKelED37nY4r6jzBcz4L744tyq7+IG3JfYgL0vYRArnFVe0dOouUgPk1mmoBVGKKOWXvRRqz5zourTkL9yEynE3AvPGVwemUdL06S3qazOwHf84r6jzN6AOyzOrfqCAXfcgL2jQaxIZjPT2Qimy5kp+E4pu1ZzFX0MGaThiYmiS1KGTPReK5JcZuY6kQGpN4s1VNZk4Dt5cd9R5mzADYtzqz4w4MYN2BsNYkWxqkFwBIidamNfsUz2qOeOSZ+CvMdK+sh36I6xj4Hgg3Q2o/Q4O4hYN8CkX6GsxcB3aHHfUWYy4L7k4tyq75IG3JfagL0vZRArLm323GYoMuUIY9QWq5cyI4SAdThJM2DKXMRjrkWf6fQ6Oy2+dSlGfCw9UsFkEiuU9dIGvnOZxX1HmS9jwH3ZxblV32UNuC+3AXtfziBW/I9VrJBWJspQdITmQvT60GboXuYhkmVAHR7G9LMMaWQ4iR1e0o6Bknb4LIPVMJJJv2IPq4HvXH5x31HmyxtwX2FxbtV3BQPuK27A3lc0iBVXsooVvSd925x6cEPaLZ6zhImZdSsLbIlGzt2Hik5anK7HRsNVThlEuENnEyuU9UoGvnPlxX1Hma9swH2VxblV31UMuK+6AXtf1SBWXM2qt4lTCo8mDc4cfJkjeB4zliiZRZI5aSBpTrCbgKPWQtLqlEGq9z1RiVxwmjy3qaxXM/Cdqy/uO8p8dQPuayzOrfquYcB9zQ3Y+5oGseJIsxqkpuFkoDGayyGNnJx0JYAyVW4t91lJ6pFZWvC+9iihJDugmbv0KpzRzFRZjzTwnaMW9x1lPsqA++jFuVXf0Qbcx2zA3scYxIprmT2LRTVKYChOmhQsgUP6F1KREBV9xTTX2Lwv1JJrLvXABFV6mzE4dhjrIJOzg5T1Wga+c+3FfUeZr23AfZ3FuVXfdQy4r7sBe1/XIFZczypW5BalNZGJA0jqoCcZe8SapGcxZM6RKksO0WoHlsgAAzlMiSKAOYSUsJmsobJez8B3rr+47yjz9Q24b7A4t+q7gQH3DTdg7xsaxIobWdUgXHPnGnmSw1H6aKM6HilI28K5XNMckbJuwhnkKxzOOqk4V0psqQOY1CDKeiMD37nx4r6jzDc24L7J4tyq7yYG3DfdgL1vahArbmYVK0qvFdAFqUJy74ASNaQ/weyltxkSUsWeCkwMKRaZleJoZSZI3o3WmzfpbSrrzQx85+aL+44y39yA+xaLc6u+Wxhw33ID9r6lQay4lVWsgJkhiIKZeAzKnQAqgpQmDnvJEg085pwnYQ3S4kw5jDgAGmafapxgsYbKeisD36mL+44yVwPutji36msG3H0D9u4GsYKtZqallyqDD54M+jaITD64Si6RfW0xVw++y3+pZ+ljInmkgBIsetWWaKvNZA89ZWUD3xmL+44yDwPuuTi36psG3LfegL1vbRArbmMVKxpGyDBbR5bgwNqSGDw7O1GYQVqc1Gfo0qtoJQ3qXfoYVFNxSa695qbFGirrbQx857aL+44y39aA+3aLc6u+2xlw334D9r69Qay4g9nzFaU0aJ1xuDllZNpgQCm1lx5kQOIYufrhWksYHBbPE0vprpYyY+tkklco6x0MfOeOi/uOMt/RgPtOi3OrvjsZcN95A/a+s0GsuItVXuGb/MjpgFqNhRLoiUE+8pAco/ConeeU7kWIrB3PXop2N1KvHPIIOZicO6asdzHwnbsu7jvKfFcD7rstzq367mbAffcN2PvuBrHiHlaxQsoOmr23iCTtigLSs5TUYgaWMsQ5wMTBxcRpikwZokoTVFoc6GeQ2sS3YbGGynoPA985dnHfUeZjDbjvuTi36runAfe9NmDvexnEintbPYuVGMpwqc6KeUasUonAIH02M+Xascn4A2pLraYxgvcyNZUGJ46apW5pYNKvUNZ7G/jOfRb3HWW+jwH3fRfnVn33NeC+3wbsfT+DWHF/q7xiSC+zMIuKOUIkTtKYSN7pHpxVEo0+dTu95GKlOvogjp7CdFKU6Okg3aQGUdb7G/jOAxb3HWV+gAH3AxfnVn0PNOB+0Abs/SCDWPFgq97m7Jgxe4oIs0gtklKRWgM85zLk315Ez+hLGEWGpZgyVYfk/BhDzwsx6W0q64MNfOchi/uOMj/EgPuhi3OrvocacD9sA/Z+mEGseLhVrPDS3ayBfI6t5SwNzZYxNeYUQm0uyvi0VelaZD2VrLngXaMYcEgb1EXvTZ7FUtaHG/jOIxb3HWV+hAH3IxfnVn2PNOB+1Abs/SiDWPFos96m05fMh6skJQaEKbWH7sHpUXoUECQc1BmDK5wiBpSO5qQQnGeocSCxSV6hrI828J3HLO47yvwYA+7HLs6t+h5rwP24Ddj7cQax4jiz5ytCSdNVr6NSIpl2hCpfkBLUSb5DnDn2FEV1Ys5jVtCOBuivo8dSLdZQWY8z8J3jF/cdZT7egPvxi3OrvscbcD9hA/Z+gkGseKJRrIjOuxRKkKyB5QcnSTFqyoED51oksSgUYBQHeixZjCU2mZV4ma8GoubAZl8sZX2ige88aXHfUeYnGXA/eXFu1fdkA+6nbMDeTzGIFU+1mpnOKv+kPqZkEpV1eJqH9iJKzAljY9cyzRoKg5/RIRQEaqHGPqGFbJJXKOtTDXznaYv7jjI/zYD76Ytzq76nG3A/YwP2foZBrHim2RxEKo/swpjMI2VXwU12Qzf0Z6TUSKS5EJ2eizxYDxBKgVIto85RnTPZ819Zn2ngO89a3HeU+VkG3M9enFv1PduA+zkbsPdzDGLFc616m71zzimnRNColjmbtCxr7bXLMHU0n2oqNeFIpTXSbb4bVmYpRBjjLM1iDZX1uQa+87zFfUeZn2fA/fzFuVXf8w24X7ABe7/AIFa80KoGqSVLqwIqZT+CTExHD3O6PkOZ0vMEiRd6BHKuHYL0MIabYURAGa/qzpzDpF+hrC808J0XLe47yvwiA+4XL86t+l5swP2SDdj7JQax4qVmeYXkC9D1gJBeqWOlmnPEVFzDxgy9EI8xsvcSKroMQgrUMJKUJdLerN7kuU1lfamB77xscd9R5pcZcL98cW7V93ID7ldswN6vMIgVr7TKKyRWyJBUUgZCzhO4smQRlEHCApEMPGbIxUOTrkYLe8Yi7BHkvyUNjmDS21TWVxr4zqsW9x1lfpUB96sX51Z9rzbgfs0G7P0ag1jxWqtY0dLMLc/isUUfmwSDnqJjGY6mmNvMGLmzlB01p0K+zAihZ5Sko4XOZLI3r7K+1sB3Xre47yjz6wy4X784t+p7vQH3GzZg7zcYxIo3Ws1BJGnIWbqWPeSmgUMf69YjyFwpmFpsNIe0LuqgMZpDqUsIRmi+hiCTkW6yhsr6RgPfedPivqPMbzLgfvPi3KrvzQbcb9mAvd9iECveatWv4IwSInqqGfTxK4wAQ+JFKZFml6LE9dRS7gwOuIj0gk4mpwlxzz5ZyWINlfWtBr7ztsV9R5nfZsD99sW5Vd/bDbjfsQF7v8MgVrzTqgYpM9esz0qU//tnQyRXEicouYgEqUcAsZbYcEoQGaOmoJv1ZmqeOZvMQZT1nQa+867FfUeZ32XA/e7FuVXfuw2437MBe7/HIFa816y3Kd1NKTMGwkyiohRJGsCnVkYN0XWZpJbqmXKdkAbFwV7yCRdTheJmNOlXKOt7DXznhMV9R5lPMOB+3+Lcqu99Btzv34C9328QKz5g16+QSgKBZAIipYaftbdWawcfYot55tREUcXKvo0Ya8bQsMoXuN6Tc91iDZX1Awa+88HFfUeZP2jA/aHFuVXfhwy4P7wBe3/YIFZ8xKpfkaMXMZOy940ik5POJrJn18ZIWMEVlt5nhTjm6B1yaU4qE0dYfMvBZL9NZf2Ige98dHHfUeaPGnB/bHFu1fcxA+6Pb8DeHzeIFZ+wyivanseqoDNKO8LptlgIHhq0zNSgVoBQ+5Q+ZyCZmvqBM1QKDF6CDA6yWENl/YSB73xycd9R5k8acH9qcW7V9ykD7k9vwN6fNogVn7HqV9Qgc1AZbkQOCYd0IBzOMkSebrhZ/GyOYVBnloFIguRGAU8pIEZfyGeLNVTWzxj4zmcX9x1l/qwB9+cW51Z9nzPg/vwG7P15g1jxBbN+hWPi7CNmQpwc9JUxmLnIgNSnytMNDnNCTNharDwq+iJdz0I56JsjFmuorF8w8J0vLu47yvxFA+4vLc6t+r5kwH3iBux9okGsOMkqrxjeAdQiSUNMBYaMN6oHyS04VeyBS8iQJnYOY8TRgtcNOEuX/wzdn9ckVijrSQa+8+XFfUeZv2zA/ZXFuVXfVwy4v7oBe3/VIFZ8zSqv6Jx8iQWCi4NSphmC97HnGGMCSTPqjCUlkkoERGKd6DJJtdJLnCNNk96msn7NwHe+vrjvKPPXDbi/sTi36vuGAfc3N2DvbxrEim9Z5RUYc5fMAXoerlYZdjTJJEKRDueQLmaQvKPFyHEGKMUNkr/vDbsecNoIbN4HUdZvGfjOtxf3HWX+tgH3dxbnVn3fMeD+7gbs/V2DWPE9q5kpeBea70UmHS3J+DTWQqnHKB3O2tOQFgVRjz7EWV3Nuecuc1UZmkiDo0dsFmuorN8z8J3vL+47yvx9A+4fLM6t+n5gwP3DDdj7hwax4kdWsWL6Pqh6mrVNlJ+cszYmZgstBFd6k3pD6pJUZV7iUxBt0c0RoXWfO4LJnv/K+iMD3/nx4r6jzD824P7J4tyq7ycG3D/dgL1/ahArfmbW2+w5S7+yzsZpMAeas4RBMAoNppxm1V29U3bNYR214wg11ZJmZj+SyVlCyvozA9/5+eK+o8w/N+D+xeLcqu8XBty/3IC9f2kQK35llVfI1INK0WNLy0h9SKHR/XAjSERAL2PUmpOkFg78dNP1XKSDkbBA1ZPIQjWJFcr6KwPf+fXivqPMvzbg/s3i3KrvNwbcv92AvX9rECt+Z5VX9OH8HINjknloGjnOnnnURAk5+5wRWx85t1F9cXXo1puYQ+Q8fRzd5LlNZf2dge/8fnHfUebfG3D/YXFu1fcHA+4/bsDefzSIFX+yyiuiKyH3LkVFIB9Bd7JI02UcLHMPzOB6q5J3dMRCGDI76WegzEtzTD4Nk/02lfVPBr7z58V9R5n/bMD9l8W5Vd9fDLj/ugF7/9UgVvzNKq9INcwoM9LO0uN0lRxUn1jKEV9YjwxCjrEVjy5LfEDnctEdLLDUkGIik+crlPVvBr7z98V9R5n/bsD9j8W5Vd8/DLj/uQF7/9MgVvzL6lksBCk38oRBucwOLntG0UJYZMzBE8BLSKAZiw+Fu8OSWw3AlUKUCsVkrxtl/ZeB7/x7cd9R5n8bcP9ncW7V9x8D7v9uwN7/NYgVJzut1cx0yg+ZnTCN4Xvr1UkvAiQwOBmlOh+89y0Oxz5PTin6NoAxSsRIMGma9CuUVf+3275z8tOu7Tt7mA2491mcW/XtY8B9ig3YWzXudqzY1ypWjFGl2GhAgBWQHLfRY2Av85Gpf9IrxhaA8szREctkhEaR9icThBZM+hXKuq+B75xycd9R5lMacO+3OLfq28+A+1QbsPepDGLFqc1iRYM2qPlYc6cigqLLMEcjP6OEhua7TzJHzVAlr5BUgyb04aGV4l3qJjNTZT21ge/sv7jvKPP+BtwHLM6t+g4w4D7NBux9GoNYcaBRrHCFgIuoSYX1UQsZlpYyfCtjTB9iGW0gy7+ybpzF3EvungKF2t3skUz20FPWAw1857SL+44yn9aA+3SLc6u+0xlwn34D9j69Qaw4yCqvaB69xIE4ZuJamWuhUomhZRmNRt1Mz8kYhChLHCkgI5IsoaUPxoEt5WKxhsp6kIHvHLy47yjzwQbchyzOrfoOMeA+wwbsfQaDWHFGo1ghJUYZpMcJuRlQZh5F3wfxkGYZqbXK2QUAffgqSFkyBjhmJ3PWIPr0hACLNVTWMxr4zpkW9x1lPpMB95kX51Z9ZzbgPssG7H0Wg1hxVqu8IjrdwoaLhAsoXcajyReoLU5fwXUQjTL7CFMf7PTENRYRT0BFMgyUaavFGirrWQ1852yL+44yn82A+9DFuVXfoQbcZ9+Avc9uECvOYdWvqDxEm0xI84zOT52T+hm6NDG7w9D3HI0syQUNrNLEiLURN5Tpqnz1KDbvpCvrOQx855yL+44yn9OA+1yLc6u+cxlwn3sD9j63Qaw4j1WswBxD6MEVzzF0NxAlREjfQsoQDNBCdU0iQ49dftt8cVKTRGlZAEnLs6BJv0JZz2PgO+dd3HeU+bwG3OdbnFv1nc+A+/wbsPf5DWLFBaxixegSIVJJKUCF2Zmnk0DALB2LHqvkGXUGFymXqAlI7jV2zSkqhCAjFJM5iLJewMB3Lri47yjzBQ24L7Q4t+q7kAH3YRuw92EGseJwq1iR45zF91FzcNB5QA8y30iUU5DmpgPwkmbEhFMKDw8zhCmBBDmnjCWgSaxQ1sMNfOeIxX1HmY8w4L7w4tyq78IG3BfZgL0vYhArLmrV2/QyAcVaBnqJAKmQ7wVFjPP6okhl12dpJTFzBie6MU4IA0KBAbk2k328lfWiBr5zscV9R5kvZsB98cW5Vd/FDbgvsQF7X8IgVjirmWnhHFPTyqLDiG3OGVEiRNbjCfecPjaSG9N1CSqjV8k/+ojRlZ6n/MKbPOOtrM7Ad/zivqPM3oA7LM6t+oIBd9yAvaNBrEhWsWK4KXPQxjokTcEx5NAaSGPC5SbTkAwQW6IYpUKhJlPT5ickV4qXMar8ncUaKmsy8J28uO8oczbghsW5VR8YcOMG7I0GsaJYxQq59v1oOXCb5IB5eGrYSAqQPscIWc8Z89Dlj3wdXb8yZOLhmKbHZJJXKGsx8B1a3HeUmQy4L7k4t+q7pAH3pTZg70sZxIpLW/U2W+x65IckFkHGpNLNbNKRkPyNhkxIQ+v6ztieTfNIep3kJ0o7I5buJXKE6EzeSVfWSxv4zmUW9x1lvowB92UX51Z9lzXgvtwG7H05g1jxP1Z5BUXpUyaZi3J1OUs4kBnqKBoQQh2YYnczM5fco/x5SL0mzzMXyNDKcNViDfewGvjO5Rf3HWW+vAH3FRbnVn1XMOC+4gbsfUWDWHElq7xCpqLoZN4BvjUPsTc3cMSu5xGKHpT8oUuXU1qa3CkNL20LmYPMDMHHLmWKxRoq65UMfOfKi/uOMl/ZgPsqi3OrvqsYcF91A/a+qkGsuJrVzHRi4lYxD+9Lyvrqh+/SvCjS9HTUIYKvzSUpOqhL9sGceIBDX6FWiSYmz1co69UMfOfqi/uOMl/dgPsai3OrvmsYcF9zA/a+pkGsONKqBkkok48UOE+JCzVwbb24ArN6CR6599BKw6Jngkhm4X2OEF2VT4kg8sikt6msRxr4zlGL+44yH2XAffTi3KrvaAPuYzZg72MMYsW1zOYglCKnOCliodj6oAyTRsfas08OypSqo7fZfGY3vetYSkQpWHL0RGixhsp6LQPfufbivqPM1zbgvs7i3KrvOgbc192Ava9rECuuZ1WDpMHBY3ENB/OMGEpG0Vfn8J0m8UTJOmpHShiRpc3JPurGWa5l123OHVPW6xn4zvUX9x1lvr4B9w0W51Z9NzDgvuEG7H1Dg1hxI6veZqHWJLEI0pqQNCGW4LJ0LRs1GKj7WshIJMbZam1YY8NIoUvv0zvvKo1o0ttU1hsZ+M6NF/cdZb6xAfdNFudWfTcx4L7pBux9U4NYcTOrvKJidYAYe+VII08k13OWjgSxxIgucSSOUUH+kfxjMDh23blSXQL5DpM1VNabGfjOzRf3HWW+uQH3LRbnVn23MOC+5QbsfUuDWHErq7zCl4mSMXQgCAnmGCkgOC8xpLMfsyaXc5+QpmvdScUSZFgSXOpd9PVisi+Wst7KwHfq4r6jzNWAuy3OrfqaAXffgL27Qaxgq95mba0mSNhjKTlkqT0C0WilV9flD2SUOkRNHi7o3lice/TIWomwRI5m8tymsrKB74zFfUeZhwH3XJxb9U0D7ltvwN63NogVt7HKKwbj9FJScOAoPzgQ8mwRs5MJaZQAEqE5PXusSMfTMZUeUf5x0IbqZYs1VNbbGPjObRf3HWW+rQH37RbnVn23M+C+vTH3blzTqvGg3V3PtM8uaBxzzz/+FLto5313Txedevc+i/ffvc+aB+7iZx28i752yC6u14H77N5ntQvt3nqdsHuf5Q89bPd89djd+yw+8bDd84njDt+9tT9+x2f5gTm6zD2XFmv2bs6sr4tl7AROOpfJDckfsMiPhK7nl1b5TW2U3QTO7mQ7/jnVyXY1NvpT/v/X56avz/8333X/y3/0M3Y7p9F7+kEn2/2c4Q6L53LKfAeDXO6Oi3OrvjsacN9pA/a+kwH3nXdwhxFGa81jCQQNogzRR/dUpiOUQRiV1j2n0aQ8DZ6Z5asL9IYDZaZeRrbgVn13NuC+y+L2Vua7GHDfdXFu1XdXA+67bcDedzPgvvvO69u32X1OLTeHnkPQNwOd7lqUcyzSSyy5dD9D9NKCaqkH8hUDMQTdzD2Z9KtV390NuO+xuL2V+R4G3Mcuzq36jjXgvucG7H1PA+577eD2AfqsMYfmRkDnUwotwnA9yGS6hIJ9cmxzyKy6pFBnd9JbxsJlcEuVTc5eUH33MuC+9+L2VuZ7G3DfZ3Fu1XcfA+77bsDe9zXgvt9O7uiIZSSEtUHm4SvRHCHOlAu71qPMl7oOoSGFMVORCxyQxvTYG1AoJu/oqr77GXDff3F7K/P9DbgfsDi36nuAAfcDN2DvBxpwP2jn/ZuSdGlJ2rZEANLCbaMUfap9jhhIbt8+5Ik+UqlSoo+UdOfyJtd5QqnNbe7fqu9BBtwPXtzeyvxgA+6HLM6t+h5iwP3QDdj7oQbcD9vJnWtJBCXJiKb07hgGzeipJa4jAOtR7xglQwcnf8ykr9B7dlQxV5Cvs+BWfQ8z4H744vZW5ocbcD9icW7V9wgD7kduwN6PNOB+1M77t9yE9VKWW3aShlrjMMlx8tpT10MDWqhShUOrqcpF3avcvBv3STHoEQQ2/XPV9ygD7kcvbm9lfrQB92MW51Z9jzHgfuwG7P1YA+7H7eTGCB1c50hTzzMlTkU+K02qMDo1uaQLzRZ4uBoZx6htpCg/r2VwOKsFt+p7nAH3cYvbW5mPM+A+fnFu1Xe8AffjN2DvxxtwP2HnfEzSbEJpq3GQQbfm5pii9scn+ESh+cZRCvRcUncyEEfoKfbYWaZkCbMPFtyq7wkG3E9c3N7K/EQD7ictzq36nmTA/eQN2PvJBtxP2cldY8TIPs8K3EcIMvGOQYZmLkiWPksdNXdpmnNNnWai4itXuejl/u1mhmHBrfqeYsD91MXtrcxPNeB+2uLcqu9pBtxP34C9n27A/Yyd9++GzoUyQptpOCe/CIO5yR08eSnEMfZQiLv8wKwHbKQhkUCqdDckAMiozOT+rfqeYcD9zMXtrczPNOB+1uLcqu9ZBtzP3oC9n23A/Zyd3C0kGWyD5Nt+DKbIHAFikjZbr2mM1jBRL1XSeJexF+dZ2nAduwPQrpsFt+p7jgH3cxe3tzI/14D7eYtzq77nGXA/fwP2fr4B9wv2mo+xl9ZZzwjyi158ahB89hAj1eFrIN+RZ4SWJ0OfrqWhB1VwyCM6m/u36nuBAfcLF7e3Mr/QgPtFi3OrvhcZcL94A/Z+sQH3S3bm5+j7bLOUQZiSfBLBwBEYCma5W8vl7wYE55Nu0thjHpQrSp0eycnE3Jns2aj6XmLA/dLF7a3MLzXgftni3KrvZQbcL9+AvV9uwP2KvZ5fg+hoevYo1Xbytfk+yPVIiHJZ42zYeXTUvU1KCY1KlVs5UIbuIw+T61v1vcKA+5WL21uZX2nA/arFuVXfqwy4X70Be7/agPs1O6/vgN17D5Kg5+5ixwlcYvLIpfsWiyuTwhgeKKSak6PUpvwLgx800jR5vkX1vcaA+7WL21uZX2vA/brFuVXf6wy4X78Be7/egPsNO6/vNicWl3AMQI7SSEuTu1zIk2po1cn1HlOh2qXtlkKeevz0nkw9UAlgc32rvjcYcL9xcXsr8xsNuN+0OLfqe5MB95s3YO83G3C/ZSc3SPusY2t1gIy++vSFYIZWZEbGFLpuJeRH9dJ5i2kQN5icS5HJWM9xULXgVn1vMeB+6+L2Vua3GnC/bXFu1fc2A+63b8Debzfgfsde+TnL/bu36jGPKU30Nru0x1EabQFai5SoFpQCPMtnhpzlro4VUpO2uszOqsn9W/W9w4D7nYvbW5nfacD9rsW5Vd+7DLjfvQF7v9uA+z17Pd/CSY9qhzAiVwi9yfQLJvYUSqXmOPvS5p6WOcwy+5Cru0ocoDobSBpvwa363mPA/d7F7a3M7zXgPmFxbtV3ggH3+zZg7/cZcL9/5/WdBkvZnXDK7Xik1FOX3rkLCUaM8gHyF+zkp0Q9n4hl+i0pvDTV2ffa5sgm73+rvvcbcH9gcXsr8wcMuD+4OLfq+6AB94c2YO8PGXB/eGd+3ocD+ZYeMugBxxhH6lM6acSxueakS157Swkx+w6hIeq2LnnoUy7I3iQ/V30fNuD+yOL2VuaPGHB/dHFu1fdRA+6PbcDeHzPg/vjO67s47ZNNxylPGkNuzdXH3CZHkh75kOZ5xAExZtCjgNJsJPfyJo02jEUCggW36vu4AfcnFre3Mn/CgPuTi3Orvk8acH9qA/b+lAH3p3de3xDmlA5aCj4WydCzBw9ScRfQh1qar+xHaTnm2lPWR9dmayF0Hyf1XMnk/THV92kD7s8sbm9l/owB92cX51Z9nzXg/twG7P05A+7P7+RGuWnXJJ8FVd8SC73KXDtE3Si1MOnhwQQ1YS3Ox1Gp6307ly7f0tBnk/2ZVN/nDbi/sLi9lfkLBtxfXJxb9X3RgPtLG7D3lwy4T9zJXWUAJvPuNrxvLjd2oUpzPGHzrXJuwaNLDivX4H0K04GU3t4Rj1Kqb2DBrfpONOA+aXF7K/NJBtxfXpxb9X3ZgPsrG7D3Vwy4v7rX/LvHPa+BVrmsu/wTgaTsLjNVuZIdoh8+xzkRKckALecuHfQCUrSj3MljteBWfV814P7a4vZW5q8ZcH99cW7V93UD7m9swN7fMOD+5l7chYcU16DvfcrXSGsNZMqdC0uCLm3yODnUMVm3WOxShUuFLh8r+bl8DbduMh9Tfd804P7W4vZW5m8ZcH97cW7V920D7u9swN7fMeD+7k5uvU9TkRaaY/IyHkttSt9cXzJxGeccIPdsNwsVHCkTtjGQY4ydQ6oFTOZjqu+7BtzfW9zeyvw9A+7vL86t+r5vwP2DDdj7BwbcP9zr+Rbvg27moOcUdXChzCoddZaJGbnmR9bn2Jw02Bm9LzIlG0liASepyhNJcW7Brfp+aMD9o8Xtrcw/MuD+8eLcqu/HBtw/2YC9f2LA/dOd3JxB7tdUwow8Y6lxepqt+NSjdMxn8tSqG60kF1vA7iRtx9xhDt9nApP8XPX91ID7Z4vbW5l/ZsD988W5Vd/PDbh/sQF7/8KA+5c7+2vT+TGLQ4id8syxp5i8fD5FJsBYx5hB7uTT1+qJkAGx5YyNpA83ikl/TfX90oD7V4vbW5l/ZcD968W5Vd+vDbh/swF7/8aA+7c7r2+Xew5Sact8Owcc4JqL4Lt8GeaWKxIH7lCCZ5mHBem7kYzIOEkgwCHVuAW36vutAffvFre3Mv/OgPv3i3Orvt8bcP9hA/b+gwH3H3dyR5bWWq6ux9CbXNjVEcVCPfjiJAcvsQScLXmpyAeXxKUgAM+UOkSHJs+3qL4/GnD/aXF7K/OfDLj/vDi36vuzAfdfNmDvvxhw/3Wv+TeEgbFI6c0Nut6uExMGDJRS8J0pV+m4pSkdNdd9DLG2EnusDmREFk32T1V9fzXg/tvi9lbmvxlw/31xbtX3dwPuf2zA3v8w4P7nTu4xoPQ4YumepIcWiVJ3nBgbD33PRK5u+b8QqlTnpIcbhJ5rbC6F0Nhm/xbV908D7n8tbm9l/pcB978X51Z9/zbg/s8G7P0fA+7/7pyPDR2BycUcXE9ShXOYrlYaII3ziTI1q61zJsiupEChylczY5HqXGp1cib3b9X3XwPuk51ubXsrs2rcbe6TL86t+k5uwL3PBuy9jwH3KXZw75lwc/QcaixeLujhKslQvCcIgWoIMgqXEjzJZyTJzd2Q657dHC0XyFBN9kdWfacw4N53cXsr874G3KdcnFv1ndKAe78N2Hs/A+5T7eRuNZLMyORyrg30/U8InqSTnsPsPFKReRjjjEFaajgkgx9V5t6UU89jgk39rfpOZcB96sXtrcynNuDef3Fu1be/AfcBG7D3AQbcp9nBHUhGYc1lKb8165brvHF30Lw03ebMcquWmThPglkSyB2+dJcxsPez11lKs+BWfacx4D5wcXsr84EG3KddnFv1ndaA+3QbsPfpDLhPv9f9G4JzheTbXYUOSLrDmu968reXyztW9LGTTNBKq37KT8wTs/Nz+JpdM3l+TfWd3oD7oMXtrcwHGXAfvDi36jvYgPuQDdj7EAPuM+y8fzeZY5NczPJ9GL1k5xw6zEieU6IyIslYHPPg3jh3aa1PudADcNQjyqo3yc9V3xkMuM+4uL2V+YwG3GdanFv1ncmA+8wbsPeZDbjPsvP6roVk9i398uS6ds19QCdJOiCXPSce+JRdZEnJEdqMHeWO7jxLHh9rScnk/THVdxYD7rMubm9lPqsB99kW51Z9ZzPgPnQD9j7UgPvsO/vnkmwPHjjGaLpVMpZY5OKetQOH7PTIsZzlLyt7JwOxFivIhzmEXgsWm/dLVN/ZDbjPsbi9lfkcBtznXJxb9Z3TgPtcG7D3uQy4z72Tu0uircPtJpdwqJii97mNHANxTlnm4VRccEUy90lce/IgaXqA7Ce1EUz6a6rv3Abc51nc3sp8HgPu8y7OrfrOa8B9vg3Y+3wG3OffmZ+X6OIIembo8HprHlHaabVhgBoHZmbHlanNUX1NMQB6IvmykCLJJ5pc36rv/AbcF1jc3sp8AQPuCy7OrfouaMB9oQ3Y+0IG3Ift1V+TcVfxvle5wGv23kkijvLZqQ+OEEYbk7GzH77ITR6BZAges3zomDICN6m/Vd9hBtyHL25vZT7cgPuIxblV3xEG3BfegL0vbMB9kb3r7yAXd0aiOcKoRbrn2F0t7ArEJqV3d0NScemrDU9yO08uyG+c7ok+oSULbtV3EQPuiy5ub2W+qAH3xRbnVn0XM+C++AbsfXED7kvs5E4OR06NoMonxA6OZo1I2EKQbnnkIHPxCLlylrlYLiRjbwAXMDgCGZlZcKu+Sxhwu8XtrczOgNsvzq36vAF32IC9gwF33Hn/rlGS75yb0/PEpPbuJYTQiTCF1LpPTjLyMLjN1EqVazt1GrnE0KTZNshbcKu+aMCdFre3MicD7rw4t+rLBtywAXuDATfurL8JglzdWWZfch/32LPk3zVR83I1Vy6UfZLfOvk5A3Uk1jLnTCX5pu01tuBWfWjAXRa3tzIXA25anFv1kQH3JTdg70sacF9qr/o7lZiL8/rwaQ65Jd25JUdJ2LNc66nUmSAPfVeUB7EH+Xp9ijVHrkjVZP9U1XcpA+5LL25vZb60AfdlFudWfZcx4L7sBux9WQPuy+28f3OqczBWdGVkkg8tiREgUJihy226Zy5ZPgWkrZ4464lkM/tBEajK11twq77LGXD/z+L23mMXA+7LL86t+i5vwH2FDdj7CgbcV9x5/5b2eHNyV5a6ugCMgL5zkBvz9DhRsvc0a9Ma3ZXSKA/puHWpu5lCl4+vJuePqb4rGnBfaXF7K/OVDLivvDi36ruyAfdVNmDvqxhwX3Xn/RvQyVU70gyxImOByl7+3WKONczSpN0G1LHlUmUuxqhld/IgPyYmtnn+XPVd1YD7aovbW5mvZsB99cW5Vd/VDbivsQF7X8OA+5p7zceG3LxZb86ueV+kGI/eQR0hd5cSVj1pjLgDQ+hz4Bw9sAzLI09J6oPJ+2Oq75oG3Ecubm9lPtKA+6jFuVXfUQbcR2/A3kcbcB+zk5tnjDFz9XFKJ21CdrqRImYZmmEpEJKvo/c5Y5lMrVUK8sNnISDG4Uz2R1Z9xxhwX2txeyvztQy4r704t+q7tgH3dTZg7+sYcF93r/7anBNCo1DC6C43P2uS+zbpsYM82qDaIcoHRw7Nu5FSo+Hm8DQkPR8m5xuovusacF9vcXsr8/UMuK+/OLfqu74B9w02YO8bGHDfcCd3GX2EVPQ8MfkvSzUORC1LQw07kZN0HDH4VlumBhlb87EM+ewxACiZzL9V3w0NuG+0uL2V+UYG3DdenFv13diA+yYbsPdNDLhvuvP+3X1txXMDh60icJvop3xvlulYhjZ9iXpUaPE9NmA/Ofrm5fbusMyMJs+vqb6bGnDfbHF7K/PNDLhvvji36ru5AfctNmDvWxhw33Int+cBs0ilLf8ZMfs2U69VRmSxcYEhv9B9Uouk5j73VqQ6T2E4+bLW5Lcm+zuovlsacN9qcXsr860MuOvi3KqvGnC3Ddi7GXD3nffvyFxaRpg1FIhSaUNiiB1xcgmzgueKHnOMJegjqSWAx9E4p9pGSybzb9XXDbh5cXsrMxtwj8W5Vd8w4J4bsPc04L71zudbgPQ5tZF9bqGPUVgSciLJxtEHjKDhFSeF2WLSY4xmjoGH/G2stTeb/R1U360NuG+zuL2V+TYG3LddnFv13daA+3YbsPftDLhvv5N7dBl2tUJl6HVbiapc665wkDJceukURna+SJXeCxHnnLh71jPJ+miumnCrvtsbcN9hcXsr8x0MuO+4OLfqu6MB9502YO87GXDfea/5d3cMA6HOViMiM1AcnHrCmibNoW+NyU2dZ2aZo012MMMsqD05PT7Yglv13dmA+y6L21uZ72LAfdfFuVXfXQ2477YBe9/NgPvue13fulOLNMJzpA5FLnHWfRZBWmqBPMcQKUn2jlVu4lSxDZmS+8SFoitNGuoW3Krv7gbc91jc3sp8DwPuYxfnVn3HGnDfcwP2vqcB97121t/IHt3AqC20Qbq1Q0xTXx3h2EOZJY/pUwu+Y8xJvjlQ0TIdgVDu8Cb7M6m+exlw33txeyvzvQ2477M4t+q7jwH3fTdg7/sacN9vJzcNaZc7Tk6ycH3avMYkHy/ttu57izIzk7/KPbFMyoBnLJCDzMxcCzAlpzc5P1T13c+A+/6L21uZ72/A/YDFuVXfAwy4H7gBez/QgPtBO+djLctwm5KMyaTmlpm3y1QTJmwYZvcepiPqSfro0lgr3jO3lNzUx9fks73J86mq70EG3A9e3N7K/GAD7ocszq36HmLA/dAN2PuhBtwP2/v5Ft0ZmQoO3bFFb9jdhRwGIbciAzAsAIXlTk5dGmwd9dp2EhVkBB5aNJmPqb6HGXA/fHF7K/PDDbgfsTi36nuEAfcjN2DvRxpwP2pn/V1l+FUIpg+pcyrBzzZcqdJrc3JtRwhdWm8pgac+psNQMM0UkXSmNkO04FZ9jzLgfvTi9lbmRxtwP2ZxbtX3GAPux27A3o814H7cXs+3yM25Tjfq0Pe75UKHJhV4m5y02eZ7kh+CTV8yI/BRx2KEIQz5mizXtwm36nucAfdxi9tbmY8z4D5+cW7Vd7wB9+M3YO/HG3A/Yef1zZNzQQwwekohQx4t4ZQcPUoV7iCmBhkC+wbOU6CEXq7+AuhqTc6b9M9V3xMMuJ+4uL2V+YkG3E9anFv1PcmA+8kbsPeTDbifsvP6TljJpdZlTFbjBBiNUR9V9QEpO9THg8GFkkJ1CeUCn+w9cfRDmukUTK5v1fcUA+6nLm5vZX6qAffTFudWfU8z4H76Buz9dAPuZ+zFDUG65GmUJhd4QvDyuSPU2piqr4Cjd5cnBWij59ZqHw1zkHochnyfyfslqu8ZBtzPXNzeyvxMA+5nLc6t+p5lwP3sDdj72Qbcz9k5Hytu6oaoXi5h12DPxg1xQC2x1Na6l265DMRG0i3RQ2AHWDPMPMiVJD02k/2ZVN9zDLifu7i9lfm5BtzPW5xb9T3PgPv5G7D38w24X7Dz+pY+GrtYGzRMPlEeibG3Idd5hT7d1L0Wa5FLOhT2kTNOqE6+qhfpzDmT+Zjqe4EB9wsXt7cyv9CA+0WLc6u+Fxlwv3gD9n6xAfdLdl7fVfddGsm7kgMTAEhFTh7l/uyrbqqYsDQEF0eLezZRlhs9QYxcAnQeJvdv1fcSA+6XLm5vZX6pAffLFudWfS8z4H75Buz9cgPuV+w1/0aZcs9Kc2KLwJKWa4E9IPfZi1zETnc91+fXWva1ZUx55Dk895iZmsn+TKrvFQbcr1zc3sr8SgPuVy3OrfpeZcD96g3Y+9UG3K/Zq/4G9gOHi7RnBxcZhHGZA2h4ucp7ZWmkUexSiGf5IanIfIx8k2H5nDGlZrL/uep7jQH3axe3tzK/1oD7dYtzq77XGXC/fgP2fr0B9xt2cs+quzlIwT28NNF7jk6+kGqdkogXYmmyRZZpOMw5enNSrEeGJhd2lx/r0OT8MdX3BgPuNy5ub2V+owH3mxbnVn1vMuB+8wbs/WYD7rfs5B5yrWaIedYs3+1KoC7fHENPEXybFWXQzTO55rJP3TnmWDHGIj97ejJ5PlX1vcWA+62L21uZ32rA/bbFuVXf2wy4374Be7/dgPsdO/Pz2Nyo6FtpjWNvELSPPnLIM/fSYu5tDmmmOb2jh5i0154g584TvST1Ftyq7x0G3O9c3N7K/E4D7nctzq363mXA/e4N2PvdBtzv2at/3ocMvQK3yQEgZSAXZSQ+I3nn5dvDRNKNFEeUdNynQmm22VF+TJVr3eT9b9X3HgPu9y5ub2V+rwH3CYtzq74TDLjftwF7v8+A+/07uWOPe94oYR+4zpBCmKOxzzXl4GeUpDyTy9hDnZPlR0AHnDXKrb33aHN+iep7vwH3Bxa3tzJ/wID7g4tzq74PGnB/aAP2/pAB94d3zseQQcpquWUH0ne8nQzKOEsRjjmGVuRyL9pMn8BMrO02GYW3WqA3CllEWHCrvg8bcH9kcXsr80cMuD+6OLfq+6gB98c2YO+PGXB/fCc3ZZddlG9IPsJIHWNLkpnX5lxpE0KWblqX0bdc9QNxEnVw0CtKXg+RTa5v1fdxA+5PLG5vZf6EAfcnF+dWfZ804P7UBuz9KQPuT++8f7tenZTelXLrngrKRRtRmmsAvoQEcbhOYVQfAk9IJU/f08iVEKhJl92CW/V92oD7M4vbW5k/Y8D92cW5Vd9nDbg/twF7f86A+/M7+2s0IXaKecwRQhohZs4tyWeWjEUuY5meyT2dakyBU3VMclunMiZm5AYmz6+pvs8bcH9hcXsr8xcMuL+4OLfq+6IB95c2YO8vGXCfuPP+PXzQ80vGnHL97jkbtLRO0lDrridfPWOIKA02rbdhsiM3pLUGEaBJWZ4tuFXfiQbcJy1ub2U+yYD7y4tzq74vG3B/ZQP2Vo377PLnHrSLa/jVxddQ9X3VwHe+tgHurxlwf31xbtX3dQPub2zA3t8w4P7mzlx/hNGaZgCBoEkhX8rQmn46qdYrkyQGntNokuQHz8zy1dqIx4GuSspvkguovm8acH9rcXsr87cMuL+9OLfq+7YB93c2YO/vGHB/d+f17dvsPqeWm0PPe7aD8E46dTHnWJyfJZfu9R1TF1xLPZCvGIghFM8xmTwLp/q+a8D9vcXtrczfM+D+/uLcqu/7Btw/2IC9f2DA/cOdtXyArieLhuZGQOdTCk1mbq6HPa+aFuyTY5uj96H7uc3uRhxYuAxuqbLJWYWq74cG3D9a3N7K/CMD7h8vzq36fmzA/ZMN2PsnBtw/3etZOEeMuoVTg8zDVyJpyseZsu700uP0petuEpDCmKnIBQ4oPTqPvQGFYjJrU30/NeD+2eL2VuafGXD/fHFu1fdzA+5fbMDevzDg/uXO+zelnoBickQABK4NmbL52OeIQUbr3Yc80UcqVUr0kRJhnE2u84RSm9vcv1XfLw24f7W4vZX5Vwbcv16cW/X92oD7Nxuw928MuH+7kzvXkghKal0K7T3nitOMnlriOgKwdN48RsnQwckfM2EZycvErWKuIF9nwa36fmvA/bvF7a3MvzPg/v3i3Krv9wbcf9iAvf9gwP3HnfdvuQnrpSy37CQNtcZhkuPktac+YnQtVKnCodVU5aLuVW7ejfukGHJMzaZ/rvr+aMD9p8Xtrcx/MuD+8+Lcqu/PBtx/2YC9/2LA/ded3Bihg+sc9RQESMSpyGelSRVGpyaXdKHZAg9XI+MYtY0U5ee1DA5nteBWfX814P7b4vZW5r8ZcP99cW7V93cD7n9swN7/MOD+5875mKTZhNJW4yCDbs3NMUXtj0/wiULzuoNEglxSdzIQR+gp9thZpmQJszfZy031/dOA+1+L21uZ/2XA/e/FuVXfvw24/7MBe//HgPu/O7lrjBjZ51mB+whBJt4xyNDMBcnSZ6mj6q6swDV1momKr1zlopf7t5sZTM4SV33/NeA+2enXtrcyq8bd5j754tyq7+QG3PtswN77GHCfYgd3aOhcKCO0mYZz8oswmJvcwZOXQhxjD4W4yw/MLU5IQyKBVOlOTxyXUZnJ/Vv1ncKAe9/F7a3M+xpwn3JxbtV3SgPu/TZg7/0MuE+1k7uFJINtkHzbj8EUmSNATNJm6zWN0Rom6qVKGq87whTnWdpwHbsD0K6bBbfqO5UB96kXt7cyn9qAe//FuVXf/gbcB2zA3gcYcJ9mJ3dmL62znlH3VO/FpwbBZw8xUh2+BvIdeUZoebIeftTSiJ06hzyis7l/q77TGHAfuLi9lflAA+7TLs6t+k5rwH26Ddj7dAbcp9+Zn6Pvs81SBmFK8kkEA0dgKJjlbi2XvxsQnE/OSxSIeVCuKHV6JCcTc2eyV6PqO70B90GL21uZDzLgPnhxbtV3sAH3IRuw9yEG3Gc4/c7n1yA6mp49SrWdfG2+D3I9EqJc1jgbdh4dS5euegmNSpVbOVCG7iMPk+tb9Z3BgPuMi9tbmc9owH2mxblV35kMuM+8AXuf2YD7LDuv74Ddew+SoOfuYscJXGLyyKX7Fosrk8IYHiikmpOj1Kb8C4MfNJLNXhGq7ywG3Gdd3N7KfFYD7rMtzq36zmbAfegG7H2oAffZd17fbU4sLuEYgHpSYU6Tu1zIk2po1cn1HlOh2qXtlkKevo6wJ1MPVALYXN+q7+wG3OdY3N7KfA4D7nMuzq36zmnAfa4N2PtcBtzn3skN0j7r2FodIKOvPn0hmKEVmZExhS4FePejeum8xTSIG0zOpchkrOc4qFpwq75zG3CfZ3F7K/N5DLjPuzi36juvAff5NmDv8xlwn3+v/Jzl/t1b1aNHpzTR2+zSHkdptAVoLVKiWnDo1upxhJzlro4VUpO2uszOqsn9W/Wd34D7AovbW5kvYMB9wcW5Vd8FDbgvtAF7X8iA+7C9nm/h1LkThBG5QuhNpl8wsadQKjXH2Rc9sVBa5jDL7EOu7ipxgOpsIGm8BbfqO8yA+/DF7a3MhxtwH7E4t+o7woD7whuw94UNuC+y8/pOg6XsTjjldjxS6qlL79yFBCNG+QD5C3byU6Jj11mm35LCS1Odfa9tjmzy/rfqu4gB90UXt7cyX9SA+2KLc6u+ixlwX3wD9r64AfcldubnfTiQb+khg28tYxypT+mkEcfmmpMuee0tJcTsux5UirqtSx76lAuyN8nPVd8lDLjd4vZWZmfA7RfnVn3egDtswN7BgDvuvL6L0z7ZdJzypDHk1lx9zG1yJOmRD2meRxwQY4bco0+z6VmlTRptGIsEBAtu1RcNuNPi9lbmZMCdF+dWfdmAGzZgbzDgxp3XN4Q5pYOWgo9FMvTswYNU3AX0oZbmK/tRWo659pT10bXZWgjdx0k9VzJ5f0z1oQF3WdzeylwMuGlxbtVHBtyX3IC9L2nAfamd3Cg37Zrks6DqW2KhV5lrh6gbpRamKrdxgpqwFok3o1LX+3YuXb6loc8m+zOpvksZcF96cXsr86UNuC+zOLfqu4wB92U3YO/LGnBfbid3lQGYzLvb8L653NiFKs3xhM23yrkFjy45rFyD9ylMB1J6e0c8Sqm+gQW36rucAff/LG7vPXYx4L784tyq7/IG3FfYgL2vYMB9xb3m3z3ueQ20ymXd5Z8IJGV3manKlewQ/fA5zolISQZoOXfpoBeQoh3lTh6rBbfqu6IB95UWt7cyX8mA+8qLc6u+KxtwX2UD9r6KAfdV9+IuPKS4Bn3vU75GWmsgU+5cWBJ0aZNHPYd4TNYtFrtU4VKhy8dKfi5fw62bzMdU31UNuK+2uL2V+WoG3FdfnFv1Xd2A+xobsPc1DLivuZNb79NUpIXmmLyMx1Kb0jfXl0xcxjkHyD3bzUIFR8qEbQzkGGPnkGoBk/mY6rumAfeRi9tbmY804D5qcW7Vd5QB99EbsPfRBtzH7PV8i/dBN3PQc4o6uFBmlY46y8SMXPMj63NsThrsjN4XmZKNJLGAk1TliaQ4t+BWfccYcF9rcXsr87UMuK+9OLfqu7YB93U2YO/rGHBfdyc3Z5D7NZUwI89YapyeZis+9Sgd85k8tepGK8nFFrA7Sdsxd5jD95nAJD9Xfdc14L7e4vZW5usZcF9/cW7Vd30D7htswN43MOC+4c7+2nR+zOIQYqc8c+wpJi+fT5EJMNYxZpA7+fS1eiJkQGw5YyPpw41i0l9TfTc04L7R4vZW5hsZcN94cW7Vd2MD7ptswN43MeC+6c7r2+Weg1TaMt/OAQe45iL4Ll+GueWKxIE7lOBZ5mFB+m4kIzJOEghwSDVuwa36bmrAfbPF7a3MNzPgvvni3Krv5gbct9iAvW9hwH3LndyRpbWWq+sx9CYXdnVEsVAPvjjJwUssAWdLXirywSVxKQjAM6UO0aHJ8y2q75YG3Lda3N7KfCsD7ro4t+qrBtxtA/ZuBtx9r/k3hIGxSOnNDbrerhMTBgyUUvCdKVfpuKUpHTXXfQyxthJ7rA5kRBZN9k9Vfd2Amxe3tzKzAfdYnFv1DQPuuQF7TwPuW+/kHgNKjyOW7kl6aJEodceJsfHQ90zk6pb/C6FKdU56uEHoucbmUgiNbfZvUX23NuC+zeL2VubbGHDfdnFu1XdbA+7bbcDetzPgvv3O+djQEZhczMH1JFU4h+lqpQHSOJ8oU7PaOmeC7EoKFKp8NTMWqc6lVidncv9Wfbc34L7D4vZW5jsYcN9xcW7Vd0cD7jttwN53MuC+8878XC9vjp5DjcXLBT1cJRmK9wQhUA1BRuFSgif5jCS5uRty3bObo+UCGarJ/siq784G3HdZ3N7KfBcD7rsuzq367mrAfbcN2PtuBtx338ndaiSZkcnlXBvo+58QPEknPYfZeaQi8zDGGYO01HBIBj+qzL0pp57HBJv6W/Xd3YD7HovbW5nvYcB97OLcqu9YA+57bsDe9zTgvtfO/JxkFNZclvJbs265zht3B81L023OLLdqmYnzJJglgdzhS3cZA3s/e52lNAtu1XcvA+57L25vZb63Afd9FudWffcx4L7vBux9XwPu++11/4bgXCH5dlehA5LusOa7nvzt5fKOFX3sJBO00qqf8hPzxOz8HL5m10yeX1N99zPgvv/i9lbm+xtwP2BxbtX3AAPuB27A3g804H7Qzvt3kzk2ycUs34fRS3bOocOM5DklKiOSjMUxD+6Nc5fW+pQLPQBHPaKsepP8XPU9yID7wYvbW5kfbMD9kMW5Vd9DDLgfugF7P9SA+2E7r+9aSGbf0i9PrmvX3Ad0kqQDctlz4oFP2UWWlByhzdhR7ujOs+TxsZaUTN4fU30PM+B++OL2VuaHG3A/YnFu1fcIA+5HbsDejzTgftTO/rkk24MHjjGabpWMJRa5uGftwCE7PXIsZ/nLyt7JQKzFCvJhDqHXgsXm/RLV9ygD7kcvbm9lfrQB92MW51Z9jzHgfuwG7P1YA+7H7eTukmjrcLvJJRwqpuh9biPHQJxTlnk4FRdckcx9EteePEiaHiD7SW0Ek/6a6nucAfdxi9tbmY8z4D5+cW7Vd7wB9+M3YO/HG3A/YWd+XqKLI+iZocPrrXlEaafVhgFqHJiZHVemNkf1NcUA6Inky0KKJJ9ocn2rvicYcD9xcXsr8xMNuJ+0OLfqe5IB95M3YO8nG3A/Za/+moy7ive9ygVes/dOEnGUz059cIQw2piMnf3wRW7yCCRD8JjlQ8eUEbhJ/a36nmLA/dTF7a3MTzXgftri3KrvaQbcT9+AvZ9uwP2MvevvIBd3RqI5wqhFuufYXS3sCsQmpXd3Q1Jx6asNT3I7Ty7Ib5zuiT6hJQtu1fcMA+5nLm5vZX6mAfezFudWfc8y4H72Buz9bAPu5+zkTg5HTo2gyifEDo5mjUjYQpBueeQgc/EIuXKWuVguJGNvABcwOAIZmVlwq77nGHA/d3F7K/NzDbiftzi36nueAffzN2Dv5xtwv2Dn/btGSb5zbk7PE5Pau5cQQifCFFLrPjnJyMPgNlMrVa7t1GnkEkOTZtsgb8Gt+l5gwP3Cxe2tzC804H7R4tyq70UG3C/egL1fbMD9kp31N0GQqzvL7Evu4x57lvy7JmperubKhbJP8lsnP2egjsRa5pypJN+0vcYW3KrvJQbcL13c3sr8UgPuly3OrfpeZsD98g3Y++UG3K/Yq/5OJebivD58mkNuSXduyVES9izXeip1JshD3xXlQexBvl6fYs2RK1I12T9V9b3CgPuVi9tbmV9pwP2qxblV36sMuF+9AXu/2oD7NTvv35zqHIwVXRmZ5ENLYgQIFGbocpvumUuWTwFpqyfOeiLZzH5QBKry9Rbcqu81BtyvXdzeyvxaA+7XLc6t+l5nwP36Ddj79Qbcb9h5/5b2eHNyV5a6ugCMgL5zkBvz9DhRsvc0a9Ma3ZXSKA/puHWpu5lCl4+vJuePqb43GHC/cXF7K/MbDbjftDi36nuTAfebN2DvNxtwv2Xn/RvQyVU70gyxImOByl7+3WKONczSpN0G1LHlUmUuxqhld/IgPyYmtnn+XPW9xYD7rYvbW5nfasD9tsW5Vd/bDLjfvgF7v92A+x17zceG3LxZb86ueV+kGI/eQR0hd5cSVj1pjLgDQ+hz4Bw9sAzLI09J6oPJ+2Oq7x0G3O9c3N7K/E4D7nctzq363mXA/e4N2PvdBtzv2cnNM8aYufo4pZM2ITvdSBGzDM2wFAjJ19H7nLFMptYqBfnhsxAQ43Am+yOrvvcYcL93cXsr83sNuE9YnFv1nWDA/b4N2Pt9Btzv36u/NueE0CiUMLrLzc+a5L5NeuwgjzaodojywZFD826k1Gi4OTwNSc+HyfkGqu/9BtwfWNzeyvwBA+4PLs6t+j5owP2hDdj7QwbcH97JXUYfIRU9T0z+y1KNA1HL0lDDTuQkHUcMvtWWqUHG1nwsQz57DABKJvNv1fdhA+6PLG5vZf6IAfdHF+dWfR814P7YBuz9MQPuj++8f3dfW/HcwGGrCNwm+infm2U6lqFNX6IeFVp8jw3YT46+ebm9Oywzo8nza6rv4wbcn1jc3sr8CQPuTy7Orfo+acD9qQ3Y+1MG3J/eye15wCxSact/Rsy+zdRrlRFZbFxgyC90n9QiqbnPvRWpzlMYTr6sNfmtyf4Oqu/TBtyfWdzeyvwZA+7PLs6t+j5rwP25Ddj7cwbcn995/47MpWWEWUOBKJU2JIbYESeXMCt4rugxx1iCPpJaAngcjXOqbbRkMv9WfZ834P7C4vZW5i8YcH9xcW7V90UD7i9twN5fMuA+cefzLUD6nNrIPrfQxygsCTmRZOPoA0bQ499wUpgtJj3GaOYYeMjfxlp7s9nfQfWdaMB90uL2VuaTDLi/vDi36vuyAfdXNmDvrxhwf3Un9+gy7GqFytDrthJVudZd4SBluPTSKYzsfJEqvRcizjlx96xnkvXRXDXhVn1fNeD+2uL2VuavGXB/fXFu1fd1A+5vbMDe3zDg/uZe8+/uGAZCna1GRGagODj1hDVNmkPfGpObOs/MMkeb7GCGWVB7cnp8sAW36vumAfe3Fre3Mn/LgPvbi3Orvm8bcH9nA/b+jgH3d/e6vnWnFmmE50gdilzirPssgrTUAnmOIVKS7B2r3MSpYhsyJfeJC0VXmjTULbhV33cNuL+3uL2V+XsG3N9fnFv1fd+A+wcbsPcPDLh/uLP+RvboBkZtoQ3SrR1imvrqCMceyix5TJ9a8B1jTvLNgYqW6QiEcoc32Z9J9f3QgPtHi9tbmX9kwP3jxblV348NuH+yAXv/xID7pzu5aUi73HFykoXr0+Y1Jvl4abd131uUmZn8Ve6JZVIGPGOBHGRm5lqAKTm9yfmhqu+nBtw/W9zeyvwzA+6fL86t+n5uwP2LDdj7Fwbcv9w5H2tZhtuUZEwmNbfMvF2mmjBhwzC79zAdUU/SR5fGWvGeuaXkpj6+Jp/tTZ5PVX2/NOD+1eL2VuZfGXD/enFu1fdrA+7fbMDevzHg/u3ez7fozshUcOiOLXrD7i7kMAi5FRmAYQEoLHdy6tJg66jXtpOoICPw0KLJfEz1/daA+3eL21uZf2fA/fvFuVXf7w24/7ABe//BgPuPO+vvKsOvQjB9SJ1TCX624UqVXpuTaztC6NJ6Swk89TEdhoJppoikM7UZogW36vujAfefFre3Mv/JgPvPi3Orvj8bcP9lA/b+iwH3X/d6vkVuznW6UYe+3y0XOjSpwNvkpM0235P8EGz6khmBjzoWIwxhyNdkub5NuFXfXw24/7a4vZX5bwbcf1+cW/X93YD7Hxuw9z8MuP+58/rmybkgBhg9pZAhj5ZwSo4epQp3EFODDIF9A+cpUEIvV38BdLUm503656rvnwbc/1rc3sr8LwPufy/Orfr+bcD9nw3Y+z8G3P/deX0nrORS6zImq3ECjMaoj6r6gJQdiowBLpQUqksoF/hk74mjH9JMp2Byfau+/xpwn+ygte2tzKpxt7lPvji36ju5Afc+G7D3Pgbcp9iLG4J0ydMoTS7whODlc0eotTFVXwFH7y5PCtBGz63VPhrmIPU4DPk+k/dLVN8pDLj3XdzeyryvAfcpF+dWfac04N5vA/bez4D7VDu4Q3FTN0T1cgm7Bns2bogDaomltta9dMtlIDaSbokeAjvAmmHmQa4k6bGZ7M+k+k5lwH3qxe2tzKc24N5/cW7Vt78B9wEbsPcBBtyn2Xl9Sx+NXawNGiafKI/E2NuQ67xCn27qXou1yCUdCvvIGSdUJ1/Vi3TmnMl8TPWdxoD7wMXtrcwHGnCfdnFu1XdaA+7TbcDepzPgPv3O67vqvksjeVdyYAIAqcjJo9yffdVNFROWhuDiaHHPJspyoyeIkUuAzsPk/q36Tm/AfdDi9lbmgwy4D16cW/UdbMB9yAbsfYgB9xkO2jn/Rplyz0pzYovAkpZrgT0g99mLXMROdz3X59da9rVlTHnkOTz3mJmayf5Mqu8MBtxnXNzeynxGA+4zLc6t+s5kwH3mDdj7zAbcZ9mr/gb2A4eLtGcHFxmEcZkDaHi5yntlaaRR7FKIZ/khqch8jHyTYfmcMaVmsv+56juLAfdZF7e3Mp/VgPtsi3OrvrMZcB+6AXsfasB99p3cs+puDlJwDy9N9J6jky+kWqck4oVYmmyRZRoOc47enBTrkaHJhd3lxzo0OX9M9Z3dgPsci9tbmc9hwH3OxblV3zkNuM+1AXufy4D73Du5h1yrGWKeNct3uxKoyzfH0FME32ZFGXTzTK657FN3jjlWjLHIz56eTJ5PVX3nNuA+z+L2VubzGHCfd3Fu1XdeA+7zbcDe5zPgPv/O/Dw2Nyr6Vlrj2BsE7aOPHPLMvbSYe5tDmmlO7+ghJu21J8i580QvSb0Ft+o7vwH3BRa3tzJfwID7gotzq74LGnBfaAP2vpAB92F79c/7kKFX4DY5AKQM5KKMxGck77x8e5hIupHiiJKO+1QozTY7yo+pcq2bvP+t+g4z4D58cXsr8+EG3Ecszq36jjDgvvAG7H1hA+6L7OSOPe55o4R94DpDCmGOxj7XlIOfUZLyTC5jD3VOlh8BHXDWKLf23qPN+SWq7yIG3Bdd3N7KfFED7ostzq36LmbAffEN2PviBtyX2DkfQwYpq+WWHUjf8XYyKOMsRTjmGFqRy71oM30CM7G222QU3mqB3ihkEWHBrfouYcDtFre3MjsDbr84t+rzBtxhA/YOBtxxJzdll12Ub0g+wkgdY0uSmdfmXGkTQpZuWpfRt1z1A3ESdXDQK0peD5FNrm/VFw240+L2VuZkwJ0X51Z92YAbNmBvMODGnfdv16uT0rtSbt1TQbloI0pzDcCXkCAO1ymM6kPgCank6XsauRICNemyW3CrPjTgLovbW5mLATctzq36yID7khuw9yUNuC+1s79GE2KnmMccIaQRYubcknxmyVjkMpbpmdzTqcYUOFXHJLd1KmNiRm5g8vya6ruUAfelF7e3Ml/agPsyi3OrvssYcF92A/a+rAH35Xbev4cPen7JmFOu3z1ng5bWSRpq3fXkq2cMEaXBpvU2THbkhrTWIAI0KcuzBbfqu5wB9/8sbu89djHgvvzi3Krv8gbcV9iAva9gwH2dI3aX+//8s+8u8x+8i5/11dPt3vpdcff8xu+2LXbbB5X1igY+eKXFrz1lvpIB95UX51Z9VzbgvsoG7K0aT7HLn7ubceeqRnEnjDBa08wuEDRp0JQytFcznXRhKpMkfJ7TaFK8Bc/M8tU6YMGBrkopZ5LjKetVDfzwaov7oTJfzYD76otzq76rG3BfYwP2vsbiceeaVnHHt9l9Ti03h573bD/inXSGY86xOD9LLt3rO80uuJZ6IF8xEEMonmMyefZSWa9p4IdHLu6HynykAfdRi3OrvqMMuI/egL2PXjzuHGMUd3yArifshuZGQOdTCk1mz66HPa9cF+yTY5uj96H7Gs7uRhxYuAxuqbLJmZ3KeoyBH15rcT9U5msZcF97cW7Vd22L3s4G7H2dxePOda36O9ERo26x1iDz8JVIhmZxpqw7MfU4fem62wukMGYqEngApYfusTegUExm4cp6XQM/vN7ifqjM1zPgvv7i3Krv+gbcN9iAvW+weNy5oVW+Q6knoJgcEQCBa0Om8z72OWIgSXd8yBN9pFKlBTRSIoyzSfxJKL0fm3xHWW9o4Ic3WtwPlflGBtw3Xpxb9d3YgPsmG7D3TRaPOze1yndyLYmgpNalkdMdw6AZPbXEdQRg6Th7jFJpgZM/ZsIykmdHFXMF+ToLeyjrTQ388GaL+6Ey38yA++aLc6u+mxtw32ID9r7F4nHnllb5jiQtGmIkxUnSSG4cJjlOXmdcI0bXQpUuD7SaqgSbXiXZadwnxZBjajbzLGW9pYEf3mpxP1TmWxlw18W5VV814G4bsHdbPO50q3wHI3RwnaOeggOJOBXRlSZVGJ2ahJpCswUerkbGMWobKYr2lsHhrBb2UNZu4Ie8uB8qMxtwj8W5Vd8w4J4bsPdcPO7c2mqOLuUSobSTOXTPWmNhijqvmuATheZ1Z6MEuaTuECpCT7HHzjJNT5i9yR6jynprAz+8zeJ+qMy3MeC+7eLcqu+2Bty324C9b7d43Lm9Vb5TY8TIPs8K3EcIfpYYZLjuglRbs9RRdRdz4Jo6zUTFV64SjCTfcTPDsLCHst7ewA/vsLgfKvMdDLjvuDi36rujAfedNmDvOy0ed+5sle80dC6UEdpMwzn5RRjMTTKe5KXRg7GHQtxFfG5xQhoSoaQL5IYEJhmpm+Q7ynpnAz+8y+J+qMx3MeC+6+Lcqu+uBtx324C977Z43Lm7Vb7TQhozgdRNfgymyBwBYpL2cq9pjNYwUS9VyjHdca44z9J+7tgdgHabLeyhrHc38MN7LO6HynwPA+5jF+dWfccacN9zA/a+5+Jx515mc3T20jLuGfUsmV58ahB89hAj1eFrIN+RZ4SWJ+uhjy2N2KlzyCM6m3xHWe9l4If3XtwPlfneBtz3WZxb9d3HgPu+G7D3fRePO/ezqrPQ99lmKYMwJVFFMHAEhoJZshsJS25AcD45L9Ep5kG5ovSBIrnWpcVjYQ9lvZ+BH95/cT9U5vsbcD9gcW7V9wAD7gduwN4PXDzuPMjq+R2C6Gh69ijdnORr832Q65EQJdzgbNh5dCxdplwlNCpVUh+gDN1HHiZxR1kfZOCHD17cD5X5wQbcD1mcW/U9xID7oRuw90MXjzsPs4o7Abv3HqTQyt3FjhO4xOSRS/ctFlcmhTE8UEg1J0epTfkXBj9oJJu9zpT1YQZ++PDF/VCZH27A/YjFuVXfIwy4H7kBez9y8bjzKKu40+bE4hKOAagngOc0uUuAmVRDq07iUEyFapd2cwp5+jrCnoorUAlgE3eU9VEGfvjoxf1QmR9twP2YxblV32MMuB+7AXs/dvG48zirvjJI27hja3WAjMj79IVghlZkls4UujR4uh/VS8c5pkHcYHIuRSboPcdB1cIeyvo4Az88bnE/VObjDLiPX5xb9R1vwP34Ddj78YvHnSeY1Vks+U5v1WMeU4ZabXYZV6E0mAO0FilRLTj0iKc4Qs6SBWGF1GTMJTP2apLvKOsTDPzwiYv7oTI/0YD7SYtzq74nGXA/eQP2fvLicecpVvOsxqlzJwgjcoXQm0zJYWJPoVRqjrMveqK7jLBgltmHRJ0q8YnqbCDlmIU9lPUpBn741MX9UJmfasD9tMW5Vd/TDLifvgF7P33xuPMMq7iTBktbJ+GU9GWk1FOXWZYLCUaMIkb+gp0ojo5dZ9eSlGIy5GLfa5sjm+y/o6zPMPDDZy7uh8r8TAPuZy3OrfqeZcD97A3Y+9mLx53nWNVZfTiQH99DBt9axjhSn9JBJo7NNSdTq9pbSojZdwgNUbchzEOfHkT2JnWWsj7HwA+fu7gfKvNzDbiftzi36nueAffzN2Dv5y8ed15gFXeK0/7wdJzypDEklak+5jY5ksyshgyzIg6IMUPu0afZSHKfJg1mjEUClYU9lPUFBn74wsX9UJlfaMD9osW5Vd+LDLhfvAF7v3jxuPMSq7gDYU7pHKfgY5FKK3vwIB2dAvqwYPOV/Sgtx1x7yvqo8mwthO7jpJ4rmbyPrqwvMfDDly7uh8r8UgPuly3OrfpeZsD98g3Y++WLx51XWM3RUZKcmkQXVH3rPPRaAoSoB0cUpippD0FNWIvzcVTqmufk0uVbGvpsss+psr7CwA9fubgfKvMrDbhftTi36nuVAferN2DvVy8ed15jFXeqDMpnkEzH++ZyYxeqDKsSNt8q5xY8uuSwcg3epzAdSGvHO+JRSvUNLOyhrK8x8MPXLu6HyvxaA+7XLc6t+l5nwP36Ddj79YvHnTeYPb/T457tLqqEmy7/RCBp65SZqkQYh+iHz3FOREoyaM+5y0SrgDSFUDKfWC3soaxvMPDDNy7uh8r8RgPuNy3OrfreZMD95g3Y+82Lx523WOU7rvCQ5g3o/hby86SlDLPLgJyl0JKxVZwc6pisW7t36fJIB0gkSp0lX8Otm8zRlfUtBn741sX9UJnfasD9tsW5Vd/bDLjfvgF7v33xuPMOq7ijeQ0VaR07Ji9j9NSmzLH05VCXcc4BkuO4WajgSJmwjYEcY+wcUi1gMkdX1ncY+OE7F/dDZX6nAfe7FudWfe8y4H73Buz97sXjznuM4k5I3gfd5EvPK+7gQplVJlwsk3VyzY+szy07GXgxel9kmj6SxChO0vVJJM0fC3so63sM/PC9i/uhMr/XgPuExblV3wkG3O/bgL3ft3jceb9VvsMZJL+hEmbkGUuN09NsxaceZYI1k6dW3WgludgCdiflF+YOc/g+E5jUWcr6fgM//MDifqjMHzDg/uDi3KrvgwbcH9qAvT+0eNz5sFVfeTo/ZnEIsVOeOfYUkxetFJkAYx1jBsl8pq/VEyEDYssZG0n/eRSTvrKyftjADz+yuB8q80cMuD+6OLfq+6gB98c2YO+PLR53Pm4Vd1zuOUgnpzifAw5wzUXwXb4Oc8sViQN3KMGzzM2D9JtJRumcJEDhkG6PhT2U9eMGfviJxf1QmT9hwP3JxblV3ycNuD+1AXt/avG482mrOiuytJRzdT2G3iTgVEcUC/Xgi5NaqsQScLbkpeMzuCQuBQF4ptQhOjR5blBZP23gh59Z3A+V+TMG3J9dnFv1fdaA+3MbsPfnFo87nzd7fgfCwFiktcMNuqY3iQkDBkop+M6Uq3Sa05ROsus+hlhbiT1WBzJKjybnSSjr5w388AuL+6Eyf8GA+4uLc6u+Lxpwf2kD9v7S4nHnRKt8ZwwoPY5YuifpHUei1B0nxsZD3w+VqCP/F0KV7g/poX2h5xqbSyE0ttlvUFlPNPDDkxb3Q2U+yYD7y4tzq74vG3B/ZQP2/sriceerVnP0oaNyCTLB9SRdHg7T1UoDZJA1UabrtXXOBNmVFChU+WpmLNL9kV4QOZN8R1m/auCHX1vcD5X5awbcX1+cW/V93YD7Gxuw9zcWjzvftKqzNOxw9BxqLF4CzXCVQvI9QQhUQ5gs7Z6QRE+SGssNiUfs5mi5QIZqco6Nsn7TwA+/tbgfKvO3DLi/vTi36vu2Afd3NmDv7ywed75rVWe1Gklm6RJmagPd5wKCJ5ls5TA7j1Rkbs44Y5BWMg6pxEbtM1FOPY8JNv0dZf2ugR9+b3E/VObvGXB/f3Fu1fd9A+4fbMDeP1g87vzQqs4iGZk3l6W9o9WTxJ/G3UHz0myeM0tqM3PkSTBLAsmISncZA3s/e52lNAt7KOsPDfzwR4v7oTL/yID7x4tzq74fG3D/ZAP2/sniceenZvkOBOcKiRRXoQOS7qDse2i+eQk7saKPnWTSXlr1U9Tnidn5OXzNrpk8r6ysPzXww58t7ofK/DMD7p8vzq36fm7A/YsN2PsXi8edX1rlO61DJAkyogGjlyqLQ4cZyXNKVEak0Bvmwb1x7jLqmhKAAnDUI9SrN6mzlPWXBn74q8X9UJl/ZcD968W5Vd+vDbh/swF7/2bxuPNbq7hTC81YZH6VXNcplg/opNgC5LLnJD+fsosspRVCm7GjZEDOs9RjsZaUTN5HV9bfGvjh7xb3Q2X+nQH37xfnVn2/N+D+wwbs/YfF484freZZUjQNHjjGaHqkDZZYJOjM2oFDdnokes7yl5W9k8F5ixVEmEPotWCxeS9UWf9o4Id/WtwPlflPBtx/Xpxb9f3ZgPsvG7D3XxaPO3+16u90KZj04ZwmoSVUTNH73EaOgTinXDhQccEVqcAmce3Jg5RbAbKf1EYw6Ssr618N/PBvi/uhMv/NgPvvi3Orvr8bcP9jA/b+x+Jx559WdVaJLo7AJabhNZUZUdrItWGAGgdmZseVqc1RfU0xAHoi+bKQIok6k7ijrP808MN/Le6HyvwvA+5/L86t+v5twP2fDdj7P4vHnf+a9ZVlLF6871UCT83eOymoUHSmPjhCGG1Mxs5++CJJEQINSjGLwDF7Hib9HWX9r4Efnuzgtf1QmVXjbnOffHFu1XdyA+59NmBv1bhy3DnFwTZxR/o7QYJORqI5wqhFplnYXS3sCsQmrZ3uhpRU0k8eniT9SS7Ib5yeqTWhJQt7KOspDPxw38X9UJn3NeA+5eLcqu+UBtz7bcDe+y0ed05lFHf0kJqRUyOooiZ2cDRrRMIWgkyvIgdwNUKunGV+ngv5mgFcwOAIZLRuYQ9lPZWBH556cT9U5lMbcO+/OLfq29+A+4AN2PuAxePOaazynRqliMq5OT3vXHo7vYQQOhGmkFr3yUllFQa3mVqpEnNSp5FLDE2azIO8hT2U9TQGfnjg4n6ozAcacJ92cW7Vd1oD7tNtwN6nWzzunN4o7gSCIFEny4xc8h6PPUsdVRM1L1GmcqHsk/zWieaBOjpvmXOmknzTtjJb2ENZT2/ghwct7ofKfJAB98GLc6u+gw24D9mAvQ9ZPO6cway/k0rMxXl9CSKH3JLuNJijFF5ZYlAqdSbIQ/fE4EHsQb5e36bIkStSNTlPQlnPYOCHZ1zcD5X5jAbcZ1qcW/WdyYD7zBuw95kXjztnscp3ONU5GCu6MjKJwJIYAQKFGbqkNT1zyaIIZMyVOOuJ6TP7QRGoytdb2ENZz2Lgh2dd3A+V+awG3GdbnFv1nc2A+9AN2PvQxePO2a3yHRlXNSdZjPRtCsAI6DsHSWSmx4lShaVZm/aAXCmN8pBOc5e+DlPoIrWanI+urGc38MNzLO6HynwOA+5zLs6t+s5pwH2uDdj7XIvHnXNb5TuATqLJSDPEiowFKnv5d4s51jBLkzYzUMeWS5X5OaO2dZIHkRwT27yfpaznNvDD8yzuh8p8HgPu8y7OrfrOa8B9vg3Y+3yLx53zm83RhyQ7rMmMa94XafZE76COkLtLCauehE7cgSH0OXCOHhiJIk8pzoLJ++jKen4DP7zA4n6ozBcw4L7g4tyq74IG3BfagL0vtHjcOcwq7vCMMWauPk7pIE/ITjdwxyzDdSwFQvJ19D5nLJOptUpBQGYhIMbhTM6xUdbDDPzw8MX9UJkPN+A+YnFu1XeEAfeFN2DvCy8edy5i1leec0JoFEoY3eXmZ02S51AFSXNGG1Q7RBEZOTTvRkqNhpvD05Aya5ic26esFzHww4su7ofKfFED7ostzq36LmbAffEN2Pvii8edS1jlO2X0EVLR887lvyzdHiBqWRrJ2ImclFWIwbfaMjXI2JqPZYjOMQAomTy/o6yXMPBDt7gfKrMz4PaLc6s+b8AdNmDvsHjciVb5Tve1Fc8NHLaKwG2in6IjyxQ9Q5u+RKc7D/oeG7CfHH3zkg45LDOjt7CHskYDP0yL+6EyJwPuvDi36ssG3LABe8PicQet8h3PA2aRTo78Z8Ts20y9Vhmlx8YFhvxCz40oUmL53FuR7k8Kw8mXtSa/Ndn3S1nRwA/L4n6ozMWAmxbnVn1kwH3JDdj7kovHnUtZ5TuRubSMMGsoEKWTA4khdsTJJcwKnit6zDGWoK9GlAAeR+OcahstmTy/o6yXMvDDSy/uh8p8aQPuyyzOrfouY8B92Q3Y+7KLx53LWT03CKTPJY/scwt9jMJSWBFJVYU+YAT58oqTwmwx6XHGM8fAQ/421tqbzb5fyno5Az/8n8X9cI+NDbgvvzi36ru8AfcVNmDvKywed65oVWeNLkPxVqgMjSeVqEoMcoWDtHlktkVhZOeLdIF6IeKcE3fPemZ6H81VE3so6xUN/PBKi/uhMl/JgPvKi3OrvisbcF9lA/a+yuJx56pmz+90xzAQ6mw1IjIDxcGpJ6xp0hz6FrokQTwzy7x9soMZZkHtRcv8y6S/o6xXNfDDqy3uh8p8NQPuqy/OrfqubsB9jQ3Y+xqLx51rmsUd3VlQBlM5UocioYd1f3eQVnIgzzFESlKFYZWkhyq2EUb3iQtFV5oMuCzsoazXNPDDIxf3Q2U+0oD7qMW5Vd9RBtxHb8DeRy8ed46x6u8ge3QDo7aOB+mWXzFNfeWTYw9lljymTy34jjEn+e5ARdtACISSEZnsc6qsxxj44bUW90NlvpYB97UX51Z91zbgvs4G7H2dxePOda3yHRoyvnKcnFRT+jZWjUmkSpu5+96izNblr3JPLBN14BkL5CCzddcCTKnNpoU9lPW6Bn54vcX9UJmvZ8B9/cW5Vd/1DbhvsAF732DxuHNDqzl6y7F4SjJOl55ObOwy1YQJG4bZvYfpiHqSuZY0lIv3zC0lN/VxZdHpTd6TUNYbGvjhjRb3Q2W+kQH3jRfnVn03NuC+yQbsfZPF485N7Z4b1BNsqODQHQY1weku5DAIuRUZlGMBKCyZD3VpLHfUmOMkWjXOoUWTObqy3tTAD2+2uB8q880MuG++OLfqu7kB9y02YO9bLB53bmnV36kyJC8E04fUOZXgZxuuVOkxO4k5EUKXlnNK4KmP6TAUTDNFJJ29zxAt7KGstzTww1st7ofKfCsD7ro4t+qrBtxtA/Zui8edbvbcoCQzdbpRh+6vIwEImnR42uSkTWbfkwjGpi+tE/io43PCEIZ8TZa4Y2IPZe0GfsiL+6EyswH3WJxb9Q0D7rkBe8/F486treIOT84FMcDoKYUMebSEU2qtKF0eBzE1yBDYN3CeAiX0EpUKoKs1OW8yz1LWWxv44W0W90Nlvo0B920X51Z9tzXgvt0G7H27xePO7a3iTsJKLrUu4/QaJ8BojPrKhA9I2aHejsCFkkJ1CSXwTPaeOPohwy0KJnFHWW9v4Id3WNwPlfkOBtx3XJxb9d3RgPtOG7D3nRaPO3e26is7CDK1SqM0CTwJwYvGEWptTNVXwNG7y5MCtNFza7WPhjlIvweGfJ/Je6HKemcDP7zL4n6ozHcx4L7r4tyq764G3HfbgL3vtnjcubvVHL24qQdEeAktrsGeDb3igFpiqa11L9MrGZyPpEdqhcAOsGaYeZArSXrLJvucKuvdDfzwHov7oTLfw4D72MW5Vd+xBtz33IC977l43LmXVdyR/jG7WBs0TD5RHomxtyHxp0Kfbuoe77VIqAmFfeSME6qTr+pFOtLOZI6urPcy8MN7L+6HynxvA+77LM6t+u5jwH3fDdj7vovHnftZxZ2q+5eO5F3JgQkApONDHiWf8VU3c09YGoKLo8U9h91IYkQQI5cAnYdJvqOs9zPww/sv7ofKfH8D7gcszq36HmDA/cAN2PuBi8edB5k9v4NY4qw0J7YILOWVNnAG5D57keDi9NQsfV65ZV9bxpRHnsNzj5mpeQt7KOuDDPzwwYv7oTI/2ID7IYtzq76HGHA/dAP2fujicedhZv0dYD9wuEh7dhyUgTmXOYCGl+jTK0sDmWKXRk8WwanIHJ18qyPMGVNqJudnKevDDPzw4Yv7oTI/3ID7EYtzq75HGHA/cgP2fuTicedRVvOsWXWXL2noDC9DrZ6jkx9KtU4pqAqxNJcjdxdgztGbk2ZQZGgScLogODQ5H11ZH2Xgh49e3A+V+dEG3I9ZnFv1PcaA+7EbsPdjF487j7OKO0NiSIaYZ82ixJVAXYTE0FME32bFwZNncs1ln7pzzLFijEU4pieT9ySU9XEGfnjc4n6ozMcZcB+/OLfqO96A+/EbsPfjF487T7Cqs2Jzo6JvpTWOvUHQudbIIc/cS4u5tzmkiew0Awox6ewrQc6dJ3opzizsoaxPMPDDJy7uh8r8RAPuJy3OrfqeZMD95A3Y+8mLx52nmM2z+pDheOA2OQCkDOSim31G8s6LlDCRdAP3EaWs8qlQmm12FMlVYpDJ/jvK+hQDP3zq4n6ozE814H7a4tyq72kG3E/fgL2fvnjceYZVnRV73PMmKPvAdYYUwhyNfa4pBz+jFFeZXMYe6pwscqEDzholFeo92pwXqqzPMPDDZy7uh8r8TAPuZy3OrfqeZcD97A3Y+9mLx53nWM3RkUHaNpLiBNI9dpwM1DlLkwdzDK1IGCo63JrATKxtZnCx1QK9UcgCZGEPZX2OgR8+d3E/VObnGnA/b3Fu1fc8A+7nb8Dez1887rzAKt+h7LKL8sOTjzBSx9iSVFi1OVfahJCli9yzrxKNBuIk6uCgV5T6DCKbxB1lfYGBH75wcT9U5hcacL9ocW7V9yID7hdvwN4vXjzuvMQq33G9OmntVMqteyoowSSiNJUBfAkJ4nCdwqg+BJ6QSp6+p5ErIVCTqZeFPZT1JQZ++NLF/VCZX2rA/bLFuVXfywy4X74Be7988bjzCqu+Mk2InWIec4SQRoiZc0uir2QsEl5kyi45ENWYAqfqmCQNojImZuQG3sIeyvoKAz985eJ+qMyvNOB+1eLcqu9VBtyv3oC9X7143HmNVb4zfNDzQsecEleibx5L6ySN5O568tUzhojSWNZ+Dkx25Ia0lCECNGn7ZAt7KOtrDPzwtYv7oTK/1oD7dYtzq77XGXC/fgP2fr2FvY/YXe7/889+u8x/8C5+1iG791lhN+P2G3bPB8N1jtjFa+6Ita8NXbc3GFwbb1w8JijzGw2437Q4t+p7kwH3mw+2iYX77jL/LsbCveKX+9/9s1fM+V9fexuIOW/+f6kD/rfcbzl4ybjtd9ojjDBa0+w/EDRpepYytP85nXQ2K5MUBZ7TaNJ4CJ6Z5at1yIsDXZU2hEkdoOv2FoOY8NbFY6Eyv9WA+22Lc6u+txlwv30D9n67Qdx5xxbijm+z+5xabg4979nyzjuZtsScY3F+lly6131hXHAt9UC+YiCGUDzHZPIcv67bOwz88J2L+6Eyv9OA+12Lc6u+dxlwv3sD9n63Qdx5zwbijg/QZ405NDcCOp9SaBFkuBv2bA9TsE+ObY7eh+49PrsbcWDhMrilysXCHrpu7zHww/cu7ofK/F4D7hMW51Z9Jxhwv28D9n6fQdx5/wbijouOGHVb3waZh69EMvCNM2XdZbPH6UvXHfMghTFTkcADKHMWj70BhWLyfImu2/sN/PADi/uhMn/AgPuDi3Orvg8acH9oA/b+kEHc+fAW8h1KPQHF5IgACFwbpWQf+xwxkKQ7PuSJPlKp0gIaKRHG2ST+JJTej02+o+v2YQM//MjifqjMHzHg/uji3KrvowbcH9uAvT9mEHc+voV8J9eSCEpqXRo53TEMmtFTS1xHAJaOs8colRY4+WMmLCN5dlQxV5Cvs7CHrtvHDfzwE4v7oTJ/woD7k4tzq75PGnB/agP2/pRB3Pn0FvIdSVo0xEiKk6SR3DhMcpy8zrhGjK6FKl0eaDVVCTa9SrLTuE+KIcfUbOZZum6fNvDDzyzuh8r8GQPuzy7Orfo+a8D9uQ3Y+3MGcefzW8h3MEIH1znqSZWQiFMRxjSpwujUJNQUmi3wcDUyjlHbSFHWoWVwOKuFPXTdPm/gh19Y3A+V+QsG3F9cnFv1fdGA+0sbsPeXDOLOiVuYo0u5RCjtZA7ds9ZYmKLOqyb4RKF53SUvQS6pO4SK0FPssbNM0xNmb7LvuK7biQZ+eNLifqjMJxlwf3lxbtX3ZQPur2zA3l8xiDtf3UK+U2PEyD7PCtxHCH6WGGS47oJUW7PUUfXEFeCaOs1ExVeuEowk33Ezw7Cwh67bVw388GuL+6Eyf82A++uLc6u+rxtwf2MD9v6GQdz55hbynYbOhTJCm2k4J78Ig7lJxpO8NHow9lCIuyxEbnFCGhKhpAvkhgQmGamb5Du6bt808MNvLe6HyvwtA+5vL86t+r5twP2dDdj7OwZx57tbyHdaSGMmkLrJj8EUmSNATNJe7jWN0Rom6qVKOaa7cRbnWdrPHbsD0G6zhT103b5r4IffW9wPlfl7BtzfX5xb9X3fgPsHG7D3Dwzizg83MUdnLy3jnlHPl+vFpwbBZw8xUh2+BvIdeUZoebIe6N3SiJ06hzyis8l3dN1+aOCHP1rcD5X5RwbcP16cW/X92ID7Jxuw908M4s5Pt1Bnoe+zzVIGYUpCSDBwBIaCWbIbCUtuQHA+OS/RKeZBuaL0gSK51qXFY2EPXbefGvjhzxb3Q2X+mQH3zxfnVn0/N+D+xQbs/QuDuPPLTTyvDNHR9OxRujnJ1+b7INcjIUq4wdmw8+hYuky5SmhUqqQ+QBm6jzxM4o6u2y8N/PBXi/uhMv/KgPvXi3Orvl8bcP9mA/b+jUHc+e0W4k7A7r0HKbRyd7HjBC4xeeTSfYvFlUlhDA8UUs3JUWpT/oXBDxrJZj88XbffGvjh7xb3Q2X+nQH37xfnVn2/N+D+wwbs/QeDuPPHLcSdNicWl3AMQI7SQE6TuwSYSTW06iQOxVSodmk3p5CnryPsqbgClQA2cUfX7Y8Gfvinxf1Qmf9kwP3nxblV358NuP+yAXv/xSDu/HULfWWQtnHH1uoAGZH36QvBDK3ILJ0pdGnwdD+ql45zTIO4weRcikzQe46DqoU9dN3+auCHf1vcD5X5bwbcf1+cW/X93YD7Hxuw9z8M4s4/N1FnseQ7vVWPeUwZarXZZVyF0mAO0FqkRLXg0GPm4gg5SxaEFVKTMZfM2KtJvqPr9k8DP/zX4n6ozP8y4P734tyq798G3P/ZgL3/YxB3/ruJ5wY5de4EYUSuEHqTKTlM7CmUSs1x9qXNPSMsmGX2IVGnSnyiOhtIOWZhD123/xr44ckOWdsPlVk17jb3yRfnVn0nN+DeZwP2Vo27HXdOccgG4k4aLG2dhFPSl5FST11mWS4kGDEKmPwFO6GPjl1n15KUYjLkYt9rmyOb7L+j63YKAz/cd3E/VOZ9DbhPuTi36julAfd+G7D3fgZx51QbiDtSLjkQlB4y+NYyxpH6lA4ycWyuOZla1d5SQsy+Q2iIug1hHvr0ILI3qbN03U5l4IenXtwPlfnUBtz7L86t+vY34D5gA/Y+wCDunGYLcac47Q9PxylPGkNSmepjbpMjycxqyDAr4oAYM+QefZqNJPdp0mDGWCRQWdhD1+00Bn544OJ+qMwHGnCfdnFu1XdaA+7TbcDepzOIO6ffQtyBMKd0jlPwsUillT14kI5OAX1YsPnKfpSWY649ZX1UebYWQvdxUs+VTN5H13U7vYEfHrS4HyrzQQbcBy/OrfoONuA+ZAP2PsQg7pxhA3HHoSQ5NQkjVH3rPPRaAoSoB0cUpippD0FNWIvzcVTqmufk0uVbGvpsss+prtsZDPzwjIv7oTKf0YD7TItzq74zGXCfeQP2PrNB3DnLFuJOlUH5DJLpeN9cbuxClWFVwuZb5dyCR5ccVq7B+xSmA2nteEc8Sqm+gYU9dN3OYuCHZ13cD5X5rAbcZ1ucW/WdzYD70A3Y+1CDuHP2LdRZocc9211UCTdd/olA0tYpM1WJMA7RD5/jnIiUZNCec5eJVgFpCqFkPrFa2EPX7ewGfniOxf1Qmc9hwH3OxblV3zkNuM+1AXufyyDunHsL+Y4rPKR5A7q/hWiXljLMLgNylkJLxlZxcqhjsm7t3qXLIx0gwZU6S76GWzeZo+u6ndvAD8+zuB8q83kMuM+7OLfqO68B9/k2YO/zGcSd828h7mheQ0Vax47Jyxg9tSlzLH051GWcc4DkOG4WKjhSJmxjIMcYO4dUC5jM0XXdzm/ghxdY3A+V+QIG3BdcnFv1XdCA+0IbsPeFDOLOYZt4btD7oJt86XnFHVwos8qEi2WyTq75kfW5ZScDL0bvi0zTR5IYxUm6Pomk+WNhD123wwz88PDF/VCZDzfgPmJxbtV3hAH3hTdg7wsbxJ2LbCHf4QyS31AJM/KMpcbpabbiU48ywZrJU6tutJJcbAG7k/ILc4c5fJ8JTOosXbeLGPjhRRf3Q2W+qAH3xRbnVn0XM+C++AbsfXGDuHOJLfSVp/NjFocQO+WZY08xeeGmyAQY6xgzSOYzfa2eCBkQW87YSPrPo5j0lXXdLmHgh25xP1RmZ8DtF+dWfd6AO2zA3sEg7sQtxB2Xew7SySnO54ADXHMRfJevw9xyReLAHUrwLHPzIP1mklE6JwlQOKTbY2EPXbdo4IdpcT9U5mTAnRfnVn3ZgBs2YG8wiDu4hTorsrSUc3U9ht4k4FRHFAv14IuTWqrEEnC25KXjM7gkLgUBeKbUITo0eW5Q1w0N/LAs7ofKXAy4aXFu1UcG3JfcgL0vaRB3LrWJ53cgDIxFWjvcoGt6k5gwYKCUgu9MuUqnOU3pJLvuY4i1ldhjdSCj9Bgs7KHrdikDP7z04n6ozJc24L7M4tyq7zIG3JfdgL0vaxB3LreFfGcMKD2OWLon6R1HotQdJ8bGQ98Plagj/xdCle4P6aF9oecam0shNLbZb1DX7XIGfvg/i/vhHn8x4L784tyq7/IG3FfYgL2vYBB3rriFOfrQUbkEmeB6ki4Ph+lqpQEyyJoo0/XaOmeC7EoKFKp8NTMWKSKlF0TOJN/RdbuigR9eaXE/VOYrGXBfeXFu1XdlA+6rbMDeVzGIO1fdQp2lYYej51Bj8RJohqsUku8JQqAawmRp94QkbElqLDckHrGbo+UCGarJOTa6blc18MOrLe6Hynw1A+6rL86t+q5uwH2NDdj7GgZx55pbqLNajSSzdAkztYHucwHBk0y2cpidRyoyN2ecMUgrGYdUYqP2mSinnscEm/6Orts1DfzwyMX9UJmPNOA+anFu1XeUAffRG7D30QZx55gt1FkkI/PmsrR3tHqS+NO4O2hems1zZkltZo48CWZJIBlR6S5j+L+4++do7Xak7x992rZtK0kllaT5tG27K6i2bdu2bdu2bdt296na7/mdsfYZ57/3rjGSc+/uG2td67q+n1k1axbmTIb33IlLaRb20ON2ZQM/vMrifqjMVzHgvuri3KrvqgbcV9vA3lcziDtX3yLfwSAT5ipYjrBjrrqCsu+h+eYl7ABlD73KpL008ixHInFOzvP0lFwzuV9Zj9vVDfzwGov7oTJfw4D7motzq75rGnBfawN7X8sg7lx7h3yndYQqQUZ4MnipskboyFD9iLGWCTX0ltMcvY3UZdTFEoACDtAt1Mmb1Fl63K5t4IfXWdwPlfk6BtzXXZxb9V3XgPt6G9j7egZx5/o7xB0qlaHI/Cq6rlMsH7KTYgvzKIft5OdjcjCktMrYGHqWDMj5IfUYUInR5Hl0PW7XN/DDGyzuh8p8AwPuGy7OrfpuaMB9ow3sfSODuHPjHeZZUjTNMfOcs+mWNrlAkaDD1HGE5HRL9JTkmzS8k8F5A0KBdBk7lVxsngvV43ZjAz+8yeJ+qMw3MeCmxblVHxlwtw3s3QziTt+hv9OlYNKbc5qElkA5gvepzQShjhRTGaEWF1yRCozroB49SrkVMHmubQaTvrIet27gh2NxP1TmYcA9F+dWfdOAmzewNxvEnZvuUGcVcDDDKBCn11RmgrSRqeWABDOnMdygURtP8hQhYPa1ystChCqkJnFHj9tNDfzwZov7oTLfzID75otzq76bG3DfYgN738Ig7txyi76yjMWL950k8FDy3klBlYU59jkAw2yTR+7DT18kKcpYZ42QBHZyT9Okv6PH7ZYGfnirxf1QmW9lwH3rxblV360NuG+zgb1vYxB3brtHfydI0Em5Vp5hUpFpVu6OynAFoUlrp7spJZX0k6evkv5EF+QfTvfUYmzRwh563G5r4Ie3W9wPlfl2Bty3X5xb9d3egPsOG9j7DgZx54479HeiyzPFVpGEDDq6ygS55haCTK9gBHQEmGgkmZ+nUj0lRBdycBVltG5hDz1udzTwwzst7ofKfCcD7jsvzq367mzAfZcN7H0Xg7hz1x3yHQIpolJqTvc7l95OLyGEXmuOIbbuo5PKKszROLZCEnNirzMVCE2azLN6C3vocburgR/ebXE/VOa7GXDffXFu1Xd3A+57bGDvexjEnXvu0N+pGCTqJJmRS97jc09SR1GszUuUoVFq8lH+6YR/Zh2dtzRSqiX6pm3lYWEPPW73NPDDey3uh8p8LwPuey/OrfrubcB9nw3sfR+DuHPfLfo7sUAqzutDECmkFnWlwQRSeCWJQbEQR0xT18QYsw6P8np9miLBoFzJZD8JPW73NfDD+y3uh8p8PwPu+y/Orfrub8D9gA3s/QCDuPPAHfKdEYnnyJRdmakKbIkjI4YaOHRJa3oaJQkdypgrjqQ7pnPyswJWktdb2EOP2wMN/PBBi/uhMj/IgPvBi3OrvgcbcD9kA3s/xCDuPHSHfEfGVc1JFiN9m4I4Q/Z9BElk2GfOUoVFpqY9IFdKq2lKp7lLX2fU0AWbTPZH1+P2UAM/fNjifqjMDzPgfvji3Krv4Qbcj9jA3o8wiDuP3CHfwewkmszIASiPXJCGl98bJKDApUmbGWvPLRWS+fnI2taJHgUf4rB5PkuP2yMN/PBRi/uhMj/KgPvRi3OrvkcbcD9mA3s/xiDuPHaLOfqUZGdoMuOa90WaPeAd0gypuxgz6U7odXQcGDrPzLOHkWuFwVKchWBhDz1ujzXww8ct7ofK/DgD7scvzq36Hm/A/YQN7P0Eg7jzxB3izmAASIM8sHSQGZPTBdxzkuF6LgVD9DR7Z4bCo7ZGNchB4VKxjjydyT42etyeaOCHT1rcD5X5SQbcT16cW/U92YD7KRvY+ykGceepW/SVmRlDq6GE2V1qnilKnlMJJc2ZbVbqCAIMIzTvZoytTsfT1yll1jTZt0+P21MN/PBpi/uhMj/NgPvpi3OrvqcbcD9jA3s/wyDuPHOHfKfMPkMsut+5/G9ItwdrbUkaybnX6qSsyjn4Ri3Vhim35qFMYZ4TsUaT+3f0uD3TwA+ftbgfKvOzDLifvTi36nu2AfdzNrD3cwziznN3yHe6p1b8aOhyo4yjcfYsTEmm6Akb+wJOVx70HRoOzwN885IOuVw4ZZP7lfW4PdfAD5+3uB8q8/MMuJ+/OLfqe74B9ws2sPcLDOLOC3fId/yYyEU6OfLfhOQbx04ko3Roo+CUv+i+EUVKLJ96K9L9iWE6eVlr8k+Tdb/0uL3QwA9ftLgfKvOLDLhfvDi36nuxAfdLNrD3Swzizkt3yHdgjNJSRqZQEKSTg3Eg9Jx5lMCEflD2OQGUoI9GlIA+zzZSpDZbNLl/R4/bSw388GWL+6Eyv8yA++WLc6u+lxtwv2IDe7/CIO68cof7BrHqfckz+dRCn7MMKaxqlaoq+5ABdRnKzDVwg6jbGXOCMKZ8F4h6s1n3S4/bKw388FWL+6Eyv8qA+9WLc6u+Vxtwv2YDe7/GIO68doc6a3YZirdSy9R4QrWSxCBXRpA2j8y2apjJ+SJdoF5qHSnF0f3QPdP7bI5M7KHH7bUGfvi6xf1QmV9nwP36xblV3+sNuN+wgb3fYBB33rjF/TvdDZwZiRtBzmNghTlij5kiV576FLokQYPTkHk7D4ccuGTtRcv8y6S/o8ftjQZ++KbF/VCZ32TA/ebFuVXfmw2437KBvd9iEHfeukXc0ZUFZTCVoHYsEnqGru+O0koO1Q8IUKNUYZkk6amU2wyz+zhKBVeaDLgs7KHH7a0Gfvi2xf1Qmd9mwP32xblV39sNuN+xgb3fYRB33rlDfycPn93MoK3jWXXJL4isj3wO6KFwSZN9bMH3DCnKT4datA2UsWbJiEzWOdXj9k4DP3zX4n6ozO8y4H734tyq790G3O/ZwN7vMYg7790h36lTxlduRCfVlD6NRRAFW9rM3fcGMluXb6Ueh0zUcTAUTEFm664FZKnN2MIeetzea+CH71vcD5X5fQbc71+cW/W934D7AxvY+wMGceeDO8zRW4Lia5RxuvR0oA2XKsUcc8uBu/fIrtYeZa4lDeXi/RgtRsd6u7Iwe5PnJPS4fdDADz+0uB8q84cMuD+8OLfq+7AB90c2sPdHDOLOR/e4b1B3sKklT11hUBOc7kIKs+bRigzKc0EsQzKf2qWx3LPGHCfRqo0UGpjM0fW4fdTADz+2uB8q88cMuD++OLfq+7gB9yc2sPcnDOLOJ3fo75AMyUtF9iH2EUvw3KYrJD1mJzEHMHRpOceIvvbJLoeSI0fIVWfvHMDCHnrcPmngh59a3A+V+VMG3J9enFv1fdqA+zMb2PszBnHns1vcNyjJDLGbNHV9HQlA2KTD03hEbTL7HgU+N31ovaIHHZ/XHMKU1ySJOyb20OP2WQM//NzifqjMnzPg/vzi3Krv8wbcX9jA3l8wiDtf3CHuDB6p5Bxw9hhDwjRbzCy1FkiXxyHEhgnD8A2dr6HG7CUqFcyOKDpvMs/S4/ZFAz/80uJ+qMxfMuD+8uLcqu/LBtxf2cDeXzGIO1/dIe7ETNXF1mWcTsCIs42sj0z4kGtyWV4+0YUSA7mYJfDw8L4O8FOGWzWYxB09bl818MOvLe6Hyvw1A+6vL86t+r5uwP2NDez9DYO4880d+soOg0yt4ixNAk/M6IV3BqI2KnnCPHt3iWvANntqjfpsOQXp9+CUnzN5LlSP2zcN/PBbi/uhMn/LgPvbi3Orvm8bcH9nA3t/xyDufHeHOXpxrBtEeAktruFhC3rBRCpQqLXuZXolg/MZdUutEIbDTAk5zepKlN6yyTqnety+a+CH31vcD5X5ewbc31+cW/V934D7BxvY+wcGceeHO8Qd6R8PB9Sw5ehjTTOO3NuU+EPY2bGu8U5FQk0ow8NImZGcvKoX6Ug7kzm6HrcfGvjhjxb3Q2X+kQH3jxfnVn0/NuD+yQb2/olB3PnpDnGHdP3SGb0rKYyKiNLxqT5LPuNJF3OPubSMDmaDwza7kcSoIsAoAfuYJvmOHrefGvjhzxb3Q2X+mQH3zxfnVn0/N+D+xQb2/oVB3PnlFvfv5FyAqTLnBjikvNIGzsTUuRcJLk53zdL7lVvy1FKOaSaefnRIozaTdU71uP3SwA9/tbgfKvOvDLh/vTi36vu1AfdvNrD3bwzizm+36O/g8DNPB/WwFQdlYD4KT6zTS/TpNKSBXKFLoycJfCwyR6++0QzMEGMLFvbQ4/ZbAz/83eJ+qMy/M+D+/eLcqu/3Btx/2MDefzCIO3/cYZ7FpKt8SUNnehlq9QROACoRS0FV6pDmMozuAjLP3pw0g2Bgk4DT5XC4bLI/uh63Pxr44Z8W90Nl/pMB958X51Z9fzbg/ssG9v6LQdz56w5xZ0oMSQiJKQmVK6F2gYLQI6BvTHkOHhxdc8nH7twYQBmgyDFhX02ek9Dj9lcDP/zb4n6ozH8z4P774tyq7+8G3P/YwN7/MIg7/9yhzoLmJmXfSmsDesOgc62ZQuLUS4PUG09pIjvNgAJEnX1FTKkPzl6KMwt76HH7p4Ef/mtxP1Tmfxlw/3txbtX3bwPu/2xg7/8YxJ3/bjHP6lOG42E0HgExJqwOHHeG6p0XrMC56gLuE6Ss8rHUyI17FnySGGSy/o4et/8a+OH/nGhtP1Rm1XiouY+wOLfqO4IB9xE3sLdqPNRx50gnWj/uOOhw2JOgw4dBHGIIPNvwiWIKnkGKq1Rdyj0Q8xB07JiZQFKh3sFmv1A9bkcy8MMjL+6HynxkA+6jLM6t+o5iwH3UDex9VIO4c7QN4o7PA6VtIylOqLrGjpOB+kjS5MkJQisShooOtxjHqEPbzOigUcHeakhycCzsocftaAZ+ePTF/VCZj27AfYzFuVXfMQy4j7mBvY9pEHeOtUO+U5NLDgQkesAZe4YWpcKi5lxpjCFJF7knTxKNZs5ca0eHnbLUZwjDJO7ocTuWgR8ee3E/VOZjG3AfZ3Fu1XccA+7jbmDv4xrEnePtkO+4Tk5aO1RT676WLMEEsjSVEX0JEWG6XsMkH8JgjCWx73Emqhlrk6mXhT30uB3PwA+Pv7gfKvPxDbhPsDi36juBAfcJN7D3CQ3izok2iDuhMkKvkCbPEOIMkEZqUVhLykXCi0zZJQeqBDGMSG5USYNqmZxTHg1N7lfW43YiAz888eJ+qMwnNuA+yeLcqu8kBtwn3cDeJzWIOyfbId+ZPuh+oZNZ4gr45nNpvUojubsePfmRA2RpLGs/B3m46qa0lBEQm7R9koU99LidzMAPT764HyrzyQ24T7E4t+o7hQH3KVfvK//P/4k5R/z/et8gZ1bOcnaVGmqdIbowii527rH6nOrwdRa56McUG1IfiWXYQyW2knPsMx3pEB7DUx04hhoAUidPIeYmPWA30fUp6orURjQH99F9G5y4+NBjG7rZp+uQqaTeB//PgV9HNDiWh4r51AeZp/MIrsw+gx8ucYc5C3mo0gCXzCv3WUFGbsIcUAZz0pHK4FxPUdrgmMHCb9QmpzY4X06z+Pmi+k5jwH3axbnV1qc14D7dQT9vvQ0Xc4EhwSU633XwU4BKaZFSni7nkEknzU2arpIC5KGeHpv0RDiZ9FtV3+kMuE+/uL2V+fQG3GdYnFv1ncGA+4wb2PuMBtxnOsAt35BEYVL36OakmR3HBtF76TFIyu/icNNHql4mt64gAQ6m4VPHNuT9mwW36juTAfeZF7e3Mp/ZgPssi3OrvrMYcJ91A3uf1YD7bAfPb+fITd0Bsk2CMUrxddTeMrGuIafPIYcyW2qhedBEfVINQfJZ8Mhy4ltwq76zGXCffXF7K/PZDbjPsTi36juHAfc5N7D3OQ24z3U4bsLZai+IUma2MUeZJely2EUaclEmk9Ks6zhi5cyeqqPQR8U6HQcobLL/ouo7lwH3uRe3tzKf24D7PItzq77zGHCfdwN7n9eA+3wHr984q1yca+yxTsghsjTeM8+Sh/yoQ5+GZOqdsmTuxbmQZBYI6CCVliDYXL9V3/kMuN3i9lZmZ8DtF+dWfd6AO2xg72DADQe5IaY0eKac0VVp4dMoFV3E3mf3szsM2JPM4NooQab6UoLLEK4E1+RVtZjU36oPDLjj4vZW5mjAnRbnVn3JgBs3sDcacOfDXb8TYYgxyUBsOH3+aubmQs9ASZ/JcjmN3EIohLVmeddRvM/ZV5TRe7Dpn6u+bMBdFre3MhcD7ro4t+qrBtzn38De5zfgvsBB7jhgEAUZabsoM++pTyWUys1X6l3eXhJ0Dlg7DACqnUuR8XAvxNXTRJP7glXfBQy4L7i4vZX5ggbcF1qcW/VdyID7whvY+8IG3Bc5OP+GCNSaozK6nNEIGYMMuEvMKQW9/9YVmZN5vc+m6oNHmZx01aIMxpvzrZjsQ6f6LmLA/b+L2/swuxhwX3RxbtV3UQPui21g74sZcF/8IHcerhTM2FJOtU1ME0eSFLwEHyQRl06aZOdyxZYLee2YC+ega4ETly4vN+FWfRc34L7E4vZW5ksYcF9ycW7Vd0kD7kttYO9LGXBf+uD1u7rhpW0OmZLU4Cmgl8kYhZggZZeSfHtIET6CfAm6tthC7BhrciDZ+TS5fqu+SxtwX2ZxeyvzZQy4L7s4t+q7rAH35Taw9+UMuC9/kLv04GD0gCFga6l4+Xf1c+pOQhGHl/efHH2UP1Oc6LhSBvlXJL3Am+zXqvoub8B9hcXtrcxXMOC+4uLcqu+KBtxX2sDeVzLgvvLh5mM4OcWA4EdtFFMhGYVD9y2MMqqMwYcfjij5UAbM4asHaZ8nkHb6QJvrt+q7sgH3VRa3tzJfxYD7qotzq76rGnBfbQN7X82A++oH8/PYdIOKWSnm7musQ37eexlwo1yopYvmO7TYSkijyuQbOHtuOVEdUWr2YvJ8u+q7ugH3NRa3tzJfw4D7motzq75rGnBfawN7X8uA+9oH599ZPkjvVpOzOkU/Jjt9YhXZIzFXlDo7gM/yaTI/TrESYps8fSOW6ttm/QrVd20D7ussbm9lvo4B93UX51Z91zXgvt4G9r6eAff1D57fzteQqA8vKfrwRVrjWovLH5mZGqZBs/ha4pyDQpoUSozQuGBIpaHJ/S2q7/oG3DdY3N7KfAMD7hsuzq36bmjAfaMN7H0jA+4bHzy/a+0y6SIZdSOTj7PCzAyz5zJd83NEX2pLUo4zS3Iu7005thArDujD5vxWfTc24L7J4vZW5psYcNPi3KqPDLjbBvZuBtz9cPevYWTvfceKNYwq1+2iffGYqLUifTXS21uk6zZGj621HnuogeeQvH4mZ3L/murrBtxjcXsr8zDgnotzq75pwM0b2JsNuG96uPw89zLQk+5K1BN4ng17CzAKxgZ+1siDSG9o0S3QgPLs03VgdITBm1y/Vd9NDbhvtri9lflmBtw3X5xb9d3cgPsWG9j7Fgbctzzc/S3Zz5AY5UROWV7CoUGdQZrpvciFOtQ+vdTdDSazhAFO0l+rU/4B2TWbfeVV3y0NuG+1uL2V+VYG3LdenFv13dqA+zYb2Ps2Bty3PXh+S0EtDTQqrcogLMiorNFos2sGLom5VOctJDnzvcy7O4UqYzKZqEEqbmaZlJMFt+q7rQH37Ra3tzLfzoD79otzq77bG3DfYQN738GA+44H83PKIxMWSbqxlupbHpBDGFKR5+qCdNrI+cEtDU8dYi2pysV+YAu5BCgm+bnqu6MB950Wt7cy38mA+86Lc6u+Oxtw32UDe9/FgPuuB8/vJFMvgOQLY5bCG7jL2CtiS3KOB83RocjJTtJAn90BuJokQ5eZOBOHEkz251R9dzXgvtvi9lbmuxlw331xbtV3dwPue2xg73sYcN/z4PktUy7HfkRpj7uit6glGSxIQ21OlwqIigFjOpJvjhR6GqO4NHS/FvmL9ybcqu+eBtz3WtzeynwvA+57L86t+u5twH2fDex9HwPu+x7kTtBYF1UcvkUITl6PXfc6iS7g8DWUOJtU42V0gtazTNBKdy65glKf92bBrfrua8B9v8Xtrcz3M+C+/+Lcqu/+BtwP2MDeDzDgfuBB7jyxgzTLa5eqG4qPvrpeWDJxLn3UjEF+ErwEAfI+Dh9JcvUSYugxllAsuFXfAw24H7S4vZX5QQbcD16cW/U92ID7IRvY+yEG3A893PwbHcpp3VF65JKeu6xbmA0gXc0FStL7Xgj1PtWkXwQknw7bVik3fb3J/S2q76EG3A9b3N7K/DAD7ocvzq36Hm7A/YgN7P0IA+5HHpyPzcKxtKS1dgq1grxypoI9A/rRuPUm824+bPN38I4c8+ytVifNN2mgm+Tnqu+RBtyPWtzeyvwoA+5HL86t+h5twP2YDez9GAPuxx7kDhF46kLIbboJkPVO1FQkSdc1XfKElqTZRpxnzDG01DsNN+RC7tFFmZFbcKu+xxpwP25xeyvz4wy4H784t+p7vAH3Ezaw9xMMuJ948PrtaWoyXqcfuULHLq00uagnZN2KqFMZg0FG3gCSmSfI3Q12sY9YHJRSLbhV3xMNuJ+0uL2V+UkG3E9enFv1PdmA+ykb2PspBtxPPchNDDEHLpNi6l7edroYKPTecLo29AlwBtIVkjtxJV8HNAesj4dWGmTBrfqeasD9tMXtrcxPM+B++uLcqu/pBtzP2MDezzDgfubB/lqvcjn28rMyIQvDy1XZzxjZyXvnxMEBxdx6GDlLSt7SjNAnDxmLUxyRTfprqu+ZBtzPWtzeyvwsA+5nL86t+p5twP2cDez9HAPu5x7kHlwR53TQfGeptWOdozpsmRvQKJKul8CeXZZLt5zcVVpxVGNvmp5PMOFWfc814H7e4vZW5ucZcD9/cW7V93wD7hdsYO8XGHC/8CC3zwX1ci2ttFhgyvleAHPMJA23IRm4blcSUFJylBSewsTYpRDPMknzA6dJ/1z1vdCA+0WL21uZX2TA/eLFuVXfiw24X7KBvV9iwP3Sg9wsv1rX5z2le07ySi89NHkPkuu2r00+RLtpbRBUJ9MzydrlxIfuIkkUIJP1U1XfSw24X7a4vZX5ZQbcL1+cW/W93ID7FRvY+xUG3K88yN0LkBsxSpPNy8U7ywUbdX01lnw9SJHNxKVg9S5NaaJHl9jX2ORqnuRSbrN+i+p7pQH3qxa3tzK/yoD71Ytzq75XG3C/ZgN7v8aA+7UH52O9hJS9H6P1HkfyODiOUr3MwUb2rnEOocQBGCVNj4X1Eu65YGvkOJtcv1Xfaw24X7e4vZX5dQbcr1+cW/W93oD7DRvY+w0G3G882D9v7KPvecwEPJOc6lwhhS45OroanLzNLDRakFI8SGbOXsbfTTcI7p5HMFkfWfW90YD7TYvbW5nfZMD95sW5Vd+bDbjfsoG932LA/daD3DW6BjUnPxpAiR6Sax1GGEHa5xjkzJZanMhDG7m1IKEgBHajuap3v5hcv1XfWw2437a4vZX5bQbcb1+cW/W93YD7HRvY+x0G3O88mJ/nNOSSLS/smfsYhXST4JQGolzTR8NI0ipvLqU45ILOukoTjVhLdFhlEG7BrfreacD9rsXtrczvMuB+9+Lcqu/dBtzv2cDe7zHgfu9B7sLsk2eUGlyu2KEN0L1KUEbbui/ZLBywcMzSWIuVHQOHSJwJQ0pSmpMFt+p7rwH3+xa3tzK/z4D7/Ytzq773G3B/YAN7f8CA+4MHr99VmuIz5h7dkCFZI+we65ixSuNNnwQfMzgZePdQMFUkGXqP2WeqWcKBVOcW3KrvgwbcH1rc3sr8IQPuDy/Orfo+bMD9kQ3s/RED7o8ePL9LyK6EiHIZj02u0sknygk9995TjTExJSzyUSBjcvnWkEl5j5UoY6Bm8vyY6vuoAffHFre3Mn/MgPvji3Orvo8bcH9iA3t/woD7kwf753FOF+SspaqPestvUpHrkg4RvYulUGnUPCXd22RCq1HeWy7ePNyMfto8X6L6PmnA/anF7a3MnzLg/vTi3Krv0wbcn9nA3p8x4P7s4frnnXKtM8mLIxcociFnXf6cqlyyRw5ZhuKxsUtQKknDnAPxrLNJEw5jNemvqb7PGnB/bnF7K/PnDLg/vzi36vu8AfcXNrD3Fwy4v3gwP09d10WFMuWshTZjCAF7ldw7TRl1R/AdnEthRiRdmklO9zlKzaXkBIQm57fq+6IB95cWt7cyf8mA+8uLc6u+Lxtwf2UDe3/FgPurh6u/5RyWS/hIM2EOh12ridKovQe9+Tw6SoFkGibvUfxIOdPMY/hcQ8OeTOpv1fdVA+6vLW5vZf6aAffXF+dWfV834P7GBvb+hgH3Nw9ff+stp/IWySXu2LElr5OxyD0CxAgZY0ghocsec5te5uQ+y+W+cB0BLbhV3zcNuL+1uL2V+VsG3N9enFv1fduA+zsb2Ps7BtzfPcjtpaSu05OcwQC+UCySiqOc2h594xCyT4y+Vwhe5t5YWfJ0l2lgTD5Ek+u36vuuAff3Fre3Mn/PgPv7i3Orvu8bcP9gA3v/wID7hwev31n64mm2pnsKknfeZddTk8s3YGjANXmGRJGSlzfskCWh9zInr06u5smBBbfq+6EB948Wt7cy/8iA+8eLc6u+Hxtw/2QDe//EgPunB+tv6ZcjSdEdYpGhd3Ry+qYBEWueRSbfs/bKOeaSOEvtnWoNQc5tqco5Tgxswa36fmrA/bPF7a3MPzPg/vni3Krv5wbcv9jA3r8w4P7l4evvFMmj9NG5Bue5NNcaTEnLq+Tq4bDBeCE3BuLEyXLNns6xb0V+xnmT9VNV3y8NuH+1uL2V+VcG3L9enFv1/dqA+zcb2Ps3Bty/PXj91t2/AUcLTYZiWfJv+T/JSay3n3YX9Lb0UULObdQsqToVuYJzRZYXxe5Mzm/V91sD7t8tbm9l/p0B9+8X51Z9vzfg/sMG9v6DAfcfD16/K7UeechkmxxEQrl8Z3kTyK4NpNxqc64zNEy+Ye5FOnHylpKty6uDN9l/TPX90YD7T4vbW5n/ZMD958W5Vd+fDbj/soG9/2LA/deD1+/oRgYfE40YYpNReG2NZBTWpOaWy7brI7eeZ20JWgyt1FTDLHOSk8Gazf3nqu+vBtx/W9zeyvw3A+6/L86t+v5uwP2PDez9DwPufx7klheXKm20HCUR59jlzwZJi2+e0FHa5AFkOpYgtD4cul6KD16u4iDlejV5fkz1/dOA+1+L21uZ/2XA/e/FuVXfvw24/7OBvf9jwP3fg9wy6YpZ6urOLvvYqHCRcz745Goq8q0yHHDBIf8a8nvD2bIk50yjyvi7WXCrvv8acP/Pide2tzKrxkPNfYTFuVXfEQy4j7iBvY9owH2kA9zSVhuOuq8TdIVz3T20zAwhBem2SQEOE31LfXKtjWboKWRpnmfMM7jc0IRb9R3JgPvIi9tbmY9swH2UxblV31EMuI+6gb2PasB9tIPcWCrjYFf7SFOK7xiTFOGuRG5UnQzEh66rGqoPoUFOvYzSS3cTQnDcTObfqu9oBtxHX9zeynx0A+5jLM6t+o5hwH3MDex9TAPuYx28fteWe5e+mky05fQFzzP1ABBGkE+ZFBFKys5hLvIqeQdiydA5uNhibRMsuFXfsQy4j724vZX52Abcx1mcW/Udx4D7uBvY+7gG3Mc7eH7zYL06Z8nOqUHz8rMN9Na05r2L0mUrBTxIIx3lso45Ebc0ZTwOnGUeblJ/q77jGXAff3F7K/PxDbhPsDi36juBAfcJN7D3CQ24T3Tw/PaZKk8ZgiVw4Dh1GX3XkAOzdM5zkXflHkPXTUt8ab66gE3a6U2q9CrXfAtu1XciA+4TL25vZT6xAfdJFudWfScx4D7pBvY+qQH3yQ5wyze7TMZiGq7pgubDOxw9d+mdJSdD8BS7XN9jnY5H9y64wMVXXQx9Yg426zuovpMZcJ98cXsr88kNuE+xOLfqO4UB9yk3sPcpDbhPdZC7Y69TC229KBOOUTsDQyFMQ5/zzpVSjODkfSrqQ2Ukn5FDJUcp+2DBrfpOZcB96sXtrcynNuA+zeLcqu80Btyn3cDepzXgPt1B7paGTLRHRurBpSiD7zx949xxBvYzglTorRQZjMnZHceYEJFEXE9VKnOy4FZ9pzPgPv3i9lbm0xtwn2FxbtV3BgPuM25g7zMacJ/pcOe3XJD7lG65XMIBMbdec6r+sBm3T3IFl9zcu1nS9DXXyq75yEm3Fozoh8l8TPWdyYD7zIvbW5nPbMB9lsW5Vd9ZDLjPuoG9z2rAfbaD9XdCOXfzkAwcWsOZXfEcMObQMwU3BsmILKO01aAn76fuE+wqukEDgmsm6zOpvrMZcJ99cXsr89kNuM+xOLfqO4cB9zk3sPc5DbjPdZA7F8qZIHaoKZYyZwhUA/fRElGLE0qVert1mXajjMxq9MUNeVMk+Vc22T9U9Z3LgPvci9tbmc9twH2exblV33kMuM+7gb3Pa8B9voPzscJOV0OOtaTo5Q1iLDEnBsnVpe7mDm3OyX2iR6nBWWr1mlt2KVDyclm34FZ95zPgdovbW5mdAbdfnFv1eQPusIG9gwE3HP7+FnkRhxx7K6FXlBN3EscQOMiZ36SbxgSDqi7eNHzrobJ3kJvzbniaFtyqDwy44+L2VuZowJ0W51Z9yYAbN7A3GnDng/V3lgb6CF0S8hQpREyT9EbVPHOUH5Y2m3TWE7eY5Ts9JECgIAGAB8eYarLgVn3ZgLssbm9lLgbcdXFu1VcNuM+/gb3Pb8B9gcPd3xKoc0HGKjV4Tw1SHfKvlmC4EJ0vvSBlnAlCmjIT4zqpE9YSvZzfJvNv1XcBA+4LLm5vZb6gAfeFFudWfRcy4L7wBva+sAH3RQ6e360SDifN8Nq7d57qkBN4YqNQEsibVPlrmXKiB+mpSWUeR42J54gzTSwm/XPVdxED7v9d3N6H2cWA+6KLc6u+ixpwX2wDe1/MgPviB89vvQE9Tq9Pfco4LMg4vPtSh95cnmNJcj5DC4NDwRpjczSkRJe/FPnowdXk/FZ9FzfgvsTi9lbmSxhwX3JxbtV3SQPuS21g70sZcF/6YH9tIuSIY8j3q+4VOpof2NtMcY4qs/DWUnRcCkYvPXXdO1Q65+BkelZbHibrp6q+SxtwX2ZxeyvzZQy4L7s4t+q7rAH35Taw9+UMuC9/8PxO1KeXBnqLoZToehvy75Sg6ZqK0cVOrmadfbvoec6ckEgr9NhddKFZcKu+yxtwX2FxeyvzFQy4r7g4t+q7ogH3lTaw95UMuK988PyWWnvG4XrQzQPlbA/QPZO8eMzY5TROwcGAMYh9n/IhqbVBQ053XQUimzw/pvqubMB9lcXtrcxXMeC+6uLcqu+qBtxX28DeVzPgvvrB8zuzZOOZfIdElAORA9+lc15yKlNK8BqmI59DzH0GmXxzm7pgG3SUmXkyuX6rvqsbcF9jcXsr8zUMuK+5OLfqu6YB97U2sPe1DLivfbC/VnyspTqSLjk4GXn3OhLF6kcHKk7qbOyJ9f61LGn8gBICVJJXuOyLCybrM6m+axtwX2dxeyvzdQy4r7s4t+q7rgH39Taw9/UMuK9/8PqNjgC8tNCS84zgpR6HMHxC12DK1Zuk14Zy6ic/nUfpnY+ZMEgzPczZQrTgVn3XN+C+weL2VuYbGHDfcHFu1XdDA+4bbWDvGxlw3/gg95BvjuxZLtld3kJ3Fpsy+sbsIRfJ1B1Kht5qSj3LBC1Qc9I/71DdyAGnSf9c9d3YgPsmi9tbmW9iwE2Lc6s+MuBuG9i7GXD3g9xtFqgyyG4p8Qy9Y6HpUZprMjbzMLgTJEfETtrqfkzfapmeZH6GMj5zJvenqr5uwD0Wt7cyDwPuuTi36psG3LyBvdmA+6YH83MfB7PLPUqd7SgTUpq65tqYVSpy33yW+TcUeUmRHD4MeXWRcx0ChIZk0l9TfTc14L7Z4vZW5psZcN98cW7Vd3MD7ltsYO9bGHDf8uD5XbBNcmVmGgTRVcpTUvZMrUS5YKeUZT7OGaWh5l2EULOPTMCTPGZsJs9/q75bGnDfanF7K/OtDLhvvTi36ru1AfdtNrD3bQy4b3uQ26PLkoT7IgMyGYEV9FPmYt1Lm9z57CkxTXCTSi5MBWVw1hr5Jud8wWqzf4nqu60B9+0Wt7cy386A+/aLc6u+2xtw32EDe9/BgPuOB+djKQO6Wj2N2qSjJu3xKX21mDlmJ720nCO0TpiAwkCWKNALR2Zd4YVbMumvqb47GnDfaXF7K/OdDLjvvDi36ruzAfddNrD3XQy473qQG+fA2Gus7HWXItdCnTA7Bo7YcszSLJfiW7f9njIuG5RLiz6GwY6czMktuFXfXQ2477a4vZX5bgbcd1+cW/Xd3YD7HhvY+x4G3Pc8yK3bFEQsLbkuZXdsFNqgSG6mhL7LALz7mchxZl39HFHa6KWMwI1SqtVk/RbVd08D7nstbm9lvpcB970X51Z99zbgvs8G9r6PAfd9D/bXcoXkQ0WiWTkQyinOEyQ5zzWVkKWT3nzVC7hrQ8ruiZKXR5dTq1D8MLl/TfXd14D7fovbW5nvZ8B9/8W5Vd/9DbgfsIG9H2DA/cCD9Xcj1v1L5Hos57kbnDAnmYBBbJGglhxCLrV19KmlKOMylO66JPCVKEd5rQW36nugAfeDFre3Mj/IgPvBi3OrvgcbcD9kA3s/xID7mOc8tNz/z68jH2L+Ix3C9zrmITx+Dz3xIdR1wBah1ZlznVxqkNInRBdGaaWxx+pzqsPXWUbDmGJD6iMxdqQSW5EuaJ8m9xop60MNfPBhi597yvwwA+6HL86t+h5uwP2IDeytGo90iN/3SIfwGD7SKu5ULDOOUVh3pfMdHXaXcepkNdSBkHQzjFRGDVGk1khRGKgQF+nddJMerLI+0sAPH7W4Hyrzowy4H704t+p7tAH3Yzaw92MWjzuPNYo7vutin8X14T22cthuHAmlPwzQpRs89aFnrTZZxkMulRIl8MjwdwYpSYPkRhb2UNbHGvjh4xb3Q2V+nAH34xfnVn2PN+B+wgb2fsLiceeJRnHHyRQ5AMoUGTm4Vnt3JfeGEGaMOaSA+rA1duluEfTZRkdJc/JMOYWaW7ewh7I+0cAPn7S4Hyrzkwy4n7w4t+p7sgH3Uzaw91MWjztPtaqzJNmJk1KGWDjLOLz2gaM3QMYAuuJDoJmxU5Vqi0VpG9HVrPXXGGyzF5myPtXAD5+2uB8q89MMuJ++OLfqe7oB9zM2sPczFo87z7Sqs2JB5MYpM6GLs0JPXcb1wPK7lFVI1dVePEaoeQSh4Cnz+9Y6O2lAm+Q7yvpMAz981uJ+qMzPMuB+9uLcqu/ZBtzP2cDez1k87jzXqs5yM+RQoxRWWDDXNHuGMjnEHsgjJRrdF6rdkw/dJ3nlrF5iFA+vOzxZ2ENZn2vgh89b3A+V+XkG3M9fnFv1Pd+A+wUb2PsFi8edF1rlO8A54yAsNcURo8QZTOCzzNcrhTBSl3AzhmiCUJPD1KKMvWZlktKr2MyzlPWFBn74osX9UJlfZMD94sW5Vd+LDbhfsoG9X7J43HmpVb4TspssGU5zrjc/pJOcisy1sJZJrZaEHnQ9bqq1g5RXgiHfjt6Dbn45TJ51UNaXGvjhyxb3Q2V+mQH3yxfnVn0vN+B+xQb2fsXiceeVVn1lN113EVssw2cKuSWfBwbmWJ0+g5FgYh2QXNIIBTLskt/amEEXSmCTPbqU9ZUGfviqxf1QmV9lwP3qxblV36sNuF+zgb1fs3jcea1VvqNrHHYeWZrFA6vuG5Ry5g7OJ+c4peJdThApjVkl/ZEQJE1mEoxeoiRHFvZQ1tca+OHrFvdDZX6dAffrF+dWfa834H7DBvZ+w+Jx541W+Q4ShdYoQkoSgCSk6GZGRSKRNJt5wBQNESA6ngMqOe6TpCLzLWbykEzyHWV9o4EfvmlxP1TmNxlwv3lxbtX3ZgPut2xg77csHnfeapXvYGJfst6qE2apvqfmqLtaWWboMBvGwdFzCYklu3HRj8Q0WillHPa7hT2U9a0Gfvi2xf1Qmd9mwP32xblV39sNuN+xgb3fsXjceadV3PHS3qmj4DxscRxXewXMAQcEj0P+F8ph9zMDsh+6ghaO0nwZlaQeGzb5jrK+08AP37W4Hyrzuwy43704t+p7twH3ezaw93sWjzvvtaqzQtKnIaR/wwWmdI59bP2wh9KTBCMeDnN1Gdk10oV/JOOZUSKQtH8KeM8ma/so63sN/PB9i/uhMr/PgPv9i3OrvvcbcH9gA3t/YPG480Gz+5WlUyxF1pRx1nBMEJjCnJ5qmoP9/3kKVJs/udei+15H8IESScgphWzWFFPWDxr44YcW90Nl/pAB94cX51Z9Hzbg/sgG9v7I4nHno1Z11mgIFMPoA1vl5HKkXj3OkUE3D5HCCkaMLH/Dyrk33a93Qp4ktZcfJvcNKutHDfzwY4v7oTJ/zID744tzq76PG3B/YgN7f2LxuPNJq3wny5TKg6sYs5RTPgz5L4SadX0dGaqH0secrtTSC/TaALHLNL1zcyyRySTuKOsnDfzwU4v7oTJ/yoD704tzq75PG3B/ZgN7f2bxuPNZs/uV5b9EeYSYHbeUK2LTO3dGZSmsCnFE6fdwBUpR2snaZ+4jZ2jQS8sm9ysr62cN/PBzi/uhMn/OgPvzi3Orvs8bcH9hA3t/YfG480WruDO95DucWxk4a2CpqkiiTOeUSTdIh+lSGImi62lIAdZSC7o5jHwFXSkm+Y6yftHAD7+0uB8q85cMuL+8OLfq+7IB91c2sPdXFo87X7WaZ+njWahRJsYRJayAr6P3AdE7lMZxngUw+VRFMQNUJ03oEDEj5NBCiBb2UNavGvjh1xb3Q2X+mgH31xfnVn1fN+D+xgb2/sbiceebVnHHhczSLa459pZ5RF3hS5rKDTsxSpvHY6bsBncMPccsRVjlSGOmIK1mMFl/R1m/aeCH31rcD5X5Wwbc316cW/V924D7OxvY+zuLx53vWvWVi6cyeY7ask84uPXgk5epeWvINKqO0F0LMUzoejMPpAY+SjiSoCMtIAt7KOt3Dfzwe4v7oTJ/z4D7+4tzq77vG3D/YAN7/2DxuPNDq7gDwCjj8RAJGSgXaFk+Vm9UdiytnyHTrADDS6c5t5G8z54oERFM6rOyhT2U9YcGfvijxf1QmX9kwP3jxblV348NuH+ygb1/snjc+alV3PFIQYZTSQqtkjJKgjNp1sg4ImSaCUsF133ApEucwmxRXtqCK16jlMnz6Mr6UwM//NnifqjMPzPg/vni3Krv5wbcv9jA3r9YPO780myOPqoHnFx6ayydHok+2LjK/zH2mvNw8bD5OlSAMtNEHixjd2n/hDbBZJ1TZf2lgR/+anE/VOZfGXD/enFu1fdrA+7fbGDv3ywed35rFXdSgVH0Ec8ciHxMxWXiXKeM0LGn3GlI0jMLSVvHTZQRlgy/EpNUZTxnJQt7KOtvDfzwd4v7oTL/zoD794tzq77fG3D/YQN7/2HxuPNHq7gzeOTidauIXLGk2KLuLzExlkngZLIeNfuRoivI6Hx6SYAItM/TOHTnTe4bVNY/Gvjhnxb3Q2X+kwH3nxfnVn1/NuD+ywb2/sviceevVnP0HnoasSFM1zmnnGYsJXvdpViX/dJGMnSZXckwK8xQ/OjRoXSFkmomkzpLWf9q4Id/W9wPlflvBtx/X5xb9f3dgPsfG9j7H4vHnX8axR1JaRL6kKWccqGBdJdnbzOEXmuVikp0RhjSaR5DJutOt5JI8oVWinyLUzSps5T1nwZ++K/F/VCZ/2XA/e/FuVXfvw24/7OBvf+zeNz5r9U8i6WyYmnY1D4YfWlu5JyG9HLYdfLEMuCK6DFWBxKefKkDAvUEpbUxuVnYQ1n/a+CH/3OStf1QmVXjoeY+wuLcqu8IBtxH3MDeqnHluHOkk9jEHVeqS62nSimOwj60Pmcqo0Si7qBN3bkGkwzWa6LeSsiHbXCTO9YYfTS5X1lZj2Tgh0de3A+V+cgG3EdZnFv1HcWA+6gb2Puoi8edoxnFHU+g+4F2fdS8MEn3JrgiQ/NWQ9I7lZMuejFF1ZDXwQAOLgSSFpCfLjc06Ssr69EM/PDoi/uhMh/dgPsYi3OrvmMYcB9zA3sfc/G4cyyrfKdVzNLEcYwhdsBZysiNPfJkTzJcBxmz+5HmQKoNPVVPE3ryHRgimdw3qKzHMvDDYy/uh8p8bAPu4yzOrfqOY8B93A3sfdzF487xjOJO4Fx75upiT5hidATZs08Nig8py9gqeCcxR4ZZTXQGyAzDI8isa2QJRxb2UNbjGfjh8Rf3Q2U+vgH3CRbnVn0nMOA+4Qb2PuHicedEVvmO1Fde5lSOprRyigvJBek15xlyd97XImP2yjV054IgsGQ5iUuLWGbwzZvsJ6GsJzLwwxMv7ofKfGID7pMszq36TmLAfdIN7H3SxePOyaziDgXXEpKEm1BGa91niS9EMVOikApFjKN5ljJMMh1JfqBhZ+k+90qObNYbVNaTGfjhyRf3Q2U+uQH3KRbnVn2nMOA+5Qb2PuXicedUVnUWecYmAUTvSZYERoZWg12GEZ0XdexjyLm56LvHAJidk1FXz64zp5amSb6jrKcy8MNTL+6HynxqA+7TLM6t+k5jwH3aDex92sXjzums5lkyFpfGzpjkYm7gJZZkaSRniLHOUueoEcaowXFGP4aEG4oxTc6DB0E12cdGWU9n4IenX9wPlfn0BtxnWJxb9Z3BgPuMG9j7jIvHnTNZ1VkowaSEkUZpzaFLGThxyDP5XPr0gaXTM9BxLZjLcEH6zih/93FgBJv+jrKeycAPz7y4HyrzmQ24z7I4t+o7iwH3WTew91kXjztns6qzIhNIAJFwcthn96mPQ0QnWVBrM8lXEk+pr0B6yGm0QbnwzN2L1hATmqz7paxnM/DDsy/uh8p8dgPucyzOrfrOYcB9zg3sfc7F4865zPKd2kVNyqGLrszOh6HLmEr0CSP2PmE0UTKDVFnySvnSrLNy6Fh9la9Y2ENZz2Xgh+de3A+V+dwG3OdZnFv1nceA+7wb2Pu8i8ed81nlO9IpxqCNmzaxjzypOSfDKukqd1cKzVBz6r1TiZywlNAAQk6DWxwD2aTOUtbzGfihW9wPldkZcPvFuVWfN+AOG9g7LB53wCrupC6zKhloNfK9+F6ri5GiG7k7Sj5UIqYaI1dXRFkprceMPbjZ/JBvW9hDWcHAD+PifqjM0YA7Lc6t+pIBN25gb1w87mSreVYozWcfRV6PpaK6AfeUfE9xyld5SEIUU8+FwpRolBIXUVUgeXmZzXOhypoN/LAs7ofKXAy46+Lcqq8acJ9/A3uff/G4cwGr/k6WMdWEiBBb7xJyaE7yjSiU5HUPmy4jrJzTbOIfeZbU2UHVXSWyd82Z9JWV9QIGfnjBxf1QmS9owH2hxblV34UMuC+8gb0vvHjcuYhVnQVImFPVesq7SjIh946Lm0ESmpGDTs8TuNoJoE6cJVD04Hj25iT/MYk7ynoRAz/838X98DAbG3BfdHFu1XdRA+6LbWDviy0edy5uFXdkLiWJzZi+JqmrapVWchxRF1rGGhLXlCgPoCmBKU+GkmSkXmKVpnL2oZv0d5T14gZ+eInF/VCZL2HAfcnFuVXfJQ24L7WBvS+1eNy5tF1/p8c0fPXODUlqHOmCPINZ6qkQWqgywarJVWhDGmG1Ti4jNPYJeotQi4U9lPXSBn54mcX9UJkvY8B92cW5Vd9lDbgvt4G9L7d43Lm8Vb7DhKlPKprKOD/J9RHYJeylSWwZBMxw2O4RUl8NSYC898OVHKi4VhpZ2ENZL2/gh1dY3A+V+QoG3FdcnFv1XdGA+0ob2PtKi8edK1vlOykjkwzQcx0Zp4yoEmOp7CSyOGpjVim6SmqFxihx+uLkFZSBYwq+5WRhD2W9soEfXmVxP1TmqxhwX3VxbtV3VQPuq21g76stHneubpXvxNrzlM8aUkDN4WKf+hIOPkvrZySYmWPlia27HDsQztypVCclWenkLeyhrFc38MNrLO6HynwNA+5rLs6t+q5pwH2tDex9rcXjzrXt+jshTeogmYybY0KvnGaooUbJb6SlI/mPazJOh8DSdx4lDICG5HWpUyzNwh7Kem0DP7zO4n6ozNcx4L7u4tyq77oG3NfbwN7XWzzuXN8q35EiKhTdOEKyG47cEIMf0Gr1OFtxPXUZnY+JngJKc6dhmkiOU5uOQzaJO8p6fQM/vMHifqjMNzDgvuHi3KrvhgbcN9rA3jdaPO7c2CrfybGMWiF17RQHpMnkC/KcLDEooJt42HbotXtqUKX/jDmCPq0Oc5Zi0ldW1hsb+OFNFvdDZb6JATctzq36yIC7bWDvtnjc6Vb5jicqmQixRPJVaq1CaUgU0mpKFKAvwzGk4n1vPtaavWRG0uqZkSrZPJ+lrN3AD8fifqjMw4B7Ls6t+qYBN29gb1487tzUKO7ocu11ukiBJQIN7xrIED26FCJ0iLqJcS4cCeS3TiF6iiP2Qk7Snp6dyfPoynpTAz+82eJ+qMw3M+C++eLcqu/mBty32MDet1g87tzSKu7UINlNET3k5gx5dmnfJOy984BcQh8l1QCjsbZ9OPfYXKuzJvYSh+awsIey3tLAD2+1uB8q860MuG+9OLfqu7UB9202sPdtFo87t7WqsyqQfFCmOkGaNhPqyIX8cBJ8Up+lgs9Oes+DMVKLhE5yoDQlREkt5ofJvn3KelsDP7zd4n6ozLcz4L794tyq7/YG3HfYwN53WDzu3NEq34khu5aTT3kMEcWiY3Bp0CeXIi1nyXak0qpZplvNVRgoVRlAjTmNhmBy/46y3tHAD++0uB8q850MuO+8OLfqu7MB9102sPddFo87d7XKd3KKU/rFfWBpMTDCiJj8mMnHGLFUqaWothxHSs276UvrAZGwsISslCzsoax3NfDDuy3uh8p8NwPuuy/OrfrubsB9jw3sfY/F4849reLOyF1k5cy+huKzVE8hIVRpMsfJ0kCOMIqMzBOG3nNJWLqrRVfHAJB5u0l/R1nvaeCH91rcD5X5Xgbc916cW/Xd24D7PhvY+z6Lx537Wt2/wz63WKBkB5lnI8lifPd+5pmiZ6nBYvI4A0sf2afOdczGQFNaOwAlkIU9lPW+Bn54v8X9UJnvZ8B9/8W5Vd/9DbgfsIG9H7B43HmgVdzx0sJJTeomrZ8o+yhNZsYMkMpECFRLCsm5jh3bDE4G7SNBkyF7CL7YrPulrA808MMHLe6HyvwgA+4HL86t+h5swP2QDez9kMXjzkOt+srkagtTpuNaUBWQYNIqjim9m9ocZ+iRCblOTFSjl+EWYg2TeMbEo0QLeyjrQw388GGL+6EyP8yA++GLc6u+hxtwP2IDez9i8bjzSKu4U7jJl6RkSr0OUZmi3rlMEDG4WXuVeitMYKLJ7CTlaVwp5lJcla+TybruyvpIAz981OJ+qMyPMuB+9OLcqu/RBtyP2cDej1k87jzWLO70LA1iCL1Sl95O4yaSchuAlFzn3pkBesJGku80aQFlGXL1mlpxriSTObqyPtbADx+3uB8q8+MMuB+/OLfqe7wB9xM2sPcTFo87T7Tq74BrlTzEKT2borcGyqenyIGaBqAeREQjz1MX/JrQ/QwgFZkKmz0Hk3VOlfWJBn74pMX9UJmfZMD95MW5Vd+TDbifsoG9n7J43HmqVb6TQi4dasqzDo9JGjw+dk9F2jmFQGZWMKlJf5lQCrDA5MeQMstnmtjyBAt7KOtTDfzwaYv7oTI/zYD76Ytzq76nG3A/YwN7P2PxuPNMq/t3sAySCislSG1wTAVwUqyzJcl49D7BHKNv0OWbPcTBFeRbszScMtlyJs9JKOszDfzwWYv7oTI/y4D72Ytzq75nG3A/ZwN7P2fxuPNcu/sGC/UifeLcmEmyHF/LGHNIPjOc/L2GyFh9bqKOoA7loOZ8jD2XYGIPZX2ugR8+b3E/VObnGXA/f3Fu1fd8A+4XbGDvFywed15o1d9JKbDvoM9+9uwc1VEDogPEIh1k57q0mksLYYQ5a5TeDksYCgVD4NldtrCHsr7QwA9ftLgfKvOLDLhfvDi36nuxAfdLNrD3SxaPOy81u2+w5xm9VEwRZKTlOauG6VFm6tM3SXryaCOMTtxSy7kOhJn95J67xB2T+3eU9aUGfviyxf1QmV9mwP3yxblV38sNuF+xgb1fsXjceaVV3KkgXWJpIM84YGiBJUXXGD4HSYLAhTGDY5l4TeTgAROGKqOtnKEGmXaxyTxLWV9p4IevWtwPlflVBtyvXpxb9b3agPs1G9j7NYvHnddazbO4RflEyXlyqdLUkSJKJ+gFvOMUHchUq7pU0U0I0ffZJOsps0vOk7CgM4k7yvpaAz983eJ+qMyvM+B+/eLcqu/1Btxv2MDeb1g87rzRqq/cnZPIIp8mY6sYpNIiJxqwjhhadS45pArE2A/bMau6nvJg7T7PlGZsFvZQ1jca+OGbFvdDZX6TAfebF+dWfW824H7LBvZ+y+Jx561WcQdiZfQJkMEl6fNwb0Wbx5BDpjZJGs+T9NHQPuS7vRy2j1bkVPiwrW8s7KGsbzXww7ct7ofK/DYD7rcvzq363m7A/Y4N7P2OxePOO63ijpRUXBH79AVkPD4xUA/yuXmE0OaodUiI4dhdo95yzVC8T5F95DHqNHkeXVnfaeCH71rcD5X5XQbc716cW/W924D7PRvY+z2Lx533WsUd+YzpvAtZIk6Ocw6WKdYczmHFCakO+a336SimwWEetotoC5GcDL2om+Q7yvpeAz983+J+qMzvM+B+/+Lcqu/9Btwf2MDeH1g87nzQ7P6d5mkEbDkV+TN1VxoPgCFD85IzOwq+hQa9R12bxxeeZcQRKOpP1WRhD2X9oIEffmhxP1TmDxlwf3hxbtX3YQPuj2xg748sHnc+atbfoRwzkW/O1Q7ykZUk5nQ3mP3oEnmKhwp16iRdBEoZBlVyHS6ozWWT/bOU9aMGfvixxf1QmT9mwP3xxblV38cNuD+xgb0/sXjc+aTVHJ1Gg+CKczHEEqM+H1FSdp5dTrlSSn4Wnx00HWVJiVV6nvIvTj50CVAW9lDWTxr44acW90Nl/pQB96cX51Z9nzbg/swG9v7M4nHns1Zxp5YUZ+GcHebmqqNcS0yl9tCCaz2JOgL0A0XWZGk5p+l7iLHKeH1mk+cklPWzBn74ucX9UJk/Z8D9+cW5Vd/nDbi/sIG9v7B43PmiVX9nziaF1BjO9647R1AVEY1qGkP+lPZyoBomD4zedQk9rcfWojSdcSaZrFvYQ1m/aOCHX1rcD5X5SwbcX16cW/V92YD7KxvY+yuLx52vWvV30EmrWPo1kHTV9j70iSyUljFk3bEGqGOIIQxJgMj5JGOtQRBbiTPpdqEm6+8o61cN/PBri/uhMn/NgPvri3Orvq8bcH9jA3t/Y/G4802ruMPoZxjgEqUcRywhjZzTiI0mVBlcyejcTzddZhELKSOESaFEaJIAgcn6O8r6TQM//NbifqjM3zLg/vbi3Krv2wbc39nA3t9ZPO5816rOAi8N5MABpY3jUqx+DE96uzLQpOJ64+o4DajYRvQ4fJlBukE1ukq+m/SVlfW7Bn74vcX9UJm/Z8D9/cW5Vd/3Dbh/sIG9f7B43PmhVV85FukkJ06JArg69BadIqWWJ13ni0Nn76dvnBtm+bO1lFyWPyKIetdM4o6y/tDAD3+0uB8q848MuH+8OLfq+7EB9082sPdPFo87P7WKO91FKLqEV+sSVBxPT3lA7BirPigqI6sMMlgfozG7orf6YJcGT5IXyluZ2ENZf2rghz9b3A+V+WcG3D9fnFv1/dyA+xcb2PsXi8edX1r1d5LumSX5DCb23SE1IPKegyQ9kEmaytVhp4xzxD5H51ilwSPNHu7ympgs7KGsvzTww18t7ofK/CsD7l8vzq36fm3A/ZsN7P2bxePOb636OzX2FqYUTwlkmEVQE7qANDvpIjzYcfTRM8QcYpKBu8ShGkpDnjPMNqqFPZT1twZ++LvF/VCZf2fA/fvFuVXf7w24/7CBvf9gwD3PeWi5/59fRzu0/OFIh/BYHvMQvtexDqEtjnMI3+uPh86fwzEPnY/4ebj7I0YhmQo4GRFUqNSLo+FR/ktuYDrsHlHQpdzckH+6molxcE7FzVlrN7me6HH7o8F59qfF44sy/8mA+8+Lc6u+Pxtw/+UkNnH1yIeWf9W4eriY839ri5ufc/1z7y//P2qK/1vuv57EJm67/7tf/qA9QpRR8ZT5L+oWUCMKT40jwnCIs4wwZs2eO1Js6ENKmPpIWGvOLE0NMrk3V4/bXw1iwt8Wj4XK/DcD7r8vzq36/m7A/Y8N7P0Pg7jzzw3iji8QPVCf0qzAFAF6d7U7YQk6oGlRGh2uSzujhMTcozQ6OPU8GbLD4U32Atfj9k8DP/zX4n6ozP8y4P734tyq798G3P/ZwN7/MYg7/90g7rgyfexlpDqcTItllDNTlyYpBQlAGHznoWMcwui6LvPJmYvUxCw5UJ2RTOyhx+2/Bn74Pydd2w+VWTUeau4jLM6t+o5gwH3EDeytGg913DnSSdePO6HOkPPwhaiyzz170rGxIxxjBk/Yayp9UE6up1pjzmnmiciDUugpWdhDj9uRDPzwyIv7oTIf2YD7KItzq76jGHAfdQN7H9Ug7hxtg7jjWOqqMmUInFoil30j8K5N4hYoF+9Bai0/OXBvEnNkBFDKTNhLQqm8bPIdPW5HM/DDoy/uh8p8dAPuYyzOrfqOYcB9zA3sfUyDuHOsHfIdiSSTAFJrNbjU6uTYY24eQ2ulx9D1blx0DmevOAPDIO5Z748r3KfJM5B63I5l4IfHXtwPlfnYBtzHWZxb9R3HgPu4G9j7uAZx53hb5DvK5jAzY0SNJA0k/+kC62WARS7loXfIQesSaGLIOFyXfk+XdvRMNvMsPW7HM/DD4y/uh8p8fAPuEyzOrfpOYMB9wg3sfUKDuHOiHfKd6Rhx5AkVMErwSQl89piIcw8cgqQ+Mk3HOWemUApKORaksdN7jOS7yVozetxOZOCHJ17cD5X5xAbcJ1mcW/WdxID7pBvY+6QGcedkG8Qd3z3NmkNvc3qfmoMwO0DRLet6DhEnVcfR+zYjNs8EuscCTWoIbg6ysIcet5MZ+OHJF/dDZT65AfcpFudWfacw4D7lBvY+pUHcOdUOdZaj3DFIaYVluASgO7SM4StLI5k5OC8JD1HIXgihe+n5yJS9ztGBCwNa2EOP26kM/PDUi/uhMp/agPs0i3OrvtMYcJ92A3uf1iDunG6HOsvPmOKUuqrpw9YyS58VKwa9J1DyGVcmj1nIj5YZQAJSyTGnFnJnjw5M8h09bqcz8MPTL+6Hynx6A+4zLM6t+s5gwH3GDex9RoO4c6Yd8h1fa/R1xiosIVIcZbAfLF2fHsKUYVes87AFIUqUQZeDMikEqsmn5GSebmEPPW5nMvDDMy/uh8p8ZgPusyzOrfrOYsB91g3sfVaDuHO2LeboRMXnjBldCxhG745DCzK9ohKzoxhS8/KCDgPakMZyTNITCgli7wTNwh563M5m4IdnX9wPlfnsBtznWJxb9Z3DgPucG9j7nAZx51w79JWH6J7JtSHCS5AaK1RXh1BJ+ZW4Ek+gProO08nRDA5l/tWhV6Y0h8leUXrczmXgh+de3A+V+dwG3OdZnFv1nceA+7wb2Pu8BnHnfFvcvzNy6hJSZJDVSXrKNHKOLfsascqES/dmCZUgQGpZEpzOrVWOJFN1+clmEnf0uJ3PwA/d4n6ozM6A2y/Orfq8AXfYwN7BIO7ADnGnsEPAyRFyAxqFgy5z1NNIrVaQyXqfwjeci6XKEehtAIOMtMIoeTaT+wb1uIGBH8bF/VCZowF3Wpxb9SUDbtzA3mgQd/IOdVbI0Cl1GlSkm1NbcoSZ52SsVGsdAUqFjNLWIUDJjTwjU5ExesHubOKOHrds4IdlcT9U5mLAXRfnVn3VgPv8G9j7/AZx5wI79JUHuTwiSuDROJMlyYnRlT7ZFeKiyU+SRnKSRMhJPpTBa2bEjaHBKGhyv7IetwsY+OEFF/dDZb6gAfeFFudWfRcy4L7wBva+sEHcucgOdVZN0FuA4SDPMKV0ajklXQMM/awkRRby0IdHe8oD+xheWsoujBCkE53QJN/R43YRAz/838X98DB/MeC+6OLcqu+iBtwX28DeFzOIOxffId8JsQYXfPVSbI2hT5vnECgQSLKT9UblOR0VwCS9ZC2zJDDVmkpos+rmURb20ON2cQM/vMTifqjMlzDgvuTi3Krvkgbcl9rA3pcyiDuX3qG/0zCENDpNGs23NKL0bSKNgDLbSjVW+WvsufXMsfsiXZ0pg646DyvLSjCxhx63Sxv44WUW90NlvowB92UX51Z9lzXgvtwG9r6cQdy5/A5xB1JsJRB7X5zuCA6Vk2Q2oLPzSaTrLXsMzs2cmvyT5kyEwIND8zhM6iw9bpc38MMrLO6HynwFA+4rLs6t+q5owH2lDex9JYO4c+Ud+jsyJa+OZajl8hzoXJMcR0brY7jSXM0lp9IrzN5LbbkMCJS8jL2wY/CtmPSV9bhd2cAPr7K4HyrzVQy4r7o4t+q7qgH31Taw99UM4s7Vd4g7nWLsg7MbKXNg9L5xREJsjZGImWFgmOyFlCTvweHkZ8LQcVdEtLCHHrerG/jhNRb3Q2W+hgH3NRfnVn3XNOC+1gb2vpZB3Ln2Dn3lmbMkNoN9mqmOybEFziWlkVjKKR8nhTokCBXdsLeBhBrC5KQnJIekBZN1TvW4XdvAD6+zuB8q83UMuK+7OLfqu64B9/U2sPf1DOLO9XfId1ybTvrFsw/QZs7gGTlF7fFoYznmGFNpCbOPSVKcDIOrNKEbcs7Q8rSwhx636xv44Q0W90NlvoEB9w0X51Z9NzTgvtEG9r6RQdy58Rb370AmVV6xVAcySQ8gcywYMaO2k3tsWOdobkozJ/ihq6G2EL1MtcgNZ5Lv6HG7sYEf3mRxP1Tmmxhw0+Lcqo8MuNsG9m4GcafvUGdJeCmYc27R9xoGj+67BBVp6PjWgZqM12cIvmaZmheMUOWINKmzhkSmVE32C9Xj1g38cCzuh8o8DLjn4tyqbxpw8wb2ZoO4c9Md4k7LXChBT86HqNuAdnLAMk4vPsyE6EkQfaeqY3TyID2gFkiij4cYgkmdpcftpgZ+eLPF/VCZb2bAffPFuVXfzQ24b7GBvW9hEHduucP9O1RSLqV1iTKTh4fSYmtUZKheSvWZkCXQSOSJNTl9elQ6zpUbOg8Q2mALe+hxu6WBH95qcT9U5lsZcN96cW7Vd2sD7ttsYO/bGMSd2+7Q34FORfKcw+5VljymAfXQMHCsITOUGrO0dnr2LWgMilFX4mEq+phomWBiDz1utzXww9st7ofKfDsD7tsvzq36bm/AfYcN7H0Hg7hzxx3ynZQx+lEo8iwVpWksHZ7hOFQ3fMQhVWjMMCUl6tNNL02S0itLl4dS7iWZ9JX1uN3RwA/vtLgfKvOdDLjvvDi36ruzAfddNrD3XQzizl13yHcktFCURjF2iGlydkjSWUZpMOPQZ9UlHQo5Qivca6qjS8DRwfqMhx0HtLCHHre7Gvjh3Rb3Q2W+mwH33RfnVn13N+C+xwb2vodB3LnnDn1lasA+JN8DStiRkZZkOVFax4BlxhwkC2q6tmCYeaRQZoIs064Ue2qxUzTJd/S43dPAD++1uB8q870MuO+9OLfqu7cB9302sPd9DOLOfXfId8rIUKsPMswigkJ9MCYvMQbhsCdCOwizc6XVqL8n6pIiyQDMp4qZycIeetzua+CH91vcD5X5fgbc91+cW/Xd34D7ARvY+wEGceeBO8SdlGhMaezkAiXnGGvk2DPrM6DoU4qjc5Hg1L1uElqmNJx91Ft9ktfWkEm+o8ftgQZ++KDF/VCZH2TA/eDFuVXfgw24H7KBvR9iEHceukOdlVKtcUgu0yforclaeKFEH5g1SyOnjRqCy35mKn4QSOsndI++FmkMhW6S7+hxe6iBHz5scT9U5ocZcD98cW7V93AD7kdsYO9HGMSdR+4wz4q96J2DUlKlHCfB6FJlTWndCLOAlUCzBObRnGJXmafPRtNFzJFdNtnHRo/bIw388FGL+6EyP8qA+9GLc6u+RxtwP2YDez/GIO48doc6K/jM0quRmNOJvG5SLDGHR4rMsY0xJBkKoU+JRiWD6zF1CUsZx4ijsE1/R4/bYw388HGL+6EyP86A+/GLc6u+xxtwP2EDez/BIO48cYc6y8n4fKTRaNQMOSRp9MTuE88IMsFCqaqolJFkvF5S5tpBF2JuoblWa0gm637pcXuigR8+aXE/VOYnGXA/eXFu1fdkA+6nbGDvpxjEnafukO/4gUkICx22LWgu1ZHMrLKjSRV6LSNiydjYE0v3uco/YpoTCrsyqZjYQ4/bUw388GmL+6EyP82A++mLc6u+pxtwP2MDez/DIO48c4d8JwCV7urMniWsuBwkuQn6T4KeS5bvBRd046zpk5RZEaXT3KUog54CDJM6S4/bMw388FmL+6EyP8uA+9mLc6u+ZxtwP2cDez/HIO48d4s6SyqqNLGCTKf0th03fZUmc5T5FUbHMjMnvY2wxyqDrhZJGkFT7yTMofrpTNZ11+P2XAM/fN7ifqjMzzPgfv7i3Krv+QbcL9jA3i8wiDsv3KHOkvlVdFHKLRoxxCnDLV3fQnIg6AQOCAdR1UWYIY7mIfsCUmEVlnaQDzbPhepxe6GBH75ocT9U5hcZcL94cW7V92ID7pdsYO+XGMSdl24xzyLfMrpM1Dv6kkJvM0vGE7CPkII0mkf8P7f2QA0hSulFMkbXvUW1z2zSV9bj9lIDP3zZ4n6ozC8z4H754tyq7+UG3K/YwN6vMIg7r9zh/p1JsbqSWvBOOsrgxpwpJek1Q20dOfAMXHKuqadaJPXRgFOcaymUMLpJ3NHj9koDP3zV4n6ozK8y4H714tyq79UG3K/ZwN6vMYg7r92hv+N7y4SVC+MYPQR9Egv8kH7OTD51mNI/lrKrJWkz18Ak/aAwgCiNmZhM+jt63F5r4IevW9wPlfl1BtyvX5xb9b3egPsNG9j7DQZx54179HcQJw/pIutEvdVQvMstSZWVp8zOo68o06zsMgY3BrrmM7kp4SoGmX51C3vocXujgR++aXE/VOY3GXC/eXFu1fdmA+63bGDvtxjEnbfukO9Is0ZCDkrKU2OVKZXUUjlKk7ln8EH6yQPrwFLbBPQae7pM0VPWLf6KS9VkfWU9bm818MO3Le6Hyvw2A+63L86t+t5uwP2ODez9DoO4884d+juSwASgMSbP7CTM6Bxr5piz9702qgAsfZyaEDmzH7WN2Rlj671iSdXCHnrc3mngh+9a3A+V+V0G3O9enFv1vduA+z0b2Ps9BnHnvTvEHR5IxU2fUh2llBHbiIlj9YlCGX7mWSdjh5yC1GPcQw7AuY5AedSSLOyhx+29Bn74vsX9UJnfZ8D9/sW5Vd/7Dbg/sIG9P2AQdz64RX+n9ZKHUEzvSsUecyfgWSukGHhIr7k211OZ+jxorNJtHs0lmrFXD2iyn4Qetw8a+OGHFvdDZf6QAfeHF+dWfR824P7IBvb+iEHc+egO/R1onLwEmNRpyEAdJjCClxjEUzo9AxnCcLHLDCtijUMyoDIEMMRUgJNJ3NHj9lEDP/zY4n6ozB8z4P744tyq7+MG3J/YwN6fMIg7n9yhzhIIFxpnKE2qJwYcOc2Y0pxZSqvQ8nAu+YKZJDBJTUbsW5G2MjSEhCZ9ZT1unzTww08t7ofK/CkD7k8vzq36Pm3A/ZkN7P0Zg7jz2R3iTp+xuYF5zFRb1K1sMgH4CgGC4+CIc4sEUbrN1PT+QipjcPHYpfdj83yWHrfPGvjh5xb3Q2X+nAH35xfnVn2fN+D+wgb2/oJB3PniDnVWaywtZBC4GGOD2NKYvvcI1IfenZwbekl58owOIntlbbqV35SGD8xmYQ89bl808MMvLe6HyvwlA+4vL86t+r5swP2VDez9FYO489Ud+soRs2Qxaehn5Oly7BJNYgDJgxgzZ2QHWTIdavIl4XXQwhwUcuk+D29hDz1uXzXww68t7ofK/DUD7q8vzq36vm7A/Y0N7P0Ng7jzzR3ynZhjLAW6j3FIlOm+xc4cpNiavs0EvXiSto/0dZCStHlan9LoYaIBOBta2EOP2zcN/PBbi/uhMn/LgPvbi3Orvm8bcH9nA3t/xyDufHeHuMMyIwcfdQ/inLCA3rzcvECnUnlmzKCPi3LrkL2UXICOcLTBMgFz4E3ijh637xr44fcW90Nl/p4B9/cX51Z93zfg/sEG9v6BQdz54Q5xJxR2pCOsXmlIpdWal9wGUuTuAFOUeXnkIBOtKdWWNphlnN5Sk5CTC4PJ/cp63H5o4Ic/WtwPlflHBtw/Xpxb9f3YgPsnG9j7JwZx56c7xB0Zn3uXoMoYK/jOE5hrd7NQkQlWT3FQCTX1IEVX991L91nGXzlHR4QpmfR39Lj91MAPf7a4Hyrzzwy4f744t+r7uQH3Lzaw9y8M4s4vd5ijU/JjENeJMVeKoXhG6TCn3KXVzLqyqdRYyXUJM965JqSIpU6ZupMcDpP7d/S4/dLAD3+1uB8q868MuH+9OLfq+7UB9282sPdvDOLOb3eYZw0PeU4szo/gkuQ6I/Ska5xKRpMCpzC5E84aUhH+HvRBikJyIGrFZLPulx633xr44e8W90Nl/p0B9+8X51Z9vzfg/sMG9v6DQdz54w5xJ0UY3bueKY4AjSqW0ZsMy6NHZpipUewyxvKzlxlHaSwN6NE6thEJi4U99Lj90cAP/7S4Hyrznwy4/7w4t+r7swH3Xzaw918M4s5ft7h/B1IQybW2UXGWKcGnU2aKUVKfWqOPPIBGFupJVFwuuhRYjVVCVasm9tDj9lcDP/zb4n6ozH8z4P774tyq7+8G3P/YwN7/MIg7/9wi7jifZIAVZVTeKjdp8qQ0k9dw5Lh36ebUUQEgg+Q7HOVAOJ6NdDGMlMBkHQw9bv808MN/Le6HyvwvA+5/L86t+v5twP2fDez9H4O4898d4s6M0qUBRvQJggPocQwpsipph6eUUXpMXEaDmoW0gEzbm4y6JO9BH53JOqd63P5r4If/c7K1/VCZVeOh5j7C4tyq7wgG3EfcwN6q8VDHnSOdbIO449C3hAk5Um9+NBlVVT9ZOHysgaenmpyEmSShKWBrQ29ZzkHyoelizxb20ON2JAM/PPLifqjMRzbgPsri3KrvKAbcR93A3kc1iDtH2yDuBN/zgNmxV2yZ+nSC4QSjxZDJka72JYfA15x9k0GWj70GGjVzKk6G7xb20ON2NAM/PPrifqjMRzfgPsbi3KrvGAbcx9zA3sc0iDvH2iHulBaGBJmaR+eaJjjGAS1K9jMLe4RQuDbmmGXgFXPSB9Ebkxtdd0h30cIeetyOZeCHx17cD5X52Abcx1mcW/Udx4D7uBvY+7gGced4G8Qd78rwNNnzxO5066yG2CERJgcp95ZkeCVYXLqbIFkOlzqml5yHMhSbdTD0uB3PwA+Pv7gfKvPxDbhPsDi36juBAfcJN7D3CQ3izol26O8MF9yI1VeKGm4yh9S44Ri+kGvNy2wdBV1v60mpQStzpi6TrigjsDJN7t/R43YiAz888eJ+qMwnNuA+yeLcqu8kBtwn3cDeJzWIOyfbId+J2RN1TokknamYE6UBhFNmW6xpTi6NJClqoUQ3yOcphVfS25trGXWYzLP0uJ3MwA9PvrgfKvPJDbhPsTi36juFAfcpN7D3KQ3izql2yHdozhkIuI1aM+Y8s8SUNMhx9uBcCgzUHIzaI3RHAye6w57a6mOEaRJ39LidysAPT724HyrzqQ24T7M4t+o7jQH3aTew92kN4s7pdugrZwkrIUhiQ8mNGYI0mJs2c3SDrMzSax4Jqh+SC/VAPQVJeJJuZxNSlx802U9Cj9vpDPzw9Iv7oTKf3oD7DItzq74zGHCfcQN7n9Eg7pxphzpLADxHH2cCniPVrAtg+IRw2KLLkth0V7g73xP7HEudjVKNLvgMAMVkHQw9bmcy8MMzL+6HynxmA+6zLM6t+s5iwH3WDex9VoO4c7Yd8h1omuSEmXKF2KSx44orKI2eVidNihBlroWh9Nh7aqmwa0XKsjF0A9Fh8jy6HrezGfjh2Rf3Q2U+uwH3ORbnVn3nMOA+5wb2PqdB3DnXDnHH9ekqdOCYg3c5p866TV92yYcBuvzydBKcRhp5VCSsbmoDCKv8PzeTfEeP27kM/PDci/uhMp/bgPs8i3OrvvMYcJ93A3uf1yDunG+L+3dmG5hCn60Sjhkl14ngakyVowSWBqWnovcrj+o4DGoZYu2AQ0KSNH0s7KHH7XwGfugW90NldgbcfnFu1ecNuMMG9g4GcQe26O9Mn91ACOhr4iz/Kr5Vn8fE0XsMReLSpNx0OWVpN0tbebqkHZ/px8xkYQ89bmDgh3FxP1TmaMCdFudWfcmAGzewNxrEnbzDHB293g4YfSb5jQeGDr3FVOZkL20enqVKH2e6HHQ34z5iCknSozYKeenzWNhDj1s28MOyuB8qczHgrotzq75qwH3+Dex9foO4c4Ed4k6UaCLlVJmYc+y+hoSdJKfp0t7hVpg6xNKZpPksfaAiB6RU76X5E1xpqVnYQ4/bBQz88IKL+6EyX9CA+0KLc6u+CxlwX3gDe1/YIO5cZIc6i0KC3uvMefQMPYfsu7RyXOopInXimkBYyQ85HDRcjgwOcpozETmTvrIet4sY+OH/Lu6Hh/mLAfdFF+dWfRc14L7YBva+mEHcufgO8yxRHXJvjhr7OhJipNYpD0CXubqUep8CmJI+tlV6l2NClarXhTPIZQt76HG7uIEfXmJxP1TmSxhwX3JxbtV3SQPuS21g70sZxJ1L7xB3qHbXmP1wiLMMR0BN5uetSZe5yOSqx9khy5eK9H6yr15G6hKhXA8tDZv9QvW4XdrADy+zuB8q82UMuC+7OLfqu6wB9+U2sPflDOLO5Xfo70xJX6Z0lsdsgdzwtRG6EUn6yCTD85wQWpR8KPLoM4Wpz6lHLKkXNyeZ9JX1uF3ewA+vsLgfKvMVDLivuDi36ruiAfeVNrD3lQzizpU3iDvgdKNinnFC1H0kCkf0AcH15DHIl1xzyDlJUiQvkJZybH0iMLfWeZCJPfS4XdnAD6+yuB8q81UMuK+6OLfqu6oB99U2sPfVDOLO1XfIdzJMlNRmFD9acrUkGZaDVFsI3jmQDs/0Y/RENflJ3VX5OhTooaQSO5usN6jH7eoGfniNxf1Qma9hwH3NxblV3zUNuK+1gb2vZRB3rr1Df0eGVGXOVkZ3XlrHAD5P5CgBKDJS6DJM98EnIJROsrR3nB8E2ZUSMadgcr+yHrdrG/jhdRb3Q2W+jgH3dRfnVn3XNeC+3gb2vp5B3Ln+DnP0WHB07/2ULk6WOOMBYokyRq8uBi8RJubip/ehYWw5RRegDso9J4LShoU99Lhd38APb7C4HyrzDQy4b7g4t+q7oQH3jRbnPtmJ/ud/TnmiQ8/9wXOu7+c3MrD3hw4x9//z68iHlj8e6dC9VzjmIbTLsQ6hLT68iS2+etxD915XO8ehs+urz3HobPFRI1sc8xCfv8c5hOfFCQ7heXHCQ8h440N3TYrHPHR2DYcyvzyE1x9/CGO6P4QxyR88p/yQzh8EMXxLJbs2ck9puB59cClGXaly5sFMurBBLb4F13pN2UsnEaCa3IuqfnZjg2vsTRbPqZT5JgbctDi36iMD7nYym2vHUQ+xzkN47Vg2rlrFwv/rfaRg/ZigfnzEQ+xz/RD2dw4eQ998Rod+JBop6DbCDoY2hx2gdH87eOxIpKvmkMM+ap8hutxcmblLY8biGCprN4gvY/G4qszDgHsuzq36pgE3b2BvNogVNzWKFW5SQXRJ27aptChN3BYy9RA4Asj8aOp2VTKtlr/KV3rNMUb5gSJhxeEwmRsp600NfOdmi/uOMt/MgPvmi3OrvpsbcN9iA3vfwiBW3NIoVgRudY5UsHag6YZv7CrM4aLvo+cSabRWeeY4q7zECwE3vQHYtSLDaJNYoay3NPCdWy3uO8p8KwPuWy/OrfpubcB9mw3sfRuDWHFbq1jhDlvHQTeaazPOUTwmSSdaQRroPDSWv+SGroOL03WaGVB0llmhS+licQyV9bYGvnO7xX1HmW9nwH37xblV3+0NuO+wgb3vYBAr7mhVgyDE2SLUKZ3wkYs+cVg71sIlBCk+EIcrvVPHydhGbLmOznFKSEGJIyZ7VirrHQ18506L+44y38mA+86Lc6u+Oxtw32UDe9/FIFbc1SqvCJygl1YoNw8SFCZxciFx4gYSHDJHZkkvJJYctj5UoMlT+hWt6q6URBbHUFnvauA7d1vcd5T5bgbcd1+cW/Xd3YD7HhvY+x4GseKeVnlFosQhTZqtAOHggDLoqDm35OQfINqC7moywiwFGtGYqcloPUVwmW3mIMp6TwPfudfivqPM9zLgvvfi3Krv3gbc99nA3vcxiBX3tcorokSACs6HlPQmnCwh4rC72ann6GbLVLIfLRRNJbJzVVIP6VrkNACglWZxDJX1vga+c7/FfUeZ72fAff/FuVXf/Q24H7CBvR9gECseaHV/RSgMrRNTcy727sOscU6I8sEx+dF9nol8b+BK4pqH5B41Vwc9eSoULI6hsj7QwHcetLjvKPODDLgfvDi36nuwAfdDNrD3QwxixUOt8opcHOpzuDN1lFkp1zYkekiiEUdF0dNLjKNjCXFwkZABOjHxURRPCTMm6x8p60MNfOdhi/uOMj/MgPvhi3OrvocbcD9iA3s/wiBWPNIqryhJ2pry0TUXmXU0pxtrSB0S+9T5h45HpNjIIweCUFKKXKrkF9ENfTjAmeQVyvpIA9951OK+o8yPMuB+9OLcqu/RBtyP2cDejzGIFY+1yiukHTED1lRDzmkmfTCoQ3RZ+pdcNYYk0GLDBfSSTtQmulzwcwSZszKY9DaV9bEGvvO4xX1HmR9nwP34xblV3+MNuJ+wgb2fYBArnmgVK0DOe5CwoAuTScNy9tykQzEoJo0PlZGJG4MH9OCSa0O+nhhmhIbRmezdrqxPNPCdJy3uO8r8JAPuJy/OrfqebMD9lA3s/RSDWPFUqxokytTUUZndt9Aq5TKhpiL1ho8dGFxohXMrOJOkGAFTLjE5SolmkXLEpF+hrE818J2nLe47yvw0A+6nL86t+p5uwP2MDez9DINY8Uyz+zZjo0khTI5tBuhUg3PouXr03RF5qU1ino0yZy9f0fs4a+i51Jl9NokVyvpMA9951uK+o8zPMuB+9uLcqu/ZBtzP2cDezzGIFc+1qkFYFwQEcjG0mGNJGcJ0cbRJHbnkgSNTn977kHj2ELHTCHUC9OxLMdl/Rlmfa+A7z1vcd5T5eQbcz1+cW/U934D7BRvY+wUGseKFVnlFmcX3pmNRwuipxx4ZqHYG6XZWCDITGdLyZOliSDSRssO1GZFTzFKHFJPeprK+0MB3XrS47yjziwy4X7w4t+p7sQH3Szaw90sMYsVLze7blL4E18lVPlgfE6tx9g65z1HC0P3smgQO8tn5SMUzVleDH6NECjmEZnEMlfWlBr7zssV9R5lfZsD98sW5Vd/LDbhfsYG9X2EQK15pFCukedmxzTmliZmxhAY9BJTJCLbQnQOU5MIl6XwOSNBGloYnyGgk6FaZk8GkBlHWVxr4zqsW9x1lfpUB96sX51Z9rzbgfs0G9n6NQax4rdm9WBIAJB5I0zJ3LxKpeZpxFOlHUCKQZgWklCZ3nFPGq7pgq0itrY9SyzA5hsr6WgPfed3ivqPMrzPgfv3i3Krv9Qbcb9jA3m8wiBVvtIoVfmAuEMeQbEFmojNGn1wqTnIMgDLmoFxzyoklqiRubXBNUJzepQV+mqxfoaxvNPCdNy3uO8r8JgPuNy/OrfrebMD9lg3s/RaDWPFWq95mlTkIFfC6yWyo0s1MdWItvuZAnaBIaEDHjVKtxL7NxFRd0P5FbY5MepvK+lYD33nb4r6jzG8z4H774tyq7+0G3O/YwN7vMIgV77SKFXEOfaoUqVddbtPLrCNIHaI1RphVH1CfXuYjCDSou4S1yXw1dx7JtRRNepvK+k4D33nX4r6jzO8y4H734tyq790G3O/ZwN7vMYgV77WKFeBLZciVa5ZMwmU3ULeLiVhajhRT6DL3kMyjug6zFhhTAkuJ6HMtM0yLY6is7zXwnfct7jvK/D4D7vcvzq363m/A/YEN7P0Bg1jxQbOZ6WzSq8DggouSK7iI0tcEByNoL5NkWppFV5bvhCpjkqyr6s0JDV0h6YRaHENl/aCB73xocd9R5g8ZcH94cW7V92ED7o9sYO+PGMSKj1rFCl01UwIG954hY6asIw9dJQ+680RTIkObmUrQUap8vbAjkg6GwzRSzBbHUFk/auA7H1vcd5T5YwbcH1+cW/V93ID7ExvY+xMGseKTZvdXeBeDm9LC7AFkDtrCLMgJksQOveObGw/P7OUF0u7MbqZWfcuYUiHsJv0KZf2kge98anHfUeZPGXB/enFu1fdpA+7PbGDvzxjEis9azUzHoFE6EzlovbLTTW8r+y4VCBBEN5oP0skMs/XDdhdyCBilBpkdnAi0OIbK+lkD3/nc4r6jzJ8z4P784tyq7/MG3F/YwN5fMIgVX7SqQTzD6NQYunQ5EVwXEUzga3LUI7dYoE8u0WWWECLaGGovNNj50djkvk1l/aKB73xpcd9R5i8ZcH95cW7V92UD7q9sYO+vGMSKr1rlFY5rpwmT2cnsNEQpQKSTCWlScVm/OwAwMbVWdbFvySxCqTXXEHxPlC2OobJ+1cB3vra47yjz1wy4v744t+r7ugH3Nzaw9zcMYsU3rfIKIgip9e6pokjMraH0OWNKE6QlwY4z+Tn14ZDkpHXRpi7I6adjpiCphsUxVNZvGvjOtxb3HWX+lgH3txfnVn3fNuD+zgb2/o5BrPiu1f0VbVKN4IaMPXIfOTVRVhq5MnoNiCnWqr0JaW/KWLWUGMmX6mm0KINWTxbHUFm/a+A731vcd5T5ewbc31+cW/V934D7BxvY+wcGseKHVnnFkFCRsu5HiKMWgpLlU0OJPmSSjqckGj4R5l5HlX/KXKR2KKFhoqT3eFocQ2X9oYHv/Ghx31HmHxlw/3hxbtX3YwPun2xg758YxIqfmvU2JS5AHpFmSQEHyQSEXUUHUDBgTx6dVB4gvQkfZQhSqOqdWpiQZB7iTPIKZf2pge/8bHHfUeafGXD/fHFu1fdzA+5fbGDvXxjEil9axQomHpQ6hAgwBuQ4JQjk2aBFaWB0ySRqLiHWnj2mGkdqOQ5PTbqgzneTdbyV9ZcGvvOrxX1HmX9lwP3rxblV368NuH+zgb1/YxArfmsVKzpAZvRZfvnm2EvF4cf0vowJmVovo0jc8CPUnOT/0gotAWrwiZm9zbpYyvpbA9/53eK+o8y/M+D+/eLcqu/3Btx/2MDefzCIFX+0mpm2PkRWD1xdmIM4YOqeY4BWGEryDjO2OPLUvU59S5AlgkQINbUq3U+LY6isfzTwnT8t7jvK/CcD7j8vzq36/mzA/ZcN7P0Xg1jxV7M5CPThZwAXMpakUYGpStkR9W4KrTmKvGC0HGRq2qtPUqtQ7H5kBOmEmvQ2lfWvBr7zt8V9R5n/ZsD998W5Vd/fDbj/sYG9/2EQK/5pVYMU6WQGaT7E6UB6mJRDzpimDDpcCBBTTJgSh5E4DZHaXSttzJ4m9FBt+hXK+k8D3/nX4r6jzP8y4P734tyq798G3P/ZwN7/MYgV/7WqQZAKcUuz1oY4ARHCyN1JyyKwzERbqjyguTp6j9LfZAocscboqYTuTfoVyvpfA9/5n5Ov7TvKrBoPNfcRFudWfUcw4D7iBvZWjYc6Vhzp5FZ5BU0G6pU8hjFCkuamdC8KdmhIwbki8YKqc6F0lkpEokmDmapjljolmty3qaxHMvCdIy/uO8p8ZAPuoyzOrfqOYsB91A3sfVSDWHE0o1jhJVaMiTLXmDIBcV7Go3nMWJPPUoAUyS+GzkjRNSflCPQs8UQfMUtRpiODTHqbyno0A985+uK+o8xHN+A+xuLcqu8YBtzH3MDexzSIFceyihU5h1pgdt9jS1GiQJXKousupnkGVyrqNkNlptamVh0SV2BIz1OE55aHydq8ynosA9859uK+o8zHNuA+zuLcqu84BtzH3cDexzWIFcczihUuQq0SLWJHhtS4Zhoy90goU4/guHMl5khptCRFSGlUaubQqcySqHGxOIbKejwD3zn+4r6jzMc34D7B4tyq7wQG3CfcwN4nNIgVJ7LqV0hwSCW0QuRSbSJuYCssFYhUGEX+czJKdS73nB3nMBiyLyMPyS6QJQGxOIbKeiID3znx4r6jzCc24D7J4tyq7yQG3CfdwN4nNYgVJ7OqQZIvU5qaut4/jx69RIjpnYfgKhAWDSMREoQ+axlBZqdRosUMET32XEzmIMp6MgPfOfnivqPMJzfgPsXi3KrvFAbcp9zA3qc0iBWnMuttAvfeQ8itDA8ATqLA7IUijs4pVV8Jh0w8OjoclEcRgOw7YJf6JJv0K5T1VAa+c+rFfUeZT23AfZrFuVXfaQy4T7uBvU9rECtOZ9evoO5TGjlAr71TgFYBXeyUE0t3IkpJklKos6ALccYQJJB0oAE+UIwWx1BZT2fgO6df3HeU+fQG3GdYnFv1ncGA+4wb2PuMBrHiTFb9Cp/iKKibGjcYsUDB5FxJrceg2weRAw4ek/wiJy2MCM0HESajE6yMJuttKuuZDHznzIv7jjKf2YD7LItzq76zGHCfdQN7n9UgVpzNKq/IIWUpL9zootCn2TgDyUfj9DE3iQjyh+4aNCpkqCKUJfGIGEcrLgRvcQyV9WwGvnP2xX1Hmc9uwH2OxblV3zkMuM+5gb3PaRArzmXVr8BITLrSpgw1ZGQ6Y87DV84+VN3/A3SJb4q5z4wIOXMtWZ8xRaiYIQ6LY6is5zLwnXMv7jvKfG4D7vMszq36zmPAfd4N7H1eg1hxPrt+hRsELmcK3F0eMuYITDVXaVnIlBRcndzIhzRFZPcjSagg6Dm1LD2LbHEMlfV8Br7jFvcdZXYG3H5xbtXnDbjDBvYOBrECrPIKAiAoxcUi45Bc45DcYrY2S5+hZOzBFd9C7lFVyjCkyGRVpqp6j+eowSRWKCsY+E5c3HeUORpwp8W5VV8y4MYN7I0GsSJb5RWFc0pesoo4cIgmrH5WdjAbMvjuiFJkBp7D6b6nMzikgK5Fip3BpLeprNnAd8rivqPMxYC7Ls6t+qoB9/k3sPf5DWLFBazyCkjVQZgkM9Iym/QoQghTdwzioAmG5BKdOc8JI1TmMWuTb45KubnibJ4HUdYLGPjOBRf3HWW+oAH3hRbnVn0XMuC+8Ab2vrBBrLiI1cw0AGDm1ikilCCSfMGRc4DcU6nSxigN8+g+oQxRsTbXJzl2kQfRaCZr3SjrRQx8538X953DbGzAfdHFuVXfRQ24L7aBvS9mECsubhUrWnQBJUNgTrnJkLT3KYED6oTU+0i6QTpSZ5Gld3WO1CC4GZlKpuYrWRxDZb24ge9cYnHfUeZLGHBfcnFu1XdJA+5LbWDvSxnEikub9TZnqZIgyOfgCFPmpcip1ZHIjVrHLJyQS+cYPNXKs4UJLXYPTbueeVocQ2W9tIHvXGZx31HmyxhwX3ZxbtV3WQPuy21g78sZxIrLW+UVCFWfQIc+JL0YNcrUg3X6IVMQP6Zr5BI7Xb87Ncej4hBZubLe01n7MIkVynp5A9+5wuK+o8xXMOC+4uLcqu+KBtxX2sDeVzKIFVe2yiuksynFhsgqjUQJN4kbKBVI7E2UzZqDNDKda/K/yj1gSyJdKpWQMFRnct+msl7ZwHeusrjvKPNVDLivuji36ruqAffVNrD31QxixdWtYgWHhoFal/Pfp+gYGoXcpEeReuhN+ph55Ai5lRn0Zs3WkoxFUhm+FmZvst6msl7dwHeusbjvKPM1DLivuTi36rumAfe1NrD3tQxixbWtYoXrCLqWjZQgUl8kkHnoHFXGILXLpHS4LEJz6Og7uVhET2kpFF0Bp/o5TO6vUNZrG/jOdRb3HWW+jgH3dRfnVn3XNeC+3gb2vp5BrLi+1b1YUKSfCZPmYA/DUS8juZkLeBcgFEkvkuQbFGru1IcMVlNvoWBNJTPbrHWjrNc38J0bLO47ynwDA+4bLs6t+m5owH2jDex9I4NYcWOr3mb3XZKKNnItmAZmn4GmTx5qiBgJpYeZJSZIQVIZUnY488zJRxmZzggm/QplvbGB79xkcd9R5psYcNPi3KqPDLjbBvZuBrGim91f4YZUF0S1+UAFpMCYtU3vUiWCydLIqDJN9SUnjtx8CZm4jCmRo/mUTPoVytoNfGcs7jvKPAy45+Lcqm8acPMG9maDWHFTq1hBQ876TEniQpSRqGNRxy2QlB0TQ9BVel1PWWapklfI0DRyHjMwxZnmZJOZqbLe1MB3bra47yjzzQy4b744t+q7uQH3LTaw9y0MYsUtrfoVUUelVR8w1VVvYuyuIHbOlEObJYRWJcHAGqk16Oyy64FkblJLjjSGyRp6ynpLA9+51eK+o8y3MuC+9eLcqu/WBty32cDetzGIFbe1yiukPZFkEpIZJFFopeg93SDtTJzBs7QwtJMJPRYc0HNOUJLWKLlLVKmzmhxDZb2tge/cbnHfUebbGXDffnFu1Xd7A+47bGDvOxjEijtazUwlEASRVlsq1PyY3GfTB0Kal1Dhoo9NOpg8pIuRmoxGYhtTviZ/jUjSBbU4hsp6RwPfudPivqPMdzLgvvPi3Krvzgbcd9nA3ncxiBV3tbsXK4fiesc6Z+8cnbQsOXGgOt1wXBLGiYPGrBPKnAEcUC0BRwtJfsDiGCrrXQ18526L+44y382A++6Lc6u+uxtw32MDe9/DIFbc06pfkZ3HEXOcVFqUlqbX/cWmNC08N8gof5G2BbfCUzoanKvElJ5Zuhe6Tq/NM+nKek8D37nX4r6jzPcy4L734tyq794G3PfZwN73MYgV9zW7FytjYvLSkMCGvUnqIO1O9K3P4meLWJskFTmH0byMRvR5VIiJZVw6g8QKk2OorPc18J37Le47ynw/A+77L86t+u5vwP2ADez9AINY8UCrWEEzSTcil5idnPpZag4nNYjvfgAyl0HoZpvS0KDigpe2BozBsdZQsrRFTeYgyvpAA9950OK+o8wPMuB+8OLcqu/BBtwP2cDeDzGIFQ+1ihUeASLLIFQk0ShlQijDFWlhYHVcKfXCaXB2s4CT/w2mOSpKX6NLGmISK5T1oQa+87DFfUeZH2bA/fDFuVXfww24H7GBvR9hECseadXbHMQulhIySuciAVQosQHOzlVanBg7UQEufXbnGUaanGHmlkEGJJFN1vFW1kca+M6jFvcdZX6UAfejF+dWfY824H7MBvZ+jEGseKxVrIhcsq81Dxl/BJmDZoSUuosgGnOLdUgPU3KOBpJTtO5GklkJBN8C+j6iyT3eyvpYA9953OK+o8yPM+B+/OLcqu/xBtxP2MDeTzCIFU+0ihUEQYYg0riEFkpoefRQo48xl4pSkFQUeQ5kVppdozA6Bpdj8DgRuqvN4hgq6xMNfOdJi/uOMj/JgPvJi3OrvicbcD9lA3s/xSBWPNUqVsiJn3SD0qkfmktJperDYskFRy20SgHi8Bk7tz5mEO2gmx4zueh8NskrlPWpBr7ztMV9R5mfZsD99MW5Vd/TDbifsYG9n2EQK55pdn8FulCIeGSJC5FTCdBlVhqStCxiTg7RU9D7Nnk4IJmUFlEqLxQQN6LJM+nK+kwD33nW4r6jzM8y4H724tyq79kG3M/ZwN7PMYgVz7XKK5J0JyBM9AG06mAPgTL0NBomahJBug+1SG5R+xxQWooSNrJPXpfMisHiGCrrcw1853mL+44yP8+A+/mLc6u+5xtwv2ADe7/AIFa80ChWBIkA3JhDrlJ41BKoz9oJ2QFP+V6uNSQR7ItzIRaMHCtEKUxmLi26YnEMlfWFBr7zosV9R5lfZMD94sW5Vd+LDbhfsoG9X2IQK15qFStaFQkF60zNldQToRdxjAOhoeOces+NoQkAzugb670WhSo4DimY3F+hrC818J2XLe47yvwyA+6XL86t+l5uwP2KDez9CoNY8UqrGsTVWjjIYAO4EY0SQpePpZlq7LqEXkAqh911If3MFhJMjJ58kfZFjNBNepvK+koD33nV4r6jzK8y4H714tyq79UG3K/ZwN6vMYgVrzWbg7ScpaQASS+kV4nS6kyxpNAgMI9Sqcg3Q0Z9YEy0RM5SlYA0Q3OTUWpni2OorK818J3XLe47yvw6A+7XL86t+l5vwP2GDez9BoNY8UarGsR7l2bKsXV9tHT6yhIrxqjS2syoS1eE6OT7SE3Xv6m9DGlbMNUhr0SbfceU9Y0GvvOmxX1Hmd9kwP3mxblV35sNuN+ygb3fYhAr3mo1M41tsmuAnYYfeYaao+YQBaUwyRl7keqDCWsPXjcXCjGMMmOdA7mUbHKPt7K+1cB33ra47yjz2wy43744t+p7uwH3Ozaw9zsMYsU7rfIKrCNCwtwZ22BX5QN1lZupW5qKQoaSGiWfdPsx73xsElJ0LNJJhGKxOIbK+k4D33nX4r6jzO8y4H734tyq790G3O/ZwN7vMYgV77WKFdNnFzjN4n0sJBpFXEQRUfzAiq7N5t2sjQJH7uR9KNLj8KS3ekp0sTiGyvpeA9953+K+o8zvM+B+/+Lcqu/9Btwf2MDeHzCIFR+06m1Kz2HqwyC9BCeDUCkxQg6VcwkxR6k83HCpsxu+UBt6G7g+s56Cr5DcZJP7NpX1gwa+86HFfUeZP2TA/eHFuVXfhw24P7KBvT9iECs+atWvIJmETtQl/7E13aVwjgGzQU/cnesdfO+9dWlmEvAcOYO0KUpNolVEJ4tjqKwfNfCdjy3uO8r8MQPujy/Orfo+bsD9CWPuQ3FOq8ZjH9rjGY5zCG1z3EPAO/n//DrBITx2Jzx0usZXj3vo3utq5zh0x+vVh+696jHPeegY5zkPnR0/eOh08YcO4Xt9+JwH+3RhNqwcIxcIklZ7n4aXEaCTVLp4apFoxOoJpESXtwlAPek795hqme5/Dvw6yqE91/3x/v/4/DyUPvL/ibnnXPtaeIT/93v+f+ePUsjNnqZ0fl0gFyUJazGiFHTcIc+ClHMW5/SuOqodMGALeaYpLtpy5HSEQ2iPTx68rorzdApQpdkUAk9OjsvUze8hSeIYZLolY3L27HJIgNzQdYzYR5Kfkqzyfw78OqLBsTxUzJ86wByK/JT02bo+/ugAyYkd0HeUL2LLfuaRWmqxewwOEVqKBJULTy/9/Nws/EZt8imDHOrTi+eOqu/TBtyfWZxbbf0ZA+7PHvRzjI0zTrnY+dmy6/qf1yKwlSwtptgQKKScElAD0p0lXfO+cwouQTK5R071fdaA+3OL21uZP2fA/fnFuVXf5w24v7CBvb9gwP3FA9y+js5ybleqhf1gn6B4J1krZTnzvVzKmIqMnHIhkoHSrKSLC7kg75vL6Cb7J6i+Lxpwf2lxeyvzlwy4v7w4t+r7sgH3Vzaw91cMuL96kJsKyWU4OGapD9wMPQ3IEeVkHrXBgF7ZVWw+VjdKCRCiVAscamfvUjJ5Jl/1fdWA+2uL21uZv2bA/fXFuVXf1w24v7GBvb9hwP3Ng/l5Kw09YJR5bp6+RAoh6C1jM7DMadKoUn+yNAJSdUxzNt/8KJMy9R7lRyy4Vd83Dbi/tbi9lflbBtzfXpxb9X3bgPs7G9j7Owbc3z2Yn3usJSQXUvET9cYuTyXJT2anj6t26T/nHjNPl5yXUNBIknJ9Wi0Ujmhz/VZ93zXg/t7i9lbm7xlwf39xbtX3fQPuH2xg7x8YcP/w4PV7hjr0AVSpvanLJTtjhwroRx5xDK41ZjmVXcvZQ4Ehr59J6m+S3ySDN1nbQvX90ID7R4vbW5l/ZMD948W5Vd+PDbh/soG9f2LA/dOD1283qEh9Dbokv5znrYUmX8oURmCMKYdYOY08e6zgam8+xODTjA6rQ5v+uer7qQH3zxa3tzL/zID754tzq76fG3D/YgN7/8KA+5cHr9+sPy2ZuLyWvXbUOpU2ZOobaypOrtAygU+YK2OX95G5vZO5WaxRYkIP2eTeSdX3SwPuXy1ub2X+lQH3rxfnVn2/NuD+zQb2/o0B928PXr+lnB5h5BKkQz4YRyOEzJBRqnKptEfLqfrhu27113Mdg7orID04vTukdAtu1fdbA+7fLW5vZf6dAffvF+dWfb834P7DBvb+gwH3Hw9yS2+NuMwYZcrdJzsKBKF0ylGu227gjHJSAwR5B0i+MUhyjkHa6YjEs1hwq74/GnD/aXF7K/OfDLj/vDi36vuzAfdfNrD3Xwy4/3owP4cyYMYmdfhA51MndGNKdy2inOizcZOvND3jHYwEOYWeh5OJOflS3DS5fqu+vxpw/21xeyvz3wy4/744t+r7uwH3Pzaw9z8MuP95kBtikI5aYE6EU67M6BJiJY9t6CqNuXnUvasouDJHpQwgnfXQ+8w9oDdZl031/dOA+1+L21uZ/2XA/e/FuVXfvw24/7OBvf9jwP3fw83HEqDMtP0oGSbPlqBgxtGbfK2W7h0HACpyRvsxIHRXS8aahpOX0zRZ80T1/deA+39Osba9lVk1HmruIyzOrfqOYMB9xA3sfUQD7iMd4PYMJBfplKWp1mNPUd4xzwqRq/TafPJdL+4oZ3+rUa7hiXroPmaZivvMxWS9dtV3JAPuIy9ub2U+sgH3URbnVn1HMeA+6gb2PqoB99EOnt++yM/SbJhqkp6anNlz1hyCXKelq9Zb85O6JOUwnR88HbnJtU+Muhgqmpzfqu9oBtxHX9zeynx0A+5jLM6t+o5hwH3MDex9TAPuYx3kplpjH0Ck96zIVFsm3QX04TEaYcbeSyW5sI/m5EXNy0eHHGVGFnRBCkaT+1tU37EMuI+9uL2V+dgG3MdZnFv1HceA+7gb2Pu4BtzHO3j9jpKBQ/cIXbdISmUUGYk3OXVbA63G2SWPLvs45ijgS4+UkvfRkbTZbc5v1Xc8A+7jL25vZT6+AfcJFudWfScw4D7hBvY+oQH3iU5x8P61qJPsVrxzgAA1uNZSzIyJYqxyUjcvpz2WmpPMwz12mYeHzNkN4upN7l9TfScy4D7x4vZW5hMbcJ9kcW7VdxID7pNuYO+TGnCf7HD5OfcWSymYphTU0GOYncJAuarn2UuK0OXELq2PnksorhWe1FzlGTN6k+u36juZAffJF7e3Mp/cgPsUi3OrvlMYcJ9yA3uf0oD7VAev38DaSsOYu+6LzA1Q2mtpUIu1yZdqbFSGZPGpc5ld3kb6azAaVe89N7LgVn2nMuA+9eL2VuZTG3CfZnFu1XcaA+7TbmDv0xpwn+5g/T1ccxy99MPlZclT5wkVS5guRrlOu1zlrHZy7c4Vw5ChOGS5xodA3bcyTJ7/Vn2nM+A+/eL2VubTG3CfYXFu1XcGA+4zbmDvMxpwn+lw/TUe5AtThikX7JCk1daZSpSTvktqTrX0Wpprkyk1HjJAq851SD0FyMUkP1d9ZzLgPvPi9lbmMxtwn2VxbtV3FgPus25g77MacJ/t4PntQsh65oYwZTTWZEgml+jupwzF5T2l/RZSbJ3zcDOVmeXkLzl5mZGXCnKaW3CrvrMZcJ99cXsr89kNuM+xOLfqO4cB9zk3sPc5DbjPdZB7xgHydgG5uyZNtVoBa0g43ZCmGmLvTrprTAH7bJmiD4A5SDrfgk/e5Pkx1XcuA+5zL25vZT63Afd5FudWfecx4D7vBvY+rwH3+U5x8L2C05tNKZc4MVMfgWQGJp8gZXl1vR22sQF3rAgxyTnv2mhcEgU509swWZ9J9Z3PgNstbm9ldgbcfnFu1ecNuMMG9g4G3HCQOyBOmrpYA8n7FnmvjuQIA8iVG3l6H9yQD/O9EjkvYWDo1X32OlMHE27VBwbccXF7K3M04E6Lc6u+ZMCNG9gbDbjz4ebf0xWiolvv+D4qtdoCxTlaz5x9B687JmFrDH1Azl2fGpW5Gfrqw2gm12/Vlw24y+L2VuZiwF0X51Z91YD7/BvY+/wG3Bc4OP+ujpGHnMdYUup1INQIzjMiJJ9Qmm8yHG8hFt97bTMD+SEfQsStYjTZv0T1XcCA+4KL21uZL2jAfaHFuVXfhQy4L7yBvS9swH2Rg+e3vDpDK7mF3HwZI0XJwRtEN0IHuYDP3BzSSFUG4o1bjhD0W9KJkxx+mnCrvosYcP/v4vY+zC4G3BddnFv1XdSA+2Ib2PtiBtwXPzgf62Gi7gyaU8odh5TbUlUjFAzkJ4DMyginjz35Kql8Hix9N4Kap8zPevUW3Krv4gbcl1jc3sp8CQPuSy7OrfouacB9qQ3sfSkD7ksf5E4ZcCbEPHrimEoPQPqkt0zCfUxRugBDvp97ox6lxZ5Hxkahuw6B5jS5f031XdqA+zKL21uZL2PAfdnFuVXfZQ24L7eBvS9nwH35g9fv7Dk0GKkFfQ40hJglQ+/SS0+Taik4tUDPBWoKxEhRruCsd6bnPOVbJv011Xd5A+4rLG5vZb6CAfcVF+dWfVc04L7SBva+kgH3lQ9yy6uK5N+jzyo/2GKZAeSd5O3l3EaWTDxSHRFr8YCcebJU51DRj0EBTO5vUX1XNuC+yuL2VuarGHBfdXFu1XdVA+6rbWDvqxlwX/1gf62nrjsUjRD7bLWg7l5SpXVGjfTMx5YKJCyDpacu7yodOPnMUaIMxyaxyfVb9V3dgPsai9tbma9hwH3NxblV3zUNuK+1gb2vZcB97cPNv4sk5ZxGyQg4ogzJcNRRUm0pJfC1sOTiVW9JL9JwSzXJX0soNIsrhUzWP1d91zbgvs7i9lbm6xhwX3dxbtV3XQPu621g7+sZcF//IHd20DM3P4h89C74jt0DtTmm1N2uUe0ONF2Xt5yzYK2xTunASW6eize5fqu+6xtw32BxeyvzDQy4b7g4t+q7oQH3jTaw940MuG98MD/PLuQJpSHHXlxqLUhq7mJs0BxRDiR9NpAPKaG3ySNhQ99m8qnGANnk+q36bmzAfZPF7a3MNzHgpsW5VR8ZcLcN7N0MuPvB/jlmj3Jhbrl05wvqQos1UKYmb9IbTs7NpepKK13eDVIqwSd5EdQus/Jqwa36ugH3WNzeyjwMuOfi3KpvGnDzBvZmA+6bHuSG7oZk46F5AGyx5Rq9vmNPbjquEX2llDinOnxELM4nKEyJcpQLvMn1W/Xd1ID7ZovbW5lvZsB988W5Vd/NDbhvsYG9b2HAfcuD+bnMuSL2kP1h35phTpYz3jvtpMlXO8tbNEwtB/lrAh44WgYMY7omQ3ILbtV3SwPuWy1ub2W+lQH3rRfnVn23NuC+zQb2vo0B920Pd/3ODD2i7m0QcADKe3SWHDxAD2VGJg+ucpdZd5RyGyj03Ko03jpIgQMm96+pvtsacN9ucXsr8+0MuG+/OLfqu70B9x02sPcdDLjvePD6DRNywllHTAyhS9IduyTjuXBKclZz6fJWvYWIiYOfxXvHKNNyN3uMxSQ/V313NOC+0+L2VuY7GXDfeXFu1XdnA+67bGDvuxhw3/Xg+S29tMCxydW7yntKxS3NtCil9uTKVVvpE+VfEgPkLaQkn57kVAdMMTndHtyCW/Xd1YD7bovbW5nvZsB998W5Vd/dDbjvsYG972HAfc+D3IwzVIoDBvQ5CR2SdM3l1UWmZp5lFC6VdyIJAVWfL6M2UE7vLg32CcHm+RLVd08D7nstbm9lvpcB970X51Z99zbgvs8G9r6PAfd9D3LHSOR6AjcghRblf5AkS5ce+tR9wGuQQRjnKGM0edc8W+jTFRmXy/ghFzLpr6m++xpw329xeyvz/Qy47784t+q7vwH3Azaw9wMMuB94MD+XZDxXuW4XwIpzTkQpu71PtbTkC9VOOgEv0oEjIHlxKX6GEiFEFg0m57fqe6AB94MWt7cyP8iA+8GLc6u+BxtwP2QDez/EgPuhh+uvybVZMnNiP5DS4OrA5VH0ZjW5gEsaXj0lqHLWe6/PoehZn2VeLrOx4pJJ/a36HmrA/bDF7a3MDzPgfvji3Krv4Qbcj9jA3o8w4H7k4etvTgVDmkV+54zEJffscgw1YyeaGNpwueUp3wL5HPlD5uG1Ym0+TAtu1fdIA+5HLW5vZX6UAfejF+dWfY824H7MBvZ+jAH3Yw9ev3upKBl46o0HZnBehmC1pilDccozNZJeuVzCcTZqpcmkXBvr3LLzHDCZcKu+xxpwP25xeyvz4wy4H784t+p7vAH3Ezaw9xMMuJ94gNuHRG74UJMU1CO6JqOyAHIhnwhpDmmjudacvAY5BpfzQAihzgKVXamuWXCrvicacD9pcXsr85MMuJ+8OLfqe7IB91M2sPdTDLifevD67TNXLyOwVhzKOU4DYiPiWqi1MUeKTVrn3HXhNb1plXXP4CqRQL7EBNmCW/U91YD7aYvbW5mfZsD99MW5Vd/TDbifsYG9n2HA/czD198pe+jMLtcEQYZh0ZdWyRUcxddIFQESAsuITE7oUZp3NA5bcxViMFk/VfU904D7WYvbW5mfZcD97MW5Vd+zDbifs4G9n2PA/dyD1+8kkzGqsTT2mCh6bDhy73KtdiBX8dGYUxh9jFYdUXFdHw2VH5HrPjpvcn6rvucacD9vcXsr8/MMuJ+/OLfqe74B9ws2sPcLDLhfeLD+jqHNHqRb3oJDmXTLVHuAc4gg5zPMEGsvmaov4KP0z2eKyYMLUrSPhMGEW/W90ID7RYvbW5lfZMD94sW5Vd+LDbhfsoG9X2LA/dKD5/csoxLohiU95Cnt8cE+z171+W50I+ceIQPwAIh98OzcQQbgFWaVqZnJ/Fv1vdSA+2WL21uZX2bA/fLFuVXfyw24X7GBvV9hwP3Kg/m5DMWk9i7JEw25QgcYSVL2HIkncquSuYcqHbgwexwYW4vSbfc1QPdywtdhwa36XmnA/arF7a3MrzLgfvXi3Krv1Qbcr9nA3q8x4H7tQW70MvryVDDISS0X6wEtsfTHI6C22Sa0LjPwLlf4glymvHKWmgbFBlCKyf6Cqu+1BtyvW9zeyvw6A+7XL86t+l5vwP2GDez9BgPuNx68fqMfIEl6ztJY6zIHp9CjTMnkvVg65U5abxNckbfPTZJ31zAE6clBkGZ6YTTZ30D1vdGA+02L21uZ32TA/ebFuVXfmw2437KBvd9iwP3Wg9wy7fLTJTmJk5zqlEoplbzk4aGMTolalx8sWVprIfZw2PItI8j5L3W4JOkm82/V91YD7rctbm9lfpsB99sX51Z9bzfgfscG9n6HAfc7D16/oy7QNKiSzLOpQJdOumeaSTL1WoprPsThW+oVe+wkl/BaOY1Js0wp0U3uX1N97zTgftfi9lbmdxlwv3txbtX3bgPu92xg7/cYcL/34PlNSfcLLHLuOprYWs/Zu16rH1N+zjXpo5NM0IYEAgS5rs869UaXNoYv6Ezqb9X3XgPu9y1ub2V+nwH3+xfnVn3vN+D+wAb2/oAB9wcPzscaU8+6E3Bp8rby3YoDKST2s6Lj4HOHOX1ugZrHxNBrhxAwdE+pm3Crvg8acH9ocXsr84cMuD+8OLfq+7AB90c2sPdHDLg/epB7to5FmuEYgTq3nCJB5UwkMzCSSzc3ycuZYxgj1YaItQUIpfjuCtqs76D6PmrA/bHF7a3MHzPg/vji3Krv4wbcn9jA3p8w4P7k4eZjs/eUUx69pTly0WabxymTb+m4OU6hYJ8s47PsA1Pu8tEoV3d5z4jNkwW36vukAfenFre3Mn/KgPvTi3Orvk8bcH9mA3t/xoD7swe5pVfmA8XIMwaQMlwu0sBA1ORiHVqk6buMw2bIDkuXHrofOYPEBASo0oyz4FZ9nzXg/tzi9lbmzxlwf35xbtX3eQPuL2xg7y8YcH/xcOc3ycntgSmEiDUH5/oA1yORpOczTwBMTUrw3D24qLefR3mrQd7PnKbJfEz1fdGA+0uL21uZv2TA/eXFuVXflw24v7KBvb9iwP3Vg9w8J8ncy3fQ3jh7uYJHHkye40hy6qfqZvATo5dvj5Cj8x7iKP/nSXGT9ZlU31cNuL+2uL2V+WsG3F9fnFv1fd2A+xsb2PsbBtzfPMgdHNXZpWGefcpSdQfUJdCJ+wwyIWu6RuoA8EGfLYOeODdpo7N0zkuSn6kW3Krvmwbc31rc3sr8LQPuby/Orfq+bcD9nQ3s/R0D7u8enH9Ddm0kH0IbMcqQrJRGcRCGGmU6hmFS05Z5zIxSqkud7ntJqXPPHKia3J+q+r5rwP29xe2tzN8z4P7+4tyq7/sG3D/YwN4/MOD+4eHvb2mNfY3TQUlMMv6escgFOgRppoGvcqn2szBnSeTTcAFj0C2KUp005TMtuFXfDw24f7S4vZX5RwbcP16cW/X92ID7JxvY+ycG3D89eH9LAJQfhoFuSMGdHOnOv+xIOmhdrs8hIATX9DmTVOKotY4BpXaZlM1UbZ4PVX0/NeD+2eL2VuafGXD/fHFu1fdzA+5fbGDvXxhw//Jw97dIrY00JOFukXUxtip9s+xluk2QBhaQEjyFLl/ynN1gkEYbVl16rcn5TRbcqu+XBty/WtzeyvwrA+5fL86t+n5twP2bDez9GwPu3x68fqOXSzNEKcJj112Hph+Sn/tZUyrZE8tlO0CtCK7Q5NZK7jIrb3k2Ziom/XPV91sD7t8tbm9l/p0B9+8X51Z9vzfg/sMG9v6DAfcfD3L3mrs0w5sMvkN0kHByRl9Ifp6Kl9q8uzCq/COWMTDJcEw3Pyihc2SoJue36vujAfefFre3Mv/JgPvPi3Orvj8bcP9lA3v/xYD7rwf7a2WCvCzS7K1Snk5eCVGy8Zi700fEUB8GpzFLcL17xgBJ9ypLXKC3abJ+qur7qwH33xa3tzL/zYD774tzq76/G3D/YwN7/8OA+58Hz2+5OkvmLT22TKVln2UgDnPoCLz1ObDlMnxIcm5PaEWab9WNpkskz0opgsnzoarvnwbc/1rc3sr8LwPufy/Orfr+bcD9nw3s/R8D7v8ePL8TygCc9aXcfULdxSCPEJFdK86l5lxvmQH68PJK7pKdz9jlIl6l51ZMnh9Tff814P6fU65tb2VWjYea+wiLc6u+IxhwH3EDex/RgPtIB7hDyMiBHCccMhODKI3zXPPImUIPcbTopRTvvWDqmXok0FWcapkIvRQ0uX6rviMZcB95cXsr85ENuI+yOLfqO4oB91E3sPdRDbiPdsqD8+8aG0sWrje4gJzUbromLfLYWRJxfd4klUEtRHnf5kqeqSPFiJOiVO2hWXCrvqMZcB99cXsr89ENuI+xOLfqO4YB9zE3sPcxDbiPdfD6LcV3IqBZSgmhQquTq4u9JJDx2OCamkzLQPpsPCp5aqV4dF4+wBXm0C24Vd+xDLiPvbi9lfnYBtzHWZxb9R3HgPu4G9j7uAbcxzvInduMsZY+eu2zygkO7f+s0hQdtRawJSm1UQbelHU7EzclHHBzQM2DNNItuFXf8Qy4j7+4vZX5+AbcJ1icW/WdwID7hBvY+4QG3Cc6yI0o1+fgYiwyG0sDSRrlc1YPGHMcUowX7g1dClKdUw3Samuz1VJYGu4yQbPgVn0nMuA+8eL2VuYTG3CfZHFu1XcSA+6TbmDvkxpwn+xg/S1TMH1KrA7Su9CLDMKlrI5NZt84Wi++o280pz4MSsVlabeFQjIQ7zIyo2bSX1N9JzPgPvni9lbmkxtwn2JxbtV3CgPuU25g71MacJ/qcP3z2b0P3N1MhNnD7AE8Bu2p+Sgz8FArSivdpekkgUeWCtzFoJseSOXeqgW36juVAfepF7e3Mp/agPs0i3OrvtMYcJ92A3uf1oD7dAfPb2mVy2wMBoTOLZQZmpzfc/QwcxmYoPoW0fUSJYmH3nRn8FZrLzWFPLrJ89+q73QG3Kdf3N7KfHoD7jMszq36zmDAfcYN7H1GA+4zHeRm1u1+maP3DamwnN0jFaaZ5cdkzh3AQU6tpRLk4j1kXN54zibN9OIYTfprqu9MBtxnXtzeynxmA+6zLM6t+s5iwH3WDex9VgPusx3kljK7NHYB5H10I1HGET3mGoKv7GimWF1tg3OeeaTgWpixBS5lRj+Tyfmt+s5mwH32xe2tzGc34D7H4tyq7xwG3OfcwN7nNOA+10HuIhfqVlhO1yi9s5SkxIbctdUWqozGeNCU7jmmOrB0T8OVWENjSlkiAZms36L6zmXAfe7F7a3M5zbgPs/i3KrvPAbc593A3uc14D7f4fprHrL+PEzdlag5OddTI65MWFqbQD3XSGnSlPQ9Q6TseHCUU37UNEzuX1N95zPgdovbW5mdAbdfnFv1eQPusIG9gwE3HJyPofTOU04jjpa04q764Bg3lJ8Z8hFj+Ohi9h2AZu+st7lwCU3m5T5VZAtu1QcG3HFxeytzNOBOi3OrvmTAjRvYGw24H3KuQ8v9//w68iHmP5TvdYRDePzyofMbf9AWwdXZ0+zUXCDJqEqRMIolRO6QZ5H0KecCwbvqqHbAgC3kKYPLHlqWKYiFDyprNvDBsvi5p8zFgLsuzq36qgH3+Tewt2o80iF+30MZdy5gFHf8xAogOZuXoq3loVOWHjC2OWr1DlyTak1iUO0TYi3B+yJFXpF5KqAbw+QeCWW9gIEfXnBxP1TmCxpwX2hxbtV3IQPuC29g7wsvHncuYhV3JN5A6TNz8dnPxgPJ+yAT3prTlJwm1556p+6SRBr2rk2SylMmQTRiAZN7q5X1IgZ++L+L++FhNjbgvuji3KrvogbcF9vA3hdbPO5c3CjuSHWVs6fJcXDIvvlYZCZFvXrQTQM89+gGjpwk5cGpG3K3mF3KUpdh427yTKayXtzADy+xuB8q8yUMuC+5OLfqu6QB96U2sPelFo87l7bq7wCV2hlkTFZ4hiR/iUGG3jIHd4Ui1epg9JFxgPy1e0mEyI+o97oEl4vJvS7KemkDP7zM4n6ozJcx4L7s4tyq77IG3JfbwN6XWzzuXN4q36kF23TDERIi8ei6/sTgKjEosqQ/DqXPM3uQQoxmqXpPfYkpeUfJOZt8R1kvb+CHV1jcD5X5CgbcV1ycW/Vd0YD7ShvY+0qLx50rW+U7KGUTS4jBXsIQSRJxJLPpLtaJTneGmIUxdWYvrWXHlStW6e80ENHFmawdr6xXNvDDqyzuh8p8FQPuqy7OrfquasB9tQ3sfbXF487VrfKdwrmnULzMrRLo8ltpOMl/SuXoqvxTes0dYgRg3xE5SBEmYQiEZXZnM89S1qsb+OE1FvdDZb6GAfc1F+dWfdc04L7WBva+1uJx59pW+U4eqTSuMp+StjKVkLiXDjlWqbta0G6PC2HAzD6O2pL3Wbo80nGW3k7u0+ReSWW9toEfXmdxP1Tm6xhwX3dxbtV3XQPu621g7+stHneubzVHT9O7WaOuIeqngw6jSAlV0yAZm6dYm8+JRUz0ujV2j+xj7DUDVp7kTJ6xUtbrG/jhDRb3Q2W+gQH3DRfnVn03NOC+0Qb2vtHicefGVvkOjQBVOstENY+QiKjnQtUxu+4yJ/QjBSmqIGVomamgC863lHOXjMhk7TRlvbGBH95kcT9U5psYcNPi3KqPDLjbBvZui8edbpXvNKJMGmB6mlJRtVDDmAVkrC5hRmzXsEOpcwB1bK72CM5LFuRKmNDQJN9R1m7gh2NxP1TmYcA9F+dWfdOAmzewNy8ed25qle9I17glCD3lWKR13LFk6jKwYslrICfUtSaZGoIM2YFnKCW3HFLvMl131aSvrKw3NfDDmy3uh8p8MwPumy/OrfpubsB9iw3sfYvF484tzebo2RHW6gJyY9fqkOopD2iBR+jkhqvReR9z1BU2nEQoyYGIddPmSgmzhT2U9ZYGfnirxf1QmW9lwH3rxblV360NuG+zgb1vs3jcua1VnZWlUwOSwBQsMY4Q6gh5cgVseU75V9dnJUbtLI2ePKj3IBN36jJ0z0DOpL+jrLc18MPbLe6Hynw7A+7bL86t+m5vwH2HDex9h8Xjzh3N7leuo3hstUWJK6nlVmS8NYrLTYZc0evGOrmSdJJLaTDkyxKmJkikmr1Ji8fCHsp6RwM/vNPifqjMdzLgvvPi3Krvzgbcd9nA3ndZPO7c1SruBNFQqiscsbuEUcbpJboRW5/Roy8FpJXTKpesNxRKclS4Bu9FXkp1mvR3lPWuBn54t8X9UJnvZsB998W5Vd/dDbjvsYG977F43LmnVdzpUCfnGYskMjIxl5QHxvA8hlZYXW/SwSklVeol43TAQyZeNWOcXcfvJnFHWe9p4If3WtwPlfleBtz3Xpxb9d3bgPs+G9j7PovHnfua3a+MSAELplkaRpcJRkskYSe3lFugkYB8D8P7MWlITCIeOKP0gFyDYnK/srLe18AP77e4Hyrz/Qy47784t+q7vwH3Azaw9wMWjzsPtMp3QLd2iQlbRGknO+roOlVIMGL1kvnAmEGm7C6K4MGUO5fAXiITExjN0ZX1gQZ++KDF/VCZH2TA/eDFuVXfgw24H7KBvR+yeNx5qNU8q+tD5xFCb3FIVKmNXM1SQwWkzoNSTD1RcWnkEqJkPiR9ZWkAtRxwEEQLeyjrQw388GGL+6EyP8yA++GLc6u+hxtwP2IDez9i8bjzSKu4k0KJxDPW1ttMsyZwupiyfD0lXYwnR1d7Lt0Fz6U5CORcKRJ7hgSgaLL+jrI+0sAPH7W4Hyrzowy4H704t+p7tAH3Yzaw92MWjzuPtaqzhpdmTuyl6yqnnWOMZTg3g8gaurleDRPRDyddIJY/EpGPEqv07kIOzqTOUtbHGvjh4xb3Q2V+nAH34xfnVn2PN+B+wgb2fsLiceeJVnGnADcZl4/skcmV3vXZ85B7k75y6blBz75C67HhnK2Oia5V+aEsYzAkk76ysj7RwA+ftLgfKvOTDLifvDi36nuyAfdTNrD3UxaPO0+1ijsyzsrB6T4RMkofJfiesJaWUph1ytC8YwgY2iSR6WNvoTRq8v3WpcVcg4U9lPWpBn74tMX9UJmfZsD99MW5Vd/TDbifsYG9n7F43Hmm1Ry9yNzcBS4dB2KRJCd17ISxjeB68Ll5NwcW+aMNGWKxRCEHk3RbrYnRZJ1TZX2mgR8+a3E/VOZnGXA/e3Fu1fdsA+7nbGDv5ywed55rFXdolpx8QfnI5CqnMqbEIQk9gyXL8b3MfNgdghBac5jCqDkxZok80SM1C3so63MN/PB5i/uhMj/PgPv5i3OrvucbcL9gA3u/YPG480KrOivw6IipRN2hTzcP7SNITOlSZjkCxz7EOUdxOKX+igTSTE4+kDSDcJZgku8o6wsN/PBFi/uhMr/IgPvFi3OrvhcbcL9kA3u/ZPG481KrfMeHTq1Wj8kNmWC1iS0C5jFKxIg0s8Sa4GfhnhJXN5MjXyXbqd4nKb0s7KGsLzXww5ct7ofK/DID7pcvzq36Xm7A/YoN7P2KxePOK63iToqJOCeU1jL4Sm1kyNXXkBmkrYNFSq0R5Ru+HPbXmSolX/2oyfmRyMIeyvpKAz981eJ+qMyvMuB+9eLcqu/VBtyv2cDer1k87rzW6r7BGGU4TiN1GNxz5ZomuF5xxAY+5gHYoRXveg8RhsQcmarLpEtG7M5lZ9LfUdbXGvjh6xb3Q2V+nQH36xfnVn2vN+B+wwb2fsPiceeNVvnOYN10GOVPzJy7VF1pIshAq8i/e5rVQ4iul+FmnC1A0AcrglRb8oKaTOosZX2jgR++aXE/VOY3GXC/eXFu1fdmA+63bGDvtywed95q1Vdm0O34KDo3Kjp2nXIM4HzO3HodQQZZHWYsjltM0FuNBWaQEkubzNmkr6ysbzXww7ct7ofK/DYD7rcvzq363m7A/Y4N7P2OxePOO63ijqso4cV3P0IKtYCXj0aZnc9YRRuwdJxzjq75UHuXoOQkOOU6kRlSbyb3DSrrOw388F2L+6Eyv8uA+92Lc6u+dxtwv2cDe79n8bjzXqs6K2byMrhqGRI2Sim0Mch170crXUZZxCJ3pIBEpTaScFNngpFkwk4JTfIdZX2vgR++b3E/VOb3GXC/f3Fu1fd+A+4PbGDvDywedz5odv9OHUn6Nk1/x+lxlDJICiunty9HTKXOGnkU6B508WXMXbs9UoNhhGCyf5ayftDADz+0uB8q84cMuD+8OLfq+7AB90c2sPdHFo87H7XKd7hIjhNoQo8QI8rUqrqccsjFo59Bd01vZQAAuZpi93PMUWr1Lkrnx2a9QWX9qIEffmxxP1Tmjxlwf3xxbtX3cQPuT2xg708sHnc+aTVHZ8+tyidJeRWLDwQpUkMpsJK0fFqbpONynINHkrDDvfiJLlIAqkNmYBb2UNZPGvjhpxb3Q2X+lAH3pxfnVn2fNuD+zAb2/sziceezVnXWLJMk0tSeJezUwBNnBZltBYqRuzR0fB+Bu2Q8KXJMHSelKoWWb16+a7KPjbJ+1sAPP7e4Hyrz5wy4P784t+r7vAH3Fzaw9xcWjztftKqzegwYJZ3x0jzG2ZKUV4lH7JEhdmxhTE5NZ1wsjWRpNKfEOcgsqxSS75rsF6qsXzTwwy8t7ofK/CUD7i8vzq36vmzA/ZUN7P2VxePOV63qrMpUQuaUZilOkpgcZKYuk/Te8LBNRBnKkOyG50iFA0rFlaQwa9AYcWST/o6yftXAD7+2uB8q89cMuL++OLfq+7oB9zc2sPc3Fo873zTLd5zrmNEhQsxOpLnoU52ZhsyxJAPyszRuHqEizJAlH/IM6BwdtuC7yf3KyvpNAz/81uJ+qMzfMuD+9uLcqu/bBtzf2cDe31k87nzXKt+RuNN8aCWEmQGqDK6wZ0lmnEdk3bY4uxQgY5dOUGbHIVdokCM7z+xM+srK+l0DP/ze4n6ozN8z4P7+4tyq7/sG3D/YwN4/WDzu/NAq7lCP2FwRYb7PPKYvzSXIgL65DpxdKXUSt97zpOkTOCpUpQiTNlAFk3XdlfWHBn74o8X9UJl/ZMD948W5Vd+PDbh/soG9f7J43Pmp1Twrl4ZJgkxpPU6WoVbtLceWiTg2gAGxsAy7oGPwITo/YFIevhT5y0gm+9go608N/PBni/uhMv/MgPvni3Orvp8bcP9iA3v/YvG480uz/k7vQUIMS8NY1FFv0rUJmEtAN8LgTI5LCjWUTFBnUMExlJhmSADBxB7K+ksDP/zV4n6ozL8y4P714tyq79cG3L/ZwN6/WTzu/NaqzipILVGOMrLy0tDps2bdEzTqjsWxsjSPvaiKZXDoPHKUoiugtJwdJlemyTxLWX9r4Ie/W9wPlfl3Bty/X5xb9f3egPsPG9j7D4vHnT9axZ1WZZRemgSSNAmlgwMST2A28I5r6Si1Vg4kkyus0vjpsbcqGRKA9w1omPR3lPWPBn74p8X9UJn/ZMD958W5Vd+fDbj/soG9/7J43PmrXX+n1+g5QnYTRBIEyn1gapFKHVJ+uVgoA3PhmFxoOAC4k6REjI2KhT2U9a8Gfvi3xf1Qmf9mwP33xblV398NuP+xgb3/sXjc+adVfydKktOgRE8lYWbdIH1WqbdopkZMuQ5p9RRsen/PLFN05xnR5Sn/dJ0s7KGs/zTww38t7ofK/C8D7n8vzq36/m3A/Z8N7P2fxePOf63yHe3llK7945FHHLqXTYCaDtvZxk9qTPJ1afVMmXNhpJgr4YwjFgGCkizsoaz/NfDD/znV2n6ozKrxUHMfYXFu1XcEA+4jbmBv1bhy3DnSqWzijq/SrhmBm8MyE3iJONiaT5nly94FH1MBxho4M2HoOMMYEprSmLHF5i3soaxHMvDDIy/uh8p8ZAPuoyzOrfqOYsB91A3sfdTF487RjOKO9HcCda5TPskn0Jk5+upZxuZ5tjAdQXGuh4KTJRpJxuNrPKwbJH3oWZuFPZT1aAZ+ePTF/VCZj27AfYzFuVXfMQy4j7mBvY+5eNw5llW+M6Rhg8lnN6p0dBzPWUYBzzn7FGRg1cgHF2tIKLolGA0ptcYsxDVJS8gk7ijrsQz88NiL+6EyH9uA+ziLc6u+4xhwH3cDex938bhzPKt8p0tMydO7WalgyZyLG4AYRyI/UpgiJCWfEmtccpCQhgSqTJNl0l5N+srKejwDPzz+4n6ozMc34D7B4tyq7wQG3CfcwN4nXDzunMgq30GSQMIigyNlLaW891JsFen09Br0iVBdXtDFONoMLaSJMXcpvzzPHmyez1LWExn44YkX90NlPrEB90kW51Z9JzHgPukG9j7p4nHnZEZxJ8iHA/UEWEHSmu66ywnngCA9ntBniiGi3qiMOLD7GVJOuvRXpFCk42Oy7peynszAD0++uB8q88kNuE+xOLfqO4UB9yk3sPcpF487p7KKO1OayFXm4z2GGqWRPNog6SxTH4Wz673VgMyOe6Wc2EsIKl2rrdALBzbZx0ZZT2Xgh6de3A+V+dQG3KdZnFv1ncaA+7Qb2Pu0i8ed01nVWRMIB6UkKc/smuOkGZMHLE1aPz7JdJ15sIy1AozeIORCWHsB9NJtnib79inr6Qz88PSL+6Eyn96A+wyLc6u+Mxhwn3EDe59x8bhzJqt8p5ZGBRLp7DzoM1mOpoPiJdOJxecKdbLuTxwxStdnTN/RdZKw5P2Y0STuKOuZDPzwzIv7oTKf2YD7LItzq76zGHCfdQN7n3XxuHM2q3ynpxS45iz1UyMJOj214HzUzYqp1SSlFlYOQbrNcYaM07kAFKF1ikhocr+ysp7NwA/PvrgfKvPZDbjPsTi36juHAfc5N7D3ORePO+eyyndCHiC9YvClhilFVJTMxwcZpzMn5KS7GOeaqq+zcZkTnEOJTdzbzNFlk/WVlfVcBn547sX9UJnPbcB9nsW5Vd95DLjPu4G9z7t43DmfVb4TfXFheKgZCsY+Sy8juxIRmGoQFX5Ko2f0MCDqSxIEl0vOTkZcDsjCHsp6PgM/dIv7oTI7A26/OLfq8wbcYQN7h8XjDljdN4ijUnTFtyChxYmS3IHSqL5BHDIw5zQ9YStU0uRSRnGAWf7ggdHZrPulrGDgh3FxP1TmaMCdFudWfcmAGzewNy4ed7JVncU4I1PS25IzuxkChppLC0GqLwlHEoN6iTRkmgWATjeYmLWnEj1TSNWkv6Os2cAPy+J+qMzFgLsuzq36qgH3+Tew9/kXjzsXMLt/J3HtQybmPKVb3BD1ia2URcDoM2BNHFzjMAtKAwh1s1BPY6YeY03YTPo7ynoBAz+84OJ+qMwXNOC+0OLcqu9CBtwX3sDeF1487lzELO6E1iXidAcdsY/uCvsailRZ6F2qvbnuvfSbpdcDKKOuWmeVv1WGKEwmc3Rl/X+x9xeAkh1F/z98IYEECBIcQsiSGzQBuqodJ7i7ayvu7u7u7u7u7u7u7u4Ob1WezfNslhtgs137637/DExyd3b3pD5VNd8pOXPO+QXy8AKT5+ERMRbgvuDk3GzfBQW4D18g3odPrjsXkprvBJWplgEFSP/JlHvpni0LEWwLOSq+8GkPKeVifE+mWSqBfMZI46DWtch1Tpn1QgJ5eOHJ85CZLyzAfZHJudm+iwhwX3SBeF90ct25mFS9k0LB0GlLHrKnAY+mjsqU4h0ZZWKu2pkcQrPN16oSxlSVtaq13OjH3o1EPJj1YgJ5ePHJ85CZLy7AfYnJudm+SwhwX3KBeF9yct25lNQePYfao2rK0wDZWJtUrjRlVqQ5lmbLqTVTtYfG0tR1dtSHmRILqhSp9gGRPotZLyWQh5eePA+Z+dIC3JeZnJvtu4wA92UXiPdlJ9edy8mdNxh6qo7qnKKccp2sM6FaHQ1obxwtz2uj7kv35H2mgsenRA1YdEGppLRIPJj1cgJ5ePnJ85CZLy/AfYXJudm+KwhwX3GBeF9xct25ktR8J1ltFKicui3VQUdabAENcUzBWhOttJRpDQqt2BukVFQ21lcF2TYDRuY6GMx6JYE8vPLkecjMVxbgvsrk3GzfVQS4r7pAvK86ue5cTey8wRI0upRN1lUpvjcWbaqqLzTvMaFlo2lbjpFGPJkmQY0oUuw0aLZKA+mOyHyHWa8mkIdXnzwPmfnqAtzXmJyb7buGAPc1F4j3NSfXnWtJ6U7TvvD1dWiuY4zuNEfuJhQqabyLCXvWPXZaqNNCC4yh8ic2E41VoVSb6V8S8WDWawnk4bUnz0NmvrYA93Um52b7riPAfd0F4n3dyXXnelK6Y0g9fLHRtZAMKN0RvPM0R3YxZ618p94rK8W3T/da890ngKY8VWeVUgMR3WHW6wnk4fUnz0Nmvr4Ad5qcm+1LAtx5gXjnyXWnSM2VgTTFW4g68y1DU0votUml51hRYUW+O18kqeklkgJB1bF2HdDVGIOzWSIezFoE8rBOnofMXAW42+TcbF8T4O4LxLtPrjs3kNqjB5OMcdii0yr7RrYgd1sWSmnQsieTa88VqPki+63hq50GDKlQEdSSyPckmPUGAnl4w8nzkJlvKMB9o8m52b4bCXDfeIF433hy3bmJlO7UYIynEbIKwQCv0zP4GpJ1WCKZ6npqwZLUGB87jXd0Kh4jBhf48mBd5PvozHoTgTy86eR5yMw3FeC+2eTcbN/NBLhvvkC8bz657txCSndSNNgsrcxJaWo+4iIXPjZtW9GVXvI6F6qAeJVlQUUPpiRovXZj0dCmXSIezHoLgTy85eR5yMy3FOC+1eTcbN+tBLhvvUC8bz257txG7PydTHNjb/ha7VkH/k9jpuGxNgCtpVx7TylAi4oAnE2WEGgCnXtwYFoSuQ4Gs95GIA9vO3keMvNtBbhvNzk323c7Ae7bLxDv20+uO3cQm+8kH233pXqVMNETIaqMjlZcgVbq1tqELRkaODvsrdIePSbjgyk0/InJScSDWe8gkId3nDwPmfmOAtx3mpyb7buTAPedF4j3nSfXnbsI6Y6mzXlpJUTddGul15wrlTKlt6bBo7Eas+2ofVTReZru6NZJeSJ1Xq5bVyTiwax3EcjDu06eh8x8VwHuu03OzfbdTYD77gvE++6T6849pPborcWWrVLUTVGlYxSfDGiV9UW5powz3dkAYMGonlV32gSHNkKotjoXRM7fYdZ7COThPSfPQ2a+pwD3vSbnZvvuJcB97wXife/Jdec+Un2WbtlRy0Sr8VJ1s1pDNkgKY7RvrfKFwHQINsWklK41Zq1S6dAbNWS0cheZKzPrfQTy8L6T5yEz31eA+36Tc7N99xPgvv8C8b7/5LrzACndySoaarSS5auaenqS4kAJBapGKnoC6kxNVjCVWjHM0RVU5ogTCQmIVEoiHsz6AIE8fODkecjMDxTgftDk3GzfgwS4H7xAvB88ue48RKrPMg41oMpkhs/altSMRqtTUiEpH3vIFbQPJecUIy3Yqw+9KYjeBR1k7hfKrA8RyMOHTp6HzPxQAe6HTc7N9j1MgPvhC8T74ZPrziOk9ugBVNG0zgo9aZdtTU5XS/9l+p+FVBNUKnCK75WaL+t7DPz1Uauaz7XEmiXiwayPEMjDR06eh8z8SAHuR03OzfY9SoD70QvE+9GT685jpOqd2Do4mtdEQ6UM0uq89eCD7qkYlXwplYY/3WMOTQWdbVGexj0YguuxhiKyz2LWxwjk4WMnz0NmfqwA9+Mm52b7HifA/fgF4v34yXXnCVL1DtC4xlNBo7EUyNR2JdAB6YekE4lLrlZhLZjAd4RWDbRC+mSyjqQ+KBIPZn2CQB4+cfI8ZOYnCnA/aXJutu9JAtxPXiDeT55cd54iNVdOWmWj6L9fOtJguesClv4fXPGxVezJRYeAGmnHzhbnGg0v0nWgbsuKnK/MrE8RyMOnTp6HzPxUAe6nTc7N9j1NgPvpC8T76ZPrzjOk6p1mqgLeVBVNkxsaL9eSqwOTFZ+mrGOhmQ/UplLTfO2dlitJU1QWo6cdfJSIB7M+QyAPnzl5HjLzMwW4nzU5N9v3LAHuZy8Q72cLcH/r0LHcRz6OO5h/4LHwWAPt2mtgLJ4zLgfx/uPiCjvmCKgadXXOm6qTspVPzzTeNGjKJv4gcDlD7TEGm4uvWcWgFc3kMFjXosxnAPvtOQLvjedOrgnM/FwB7udNzs32PU+A+/kHyGjh3oP5Bx5rpBbiUb9jsnux+O6h87/3nr9FH7C73C84QEa31e494CjxaDTfTMmqXLIjDB+tK1qrUCFnjyUkE1WKBYs23vJZbzb6Zgp0BwGLyPm07LcXCGjCCyfXQmZ+oQD3iybnZvteJMD94gXi/WIB3XnJCrqDmipMEwytTzwqW2ppQHuV3msMxpru6EeftOnJOIy2tZyD0RBTDblqkIgH++0lAnn40snzkJlfKsD9ssm52b6XCXC/fIF4v1xAd16xgO6Q7DjNAL1B8bbFyl8cwtZAIZUzIWmijj04a4xKIZXkHGmPzbQY1lT2SMSD/fYKgTx85eR5yMyvFOB+1eTcbN+rBLhfvUC8Xy2gO69ZQHdoZ6LBuNJ6IOkh0/mqVDFUpyNm5Q1P3rxPvVPHlYtzyraUHJU7VlVPQiURD/bbawTy8LWT5yEzv1aA+3WTc7N9rxPgfv0C8X69gO68YYV6J6ENusdsXVWOLziuVCmOOq0WSqPSx1PbRRqjQWmTcrfYPWmThlKVtzL1DvvtDQJ5+MbJ85CZ3yjA/abJudm+Nwlwv3mBeL9ZQHfeskK9wzRU7hQVI1ZomnYKOjlfsangoVYaHkfQNjSXSJ1MQOeRv1HdM5iqRL63yH57i0AevnXyPGTmtwpwv21ybrbvbQLcb18g3m8X0J13rFDvxOgCSUhxynfdIhYqb0ygqXL2wTdVo6MJkLO69OIwWRN1awbB0hJM29Ik4sF+e4dAHr5z8jxk5ncKcL9rcm62710C3O9eIN7vFtCd96xQ7wRQSntNFNoDr8cd7dCVBp+ozjG0snI611S849kOTZiNAZNIkjRfnqqJXB+G/fYegTx87+R5yMzvFeB+3+TcbN/7BLjfv0C83y+gOx9YYY/uIAenqL/i28hBjUYXGilbzM1GS8OdZFNP4JJ2tN7q5IlmqnVgsWTbepKIB/vtAwJ5+MHJ85CZPyjA/aHJudm+Dwlwf3iBeH9YQHc+skK9k1XJoH01Pvmqu8+gfPSmNo000gmkMarVojymwJOdwBfiDM1SveNrt14iHuy3jwjk4Ucnz0Nm/qgA98cm52b7PibA/fEF4v1xAd35xAr1Tm6mE0/u0TWlS0A+U9B0jMXWinwyc6/ae4c08nGpJa9UrM6isTErK1LvsN8+IZCHn5w8D5n5kwLcn5qcm+37lAD3pxeI96cFdOczS9Q7vWFJJXRjA63RSX1yoiWWqQlNjK0h9pxo046Zhj98UQdeu7feQq7WBpHvSbDfPiOQh5+dPA+Z+bMC3J+bnJvt+5wA9+cXiPfnBXTnC0vs0VOmuQ6WYlTuaF0tzYXYA+hOM5xkeiW8RpPmnGNLiZbnxFlMT9nS7CdLxIP99gWBPPzi5HnIzF8U4P7S5Nxs35cEuL+8QLy/LKA7X1mhz/IRWmoFUUeCzXwVYN8LgdI02Vhtc7TRZ7SNBjva99R6Ds07D7RVb11kvsN++4pAHn518jxk5q8KcH9tcm6272sC3F9fIN5fF9CdbyxxvjIVL94GQ6jex66Mtlrxfbo9lUA07kESm1KAmi5tlXIJyQ+0Yfc0FEJfRe4rx377hkAefnPyPGTmbwpwf2tybrbvWwLc314g3t8W0J3vrKA72lpirDqZ6FSMNQRbUuiExKMfGjNnY0rNCoJyFajXMgjKdZMMbd6ryHmD7LfvCOThdyfPQ2b+rgD39ybnZvu+J8D9/QXi/X0B3fnBCrpTasjWpa5zghptp+kOaqpqauxVWZUcNOeicTaiou0W0k9AW3dLTRYoGd1hv/1AIA9/OHkeMvMPBbh/NDk32/cjAe4fLxDvHwvozk9WmCv7BBCP2FrF7GwyNDrOzseUc/W1FizR60K/RTUOOB+KCsrSlCdmKBiCyPnK7LefCOThTyfPQ2b+qQD3zybnZvt+JsD98wXi/XMB3fnFEn1WDtlpBGdi6JWmO2ABwCYdA/VTtMWyNOxpTvGN52iNfsTVCaun6gjp9SBS77DffiGQh7+cPA+Z+ZcC3L+anJvt+5UA968XiPevBXTnNyvss4qhOXEu3RFQis4VRQIUulOJXlO66ti7JYEpJRK9S9X4AipVbdF0FJkrs99+I5CHv508D5n5twLcv5ucm+37nQD37xeI9+8FdOcPK+iOdVjQB9Ch5uYDzXGMTnyjbmqq+KvnLhjtLZjuNRpL1RCT0r+sQmIXiQf77Q8CefjHyfOQmf8owP2nybnZvj8JcP95gXj/WUB3/rJCn1VzTFpH7Xk/zucP9gouKu9pyGwdUGljW9RN9VRDU8RuddHBeRe1c12kz2K//UUgD/86eR4y818FuP82OTfb9zcB7r8vEO+/C+jOP1bQnVCbL8oGhBiTKZaaJ762DmTdqjfN0r9jsaXUAiERmQXNF2BWuiSXk5GIB/vtHwJ5uHG6ufOQmdnG0dzHmpyb7TuWAPexF4g32zhad/Y63QK6Q4aTjtTsCLRATololKqJ9Aeqg6prTNGUrlFBDbRe1w1ji3zHXUPoEvFgv+0lkId7T56HzLy3APdxJudm+44jwH3cBeJ9XAHd2WcB3YHgA/oUrdPNuQTBFuWqR0iEgyb1ZE0IBoyylbosUw1NoEs2pQS02Yhc55T9to9AHu47eR4y874C3MebnJvtO54A9/EXiPfxBXTnBCvoTkZsJaLGRqPiHDEazKpjjAgWFV9QOdvmjUdPrZZKtFv3LVDx42oPOXaJeLDfTiCQh/tNnofMvJ8A9wkn52b7TijAfaIF4n0iAd058Qp9lo4lFIvIN+ermKAE8KA9YCohZB9DLB56VJ1nO0E5wi49BJ8r0o8i5w2y304skIcnmTwPmfkkAtz7T87N9u0vwH3SBeJ9UgHdOdkK9Q44jxqwKRrn2K5CK90YrflmWYEGO86FSjsukh5wIWtbfE0Js6m01io2i9zHhv12MoE8PPnkecjMJxfgPsXk3GzfKQS4T7lAvE8poDunWkF3qIZB16ixYkpqq2r1Pjaa4mjbC0+YneLf1jRqVpVvmO5STTZ366kpMyJ7dPbbqQTy8NST5yEzn1qA+zSTc7N9pxHgPu0C8T6tgO4csIDuKBP4Iu0enWq9RF1iofInWp1Dtd7Tb6VenY2xgHadlli8VvdUCoWYfe4i8x322wECeXi6yfOQmU8nwH3g5Nxs34EC3KdfIN6nF9Cdg1aodxp21+nhi/c92l5VbF45TZVNso2/PuFyaxaKpQmQJSGK4AsVQM7rSi9LxIP9dpBAHm6bPA+ZeZsA9xkm52b7ziDAffAC8T5YQHc2V5gr95qxNNcyKO0sRmszzZNJVmjIk1FXm5LxNFFOyjbwWHun0Y/vDYqiHbzIXJn9timQh4dMnofMfIgA9xkn52b7zijAfaYF4n0mAd058wq6w/cg7rm5Uk3HmjOtt3x1CZqq9GdTUqH25CAnbVxUKvKyiyY/vkCrkETOG2S/nVkgD88yeR4y81kEuM86OTfbd1YB7rMtEO+zCejOoSv0WYZnyUXxRS9czjRApr1Wqr4p4EKoJNquR3oh286XxOgNVXJNeVeBZMeJnDfIfjtUIA8PmzwPmfkwAe6zT87N9p1dgPscC8T7HAK6c84lzt/RBU2kOQ6Nlz3yHquiKiqqGLkIoj/uCLeFUnLVrWHFFlLLJRTIAbJEPNhv5xTIQzV5HjKzEuCGybnZPhDgxgXijQK6o1eod3qmNVYyqdIOyzgVMVUVELstOgRVEKjK4bN5sNNEp4OC1B3w2NnH5GWuN8h+0wJ5aCbPQ2Y2Atx2cm62zwpwuwXi7QR0x6+wR+82aXDd2dRMIDWhBXoq2tEkpxGPddEYlY13tMEKypuUWmuM2qu12JJEPNhvXiAPw+R5yMxBgDtOzs32RQHucy0Q73MJ6M65l9hnIU2RYzDee/4CevB8SfdAcxxH63KLLDzWQa1F95Z9bjWWGtBVehgVRa43yH47t0AenmfyPGTm8whwn3dybrbvvALc51sg3ucT0J3zr9BnFf6+p/M59WZpX47BJ6eSilrTuCdS/6Wp52qlOL7KqeO7ZvXO13w32dLsWWS+w347v0AeXmDyPDwiXwS4Lzg5N9t3QQHuwxeI9+ECunOhFfos2o/32CPNeWJQmnCDLaiQdCiYnJVqnnqvlAIVQDkVvjmxC8ZZvlBYQ5nzd9hvFxLIwwtPnofMfGEB7otMzs32XUSA+6ILxPuiArpzsSXqHZ11bb2S5hiPtMwiPOeSiahyCsoBFptC7Ni8i6XoRGpTMFEbBiRHIucrs98uJpCHF588D5n54gLcl5icm+27hAD3JReI9yUFdOdSK9Q7pDsYkjW5d8+3KNbxiAtgYLMhWiL3fMFTRb2V7VlHW62JxdByPWP1uovMldlvlxLIw0tPnofMfGkB7stMzs32XUaA+7ILxPuyArpzuSX6rN4aBui+YWnRZ2hdOaUJlCY7LrRONU4MwRSI4ILTtmbQznpaarmGVSIe7LfLCeTh5SfPQ2a+vAD3FSbnZvuuIMB9xQXifUUB3bnSCvusgHw5neZ0bq3rVMGqXmnUnDyWmJNPRdFiK9BSqyRqtWiBDuiwR9O7Q5nvhbLfriSQh1eePA+Z+coC3FeZnJvtu4oA91UXiPdVBXTnaivMd6pyNKxpReXmqcqJBfm+NtqqROKiQo9WI/2d7Et2NniTGl9euflEfyKAyP0k2G9XE8jDq0+eh8x8dQHua0zOzfZdQ4D7mgvE+5oCunOtFfosmu1gRQDXFfBVLlrPpCtatdYCTXpqjqZpU6FSpUPigyWn1PnCg1H52kT2Wey3awnk4bUnz0NmvrYA93Um52b7riPAfd0F4n1dAd253gq6k0sBr6yt1bVEq3OIUUUuZaym3bptyXtVfdOkN7UowM5D6FZNNS71IjLfYb9dTyAPrz95HjLz9QW40+TcbF8S4M4LxDsL6E5ZY76TbaImi7qsoI2vubaibUhZNRUcf1m0qBqtCpGvhBpqDTbTIDrTEr2pKKI77LcikId18jxk5irA3SbnZvuaAHdfIN5dQHdusMJ8xzRAzKiyj9ZFIsm+peJjRE+/o3uEXMB24jaeb2hMW3dXMcXkqEjKItdXZr/dQCAPbzh5HjLzDQW4bzQ5N9t3IwHuGy8Q7xsL6M5NVqh3MjjVcqHVlIIaAS0pSgKfrfFdeb7bhOWTlq1P3mJQrpnSSqLf1pCDTxLxYL/dRCAPbzp5HjLzTQW4bzY5N9t3MwHumy8Q75sL6M4tVpjvxOqNSZFqmdisoZ0ViUpuVAap1j3mSBVOTQZyq4ov9UVb9kZaVHwC8kiyEvFgv91CIA9vOXkeMvMtBbhvNTk323crAe5bLxDvWwvozm3WmO8AEfIJgjToCVrVmmxPUL3LLmaaM6cedNOh90g/F69KLpUKoqLB6SgSD/bbbQTy8LaT5yEz31aA+3aTc7N9txPgvv0C8b69gO7cYYV6p+beauExcWpU65RuSg29Fpu1D9VDaiZnBFIgpM1Xd8pb5ejnXFToXuQ+Nuy3Owjk4R0nz0NmvqMA950m52b77iTAfecF4n1nAd25ywr1TmmedKfmGCu6koPSFmILkZoq6rBiyNnWoB0VRCaAjr7aXi2pUoYWbBDRHfbbXQTy8K6T5yEz31WA+26Tc7N9dxPgvvsC8b67gO7cY4V6x9FUh8qadsTXzlVG70l3oJlefetU6rgUY6fKx2BVzXoD2iqbEu3Sk/Yy389iv91DIA/vOXkeMvM9BbjvNTk323cvAe57LxDvewvozn1W2KPb3DOyyc5Y8LYWl/kWxPRrSNRIVc2XN620NM8t0lBHBWNrK+CcNc6oLBEP9tt9BPLwvpPnITPfV4D7fpNzs333E+C+/wLxvr+A7jxgBd1phWfFBhw1UaYUqmMgUQ3kM2Qg0TGJNCcV6rdaThBpspPoj6HKVAw530XuY8N+e4BAHj5w8jxk5gcKcD9ocm6270EC3A9eIN4PFtCdh6zQZzVvmoWODk0rOlosSBVN165jS7o1YoyhRI00T6aBjko2dYxoUdO6vTqJeLDfHiKQhw+dPA+Z+aEC3A+bnJvte5gA98MXiPfDBXTnESvUO7E46Kl77Hz7GqpsXGugdMuqumYAsGFUYI2m9qtpLCa6aL1KXlertYjusN8eIZCHj5w8D5n5kQLcj5qcm+17lAD3oxeI96MFdOcxK9Q7JfTkAUxMMdMu3ZfcUTUFQMID1E0plXTsKSnnVINcsGLhs3xC6ZVgJeLBfnuMQB4+dvI8ZObHCnA/bnJutu9xAtyPXyDejxfQnSesUO9g9qm01rNN2CJ3UxWgZ0ObK1+h9WgTgUGKuqKJGvjyphZp005/03qR636x354gkIdPnDwPmfmJAtxPmpyb7XuSAPeTF4j3kwV05ykr1DvGok8m82Xdg3MuRyzVVwMmQOmGhsq01/LoLKKhtXk1gRyhLISqsFoU+V4o++0pAnn41MnzkJmfKsD9tMm52b6nCXA/fYF4P11Ad56xwnmD3gcXuykOW6kmN0erclV7A+9oueXQVRsrD5ajCjRJ7i3bZluORQH9JHK9QfbbMwTy8JmT5yEzP1OA+1mTc7N9zxLgfvYC8X62gO48Z4U+q6dQPHRVM6/F6f/FxWBdV95Hl1KOSUEPNms0jmY+JDqdllloG39zPYjMd9hvzxHIw+dOnofM/FwB7udNzs32PU+A+/kLxPv5ArrzgiXO34k0vzG1duqqeEXFdA5pi+V7N5Y2Wdomqny8zzE3lWrsqF3qTXlTchaZ77DfXiCQhy+cPA+Z+YUC3C+anJvte5EA94sXiPeLBXTnJUvojnPEVEOivblrPqqugfouYgykQdok01OxoIM3Dq1rxXUoSuVse7JWZI/OfnuJQB6+dPI8ZOaXCnC/bHJutu9lAtwvXyDeLxfQnVesMN8J/EV0U1OhSQ6ttYKl1soVX0ONjm/MV1LSmHI2pUOuWRX6pwMVW2vOyHw/i/32CoE8fOXkecjMrxTgftXk3GzfqwS4X71AvF8toDuvWaHeScUl5XW2tvigEu21iqlRa128681lG6ixys2TG7QtLfRqK3mChMpZ04JEPNhvrxHIw9dOnofM/FoB7tdNzs32vU6A+/ULxPv1ArrzhhX26LkEr4KvvL8yrnvg72dRVeO7p8W6cTWqCvRy6zRftjlpay0Gqo6KskmJ9FnstzcI5OEbJ89DZn6jAPebJudm+94kwP3mBeL9ZgHdecsa5w1qj6b3kqtyqAoqY2jUrHzQtrpem6E5czWFWrDkjffJp+atDgYLWBTZo7Pf3iKQh2+dPA+Z+a0C3G+bnJvte5sA99sXiPfbBXTnHSvMd1JHZXt1tpO8JP4eukGa7jQqdmzROkRPa3Zde+whu4aaap9OM2XSpx6iKhLxYL+9QyAP3zl5HjLzOwW43zU5N9v3LgHudy8Q73cL6M57ljhv0DkaJnvbs/PKuEJrLJ9tgmxa8dRepUJznRxJfixGcCHTHCha0iRbSHdEzt9hv71HIA/fO3keMvN7BbjfNzk32/c+Ae73LxDv9wvozgdW0J1WXbSVRsW5U42DuSsdukmodAKqcGz24A26zJe9AMJXkUZAqcWoAGMX2Wex3z4gkIcfnDwPmfmDAtwfmpyb7fuQAPeHF4j3hwV05yMr6I61utSMBlo2hn721dKkR9WOVcfsabsefUOoqRfVqROL1lCLlY3XDrUS0R3220cE8vCjk+chM39UgPtjk3OzfR8T4P74AvH+uIDufGKFuTJo7qj44u0WUjI5haytDyXWbpx1yQaPulMdBIlP6cl8cmEx1GMVQ+ojcl139tsnBPLwk5PnITN/UoD7U5Nzs32fEuD+9ALx/rSA7nxmhT16CCZnvpGNNirHgNRbGaUQleoqgOnOo6ciJ+lafYKE1bigOpZQc6BWTCIe7LfPCOThZyfPQ2b+rAD35ybnZvs+J8D9+QXi/XkB3fnCCrpTc8sdm0k2GvCld7C+WYfGtRyJqHXSIB1Al4wheKC2K0PHYEiHXNcS8WC/fUEgD784eR4y8xcFuL80OTfb9yUB7i8vEO8vC+jOV1bQHdpXJUulDG3PsZakXC0+0XK90nY9B5Kk3lsFsNU6XXTuPvJFCQMoX7OvIvUO++0rAnn41cnzkJm/KsD9tcm52b6vCXB/fYF4f11Ad76xwlw5W1XAARia8eiSIhTXaXkeNAlN1Ri8R8y6xwiKr7TsawNauCdlQik6Jol4sN++IZCH35w8D5n5mwLc35qcm+37lgD3txeI97cFdOc7S8x3GqrqIXpDw5ucPAYbwTfNl1vOUKuJtURfde3e5oiqZJ7xoAuGr4sqojvst+8I5OF3J89DZv6uAPf3Judm+74nwP39BeL9fQHd+cEK9Y6iFssZtJXWWo2EpCAE10KpaHWlIQ661iPt0INNEWtPriiaNGtrOrrkROLBfvuBQB7+cPI8ZOYfCnD/aHJutu9HAtw/XiDePxbQnZ+ssEfvNEFG2pobHxFSrTkbQgOTTFTOdZr+RMitJu0UFT4ZPO3Wm80pBtpoeZHvSbDffiKQhz+dPA+Z+acC3D+bnJvt+5kA988XiPfPBXTnFyv0WVzqRGdNsbXq3pX23WhfCm3PwSpns/GotcZowUXfIhVGtPCi+bOh4gdF5srst18I5OEvJ89DZv6lAPevJudm+34lwP3rBeL9awHd+c0KupONLsZRZROpcYqepjiBRMYcca++SvpCs56KnmqdmviC7qZ1VcHm3DTQpMdLxIP99huBPPzt5HnIzL8V4P7d5Nxs3+8EuH+/QLx/L6A7f1ihzzKxpBBTgOZ8Nj1Sm6X5S+c0Ny4uaR+Uor6KlEblYo1GZWJwJWcddaoy9wtlv/1BIA//OHkeMvMfBbj/NDk32/cnAe4/LxDvPwvozl9WmCuH1EN0MeheKhU9ThNc8b5ZGyrfVItKn0DtlXKav6RucyfVgdS6blG3KhIP9ttfBPLwr5PnITP/VYD7b5Nzs31/E+D++wLx/ruA7vxjhXonYQw1xqzBVG8QldUhmF5YaVRyfGMtmwxXQZC6TUlTC1Y7Jo3UhxWReLDf/iGQhxsHzp2HzMw2juY+1uTcbN+xBLiPvUC82cbRurPXgQvUO0BKUnWEht2R9aVbHhuTBDmPrjsSHp9V04masdxQuxDpT/D1MoqKNOiRiAf7bS+BPNx78jxk5r0FuI8zOTfbdxwB7uMuEO/jCujOPgvoDpU0GXNwVMEoRGqxaL9lSwNrFX/jvPiYCi/TCzSLmZbq9P+SUWNPjeY9Itf9Yr/tI5CH+06eh8y8rwD38SbnZvuOJ8B9/AXifXwB3TnBCvVOa5nvF8oNlTehqxRB6aZJbpwLJRmD1ZreQbcGrQbASHusRputgiFUkfujs99OIJCH+02eh8y8nwD3CSfnZvtOKMB9ogXifSIB7vMdNpb7yMfeY/lx4LHMsQbGZa+BsTi/UCyOOzgX9xnIfOJx7ztz/3GfezjyM3Tgewx2zBGEjD6V0mLyRuVEJb4KLRZdVDbRKRqGOp271ir70LMDCpZqVlmVatX1iPfUaJ3ieJ5YQKdOMrk+M/NJBLj3n5yb7dtfgPukBy7xubSE5uxuLA4/bP733kkFerKTHSij22r3HrBjPKD70oLKQcWucjeVBs8q0RQ6I1i+dhgogyHaQisvXRX0Wkuw3hif+ZQfkXN92G8nE9CEk0+uhcx8cgHuU0zOzfadQoD7lAvE+5QCunOqFXRHq9pqarTXcoBOo2uOEApUWqxHZaHGDDayNilMXvVAyJle4Cm0hyQRD/bbqQTy8NST5yEzn1qA+zSTc7N9pxHgPu0C8T6tgO4csIDuKJ0zukBNbdC06ELdqLntNI+uwdEvc0LdQ0+R5MY5qFT1KFIgE1sPtKdPIrsv9tsBAnl4usnzkJlPJ8B94OTcbN+BAtynXyDepxfQnYMW0B00uVBRo52xNdKMjW884VXNAWKwFg3BYLQpRtNcMAaOuP9ENVCqM85Zkd0X++0ggTzcNnkeMvM2Ae4zTM7N9p1BgPvgBeJ9sIDubK5Q7yQa7mPjQqbzRXiULaHUHkNyFVJIVOUEk3IzPdmEBBliAJrukCZ522XqHfbbpkAeHjJ5HjLzIQLcZ5ycm+07owD3mRaI95kEdOfMK9Q73qZitNXWlVJpWBxJbSDbrprDTArUmk8dO7riCoQecktI850eVNCuZYl4sN/OLJCHZ5k8D5n5LALcZ52cm+07qwD32RaI99kEdOfQJeodmuckFWxMsVP7ROITrUPPZzJUo3Wl1ZYv4GyOjf5PclR7tyQ8WgF0mX0W++1QgTw8bPI8ZObDBLjPPjk323d2Ae5zLBDvcwjozjlXqHdCi0bR0qoaDwjddB+qsaBtRm177glazcmpVmimo02vhX43qVhorZ6LyLUJ2W/nFMhDNXkeMrMS4IbJudk+EODGBeKNArqjV9iju26K9ibxFTGopWrVmqC8po1V1gmbAXCEy2uvFm0pOtOqq4ToM6IJTeReW+w3LZCHZvI8ZGYjwG0n52b7rAC3WyDeTkB3/Ar1Tm62tdgMLaygxlINhqIK9qJDyDZ0KnNUztSNKYOt92iyzooLpN4KVUoS8WC/eYE8DJPnITMHAe44OTfbFwW4z7VAvM8loDvnXqHeKblha0Ebl4KKsRbF10alrqvQLr0mBy518KrTSMe2EDONk5OhVqxkFZMRqXfYb+cWyMPzTJ6HzHweAe7zTs7N9p1XgPt8C8T7fAK6c/4V6h1aYrkEWhmI2I+wXXdTlcvJN9qeq9BSDb6GDL5538DUTJOgAEC43YvMldlv5xfIwwtMnodH5IsA9wUn52b7LijAffgC8T5cQHcutMQePRCSjzTHMbYHLK5RgdMqLbdoxOyTdxFpj+ViAe9csNCsMTQFQq2KMsZIxIP9diGBPLzw5HnIzBcW4L7I5Nxs30UEuC+6QLwvKqA7F1uhzwouY7BIAIUkJVptWvGgEXvPUemAVmWbcve00eIf+MLMNrZIzDE0kXiw3y4mkIcXnzwPmfniAtyXmJyb7buEAPclF4j3JQV051JLnL+TQTuTK9U03ldMtCnX0GmhTvtNgIwqd40ejdY2eaucL6k0pBLJdQCZazGz3y4lkIeXnjwPmfnSAtyXmZyb7buMAPdlF4j3ZQV053Ir6I4uSVcqdmrLjv5JHVflG/zpAPRLnbHpHGjFhQqxGGedblQLcR1Eq/RQROY77LfLCeTh5SfPQ2a+vAD3FSbnZvuuIMB9xQXifUUB3bnSCrpTTU2GNlXeFqglxq4VWh1LQgMkSckkG4uxwdDGC4Lmu4pidCFqGgclGd1hv11JIA+vPHkeMvOVBbivMjk323cVAe6rLhDvqwroztWWOF/ZJ+tN4N24ddknnWOvxRe+wg7VOVZbtCmaHkqqzVJ1pLRz1RXtNaATOV+Z/XY1gTy8+uR5yMxXF+C+xuTcbN81BLivuUC8rymgO9daod4xWNMR0tJojKx8tbUCpkrjnWJLdjnWUgkPSYYU+OSiybkr39GXILRHZ79dSyAPrz15HjLztQW4rzM5N9t3HQHu6y4Q7+sK6M71VthnVdpcJdQu2+hT18VCqb1W3zLGlHVPlgbPlldeFgJCdjRXDhp7TlFHAIl4sN+uJ5CH1588D5n5+gLcaXJuti8JcOcF4p0FdKesoDt8Bf1eWwgObKs2N5IVaEGBIz5aclXdrTWp+dJa0Qpa15GIqTCKJFki199hvxWBPKyT5yEzVwHuNjk329cEuPsC8e4CunODFfqshi3SqoqqmJxpYeVq4bomgLE1QTaqY4XWOjbTmyV+1021kFJryaom0mex324gkIc3nDwPmfmGAtw3mpyb7buRAPeNF4j3jQV05yYr6E602qUeweYck+dr6yRbDGRPAx2d+JLuBKpqK7RBR95zZWOid7ogWBtE5srst5sI5OFNJ89DZr6pAPfNJudm+24mwH3zBeJ9cwHducUKuuN9Q9fApBCxmG4yaQ4ka/hrETHzfW1IdHoDKOhNKbHVrrOvSZmEzXWJeLDfbiGQh7ecPA+Z+ZYC3LeanJvtu5UA960XiPetBXTnNivs0aMFZ1UvGVC53mqrIZuidIBYXc8IqienE70aSrM0CfIx6lqo24rGYpaIB/vtNgJ5eNvJ85CZbyvAfbvJudm+2wlw336BeN9eQHfusILu5F4w9pB8Dh3ABVqp92BU9ui6y9m15nxxTZHyJN0sxJZatwm7dt6GIBEP9tsdBPLwjpPnITPfUYD7TpNzs313EuC+8wLxvrOA7txlifN3AHw2tmgoutqaq+GTdRqt1FW1KtEvdPIp8fTZ0vQZs9fcdGWD0XglUu+w3+4ikId3nTwPmfmuAtx3m5yb7bubAPfdF4j33QV05x4r1DtolFM+WtOtd4baqOappYISS8Fu+ApfgUSI6h+PVoOqQHuuSH1WjZrG0UkiHuy3ewjk4T0nz0NmvqcA970m52b77iXAfe8F4n1vAd25zwq642x0xtrYeIYM0FzrBbQmmJzAKU1jZhrs5BK1rdZUWqrXBsFArUgrLy8RD/bbfQTy8L6T5yEz31eA+36Tc7N99xPgvv8C8b6/gO48YIXzBq3tFkONqWEsHRBr8qFpGyPS5Ad8pC27sVob17W3SVdXSouq8uVQbROZ77DfHiCQhw+cPA+Z+YEC3A+anJvte5AA94MXiPeDBXTnISvUO12FVJ1zJWboXVuHiM0aq0oziQbONGyufJEMk2mkoxE6GKp2vGlHfF9CpM9ivz1EIA8fOnkeMvNDBbgfNjk32/cwAe6HLxDvhwvoziNWqHeUVZCpxmkZtQtOO9QhmaR08cF7V40GX7JLIQUdckk25tLAQAKv0IrMldlvjxDIw0dOnofM/EgB7kdNzs32PUqA+9ELxPvRArrzmBX2WZCO0BylPDVSijbkUflOUpSIp9gaO1itAGugBkuZZGmTRcAqG28zrd4l4sF+e4xAHj528jxk5scKcD9ucm6273EC3I9fIN6PF9CdJ6zQZ9lQS0bXaU2lChSaFSfqtGxvqK33heY4IedEfRX9qurUcqjeYo/WG2WMSL3DfnuCQB4+cfI8ZOYnCnA/aXJutu9JAtxPXiDeTxbQnaesUO/oDKB5hqxIZ2wgEEuyE/jboLTV6r3FamhtnrJrmLXvWHosgY4CIaESuX8W++0pAnn41MnzkJmfKsD9tMm52b6nCXA/fYF4P11Ad56xgu7QpjyHSKNizTcnNpqWVipSl4XGV2M7SUsJ0dJIJxqgOXKh3/bY+VQfInYi9Q777RkCefjMyfOQmZ8pwP2sybnZvmcJcD97gXg/W0B3nrNCn6W0dq1Sl8VX3QmxcGelSYZaIrZoQ+8dSXKUD0iLrM437eukRS5g0aWK1Dvst+cI5OFzJ89DZn6uAPfzJudm+54nwP38BeL9fAHdecEK9U5PaGPINUNEVAl9SzWj960VGjlbayHTGqv11NBgsVnr2mLO4LTBFETiwX57gUAevnDyPGTmFwpwv2hybrbvRQLcL14g3i8W0J2XrFDvVOsgloa9AnVPGEh++A7FGWjw442puhF+c7aloppJCFkrbDZWVUpSIvcLZb+9RCAPXzp5HjLzSwW4XzY5N9v3MgHuly8Q75cL6M4rVjh/J6tGI50eTaioaKqjYlPRqhp67crRsFn7CMkgNVYBk7MZqToKNVDjVYoVue4X++0VAnn4ysnzkJlfKcD9qsm52b5XCXC/eoF4v1pAd16zRL0DxmfrDI2Lmw+AOShbc3Aene1aBXrVBz5lkEbOQPt042zQFk0rPPBJEvFgv71GIA9fO3keMvNrBbhfNzk32/c6Ae7XLxDv1wvozhtWqHdId5xTuaiqqbVStlAf1Ws0xTadItjmusoqRp2zz54veFoK1TyRZs+2NpG5MvvtDQJ5+MbJ85CZ3yjA/abJudm+Nwlwv3mBeL9ZQHfeskSfVQP0FlzJzrVuSWM8X7gd0WH1QKvy4C3VQc3Qy82B7rZBCjW5FmwAkeu6s9/eIpCHb508D5n5rQLcb5ucm+17mwD32xeI99sFdOcdK+yzQuw0vuGZsmrdES3Q6txZ57oHp/h+6Z7LG2dUp2JIUeWD2vMKnXqzokXuY8N+e4dAHr5z8jxk5ncKcL9rcm62710C3O9eIN7vFtCd9ywx36k0QK5W24igHdnPp+5QIUP/iDVHVDR3rj1bhR6rQ2tcruhdoq1XhF4l4sF+e49AHr538jxk5vcKcL9vcm62730C3O9fIN7vF9CdD6zQZ0XfXAo+5KL5moI9gAGMgKUb7D4qtPQ3DN9OtBdtvXa6ZkeDZ3KM80Vkn8V++4BAHn5w8jxk5g8KcH9ocm6270MC3B9eIN4fFtCdj6ygOyXZ/6lhUgqpoUoZrLLUfdnAt/ED0IgkSDTycUlX6qxUtQWst7HGmEXmO+y3jwjk4Ucnz0Nm/qgA98cm52b7PibA/fEF4v1xAd35xBLznaQMTXQCEpKmjVVJrpiujI/UU2WCUtpo49DrokPApNGVnksriiQrWIl4sN8+IZCHn5w8D5n5kwLcn5qcm+37lAD3pxeI96cFdOczK8x3bE5OQQjKlM6zZKxKkwZlmuYQIg2cq6tU+9QGyqBqyaTsjcXCN5boSeT6yuy3zwjk4Wcnz0Nm/qwA9+cm52b7PifA/fkF4v15Ad35wgr1Tg6p19RzyAi1mOIcupy6hUJLK+q0bCraxeCdiSmWRMS1N91DCSHRrl0iHuy3Lwjk4Rcnz0Nm/qIA95cm52b7viTA/eUF4v1lAd35ygrznZRVQNVbV1TfpJBb01TwdFfAxFxzTtb1oLP1WGJMxR6x67KGNMeDDk0iHuy3rwjk4Vcnz0Nm/qoA99cm52b7vibA/fUF4v11Ad35xhrn79DwuCbEaDKxpUaKAjp63Xp2ymelXY7RpBaLCt1p50rt2mYTgqle5H4S7LdvCOThNyfPQ2b+pgD3tybnZvu+JcD97QXi/W0B3fnOCvVOixEz8XXfgsOAwVlUJjdNM+UavIHYa4RsqmpEllzsQVVqzAx4H52I7rDfviOQh9+dPA+Z+bsC3N+bnJvt+54A9/cXiPf3BXTnByvUO7QVr4Waqqo7ut6p5aqQg9IxQQtYAi3PVW0++OBqCLTbUqrREp1vpkVjaJG5MvvtBwJ5+MPJ85CZfyjA/aPJudm+Hwlw/3iBeP9YQHd+skK943MLiUY7npqp4GivFapTrrhaK5HkWp3J1dPyPNBvaKR1VlClYiMvIMh8P4v99hOBPPzp5HnIzD8V4P7Z5Nxs388EuH++QLx/LqA7v1hhj067qtaT9Vb7DlVrG3TsykNz3tTke0KNtvTYIFn+J5TQbKO/lKj36iLX/WK//UIgD385eR4y8y8FuH81OTfb9ysB7l8vEO9fC+jOb1bQHdKc1JDPVfbaYgKvI620NE19VGHxgQgYChU6xrvoIRcsVpvQPI2hoWaJeLDffiOQh7+dPA+Z+bcC3L+bnJvt+50A9+8XiPfvBXTnDyv0Wd00xGBj6iGU6FKuKVSs1tCvG23XW2vZkdgkGvMorUHX2mNOPkUSqyxy3z722x8E8vCPk+chM/9RgPtPk3OzfX8S4P7zAvH+s4Du/GWFeifFbivY5osh/Qn09CRDSDgasNNGPdbUVKsFwDhV+YY2scRAnZfRFUR0h/32F4E8/OvkecjMfxXg/tvk3Gzf3wS4/75AvP8uoDv/WKHeqS4042m67KvNiv5RvQvYsGfnnevgirW+Gx0KVNtdoV+WpJ0CGjVHI3K+MvvtHwJ5uHH6ufOQmdnG0dzHmpyb7TuWAPexF4g32zhad/Y6/QL1jo6qJZIWhVTLtF4aWhtNdNZ4hEJ7dbD8jXQDNEourkGxSReLoFykSilJxIP9tpdAHu49eR4y894C3MeZnJvtO44A93EXiPdxBXRnnwV0ByzyhZPBExRVMAbQWOhIS6zgve41eKASB3pLQWnaoVugWZAnYlKn3EHk/B322z4Cebjv5HnIzPsKcB9vcm6273gC3MdfIN7HF9CdEyygO8q3akMLR9wQq/oeHM2T0XtfewZaqVP1U2i7XjMpUdMqFHPE6YK9Gr5Gj8x1v9hvJxDIw/0mz0Nm3k+A+4STc7N9JxTgPtEC8T6RgO6ceAXdUbQMd0ALdBt8tznq0CJt0mlwnPlmfplEyFrtKhSXQ09oFH9jy0XnSzAeJOLBfjuxQB6eZPI8ZOaTCHDvPzk327e/APdJF4j3SQV052QrzHe61xay4W+YN0PdVad1VfWgFJVAkTQmd1UMdVqKkZvlm/zRKj1Q5ZMzbd8l4sF+O5lAHp588jxk5pMLcJ9icm627xQC3KdcIN6nFNCdUy2hO7oHjbq3BsoTblJU/hiMPdSatSYFSiWZI87ewaSJ73+GP02TH+jvSsSD/XYqgTw89eR5yMynFuA+zeTcbN9pBLhPu0C8TyugOwes0GdF6LEa0L2E2klRnNcx2E7NFclOxJQ1uMAzHg9eo6mQS/PJVE8lUgOR65yy3w4QyMPTTZ6HzHw6Ae4DJ+dm+w4U4D79AvE+vYDuHLRCvZNjr7UmqmUUBOdtcSayoECpQOv0Wkwy/AX1TmPkmmKMNIVWVBtpqLpVkfkO++0ggTzcNnkeMvM2Ae4zTM7N9p1BgPvgBeJ9sIDubK6wRy8JUm3NOJOcKaUkHWnDlbTtpbHyGJNb7yp7+rfXLpVKg59sDO3QiVekz2K/bQrk4SGT5yEzHyLAfcbJudm+Mwpwn2mBeJ9JQHfOvMR5g6EkPjcZokrON8hQomodaU2uEJUyncY7pVElZByNdoLupFI+pxKQ5Ejkvn3stzML5OFZJs9DZj6LAPdZJ+dm+84qwH22BeJ9NgHdOXSF+U52rpuuaI2VXOUrC9aCRBNonpzCERfk0cm1DiFm1TB3T1uu0vnKg86jzHUw2G+HCuThYZPnITMfJsB99sm52b6zC3CfY4F4n0NAd865xHmDlfonk7q2wSufXDTZlw7ZVw26mBatddklkicflFNW9RpSS/THNOmOyHyH/XZOgTxUk+chMysBbpicm+0DAW5cIN4ooDt6Bd3pJgfaUmF30Ex2NNbJ1GfR1io3Z1W0tFBPsfqKtulAA2enAxqDlTwAuonss9hvWiAPzeR5yMxGgNtOzs32WQFut0C8nYDu+BV0x5aQS7LVhmoIxYVIBVAMPmdab6mE1qmsK1If1pzLnlouy2cX+h4q9VsiusN+8wJ5GCbPQ2YOAtxxcm62Lwpwn2uBeJ9LQHfOvcJcGcGEQktxGiTnrBB00r4U13wzLStXikEDrVjvnbUecqdRj6blFkJuVovcT4L9dm6BPDzP5HnIzOcR4D7v5Nxs33kFuM+3QLzPJ6A7519hjx5t5Ut4YaDhTu7UPJUWvFWEYhJ/E71ijSF0XXQ0RKddoV9C6qDR0aRHIh7st/ML5OEFJs/DI/JFgPuCk3OzfRcU4D58gXgfLqA7F1pBd1r0vdCUuGNpUJMNWItNNMHxhhTJgE1VN+Iv6LpyiB5SjpDo1SMuPygRD/bbhQTy8MKT5yEzX1iA+yKTc7N9FxHgvugC8b6ogO5cbAXdyck3woDQU2nobe+mQK8mq5yULhCp+8oqdZtRGfC0faipdaVpHJToL0vEg/12MYE8vPjkecjMFxfgvsTk3GzfJQS4L7lAvC8poDuXWuL8nWKzsiYFV63ujWfGtPkxqCxRBcLs0Sk+XzlrHWsytM7yITZdmk41iFznlP12KYE8vPTkecjMlxbgvszk3GzfZQS4L7tAvC8roDuXW2K+k7MhAVEFrNHgaYtea6DBTkhgeqk929BoplwdrbH4MjxOc4eVokoAIWiJeLDfLieQh5efPA+Z+fIC3FeYnJvtu4IA9xUXiPcVBXTnSivUO6p1bbXtYPms5GoKLdFDUC6mGGJSVXWHPVWa7pSWMLriIBjlqc2KlhbvEvFgv11JIA+vPHkeMvOVBbivMjk323cVAe6rLhDvqwroztVW2KP3XmmOo0w0paDKmr8bWqG7YFrK0Lt1Rsfmdc4lGe9Q1UglkK5Qe7FO5Pwd9tvVBPLw6pPnITNfXYD7GpNzs33XEOC+5gLxvqaA7lxrhT7LdL5XTS7ESBusYkv0IZXUlO85EisqNIClAG2wwPI9JBoVR4gtmWaUyFyZ/XYtgTy89uR5yMzXFuC+zuTcbN91BLivu0C8ryugO9dbQXcKVAWlNOOxuG6t8srHhqlB6hgTHnG7dJe81Q6djjZ4XWmu01wIyYBIPNhv1xPIw+tPnofMfH0B7jQ5N9uXBLjzAvHOArpTVuizrLfNKZriZF6Ll24cfzu0RmeVy5ZaLGqwCn9v1NFMBxrGwhcm1DW3FL3M/ULZb0UgD+vkecjMVYC7Tc7N9jUB7r5AvLuA7txghblyROOJBajIqR6r0o0SQfUAtUIJ3viqcqW6x/BNbnoPFj0ttDQWozBkkbky++0GAnl4w8nzkJlvKMB9o8m52b4bCXDfeIF431hAd26yQr2TFZasFPoWvI/dR5dLj7V5khtrnddQfSA3qFC91zbR2BkspJJ90T5FiXiw324ikIc3nTwPmfmmAtw3m5yb7buZAPfNF4j3zQV05xYr1DsIQReSHqjgkK/4BTUQJaiWvTbRadOao2VXRNIbV5GGyc6Do4LIB9dFrjfIfruFQB7ecvI8ZOZbCnDfanJutu9WAty3XiDetxbQndusMFfOxrjQqqNipmDtUHVNhu+qRSOfSIstRbipGZuM6rrYFLBUNLRKV5aGPiLnK7PfbiOQh7edPA+Z+bYC3LebnJvtu50A9+0XiPftBXTnDivUO93xDbOwB0fDnIIp26isz9ob+hGqwWxCykpjVN4hFUM02imBCiOIvAGTiAf77Q4CeXjHyfOQme8owH2nybnZvjsJcN95gXjfWYD7qYeN5T7ysfdYfvOtQ4cdC883UB939N/uxuLpQrE47uBc3HvgsfYZmMt3GfceDvcfmG8jP493zBHQSiWPriOUBoY2vaBo0AnUBFidnPaYQzhiDpptajU1xIRe0bzC5uSTyPeHOAZ3EdCpu06uz8x8VwHuu03OzfbdTYD77qdf4nPpKPqldu8xUnOO8nm5u7F45ho1wsjP9aGaPbJGuLuZXwfvLtAf32Ngfzwwn2HHeAB/tBpnQ+TrswVbiuGLstErKZtSe6UffTHK59BsQVeqUrFplYJzRgUvEQ/22z0E9Pmek38uMfM9BbjvNTk323cvAe57LxDvewvozn0W0B0CKgQXios5YzeoikvI8zcX+XWDtdIa0sfWm4nRFhrOJUMrS12rTy1LxIP9dh+BPLzv5HnIzPcV4L7f5Nxs3/0EuO+/QLzvL6A7D1hAd9C6moC0p2ImlSld6aKawxwjFAy59WxLjiWbSEvKkJJWTbVIW0lNMwsvojvstwcI5OEDJ89DZn6gAPeDJudm+x4kwP3gBeL9YAHdecgKfZajsWfDSg2U1h2rtVmRzIAuiMahJw/wvc/4LtMmaWdrIz2yvZFTUCcU+X4L++0hAnn40MnzkJkfKsD9sMm52b6HCXA/fIF4P1xAdx6xQr1TTGk1J43ZGb69tO/UTNH/nQ9Ot6x1bcFlCMpWDblTIdT4tFC+Y5HWMvUO++0RAnn4yMnzkJkfKcD9qMm52b5HCXA/eoF4P1pAdx6zQr0TUugqdJIXdE3x3epTSTGn7BWUCmiQ0GustZimMuGrZmi+Y0OmSimLXI+f/fYYgTx87OR5yMyPFeB+3OTcbN/jBLgfv0C8Hy+gO09Yod7JuXZTrdEWtKned1pXmaIzGg81miPutxhUDMU6E5NFaE4ZZZtOresg8n1e9tsTBPLwiZPnITM/UYD7SZNzs31PEuB+8gLxfrKA7jxlhXonae9otFNsLplGyybaCJVmxjRfRtc7dD4J3Sr6/d6KjaVQ25Vs6bR+Tz2KfK+O/fYUifNvJ89DZn6qAPfTJudm+54mwP30BeL9dAHdecYKe3TalDe+5HUDb7vKzWtD452ojLeYNTjqqFzOiQY7tNPqoFLI3RpbM1/mLRuJeLDfniGQh8+cPA+Z+ZkC3M+anJvte5YA97MXiPezBXTnOSvUO1UbKlyCBeqtaK9Vmooqkri4gr7YgsDXo3Wm8HVqG624dPUllNhLKrECSMSD/fYcgTx87uR5yMzPFeB+3uTcbN/zBLifv0C8ny+gOy9Yod5p3EIZ1CQ4CJiqbd31oBVa67FWaqqqsZAzWu9rar4nnytNeugPugYi9Q777QUCefjCyfOQmV8owP2iybnZvhcJcL94gXi/WEB3XrJCvdPQRucqbbJa5ZKGpsq6Zr4GNtRuEakGwoLUjYFTLmHTvdteaehMpZA2It+TYL+9RCAPXzp5HjLzSwW4XzY5N9v3MgHuly8Q75cL6M4rltijEwZfcTaGRL+liypU7lRNE+TW6DdirlbVCFYzcuKL2AanUww6x0pukIgH++0VAnn4ysnzkJlfKcD9qsm52b5XCXC/eoF4v1pAd16zQp9FtltDs5oekJCSqdhVJ+WpIabENwCJWkXrEvVjLfkefMLUbOrJeUc7LYl4sN9eI5CHr508D5n5tQLcr5ucm+17nQD36xeI9+sFdOcNS5yv7HQGCEWHmkOoPNQpKjStaO5DoxzXtHXNWa9b1V45n6qqxTsVoDQbRa4TyX57g0AevnHyPGTmNwpwv2lybrbvTQLcb14g3m8W0J23rKA71pccaKLjIyYIAbOnaqZoTwMda2P2OQMt1zs1W8kayN41KoAs39ze0lpL5LxB9ttbBPLwrZPnITO/VYD7bZNzs31vE+B++wLxfruA7rxjBd0hY6GT2oDSlmAsjY+zrjRDxu6c0h0h16BDNi130LHTBFrzxXh0pxWYjO6w394hkIfvnDwPmfmdAtzvmpyb7XuXAPe7F4j3uwV05z0rzJVjCUHTzIaWWd2bEGtMhnbnwZgKOnQfokkkMqmX0GmmHCN636NGg6o5LXK+MvvtPQJ5+N7J85CZ3yvA/b7Judm+9wlwv3+BeL9fQHc+sESf1aje6Rh1RCplMARqqMBEX9AnB1552mT5kCwVNxG08sVCqTYYjclpI1LvsN8+IJCHH5w8D5n5gwLcH5qcm+37kAD3hxeI94cFdOcjS5w36AGdr16XDjmY3DpxFa2jLiFT+9Vjda5XXVDT0McF21pTrdtiPW24RObK7LePCOThRyfPQ2b+qAD3xybnZvs+JsD98QXi/XEB3fnECrpDtQzSMiuq6jpNdGinVUoqNefuISaIGCAFomqlqmxNa+AzaFub8sn2JBEP9tsnBPLwk5PnITN/UoD7U5Nzs32fEuD+9ALx/rSA7nxmiblyA1V6zMYjzYyBei6bXDFWudAyGFuStqmh7cp7etHGTuMel3qPAY3Mfe3Zb58RyMPPTp6HzPxZAe7PTc7N9n1OgPvzC8T78wK684UVdCcr26hpoloHa9Yp+ZZaqpW3VY50KHm+3jLpUaUdOlATVnOi1bujqoiGQrZJxIP99gWBPPzi5HnIzF8U4P7S5Nxs35cEuL+8QLy/LKA7X1lBd6JWCaiEMURbFe3JPRplwNcAWYMFegFSB0NjZmUCZmjWxFK76kGhETlfmf32FYE8/OrkecjMXxXg/trk3Gzf1wS4v75AvL8uoDvfWGGPnmKP4GLVwSdPq/KQ6R80ucGki+/NOJKe2Gzo2TXarqcaayoxWhs8hC5ynVP22zcE8vCbk+chM39TgPtbk3Ozfd8S4P72AvH+toDufGcF3akmWWep3cIWqavyRWfDGy7ItOrKLRoM1G6FAtUVrWKLqqsALpAk8bUJJeLBfvuOQB5+d/I8ZObvCnB/b3Jutu97AtzfXyDe3xfQnR8scf5O0Xwp01SK9g2C69RPgUst6wKN/m1ibDpW2w2ttILSjW/hRx2Z4f6ripw3yH77gUAe/nDyPGTmHwpw/2hybrbvRwLcP14g3j8W0J2frFDv6NBCqbQYdxlcpTV58dU4H4x1qIzPGLJukZosrzzSaou/EIrUZzUDQbssEQ/2208E8vCnk+chM/9UgPtnk3OzfT8T4P75AvH+uYDu/GIF3aGpTlSpJ4/8f2yqKho0h8IXcUenbeRTdaKjSkd32rUnoFV7Msq3oKxSInt09tsvBPLwl5PnITP/UoD7V5Nzs32/EuD+9QLx/rWA7vxmhfMGXaq+NZ+0DboGhJJTgUIwUFpFaq5SNb7Xll21zndVIs19TGWPaOKWiAf77TcCefjbyfOQmX8rwP27ybnZvt8JcP9+gXj/XkB3/rDCfEdZV2NR3oIqirorpdB7nVQmHcoJs7G0YQ/R5RwdWNeaDrRG14m/MVqUSJ/FfvuDQB7+cfI8ZOY/CnD/aXJutu9PAtx/XiDefxbQnb+sUO9AbCZogkBPk2KvldJVY8/NgieyHr2uihSnJ2dp8OxN7nxCoU/FVIcie3T2218E8vCvk+chM/9VgPtvk3OzfX8T4P77AvH+u4Du/GOFekfbQtrSWoKmdUmqFFA11u5iiTZX2mFlV5RTMTSqhZTrOdFQGZRFHWgRJhEP9ts/BPJw46C585CZ2cbR3MeanJvtO5YA97EXiDfbOFp39jpoft2hHVamlkn1ZvjG6NU7SC6rnAPNdYLv3emsuqV2zNpYLKlOhkDTnu4QKq22JOLBfttLIA/3njwPmXlvAe7jTM7N9h1HgPu4C8T7uAK6s88CuoPW0Sbd9mZTigG0idqS0BgXMfoSlCnAAx2sBW1OrSlb6U9WZaE4Tz9LxIP9to9AHu47eR4y874C3MebnJvtO54A9/EXiPfxBXTnBCvoDjSvtbOYavN8mQubbAzWlWY1UClE5RAWaxWgyYnWWTVZ4jc+07DHWZnrDbLfTiCQh/tNnofMvJ8A9wkn52b7TijAfaIF4n0iAd058Qp9FrHEjL0hL6ggFZdBFxdrxFpjDNka8KXl3IJy3tMIOjoVeiihJlBJ5H6h7LcTC+ThSSbPQ2Y+iQD3/pNzs337C3CfdIF4n1RAd062gO4o/rqVbZbW460QIp/Ag0ZVHb1TOQWfbK2dCKHRVqulgA550+4dsdLOSyIe7LeTCeThySfPQ2Y+uQD3KSbnZvtOIcB9ygXifUoB3TnVCvVOS8Y4IgnGR9+1zx6pmzIuF6votR7JCz4C0FQHq2v0ex5ygl5pr1Vl5jvst1MJ5OGpJ89DZj61APdpJudm+04jwH3aBeJ9WgHdOWCFeqdYvnNfjFVhAdQ6+UYrchd18A2ctsnHRnOfWoNKXAslU0mpYgN05BOR+Q777QCBPDzd5HnIzKcT4D5wcm6270AB7tMvEO/TC+jOQUvUOw6Tz/z18hoCIO23VHKxIWRlFclQxVgKNoMGLJ/cQ9utWFRL3dsebJaIB/vtIIE83DZ5HjLzNgHuM0zOzfadQYD74AXifbCA7myuUO+Q7kR0tkQTsiFtoUrHhtyVawEzvagz2Ea/k6gmStGm2lXTtHg3GjVkkbky+21TIA8PmTwPmfkQAe4zTs7N9p1RgPtMC8T7TAK6c+YVdKeiM8Wgt1hUD04RcHTa1dJKCVB0LjHRKj3y3KfS75McaW2Soj+FuXmJeLDfziyQh2eZPA+Z+SwC3GednJvtO6sA99kWiPfZBHTn0BXO30kWolWtgQqaGJFmN6EpSPQL20l+XK6tBSqHaLluvYMSg3FgaL1lUMl8L5T9dqhAHh42eR4y82EC3GefnJvtO7sA9zkWiPc5BHTnnCvMdzo2VbDrpnzW9IuOVM84j1FjaLkYa4ksOeXRmhI8fyurZa2Vtpa6M5H7SbDfzimQh2ryPGRmJcANk3OzfSDAjQvEGwV0R6/QZ6VSomsQjY42KN2hE6J3zfuGiu9WHElwOrgSa0NflKWSh79IaqOlNZjIPov9pgXy0Eyeh8xsBLjt5NxsnxXgdgvE2wnojl9ivtN1oGV6zagwe61MhBhpcEwrrcxDZueNpxooFDBFK+7GwJsK1ZnsahCZ77DfvEAehsnzkJmDAHecnJvtiwLc51og3ucS0J1zrzHfwaILjXFyKUY7bNVbHUrQsUYqgxwccTohjXa6phdDdlhqU1WXxLe3EdEd9tu5BfLwPJPnITOfR4D7vJNzs33nFeA+3wLxPp+A7px/hfmOVyEUj/QPjD5Q6ZOVTz17yN676g2NnXmaw7NnB1p7XXqoqqN2FrQXub4y++38Anl4gcnz8Ih8EeC+4OTcbN8FBbgPXyDehwvozoVWqHeqrj74kpAGNs3zl0OxJ5NDpZcdmqwRSZVy8tSPxqCM60aV0GulDsxpkfN32G8XEsjDC0+eh8x8YQHui0zOzfZdRID7ogvE+6ICunOxFeY7ubfUXCTB0eg0MRZtClh0ke9v02qP0eTmVMNEYgQYE98pFJQGco3tEvFgv11MIA8vPnkeMvPFBbgvMTk323cJAe5LLhDvSwrozqWWmO+YUAtVM0Xn7jw4VWmXXm3qnf7vfK+pdFKa2i2VO6mYSP7g8wctzYLAJIl4sN8uJZCHl548D5n50gLcl5mcm+27jAD3ZReI92UFdOdyK9Q7naoWH3L23aDLEdHwFouv9q5VC8m5hkhjZ0XdVdZAE2YoVAt5a4o1VYvcx4b9djmBPLz85HnIzJcX4L7C5Nxs3xUEuK+4QLyvKKA7V1qh3umqk+407ZpzPseqsaYExdtUNVCn5bM2sVKPpZujJZd1ynWbkjGoDf2ORDzYb1cSyMMrT56HzHxlAe6rTM7N9l1FgPuqC8T7qgK6c7UV6p1IdYyn0Y5SrYUefXI1RYsY+F7FvStMNM2BijqQ3lgPka+0HPjWoa0bme9nsd+uJpCHV588D5n56gLc15icm+27hgD3NReI9zUFdOdaS+zRG63Me/c11YjOYHe6+VZq6KBbytCd9aRG1kKgl7GpVmgSbRuBIhSR636x364lkIfXnjwPmfnaAtzXmZyb7buOAPd1F4j3dQV053or9Fmq65oC30aiVJsz1TZJU1VjdUoZW4yual9crdnYEKIL2SpXlOUrEaJNIvexYb9dTyAPrz95HjLz9QW40+TcbF8S4M4LxDsL6E5Zod5RsRjalica8GBFKmxyqg606gF97zzEAUW9V4DSqMbxTSsE9I50SPkSReLBfisCeVgnz0NmrgLcbXJutq8JcPcF4t0FdOcGK+hOpq14dDTI0bHQGotvi+WBShwdq9Ld2Nbob+QYSYmc1UiD55qttVoZBNVF4sF+u4FAHt5w8jxk5hsKcN9ocm6270YC3DdeIN43FtCdm6wwV27Zg6okNx17jqH07KnZotGO4fvWoC7Kpxyp1qEhkCUByj427Oig0poLtEQ82G83EcjDm06eh8x8UwHum03OzfbdTID75gvE++YCunOLFeodUzu41H2gTqsHVYKyCbFDrwDUeBnaYRGq7YEQc0SSqWatomE0eFqDZYl4sN9uIZCHt5w8D5n5lgLct5qcm+27lQD3rReI960FdOc2K9Q7juoXo3JQoRZPikJbcheUbyQ7ztJMstgOoaQEfMmdWlGlmJV24JQnFRL5Xij77TYCeXjbyfOQmW8rwH27ybnZvtsJcN9+gXjfXkB37rDCPivGXnW2Rvugmk46YqSdls5JOQcxeqw02dGqYUseM18loyr6P9Jay+socr1B9tsdBPLwjpPnITPfUYD7TpNzs313EuC+8wLxvrOA7txlBd0BGh+r2kPqvShwxNcxhESrKo/FNkVFTgQkfN9MoErHk1NIc8gtyQYjMt9hv91FIA/vOnkeMvNdBbjvNjk323c3Ae67LxDvuwvozj2WOH+nUAelmq0QgimaxjiJGiyXM23SEzdUWkNwvdCSK1mVMhVI1kXjoo+0BxOZ77Df7iGQh/ecPA+Z+Z4C3PeanJvtu5cA970XiPe9BXTnPkvoTqg0VW7KW5d8tU23nBIGSwOdUrSLji9qyt9IL82Q4hQLTudmjXHGaRCJB/vtPgJ5eN/J85CZ7yvAfb/Judm++wlw33+BeN9fQHcesILupIpAkx0kAtph1RqSQddzBhd6od16SD5RY6UMRoU1NVOw227Rd40g8/0s9tsDBPLwgZPnITM/UID7QZNzs30PEuB+8ALxfrCA7jxkhT16aU0lbTSNa3LowRJypc2WKtbTbCcpWmZRmYPFhQClNEeFT4+xOl0yjX1QIh7st4cI5OFDJ89DZn6oAPfDJudm+x4mwP3wBeL9cAHdecQKe/Taek0mmFaUsrYWA0k73bsKrjbwOYZmdMyuGdpw2ewzjXrQq9Sp4/JFJB7st0cI5OEjJ89DZn6kAPejJudm+x4lwP3oBeL9aAHdecwa5w2mWkB5UhXjVQfTS43VNAVInRSVQbp1IoRmkRTIW42ovA6K1usVq8genf32GIE8fOzkecjMjxXgftzk3Gzf4wS4H79AvB8voDtPWGG+UyHSOKc2TYVOi7o0VTLfVaKC7dBctfy9iIY0U0a+c59KsUM2xmSg0XJxEvFgvz1BIA+fOHkeMvMTBbifNDk32/ckAe4nLxDvJwvozlOWOG8wNIfga+k9g7aQqXnKoXZdabeOVruSk7e1eeigwDmjdIw6NeuAdEfk/B3221ME8vCpk+chMz9VgPtpk3OzfU8T4H76AvF+uoDuPGOF+Y6KkQbEWfvqg6U+KqZcY/HeG5oxq0Jrq9RrwBAtTZrJF9YWTRqlUdnms0i9w357hkAePnPyPGTmZwpwP2tybrbvWQLcz14g3s8W0J3nrFDveE+a4zF3TUJjEFJppmpDA+RSukseq2u9OFp32e74Ojw9G1V7VVTzkCxJxIP99hyBPHzu5HnIzM8V4H7e5Nxs3/MEuJ+/QLyfL6A7L1hhrqwd5hByJb2xOdKwOOhiU0noWi2KhjmBRjuE17zxJrrQwfKFegALUSuR67qz314gkIcvnDwPmfmFAtwvmpyb7XuRAPeLF4j3iwV05yUr9FkpFbSRtlO+mhKcz6lRLcPXvWixlsAnEbaiY9faOyA32FaTqt5CUwZslogH++0lAnn40snzkJlfKsD9ssm52b6XCXC/fIF4v1xAd16xgu50GiuH1opPGNBli6qpFmIvvZnWPXVTPUItTqNVPTi+7HuF6hXttrRJVSIe7LdXCOThKyfPQ2Z+pQD3qybnZvteJcD96gXi/WoB3XnNCrpDQxzVY6CVlnKNCGO1KjWtLHVXoLvmm4e2TJ1XVqh1rlTlkEaVSH/F2yBS77DfXiOQh6+dPA+Z+bUC3K+bnJvte50A9+sXiPfrBXTnDUucv+MDZoSIYKLJoZncqfxRtjiraHtVteuxNOJ0LDbKuhCCay3UyF4wEvFgv71BIA/fOHkeMvMbBbjfNDk32/cmAe43LxDvNwvozltWqHeyinzBUjCBqpwUaFneEEiINPLeClDFrOmXoVowyKctOzCVhj5gqDmT0R3221sE8vCtk+chM79VgPttk3OzfW8T4H77AvF+u4DuvGOFegcTZMXfNO8Ne/W9QwIPJdlM63QF0FxxmcbJPhsfa/fd+YjWV/oRAySJeLDf3iGQh++cPA+Z+Z0C3O+anJvte5cA97sXiPe7BXTnPSvoDphcSkgWCjqMBVuq4JRFrIF+ReDJcU/VMSdaa9GUudfSjNJIr0Ytct4g++09Ann43snzkJnfK8D9vsm52b73CXC/f4F4v19Adz6wQp/lTDW0qyoxeWqdqnXeV03NF/0/pUyvGpr7VO9Dylb55hrNk31poVvMvorMldlvHxDIww9OnofM/EEB7g9Nzs32fUiA+8MLxPvDArrzkRV0p7qMDV0jKXE+OJP4lhIluJBM07GS5BRjwGLRxljb0EdPsx1lvCaFaiARD/bbRwTy8KOT5yEzf1SA+2OTc7N9HxPg/vgC8f64gO58YoXzlV0xgDZ1vm1f0bVRD1W01VbVZIt1RXeC6pbaLdqlG+yhq+Sy0iXShkvmfqHst08I5OEnJ89DZv6kAPenJudm+z4lwP3pBeL9aQHd+cwK851UXdeYFBgHnr/pCSqVlHOl+sc2H62hRTpts2zoIWQbA9YGUVOrVTvNhSTiwX77jEAefnbyPGTmzwpwf25ybrbvcwLcn18g3p8X0J0vrFDvFKu6t0kr2yBo5bUpEIJOEPkUnhiD7SW3Hn3IkUoenzstv6rHQlqVvYjusN++IJCHX5w8D5n5iwLcX5qcm+37kgD3lxeI95cFdOcrK9Q7moobqmhipskxNoNommoNTOkuF743aKHdVvA9Np0sakN1kafhswnFUuPVJeLBfvuKQB5+dfI8ZOavCnB/bXJutu9rAtxfXyDeXxfQnW+sMFcuEamX8q636LRX4KG2SnNk2pLTUKcXnuzQ9gpAd+B7hnqrWlY+h6ypPBK57hf77RsCefjNyfOQmb8pwP2tybnZvm8JcH97gXh/W0B3vrOC7qjUaJ1VlaKxjbVU0+homlMdqkkOlfPd1WZTi6HxrCdRsdOsbt0Xzzfvk4gH++07Ann43cnzkJm/K8D9vcm52b7vCXB/f4F4f1+A+8pnH8t95GPfwfx7jzsW7jPQrv0GxuIH43LQnH/cZ4A5fNyx8KkDP5t2zF10tHVopvKNRQpGbwMCrTJ1q5i8KfQ55AG6ztya25ptMZZiBdFh9qYbkXNLOZ4/EHjP/nByrWLmHwpw/2hybrbvRwLcPz5IRqP3Hsw/p0aDuv+h42Jx9bMvEYuR+o9PF9Ls3Z4Rm/l18McCveJPBvaKA/MZvnLU2XjOORSfNYRawQenMDVHH7wqeKNN6F3l2pw2RmVFn9WYitXVxgItoMhOjv32EwF9/unkn0vM/FMB7p9Nzs32/UyA++cLxPvnArrziwV0B7wtBbDTrDtEo3sp1fuYdGm90UgqZxttD80Gl3UPXqUYSsmIlWZZtKsTuQcY++0XAnn4y8nzkJl/KcD9q8m52b5fCXD/eoF4/1pAd36zgO6ooGJPoAjSmehaI+kh1kbrN5tMRJ108tgRMSbslb/24YwCrYB2eQlErpnIfvuNQB7+dvI8ZObfCnD/bnJutu93Aty/XyDevxfQnT+s0GdFldFaY1tXqHxUUIBJNM01gwp8Rnb1oaPWMVk0qqicW1Wp8qoOqsg93tlvfxDIwz9OnofM/EcB7j9Nzs32/UmA+88LxPvPArrzlxXqndaicY7WLQlCVDrlHFtzoGnmY2wHT5MdbIoKIb4xhgol0uzHgHJeq5pl6h32218E8vCvk+chM/9VgPtvk3OzfX8T4P77AvH+u4Du/GOFeienGH122Hs3nba8NEVOCDWhstZrbr0w8tU7rE+hh66rplEPapUAqFASOeea/fYPgTzc2DZ3HjIz2zia+1iTc7N9xxLgPvYC8WYbR+vOXttWqHdojFNDtEYXb3v0WJJ31Fh5/p59TI7Gy7ZTF0ZdVvCtFZr9aOtp+kMj5iyzz2K/7SWQh3tPnofMvLcA93Em52b7jiPAfdwF4s02jtadfbYtUO9Q/QLGpuz5Eog9d+ti52vUuwoOHNU6EHNrLVVvY9YmdcAILqamqvVGJB7st30E8nDfyfOQmfcV4D7e5Nxs3/EEuI+/QLzZxtG6c4Jt8+sOZKOj6zYpPkHH+qhJhFRNPavkbDQ1gurZhkpbLadLbiU7KFT7VMw0ABL5rgf77QQCebjf5HnIzPsJcJ9wcm6274QC3CdaIN5s42jdOfG2+XVHk94UhE6200LdR58gNsCUqJrJLvdowPGqi5oq3wvNgJyC1qujeicYk0XuicF+O7FAHp5k8jxk5pMIcO8/OTfbt78A90kXiDfbOFp3TrZtft1BUFWhi0hiopAmO6iU8cr00Eh7jOrR2WpyjFQEYQnRQYVmrLMtJ7BZpN5hv51MIA9PPnkeMvPJBbhPMTk323cKAe5TLhBvtnG07pxq2/y6o1Sh+gUBKlU6YFytyZQeaKhjbCFKH2hZrn3NCpCcUQIaT6RVa6g5tSgRD/bbqQTy8NST5yEzn1qA+zSTc7N9pxHgPu0C8WYbR+vOAdsWqHdy1VTrJJ2Ta2C7K9VXWqFbYkciV3x304pdp0JT5UCalDCk7LQF63sOEvFgvx0gkIenmzwPmfl0AtwHTs7N9h0owH36BeLNNo7WnYO2za87UHLspD0RYnceaZOue/OeWixozbgEiZqs0E20BflqZi6WwjfsSblo2oOJzHfYbwcJ5OG2yfOQmbcJcJ9hcm627wwC3AcvEG+2cbTubG6bX3cUG8taYnzoMXWTWrNo+UsRSpcAORwxx0kNWvRUBQEJlKqtlehDqFpEd9hvmwJ5eMjkecjMhwhwn3FybrbvjALcZ1og3mzjaN0587YFdIdGObQphxJ8bbTGgq5JVEJrUVtNI5/itDtistwqDZ8ddVcaaJFeokmgjU4S8WC/nVkgD88yeR4y81kEuM86OTfbd1YB7rMtEG+2cbTuHLptft0BiMX7SpNkkpqenLHIpxGCz3ztHZV0ScrTcotmPQF70DFb4yL5w5runYzusN8OFcjDwybPQ2Y+TID77JNzs31nF+A+xwLxZhtH6845t82vO0ilC6YSY4deQzQmpgwNu08NTe3YMu2uaq3R+8YX/PLZAg15erW+hNpE4sF+O6dAHqrJ85CZlQA3TM7N9oEANy4Qb7ZxtO7obfPrjgq++JBcMr4BNONzabQjN52/kR6gWlqwZ77NYGq2kBpBIolqFZQJTqUmUu+w37RAHprJ85CZjQC3nZyb7bMC3G6BeLONo3XHb1ug3gEPpSbDJwL2UpXLqtE71GKvNNshlUFLy/WYUdfQHALBR2q8iqoZswlWIh7sNy+Qh2HyPGTmIMAdJ+dm+6IA97kWiDfbOFp3zr1tft2BFFLVttPwRjeV0ZlYE5qeMRRrlFVWJx2iDi5g5isOKgM1GAzdaVOjyPV32G/nFsjD80yeh8x8HgHu807OzfadV4D7fAvEm20crTvn37aA7qCvzqZarG26oab2yukQeqH5TamQksegUHsqhXTWpvdgqAtruqiuS7EifRb77fwCeXiByfPwiHwR4L7g5Nxs3wUFuA9fIN5s42jdudC2+XVHUXWjG81tlGlQbIk5ZV9SdLTCMp06KigqW+tCphWX0tEXhVT+dENLd5ryiMSD/XYhgTy88OR5yMwXFuC+yOTcbN9FBLgvukC82cbRunOxbQvoTi6F1udoLGRaYWWaJ2NFVTpGG+k1l2wuaGjs452h5ZdVSINm+jVSAxabyL2W2W8XE8jDi0+eh8x8cQHuS0zOzfZdQoD7kgvEm20crTuX2ja/7mBNiuY3ilomE0LNwZRYLfoWdVToIEeVQgzae1dioTlQL77q5JRrWFQUuc4p++1SAnl46cnzkJkvLcB9mcm52b7LCHBfdoF4s42jdedy2+bXHa1M6tVHmiVnT7NlJOGBkGiMbBzSQx3xbVEqe2IonvbsJeuIHbUB3bvqRSIe7LfLCeTh5SfPQ2a+vAD3FSbnZvuuIMB9xQXizTaO1p0rbZtfd1RwNNkpLtdEi3QqZDS1T1o7R6sspTxghxZSx1JJhxLVQqWQGDVbnMaCXqTeYb9dSSAPrzx5HjLzlQW4rzI5N9t3FQHuqy4Qb7ZxtO5cbdv8uoMudK17Mj14WqanUGtIuUVPMmRTojGO0aXpaB06BFD0R+h3qc/qsWJWIvcLZb9dTSAPrz55HjLz1QW4rzE5N9t3DQHuay4Qb7ZxtO5ca9sCupMSDW+qi9F4q1sLpakGMdFePZVSXCngvNLG0cQnaVMJuSCYir3m7lOWiAf77VoCeXjtyfOQma8twH2dybnZvusIcF93gXizjaN153rb5tcdkpiGTrVovYVWagklkwZlRaUO+hAAnKXxD18dTCtrY2uZqhz6N/ZMkx+R+Q777XoCeXj9yfOQma8vwJ0m52b7kgB3XiDebONo3Snb5tcdRbNkjd4E2wtlgKOuSquobFCuQE2htxqqr63GbGNPKpSgCo2XvarG6CRyvjL7rQjkYZ08D5m5CnC3ybnZvibA3ReIN9s4WndusG2BesdQCdNt9tGYHBzWAobGOpBNcxlrdQVpe947dWFFuVysa0nVWmmorHwtInNl9tsNBPLwhpPnITPfUID7RpNzs303EuC+8QLxZhtH685Nti1Q79geLWrqmlT0tNhSfCGw7qKjdsr7YrQHBZp0ydNyvZmkmsLibSzOd02DH4l4sN9uIpCHN508D5n5pgLcN5ucm+27mQD3zReIN9s4WndusW1+3UHajMeWfKe+KtQeETEbDDV1+ic2zesurohaVdlk2rGXmjMtv5L31fcsUu+w324hkIe3nDwPmfmWAty3mpyb7buVAPetF4g32zhad26zbYF6x/fePGgqcWzla5uW7gzmXpuutgUqfGLQAMEkhB61TwZqLSaCRoTqRe6fxX67jUAe3nbyPGTm2wpw325ybrbvdgLct18g3mzjaN25w7YFdMcEHQpEnUvMtDGv0TlMiEY713uxmbbsriSaMxvfnE4+xJaxKO9qUqWK1DvstzsI5OEdJ89DZr6jAPedJudm++4kwH3nBeLNNo7Wnbtsm1930AQ0aF21YFxyztPAGHTLpRdNVRCfkkz6EmJy2oEz3dF4WStlfaKhTzAi9Q777S4CeXjXyfOQme8qwH23ybnZvrsJcN99gXizjaN15x7b5tcd0hbASpWLTTnp5kqtuWca6iia5ziVWwUqfMDHGB0oWmeZUDDyhb90TbaL3MeG/XYPgTy85+R5yMz3FOC+1+TcbN+9BLjvvUC82cbRunOfbfPrjgKjYuOJjcYawbqudcDYm6qhJdOMzla15oKmYijnEDp0UyHlTtWPlZnvsN/uI5CH9508D5n5vgLc95ucm+27nwD3/ReIN9s4WncesG2BeqfbqlJTrCcJHStMZ9KQoEIuVP/wWYWtFKudVcmpQtv1bF1EvlN6FYkH++0BAnn4wMnzkJkfKMD9oMm52b4HCXA/eIF4s42jdech2xaod1Qnc6l0IcEpURuINN6hNVZ0xWjUkW9o43XQWelK2mQzyVGpwdMEGmLvIucrs98eIpCHD508D5n5oQLcD5ucm+17mAD3wxeIN9s4WncesW1+3UFwWsdQcnY22lAVJqOVUb3ydZe7785FvnOxRtcNUyrIKnWkDVet0Yr0Wey3Rwjk4SMnz0NmfqQA96Mm52b7HiXA/egF4s02jtadx2xbQHcUCYp20XkTOtUwWfXgag6VpjyKl1ktoE4lBY0hFae6SsUm62j0DPRnkkQ82G+PEcjDx06eh8z8WAHux03OzfY9ToD78QvEm20crTtP2Da/7qjSKo2VkcY72oPJEFSCXiohOgPeABiMtpEGFayaVl00C/I+lNptL17me6HstycI5OETJ89DZn6iAPeTJudm+54kwP3kBeLNNo7WnadsW0B3oCRnmjatY7dgGjakGTLGZpxXBUOvVoeevUUIiRbuUAP9lVxIolT1IvFgvz1FIA+fOnkeMvNTBbifNjk32/c0Ae6nLxBvtnG07jxj2/y6A5U2VrTOCs46HU2PTZHq9FAJ2qbaYzKpUQtmjdW8Zm8+5O6Sia4rUiuReLDfniGQh8+cPA+Z+ZkC3M+anJvte5YA97MXiDfbOFp3nrNtft1B1Q162pNXTcVMbjQ0RqpzlKVuqvVSUsSqWlFel+Sh5pZsjrm24OmXFkXmO+y35wjk4XMnz0Nmfq4A9/Mm52b7nifA/fwF4s02jtadF2ybX3dovtOhBOVpdKysDYjRN2t9DzzqgZ5yb+hCK5bX7QGt8ZZGz7Y3lY3tUSIe7LcXCOThCyfPQ2Z+oQD3iybnZvteJMD94gXizTaO1p2XbFug3kkq0iI90oi4e9pi5VCojKEdejAlg07ZVyiYwJdiQCmSpB6zgVxNUTlDlogH++0lAnn40snzkJlfKsD9ssm52b6XCXC/fIF4s42jdecV2xaod3qNFbTK2pjYEzgaKpP0eIWNQDH1Sv1UbLTW6tX7EpvVhedBsUWEWp1EPNhvrxDIw1dOnofM/EoB7ldNzs32vUqA+9ULxJttHK07r9k2v+5A693aqFpMSvlgnakGdaRRjtbFG7RoaaoTdLdNOZ+oyCk9NXrJeBW6Qol4sN9eI5CHr508D5n5tQLcr5ucm+17nQD36xeIN9s4WnfesG2BeqdQBWP56w/otY/amqgDJED+Nig4WmVpiKVWkqNeHamPp+6q9VZcpLFQE7mfBPvtDQJ5+MbJ85CZ3yjA/abJudm+Nwlwv3mBeLONo3XnLdvm1x3E5nvLmBLflE8ZkiFnqOuKphJZqzXGlIvjK/KgozEzZEMlUTLK8SasiugO++0tAnn41snzkJnfKsD9tsm52b63CXC/fYF4s42jdecd2+bXHYCUszL83XJIoZLEtKZz8y0VAB01ovad5j/odEo08OnGdPR8Ly3fWmoic2X22zsE8vCdk+chM79TgPtdk3Ozfe8S4H73AvFmG0frznu2LaA7RVXbbLSIuSRj0fkWVDXUS5XcHXpaYCXaXFEJRL+toRdySom5h5Bikfl+FvvtPQJ5+N7J85CZ3yvA/b7Judm+9wlwv3+BeLONo3XnA9vm1x1MzReNzvWSvKb1VfaG9KaVHpzncTNCI7SgS2lIq6+iwaOlvkxlkh8XJOLBfvuAQB5+cPI8ZOYPCnB/aHJutu9DAtwfXiDebONo3fnItvl1R+motNYhGRPA1apoeEPzYlNCbtHQAJlIkVbnJhqgHoy8EEOsnrTImlJNk4gH++0jAnn40cnzkJk/KsD9scm52b6PCXB/fIF4s42jdecT2xaod3Qs3SkXbciqeW2h5FSjVQ58TtYm12iyrLKLwcSmsVgsOvI9KGJBo0Xu28d++4RAHn5y8jxk5k8KcH9qcm6271MC3J9eIN5s42jd+cy2BXSn0RxZRdfQukSrqhI8EeWYk0bdLE2bqb4B630qFoyqvjtfi4MGseYQRXSH/fYZgTz87OR5yMyfFeD+3OTcbN/nBLg/v0C82cbRuvOFbQvoDmSf+dtYUfVamvG5hBCibTRuTkDPVpSmmXL13ibNokM79NhpxaWVMVnkfGX22xcE8vCLk+chM39RgPtLk3OzfV8S4P7yAvFmG0frzle2LaA7vvZcq3OJv4NeijdA8+QM4Jwzle+RBYrKHd2UoQbM1VJT8AUyoienFJH5DvvtKwJ5+NXJ85CZvyrA/bXJudm+rwlwf32BeLONo3XnG9vm1x2IPoWs0WNKKdAgJ2ine6BRTnKxOwMd6A84KoG0USEHhVVXb7B4pzX9TYl4sN++IZCH35w8D5n5mwLc35qcm+37lgD3txeIN9s4Wne+s21+3VFFFyw0VjZOm27p5xYT1o4dktGRaiHridhZ1VwGFajbstqb0JyjFk3mul/st+8I5OF3J89DZv6uAPf3Judm+74nwP39BeLNNo7WnR9sW0B3jCshRh35kl+gg46+0x7LEQrtt5yxClEH373isqfHaskjzvcUgu29WYl4sN9+IJCHP5w8D5n5hwLcP5qcm+37kQD3jxeIN9s4Wnd+sm0B3dGWpjsFXVO6WF5gaeq3SGsUaldUTJnmzr1YbVVv2pIONQhBVUzValAi13Vnv/1EIA9/OnkeMvNPBbh/Njk32/czAe6fLxBvtnG07vxi2wq6g0kFjRAMtNB9pYW5zl2Xjjk1XWivBcWaRC0YDZSTcto2V2ndZYtSKYtcB4P99guBPPzl5HnIzL8U4P7V5Nxs368EuH+9QLzZxtG685ttC+hOdY3vG6ETganeS3Emh+LR+VJbj0ZjMdR4eURrAE3QKqN3lU9mLjGIXOeU/fYbgTz87eR5yMy/FeD+3eTcbN/vBLh/v0C82cbRuvOHbfPrDvbWMtiMpmBMxii0NlsTFbaie6fVlbFoqbRputIiPZqUPKqUwKLLyYjMd9hvfxDIwz9OnofM/EcB7j9Nzs32/UmA+88LxJttHK07f9m2gO6orgK4blQtzSXiwEw/QvNQIPhM1Y6rWkdLU+RstbMNXYy+OkCVuxM5X5n99heBPPzr5HnIzH8V4P7b5Nxs398EuP++QLzZxtG6849tC+iO56uYak+jZY3BpkKzYqp/XHU0Xa7BxdJ9COCVoylQpXmzpcKoGZMbNWMpgEQ82G//EMjDjTPMnYfMzDaO5j7W5Nxs37EEuI+9QLzZxtG6s9cZ5tcdRVVMCR66wdL4ZyjVxEqTZoxVtwq0LA9J++wN3844p9C8Kbmq4qhDk7kOBvttL4E83HvyPGTmvQW4jzM5N9t3HAHu4y4Q7+MK6M4+K+hOwZRTya221NF6RausWG10oaOmnRaRKtOythayaU4pNLmkrJPLhXRHZL7DfttHIA/3nTwPmXlfAe7jTc7N9h1PgPv4C8T7+AK6c4IFdAd0TMRC1U03zkWtbC4ZTHS11qhc79B1qKg80EDHmVp8cHwB5qYdBIKViAf77QQCebjf5HnIzPsJcJ9wcm6274QC3CdaIN4nEtCdE69Q7yTwtLxyVUEvrCgttEoAWKrKNNbJ1RIc5EjapE2mXZbRHm2IQCURjX8k4sF+O7FAHp5k8jxk5pMIcO8/OTfbt78A90kXiPdJBXTnZAvoDjqnbae1VWl8tYuWY6TxDrYYlQFH42VD02SrTXeYUHvwoHvRtFM3aJ1KIveTYL+dTCAPTz55HjLzyQW4TzE5N9t3CgHuUy4Q71MK6M6pVuizair0MNRoJay0sPK5J5oit07iEjBni7RNr76mVlXvptFuq/hmlNa00uoi18Fgv51KIA9PPXkeMvOpBbhPMzk323caAe7TLhDv0wrozgEr1DvYuMeiZorPxsm0pAIaF6vcddQh2pQq7dPBJ0M/5OaAVuuhh8Zfpai1WJF4sN8OEMjD002eh8x8OgHuAyfnZvsOFOA+/QLxPr2A7hy0Qr3Tu8sud6DpsVXKKNv41EDTac9VcsIM2bZmdTSOgMFldLlRN0Y61ID6MYl4sN8OEsjDbZPnITNvE+A+w+TcbN8ZBLgPXiDeBwvozuYKuqPABF1twt6rramGoFClXMGHZlqB2o0xOlrnvPKVtl40bw7Om9aIv4tc55T9timQh4dMnofMfIgA9xkn52b7zijAfaYF4n0mAd058wq602ij1SytzJMvphsPoXW+tmAsymdtora6pNy9paU6uEJ79OyN1glTIlIvEQ/225kF8vAsk+chM59FgPusk3OzfWcV4D7bAvE+m4DuHLqA7iirmwrZtdyIoceONaVA0+NUQrbK0zQHALstNlOdg5Hm0LTPqip2i6VnkX0W++1QgTw8bPI8ZObDBLjPPjk323d2Ae5zLBDvcwjozjlX0B0ioD15ozV5TbSiQnQ1edIV32hthdFZpKqneRo1ewXNUPPF3xANXbdoVBX5ngT77ZwCeagmz0NmVgLcMDk32wcC3LhAvFFAd/QKfVY0tSVTci6aFlpRYQgpaypsIo2ToULsFY23TvHVeWy0KpXYajYqNdu9yFyZ/aYF8tBMnofMbAS47eTcbJ8V4HYLxNsJ6I5fQHdQuVytqbUra0KF7hxE2prbrmnuo1RR2lSdNVB902m+THMfvjZh6SEi9GAk4sF+8wJ5GCbPQ2YOAtxxcm62Lwpwn2uBeJ9LQHfOvYLuxGJyDNDBlFhDjMmS7pASedejy0nTlj3RoJlUJtsMtWaa/NRcGu25AGXuF8p+O7dAHp5n8jxk5vMIcJ93cm6277wC3OdbIN7nE9Cd868w36lem1wboAbaasUUK5U23mvsxfhGdVDJSTUsOuTietfOO9Cq6GaoLEKRuTL77fwCeXiByfPwiHwR4L7g5Nxs3wUFuA9fIN6HC+jOhVaodzrVN7S+QvRU1vhCAIXstzFgVirzl0ODzaF6Km+M1dY2SNY0XSu9rEHkfhLstwsJ5OGFJ89DZr6wAPdFJudm+y4iwH3RBeJ9UQHdudgK9Q6fD9hpl1UclTDKgVMt0ey4oEqxJVpdmUgNWHW+9qZdqT205GjwkxAUepHrDbLfLiaQhxefPA+Z+eIC3JeYnJvtu4QA9yUXiPclBXTnUivss2h2o4ujPTrD8lYLWzHRo8EWLWgdHHZqs3ropkCxNvoMCMYl1TElkfOV2W+XEsjDS0+eh8x8aQHuy0zOzfZdRoD7sgvE+7ICunO5FXRHp873C+3YU3eRui6T0DZswcXGl1RO9DIVORUMPWiVRTNoxXe2iYit6SQRD/bb5QTy8PKT5yEzX16A+wqTc7N9VxDgvuIC8b6iAPd+5xjLfeRj77H8uPe4Y5l9BsZlv4GxOKFQLPYdnIsnGsh8pWHvO1T3P3TUsUB969BxuXvlgZ/HA9+vMDDfzN13rBNybKYhX+UcGqVD913TBJbyoepIC5+EqVlqUdBC5WtIGFNcohKiWtdojpv5GKP1k/PsSgL6eeXJPzeY+coC3FeZnJvtu4oA91XPsMTnpXnqYfPr125fM3GN2iWcf1wswuGHyej/bp//Z+fXwasK9O1XG9i3D8xn2DEefPnbnJ33TcesdIegIRoaIfoWk05VOV0MVsih2x6QPpljhVqwFB+1d10iHuy3qwno89Un/1xi5qsLcF9jcm627xoC3NdcIN7XFNCday2gO6r0WEAl2lCo7FJ1JYWGncaIyXtVrceqsddQi7PNRouxd9QpGN+VhypyHir77VoCeXjtyfOQma8twH2dybnZvusIcF93gXhfV0B3rreA7mBT2QTbgG9uXbi6gWa6RshVQbQResq0kqgdFY0kQlKWL3+AhTwTW5S5/yz77XoCeXj9yfOQma8vwJ0m52b7kgB3XiDeWUB3ygp9VksBLXbHX97D5hJE2pRGFZtTsXRDPRdtSJsN0fAXka0BbMZGZRGtBhC5nhP7rQjkYZ08D5m5CnC3ybnZvibA3ReIdxfQnRus0GeZ4IwjeXEppuzB5JCtTy15TWsWm3VO5IVOexaViZh2LjakEm2lZQsmhxLxYL/dQCAPbzh5HjLzDQW4bzQ5N9t3IwHuGy8Q7xsL6M5NVuizwLjoaaOrlfdQbGm10qAnq5qa17FRgdNLdBkyFl9IhmpKheY7vpRIFbLI9Q3YbzcRyMObTp6HzHxTAe6bTc7N9t1MgPvmC8T75gK6c4sV6h3dvanOWE8Dm+A8EGbttUStDBRFqyw84mJyfA8Bb0EblVRo9HueBkFJZp/FfruFQB7ecvI8ZOZbCnDfanJutu9WAty3XiDetxbQndusUO9gtWS4zalBdi5Gq7NtipTGJ19LMd26bhsqjT4ES8OfYFpsNGYuJjk+0vh4sN9uI5CHt508D5n5tgLct5ucm+27nQD37ReI9+0FdOcOK8yVVVPRVZX4W39YrNbgVcLgXNYBOq2sTNNIM2WFxqquHFFTgeR7bxp0FLmuCvvtDgJ5eMfJ85CZ7yjAfafJudm+Owlw33mBeN9ZQHfuskK9YysUWpYb1wJ1Th5iyyb5AJH2PxqjBWvQdtu7iy0hiRM1ZMEWVLkTaZSIB/vtLgJ5eNfJ85CZ7yrAfbfJudm+uwlw332BeN9dQHfusUK94xKhGaORVuOmGYQKmX6kFZcuMaXsklY5ldZz5wtbNv6zpfL92oDvFikRD/bbPQTy8J6T5yEz31OA+16Tc7N99xLgvvcC8b63gO7cZ4V6xxWtq+sKsq66Nm2pomnBhuCVdsCjHexIfN3XhAlp+0VzZxoE2WqpHxOZK7Pf7iOQh/edPA+Z+b4C3PebnJvtu58A9/0XiPf9BXTnASvoDo1zsFWrW+qKChlVUtQxYS7UZnWTSi6pGtppKV8RUrQKaOCjc6JFOhVBItevZL89QCAPHzh5HjLzAwW4HzQ5N9v3IAHuBy8Q7wcL6M5DVuizkPZVtMyKPNSJJDkRwKoSdC+BJzyVtlilN9+yN7Rmby3pjrVVGgUlR39aIh7st4cI5OFDJ89DZn6oAPfDJudm+x4mwP3wBeL9cAHdecQCuqNMrCrSypxGyTRgLi3lnqmaAVWiDaQ2tntTUtME6dCbGAOt2z3NeLDX4kV0h/32CIE8fOTkecjMjxTgftTk3GzfowS4H71AvB8toDuPWaHP4uv+d92pofLJGvDeKcLB6iy95kIiDQoWVGgGaAiUagyWv6/VPY2AdBCJB/vtMQJ5+NjJ85CZHyvA/bjJudm+xwlwP36BeD9eQHeesEK943X0PqdguisIupmOqdHDteKMp015rUxMTViCkgLk4gpkD0G5Yr3IXJn99gSBPHzi5HnIzE8U4H7S5Nxs35MEuJ+8QLyfLKA7T1mh3kHnMCWTEH3PClr0JXhfmqN+KllSmpC8qapVrSIpVOf7Y3e0hthrRZHzldlvTxHIw6dOnofM/FQB7qdNzs32PU2A++kLxPvpArrzjCX6LF+L6yaE7KvxuerWG0KojRqt0oymcXJtkPm+tFhppkOlkKEpkPO62qRF4sF+e4ZAHj5z8jxk5mcKcD9rcm6271kC3M9eIN7PFtCd56ywz/Kqleq7C50GOLqpVLuLkWB9ahiM6VFjDc3HkKo2tpFAORW4zUq0d08S8WC/PUcgD587eR4y83MFuJ83OTfb9zwB7ucvEO/nC+jOC1bQHYW+ap0CVTdKo1LGdZUj7cm19YqGPEiT5h5cLZo27dZYlY2mPbvik3lKE7n+DvvtBQJ5+MLJ85CZXyjA/aLJudm+Fwlwv3iBeL9YQHdessJcOUBytJoqwTnaZKmsg09Qqwa0LQbjjLM6YkbMNilvfMjWVRdJqjJ1XyJzZfbbSwTy8KWT5yEzv1SA+2WTc7N9LxPgfvkC8X65gO68YgXd0Zq6K2tBW6dbSTrTTNl2Vw31U7S2So1GOsXEpkqM1dZevGlQTFENkbwhEQ/22ysE8vCVk+chM79SgPtVk3Ozfa8S4H71AvF+tYDuvGYF3QEXe9IkM6grbawiKKOptLFNt0x/EmmwQyOepBwG7F3Rn+lVl4JWpR4xSMSD/fYagTx87eR5yMyvFeB+3eTcbN/rBLhfv0C8Xy+gO29YYZ9F63AdXC4hlZRNRBOzbt5aQ1utVrJ3xhflXaGJT6C+C5ROWDD7GJPqTeQ6p+y3Nwjk4Rsnz0NmfqMA95sm52b73iTA/eYF4v1mAd15ywq6Y5vv1ZpkaYxjHU2MoQai4H06weVioEWXYudurKtocso0AQqZr4+qDEjEg/32FoE8fOvkecjMbxXgftvk3Gzf2wS4375AvN8uoDvvWEF3mgPaXplE5Uzga+9kWwzqZKqn9ZUOYEJPCVss1HUF3xOAc613DI1+LCLzHfbbOwTy8J2T5yEzv1OA+12Tc7N97xLgfvcC8X63gO68ZwHdgYJ8AR5rkW8PEQPWlMBq11w03gN1WwGURerBalC0W1camqHlVkBrfLIi9+1jv71HIA/fO3keMvN7BbjfNzk32/c+Ae73LxDv9wvozgdWqHeISPsMsZjunSUVymhSC5oGOS1qFaLVyaPPlSCVRxrvNB8rJoyaT/WRiAf77QMCefjByfOQmT8owP2hybnZvg8JcH94gXh/WEB3PrLCPqubzGfqxOCrAU1wsRJqIA3KRne+MIZWLVBfVU1H31zH6lzt1matVRKZ77DfPiKQhx+dPA+Z+aMC3B+bnJvt+5gA98cXiPfHBXTnEyvUO6GboAq6pGmwo6mqaSYHvsVEdBEdbaxM7B5Siqho/uysqhaKo7lzyBG7SJ/FfvuEQB5+cvI8ZOZPCnB/anJutu9TAtyfXiDenxbQnc+sUO8knWlz5XwxpaaqfKZBM3/jXIVeuvFI8hOpyKEqqPLXt6q3xTmHsVVPu3WRPTr77TMCefjZyfOQmT8rwP25ybnZvs8JcH9+gXh/XkB3vrBCvZNpXaUCiYrR2gdtQ9KmuWpDTa2EDLRY1xi94bv35d4rWg/W00vaBWdErjfIfvuCQB5+cfI8ZOYvCnB/aXJutu9LAtxfXiDeXxbQna+ssM/qPsYWqGPyJivnCnTeXWVILcduKjpNnVXTBjO1VrZDNVz0NCB5Kl2J1Dvst68I5OFXJ89DZv6qAPfXJudm+74mwP31BeL9dQHd+cYK9U5T/NUsqKn0mEuJFjxNk3XJzldtqJlS0SprIAaa7rTqgkdMDr2lAVDJIveTYL99QyAPvzl5HjLzNwW4vzU5N9v3LQHuby8Q728L6M53VtCdFExNjhbkSvuoaH9Oi63IVU4Eb0KJNYWQG5ieNe23lC5dK1VjjRFo6y5y3iD77TsCefjdyfOQmb8rwP29ybnZvu8JcH9/gXh/X0B3frBCn5WgG9T85YgSCq3SaXBDhU6kjXohftssNWDal55bIGXSzWkMIdDsp9EQOojcL5T99gOBPPzh5HnIzD8U4P7R5Nxs348EuH+8QLx/LKA7P1lhnxVDw9J8DVnTetw4Wmo5U0vM2XA3lZLVyanUaLfVa4vNdJoGqRhTN91qkbky++0nAnn408nzkJl/KsD9s8m52b6fCXD/fIF4/1xAd36xQp/lDTQ+/bg60ppUireWaHVpStMU2SL1XNgQ6UUo0XH5oyO1XAilRiMz32G//UIgD385eR4y8y8FuH81OTfb9ysB7l8vEO9fC+jOb1bos0xPKuUcEX2hOifwVQe1st0Wp4NWIbmeMg2f+bsTtaRQWkL6QVGtE2mjLhEP9ttvBPLwt5PnITP/VoD7d5Nzs32/E+D+/QLx/r2A7vxhiXpHKdMyGip5Qi7Zg8HmXQ26tUS/Vyv0iLn7nkIrfD0edJCToqV6oN5L5Hxl9tsfBPLwj5PnITP/UYD7T5Nzs31/EuD+8wLx/rOA7vxlhXqHtEVHx6cp1+z5khfeRpr58JckAksMfyvUGhsCgnaR7xxanfbkAmMxRJG5MvvtLwJ5+NfJ85CZ/yrA/bfJudm+vwlw/32BeP9dQHf+sYLu2KK7NsYlC6B1t4pW51453TFDa9FlqnUg1xpqIj2yHoCqo1owJ2rNish13dlv/xDIw42D585DZmYbR3Mfa3Jutu9YAtzHXiDebONo3dnr4Pl1RyHtxGustJ3KtDznu/flECEFnbuttdKqq5dSrQ2er+XO117GqgAtggfXRe5jw37bSyAP9548D5l5bwHu40zOzfYdR4D7uAvE+7gCurPPArpD0+SctaZSB2l4k4rOynijHQmQajZET6t1G7Q3hibKIbjgsLhULHoXbMlOIh7st30E8nDfyfOQmfcV4D7e5Nxs3/EEuI+/QLyPL6A7J1hAd2hok3RtOkTbbM5V1+piMc7EXLw30foQIAdMSVnffHa+N9MxqUglEQaRfRb77QQCebjf5HnIzPsJcJ9wcm6274QC3CdaIN4nEtCdE6+gOy4C1Ty+Ehl2LFZ5XWldlQuCKtrRIxGzLtEXS2BU61BPRuOfZJszTmS+w347sUAenmTyPGTmkwhw7z85N9u3vwD3SReI90kFdOdka8x3ChRLq6ysSH9sQRdNS9YZm2IJ0dHQx1ZaZuUEXSdXySEuKOrCCkarm0Q82G8nE8jDk0+eh8x8cgHuU0zOzfadQoD7lAvE+5QCunOqFeqdnpym8Y2vjTAMcUXMuaRKq61Sk/FWtR6jqbRf71XzRU6LKgmM90ElJxIP9tupBPLw1JPnITOfWoD7NJNzs32nEeA+7QLxPq2A7hywQr1jvaugcnamFFSdyhjTqdpxLZpg+HZZzVhVac+eujOtOZtouR4agIn0F7NEPNhvBwjk4ekmz0NmPp0A94GTc7N9Bwpwn36BeJ9eQHcOWqHeMbFY63IrKWDsWplkaXNlQqAVuk5F9dBpAORNjmhNVaEYpCGPRo9UIhkvEQ/220ECebht8jxk5m0C3GeYnJvtO4MA98ELxPtgAd3ZXGO+g9pqhwq7TUrRzJjGO61FGuH0WoPii33pqpJWUAwkF7BSi2V0NBGCFrmfBPttUyAPD5k8D5n5EAHuM07OzfadUYD7TAvE+0wCunPmFeqdEPjKFjVViJg8uoaeduagVABnradmyndtvQFvTIcWcw7JYfShBmNQRHfYb2cWyMOzTJ6HzHwWAe6zTs7N9p1VgPtsC8T7bAK6c+gK9Y43ISuoJtVYMs1sXKYVuabWyyXsnZbm3nJJ5KkTizpRw1WAvyPqg3aaiiCJeLDfDhXIw8Mmz0NmPkyA++yTc7N9ZxfgPscC8T6HgO6cc4V6B1Liy7ZbSywlY3FU/iSEQC/XXIrGWKpPzSnqvcA6X3xIFsHR7qtlme9nsd/OKZCHavI8ZGYlwA2Tc7N9IMCNC8QbBXRHL6A7qIIpNLvxWDE6qJ4vMxhy0Rk7n6xMy61slKKpclCQaNmlQ/RNB9CukDiJXPeL/aYF8tBMnofMbAS47eTcbJ8V4HYLxNsJ6I5fQXcijYchuBAC1OiNLb1430K2NFqO2RVXoqGGizUGTbStttIIl8/iAfotiXiw37xAHobJ85CZgwB3nJyb7YsC3OdaIN7nEtCdc6/QZ0Udu20QQ9RaNdUhVuDhMhRVadbjDLqqesudvytK82UbW+SbiXa+4qkPEvFgv51bIA/PM3keMvN5BLjPOzk323deAe7zLRDv8wnozvlXqHdorKyVh2ZtK66iCyZmVB5pumMTtVKt2hIM38HYU2UIvVe+oai3NBFSvoroDvvt/AJ5eIHJ8/CIfBHgvuDk3GzfBQW4D18g3ocL6M6FVqh3SEGyrzrzmqrTwDjHSOtybYpvuelOJU/1qBWNf3ykIXRv4GgAZIJtnkizRDzYbxcSyMMLT56HzHxhAe6LTM7N9l1EgPuiC8T7ogK6c7EVdKf6wrcldrUEr3UC3XzDI+5V0x1JEMlSNcV5bWnN5SOaBomW7ipaTI7+tEQ82G8XE8jDi0+eh8x8cQHuS0zOzfZdQoD7kgvE+5ICunOpBXSHBjo+ZFW9pR165kt9KZ9C9YYvQJhLrYWEh3ZatTXbLYmTpn1Xp38lSCFWkXiw3y4lkIeXnjwPmfnSAtyXmZyb7buMAPdlF4j3ZQV053Ir6A5tsbAYY73LNEuOpeSsCpaYina0CvEpmlZ9TI4mzw1Ld6RTvTQbIbokc90v9tvlBPLw8pPnITNfXoD7CpNzs31XEOC+4gLxvqKA7lxpAd2hbqlW3yAoNEWXHiGBizZhNjZozJp4rM9Z92abST3GRDIVo8q6mo5ZIh7stysJ5OGVJ89DZr6yAPdVJudm+64iwH3VBeJ9VQHdudoKuhNtRwvKoq4heL6Ce7EeHVRTm6pEhaF2Bcr4bEAlsNpWR2uvGkpQVmS+w367mkAeXn3yPGTmqwtwX2NybrbvGgLc11wg3tcU0J1rLaE7mK2jVVbxOeXQaXZTW+o+F+tojaWLM9hMcIX0hnbtDn3GnL13wXsbu8genf12LYE8vPbkecjM1xbgvs7k3GzfdQS4r7tAvK8roDvXW2G+o/mapbHqyrcldtXRWAcRTES0PTutFA12MIbiaZ3eTFSafuhd26IchCJynVP22/UE8vD6k+chM19fgDtNzs32JQHuvEC8s4DulBXqHRtyBtIaX1IuGRKihxada5E6LtqfQ0Cbu1G69RxKpT8SaZ3eg6c2LIYkEQ/2WxHIwzp5HjJzFeBuk3OzfU2Auy8Q7y6gOzdYQHeAJzVgEtluCcEr7rjonxapszLNtBiMolFyyqxJNlV6oaNCKpCCakmkz2K/3UAgD284eR4y8w0FuG80OTfbdyMB7hsvEO8bC+jOTVbQnepD0ICOdlMmleBU7ZCSMTRsNrErm7TJXSWbc8JkXLa50bQnaaKlrbvIffvYbzcRyMObTp6HzHxTAe6bTc7N9t1MgPvmC8T75gK6c4sV5juWKptgSvfaAqJ2EFvWaGOtSKpDS3b+CgVmWm2pEi15wcZkDfqOfKMtketgsN9uIZCHt5w8D5n5lgLct5qcm+27lQD3rReI960FdOc2K+gO8CIrua46lTDFpK6acnyfrEilDd8hi/owm1xKhRSIYDE31DrSlMeQ7ojMd9hvtxHIw9tOnofMfFsB7ttNzs323U6A+/YLxPv2ArpzhxV0J2pvA1YsvYRIuw8bGqToagx8a9CYulbFAO3Ti+7ao/E95MJXHoRAsx6RfRb77Q4CeXjHyfOQme8owH2nybnZvjsJcN95gXjfWUB37rKA7mjF+uFNNjaGQJtzl1VoykDsGZ32NFIu2VnvfK4RXaFVui/KQzemVp9ErnPKfruLQB7edfI8ZOa7CnDfbXJutu9uAtx3XyDedxfQnXssoDtQlLI91MLn5HRTLK3QlSNpMYnvDuoRfLIFg8m1gIq2Q0bIRWtXS+pd5H4S7Ld7COThPSfPQ2a+pwD3vSbnZvvuJcB97wXifW8B3bnPCrqjTSwldlqRo1WalugRAGjanEiKTOSvTBzxTXWtYusVogshoXLR2651MCLfk2C/3UcgD+87eR4y830FuO83OTfbdz8B7vsvEO/7C+jOA1bQHdqiU62jcik+ODSxdmUIgmSlUKFjXGrWBleTCiXl4Gyo2YKLmkiR5s4S8WC/PUAgDx84eR4y8wMFuB80OTfb9yAB7gcvEO8HC+jOQ1bQHbI3u3jEl9A9ekg207CHRju+EpsqrnXaqhvXEvjcNa3Y+e7EutG0x7riReod9ttDBPLwoZPnITM/VID7YZNzs30PE+B++ALxfriA7jxiAd1RNkPQWSWnaFNFLMFCiD3qiqjA2po1CQ4WvtRyN50vrKxBtVIgGU9/USIe7LdHCOThIyfPQ2Z+pAD3oybnZvseJcD96AXi/WgB3XnMEvOd5Plyyoo25s07BKCxMgbw1sXo4xFfnlDAwpN5bw60R6+04Tpikd60LhLxYL89RiAPHzt5HjLzYwW4Hzc5N9v3OAHuxy8Q78cL6M4TFtAdzLpbr0xVqPl0QJN6sb7RqrzzrUKbaQ41aogWCtjaGtKOHRq5QyXoCiXiwX57gkAePnHyPGTmJwpwP2lybrbvSQLcT14g3k8W0J2nrKA7sUWvAw2Qqdpx1voUunXVULvlOtKMOcViDWmS4gtjxGQxJlMrWpdUVCBy3iD77SkCefjUyfOQmZ8qwP20ybnZvqcJcD99gXg/XUB3nrHCfKe11BL6zCObkBx/55ybqU7SQ3/SVa8TI2cH2IqvlYqd7p3K2tnUishcmf32DIE8fObkecjMzxTgftbk3GzfswS4n71AvJ8toDvPWWG+41SoFgP1T9VRzxUdlTY6+pJoekMyxJf7Uik5mvbkRo1WSNp4VdFlE10rUSIe7LfnCOThcyfPQ2Z+rgD38ybnZvueJ8D9/AXi/XwB3XnBCrrTHeRoSzfW5N6pukGtDNLYBwItzXWn/zUXqAsrVAEZtDReRr55sUpUAsncL5T99gKBPHzh5HnIzC8U4H7R5Nxs34sEuF+8QLxfLKA7L1mhz6KtuMm8n6IiJ3tvYsLki4ktWWesj5XqIV8d0GY905wnuxYc/fEMSnXtRb4nwX57iUAevnTyPGTmlwpwv2xybrbvZQLcL18g3i8X0J1XLKA7aFqjbXlBGzTkFnPHZqOlXqsaoMqmBGsjBlVN10dclqeFkqqLlv6AQieyz2K/vUIgD185eR4y8ysFuF81OTfb9yoB7lcvEO9XC+jOa1bQneKIpOeoYk0uVteozepZpa4taO+ayqlFqnb4K+uAmHTDbmgMVCqtvLKXiAf77TUCefjayfOQmV8rwP26ybnZvtcJcL9+gXi/XkB33rDCfIdLG2qrnFXNeYx8Bwn+KkTo1WfwpduktEVlGg2ZqTSqsVWXYqylOB9blogH++0NAnn4xsnzkJnfKMD9psm52b43CXC/eYF4v1lAd96ywnwnmhJoM9UdTXqiKh0gh66VpeKml1ajbyWZVtB1p8E4Fbt2hrbpuSZdvcj1d9hvbxHIw7dOnofM/FYB7rdNzs32vU2A++0DufemYxxn4/80gh/7DPWDUe60xHzaUcdD9ewDNjaeccCo44E60YEbGyc4cJhPw51Pv7Fxh9MPO575/kEbG985aNjx8Ipn2Ni43BnG5fnbt+va2LxBNTIHj7UxLl/22hgX273HHSvsM+5YuN+4Y8GJdjyWq8HU2lq1iLEp7aNtfOKaQluS4hloKAYsrV8ALWpjU7Y+xZxq1RXsxhaPMXb+T76JHJt2Rkd+BvC/t23/+R30nnknPd9Fz3fT8z30fC8930fP99PzA/T8ID0/RM8P0/Mj9PwoPT9Gz4/T8xP0/CQ9P0XPT9PzM/T8LD0/R8/P0/ML9PwiPb9Ezy/T8yv0/Co9v0bPrx+83Zi9tv+bjdl3p9feucVr79ritXdv8dp7tnjtvVu89r4tXnv/Fq99YIvXPrjFax/a4rUPb/HaR7Z47aNbvPaxLV77+BavfWKL1z65xWuf2uK1T2/x2me2eO2zW7z2uS1e+/wWr31hi9e+uMVrX9ritS9v8dpXtnjtq1u89rUtXvv69tc2NmSKTf5A2hx83B1FbHcLuHccvPvHap0fCt456FjM+K4hx/off71794+F2/0F79ndY5n/9T28d/eOpXaII7xvd46FR8kJeP8xP5baKb/gA8fwWK7/U67CB4/ZscIWeQ8fOibHClu+h+DDu34sfzTvR/jIrh7LH+17Gz66a8fCf6ET8LFdOZb/l5oDH//Pj1X+jX7BJ/7TY/l/q4Xwyf/sWOo/0FX41H9yLPUfaTR8+t8fy/6Heg+f+XfHMv/xZwd89l8ey/Rd+ByCz/2rY/ld+kyDzx/9scIufj7CF47mWLHv8mctfHHrY6lj8LkNX9rqWOoY1QDw5X8+FhzDegK+svOx6jGuTeCrRz2W3o06B762w7Gw71bNBF8/eFxzO3DojEcZOu9mc8vDAH4eWRPv+BhdJ399WA1aYUd7v3GwoMF88GPvdNzdNf4b4xILvjnAqUc2CVI+ZBtHTaSP9OE3x/nwiIn0cTf+L8576k2gdutRRadHO/riW9vfYN8+eOOoXfW3tgd2x9e+vUOnfeRjL0En7m43+62Bb6BvDw7u6OTjN823Br4Zj+T+1uA34576RPrasDyKdUd7v3OwoMHfGf6JFOt3Bn4ifXfyTyT24XeHfyLF+t1FP5G+NszuWLYwV+QT6Xvb32Df3/kT6XtbfCJ9fw98Io1TEgXfG/gG+r5QcEcJ0JF2jmT+wUAx29gY/2n5ze0CdOzBOTiyFfjhQDHbyodq9x7AMf6hQCUzkntPVjJfHaY/We9o748OFjT4R8Mrmax/NPDN/+PJKxn24Y+HVzJZ/1j4zT9CQH84uYD+ZLAPj3yM/uAdmeM/Hfje25MV8FeH2Z1xC3NFKuCfbRfmn+9cAf9siwr453ugAh73CaTgZwOT8udCwR39RhzJ/AvhCljt3gNYHH8qUL39cvKqlePyywW4pXL8lwNz/FeT5/jRFSkjip9Rx/r14A/sPdXtfGXYZ03oO9r7m4MFDf7N8G4n9N8MDOBvJ+922Ie/Hd7thP7bybsdFrpfHzy3GP9usBgf+RjNPDLHf79ot/OVYXaHtoW5It3OH7YL8x937nb+sEW388c90O2M+wRS8IeBSflHoeCOfiOOZP7T5JUgi+PvBar+P0/e7XBc/rwAt1SO/3lgjv9l8hw/uiJF7d4DRhYpfx2YN3uy2/nysM8aVDva+7eDBQ3+2/BuB9XfBr4J/j55t8M+/PvwbgfV3yfvdljo/nrw3GL8j0W6naE5vrlmt/PlYbGCvoW5It3OsbZ/k/TYmxtH7Wz4N3budvgPSXc74z6BFBxrc1xSHntTJrij34gjmffaHCs+o99wLI4bm+M/GPbelP3gUrv3AI7L3gtwS+X43gNz/DiT5/jRFSlq9x4wskg57sC82ZPdzpeGfdbUo3Q7+2wKGswHH9vtVLXPwDfBvgPfnFI+3HdzdLdT1b7CHxojhO64m3OL8fEGi/GRj9HMI3P8+It2O18a1u2UPdbtnGC7MO+3c7dzgi26nf32QLcz7hNIwQkGJuV+mzLBHf1GHMl8wskrQRbH4wtU/SeavNvhuJxoAW6pHD/RwBw/8eQ5fnRFitq9B4wsUk6yaLfzxWGfNe4o18TYf1PQ4P2HdzsO9h/4Jjjp5N0O+/Ckw7sddxRutZuPrbhHCN1JNucW45Mt0u2MzPGTL9rtfHFYt+P22LVUTrFdmE+5c7dzii26nVPugW5n3CeQglMMTMpTbsoEd/QbcSTzqSavBFkcTy5Q9Z968m6H43LqBbilcvzUA3P8NJPn+NEVKWr3HjCySDntot3OF8btdsKO9h6wKWjwAeN3O+GAgW+C003e7bAPTzd+txNON3m3w0J32s25xfjARbqdkTl++kW7nS8M63aq38JckW7noO3CvG3nbuegLbqdbXug2xn3CaTgoIFJuW1TJrij34gjmc8weSXI4nh6gar/4Mm7HY7LwQtwS+X4wQNzfHPyHD+6IkXt3gNGFimHLNrtfH7YZ42JO9p7xk1Bg884vNsx8YwD3wRnmrzbYR+eaXi3Y+KZJu92WOgO2ZxbjM+8SLczMsfPsmi38/lh3Y4JW5gr0u2cdbswn23nbuesW3Q7Z9sD3c64TyAFZx2YlGfblAnu6DfiSOZDJ68EWRzPIlD1HzZ5t8NxOWwBbqkcP2xgjp998hw/uiJF7d4DRhYp51i02/ncsM+afJQz2c65KWjwOYd3OxnOOfBNoCbvdtiHani3k4/CrXbzsRX3CKE7x+bcYgyLdDsjcxwX7XY+N6zbyXvsTDa9XZjNzt2O3qLbMXug2xn3CaRAD0xKsykT3NFvxJHMdvJKkMURBap+N3m3w3FxC3BL5bgbmON+8hw/uiJF7d4DRhYpYdFu57Pjup2yo71xU9DgOL7bKXHgm+Bck3c77MNzje92yrkm73ZY6MLm3GJ87kW6nZE5fp5Fu53Pjut28hbminQ7590uzOfbuds57xbdzvn2QLcz7hNIwXkHJuX5NmWCO/qNOJL5/JNXgiyO5xGo+i8webdzRFwW4JbK8QsMzPELTp7jR1ekqN17wMgi5fBFu53PDPusMXlHey+0KWjwhcafyZYvNPBNcOHJux324YXHn8mWLzx5t8NCd/jm3GJ8kUW6nZE5ftFFu53PDOt2TNrCXJFu52LbhfniO3c7F9ui27n4Huh2xn0CKbjYwKS8+KZMcEe/EUcyX2LySpDF8aICVf8lJ+92OC6XXIBbKscvOTDHLzV5jh9dkaJ27wEji5RLL9rtfHrYZ004yhWoL7MpaPBlhnc7QV1m4JvgspN3O+zDyw7vdoK67OTdDgvdpTfnFuPLLdLtjMzxyy/a7Xx6WLfj99gVqK+wXZivuHO3c4Utup0r7oFuZ9wnkIIrDEzKK27KBHf0G3Ek85UmrwRZHC8vUPVfefJuh+Ny5QW4pXL8ygNz/CqT5/jRFSlq9x4wski56qLdzqeEup2rbQoafDWBbudqA98EV5+822EfXl2g27n65N0OC91VN+cW42ss0u2MzPFrLtrtfGrBbuda24X52jt3O9faotu59h7odsZ9Aim41sCkvPYi3c5I5utMXgmyOF5ToOq/7uTdDsflugtwS+X4dQfm+PUmz/GjK1LU7j1gZJFy/UW7nU8O+6xJR7kmW9oUNDgN73ZSTAPfBHnybod9mId3OynmybsdFrrrb84txmWRbmdkjtdFu51PDut20h67JlvbLsx9526nbdHt9D3Q7Yz7BFLQBiZl35QJ7ug34kjmG0xeCbI4VoGq/4aTdzsclxsuwC2V4zccmOM3mjzHj65IUbv3gJFFyo0X7XY+Ma7bMTvae5NNQYNvMr7bMTcZ+Ca46eTdDvvwpuO7HXPTybsdFrobb84txjdbpNsZmeM3X7Tb+cS4bkdvYa5It3OL7cJ8y527nVts0e3ccg90O+M+gRTcYmBS3nJTJrij34gjmW81eSXI4nhzgar/1pN3OxyXWy/ALZXjtx6Y47eZPMePrkhRu/eAkUXKbRftdj4+7LOmHmW3c7tNQYNvN7zbqfF2A98Et5+822Ef3n54t1Pj7Sfvdljobrs5txjfYZFuZ2SO33HRbufjw7qdusd2O3faLsx33rnbudMW3c6d90C3M+4TSMGdBiblnTdlgjv6jTiS+S6TV4IsjncUqPrvOnm3w3G56wLcUjl+14E5frfJc/zoihS1ew8YWaTcfdFu52PDPmtK29Hee2wKGnyP4d1OafcY+Ca45+TdDvvwnsO7ndLuOXm3w0J39825xfhei3Q7I3P83ot2Ox8b1u2UuoW5It3OfbYL83137nbus0W3c9890O2M+wRScJ+BSXnfTZngjn4jjmS+3+SVIIvjvQWq/vtP3u1wXO6/ALdUjt9/YI4/YPIcP7oiRe3eA0YWKQ9ctNv56LDPGjjKbudBm4IGP2h4twPxQQPfBA+evNthHz54eLcD8cGTdzssdA/cnFuMH7JItzMyxx+6aLfz0WHdDuyx3c7Dtgvzw3fudh62Rbfz8D3Q7Yz7BFLwsIFJ+fBNmeCOfiOOZH7E5JUgi+NDBar+R07e7XBcHrkAt1SOP3Jgjj9q8hw/uiJF7d4DRhYpj1602/nIsM+afJRu5zGbggY/Zni3k+NjBr4JHjt5t8M+fOzwbifHx07e7bDQPXpzbjF+3CLdzsgcf/yi3c5HhnU7eY91O0/YLsxP3LnbecIW3c4T90C3M+4TSMETBiblEzdlgjv6jTiS+UmTV4Isjo8XqPqfPHm3w3F58gLcUjn+5IE5/pTJc/zoihS1ew8YWaQ8ddFu58PDPmtC2NHep20KGvy04d1OCE8b+CZ4+uTdDvvw6cO7nRCePnm3w0L31M25xfgZi3Q7I3P8mYt2Ox8e1u0Ev4W5It3Os7YL87N37naetUW38+w90O2M+wRS8KyBSfnsTZngjn4jjmR+zuSVIIvjMwWq/udO3u1wXJ67ALdUjj93YI4/b/IcP7oiRe3eA0YWKc9ftNv50LDPGnOUbucFm4IGv2B4t2PCCwa+CV44ebfDPnzh8G7HhBdO3u2w0D1/c24xftEi3c7IHH/xot3Oh4Z1O2aPdTsv2S7ML92523nJFt3OS/dAtzPuE0jBSwYm5Us3ZYI7+o04kvllk1eCLI4vFqj6Xz55t8NxefkC3FI5/vKBOf6KyXP86IoUtXsPGFmkvHLRbueDwz5rIuxo76s2BQ1+1fBuJ8KrBr4JXj15t8M+fPXwbicehVvt5mMr7hFC98rNucX4NYt0OyNz/LWLdjsfHNbtRLWFuSLdzuu2C/Prd+52XrdFt/P6PdDtjPsEUvC6gUn5+k2Z4I5+I45kfsPklSCL42sFqv43Tt7tcFzeuAC3VI6/cWCOv2nyHD+6IkXt3gNGFilvXrTb+cCwzxqvdrT3LZuCBr9leLfj1VsGvgneOnm3wz586/Bux6u3Tt7tsNC9eXNuMX7bIt3OyBx/+6LdzgeGdTuub2GuSLfzju3C/M6du513bNHtvHMPdDvjPoEUvGNgUr5zUya4o9+II5nfNXklyOL4doGq/92Tdzscl3cvwC2V4+8emOPvmTzHj65IUbv3gJFFynsX7XbeP+yzJh/lCtTv2xQ0+H3Du53c3jfwTfD+ybsd9uH7h3c7ub1/8m6Hhe69m3OL8QcW6XZG5vgHF+123j+s28l77ArUH9ouzB/eudv50Bbdzof3QLcz7hNIwYcGJuWHN2WCO/qNOJL5I5NXgiyOHxSo+j86ebfDcfnoAtxSOf7RgTn+sclz/OiKFLV7DxhZpHx80W7nfcM+a/Aou51PbAoa/Inh3Q6qTwx8E3xy8m6HffjJ4d0Oqk9O3u2w0H18c24x/tQi3c7IHP/0ot3O+4Z1O7DHdjuf2S7Mn9252/nMFt3OZ/dAtzPuE0jBZwYm5Wc3ZYI7+o04kvlzk1eCLI6fFqj6Pz95t8Nx+fwC3FI5/vmBOf6FyXP86IoUtXsPGFmkfHHRbue94z5ryo72fmlT0OAvDe92VPnSwDfBlyfvdtiHXx7e7ajy5cm7HRa6L27OLcZfWaTbGZnjX12023nvsG5H5S3MFel2vrZdmL++c7fztS26na/vgW5n4CcQfG1gUn59Uya4o9+II5m/MXklyOL4VYGq/5uTdzscl28uwC2V498cmOPfmjzHj65IUbv3gJFFyrcX7XbeM+yzxh3lTLbvbAoa/J3h3Y5r3xn4Jvju5N0O+/C7w7sd1747ebfDQvftzbnF+HuLdDsjc/z7i3Y77xnW7bg9dibbD7YL8w937nZ+sEW388M90O2M+wRS8IOBSfnDTZngjn4jjmT+0eSVIIvj9wWq/h9P3u1wXH68ALdUjv94YI7/ZPIcP7oiRe3eA0YWKT9dtNt597DPGjjKNdl+tilo8M+GdzsAPxv4Jvj55N0O+/Dnw7sdOAq32s3HVtwjhO6nm3OL8S8W6XZG5vgvF+123j2s24E9dk22X20X5l/v3O38aotu59d7oNsZ9wmk4FcDk/LXmzLBHf1GHMn8m8krQRbHXwpU/b+dvNvhuPx2AW6pHP/twBz/3eQ5fnRFitq9B4wsUn6/aLfzroPH2b2jvX/YFDT4D5vjj/vHyTsU5v7j5v85eNBxRboKFpTfb84ten9apKsYmZd/Fhb6ETH5s0CO70lBfaeQoP5lU9DgvwgI6l8nF1Tm/useElS1ew/gN8ZfN2XecKO49+Sb7B0Hj/PBjvb+bVPQ4L8JfCL+baCi/33yNyz78O8Cb4K/Tz6j5Tfp3wXanz8NjPc/Jh8XcO78Q0jsj3yMfm//Y+T78ZC5W/yj6xjU7j1gZMdwrEPmznGOMds4+rj/mPxzYX86xv4b43X32IPjPVofmHmgjXBSOsZJBfy41zAbAfZkkbnXwPjvaO/ehwgavLeAABznkLkFgLmPc8j/OXjQcY/y4b7vrh4b/vVvb+6anf/yaIfsKvO/ONoZd91/R3u0M20cg1gczdHOvHGM4rrl0c6yMS73cGPce+Mb55DJ3ePvau4ehfCfXzrrMfffPx3tbLsTi52OdujGbvnvKEc7bGM3Y7HD0c6+sdtx/d+jnWNjQI5sP9o5N4bk2/8cbWNQ7sL/dBij3lPfFHpP7bXTe2p37TzuwEJuoI7ASP/tyeLtuELF2z6HCBq8j0Dxtu/kxRtz77tY8XayjXHF28k3xhVvp9gYV7ydcmNjWPF2qo2NYcXbqTfG5d7BG+PeG99fpHg7zca44u20G+OKtwM2NoYVb6fb2BhWvB24sTGseDv9xsaw4u2gjY1hxdu2jY1hxdsZBr6nfrBI8Xa8gcXbQB2BHyxavB1PqHg7/iGCBh9foHg7weTFG3OfQLh423tXj/1vircLbYwr3i68Ma54u8jGuFj/8ByTxEL9a+qLbhwDO4/maBfbOEbMWx7t4gNj8aO5YqGOjvoSG+MKw0tubAwrDC81MBY/njEW6p+pL72xm3bucLTLbOw28/8e7bIDY/GTeWOhdqS+3MYQO4842uU3BjHT0a4wMBY/FYrFPqNi8T8PuOJA5v0GFu0DP29h4OcFDNQ7GPh+hZ8u2pjsJ9SYnPAQQYNPKNCYnGjyxoS5T7RYY6J3zc5/eTSzq8z/4mh2Y1ysf7FIY+I2joGdR3M0v3GMmLc8WhgYi18u0pjEjWNs5z8d7Vwbu8G809HOPTAWv1qkMTnPxm7aucPRzrux28z/e7TzDYzFrxdpTM6/McTOI452gY1BzHS0Cw6MxW8WaUwOH8h84oGNycDPWxj4eQED9Q4Gvl/hN4s2JicWakxOcoigwScRaEz2n7wxYe79hRqT0Sfu77t9uzP6uCcV/jLS7tp3ou0xGn3ckw3kZmE59sbWF/U6ya7m1v8fNKbqP3ss3fCpXXks2kipXX8s16CoY/pYqPBXu/c4SkGtdvOxscNjtDaucDaB+s8eS2/p1a48Ft1+q11/LLdVVsf0sdC2Vu3e4yhbULWbjx2bvZNzzTu64eFi/2QCDc+evKrtyQcU7v1/HmkLc4e9kXb0xSm2+/yUh2wc9Qq2pzjkn69qy39o205Gjb6q7cl3vzPH7Z0UnGJgl39KoeAeeyf/7a6dI5lPNfnlQI4UjdEd+KkHX9JhNDfH5dQLcB/5GG3naRax87S7YGf0AVyK4IKHkkLVBVUo4GrwpVfjJe08YBfs/Hf/LUk7T7cLdtKHAFaLWFXT0ULywQAErFn12FNoknYeuAt2OlVCLM0WdNooq71KKmRXydGYVc6Sdp5+F+wsLhjdsyFnWtuTz8ZBMsaE6F331UraedCuvI8AS8s2JB1NU56O3VUF1HR4Q78ZJO3ctgt22qZsSsYmKB6TNl0F1Ir+Y9B1t1Ak7TzDrsQdIuhYcjCUASq5BvQ+cjVR4loH3knaefAu2NktCaep9PbRoZuCWBJmcq1OXnV6b0naubkrdtLfDEE3Z3tAVVWMEWyJKvjgcqya62l+7rf9ePxZx0/+LGGdZg1kfeH3Lr8vOOc4nuyrzUOOnlHt3gNPLlRzHDLws/zYG//Xj+z4GHV8Id/CSB9I2XjG0TZKJeixB4OfemBDdab/JjucaYFkP/NIG/feHqhjbxGs6d+l2x//3Yfs+tH+uw/ZtaP9dx+ya0f77z5k144mtQ85yw5V8XBBHzmS23GUv6PRu2zzfyDuEq3C7wef5XsMYvVvP4gkuP/w/577335oSnD/cQbuf/MBL8H9pzm4/2UxIsH951m4/0XhJMH9l3m4j7bIk+D+60zcR1OQSnD/bS7uLYtnCe6/z8a9RaEvwf2P+bj/qSmR4N4454TcOzVQEtzHmpP7KM2eBPexZ+XeoTGV4N5rXu7/baIluPeemXt7wy/BfRxh7hGn8ZxRgPu4/2/jDf/umMx9FgHufQZzH/k42WA7zzrwdL2BsxYYOL+AgTMBGNhnw8DeFQb2gzCwx4KBfQsM7AVgYH0NA2tWGFgHwsDaCgbWKzCwBoCBn6sw8LMKRur/jjN41ut7bj/u6Bk8n+8kUfuc5P99zfdvvzgswb3/DLXuv/mSswT3Seeo8f/lF7IluE82S2/zL748LsF98nl6uqP9orsE9ylm6mWP5kv5EtynnKuH3/ICAhLcp5ptdrHFxQ5EvuIz38zmny7MIMF9mhlnVTtdREKC+7STz+DPJ8R9wOQz+PMLcZ9u8hn8BYS4D5x8Bn9BIe7TTz6DP1yI+6AFZvBnFuDetsgs+mw7zKKham1qzAUsupRVqDqpbrxGlar2tergXNK6utBDDIip66Cs91E51BEHzl9g4PwCBs4EYGCfDQN7VxjYD8LAHgsG9i0wsBeAgfU1DKxZYWAdCANrKxhYr8DAGgAGfq7CwM8qGKn/O86iz7Z9Fr33xtF/Wemk2//9H//3//sloP9+CWgXj/bfLwHt2tH++yWgXTvayFtD7cKXLf/tuStnEfri5pGP//TY/+4yNDt+8enQFb/4dOgx/+LTf3QC0qECTd9ZhZq+U+xizP5dcoz8qvxhA4+148lMI7+MNfILTiO/NDTyizgjv9wy8gsjI7+EMfKLDSO/LDDyBPyRJ7WPPFF85MnXI09oHnmS8MgTbyc6mRXOKtSMHrbDiVFHPnb1s+rf+WnkZ9XZdxx2ak11QvXQa9fWR8zgtHPddO+Cqd2aVH0DkzTG5lWH0Jq3unjXYy2u7zMw1icZeKz9Bx7rpAOPdbKBxzr5wGOdYuCxTjnwWKcaeKxTDzzWaQYe67QDj3XAwGOdbuCxDhx4rNMPPNZBA4+147Bzd5dIUp9VZ9/is+rI4ekoP4z8rDrH4Gs6H/nYazDzOQfa+Y2BXxD4ptCtBkf7Tw303/cH+u8HQv473k7+U7v3WGJQuLt2wcAc+e+97XftWD9d5H1w+MD3wZkH5u7I9wEOfB/891aqu3askbdS5Xps343/ueHLxuD3wd//9fGwdNCWOnnlkrHVaazoVTW2AyUhRkMp2IsJNaDu6LHw8djecxzyf/dZ2Z+eR75+0h1+PvLP7L39v80/c3105O+rHX6GHX7G7T9r+rehpz3kqMfY+TF6h6MHX+72yIfbfp1rf8hOAKNvRqMHioz7z49V/s2xwA907J5MiP03ZBIibE+EKJ0QOwLsbkKEgQkRF02Ik27IJMS5tifCuaUT4qQDE+JcAxPi3IeM/1jdbwc//u+xg24+AtSgLe2HHUaywNFAGzpNakrq1ccUYm6tZB2j0t1FSx9/NBPvJtm088cqJN9t64mG5F3TAdDSvjl0rUoJ1Wv+EC0pe/rtEml4bmoLkEuxGHqM2ta/j42v+qeEp/l9Ci55XXJI2li0zebcqmtG5wQQQwtOddt1tAppGOWhdmMj5NqMwp3tQ0VT/5471Q/Z+h67U4Y8Y2iBkGgbkHrwSP/JXrxRvijTskNIDmnjngqgk+aFYkzHZJH+6wEo7VLQZIClLCwtZMpOUGjYAfRjgJhzTd0mTDUF4034J/t0Sq1p15yhER1Uki7ajyCx2hhTiy1TUhQs4FMokWZ7SVMShRxisZ3+49K8WOk/Fo1qNkTVDL39vG98Wx7dU3ORLPbWUA5TrUdJEFR2zkUCpXzHUss/5R+2UkOoYKPzuVidQ6BcwKYqOBpYAsW2ZJcIueoebEOKq2+tZ3JBpDeXBO++24/FP7sdykW/w89hh5/jDj+fa4efz73954H2Defl452H7DwvPc+3vfw9zsZR75ww+kPtPNvvRLExmGVji8eYY6PcseH/3mP8723bfz4/fz7R84L0PJyeF6Lnhel5EXpelJ4Xo+fF6XkJel6Snpei56XpeRl6Xpael6Pn5el5BXpekZ5XoueV6XkVel6Vnlej59XpeQ16XpOe16Lntel5HXpe95Dtxhw5w2dj9t3ptQts8doFt3jt8C1eu9AWr114i9cussVrF93itYtt8drFt3jtElu8dsktXrvUFq9deovXLrPFa5fd4rXLbfHa5bd47QpbvHbFLV670havXXmL166yxWtX3eK1q23x2tW3eO0aW7x2zS1eu9YWr117i9eus8Vr1z3kqALMjwts/7favccR50yy+Gzb6bi7W5ge8WbdzWO1I259quACg47FvBcccqz/8d3hu3+s/73v7IV291jm/wr5C+/esdSOTcFFdudYeNQG46LH/Fhq52blYsfwWK7/c+Nz8WN2rLBVE3WJY3KssHVDdsldP5Y/uubuUrt6LH/0jeKld+1Y+K+azsvsyrH8v25gLzuwGb7cf3os/2+1EC7/nx1L/Qe6Clf4T46l/iONhiv++2PZ/1Dv4Ur/7ljmP/7sgCv/y2OZvgufQ3CVf3Usv0ufaXDVoz9W2MXPR7ja0Rwr9l3+rIWrb30sdQw+t+EaWx1LHaMaAK75z8eCY1hPwLV2PlY9xrUJXPuox9K7UefAdXY4FvbdqpnguoMnsvzcExPZ6w6r9SrsaO/1DhE0mA8+6qSrI42/3rgAwvUHOPV/T+oX8iHbOOqLS0f68PqD3wS82D32xp59E6jdelTRycqOvkjb32B55+lGOuT/NsxHvpZ36EKPfIxejYxTEgVp4BsoCwV39FmfI5nLQDHb2JC5XM71D5n75r11oJht5UO1ew/gGNdDxsemLlrJXGeY/sS6o73tEEGD2/BKJtY28M3fJ69k2Id9eCUTaxd+848Q0Dq5gN5gsA+PfIz+4B2Z4zcc+N7bkxXwdYbZHcsW5opUwDfaLsw33rkCvtEWFfCN90AFPO4TSMGNBibljYWCO/qNOJL5JsIVsNq9B7A43lCgervp5FUrx+Wm/x/krtu5R3/vqx4i48PdPdbNBn8Q7qku4trDNDzrHe29+SGCBt98eBeR9c0HBvAWk3cR7MNbDO8isr7F5KL0/2vvPKCkqJY3Pgu7wIIIAgKCgMD0KCjYvTu7MyMqaVkyiAgK+nxu9O/TZ8CMoqigKAYUcwATKmZUxAwiQUBUUBAVzDnnHP5d2iN3257W53w1Vp1jn3PP3uXO9FTd+vpX/c0su3S3/18GGB+u5M4fqcsjlN757weLu7IoIFyWO/8JHkyP9N/5Twi48z8yB3f+uK5hOxOAojySqbjoCxGZ81HC7/wJjkcwQPdo4c2G6nK0gry5NH40UOPHCP98J5PbsbM7HOBnEw7S7Rwr/O1i0suxUdmaPk6pY9wX1vuTtWa8x0cZAz4e7hiTtccDCzhRuGOkPZwId4zJ2okKHONxDE38BCVNHKnLE5U6xn1hcSdrAsJlcYyTPJie5HeMkwIc40k5cIy4rmE7k4CiPImpuOgLEZnzycIdI8HxRAboThbebKgukxXkzaXxyUCNnyJc45kcip3d4SAdyqnCXR7V+NSobB2eptTljYf16yLbjHdKlDHgKXCXV2RPARZwqnCXR3s4Fe7yiuypClzeaQyN93QljRepyzOUurzxsLid2oBwWVzeNA+mZ/pd3rQAl3dmDlwermvYzjSgKM9kKi76QkTmfJbwO2CC4xkM0J0uvNlQXaYryJtL49OBGj9buMYzORQ7u8NBOpRzhLs8qvE5Udk6PFepyxsH69fVdVzeeVHGgM+Du7xq+zxgAWcId3m0hzPgLq/anqHA5Z3L0HjPV9J4kbq8QKnLGweLuypnLm+mB9ML/S5vZoDLuzAHLg/XNWxnJlCUFzIVF30hInO+SPgdMMHxAgboXiy82VBdLlaQN5fGLwZq/BLhGs/kUOzsDgfpUC4V7vKoxpdGZevwMqUubx9Yvy6t8zvPLo8yBnw53OWVOpcDC3iFcJdHe3gF3OWV1snbzvLgyJtc3mUMjfdKJY0XqcurlLq8fWBxl+bs99vN8mA62+/yZgW4vNk5cHm4rmE7s4CinM1UXPSFiMz5auF3wATHqxige43wZkN1uUZB3lwavwao8WuFazyTQ7GzOxykQ7lOuMujGl8Xla3D65W6vL1xn+UlzXjnRBkDnoP/LC85B1jAG4S7PNrDG/Cf5SVvUODyrmdovDcqabxIXd6k1OXtDYu7OhEQLovLm+vB9Ga/y5sb4PJuzoHLw3UN25kLFOXNTMVFX4jInG8RfgdMcLyJAbq3Cm82VJdbFeTNpfFbgRq/TbjGMzkUO7vDQTqU24W7PKrx7VHZOrxDqcsbC+vX8ZQZ751RxoDvhLu8eOpOYAHnCXd5tIfz4C4vnpqnwOXdwdB471LSeJG6vFupyxsLizueDAiXxeXd48F0vt/l3RPg8ubnwOXhuobt3AMU5Xym4qIvRGTO9wq/AyY43s0A3QXCmw3VZYGCvLk0vgCo8fuEazyTQ7GzOxykQ7lfuMujGt8fla3DB5S6vDGwfl1Z5yc2H4wyBvwg3OVVOg8CC/iQcJdHe/gQ3OVV1snbzvLgyJtc3gMMjfdhJY0XqctHlLq8MbC4K3P2E5sLPZgu8ru8hQEub1EOXB6ua9jOQqAoFzEVF30hInN+VPgdMMHxEQboLhbebKguixXkzaXxxUCNPyZc45kcip3d4SAdyhLhLo9qvCQqW4dLlbq8vXAur8qMd1mUMeBleJdXtQxYwOXCXR7t4XK8y6tarsDlLWVovI8rabxIXa5Q6vL2whmByoBwWVzeSg+mq/wub2WAy1uVA5eH6xq2sxIoylVMxUVfiMicnxB+B0xwXMEA3dXCmw3VZbWCvLk0vhqo8SeFazyTQ7GzOxykQ3lKuMujGj8Vla3Dp5W6vNGwfh2vNONdE2UMeA3c5cUr1wALuFa4y6M9XAt3efHKtQpc3tMMjfcZJY0Xqctnlbq80bgf6qsICJfF5a3zYLre7/LWBbi89TlwebiuYTvrgKJcz1Rc9IWIzPk54XfABMdnGaC7QXizobpsUJA3l8Y3ADX+vHCNZ3IodnaHg3QoLwh3eVTjF6KydfiiUpe3J6xfJ+v8JYWNUcaAN8JdXtLeCCzgJuEuj/ZwE9zlJe1NClzeiwyN9yUljRepy5eVurw9YXEncvaXFF7xYPqq3+W9EuDyXs2By8N1Ddt5BSjKV5mKi74QkTm/JvwOmOD4MgN0XxfebKguryvIm0vjrwM1/oZwjWdyKHZ2h4N0KG8Kd3lU4zejsnX4llKXN4rJ5b0dZQz4bQaX9zawgO8Id3m0h+8wuLx3FLi8txga77tKGi9Sl+8pdXmjFLq89z2YfuB3ee8HuLwPcuDycF3Ddt4HivIDJS4PmfOHwu+ACY7vMUD3I+HNhurykYK8uTT+EVDjHwvXeCaHYmd3OEiH8olwl0c1/iQqW4efKnV5e8D6dUWd37H5WZQx4M/gLq8i9RmwgJ8Ld3m0h5/DXV5F6nMFLu9Thsb7hZLGi9Tll0pd3h6wuCty9js2v/Jg+rXf5X0V4PK+zoHLw3UN2/kKKMqvmYqLvhCROX8j/A6Y4PglA3S/Fd5sqC7fKsibS+PfAjX+nXCNZ3IodnaHg3Qo3wt3eVTj76OydfiDUpc3Eufy4ma8P0YZA/4R7/LiPwIL+JNwl0d7+BPe5cV/UuDyfmBovD8rabxQXVo6Xd5InBEoDgiXxeXlWZ4erEhdR0cLfpdHD+J2ebiuYTt5Fk6U9Sye4qIvRGTO9YEX4i9iA2uF4Bix8NDNt2Q3G6pLvoK8uTSeD9R4gXCNZ3IodnaHg3QoDZivF0SNKUbJOmwIvunJlcsbAevX1XU+y2tkMQbcyEK7vOpUI2ABC4HC4trDQgvt8qpThcIbL7m8hgyNt7GSxovUZROlLm8EzOVV5+yzvC08mDb1u7wtAlxe0xy4vBFAl7cFUJRNLZ7ioi9EZM5bCr8DJjg2YYBuM+HNhurSTEHeXBpvBtR4c+Eaz+RQ7OwOB+lQthLu8qjGW1myddhCqcsbDuvXVTVmvC0txoBbwl1eVU1LYAFbCXd5tIet4C6vqqaVApfXgqHxbq2k8SJ12VqpyxsOc3lV1QHhsri8Nh5M2/pdXpsAl9c2By5vONDltQGKsq3FU1z0hYjMeRvhd8AEx9YM0G0nvNlQXdopyJtL4+2AGm8vXOOZHIqd3eEgHcq2wl0e1XhbS7YOOyh1ecNg/dqp81leR4sx4I5wl+ekOgIL2Em4y6M97AR3eU6qkwKX14Gh8W6npPEiddlZqcsbBnN5Ts4+y+viwbSr3+V1CXB5XXPg8oYBXV4XoCi7WjzFRV+IyJyjwu+ACY6dGaBrCW82VBdLQd5cGreAGo8J13gmh2JndzhIh7K9cJdHNd7ekq3DHZS6vKGwfl1Zx+V1sxgD7gZ3eZWpbsACdhfu8mgPu8NdXmWquwKXtwND491RSeNF6nInpS5vKMzlVebM5fXwYNrT7/J6BLi8njlweUOBLq8HUJQ9LZ7ioi9EZM47C78DJjjuxABdW3izobrYCvLm0rgN1LgjXOOZHIqd3eEgHUqRcJdHNS6yZOuwWKnLGwLr18mkGW/cYgw4Dnd5yWQcWMAS4S6P9rAE7vKSyRIFLq+YofGWKmm8SF0mlLq8ITCXl0wEhMvi8pIeTFN+l5cMcHmpHLi8IUCXlwSKMmXxFBd9ISJz3kX4HTDBMcEA3V7Cmw3VpZeCvLk03guo8V2FazyTQ7GzOxykQ9lNuMujGu9mydbh7kpd3mBYv47XcXm9LcaAe8NdXjzZG1jAPsJd3i9Fh7u8eLKPApe3O0Pj7auk8SJ12U+pyxsMc3nxnLm8/h5My/wur3+AyyvLgcsbDHR5/YGiLLN4iou+EJE5DxB+B0xw7McA3XLhzYbqUq4gby6NlwM1PlC4xjM5FDu7w0E6lEHCXR7VeJAlW4eDlbq8QbB+nXLMeIdYjAEPgbu8lDMEWMChwl0e7eFQuMtL1cnbzvLgyJtc3mCGxjtMSeNF6nK4Upc3CObyUnZAuCwub4QH05F+lzciwOWNzIHLGwR0eSOAohxp8RQXfSEic95D+B0wwXE4A3RHCW82VJdRCvLm0vgooMb3FK7xTA7Fzu5wkA5ltHCXRzUebcnW4V5KXd5AWL9O2Ga8YyzGgMfAXV7CHgMs4FjhLo/2cCzc5SXssQpc3l4MjXdvJY0Xqct9lLq8gTCXV1obEC6LyxvnwXS83+WNC3B543Pg8gYCXd44oCjHWzzFRV+IyJz3FX4HTHDchwG6+wlvNlSX/RTkzaXx/YAa/5dwjWdyKHZ2h4N0KPsLd3lU4/0t2Tr8t1KXV4777St1/pLCARZjwAfAXV5lzQHAAlYId3m0hxVwl1dZU6HA5f2bofFWKmm8SF1WKXV55bjfvlIdEC6Ly6v2YFrjd3nVAS6vJgcurxzo8qqBoqyxeIqLvhCROdcKvwMmOFYxQPdA4c2G6nKggry5NH4gUOP/J1zjmRyKnd3hIB3KQcJdHtX4IEu2Dv+j1OUNgPXrojqf5R1sMQZ8MNzlFdkHAwt4iHCXR3t4CNzlFdmHKHB5/2FovP9V0niRujxUqcsbgPtLCjn7LO8wD6aH+13eYQEu7/AcuLwBQJd3GFCUh1s8xUVfiMicjxB+B0xwPJQBuhOENxuqywQFeXNpfAJQ40cK13gmh2JndzhIh3KUcJdHNT7Kkq3Do5W6vDJcv64y4z3GYgz4GLjLs6uOARbwWOEuj/bwWLjLs6uOVeDyjmZovMcpabxIXR6v1OWVwVyeXRkQLovLm+jB9AS/y5sY4PJOyIHLA3YNZyJQlCdYPMVFX4jInE8UfgdMcDyeAbqThDcbqsskBXlzaXwSUOMnCdd4JodiZ3c4SIdysnCXRzU+2ZKtw8lKXV5/WL8urfMTm6dYjAGfAnd5pTWnAAt4qnCXR3t4KtzlldacqsDlTWZovKcpabxIXU5R6vL64/5fXs5+YnOqB9PT/S5vaoDLOz0HLq8/0OVNBYrydIunuOgLEZnzGcLvgAmOUxigO014s6G6TFOQN5fGpwE1fqZwjWdyKHZ2h4N0KGcJd3lU47Ms2TqcrtTl9YP1a6fO79g822IM+Gy4y3Ocs4EFPEe4y6M9PAfu8pw6edtZHhx5k8ubztB4z1XSeJG6PE+py+uH+4nNnP2OzRkeTM/3u7wZAS7v/By4vH5AlzcDKMrzLZ7ioi9EZM4XCL8DJjiexwDdmcKbDdVlpoK8uTQ+E6jxC4VrPJNDsbM7HKRDuUi4y6MaX2TJ1uHFSl1eX9wPMNX5f3mXWIwBX2Lhz3upcGdGeV9qbd5g0HnZ3NTFDA3uMiUNDqmly5kbHKImlzPoMpcQ7MMEwSssxoCvYIDglcIhSHlfqQSCdGFcKRyCubzIekdxe2DGe5XFGPBVDLedVwGJPkv4BUt7OIvhIpgl3LLQRTqLwfZdBqz3bOFvk5B2ZjPBPn2gr+3ZwPpcLfytjUy23M7ucJC2/BrhGqcaX8Owh0gdXqvgs7trGXpMW7AryDdio+/3j/76cQzN/2XM9zPm+xrz8cZ8nDHfx5jvbczHGvMxxnwvYz7amO9pzEcZ8z2M+UhjPsKYDzfmw4z5UGM+xJgPNuaDjPlAY15uzAcY8zJj3t+Y9zPmfY15H2Pe25gv7LJ5vsiYP2rMFxvzx4z5EmO+1JgvM+bLjfnjxnyFMV9pzFcZ8yeM+Wpj/qQxf8qYP23M1xjztcb8GWP+rDFfZ8zXG/PnjPkGY/68MX/BmL9ozDca803G/CVvfp17vV7vjjnuuMEdN7rjJnfMdcfN7rjFHbe64zZ33O6OO9xxpzvmueMud9ztjnvcMd8d97pjgTvuc8f97njAHQ+64yF3POyOR9yx0B2L3PGoOxYb9xR0+D8CzZYbxREc264DcvwxpcYRGbcZ7xKLMeAlDO/OLBVu9ijvpTl6dybb/AvcRlASxd94FQDf5VjG9HY3Gnhx4P5dD9T4cqXAW84EvMctxoAfZwDeCuHAo7xXKHk7msC8jMElrVQCqRLgXs4B6nKVUkitYoLUExZjwE8wQGq1cEhR3quVQIpgupIBUk8qgVQpcC9vAOryKaWQeooJUk9bjAE/zQCpNcIhRXmvUQIpgumTDJBaqwRSCeBe3gjU5TNKIfUME6SetRgDfpYBUuuEQ4ryXqcEUgTTtQyQWq8EUkngXt4E1OVzSiH1HBOkNliMAW9ggNTzwiFFeT+vBFIE0/UMkHpBCaRSwL2cC9Tli0oh9SITpDZajAFvZIDUJuGQorw3KYEUwfQFBki9pARSuwD38magLl9WCqmXmSD1isUY8CsMkHpVOKQo71eVQIpg+hIDpF5TAqlewL28BajL15VC6nUmSL1hMQb8BgOk3hQOKcr7TSWQIpi+xgCpt5RAalfgXt4K1OXbSiH1NhOk3rEYA36HAVLvCocU5f2uEkgRTN9igNR7SiC1G3AvbwPq8n2lkHqfCVIfWIwBf8AAqQ+FQ4ry/lAJpAim7zFA6iMlkNoduJe3A3X5sVJIfcwEqU8sxoA/YYDUp8IhRXl/qgRSBNOPGCD1mRJI9Qbu5R1AXX6uFFKfM0HqC4sx4C8YIPWlcEhR3l8qgRTB9DMGSH2lBFJ9gHt5J1CXXyuF1NdMkPrGYgz4GwZIfSscUpT3t0ogRTD9igFS3ymBVF/gXs4D6vJ7pZD6nglSP1iMAf/AAKkfhUOK8v5RCaQIpt8xQOonJZDqB9zLu4C6/FkppH5mglQkxhgwnRx93ryYbEhR3nmxzfsLOi9LrATTnxggVS+mA1L9gXt5NxBS9WM6IYWM24w3P8YYcD4DpAqEQ4ryLlACKYJpvRgeUg2UQKoMuJf3ACHVUCmkGjJBqlGMMeBGDJAqFA4pyrtQCaQIpg0YINVYCaQGAPdyPhBSTZRCqgkTpLaIMQa8BQOkmgqHFOXdVAmkCKaNGSC1pRJIlQP38l4gpJophVQzJkg1jzEG3JwBUlsJhxTlvZUSSBFMt2SAVAslkBoI3MsFQEi1VAqplkyQahVjDLgVA6S2Fg4pyntrJZAimLZggFRrJZAaBNzL+4CQaqMUUm2YINU2xhhwWwZIbSMcUpT3NkogRTBtzQCpdkogNRi4l/cDIdVeKaTaM0Fq2xhjwNsyQKqDcEhR3h2UQIpg2o4BUh2VQGoIcC8fAEKqk1JIdWKC1HYxxoC3Y4BUZ+GQorw7K4EUwbQjA6S6KIHUUOBePgiEVFelkOrKBKlojDHgKAOkLOGQorwtJZAimHZhgFRMCaSGAffyISCktlcKqe2ZILVDjDHgHRgg1U04pCjvbkogRTCNMUCquxJIDQfu5cNASO2oFFI7MkFqpxhjwDsxQKqHcEhR3j2UQIpg2p0BUj2VQGoEcC8fAUJqZ6WQ2pkJUnaMMWCbAVKOcEhR3o4SSBFMezJAqkgJpEYC93IhEFLFSiFVzASpeIwx4DgDpEqEQ4ryLlECKYJpEQOkSpVAag/gXi4CQiqhFFIJJkglY4wBJxkglRIOKco7pQRSBNNSBkjtogRSo4B7+SgQUr2UQqoXE6R2jTEGvCsDpHYTDinKezclkCKY7sIAqd2VQGpP4F4uBkKqt1JI9WaCVJ8YZ8AMkOorHFKUd18lkCKY7s4AqX4x2XlTffox5N2fCc7o/FtEsdcQV5wtwXHWA8dX4MbXM4o7X1v3XP0D2JFt7lSXfO9cA72vDdzR2B1N3NHUHc3dsZU7WrijpTtauWNrd7R2Rxt3tHXHNu5o54727tjWHR3c0dEdndyxnTs6u6OLO7q6w00l4v1Kwcj27tjBHd3c0d0dO7pjJ3f0cEdPd+xMe+cOxx1FlK874u4ocUepOxLuSLqD/uI4/UFf+nuZ9Ofo6K890R9TSf+tgr7u6OcO+j1x9GuY6LeclHs503+Bo/9hQj/ATT8fST9+RJ/u04dn9N40vfVDzopuXLbYXIJfNE26qe/tYYE7GrqjkTsKvcdu6Y5mxnNKjHlf7+vsuR3nt3+j3nhj6ZdYM60NDFkbHLI2NGRtWMjaqJC10SFre4esjQtZOyBkrTJk7cCQtYNC1g4JWTs0ZO24kLWJIWsnh6ydErJ2WsjalJC1M0PWpoesnROydm7I2syQtYtC1i4LWbsiZO3qkLXrQtbmhKzdErJ2W8jaHSFr80LW5oesLQhZeyhkbWHI2qMha8tD1laErK0KWVsdsrYmZO2ZkLUm3i+QrhdpvuX4JQcvNdccK/PzykLWBoesDc2w1tD72tH7WhhJx/XrQX2CekQf73s7u8MpNM6LPn/SjicKI3UPcPzFhZHNvZNrf9LnZDi/na532eTN5/fnQkdT73vTVKefQ/cIW0Y2z5sZz6FjgHHuPN9aecDrcubsaqIkff58hvO7R1HLgPjTr9XE26O23vf1Ax5rXgsFxmOC6hIJ+Le8gPP497bOmyPeV6e42LHt6oRTW11bXJJIFVU6pcWlpbXx2kRpMl5dWxKvqE7UOPGK4qJUTcKudZI1NYmS4qpEaW2quqq01p9rvZDcmobE2DQgX3P/0td0/uS6uffx/t3O4kgkN79xVN87f0Hk9/ttvn6B7/EdvO8bG/GbefT5i3HWJiqc2uKK2oqSiurqeFVFC9/5I8ae0T519ub/MDz0KGZmbBEzbwIZHsSeMIb7rzk60tz+I76bDE+fm7MvupooZa6Z0zKSmblphrePbD7MfS6IZGZbge+xrb2v9D5FywznaxD5Y1bWz/C8bbx5YcA5IsD9CoojLyCOIO6b+yqd7dt53//dbB/pzZWzveIftocfabYPnFz3/JHIH7M9/Zwgtg/y1vxsb2mcj47BxuvmiO2pv5PtaT32nxz57QC9rp0+d9n/fm7nz557wF+I+4/ed0+fu/wvnDuVSDqlFSmnNJlwqiqS1cVVRXayyimtTiaqaqvjiXQvTb/Xm9Zq/uaX+l3PMjVeP+Df0nVtHnCudF3Tr1MAfJ0C4zGZfA7idcJ8Hff7EA14zv/b/VxDI29U7EH3Jul9ony6GP9Oo5H3vem9zec2MNbNx1vGOcu8eTPfY4K0UGg8z3wsHelrrsD32G7Gc+y/8FqRgNcqm/zr1yCdFYa8RkGG18gLeGy6vkHXTOGfzCnT6wXtX5qH/v0rN54TB+RmvlZYbn+mRo1DXqPc9xp5Ac+L+J6X1mvZ5MyPbRzyWH/O6e8bBbyWeS7/nvc3XqO3Nw/aDz/7M2k2SE/5Ac+j1zPr7b82/ffwdDSJBO9/EA/CvJhZgzRnpHucEd73f7fHMb2rucbR2/x5/vP+1W/HP+9fReCaEPH+lf/9pvR6g4DnZrqf9Z9XOtvSn7v83WxL71P669YR/H7ZBtta8ZzfNu/XI75czNf1MzwCjCF9vrQOCiK/P+r51tKPbeSLLw8fn+OPJcjjpY/0NdnK+Lf0fm7li9W8v0TW1LxvYjj/b5psyHP+4iBNmv/m14D//tuMyX+dgmOtyAuIz/9elD9G8zH5kd8f9Xzf5/v+vf6feGyQNtNrzQPi8z+vMCBW89/S2moa+f3hr4vfj/vP1dBYNx/f0PdYrhq2DIjJH3t6rTFPDEXp8zfhOX8g500P2cS3ltZVkD7zMnxfz/c17LF5IecN0lT6nOlamfGm8/h/Zni41jrbKQA=";
|
|
10292
|
+
var debug_symbols$a = "td3RbmRLch7qd5lrXTAjMyMi9SoHhiHbsiFAkAxZPsCBoXc/zSp2fiUZzeE099yIqZzd62ctVnxcVfy5+H/+9N/+/r/87//xn//hn/77P/+vP/3t//N//vRf/uUf/vEf/+F//Od//Of/+nf/+g///E8/dv/Pn97e/8/IP/1t/M2fRj0/9J/+dv74cP70t+tv/hQ//ov1bz/+35//4eyP/+3tx268777/J/vHejw/xPPDfH5Yzw/7+SGfH+r5oR8f5o//JH98qOeHH5tj/M2f1o+j1Y8PP442fnxSa358XB8ffxxw/PgsV3587I+PPz6z8eMz3O//7senv9//3fnxcX183B8f3x/y24+P9fHxx7+PH5/M/vHv54//P388pvnj08j58fHHv58/cnN/fOznx3r/7+LHmZj3/NS//fh/f57k//yv//L3f//+P72c9R9fi//5d//y9//0r3/623/63//4j3/zp//37/7xfz/+o//1P//unx4f//Xv/uXH//rj8/j7f/pvPz7+OOB//4d//Pv31b/9jX/99ut/2m/x8Y878v7zUf/u349f//tc6+Pf556/8+97/Pz33b/1738++Hr7Zf4nj3+u+nkCfiwd4ceD+eoRdtbPI+zs3zlCrp8n4cfyl0eoXx+hdv08Qu2znIf+d0foTz6H2efn5zBP/epMnl8fIc79Us63t/jl1/KTEzHG2/r51fixzv2rB/LZyay3+2nUOL/z5agzfx6h38bvHKFr3SP0L4/w7s43v6Jjf/tLOvL7X9P6K39Nz8yfn8bZ8TtfkVP3a3r6d54V6+3t5+ew3uLtV0eI8e2vacS3v6Yxv/01jfXX/Zr+OInnns/1S3gjv38+6/vns79/Ps9f+3y+PD/Xbz3Dx5Xzx7J+Z8rmeLtnc6xfHWHOb39N5/r213Tub39NZ/51v6Z9vxH1Ob9xcYPNs399Hv7KT8yOe4WZL3T/+yvU9QmbkfHzixE5f3mRtz5hc5z58xDjrP6dQ8Tb28/ndrzFrz+LT56Y+34PyvH2qzP5+eew8n4O+ctnxMq/5ucw7uVujF6/dSpHjm8fYvd3DxGXiZjxy+fE/uSZOeY9m2Oe8VuHWOMO2Io/4BD79w5xvxmPtdZvHqLvIfb59gP53UOUB9L93UPst987xB4OsX757SPfvjmnn38Od8h+zMovv6QZ37XiU7n3tSJ/7VWub8v92SG+KHd+V83PP4cvyZ391/wcvib3nznE+PYhviT3p4f4mtw1vy33p4f4mtxfP8T+vUN8Se4/c4ivyP3lB/K7h/iS3F89xCdyf3qIr8nd31Xz88/hS3L3+mvKXe8vj54jVvnLU9n57RH79BBfG7GvH2L/3iG+NGJ/5hBfGbEvP5DfPcSXRuyrh/hkxD49xNdG7OxvPr0//xy+NGKnvvk5fPayuLy23796WfzpewM/z+J5fTfy7S/P/71/f+bPp+N5eSr9h38/3uLbr+vH2/z25eGnx/ji9eF4++4z8s98Fl+6Qvzxxtxf9bP42jXinzvG+P4xvnSV+PkxvnaZOEZ8+5vY58f42nexv+AY+zeP8aXvY3/uGF/5Rvb1x/Lbx/jSt7IvH+OT72WfH+Nr38zGZz8W+trUfv5ZfOnb2fjsx0JftCO+/Wp/xP6+558d46uex7cl/fyz+Jrnn/1c6A/4LL7o+Z85xvj+Mb7m+afH+KLnn/1s6Kuef3qML3r+9WPs3zzG1zz/M8f4kudffiy/fYyvef7VY3zm+afH+KLn69uSfv5ZfM3ztf+qnn/tPYAfp/378/bpMb44b18/xv7NY3xt3v7MMb40b19+LL99jK/N21eP8dm8fXqML87b/u6b83/ms/javO3vvj3/WfftLX92xsbbyV++ov7sh0ZffUWd4/tXYJ8d46tXYPltRT//LL52BZb7r/pZfPEK7M8cY3z/GF+7Avv0GF+8Aqu3739H+PQYX/yO8PVj7N88xte+I/yZY3zpO8KXH8tvH+Nr3xG+eozPviN8eowvfkeob79u+vyz+Np3hP726/rPPf/aK+r+A94h7T/gHdL+tqT9B7xD2vVX/Sy+6Hn/Ae+Q9h/wDmn/Ae+Qnj/gHdLzB7xDev6Ad0jPH/AO6fkD3iE9f8A7pOcPeIf0/AHvkJ7vv0Mab9+W9Hz/HdJ4m39Vz7/2ijo++0nTF+ft82N8bd7+gmPs3zzGl+btzx3jK/P29cfy28f40rx9+RifzNvnx/jivI3v1kf+zGfxtXkb331d/9k1XLz9/E49Yo1fvaKO8dkvd8z7Tfb1dyrGX3CE+7I+ztsvjxDfrYJ++jnMcX/56eVdgf/rc/j+z+ojvn8l+ukxvnglGvHdK9E/81l86Uo0vv0Tps8/i69dif65Y4zvH+NLV6KfH+NrV6Ixv38l+vkxvvidcX7/SvTPHONr3xnn969Ev/5YfvsYX/vOOL9/Jfr5Mb74nXF990r0z3wWX/vO+O2fMP0Zz7/0zkKs7/88Nlb+AV+Tb0u68g/4mpy/6tfki68O/oDfSIo/4PeJ4g/4haL4A36jKP6AXymKP+AXguIP+I2g+PZPmOIP+J2g+PYvJn36/v96u8/Q+p3m6XjM4cfXtH75k7L47KdLZ/68Kj/719f1n/0Syo6fD2PP+vURPvGz+17Ldq+XDnD8h2N8Itfqn2SsM399hM9uHTLuvSpq9K+fV58eI+7v+FbMT47x2au9+zrp9Zn5l5yLfX5ykW/5yyPU+P65+PQYXz0Xnz4z9rnPjBq/PhufPT/Xz2/we9fvPcPvy4tdv3eEde6M9K+nrOr7M1L93Rn57OdJX35enO8/Lz57JF+bkU+P8KUZ+exnBl89F58e46vnor4/I58+M/Lnp7Gyfu98+oq8XEX/JUfIuN9PX66h/68jfPVMfPI4Pvt+2Pe72Xh7vXHHfxjV8+ll0r0V2Hh9SfF/HSO+P+5nfveL+ukRvgTGZ7+g9NUh+fQYXxySzx7J156eXzzCJ+R8eoSvkDPf3r59Nj8/xh9wNr82qp8/v782ql8+xifwfTqr895ZZpyxfzWrnxck8k77r99cn2+f3hrsvi89fhzvdz6L8pZyvdx/8C94MZH7vkDs/csXE3O8ffPFxBzjmy8m5vi+nI+fBHzLvfnpXeu+OKmfHuNrk/rpI/mSWp8f4UtqffZDly+fi/4DzsX3vfj0+fmlC/kZf8DzM779/Iw/4PkZf8DzM779/IxvPz/jD3h+xh/w/Iw/4PkZ373m++pX5NdXSp8e4UtXB18/E588jvH23Qv5+emd68rPzc/r/U//4zG+/7p9zu++Ovv8CF8CY/0Bl57r+5eenz6Srz0953ffO/j8CF8iZ+0/4Gzuv+7Z/Nqozu+/5v76MT6B79NZ/f6FfKdpj/XLC+Adf9UL+XOfGe91gl9/Fuv75uz9XXM+PcKXzNnff0f+82N8cUo+eyRfM+eLR/jEnE+P8CVzPruJ3VfP5qfH+APO5tfM+fz5/TVzvnyMX5vzWYd13J+Gxvj176nNz25lN+9XdY1fX1/kJ++mz3679/jt+OVtaednv+ORqnn52s37v54Zn3we6/GbiR8PpeL7x3jtx/wlx4j79PrxI/v1m5/H2z3GePvNY8y8/M2X5+jXfz4c8/7UP2adXz6/PntH/Kyfn8R5/fnwf7gL9efv69cb/OLbx6hf/x2Bz49R4Ydwv76r99ePsfs3H0sej+V3z6lvB799jIq8x8j5u8cYXzrGZ8+w45d149cP5dNfRfriU+yrx/jsKfb5r0R97Sn25WN88hT7/LF87Sn2Z46xvn2MLz7F/swxvv0UG2/3SvLH9XX83jHGuO/SjzW/f4zP+PjqMf6I8/G7xwh1sHi5bPjLjjHvWyyxfvvzGI6xfvMY2+fx2+cjb8UuevzmMdSxouN3z4fH0r/5WOb9awdjvf3yD7Sst89+WaNcfNRevz7Gp5dA929HrPU2f+8Yqo9rzfrNYyyfx377vWNoEa1P/rbV58fIfT+PzN98LL7Prez9/WOc8/3H8rvHqHEvkWvu7x9j/ebn0W/3Odbzl7O/vv2rSX/ms7i/SrM6f/1IIv6an8V+uz9H3m97/Nb53G+uxd5+8zn64x/+/Jrs8Zt2/LtjjPr2Y/ntY4z7Y/E9fvM5+u+O8Zt27Mevxj2PEeuX35/WHH/VZ1jcX7jYn3ynXXN++7P49Pvb/X4f/evXLeuzv4209n3ts3K9fB75u8eYvzzGp4/l3GvKOPnr79Wf/SBgvPy4rF+ubcf5D8f47O8ezvv2TcyXa5f/eIz11b8A+VrM/0uOUXl/y/P1zxb+Zce4z9JvHGOdrxzj03Pq2iXW/s1j5L1D9Y83+vZvHuOO3I9Lw/kHHCN/eYzPn+u3gDHfxq+/t3z6C0px/1Tqjpc3bv+jH/uzt0zrvhGetX75VuXnn0d6ryDn/v4xXv34i45R7f2X3zzGvj9c+LH8zcfSb35K8pa/5foc9x3P+clr48+PEfdPAc+I33wtuLyuXfM3X9eu9itbZ3z7GPt33ztZfpXuk2N8+lb2/eHsj+W//9Hqf/rx//3df/2Hf/n3f2X7/a9Hv//i5/tfj37/ima+X+D/+Pj+h7Dfnn9N+v0HsXmeH9//qvT7r3TV+PgYPz7++Pc1Pz6u97/L/OPjfh/YHx9/HO/9Xbaq959k/fj443jvz+A6z4/943jvxf0eHx9/HO/9XZeeHx/X+x8O+PFxf3z8cbzz47tf18fHfv9zAD8+nufH8/boofxYjJ+L+LmYPxfrffEj/Lz/ye33P2J58ueiHm/7/Fj0z8V5vJn0N38ab++Hfv+x84+D3NXjj4DH+2re1Xq8RfG+2neVj7c+3lf1eMfhfdV39Z7x/h7PGG93NR5vMLyv4q7mXa272nf1+IPj+31Vd/We8d6SH+9/GP25ev+j6B+r94z3V0Mj4q7m48n8vlp39Z7x/n16vP+Z9I9V3dV7xvsP+Uacn6v5nvH+A84x3zPe3yMd8z3jvcP749N9Xz3+u/eM919u+vHp3tV7xvt3jvH+h9c/Vv24dHpfnZ+r9Z7x/jdpxvtfZB/vf31jPP4o+/urkfH4s+zvjeTx+MPs73MxHn+a/bl6/JH1x1Hqrvpxn4X31fm52m+PGy68r8ZdxaMy8L6ad7UeP6d8X+27yscPLN9XdVd9V+8Z7+/Zjvc/6P6xes94PF/yPePxfHn/M+8fq/X4Dej31b6r94z5+Ld1V+8Zj2fE+9A+V+9jG+9/m3C8D+7HKh6XPe+reVfvGY+v+fsAf6zeM94tGO9D/LF6/FH6x1HOz9X7KMfjq/8+zB+r94x3J8b7QH+s1s9z0Puu7rl6H+zn2Xgf7Y/V+XleztvPs3HGXcXPs3HmXa2fZ+N9xj9W+fNsnLqr/nk23uf8sYq3t4+zEW/jruLjbMTbvKv1cTbifc4/VvlxNuKt7qo/zka8nZ+r9zl/nI14n/OP1eNcPf7Xx7l6z3if84+9/biae1+9Z7x/p4j3Of/Y67t3fu69z/lz733OP/bi7s27t+7ezYibETcjbkbcjHkz5s2YN2PejHkz5s2YN2PejHkz5s1YN2PdjHUz1s1YN2PdjHUz1s1YN2PdjH0z9s3YN2PfjH0z9s3YN2PfjH0z9s3Im5E3I29G3oy8GXkz8mbkzcibkTejbkbdjLoZdTPqZtTNqJtRN6NuRt2Mvhl9M/pm9M3om9E3o29G34y+GX0zzs04N+PcjHMzzs04N+PcjHMzzs04PzPm28+M+TbuXty9effW3dt3L+9e3b2+ezdj3IxxM8bNGDdj3Iw75/PO+bxzPu+czzvn8875vHM+75zPO+fzzvm8cz7vnM875/PO+bxzPu+czzvn8875vHM+75zPO+fzzvm8cz7vnM875/PO+bxzPu+czzvn8875vHM+75zPO+fzzvm8cz7vnM875/PO+bxzPu+czzvn8875vHM+75zPO+fzzvm8cz7vnM875/PO+bxzPu+czzvn8875vHM+75zPO+fzzvm8cz7vnM875/PO+bxzPu+czzvn8875vHM+75zPO+fzzvm8cz7vnM875/PO+bxzPu+czzvn8875vHM+75zPO+fzzvm8cz7vnM875+vO+bpzvu6crzvn6875unO+7pyvO+frzvm6c77unK875+vO+bpzvu6crzvn6875unO+7pyvO+frzvm6c77unK875+vO+bpzvu6crzvn6875unO+7pyvO+frzvm6c77unK875+vO+bpzvu6crzvn6875unO+7pyvO+frzvm6c77unK875+vO+bpzvu6crzvn6875unO+7pyvO+frzvm6c77unK875+vO+bpzvu6crzvn6875unO+7pyvO+frzvm6c77unK875+vO+bpzvu6crzvn6875unO+7pyvO+frzvm6c77unK875+vO+bpzvu6crzvn6875unO+7pyvO+frzvm6c77unK875+vO+bpzvu6crzvn+875vnO+75zvO+f7zvm+c77vnO875/vO+b5zvu+c7zvn+875vnO+75zvO+f7zvm+c77vnO875/vO+b5zvu+c7zvn+875vnO+75zvO+f7zvm+c77vnO875/vO+b5zvu+c7zvn+875vnO+75zvO+f7zvm+c77vnO875/vO+b5zvu+c7zvn+875vnO+75zvO+f7zvm+c77vnO875/vO+b5zvu+c7zvn+875vnO+75zvO+f7zvm+c77vnO875/vO+b5zvu+c7zvn+875vnO+75zvx5y/vzeyH3P+3gDZjzl/7vXde894f5dkP+b8/T21/Zjz517cvXn31t3bdy/vXt29vns349yMczPOzTg349yMczPOzTg349yM8zMj335m5Nu4e3H35t1bd2/fvbx7dff67t2McTPGzRg3Y9yMcTPGzRg3Y9yMcTPGzYibETcjbkbcjLgZcTPiZsTNiJsRN2PejHkz5s2YN2PejHkz5s2YN2PejHkz1s1YN2PdjHUz1s1YN2PdjHUz1s1YN2PfjH0z9s3YN2PfjH0z9s3YN2PfjH0z8mbkzcibkTcjb0bejLwZeTPyZuTNqJtRN6NuRt2Muhl1M+pm1M2om3HnPO+c553zvHOed87zznneOc8753nnPO+c553zvHOed87zznneOc8753nnPO+c553zvHOed87rznndOa8753XnvO6c153zunNed87rznndOa8753XnvO6c153zunNed87rznndOa8753XnvO6c153zunNed87rznndOa8753XnvO6c153zunNed87rznndOa8753XnvO6c153zunNed87rznndOa8753XnvO6c153zunNed87rznndOa8753XnvO6c153zunNed87rznndOa8753XnvO6c153zunNed87rznndOa8753XnvO6c153zunNed87rznndOa8753XnvO6c153zunNed87rznndOa8753XnvO6c153zunNed87rznndOa8753XnvO6c153zunNed87rznndOa8753XnvO+c953zvnPed877znnfOe87533nvO+c953zvnPed877znnfOe87533nvO+c953zvnPed877znnfOe87533nvO+c953zvnPed877znnfOe87533nvO+c953zvnPed877znnfOe87533nvO+c953zvnPed877znnfOe87533nvO+c953zvnPed877znnfOe87533nvO+c953zvnPed877znnfOe87533nvO+c953zvnPed877znnfOe87533nvO+c953zvnPed877znnfOe87533nvO+c953zvnPed877znnfOe87533nvO+c953zvnPed877znnfOe87533nvO+c953zvnPed87PnfNz5/zcOT93zs+d83Pn/Nw5P3fOz53zc+f83Dk/d87PnfNz5/zcOT93zs+d83Pn/Nw5P3fOz53zc+f83Dk/d87PnfNz5/zcOT93zs+d83Pn/Nw5P3fOz53zc+f83Dk/d87PnfNz5/zcOT/POX97b0G83dUj49GMiLs37976eZTnnL8f5Tnnj726e333zs+955y/7z3n/LEXd2/evZuxb8a+Gftm7Juxb0bejLwZeTPyZuTNyJuRNyNvRt6MvBl1M+pm1M2om1E3o25G3Yy6GXUz6mb0zeib0Tejb0bfjL4ZfTP6ZvTN6Jtxbsa5GedmnJtxbsa5GedmnJtxbsb5mTHe3n6G/FgOu2F32l12t920W3bbrrQhbUgb0oa0IW1IG9KGtCFtSAtpIS2khbSQFtJCWkgLaSFtSpvSprQpbUqb0qa0KW1Km9KWtCVtSVvSlrQlbUlb0pa0JW1L29K2tC1tS9vStrQtbUvb0lJaSktpKS2lpbSUltJSWkoraSWtpJW0klbSSlpJK2klraW1tJbW0lpaS2tpLa2ltbQj7Ug70o60I+1IO9KOtCONJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWDJZMlkyWTJZ8iwQPmvsb9vy549tx7ND+LHbds89GEsmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLFksWSxZLFkuW65LlumS5LlmuS5brkuW6ZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLMkWZIsSZYkS5IlyZJkSbIkWZIsSZYkS5IlyZJkSbIkWZIsSZYkS5IlyZJkSbIkWZIsSZYkS5IlyZJkSbIkWZIsSZYkS5IlyZJkSbIkWZIsSZYkS5IlyZJkSbIkWZIsSZYkS5IlyZJkSbIkWZIsSZYkS5IlyZJkSbIkWZIsSZYkS5IlyZJnXfPUYzks39PO41eyH5Z87K7HrVIey/2+jMcy7Zbdtnvu7rslH7vvlvzcDbvTrrSW1tJaWktraUfakXakHWlH2pF2pB1pR9q5aY8y53P30eb8uRt2p91ld9tNu2W37Uob0oa0IW1IG9KGtCFtSBvShrSQFtJCWkgLaSEtpIW0kBbSprQpbUqb0qa0KW1Km9KmtCltSVvSlrQlbUlb0pa0JW1JW9K2tC1tS9vStrQtbUvb0ra0LS2lpbSUltJSWkpLaSktpaW0klbSSlpJY0mxpFhSLCmWFEuKJcWSYkmxpFhSLCmWFEuKJcWSYkmxpFhSLCmWFEuKJcWSYkmxpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEsOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDkvOtSTeriXxdi2Jt2tJvF1L4u1aEm/Xkni7lsTbtSTeriXx9iZtSBvShrQhbUgb0oa0IW1IG9JCWkgLaSEtpIW0kBbSQlpIm9KmtCltSnu8X/L+ajyevdePZX68MI9n7/Vjt+2ee7CnJY+DPS157obdaXfZ3XbTbtltu9K2tC1tS9vStrQtbUvb0ra0LS2lpbSUltJSWkpLaSktpaW0klbSSlpJK2klraSVtJJW0lpaS2tpLa2ltbSW1tJaWks70o60I+1IO9KOtCPtSDvSzk0bbzdtvA27YXfaXXa33bRbdtuutCFtSBvShrQhbUgb0oa0IW1IC2khLaSFtJAW0kJaSAtpIW1Km9KmtCltSpvSprQpbUpjyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJY8e6+PV+PP3uvH8udP1+PZe/3YnXbvewqLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJct1yXZdsl2XbNcl23XJdl2yWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkuddUB8vzJ+3Qf1YluX96frzTqjP3duhj2KJ3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L2G3mvovYbea+i9ht5r6L1Ovdep9zr1Xqfe69R7nXqvU+916r1Ovdep9zr1Xqfe69R7nXqvU+916r1Ovdep9zr1Xqfe69R7nXqvU+916r1Ovdep9zr1Xqfe69R7nXqvU+916r1Ovdep9zrfprQpbUqb0qa0KW1JW9KWtCVtSVvSlrQlbUlb0ra0LW1L29K2tC1tS9vStrQtLaWltJSW0lJaSktpKS2lpbSSVtJKWkkraSWtpJW0klbSWlpLa2ktraW1tJbW0lpaSzvSjrQj7Ug70o60I+1IO9JYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWPK83+v7C/P5vN/rx3JZbsufHfo5bod+jtuhn3qvc7BksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwJFgSLAmWBEuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFyXhOuScF0SrkvCdUm4LgnXJeG6JFgSLAmWBEuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFgSLAmWBEsmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSz56r89daSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSxZLFksWSxZLNF7nYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyUfvdd8LB9p/Vi+p43n7nva2I/lsvueNs5j+Z4Wb49l2W275+4+LHnuPiz52A270+6yK21IG9KGtCEtpIW0kBbSQlpIC2khLaSFtCltSpvSprQpbUqb0qa0KW1KW9KWtCVtSVvSlrQlbUlb0pa0LW1L29K2tC1tS9vStrQtbUtLaSktpaW0lJbSUlpKS2kpraSVtJJW0kpaSStpJa2klbSW1tJaWktraS2tpbW0ltbSjrQj7Ug70o60I+1IO9KOtHPTnr3Xx+6z9/qxG3an3WV32027ZbftSmNJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsqRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLmiXNkmZJs6RZ0ixpljRLmiXNkmZJs6RZ0ixpljRLmiXNkmZJs6RZ0ixpljRLmiXNkmZJs6RZ0ixpljRLmiXNkmZJs6RZ0ixpljRLmiXNkmZJs6RZ0ixpljRLmiXNkmZJs6RZ0ixpljRLmiXNkmZJs6RZ0ixpljRLmiXP3mvsx/KRlo9l2W2772nxOMLDkvk4wsOSj92wO+0uu9tu2i27bVdaS2tpLa2ltbSW1tJaWktraUfakXakHWlH2pF2pB1pR9q5ac/e62P32Xv92A270+6yu+2m3bLbdqUNaUPakDakDWlD2pA2pA1pQ1pIC2khLaSFtJAW0kJaSAtpU9qUNqVNaVPalDalTWlT2pS2pC1pS9qStqQtaUvakrakLWlb2pa2pW1pW9qWtqVtaVvalpbSUlpKS2kpLaWltJSW0lhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYcq4l6+1ast6uJevtWrLeriXr7Vqy3q4l6+1ast6uJevtWrLe3qQNaUPakDakDWlD2pA2pA1pQ1pIC2khLaSFtJAW0kJaSAtpU9qUNqVNaVPalDalTWlT2pS2pC1pS9qStqQtaUvakrakLWlb2pa2pW1pW9qWtqVtaVvalpbSUlpKS2kpLaWltJSW0lJaSStpJa2klbSSVtJKWkkraS2tpbW0ltbSWlpLa2ktraUdaUfakXakHWlH2pF2pB1pLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgybP3+v5qfD17rx/LR1o+lmF32l33YA9Lngd7vl/y3C27bffc3ef7JY/dhyUfu2F32pW2pC1pS9qStqRtaVvalralbWlb2pa2pW1pW1pKS2kpLaWltJSW0lJaSktpJa2klbSSVtJKWkkraSWtpLW0ltbSWlpLa2ktraW1tJZ2pB1pR9qRdqQdaUfakXaknZv27L0+dp+914/dsDvtLrvbbtotu21X2pA2pA1pQ9qQNqQNaUPakDakhbSQFtJCWkgLaSEtpIW0kDalTWlT2pTGksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2Sj97rfiy35c+frq9n7/Vjt+3e9xSSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEnXJem6JF2XpOuSdF2SrkuKJcWSYkmxpFhSLCmWFEuKJcWSYkmxpFhSLCmWFEuKJcWSYkmxpFhSLCmWFEuKJcWSYkmxpFhSLCmWFEuKJcWSYkmxpFhSLCmWFEuKJcWSYkmxpFhSLCmWFEuKJcWSYkmxpFhSLCmWFEuKJcWSYkmxpFhSLCmWFEuKJcWSYkmxpFhSLCmWFEuKJcWSYkmxpFhSLCmWFEuKJcWSYkmxpFhSLCmWFEuKJcWSYkmxpFhSLCmWFEuKJcWSYkmxpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEuaJc2SZkmzpFnSLGmWNEsOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDksOSw5LDkuevdcVj+WwfE9b47Gcdt/TVj6W72mrHsu0W3bb7rm7D0ueuw9LPnbD7rQrraSVtJJW0kpaS2tpLa2ltbSW1tJaWktraUfakXakHWlH2pF2pB1pR9r5mbafvdf33f3svX7sht1pd9nddtNu2W270oa0IW1IG9KGtCFtSBvShrQhLaSFtJAW0kJaSAtpIS2khbQpbUqb0qa0KW1Km9KmtCltSlvSlrQlbUlb0pa0JW1JW9KWtC1tS9vStrQtbUvb0ra0LW1LS2kpLaWltJSW0lJaSktpKa2klbSSVtJKWkkraSWtpJW0ltbSWlpLa2ktraW1tJbW0o60I+1IO9KOtCPtSDvSjjSWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkybP3+v5qfD97rx/LR1o8lmW37Z57sKclj4M9LXnuht1pd9nddtNu2W270pa0JW1JW9KWtCVtSVvSlrQlbUvb0ra0LW1L29K2tC1tS9vSUlpKS2kpLaWltJSW0lJaSitpJa2klbSSVtJKWkkraSWtpbW0ltbSWlpLa2ktraW1tCPtSDvSjrQj7Ug70o60I+3ctGfv9bH77L1+7IbdaXfZ3XbTbtltu9KGtCFtSBvShrQhbUgb0oa0IS2khbSQFtJCWkgLaSEtpLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzZLNks2SzJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFny7L0+Xo0/e68fy58/Xd/P3uvH7rR731NIliRLkiXJkmRJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRcl5TrknJdUq5LynVJuS4plhRLiiXFkmJJs6RZ0ixpljRLmiXNkmZJs6RZ0ixpljRLmiXNkmZJs6RZ0ixpljRLmiXNkmZJs6RZ0ixpljRLmiXNkmZJs6RZ0ixpljRLmiXNkmZJs6RZ0ixpljRLmiXNkmZJs6RZ0ixpljRLmiXNkmZJs6RZ0ixpljRLmiXNkmZJs6RZ0ixpljRLmiXNkmZJs6RZ0ixpljRLmiXNkmZJs6RZ0ixpljRLmiXNkmZJs6RZ0ixpljRLmiXNkmZJs6RZ0ixplhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclpxrSb5dS/LtWpJv15J8u5bk27Uk364l+XYtybdrSb5dS/LtTdqQNqQNaUPakDakDWlD2pA2pIW0kBbSQlpIC2khLaSFtJA2pU1pU9qUNqVNaVPalDalTWlL2pK2pC1pS9qStqQtaUvakralbWlb2pa2pe2fP13Pj97rc1mWbXnu8nbo86P3+twNu9JuvyT1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XlPvNfVeU+819V5T7zX1XnOyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLJksmSyZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSxZLFksWSx5Nl73eOxfE/b87F8T9vnsSzL97Tdj+W5uw9L8vHPHpbkeizD7rS77G67abfstt1zd5e0JW1JW9KWtCVtSVvSlrQlbUvb0ra0LW1L29K2tC1tS9vSUlpKS2kpLaWltJSW0lJaSitpJa2klbSSVtJKWkkraSWtpbW0ltbSWlpLa2ktraW1tCPtSDvSjrQj7Ug70o60I+3ctGfv9bH77L1+7IbdaXfZ3XbTbtltu9KGtCFtSBvShrQhbUgb0oa0IS2khbSQFtJCWkgLaSEtpIU0lmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZsliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRY8uy9Pl6NP3uvH8v3tMcL82fv9WN32d33YE9Lngcru233/Nx99l4fu8/e68du2J12l91tN+2W3bYrbUgb0oa0IW1IG9KGtCFtSBvSQlpIC2khLaSFtJAW0kJaSJvSprQpbUqb0qa0KW1Km9KmtCVtSVvSlrQlbUlb0pa0JW1J29K2tC1tS9vStrQtbUvb0ra0lJbSUlpKS2kpLaWltJSW0kpaSStpJa2klbSSVtJKWklraS2tpbW0ltbSWlpLa2kt7Ug70o60I+1IY0mzpFnSLGmWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWnGtJvV1L6u1aUm/Xknq7ltTbtaTeriX1di2pt2tJvV1L6u1N2pA2pA1pQ9qQNqQNaUPakDakhbSQFtJCWkgLaSEtpIW0kDalTWlT2pQ2pU1pU9qUNqVNaUvakrakLWlL2pK2pC1pS9qStqVtaVvalralbWlb2pa2pW1pKS2lpbSUltJSWkpLaSktpZW0klbSSlpJK2klraSVtJLW0lpaS2tpLa2ltbSW1tJa2pF2pB1pR9qRdqQdaUfakcaSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZJn7/X91Xg9e68fy58/Xa9n7/Vj99zd+35JDZYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWDJYMlgyWBEuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFgSLAnXJeG6JFyXhOuScF0SrkuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFgSLAmWBEuCJcGSYEmwJFgSLAmWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJZMlkyWTJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYsliyWLJYslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZsljx7r48X5s/e68dyWv786Xo9e68fu2lX2u2XlN5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3mvpvZbea+m9lt5r6b2W3msVS4olxZJiSbGkWFIsKZYUS4olzZJmSbOkWdIsaZY0S5olzZJmSbOkWdIsaZY0S5olzZJmSbOkWdIsaZY0S5olzZJmSbOkWdIsaZY0S5olzZJmSbOkWdIsaZY0S5olzZJmSbOkWdIsaZY0S5olzZJmSbOkWdIsaZY0S5olzZJmSbOkWdIsaZY0S5olzZJmSbOkWdIsaZY0S5olzZJmSbOkWdIsaZY0S5olzZJmSbOkWdIsaZY0S5olz97r44X5s/f6XN4OfT17r4+X68/e68futCvN+yXNkmZJs6RZclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyWHJYclhyXJcc1yXHdclxXXJclxzXJYclx3XJYclhyWHJuZb027Wk364l/XYt6bdrSb9dS/rtWtJv15J+u5b027Wk396kDWlD2pA2pA1pQ9qQNqQNaUNaSAtpIS2khbSQFtJCWkgLaVPalDalTWlT2pQ2pU1pU9qUtqQtaUvakrakLWlL2pK2pC1pW9qWtqVtaVvalralbWlb2paW0lJaSktpKS2lpbSUltJSWkkraSWtpJW0klbSSlpJK2ktraW1tJbW0lpaS2tpLa2lHWlH2pF2pB1pR9qRdqQdaSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSzRe+3BksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZLBksGSwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZJgSbAkWBIsCZYES4IlwZK4Hfp+9l4/lo9X+eexPHf3Yclz9/ZLOlii99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvP5bSWKL32nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r6332nqvrffaeq+t99p6r71ZslmyWbJZslmyWaL32pslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJZslmyWbJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEuSJcmSZEmyJFmSLEmWJEvyduj72Xv9WG7Lnx36fvZeP3bbrjTvlyRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsiRZkixJliRLkiXJkmRJsqRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJuS4p1yXluqRcl5TrknJdUiwp1yXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXFkmJJsaRYUiwplhRLiiXu99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99ru99p6r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r+1+r/3svdZ4LMNyWi7LbZmWZdmW52N5nr3Xj+WwDMtpuSy3ZVqWZVtKG9KGtCFtSBvShrQhbUgb0oa0kBbSQlpIC2kPS2o+lmlZlo+09Vieu3xY8rEclmE57xEelnwspT0s+fhvy1LalLakLWlL2pK2pC1py2NbHtuStqRtaVvalvaw5GO5LLelx7alPSz5WJ67fFjysRyW0lJaSktpKS2dyfTY0mMrj62kPSz5WDqT5UyWM1nSSlpJK2ktrZ3J9tjaY2uPraW1r1s7k+1MtjN5pB1pR9qRdqQdZ/J4bMdjOx7buWnP3uvHcliG5bS8ac/e68cyLcuyLe+ZfPZeP5bDMiyljWW5LdOyLKUNaSEtpIW0mJYeW3hs4bGx5Nl7/Vg6k9OZnM4kS56914+ltCmNJYMlgyWDJYMlz97rM235urFksGSw5Nl7/TiCNJYMlgyWDJYMlgyWDJY8e6/PtO3rxpLBksGSZ+/1eYSUxpLBksGSwZLBksGSwZJn7/WZVr5uLBksGSx59l6fRyhpLBksGSwZLBksGSwZLHn2Xp9p7evGksGSwZJn7/XjCNJYMlgyWDJYMlgyWDJY8uy9PtOOrxtLgiXBkmfv9XGEZ+/1Y7kst2ValmVb3scWLHn2Xp9pIyyn5bLcltKGNJYES4IlwZJgSbAkWBKuS8J1SbAkWBIsCdcl4bokWBIsCZYES4IlwZJgybP3+kxbvm4sCZYES5691+cRljSWBEuCJcGSYEmwJFjy7L0+07avG0uCJcGSZ+/14wjSWBIsCZYES4IlwZJgybP3+kxLXzeWBEuCJc/e6/MIJY0lwZJgSbAkWBIsCZY8e6/PtPZ1Y0mwJFjy7L1+HEEaS4IlwZJgSbAkWBIsefZen2nH140lwZJgybP3+jjCs/f6sQzLabkst2ValmVbShtvlsMyLKeltCGNJZMlkyWTJZMlkyWTJc/e6zMtluW2TMuylOY1zmTJZMlkyWTJZMlkyWTJs/f6TJtt6UyyZLJkeo3z7L1+LKWxZLJksmSyZLJksuTZe32mbV83lkyWTJZMr3GevdePpTSWTJZMlkyWTJZMljx7r8+09HVjyWTJZMn0GufZe/1YSmPJZMlkyWTJZMlkybP3+kxrXzeWTJZMlkyvcZ6914+lNJZMlkyWTJZMlkyWPHuvz7Tj68aSyZLJkuk1zrP3+lguliyWLJYsliyWLJYsljx7r4+0Z+/1Y3nP5GLJYsnyGufZe/1YSmPJYsliyWLJYsliybP3+kyLsJyWy3JbSmPJcl2yXJcsliyvcZ6914+lNJYsliyWLNclz95r5WP5nnb6ffluyY8v3mM5LMNyWq735Xgst2ValmVbnrvcj7R4LIdlWE7LZbktH2mPB7TLsi3PXeab5bAMy2m5LB9p+7FMy7Jsy3OX9WY5LMNyWj7S6rHclu9p43Gq3y35uWzLc5fvlvxcDsuwnJbvaePxBXi35OcyLcuyLc9dnjfLYRmW01LakXakHWnnkfb4wp7zc/novf6Y4MdyWL6nxXgsp+Wy3JZpWZZtee7y3ZKfy2EpbUgb0oa0IW1IG9KGtJAW0uKR9niYMS2X5bZMy7Jsy3OX881yWEqb0qa0KW1Km9KmtCltSXtYEuuxDMv3tPn4Gj8s+Vhuy/e0+fxvy/I9beZjee7yYcnHcliG5bR8T1uPU/2wZD2O+7DkY7fstt1zdx+WrHos39P24z94WPKxnJbLclumZVm25bnLhyUfS2klraSVtJJW0kpaSStpLa2ltbSW1tJaWktraS2tpR1pR9qRdqQdaQ9L9uPJ9bDkY1mWj7THF+thyWP56L3+XA7LsJyWy/KmPXqvP5dl2ZbnLoe0IW1IG9KGtIclH8u0fKTtx1LakPaw5GM5LMNSWkgLaSHtYcnHsi2dyemxTY/tYcnzk3xY8gx+WPKxdCanMzmdySltSlvSlrTlTC6PbXlsy2NbHttyJpczuZzJ7UxuZ3I7k1valralbWnbmdwe2/bY0mNLjy2dyXQm05lMZzKdyXQmU1pKK2klrZzJ8tjKYyuPrTy2cibLmSxnsp3JdibbmWxpLa2ltbR2Jttja4/teGzHYzvO5HEmjzPJkmRJsiRZkiwplhRLiiXFkmJJvW3LtLxnslhSLKnxZjksw1IaS4olxZIaZdmWHlt4bOGxxT2TFfdMVizLbZmWZSmNJcWSYklNZ3J6bNNjmx7b9NimMzmdyelMLmdyOZPLmWRJsaRYUiyp5Uwuj215bNtj2x7bdia3M7mdye1MbmdyO5MsKZYUS4ollc5kemzpsaXHlh5bOpPpTKYzWc5kOZPlTLKkWFIsKZZUOZPlsZXH1h5be2ztTLYz2c5kO5PtTLYzyZJiSbGkWFLHmTwe2/HYjsd2PLbjTB5n8twz2W9vlsMyLG9as6RZ0izpt7Jsy/vY2nVJuy7pcc9kj3smeyzLbZmWZSmNJc2SZklHWHpsrkvadUm7Lum4Z7LjnskOZ3I6k9OZnM4kS5olzZJmSU9n0nVJuy5p1yXtuqSXM7mcyeVMLmdyOZPLmWRJs6RZ0izp7Uy6LmnXJe26pF2X9HYmtzO5ncl0JtOZTGeSJc2SZkmzpNOZdF3SrkvadUm7LulyJsuZLGeynMlyJsuZZEmzpFnSLOl2Jl2XtOuSdl3Srku6ncl2JtuZPM7kcSaPM8mSZkmzpFnSx5l0XdKuS47rkuO65LzdM3ne7pk8b8tyW6ZlWbaDSWPJYcnxGue4LjmuS47rkuO65HiNc7zGOV7jHK9xjtc4x2ucw5LDksOSw5LjNc5xXXJclxzXJcd1yfEa53iNc7zGOV7jHK9xjtc4hyWHJYclhyXHa5zjuuS4LjmuS47rkuM1zvEa53iNc7zGOV7jHK9xDksOSw5LDkuO1zjHdclxXXJclxzXJcdrnOM1zvEa53iNc7zGOV7jHJYclhyWHJYcr3GO65LjuuS4LjmuS47XOMdrnOM1zvEa53iNc7zGOSw5LDksOSw5XuMc1yXHdclxXXJclxyvcY7XOMdrnOM1zvEa53iNc1hyriXj7e1i8r4eL+t4Wc+X9XpZ75d1vqx/ntH39c9T+r4+1vflzvt6vKzjZf2SO15yx0vueMm9r3re1/2yfnm88fJ44+Xx3pc+7+vpc7gvft7X+2WdL+t6Wb/kxsvjnS+Pd7483vlynudL7nzJnS+58+XxzpfHO19y58vjfaKTz/V4WT9y+7l+z83xXK+X9X5Z58v6PTfjue6X/WP94Ofnerysw7/dL7n7JXe/5O6X3P2Su19y90tuvuTmS26+5OZLbr7k5ktuvuTmS26+5OZLbr3k1ktuveTWS2695NZLbr3k1ktuveTWS26/5PZLbr/k9ktuv+T2S26/5PZLbr/k9kvueck9L7nnJfe85J6X3POSe15yz0vueck9ch/l2rseL2u5j37t3V8v6/2yzpd1vfzbftl/yR0vueMld7zkjpfc8ZI7XnLHS+54yR0vueMlN15y4yU3XnLjJTdecuMlN15y4yU3XnLjJXe+5M6X3PmSO19y50vufMmdL7nzJXe+5M6X3PWSu15y10vui1fjxavx4tV48Wq8eDVevBovXo0Xr8aLV+PFq/Hi1Xjxarx4NV68Gi9ejRevxotX48Wr8eLVePFqvHg1XrwaL16NF6/Gi1fjxavx4tV48Wq8eDVevBovXo0Xr8aLV+PFq/Hi1Xjxarx4NV68Gi9ejRevxotX48Wr8eLVePFqvHg1XrwaL16NF6/Gi1fjxavx4tV48Wq8eDVevBovXo0Xr8aLV/HiVbx4FS9exdOrj/Ujdz7X+2X9yJ3/9jd/+n//7l/+4e/+yz/+/f/609/+nx//73//3//0X//1H/75nz7+33/9//7nz//lv/zLP/zjP/7D//jP//Nf/vm//v1/+9//8vf/+R//+b++/29/env/P++i/T8/flAb5z/9+I+HrfqbGe9bcbdq/k31+9a8W+P8Taz/9G//9m//6d/+fw==";
|
|
10293
|
+
var file_map$a = {
|
|
10294
|
+
"16": {
|
|
10295
|
+
source: "use crate::cmp::Eq;\nuse crate::hash::Hash;\nuse crate::ops::arith::{Add, Neg, Sub};\n\n/// A point on the embedded elliptic curve\n/// By definition, the base field of the embedded curve is the scalar field of the proof system curve, i.e the Noir Field.\n/// x and y denotes the Weierstrass coordinates of the point, if is_infinite is false.\npub struct EmbeddedCurvePoint {\n pub x: Field,\n pub y: Field,\n pub is_infinite: bool,\n}\n\nimpl EmbeddedCurvePoint {\n /// Elliptic curve point doubling operation\n /// returns the doubled point of a point P, i.e P+P\n pub fn double(self) -> EmbeddedCurvePoint {\n embedded_curve_add(self, self)\n }\n\n /// Returns the null element of the curve; 'the point at infinity'\n pub fn point_at_infinity() -> EmbeddedCurvePoint {\n EmbeddedCurvePoint { x: 0, y: 0, is_infinite: true }\n }\n\n /// Returns the curve's generator point.\n pub fn generator() -> EmbeddedCurvePoint {\n // Generator point for the grumpkin curve (y^2 = x^3 - 17)\n EmbeddedCurvePoint {\n x: 1,\n y: 17631683881184975370165255887551781615748388533673675138860, // sqrt(-16)\n is_infinite: false,\n }\n }\n}\n\nimpl Add for EmbeddedCurvePoint {\n /// Adds two points P+Q, using the curve addition formula, and also handles point at infinity\n fn add(self, other: EmbeddedCurvePoint) -> EmbeddedCurvePoint {\n embedded_curve_add(self, other)\n }\n}\n\nimpl Sub for EmbeddedCurvePoint {\n /// Points subtraction operation, using addition and negation\n fn sub(self, other: EmbeddedCurvePoint) -> EmbeddedCurvePoint {\n self + other.neg()\n }\n}\n\nimpl Neg for EmbeddedCurvePoint {\n /// Negates a point P, i.e returns -P, by negating the y coordinate.\n /// If the point is at infinity, then the result is also at infinity.\n fn neg(self) -> EmbeddedCurvePoint {\n EmbeddedCurvePoint { x: self.x, y: -self.y, is_infinite: self.is_infinite }\n }\n}\n\nimpl Eq for EmbeddedCurvePoint {\n /// Checks whether two points are equal\n fn eq(self: Self, b: EmbeddedCurvePoint) -> bool {\n (self.is_infinite & b.is_infinite)\n | ((self.is_infinite == b.is_infinite) & (self.x == b.x) & (self.y == b.y))\n }\n}\n\nimpl Hash for EmbeddedCurvePoint {\n fn hash<H>(self, state: &mut H)\n where\n H: crate::hash::Hasher,\n {\n if self.is_infinite {\n self.is_infinite.hash(state);\n } else {\n self.x.hash(state);\n self.y.hash(state);\n }\n }\n}\n\n/// Scalar for the embedded curve represented as low and high limbs\n/// By definition, the scalar field of the embedded curve is base field of the proving system curve.\n/// It may not fit into a Field element, so it is represented with two Field elements; its low and high limbs.\npub struct EmbeddedCurveScalar {\n pub lo: Field,\n pub hi: Field,\n}\n\nimpl EmbeddedCurveScalar {\n pub fn new(lo: Field, hi: Field) -> Self {\n EmbeddedCurveScalar { lo, hi }\n }\n\n #[field(bn254)]\n pub fn from_field(scalar: Field) -> EmbeddedCurveScalar {\n let (a, b) = crate::field::bn254::decompose(scalar);\n EmbeddedCurveScalar { lo: a, hi: b }\n }\n\n //Bytes to scalar: take the first (after the specified offset) 16 bytes of the input as the lo value, and the next 16 bytes as the hi value\n #[field(bn254)]\n pub(crate) fn from_bytes(bytes: [u8; 64], offset: u32) -> EmbeddedCurveScalar {\n let mut v = 1;\n let mut lo = 0 as Field;\n let mut hi = 0 as Field;\n for i in 0..16 {\n lo = lo + (bytes[offset + 31 - i] as Field) * v;\n hi = hi + (bytes[offset + 15 - i] as Field) * v;\n v = v * 256;\n }\n let sig_s = crate::embedded_curve_ops::EmbeddedCurveScalar { lo, hi };\n sig_s\n }\n}\n\nimpl Eq for EmbeddedCurveScalar {\n fn eq(self, other: Self) -> bool {\n (other.hi == self.hi) & (other.lo == self.lo)\n }\n}\n\nimpl Hash for EmbeddedCurveScalar {\n fn hash<H>(self, state: &mut H)\n where\n H: crate::hash::Hasher,\n {\n self.hi.hash(state);\n self.lo.hash(state);\n }\n}\n\n// Computes a multi scalar multiplication over the embedded curve.\n// For bn254, We have Grumpkin and Baby JubJub.\n// For bls12-381, we have JubJub and Bandersnatch.\n//\n// The embedded curve being used is decided by the\n// underlying proof system.\n// docs:start:multi_scalar_mul\npub fn multi_scalar_mul<let N: u32>(\n points: [EmbeddedCurvePoint; N],\n scalars: [EmbeddedCurveScalar; N],\n) -> EmbeddedCurvePoint\n// docs:end:multi_scalar_mul\n{\n multi_scalar_mul_array_return(points, scalars)[0]\n}\n\n#[foreign(multi_scalar_mul)]\npub(crate) fn multi_scalar_mul_array_return<let N: u32>(\n points: [EmbeddedCurvePoint; N],\n scalars: [EmbeddedCurveScalar; N],\n) -> [EmbeddedCurvePoint; 1] {}\n\n// docs:start:fixed_base_scalar_mul\npub fn fixed_base_scalar_mul(scalar: EmbeddedCurveScalar) -> EmbeddedCurvePoint\n// docs:end:fixed_base_scalar_mul\n{\n multi_scalar_mul([EmbeddedCurvePoint::generator()], [scalar])\n}\n\n/// This function only assumes that the points are on the curve\n/// It handles corner cases around the infinity point causing some overhead compared to embedded_curve_add_not_nul and embedded_curve_add_unsafe\n// docs:start:embedded_curve_add\npub fn embedded_curve_add(\n point1: EmbeddedCurvePoint,\n point2: EmbeddedCurvePoint,\n) -> EmbeddedCurvePoint {\n // docs:end:embedded_curve_add\n if crate::runtime::is_unconstrained() {\n // `embedded_curve_add_unsafe` requires the inputs not to be the infinity point, so we check it here.\n // This is because `embedded_curve_add_unsafe` uses the `embedded_curve_add` opcode.\n // For efficiency, the backend does not check the inputs for the infinity point, but it assumes that they are not the infinity point\n // so that it can apply the ec addition formula directly.\n if point1.is_infinite {\n point2\n } else if point2.is_infinite {\n point1\n } else {\n embedded_curve_add_unsafe(point1, point2)\n }\n } else {\n // In a constrained context, we also need to check the inputs are not the infinity point because we also use `embedded_curve_add_unsafe`\n // However we also need to identify the case where the two inputs are the same, because then\n // the addition formula does not work and we need to use the doubling formula instead.\n // In unconstrained context, we can check directly if the input values are the same when solving the opcode, so it is not an issue.\n\n // x_coordinates_match is true if both abscissae are the same\n let x_coordinates_match = point1.x == point2.x;\n // y_coordinates_match is true if both ordinates are the same\n let y_coordinates_match = point1.y == point2.y;\n // double_predicate is true if both abscissae and ordinates are the same\n let double_predicate = (x_coordinates_match & y_coordinates_match);\n // If the abscissae are the same, but not the ordinates, then one point is the opposite of the other\n let infinity_predicate = (x_coordinates_match & !y_coordinates_match);\n let point1_1 = EmbeddedCurvePoint {\n x: point1.x + (x_coordinates_match as Field),\n y: point1.y,\n is_infinite: false,\n };\n let point2_1 = EmbeddedCurvePoint { x: point2.x, y: point2.y, is_infinite: false };\n // point1_1 is guaranteed to have a different abscissa than point2:\n // - if x_coordinates_match is 0, that means point1.x != point2.x, and point1_1.x = point1.x + 0\n // - if x_coordinates_match is 1, that means point1.x = point2.x, but point1_1.x = point1.x + 1 in this case\n // Because the abscissa is different, the addition formula is guaranteed to succeed, so we can safely use `embedded_curve_add_unsafe`\n // Note that this computation may be garbage: if x_coordinates_match is 1, or if one of the input is the point at infinity.\n let mut result = embedded_curve_add_unsafe(point1_1, point2_1);\n\n // `embedded_curve_add_unsafe` is doing a doubling if the input is the same variable, because in this case it is guaranteed (at 'compile time') that the input is the same.\n let double = embedded_curve_add_unsafe(point1, point1);\n // `embedded_curve_add_unsafe` would not perform doubling, even if the inputs point1 and point2 are the same, because it cannot know this without adding some logic (and some constraints)\n // However we did this logic when we computed `double_predicate`, so we set the result to 2*point1 if point1 and point2 are the same\n result = if double_predicate { double } else { result };\n\n // Same logic as above for unconstrained context, we set the proper result when one of the inputs is the infinity point\n if point1.is_infinite {\n result = point2;\n }\n if point2.is_infinite {\n result = point1;\n }\n\n // Finally, we set the is_infinity flag of the result:\n // Opposite points should sum into the infinity point, however, if one of them is point at infinity, their coordinates are not meaningful\n // so we should not use the fact that the inputs are opposite in this case:\n let mut result_is_infinity =\n infinity_predicate & (!point1.is_infinite & !point2.is_infinite);\n // However, if both of them are at infinity, then the result is also at infinity\n result.is_infinite = result_is_infinity | (point1.is_infinite & point2.is_infinite);\n result\n }\n}\n\n#[foreign(embedded_curve_add)]\nfn embedded_curve_add_array_return(\n _point1: EmbeddedCurvePoint,\n _point2: EmbeddedCurvePoint,\n) -> [EmbeddedCurvePoint; 1] {}\n\n/// This function assumes that:\n/// The points are on the curve, and\n/// The points don't share an x-coordinate, and\n/// Neither point is the infinity point.\n/// If it is used with correct input, the function ensures the correct non-zero result is returned.\n/// Except for points on the curve, the other assumptions are checked by the function. It will cause assertion failure if they are not respected.\npub fn embedded_curve_add_not_nul(\n point1: EmbeddedCurvePoint,\n point2: EmbeddedCurvePoint,\n) -> EmbeddedCurvePoint {\n assert(point1.x != point2.x);\n assert(!point1.is_infinite);\n assert(!point2.is_infinite);\n embedded_curve_add_unsafe(point1, point2)\n}\n\n/// Unsafe ec addition\n/// If the inputs are the same, it will perform a doubling, but only if point1 and point2 are the same variable.\n/// If they have the same value but are different variables, the result will be incorrect because in this case\n/// it assumes (but does not check) that the points' x-coordinates are not equal.\n/// It also assumes neither point is the infinity point.\npub fn embedded_curve_add_unsafe(\n point1: EmbeddedCurvePoint,\n point2: EmbeddedCurvePoint,\n) -> EmbeddedCurvePoint {\n embedded_curve_add_array_return(point1, point2)[0]\n}\n",
|
|
10296
|
+
path: "std/embedded_curve_ops.nr"
|
|
10297
|
+
},
|
|
10298
|
+
"17": {
|
|
10299
|
+
source: "use crate::field::field_less_than;\nuse crate::runtime::is_unconstrained;\n\n// The low and high decomposition of the field modulus\nglobal PLO: Field = 53438638232309528389504892708671455233;\nglobal PHI: Field = 64323764613183177041862057485226039389;\n\npub(crate) global TWO_POW_128: Field = 0x100000000000000000000000000000000;\n\n// Decomposes a single field into two 16 byte fields.\nfn compute_decomposition(x: Field) -> (Field, Field) {\n // Here's we're taking advantage of truncating 128 bit limbs from the input field\n // and then subtracting them from the input such the field division is equivalent to integer division.\n let low = (x as u128) as Field;\n let high = (x - low) / TWO_POW_128;\n\n (low, high)\n}\n\npub(crate) unconstrained fn decompose_hint(x: Field) -> (Field, Field) {\n compute_decomposition(x)\n}\n\nunconstrained fn lte_hint(x: Field, y: Field) -> bool {\n if x == y {\n true\n } else {\n field_less_than(x, y)\n }\n}\n\n// Assert that (alo > blo && ahi >= bhi) || (alo <= blo && ahi > bhi)\nfn assert_gt_limbs(a: (Field, Field), b: (Field, Field)) {\n let (alo, ahi) = a;\n let (blo, bhi) = b;\n // Safety: borrow is enforced to be boolean due to its type.\n // if borrow is 0, it asserts that (alo > blo && ahi >= bhi)\n // if borrow is 1, it asserts that (alo <= blo && ahi > bhi)\n unsafe {\n let borrow = lte_hint(alo, blo);\n\n let rlo = alo - blo - 1 + (borrow as Field) * TWO_POW_128;\n let rhi = ahi - bhi - (borrow as Field);\n\n rlo.assert_max_bit_size::<128>();\n rhi.assert_max_bit_size::<128>();\n }\n}\n\n/// Decompose a single field into two 16 byte fields.\npub fn decompose(x: Field) -> (Field, Field) {\n if is_unconstrained() {\n compute_decomposition(x)\n } else {\n // Safety: decomposition is properly checked below\n unsafe {\n // Take hints of the decomposition\n let (xlo, xhi) = decompose_hint(x);\n\n // Range check the limbs\n xlo.assert_max_bit_size::<128>();\n xhi.assert_max_bit_size::<128>();\n\n // Check that the decomposition is correct\n assert_eq(x, xlo + TWO_POW_128 * xhi);\n\n // Assert that the decomposition of P is greater than the decomposition of x\n assert_gt_limbs((PLO, PHI), (xlo, xhi));\n (xlo, xhi)\n }\n }\n}\n\npub fn assert_gt(a: Field, b: Field) {\n if is_unconstrained() {\n assert(\n // Safety: already unconstrained\n unsafe { field_less_than(b, a) },\n );\n } else {\n // Decompose a and b\n let a_limbs = decompose(a);\n let b_limbs = decompose(b);\n\n // Assert that a_limbs is greater than b_limbs\n assert_gt_limbs(a_limbs, b_limbs)\n }\n}\n\npub fn assert_lt(a: Field, b: Field) {\n assert_gt(b, a);\n}\n\npub fn gt(a: Field, b: Field) -> bool {\n if is_unconstrained() {\n // Safety: unsafe in unconstrained\n unsafe {\n field_less_than(b, a)\n }\n } else if a == b {\n false\n } else {\n // Safety: Take a hint of the comparison and verify it\n unsafe {\n if field_less_than(a, b) {\n assert_gt(b, a);\n false\n } else {\n assert_gt(a, b);\n true\n }\n }\n }\n}\n\npub fn lt(a: Field, b: Field) -> bool {\n gt(b, a)\n}\n\nmod tests {\n // TODO: Allow imports from \"super\"\n use crate::field::bn254::{assert_gt, decompose, gt, lte_hint, PHI, PLO, TWO_POW_128};\n\n #[test]\n fn check_decompose() {\n assert_eq(decompose(TWO_POW_128), (0, 1));\n assert_eq(decompose(TWO_POW_128 + 0x1234567890), (0x1234567890, 1));\n assert_eq(decompose(0x1234567890), (0x1234567890, 0));\n }\n\n #[test]\n unconstrained fn check_decompose_unconstrained() {\n assert_eq(decompose(TWO_POW_128), (0, 1));\n assert_eq(decompose(TWO_POW_128 + 0x1234567890), (0x1234567890, 1));\n assert_eq(decompose(0x1234567890), (0x1234567890, 0));\n }\n\n #[test]\n unconstrained fn check_lte_hint() {\n assert(lte_hint(0, 1));\n assert(lte_hint(0, 0x100));\n assert(lte_hint(0x100, TWO_POW_128 - 1));\n assert(!lte_hint(0 - 1, 0));\n\n assert(lte_hint(0, 0));\n assert(lte_hint(0x100, 0x100));\n assert(lte_hint(0 - 1, 0 - 1));\n }\n\n #[test]\n fn check_assert_gt() {\n assert_gt(1, 0);\n assert_gt(0x100, 0);\n assert_gt((0 - 1), (0 - 2));\n assert_gt(TWO_POW_128, 0);\n assert_gt(0 - 1, 0);\n }\n\n #[test]\n unconstrained fn check_assert_gt_unconstrained() {\n assert_gt(1, 0);\n assert_gt(0x100, 0);\n assert_gt((0 - 1), (0 - 2));\n assert_gt(TWO_POW_128, 0);\n assert_gt(0 - 1, 0);\n }\n\n #[test]\n fn check_gt() {\n assert(gt(1, 0));\n assert(gt(0x100, 0));\n assert(gt((0 - 1), (0 - 2)));\n assert(gt(TWO_POW_128, 0));\n assert(!gt(0, 0));\n assert(!gt(0, 0x100));\n assert(gt(0 - 1, 0 - 2));\n assert(!gt(0 - 2, 0 - 1));\n }\n\n #[test]\n unconstrained fn check_gt_unconstrained() {\n assert(gt(1, 0));\n assert(gt(0x100, 0));\n assert(gt((0 - 1), (0 - 2)));\n assert(gt(TWO_POW_128, 0));\n assert(!gt(0, 0));\n assert(!gt(0, 0x100));\n assert(gt(0 - 1, 0 - 2));\n assert(!gt(0 - 2, 0 - 1));\n }\n\n #[test]\n fn check_plo_phi() {\n assert_eq(PLO + PHI * TWO_POW_128, 0);\n let p_bytes = crate::field::modulus_le_bytes();\n let mut p_low: Field = 0;\n let mut p_high: Field = 0;\n\n let mut offset = 1;\n for i in 0..16 {\n p_low += (p_bytes[i] as Field) * offset;\n p_high += (p_bytes[i + 16] as Field) * offset;\n offset *= 256;\n }\n assert_eq(p_low, PLO);\n assert_eq(p_high, PHI);\n }\n}\n",
|
|
10300
|
+
path: "std/field/bn254.nr"
|
|
10301
|
+
},
|
|
10302
|
+
"18": {
|
|
10303
|
+
source: "pub mod bn254;\nuse crate::{runtime::is_unconstrained, static_assert};\nuse bn254::lt as bn254_lt;\n\nimpl Field {\n /// Asserts that `self` can be represented in `bit_size` bits.\n ///\n /// # Failures\n /// Causes a constraint failure for `Field` values exceeding `2^{bit_size}`.\n // docs:start:assert_max_bit_size\n pub fn assert_max_bit_size<let BIT_SIZE: u32>(self) {\n // docs:end:assert_max_bit_size\n static_assert(\n BIT_SIZE < modulus_num_bits() as u32,\n \"BIT_SIZE must be less than modulus_num_bits\",\n );\n __assert_max_bit_size(self, BIT_SIZE);\n }\n\n /// Decomposes `self` into its little endian bit decomposition as a `[u1; N]` array.\n /// This slice will be zero padded should not all bits be necessary to represent `self`.\n ///\n /// # Failures\n /// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting slice will not\n /// be able to represent the original `Field`.\n ///\n /// # Safety\n /// The bit decomposition returned is canonical and is guaranteed to not overflow the modulus.\n // docs:start:to_le_bits\n pub fn to_le_bits<let N: u32>(self: Self) -> [u1; N] {\n // docs:end:to_le_bits\n let bits = __to_le_bits(self);\n\n if !is_unconstrained() {\n // Ensure that the byte decomposition does not overflow the modulus\n let p = modulus_le_bits();\n assert(bits.len() <= p.len());\n let mut ok = bits.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bits[N - 1 - i] != p[N - 1 - i]) {\n assert(p[N - 1 - i] == 1);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bits\n }\n\n /// Decomposes `self` into its big endian bit decomposition as a `[u1; N]` array.\n /// This array will be zero padded should not all bits be necessary to represent `self`.\n ///\n /// # Failures\n /// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting slice will not\n /// be able to represent the original `Field`.\n ///\n /// # Safety\n /// The bit decomposition returned is canonical and is guaranteed to not overflow the modulus.\n // docs:start:to_be_bits\n pub fn to_be_bits<let N: u32>(self: Self) -> [u1; N] {\n // docs:end:to_be_bits\n let bits = __to_be_bits(self);\n\n if !is_unconstrained() {\n // Ensure that the decomposition does not overflow the modulus\n let p = modulus_be_bits();\n assert(bits.len() <= p.len());\n let mut ok = bits.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bits[i] != p[i]) {\n assert(p[i] == 1);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bits\n }\n\n /// Decomposes `self` into its little endian byte decomposition as a `[u8;N]` array\n /// This array will be zero padded should not all bytes be necessary to represent `self`.\n ///\n /// # Failures\n /// The length N of the array must be big enough to contain all the bytes of the 'self',\n /// and no more than the number of bytes required to represent the field modulus\n ///\n /// # Safety\n /// The result is ensured to be the canonical decomposition of the field element\n // docs:start:to_le_bytes\n pub fn to_le_bytes<let N: u32>(self: Self) -> [u8; N] {\n // docs:end:to_le_bytes\n static_assert(\n N <= modulus_le_bytes().len(),\n \"N must be less than or equal to modulus_le_bytes().len()\",\n );\n // Compute the byte decomposition\n let bytes = self.to_le_radix(256);\n\n if !is_unconstrained() {\n // Ensure that the byte decomposition does not overflow the modulus\n let p = modulus_le_bytes();\n assert(bytes.len() <= p.len());\n let mut ok = bytes.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bytes[N - 1 - i] != p[N - 1 - i]) {\n assert(bytes[N - 1 - i] < p[N - 1 - i]);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bytes\n }\n\n /// Decomposes `self` into its big endian byte decomposition as a `[u8;N]` array of length required to represent the field modulus\n /// This array will be zero padded should not all bytes be necessary to represent `self`.\n ///\n /// # Failures\n /// The length N of the array must be big enough to contain all the bytes of the 'self',\n /// and no more than the number of bytes required to represent the field modulus\n ///\n /// # Safety\n /// The result is ensured to be the canonical decomposition of the field element\n // docs:start:to_be_bytes\n pub fn to_be_bytes<let N: u32>(self: Self) -> [u8; N] {\n // docs:end:to_be_bytes\n static_assert(\n N <= modulus_le_bytes().len(),\n \"N must be less than or equal to modulus_le_bytes().len()\",\n );\n // Compute the byte decomposition\n let bytes = self.to_be_radix(256);\n\n if !is_unconstrained() {\n // Ensure that the byte decomposition does not overflow the modulus\n let p = modulus_be_bytes();\n assert(bytes.len() <= p.len());\n let mut ok = bytes.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bytes[i] != p[i]) {\n assert(bytes[i] < p[i]);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bytes\n }\n\n fn to_le_radix<let N: u32>(self: Self, radix: u32) -> [u8; N] {\n // Brillig does not need an immediate radix\n if !crate::runtime::is_unconstrained() {\n static_assert(1 < radix, \"radix must be greater than 1\");\n static_assert(radix <= 256, \"radix must be less than or equal to 256\");\n static_assert(radix & (radix - 1) == 0, \"radix must be a power of 2\");\n }\n __to_le_radix(self, radix)\n }\n\n fn to_be_radix<let N: u32>(self: Self, radix: u32) -> [u8; N] {\n // Brillig does not need an immediate radix\n if !crate::runtime::is_unconstrained() {\n static_assert(1 < radix, \"radix must be greater than 1\");\n static_assert(radix <= 256, \"radix must be less than or equal to 256\");\n static_assert(radix & (radix - 1) == 0, \"radix must be a power of 2\");\n }\n __to_be_radix(self, radix)\n }\n\n // Returns self to the power of the given exponent value.\n // Caution: we assume the exponent fits into 32 bits\n // using a bigger bit size impacts negatively the performance and should be done only if the exponent does not fit in 32 bits\n pub fn pow_32(self, exponent: Field) -> Field {\n let mut r: Field = 1;\n let b: [u1; 32] = exponent.to_le_bits();\n\n for i in 1..33 {\n r *= r;\n r = (b[32 - i] as Field) * (r * self) + (1 - b[32 - i] as Field) * r;\n }\n r\n }\n\n // Parity of (prime) Field element, i.e. sgn0(x mod p) = 0 if x `elem` {0, ..., p-1} is even, otherwise sgn0(x mod p) = 1.\n pub fn sgn0(self) -> u1 {\n self as u1\n }\n\n pub fn lt(self, another: Field) -> bool {\n if crate::compat::is_bn254() {\n bn254_lt(self, another)\n } else {\n lt_fallback(self, another)\n }\n }\n\n /// Convert a little endian byte array to a field element.\n /// If the provided byte array overflows the field modulus then the Field will silently wrap around.\n pub fn from_le_bytes<let N: u32>(bytes: [u8; N]) -> Field {\n static_assert(\n N <= modulus_le_bytes().len(),\n \"N must be less than or equal to modulus_le_bytes().len()\",\n );\n let mut v = 1;\n let mut result = 0;\n\n for i in 0..N {\n result += (bytes[i] as Field) * v;\n v = v * 256;\n }\n result\n }\n\n /// Convert a big endian byte array to a field element.\n /// If the provided byte array overflows the field modulus then the Field will silently wrap around.\n pub fn from_be_bytes<let N: u32>(bytes: [u8; N]) -> Field {\n let mut v = 1;\n let mut result = 0;\n\n for i in 0..N {\n result += (bytes[N - 1 - i] as Field) * v;\n v = v * 256;\n }\n result\n }\n}\n\n#[builtin(apply_range_constraint)]\nfn __assert_max_bit_size(value: Field, bit_size: u32) {}\n\n// `_radix` must be less than 256\n#[builtin(to_le_radix)]\nfn __to_le_radix<let N: u32>(value: Field, radix: u32) -> [u8; N] {}\n\n// `_radix` must be less than 256\n#[builtin(to_be_radix)]\nfn __to_be_radix<let N: u32>(value: Field, radix: u32) -> [u8; N] {}\n\n/// Decomposes `self` into its little endian bit decomposition as a `[u1; N]` array.\n/// This slice will be zero padded should not all bits be necessary to represent `self`.\n///\n/// # Failures\n/// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting slice will not\n/// be able to represent the original `Field`.\n///\n/// # Safety\n/// Values of `N` equal to or greater than the number of bits necessary to represent the `Field` modulus\n/// (e.g. 254 for the BN254 field) allow for multiple bit decompositions. This is due to how the `Field` will\n/// wrap around due to overflow when verifying the decomposition.\n#[builtin(to_le_bits)]\nfn __to_le_bits<let N: u32>(value: Field) -> [u1; N] {}\n\n/// Decomposes `self` into its big endian bit decomposition as a `[u1; N]` array.\n/// This array will be zero padded should not all bits be necessary to represent `self`.\n///\n/// # Failures\n/// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting slice will not\n/// be able to represent the original `Field`.\n///\n/// # Safety\n/// Values of `N` equal to or greater than the number of bits necessary to represent the `Field` modulus\n/// (e.g. 254 for the BN254 field) allow for multiple bit decompositions. This is due to how the `Field` will\n/// wrap around due to overflow when verifying the decomposition.\n#[builtin(to_be_bits)]\nfn __to_be_bits<let N: u32>(value: Field) -> [u1; N] {}\n\n#[builtin(modulus_num_bits)]\npub comptime fn modulus_num_bits() -> u64 {}\n\n#[builtin(modulus_be_bits)]\npub comptime fn modulus_be_bits() -> [u1] {}\n\n#[builtin(modulus_le_bits)]\npub comptime fn modulus_le_bits() -> [u1] {}\n\n#[builtin(modulus_be_bytes)]\npub comptime fn modulus_be_bytes() -> [u8] {}\n\n#[builtin(modulus_le_bytes)]\npub comptime fn modulus_le_bytes() -> [u8] {}\n\n/// An unconstrained only built in to efficiently compare fields.\n#[builtin(field_less_than)]\nunconstrained fn __field_less_than(x: Field, y: Field) -> bool {}\n\npub(crate) unconstrained fn field_less_than(x: Field, y: Field) -> bool {\n __field_less_than(x, y)\n}\n\n// Convert a 32 byte array to a field element by modding\npub fn bytes32_to_field(bytes32: [u8; 32]) -> Field {\n // Convert it to a field element\n let mut v = 1;\n let mut high = 0 as Field;\n let mut low = 0 as Field;\n\n for i in 0..16 {\n high = high + (bytes32[15 - i] as Field) * v;\n low = low + (bytes32[16 + 15 - i] as Field) * v;\n v = v * 256;\n }\n // Abuse that a % p + b % p = (a + b) % p and that low < p\n low + high * v\n}\n\nfn lt_fallback(x: Field, y: Field) -> bool {\n if is_unconstrained() {\n // Safety: unconstrained context\n unsafe {\n field_less_than(x, y)\n }\n } else {\n let x_bytes: [u8; 32] = x.to_le_bytes();\n let y_bytes: [u8; 32] = y.to_le_bytes();\n let mut x_is_lt = false;\n let mut done = false;\n for i in 0..32 {\n if (!done) {\n let x_byte = x_bytes[32 - 1 - i] as u8;\n let y_byte = y_bytes[32 - 1 - i] as u8;\n let bytes_match = x_byte == y_byte;\n if !bytes_match {\n x_is_lt = x_byte < y_byte;\n done = true;\n }\n }\n }\n x_is_lt\n }\n}\n\nmod tests {\n use crate::{panic::panic, runtime};\n use super::field_less_than;\n\n #[test]\n // docs:start:to_be_bits_example\n fn test_to_be_bits() {\n let field = 2;\n let bits: [u1; 8] = field.to_be_bits();\n assert_eq(bits, [0, 0, 0, 0, 0, 0, 1, 0]);\n }\n // docs:end:to_be_bits_example\n\n #[test]\n // docs:start:to_le_bits_example\n fn test_to_le_bits() {\n let field = 2;\n let bits: [u1; 8] = field.to_le_bits();\n assert_eq(bits, [0, 1, 0, 0, 0, 0, 0, 0]);\n }\n // docs:end:to_le_bits_example\n\n #[test]\n // docs:start:to_be_bytes_example\n fn test_to_be_bytes() {\n let field = 2;\n let bytes: [u8; 8] = field.to_be_bytes();\n assert_eq(bytes, [0, 0, 0, 0, 0, 0, 0, 2]);\n assert_eq(Field::from_be_bytes::<8>(bytes), field);\n }\n // docs:end:to_be_bytes_example\n\n #[test]\n // docs:start:to_le_bytes_example\n fn test_to_le_bytes() {\n let field = 2;\n let bytes: [u8; 8] = field.to_le_bytes();\n assert_eq(bytes, [2, 0, 0, 0, 0, 0, 0, 0]);\n assert_eq(Field::from_le_bytes::<8>(bytes), field);\n }\n // docs:end:to_le_bytes_example\n\n #[test]\n // docs:start:to_be_radix_example\n fn test_to_be_radix() {\n // 259, in base 256, big endian, is [1, 3].\n // i.e. 3 * 256^0 + 1 * 256^1\n let field = 259;\n\n // The radix (in this example, 256) must be a power of 2.\n // The length of the returned byte array can be specified to be\n // >= the amount of space needed.\n let bytes: [u8; 8] = field.to_be_radix(256);\n assert_eq(bytes, [0, 0, 0, 0, 0, 0, 1, 3]);\n assert_eq(Field::from_be_bytes::<8>(bytes), field);\n }\n // docs:end:to_be_radix_example\n\n #[test]\n // docs:start:to_le_radix_example\n fn test_to_le_radix() {\n // 259, in base 256, little endian, is [3, 1].\n // i.e. 3 * 256^0 + 1 * 256^1\n let field = 259;\n\n // The radix (in this example, 256) must be a power of 2.\n // The length of the returned byte array can be specified to be\n // >= the amount of space needed.\n let bytes: [u8; 8] = field.to_le_radix(256);\n assert_eq(bytes, [3, 1, 0, 0, 0, 0, 0, 0]);\n assert_eq(Field::from_le_bytes::<8>(bytes), field);\n }\n // docs:end:to_le_radix_example\n\n #[test(should_fail_with = \"radix must be greater than 1\")]\n fn test_to_le_radix_1() {\n // this test should only fail in constrained mode\n if !runtime::is_unconstrained() {\n let field = 2;\n let _: [u8; 8] = field.to_le_radix(1);\n } else {\n panic(f\"radix must be greater than 1\");\n }\n }\n\n // TODO: Update this test to account for the Brillig restriction that the radix must be greater than 2\n //#[test]\n //fn test_to_le_radix_brillig_1() {\n // // this test should only fail in constrained mode\n // if runtime::is_unconstrained() {\n // let field = 1;\n // let out: [u8; 8] = field.to_le_radix(1);\n // crate::println(out);\n // let expected = [0; 8];\n // assert(out == expected, \"unexpected result\");\n // }\n //}\n\n #[test(should_fail_with = \"radix must be a power of 2\")]\n fn test_to_le_radix_3() {\n // this test should only fail in constrained mode\n if !runtime::is_unconstrained() {\n let field = 2;\n let _: [u8; 8] = field.to_le_radix(3);\n } else {\n panic(f\"radix must be a power of 2\");\n }\n }\n\n #[test]\n fn test_to_le_radix_brillig_3() {\n // this test should only fail in constrained mode\n if runtime::is_unconstrained() {\n let field = 1;\n let out: [u8; 8] = field.to_le_radix(3);\n let mut expected = [0; 8];\n expected[0] = 1;\n assert(out == expected, \"unexpected result\");\n }\n }\n\n #[test(should_fail_with = \"radix must be less than or equal to 256\")]\n fn test_to_le_radix_512() {\n // this test should only fail in constrained mode\n if !runtime::is_unconstrained() {\n let field = 2;\n let _: [u8; 8] = field.to_le_radix(512);\n } else {\n panic(f\"radix must be less than or equal to 256\")\n }\n }\n\n // TODO: Update this test to account for the Brillig restriction that the radix must be less than 512\n //#[test]\n //fn test_to_le_radix_brillig_512() {\n // // this test should only fail in constrained mode\n // if runtime::is_unconstrained() {\n // let field = 1;\n // let out: [u8; 8] = field.to_le_radix(512);\n // let mut expected = [0; 8];\n // expected[0] = 1;\n // assert(out == expected, \"unexpected result\");\n // }\n //}\n\n #[test]\n unconstrained fn test_field_less_than() {\n assert(field_less_than(0, 1));\n assert(field_less_than(0, 0x100));\n assert(field_less_than(0x100, 0 - 1));\n assert(!field_less_than(0 - 1, 0));\n }\n}\n",
|
|
10304
|
+
path: "std/field/mod.nr"
|
|
10305
|
+
},
|
|
10306
|
+
"19": {
|
|
10307
|
+
source: "// Exposed only for usage in `std::meta`\npub(crate) mod poseidon2;\n\nuse crate::default::Default;\nuse crate::embedded_curve_ops::{\n EmbeddedCurvePoint, EmbeddedCurveScalar, multi_scalar_mul, multi_scalar_mul_array_return,\n};\nuse crate::meta::derive_via;\n\n#[foreign(sha256_compression)]\n// docs:start:sha256_compression\npub fn sha256_compression(input: [u32; 16], state: [u32; 8]) -> [u32; 8] {}\n// docs:end:sha256_compression\n\n#[foreign(keccakf1600)]\n// docs:start:keccakf1600\npub fn keccakf1600(input: [u64; 25]) -> [u64; 25] {}\n// docs:end:keccakf1600\n\npub mod keccak {\n #[deprecated(\"This function has been moved to std::hash::keccakf1600\")]\n pub fn keccakf1600(input: [u64; 25]) -> [u64; 25] {\n super::keccakf1600(input)\n }\n}\n\n#[foreign(blake2s)]\n// docs:start:blake2s\npub fn blake2s<let N: u32>(input: [u8; N]) -> [u8; 32]\n// docs:end:blake2s\n{}\n\n#[foreign(blake3)]\n// docs:start:blake3\npub fn blake3<let N: u32>(input: [u8; N]) -> [u8; 32]\n// docs:end:blake3\n{}\n\n// docs:start:pedersen_commitment\npub fn pedersen_commitment<let N: u32>(input: [Field; N]) -> EmbeddedCurvePoint {\n // docs:end:pedersen_commitment\n pedersen_commitment_with_separator(input, 0)\n}\n\n#[inline_always]\npub fn pedersen_commitment_with_separator<let N: u32>(\n input: [Field; N],\n separator: u32,\n) -> EmbeddedCurvePoint {\n let mut points = [EmbeddedCurveScalar { lo: 0, hi: 0 }; N];\n for i in 0..N {\n // we use the unsafe version because the multi_scalar_mul will constrain the scalars.\n points[i] = from_field_unsafe(input[i]);\n }\n let generators = derive_generators(\"DEFAULT_DOMAIN_SEPARATOR\".as_bytes(), separator);\n multi_scalar_mul(generators, points)\n}\n\n// docs:start:pedersen_hash\npub fn pedersen_hash<let N: u32>(input: [Field; N]) -> Field\n// docs:end:pedersen_hash\n{\n pedersen_hash_with_separator(input, 0)\n}\n\n#[no_predicates]\npub fn pedersen_hash_with_separator<let N: u32>(input: [Field; N], separator: u32) -> Field {\n let mut scalars: [EmbeddedCurveScalar; N + 1] = [EmbeddedCurveScalar { lo: 0, hi: 0 }; N + 1];\n let mut generators: [EmbeddedCurvePoint; N + 1] =\n [EmbeddedCurvePoint::point_at_infinity(); N + 1];\n let domain_generators: [EmbeddedCurvePoint; N] =\n derive_generators(\"DEFAULT_DOMAIN_SEPARATOR\".as_bytes(), separator);\n\n for i in 0..N {\n scalars[i] = from_field_unsafe(input[i]);\n generators[i] = domain_generators[i];\n }\n scalars[N] = EmbeddedCurveScalar { lo: N as Field, hi: 0 as Field };\n\n let length_generator: [EmbeddedCurvePoint; 1] =\n derive_generators(\"pedersen_hash_length\".as_bytes(), 0);\n generators[N] = length_generator[0];\n multi_scalar_mul_array_return(generators, scalars)[0].x\n}\n\n#[field(bn254)]\n#[inline_always]\npub fn derive_generators<let N: u32, let M: u32>(\n domain_separator_bytes: [u8; M],\n starting_index: u32,\n) -> [EmbeddedCurvePoint; N] {\n crate::assert_constant(domain_separator_bytes);\n // TODO(https://github.com/noir-lang/noir/issues/5672): Add back assert_constant on starting_index\n __derive_generators(domain_separator_bytes, starting_index)\n}\n\n#[builtin(derive_pedersen_generators)]\n#[field(bn254)]\nfn __derive_generators<let N: u32, let M: u32>(\n domain_separator_bytes: [u8; M],\n starting_index: u32,\n) -> [EmbeddedCurvePoint; N] {}\n\n#[field(bn254)]\n// Same as from_field but:\n// does not assert the limbs are 128 bits\n// does not assert the decomposition does not overflow the EmbeddedCurveScalar\nfn from_field_unsafe(scalar: Field) -> EmbeddedCurveScalar {\n // Safety: xlo and xhi decomposition is checked below\n let (xlo, xhi) = unsafe { crate::field::bn254::decompose_hint(scalar) };\n // Check that the decomposition is correct\n assert_eq(scalar, xlo + crate::field::bn254::TWO_POW_128 * xhi);\n EmbeddedCurveScalar { lo: xlo, hi: xhi }\n}\n\npub fn hash_to_field(inputs: [Field]) -> Field {\n let mut sum = 0;\n\n for input in inputs {\n let input_bytes: [u8; 32] = input.to_le_bytes();\n sum += crate::field::bytes32_to_field(blake2s(input_bytes));\n }\n\n sum\n}\n\n#[foreign(poseidon2_permutation)]\npub fn poseidon2_permutation<let N: u32>(_input: [Field; N], _state_length: u32) -> [Field; N] {}\n\n// Generic hashing support.\n// Partially ported and impacted by rust.\n\n// Hash trait shall be implemented per type.\n#[derive_via(derive_hash)]\npub trait Hash {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher;\n}\n\n// docs:start:derive_hash\ncomptime fn derive_hash(s: TypeDefinition) -> Quoted {\n let name = quote { Hash };\n let signature = quote { fn hash<H>(_self: Self, _state: &mut H) where H: std::hash::Hasher };\n let for_each_field = |name| quote { _self.$name.hash(_state); };\n crate::meta::make_trait_impl(\n s,\n name,\n signature,\n for_each_field,\n quote {},\n |fields| fields,\n )\n}\n// docs:end:derive_hash\n\n// Hasher trait shall be implemented by algorithms to provide hash-agnostic means.\n// TODO: consider making the types generic here ([u8], [Field], etc.)\npub trait Hasher {\n fn finish(self) -> Field;\n\n fn write(&mut self, input: Field);\n}\n\n// BuildHasher is a factory trait, responsible for production of specific Hasher.\npub trait BuildHasher<H>\nwhere\n H: Hasher,\n{\n fn build_hasher(self) -> H;\n}\n\npub struct BuildHasherDefault<H>;\n\nimpl<H> BuildHasher<H> for BuildHasherDefault<H>\nwhere\n H: Hasher + Default,\n{\n fn build_hasher(_self: Self) -> H {\n H::default()\n }\n}\n\nimpl<H> Default for BuildHasherDefault<H>\nwhere\n H: Hasher + Default,\n{\n fn default() -> Self {\n BuildHasherDefault {}\n }\n}\n\nimpl Hash for Field {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self);\n }\n}\n\nimpl Hash for u1 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u8 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u16 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u32 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u64 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for u128 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for i8 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for i16 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for i32 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for i64 {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for bool {\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n H::write(state, self as Field);\n }\n}\n\nimpl Hash for () {\n fn hash<H>(_self: Self, _state: &mut H)\n where\n H: Hasher,\n {}\n}\n\nimpl<T, let N: u32> Hash for [T; N]\nwhere\n T: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n for elem in self {\n elem.hash(state);\n }\n }\n}\n\nimpl<T> Hash for [T]\nwhere\n T: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.len().hash(state);\n for elem in self {\n elem.hash(state);\n }\n }\n}\n\nimpl<A, B> Hash for (A, B)\nwhere\n A: Hash,\n B: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n }\n}\n\nimpl<A, B, C> Hash for (A, B, C)\nwhere\n A: Hash,\n B: Hash,\n C: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n self.2.hash(state);\n }\n}\n\nimpl<A, B, C, D> Hash for (A, B, C, D)\nwhere\n A: Hash,\n B: Hash,\n C: Hash,\n D: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n self.2.hash(state);\n self.3.hash(state);\n }\n}\n\nimpl<A, B, C, D, E> Hash for (A, B, C, D, E)\nwhere\n A: Hash,\n B: Hash,\n C: Hash,\n D: Hash,\n E: Hash,\n{\n fn hash<H>(self, state: &mut H)\n where\n H: Hasher,\n {\n self.0.hash(state);\n self.1.hash(state);\n self.2.hash(state);\n self.3.hash(state);\n self.4.hash(state);\n }\n}\n\n// Some test vectors for Pedersen hash and Pedersen Commitment.\n// They have been generated using the same functions so the tests are for now useless\n// but they will be useful when we switch to Noir implementation.\n#[test]\nfn assert_pedersen() {\n assert_eq(\n pedersen_hash_with_separator([1], 1),\n 0x1b3f4b1a83092a13d8d1a59f7acb62aba15e7002f4440f2275edb99ebbc2305f,\n );\n assert_eq(\n pedersen_commitment_with_separator([1], 1),\n EmbeddedCurvePoint {\n x: 0x054aa86a73cb8a34525e5bbed6e43ba1198e860f5f3950268f71df4591bde402,\n y: 0x209dcfbf2cfb57f9f6046f44d71ac6faf87254afc7407c04eb621a6287cac126,\n is_infinite: false,\n },\n );\n\n assert_eq(\n pedersen_hash_with_separator([1, 2], 2),\n 0x26691c129448e9ace0c66d11f0a16d9014a9e8498ee78f4d69f0083168188255,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2], 2),\n EmbeddedCurvePoint {\n x: 0x2e2b3b191e49541fe468ec6877721d445dcaffe41728df0a0eafeb15e87b0753,\n y: 0x2ff4482400ad3a6228be17a2af33e2bcdf41be04795f9782bd96efe7e24f8778,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3], 3),\n 0x0bc694b7a1f8d10d2d8987d07433f26bd616a2d351bc79a3c540d85b6206dbe4,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3], 3),\n EmbeddedCurvePoint {\n x: 0x1fee4e8cf8d2f527caa2684236b07c4b1bad7342c01b0f75e9a877a71827dc85,\n y: 0x2f9fedb9a090697ab69bf04c8bc15f7385b3e4b68c849c1536e5ae15ff138fd1,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4], 4),\n 0xdae10fb32a8408521803905981a2b300d6a35e40e798743e9322b223a5eddc,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4], 4),\n EmbeddedCurvePoint {\n x: 0x07ae3e202811e1fca39c2d81eabe6f79183978e6f12be0d3b8eda095b79bdbc9,\n y: 0x0afc6f892593db6fbba60f2da558517e279e0ae04f95758587760ba193145014,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5], 5),\n 0xfc375b062c4f4f0150f7100dfb8d9b72a6d28582dd9512390b0497cdad9c22,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5], 5),\n EmbeddedCurvePoint {\n x: 0x1754b12bd475a6984a1094b5109eeca9838f4f81ac89c5f0a41dbce53189bb29,\n y: 0x2da030e3cfcdc7ddad80eaf2599df6692cae0717d4e9f7bfbee8d073d5d278f7,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6], 6),\n 0x1696ed13dc2730062a98ac9d8f9de0661bb98829c7582f699d0273b18c86a572,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6], 6),\n EmbeddedCurvePoint {\n x: 0x190f6c0e97ad83e1e28da22a98aae156da083c5a4100e929b77e750d3106a697,\n y: 0x1f4b60f34ef91221a0b49756fa0705da93311a61af73d37a0c458877706616fb,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7], 7),\n 0x128c0ff144fc66b6cb60eeac8a38e23da52992fc427b92397a7dffd71c45ede3,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7], 7),\n EmbeddedCurvePoint {\n x: 0x015441e9d29491b06563fac16fc76abf7a9534c715421d0de85d20dbe2965939,\n y: 0x1d2575b0276f4e9087e6e07c2cb75aa1baafad127af4be5918ef8a2ef2fea8fc,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7, 8], 8),\n 0x2f960e117482044dfc99d12fece2ef6862fba9242be4846c7c9a3e854325a55c,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7, 8], 8),\n EmbeddedCurvePoint {\n x: 0x1657737676968887fceb6dd516382ea13b3a2c557f509811cd86d5d1199bc443,\n y: 0x1f39f0cb569040105fa1e2f156521e8b8e08261e635a2b210bdc94e8d6d65f77,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9], 9),\n 0x0c96db0790602dcb166cc4699e2d306c479a76926b81c2cb2aaa92d249ec7be7,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9], 9),\n EmbeddedCurvePoint {\n x: 0x0a3ceae42d14914a432aa60ec7fded4af7dad7dd4acdbf2908452675ec67e06d,\n y: 0xfc19761eaaf621ad4aec9a8b2e84a4eceffdba78f60f8b9391b0bd9345a2f2,\n is_infinite: false,\n },\n );\n assert_eq(\n pedersen_hash_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 10),\n 0x2cd37505871bc460a62ea1e63c7fe51149df5d0801302cf1cbc48beb8dff7e94,\n );\n assert_eq(\n pedersen_commitment_with_separator([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 10),\n EmbeddedCurvePoint {\n x: 0x2fb3f8b3d41ddde007c8c3c62550f9a9380ee546fcc639ffbb3fd30c8d8de30c,\n y: 0x300783be23c446b11a4c0fabf6c91af148937cea15fcf5fb054abf7f752ee245,\n is_infinite: false,\n },\n );\n}\n",
|
|
10308
|
+
path: "std/hash/mod.nr"
|
|
10309
|
+
},
|
|
10310
|
+
"50": {
|
|
10311
|
+
source: "use dep::fuzk;\nuse mimc::mimc_bn254;\nuse schnorr::verify_signature;\nuse std::embedded_curve_ops::EmbeddedCurvePoint;\nuse std::field::bn254::assert_gt;\n\n\n#[export]\nfn main(\n dest_chain: pub Field,\n deposit_id: pub Field,\n //bridge fee\n bridge_fee_amount: pub Field,\n\n address: pub Field,\n\n deposit_out_note: pub Field,\n deposit_out_note_footer: pub Field,\n deposit_out_rho: Field,\n\n //order\n out_asset_a: pub Field,\n out_asset_b: pub Field,\n out_amount: pub Field,\n in_asset: Field,\n in_amount: Field,\n\n //fee\n fee_ratio: pub Field,\n fee_amount: Field,\n\n //swap in \n in_note: pub Field,\n in_note_footer: pub Field,\n in_rho: Field,\n\n pub_key: [Field; 2],\n signature: [u8; 64]\n) {\n let precision: Field = 1000000;\n let fee_ratio_zero:Field = 0;\n\n assert_gt(out_amount, bridge_fee_amount);\n\n if (fee_amount * precision != in_amount * fee_ratio) {\n assert_gt(fee_amount * precision, in_amount * fee_ratio);\n }\n //assert (fee_amount == in_amount * fee_ratio / precision);\n assert_gt(in_amount, fee_amount);\n \n let slice: [Field] = &[in_amount, fee_amount]; \n let mut amounts = Vec::from_slice(slice);\n fuzk::assert_amounts(&mut amounts);\n\n\n fuzk::assert_note(\n deposit_out_note,\n address,\n out_asset_b,\n out_amount - bridge_fee_amount,\n deposit_out_rho,\n fee_ratio,\n pub_key,\n Option::some(3),\n true\n );\n \n //fuzk::assert_nullifier(deposit_out_nullifier,deposit_out_rho,pub_key,);\n\n fuzk::assert_note_footer(deposit_out_note_footer, deposit_out_rho, pub_key);\n \n fuzk::assert_note(\n in_note,\n address,\n in_asset,\n in_amount - fee_amount,\n in_rho,\n fee_ratio_zero,\n pub_key,\n Option::some(2),\n false\n );\n \n fuzk::assert_note_footer(in_note_footer, in_rho, pub_key);\n\n let signature_domain = 20003;\n\n let m = mimc_bn254([\n signature_domain,\n deposit_id,\n dest_chain,\n address,\n out_asset_a,\n deposit_out_note,\n fee_ratio,\n in_note\n ]);\n\n let m_bytes = fuzk::to_bytes(m);\n\n let pub_key_point: EmbeddedCurvePoint = EmbeddedCurvePoint { x: pub_key[0], y: pub_key[1], is_infinite: false };\n let v = verify_signature(pub_key_point, signature, m_bytes);\n\n assert(v);\n}\n",
|
|
10312
|
+
path: "/Users/wenjie/Work/Singularity/git/darkSwap-zk-contracts/circuits/synara_dark_swap_retail_deposit_bridge_create_order/src/main.nr"
|
|
10313
|
+
},
|
|
10314
|
+
"51": {
|
|
10315
|
+
source: "use dep::std;\nuse mimc::mimc_bn254;\nuse std::field::bn254::assert_gt;\n\npub fn assert_amounts(amounts: &mut Vec<Field>) {\n let amounts_size = amounts.len();\n for _ in 0..amounts_size {\n let amount = amounts.pop();\n if (amount != 0){\n amount.assert_max_bit_size::<252>();\n assert_gt(amount, 0);\n }\n }\n}\n\npub fn to_bytes(x: Field) -> [u8; 32] {\n x.to_le_bytes::<32>()\n}\n\npub fn note_footer(rho: Field, pub_key: [Field; 2]) -> Field {\n mimc_bn254(\n [\n mimc_bn254([rho]),\n pub_key[0],\n pub_key[1]\n ]\n )\n}\n\n\npub fn assert_note(\n note: Field,\n address: Field,\n asset: Field,\n amount: Field,\n rho: Field,\n fee_ratio: Field,\n pub_key: [Field; 2],\n note_domain_separator: Option<Field>,\n is_order: bool\n) {\n assert_note_with_footer(\n note,\n address,\n asset,\n amount,\n fee_ratio,\n note_footer(rho, pub_key),\n note_domain_separator,\n is_order\n )\n}\n\npub fn assert_note_footer(in_note_footer: Field, rho: Field, pub_key: [Field; 2]) {\n assert(in_note_footer == note_footer(rho, pub_key));\n}\n\npub fn assert_note_with_footer(\n note: Field,\n address: Field,\n asset: Field,\n amount: Field,\n fee_ratio: Field,\n footer: Field,\n note_domain_separator: Option<Field>,\n is_order:bool\n) {\n assert(\n note == \n if is_order {\n mimc_bn254([\n note_domain_separator.unwrap(),\n address,\n asset,\n amount,\n fee_ratio,\n footer\n ])\n } else {\n mimc_bn254([\n note_domain_separator.unwrap(),\n address,\n asset,\n amount,\n footer\n ])\n }\n );\n}\n\npub fn assert_note_with_membership(\n merkle_root: Field,\n merkle_index: [u1; 32],\n merkle_path: [Field; 32],\n address: Field,\n note: Field,\n asset: Field,\n amount: Field,\n rho: Field,\n fee_ratio: Field,\n pub_key: [Field; 2],\n note_domain_separator: Option<Field>,\n is_order:bool\n) {\n assert_note(note,address,asset, amount, rho, fee_ratio,pub_key, note_domain_separator, is_order);\n assert(merkle_root == compute_merkle_root(note, merkle_index, merkle_path));\n}\n\npub fn assert_nullifier(nullifier: Field, rho: Field, pub_key: [Field; 2]) {\n assert(\n nullifier == mimc_bn254(\n [\n rho,\n pub_key[0],\n pub_key[1]\n ]\n )\n );\n}\n\npub fn compute_merkle_root(leaf: Field, merkle_index: [u1; 32], merkle_path: [Field; 32]) -> Field {\n \n let mut merkle_root = mimc_bn254([0x0, leaf]);\n for i in 0..32 {\n let left = if merkle_index[i] == 0 {\n merkle_root\n } else {\n merkle_path[i]\n };\n let right = if merkle_index[i] == 1 {\n merkle_root\n } else {\n merkle_path[i]\n };\n\n let next_merkle_root = mimc_bn254([0x01, left, right]);\n\n if merkle_path[i] != 0 {\n merkle_root = next_merkle_root;\n }\n }\n merkle_root\n}\n\n#[test]\nfn test_assert_amounts() {\n let amount_1: Field = 1;\n let amount_2: Field = 2;\n\n let slice: [Field] = &[amount_1, amount_2];\n let mut amounts = Vec::from_slice(slice);\n\n assert_amounts(&mut amounts);\n}\n\n#[test(should_fail)]\nfn test_assert_amounts_fail() {\n let amount_1: Field = 1;\n let amount_2: Field = -2;\n let amount_3: Field = -3;\n\n let slice: [Field] = &[amount_1, amount_2, amount_3];\n let mut amounts = Vec::from_slice(slice);\n\n assert_amounts(&mut amounts);\n}\n",
|
|
10316
|
+
path: "/Users/wenjie/Work/Singularity/git/darkSwap-zk-contracts/circuits/fuzk/src/lib.nr"
|
|
10317
|
+
},
|
|
10318
|
+
"52": {
|
|
10319
|
+
source: "use std::hash::Hasher;\nuse std::default::Default;\n\n// mimc-p/p implementation\n// constants are (publicly generated) random numbers, for instance using keccak as a ROM.\n// You must use constants generated for the native field\n// Rounds number should be ~ log(p)/log(exp)\n// For 254 bit primes, exponent 7 and 91 rounds seems to be recommended\npub fn mimc<let N: u32>(x: Field, k: Field, constants: [Field; N], exp: Field) -> Field {\n //round 0\n let mut t = x + k;\n let mut h = t.pow_32(exp);\n //next rounds\n for i in 1..constants.len() {\n t = h + k + constants[i];\n h = t.pow_32(exp);\n }\n h + k\n}\n\nglobal MIMC_BN254_ROUNDS: u32 = 91;\n//generated from seed \"mimc\" using keccak256 \nglobal MIMC_BN254_CONSTANTS: [Field; MIMC_BN254_ROUNDS] = [\n 0,\n 20888961410941983456478427210666206549300505294776164667214940546594746570981,\n 15265126113435022738560151911929040668591755459209400716467504685752745317193,\n 8334177627492981984476504167502758309043212251641796197711684499645635709656,\n 1374324219480165500871639364801692115397519265181803854177629327624133579404,\n 11442588683664344394633565859260176446561886575962616332903193988751292992472,\n 2558901189096558760448896669327086721003508630712968559048179091037845349145,\n 11189978595292752354820141775598510151189959177917284797737745690127318076389,\n 3262966573163560839685415914157855077211340576201936620532175028036746741754,\n 17029914891543225301403832095880481731551830725367286980611178737703889171730,\n 4614037031668406927330683909387957156531244689520944789503628527855167665518,\n 19647356996769918391113967168615123299113119185942498194367262335168397100658,\n 5040699236106090655289931820723926657076483236860546282406111821875672148900,\n 2632385916954580941368956176626336146806721642583847728103570779270161510514,\n 17691411851977575435597871505860208507285462834710151833948561098560743654671,\n 11482807709115676646560379017491661435505951727793345550942389701970904563183,\n 8360838254132998143349158726141014535383109403565779450210746881879715734773,\n 12663821244032248511491386323242575231591777785787269938928497649288048289525,\n 3067001377342968891237590775929219083706800062321980129409398033259904188058,\n 8536471869378957766675292398190944925664113548202769136103887479787957959589,\n 19825444354178182240559170937204690272111734703605805530888940813160705385792,\n 16703465144013840124940690347975638755097486902749048533167980887413919317592,\n 13061236261277650370863439564453267964462486225679643020432589226741411380501,\n 10864774797625152707517901967943775867717907803542223029967000416969007792571,\n 10035653564014594269791753415727486340557376923045841607746250017541686319774,\n 3446968588058668564420958894889124905706353937375068998436129414772610003289,\n 4653317306466493184743870159523234588955994456998076243468148492375236846006,\n 8486711143589723036499933521576871883500223198263343024003617825616410932026,\n 250710584458582618659378487568129931785810765264752039738223488321597070280,\n 2104159799604932521291371026105311735948154964200596636974609406977292675173,\n 16313562605837709339799839901240652934758303521543693857533755376563489378839,\n 6032365105133504724925793806318578936233045029919447519826248813478479197288,\n 14025118133847866722315446277964222215118620050302054655768867040006542798474,\n 7400123822125662712777833064081316757896757785777291653271747396958201309118,\n 1744432620323851751204287974553233986555641872755053103823939564833813704825,\n 8316378125659383262515151597439205374263247719876250938893842106722210729522,\n 6739722627047123650704294650168547689199576889424317598327664349670094847386,\n 21211457866117465531949733809706514799713333930924902519246949506964470524162,\n 13718112532745211817410303291774369209520657938741992779396229864894885156527,\n 5264534817993325015357427094323255342713527811596856940387954546330728068658,\n 18884137497114307927425084003812022333609937761793387700010402412840002189451,\n 5148596049900083984813839872929010525572543381981952060869301611018636120248,\n 19799686398774806587970184652860783461860993790013219899147141137827718662674,\n 19240878651604412704364448729659032944342952609050243268894572835672205984837,\n 10546185249390392695582524554167530669949955276893453512788278945742408153192,\n 5507959600969845538113649209272736011390582494851145043668969080335346810411,\n 18177751737739153338153217698774510185696788019377850245260475034576050820091,\n 19603444733183990109492724100282114612026332366576932662794133334264283907557,\n 10548274686824425401349248282213580046351514091431715597441736281987273193140,\n 1823201861560942974198127384034483127920205835821334101215923769688644479957,\n 11867589662193422187545516240823411225342068709600734253659804646934346124945,\n 18718569356736340558616379408444812528964066420519677106145092918482774343613,\n 10530777752259630125564678480897857853807637120039176813174150229243735996839,\n 20486583726592018813337145844457018474256372770211860618687961310422228379031,\n 12690713110714036569415168795200156516217175005650145422920562694422306200486,\n 17386427286863519095301372413760745749282643730629659997153085139065756667205,\n 2216432659854733047132347621569505613620980842043977268828076165669557467682,\n 6309765381643925252238633914530877025934201680691496500372265330505506717193,\n 20806323192073945401862788605803131761175139076694468214027227878952047793390,\n 4037040458505567977365391535756875199663510397600316887746139396052445718861,\n 19948974083684238245321361840704327952464170097132407924861169241740046562673,\n 845322671528508199439318170916419179535949348988022948153107378280175750024,\n 16222384601744433420585982239113457177459602187868460608565289920306145389382,\n 10232118865851112229330353999139005145127746617219324244541194256766741433339,\n 6699067738555349409504843460654299019000594109597429103342076743347235369120,\n 6220784880752427143725783746407285094967584864656399181815603544365010379208,\n 6129250029437675212264306655559561251995722990149771051304736001195288083309,\n 10773245783118750721454994239248013870822765715268323522295722350908043393604,\n 4490242021765793917495398271905043433053432245571325177153467194570741607167,\n 19596995117319480189066041930051006586888908165330319666010398892494684778526,\n 837850695495734270707668553360118467905109360511302468085569220634750561083,\n 11803922811376367215191737026157445294481406304781326649717082177394185903907,\n 10201298324909697255105265958780781450978049256931478989759448189112393506592,\n 13564695482314888817576351063608519127702411536552857463682060761575100923924,\n 9262808208636973454201420823766139682381973240743541030659775288508921362724,\n 173271062536305557219323722062711383294158572562695717740068656098441040230,\n 18120430890549410286417591505529104700901943324772175772035648111937818237369,\n 20484495168135072493552514219686101965206843697794133766912991150184337935627,\n 19155651295705203459475805213866664350848604323501251939850063308319753686505,\n 11971299749478202793661982361798418342615500543489781306376058267926437157297,\n 18285310723116790056148596536349375622245669010373674803854111592441823052978,\n 7069216248902547653615508023941692395371990416048967468982099270925308100727,\n 6465151453746412132599596984628739550147379072443683076388208843341824127379,\n 16143532858389170960690347742477978826830511669766530042104134302796355145785,\n 19362583304414853660976404410208489566967618125972377176980367224623492419647,\n 1702213613534733786921602839210290505213503664731919006932367875629005980493,\n 10781825404476535814285389902565833897646945212027592373510689209734812292327,\n 4212716923652881254737947578600828255798948993302968210248673545442808456151,\n 7594017890037021425366623750593200398174488805473151513558919864633711506220,\n 18979889247746272055963929241596362599320706910852082477600815822482192194401,\n 13602139229813231349386885113156901793661719180900395818909719758150455500533\n ];\n\n//mimc implementation with hardcoded parameters for BN254 curve.\n#[field(bn254)]\npub fn mimc_bn254<let N: u32>(array: [Field; N]) -> Field {\n let exponent = 7;\n let mut r = 0;\n for elem in array {\n let h = mimc(elem, r, MIMC_BN254_CONSTANTS, exponent);\n r = r + elem + h;\n }\n r\n}\n\npub struct MimcHasher {\n _state: [Field],\n}\n\nimpl Hasher for MimcHasher {\n #[field(bn254)]\n fn finish(self) -> Field {\n let exponent = 7;\n let mut r = 0;\n for i in 0..self._state.len() {\n let h = mimc(self._state[i], r, MIMC_BN254_CONSTANTS, exponent);\n r = r + self._state[i] + h;\n }\n r\n }\n\n fn write(&mut self, input: Field) {\n self._state = self._state.push_back(input);\n }\n}\n\nimpl Default for MimcHasher {\n fn default() -> Self {\n MimcHasher { _state: &[] }\n }\n}\n\nmod tests {\n use super::mimc_bn254;\n\n #[test]\n fn smoke_test() {\n let input = [12, 45, 78, 41];\n let expected_output = 18226366069841799622585958305961373004333097209608110160936134895615261821931;\n assert_eq(mimc_bn254(input), expected_output);\n }\n}\n",
|
|
10320
|
+
path: "/Users/wenjie/nargo/github.com/noir-lang/mimc/v0.1.0/src/lib.nr"
|
|
10321
|
+
},
|
|
10322
|
+
"53": {
|
|
10323
|
+
source: "use std::embedded_curve_ops::{EmbeddedCurvePoint, EmbeddedCurveScalar, multi_scalar_mul};\nuse std::hash::{blake2s, pedersen_hash};\n\n// the multiples of BN_P that are still less than 2^254 split into (lo, hi)\nglobal BN_P_m: [(Field, Field); 6] = [\n (0, 0),\n (201385395114098847380338600778089168199, 64323764613183177041862057485226039389),\n (62488423307259231297302594124410124942, 128647529226366354083724114970452078779),\n (263873818421358078677641194902499293141, 192971293839549531125586172455678118168),\n (124976846614518462594605188248820249884, 257295058452732708167448229940904157558),\n (326362241728617309974943789026909418083, 321618823065915885209310287426130196947),\n];\n\nglobal TWO_POW_128: Field = 0x100000000000000000000000000000000;\n\npub fn verify_signature<let N: u32>(\n public_key: EmbeddedCurvePoint,\n signature: [u8; 64],\n message: [u8; N],\n) -> bool {\n //scalar lo/hi from bytes\n let sig_s = scalar_from_bytes(signature, 0);\n let sig_e = scalar_from_bytes(signature, 32);\n // pub_key is on Grumpkin curve\n let mut is_ok = (public_key.y * public_key.y == public_key.x * public_key.x * public_key.x - 17)\n & (!public_key.is_infinite);\n\n if ((sig_s.lo != 0) | (sig_s.hi != 0)) & ((sig_e.lo != 0) | (sig_e.hi != 0)) {\n let (r_is_infinite, result) =\n calculate_signature_challenge(public_key, sig_s, sig_e, message);\n\n is_ok &= !r_is_infinite;\n for i in 0..32 {\n is_ok &= result[i] == signature[32 + i];\n }\n } else {\n is_ok = false;\n }\n is_ok\n}\n\npub fn assert_valid_signature<let N: u32>(\n public_key: EmbeddedCurvePoint,\n signature: [u8; 64],\n message: [u8; N],\n) {\n //scalar lo/hi from bytes\n let sig_s = scalar_from_bytes(signature, 0);\n let sig_e = scalar_from_bytes(signature, 32);\n\n // assert pub_key is on Grumpkin curve\n assert(public_key.y * public_key.y == public_key.x * public_key.x * public_key.x - 17);\n assert(public_key.is_infinite == false);\n // assert signature is not null\n assert((sig_s.lo != 0) | (sig_s.hi != 0));\n assert((sig_e.lo != 0) | (sig_e.hi != 0));\n\n let (r_is_infinite, result) = calculate_signature_challenge(public_key, sig_s, sig_e, message);\n\n assert(!r_is_infinite);\n for i in 0..32 {\n assert(result[i] == signature[32 + i]);\n }\n}\n\nfn calculate_signature_challenge<let N: u32>(\n public_key: EmbeddedCurvePoint,\n sig_s: EmbeddedCurveScalar,\n sig_e: EmbeddedCurveScalar,\n message: [u8; N],\n) -> (bool, [u8; 32]) {\n let g1 = EmbeddedCurvePoint {\n x: 1,\n y: 17631683881184975370165255887551781615748388533673675138860,\n is_infinite: false,\n };\n let reduced_sig_e = normalize_signature(sig_e);\n let r = multi_scalar_mul([g1, public_key], [sig_s, reduced_sig_e]);\n // compare the _hashes_ rather than field elements modulo r\n let pedersen_hash = pedersen_hash([r.x, public_key.x, public_key.y]);\n let pde: [u8; 32] = pedersen_hash.to_be_bytes();\n\n let mut hash_input = [0; N + 32];\n for i in 0..32 {\n hash_input[i] = pde[i];\n }\n for i in 0..N {\n hash_input[32 + i] = message[i];\n }\n\n let result = blake2s(hash_input);\n (r.is_infinite, result)\n}\n\nunconstrained fn __gt(a: Field, b: Field) -> bool {\n b.lt(a)\n}\n\n// gets the quotient of lo/hi when divided by BN254_Fq modulus\nunconstrained fn __get_quotient(hi: Field, lo: Field) -> Field {\n let mut q: Field = 0;\n let mut r_hi = hi;\n let mut r_lo = lo;\n let MODULUS = BN_P_m[1];\n\n for _ in 1..6 {\n // check if rhi, rlo is larger than BN_P\n let borrow = r_lo.lt(MODULUS.0);\n\n if borrow {\n r_lo = r_lo + TWO_POW_128;\n // rlo is always larger than BN_P lo now\n r_hi = r_hi - 1;\n }\n\n let MODULUS_hi = MODULUS.1;\n\n let gt_flag = !r_hi.lt(MODULUS_hi);\n\n if gt_flag {\n r_hi = r_hi - MODULUS.1;\n r_lo = r_lo - MODULUS.0;\n if TWO_POW_128.lt(r_lo) | TWO_POW_128.lt(r_hi) {\n break;\n }\n q += 1;\n }\n }\n q\n}\n\n// this method reduces the signature to the range [0, BN254_Fq_MODULUS)\nfn normalize_signature(sig_e: EmbeddedCurveScalar) -> EmbeddedCurveScalar {\n let mut hi = sig_e.hi;\n let mut lo = sig_e.lo;\n // get the quotient\n let q = unsafe { __get_quotient(hi, lo) };\n let MODULUSmq = (BN_P_m[q].0, BN_P_m[q].1);\n let MODULUS = BN_P_m[1];\n // remove MODULUS * q from lo/hi\n let borrow = unsafe { __gt(MODULUSmq.0, lo) };\n // rlo, rhi is the signature without the multiple of MODULUS\n let rlo = lo - MODULUSmq.0 + borrow as Field * TWO_POW_128;\n let rhi = hi - borrow as Field - MODULUSmq.1;\n // now we validate that rlo and rhi are positive\n rlo.assert_max_bit_size::<128>();\n rhi.assert_max_bit_size::<128>();\n // validate that rlo, rhi is smaller than MODULUS\n // if the lo is larger than the modulus lo we have to get a borrow\n let borrow = unsafe { __gt(rlo, MODULUS.0) };\n let rplo = MODULUS.0 - rlo + borrow as Field * TWO_POW_128;\n let rphi = MODULUS.1 - rhi - borrow as Field;\n // check that rplo and rphi are positive\n rplo.assert_max_bit_size::<128>();\n rphi.assert_max_bit_size::<128>();\n EmbeddedCurveScalar::new(rlo, rhi)\n}\n\n//Bytes to scalar: take the first (after the specified offset) 16 bytes of the input as the lo value, and the next 16 bytes as the hi value\nfn scalar_from_bytes(bytes: [u8; 64], offset: u32) -> EmbeddedCurveScalar {\n let mut v: Field = 1;\n let mut lo: Field = 0;\n let mut hi: Field = 0;\n for i in 0..16 {\n lo = lo + (bytes[offset + 31 - i] as Field) * v;\n hi = hi + (bytes[offset + 15 - i] as Field) * v;\n v = v * 256;\n }\n let sig_s = EmbeddedCurveScalar::new(lo, hi);\n sig_s\n}\n\nmod test {\n use super::normalize_signature;\n use super::verify_signature;\n use std::embedded_curve_ops::{EmbeddedCurvePoint, EmbeddedCurveScalar};\n\n #[test]\n fn test_zero_signature() {\n let public_key: EmbeddedCurvePoint = EmbeddedCurvePoint {\n x: 1,\n y: 17631683881184975370165255887551781615748388533673675138860,\n is_infinite: false,\n };\n let signature: [u8; 64] = [0; 64];\n let message: [u8; _] = [2; 64]; // every message\n let verified = verify_signature(public_key, signature, message);\n assert(!verified);\n }\n\n #[test]\n fn smoke_test() {\n let message: [u8; 10] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9];\n let pub_key_x: Field = 0x04b260954662e97f00cab9adb773a259097f7a274b83b113532bce27fa3fb96a;\n let pub_key_y: Field = 0x2fd51571db6c08666b0edfbfbc57d432068bccd0110a39b166ab243da0037197;\n let signature: [u8; 64] = [\n 1, 13, 119, 112, 212, 39, 233, 41, 84, 235, 255, 93, 245, 172, 186, 83, 157, 253, 76,\n 77, 33, 128, 178, 15, 214, 67, 105, 107, 177, 234, 77, 48, 27, 237, 155, 84, 39, 84,\n 247, 27, 22, 8, 176, 230, 24, 115, 145, 220, 254, 122, 135, 179, 171, 4, 214, 202, 64,\n 199, 19, 84, 239, 138, 124, 12,\n ];\n\n let pub_key = EmbeddedCurvePoint { x: pub_key_x, y: pub_key_y, is_infinite: false };\n let valid_signature = verify_signature(pub_key, signature, message);\n assert(valid_signature);\n super::assert_valid_signature(pub_key, signature, message);\n }\n\n #[test]\n fn test_normalize_signature() {\n let sig_e = EmbeddedCurveScalar::new(\n 201385395114098847380338600778112493540,\n 64323764613183177041862057485226039389,\n );\n let normalized = normalize_signature(sig_e);\n let expected = EmbeddedCurveScalar::new(23325341, 0);\n assert(normalized == expected);\n }\n\n #[test]\n fn test_normalize_signature_2() {\n let sig_e = EmbeddedCurveScalar::new(\n 263873818421358078677641194902522618482,\n 192971293839549531125586172455678118168,\n );\n let normalized = normalize_signature(sig_e);\n let expected = EmbeddedCurveScalar::new(23325341, 0);\n assert(normalized == expected);\n }\n\n}\n\nmod bench {\n use super::{assert_valid_signature, verify_signature};\n use std::embedded_curve_ops::EmbeddedCurvePoint;\n\n #[export]\n pub fn bench_verify_signature(\n public_key: EmbeddedCurvePoint,\n signature: [u8; 64],\n message: [u8; 32],\n ) -> bool {\n verify_signature(public_key, signature, message)\n }\n\n #[export]\n pub fn bench_assert_valid_signature(\n public_key: EmbeddedCurvePoint,\n signature: [u8; 64],\n message: [u8; 32],\n ) {\n assert_valid_signature(public_key, signature, message)\n }\n}\n\n",
|
|
10324
|
+
path: "/Users/wenjie/nargo/github.com/noir-lang/schnorr/v0.1.2/src/lib.nr"
|
|
10325
|
+
}
|
|
10326
|
+
};
|
|
10327
|
+
var names$a = [
|
|
10328
|
+
"main"
|
|
10329
|
+
];
|
|
10330
|
+
var brillig_names$a = [
|
|
10331
|
+
"decompose_hint",
|
|
10332
|
+
"lte_hint",
|
|
10333
|
+
"__get_quotient",
|
|
10334
|
+
"__gt",
|
|
10335
|
+
"directive_invert",
|
|
10336
|
+
"directive_to_radix",
|
|
10337
|
+
"directive_integer_quotient"
|
|
10338
|
+
];
|
|
10339
|
+
var retailBridgeOrderCircuit = {
|
|
10340
|
+
noir_version: noir_version$a,
|
|
10341
|
+
hash: hash$a,
|
|
10342
|
+
abi: abi$f,
|
|
10343
|
+
bytecode: bytecode$f,
|
|
10344
|
+
debug_symbols: debug_symbols$a,
|
|
10345
|
+
file_map: file_map$a,
|
|
10346
|
+
names: names$a,
|
|
10347
|
+
brillig_names: brillig_names$a
|
|
10348
|
+
};
|
|
10349
|
+
|
|
10350
|
+
function generateRetailBridgeOrderProof(_x) {
|
|
10351
|
+
return _generateRetailBridgeOrderProof.apply(this, arguments);
|
|
10352
|
+
}
|
|
10353
|
+
function _generateRetailBridgeOrderProof() {
|
|
10354
|
+
_generateRetailBridgeOrderProof = _asyncToGenerator(/*#__PURE__*/_regenerator().m(function _callee(param) {
|
|
10355
|
+
var _yield$generateKeyPai, _yield$generateKeyPai2, fuzkPubKeyX, fuzkPubKeyY, fuzkPriKey, depositFooter, inAmount, swapInNoteFooter, addressMod, depositSourceAssetMod, depositId, message, signature, inputs, proof;
|
|
10356
|
+
return _regenerator().w(function (_context) {
|
|
10357
|
+
while (1) switch (_context.n) {
|
|
10358
|
+
case 0:
|
|
10359
|
+
if (!(param.depositNote.amount <= 0n)) {
|
|
10360
|
+
_context.n = 1;
|
|
10361
|
+
break;
|
|
10362
|
+
}
|
|
10363
|
+
throw new DarkSwapProofError("Deposit amount must be greater than 0");
|
|
10364
|
+
case 1:
|
|
10365
|
+
if (!(param.depositNote.feeRatio < 0n)) {
|
|
10366
|
+
_context.n = 2;
|
|
10367
|
+
break;
|
|
10368
|
+
}
|
|
10369
|
+
throw new DarkSwapProofError("Fee ratio must be greater or equal to 0");
|
|
10370
|
+
case 2:
|
|
10371
|
+
_context.n = 3;
|
|
10372
|
+
return generateKeyPair(param.signedMessage);
|
|
10373
|
+
case 3:
|
|
10374
|
+
_yield$generateKeyPai = _context.v;
|
|
10375
|
+
_yield$generateKeyPai2 = _yield$generateKeyPai[0];
|
|
10376
|
+
fuzkPubKeyX = _yield$generateKeyPai2[0];
|
|
10377
|
+
fuzkPubKeyY = _yield$generateKeyPai2[1];
|
|
10378
|
+
fuzkPriKey = _yield$generateKeyPai[1];
|
|
10379
|
+
depositFooter = getNoteFooter(param.depositNote.rho, [fuzkPubKeyX, fuzkPubKeyY]);
|
|
10380
|
+
inAmount = param.feeAmount + param.swapInNote.amount;
|
|
10381
|
+
swapInNoteFooter = getNoteFooter(param.swapInNote.rho, [fuzkPubKeyX, fuzkPubKeyY]);
|
|
10382
|
+
addressMod = encodeAddress(param.address);
|
|
10383
|
+
depositSourceAssetMod = encodeAddress(param.depositSourceAsset);
|
|
10384
|
+
depositId = BigInt(param.depositId);
|
|
10385
|
+
message = bn_to_hex(mimc_bn254([BigInt(exports.PROOF_DOMAIN.RETAIL_BRIDGE_ORDER), depositId, BigInt(param.destChain), addressMod, depositSourceAssetMod, param.depositNote.note, param.depositNote.feeRatio, param.swapInNote.note]));
|
|
10386
|
+
_context.n = 4;
|
|
10387
|
+
return signMessage(message, fuzkPriKey);
|
|
10388
|
+
case 4:
|
|
10389
|
+
signature = _context.v;
|
|
10390
|
+
inputs = {
|
|
10391
|
+
address: bn_to_0xhex(addressMod),
|
|
10392
|
+
dest_chain: bn_to_0xhex(BigInt(param.destChain)),
|
|
10393
|
+
deposit_id: bn_to_0xhex(depositId),
|
|
10394
|
+
bridge_fee_amount: bn_to_0xhex(param.bridgeFeeAmount),
|
|
10395
|
+
deposit_out_note: bn_to_0xhex(param.depositNote.note),
|
|
10396
|
+
deposit_out_note_footer: bn_to_0xhex(depositFooter),
|
|
10397
|
+
deposit_out_rho: bn_to_0xhex(param.depositNote.rho),
|
|
10398
|
+
out_asset_a: bn_to_0xhex(depositSourceAssetMod),
|
|
10399
|
+
out_asset_b: bn_to_0xhex(encodeAddress(param.depositNote.asset)),
|
|
10400
|
+
out_amount: bn_to_0xhex(param.depositNote.amount + param.bridgeFeeAmount),
|
|
10401
|
+
in_asset: bn_to_0xhex(encodeAddress(param.swapInNote.asset)),
|
|
10402
|
+
in_amount: bn_to_0xhex(inAmount),
|
|
10403
|
+
fee_ratio: bn_to_0xhex(param.feeRatio),
|
|
10404
|
+
fee_amount: bn_to_0xhex(param.feeAmount),
|
|
10405
|
+
in_note: bn_to_0xhex(param.swapInNote.note),
|
|
10406
|
+
in_note_footer: bn_to_0xhex(swapInNoteFooter),
|
|
10407
|
+
in_rho: bn_to_0xhex(param.swapInNote.rho),
|
|
10408
|
+
pub_key: [fuzkPubKeyX.toString(), fuzkPubKeyY.toString()],
|
|
10409
|
+
signature: uint8ArrayToNumberArray(signature)
|
|
10410
|
+
};
|
|
10411
|
+
_context.n = 5;
|
|
10412
|
+
return generateProof(retailBridgeOrderCircuit, inputs);
|
|
10413
|
+
case 5:
|
|
10414
|
+
proof = _context.v;
|
|
10415
|
+
return _context.a(2, _extends({}, proof, {
|
|
10416
|
+
depositFooter: inputs.deposit_out_note_footer,
|
|
10417
|
+
swapInNoteFooter: inputs.in_note_footer
|
|
10418
|
+
}));
|
|
10419
|
+
}
|
|
10420
|
+
}, _callee);
|
|
10421
|
+
}));
|
|
10422
|
+
return _generateRetailBridgeOrderProof.apply(this, arguments);
|
|
10423
|
+
}
|
|
10424
|
+
|
|
10125
10425
|
exports.DEFAULT_FEE_RATIO = DEFAULT_FEE_RATIO;
|
|
10126
10426
|
exports.DOMAIN_NOTE = DOMAIN_NOTE;
|
|
10127
10427
|
exports.DOMAIN_ORDER_NOTE = DOMAIN_ORDER_NOTE;
|
|
@@ -10153,6 +10453,7 @@ exports.createNote = createNote;
|
|
|
10153
10453
|
exports.createOrderNoteExt = createOrderNoteExt;
|
|
10154
10454
|
exports.deserializeDarkSwapMessage = deserializeDarkSwapMessage;
|
|
10155
10455
|
exports.generateKeyPair = generateKeyPair;
|
|
10456
|
+
exports.generateRetailBridgeOrderProof = generateRetailBridgeOrderProof;
|
|
10156
10457
|
exports.getFeeRatio = getFeeRatio;
|
|
10157
10458
|
exports.getMerklePathAndRoot = getMerklePathAndRoot;
|
|
10158
10459
|
exports.getNoteFooter = getNoteFooter;
|