@tanstack/db 0.2.2 → 0.2.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/cjs/collection.cjs +6 -3
- package/dist/cjs/collection.cjs.map +1 -1
- package/dist/cjs/utils/btree.cjs +2 -2
- package/dist/cjs/utils/btree.cjs.map +1 -1
- package/dist/esm/collection.js +6 -3
- package/dist/esm/collection.js.map +1 -1
- package/dist/esm/utils/btree.js +2 -2
- package/dist/esm/utils/btree.js.map +1 -1
- package/package.json +4 -4
- package/src/collection.ts +13 -5
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"btree.js","sources":["../../../src/utils/btree.ts"],"sourcesContent":["// This file was copied from https://github.com/qwertie/btree-typescript/tree/master and adapted to our needs.\n// We removed methods that we don't need.\n\n// B+ tree by David Piepgrass. License: MIT\ntype EditRangeResult<V, R = number> = {\n value?: V\n break?: R\n delete?: boolean\n}\n\ntype index = number\n\n// Informative microbenchmarks & stuff:\n// http://www.jayconrod.com/posts/52/a-tour-of-v8-object-representation (very educational)\n// https://blog.mozilla.org/luke/2012/10/02/optimizing-javascript-variable-access/ (local vars are faster than properties)\n// http://benediktmeurer.de/2017/12/13/an-introduction-to-speculative-optimization-in-v8/ (other stuff)\n// https://jsperf.com/js-in-operator-vs-alternatives (avoid 'in' operator; `.p!==undefined` faster than `hasOwnProperty('p')` in all browsers)\n// https://jsperf.com/instanceof-vs-typeof-vs-constructor-vs-member (speed of type tests varies wildly across browsers)\n// https://jsperf.com/detecting-arrays-new (a.constructor===Array is best across browsers, assuming a is an object)\n// https://jsperf.com/shallow-cloning-methods (a constructor is faster than Object.create; hand-written clone faster than Object.assign)\n// https://jsperf.com/ways-to-fill-an-array (slice-and-replace is fastest)\n// https://jsperf.com/math-min-max-vs-ternary-vs-if (Math.min/max is slow on Edge)\n// https://jsperf.com/array-vs-property-access-speed (v.x/v.y is faster than a[0]/a[1] in major browsers IF hidden class is constant)\n// https://jsperf.com/detect-not-null-or-undefined (`x==null` slightly slower than `x===null||x===undefined` on all browsers)\n// Overall, microbenchmarks suggest Firefox is the fastest browser for JavaScript and Edge is the slowest.\n// Lessons from https://v8project.blogspot.com/2017/09/elements-kinds-in-v8.html:\n// - Avoid holes in arrays. Avoid `new Array(N)`, it will be \"holey\" permanently.\n// - Don't read outside bounds of an array (it scans prototype chain).\n// - Small integer arrays are stored differently from doubles\n// - Adding non-numbers to an array deoptimizes it permanently into a general array\n// - Objects can be used like arrays (e.g. have length property) but are slower\n// - V8 source (NewElementsCapacity in src/objects.h): arrays grow by 50% + 16 elements\n\n/**\n * A reasonably fast collection of key-value pairs with a powerful API.\n * Largely compatible with the standard Map. BTree is a B+ tree data structure,\n * so the collection is sorted by key.\n *\n * B+ trees tend to use memory more efficiently than hashtables such as the\n * standard Map, especially when the collection contains a large number of\n * items. However, maintaining the sort order makes them modestly slower:\n * O(log size) rather than O(1). This B+ tree implementation supports O(1)\n * fast cloning. It also supports freeze(), which can be used to ensure that\n * a BTree is not changed accidentally.\n *\n * Confusingly, the ES6 Map.forEach(c) method calls c(value,key) instead of\n * c(key,value), in contrast to other methods such as set() and entries()\n * which put the key first. I can only assume that the order was reversed on\n * the theory that users would usually want to examine values and ignore keys.\n * BTree's forEach() therefore works the same way, but a second method\n * `.forEachPair((key,value)=>{...})` is provided which sends you the key\n * first and the value second; this method is slightly faster because it is\n * the \"native\" for-each method for this class.\n *\n * Out of the box, BTree supports keys that are numbers, strings, arrays of\n * numbers/strings, Date, and objects that have a valueOf() method returning a\n * number or string. Other data types, such as arrays of Date or custom\n * objects, require a custom comparator, which you must pass as the second\n * argument to the constructor (the first argument is an optional list of\n * initial items). Symbols cannot be used as keys because they are unordered\n * (one Symbol is never \"greater\" or \"less\" than another).\n *\n * @example\n * Given a {name: string, age: number} object, you can create a tree sorted by\n * name and then by age like this:\n *\n * var tree = new BTree(undefined, (a, b) => {\n * if (a.name > b.name)\n * return 1; // Return a number >0 when a > b\n * else if (a.name < b.name)\n * return -1; // Return a number <0 when a < b\n * else // names are equal (or incomparable)\n * return a.age - b.age; // Return >0 when a.age > b.age\n * });\n *\n * tree.set({name:\"Bill\", age:17}, \"happy\");\n * tree.set({name:\"Fran\", age:40}, \"busy & stressed\");\n * tree.set({name:\"Bill\", age:55}, \"recently laid off\");\n * tree.forEachPair((k, v) => {\n * console.log(`Name: ${k.name} Age: ${k.age} Status: ${v}`);\n * });\n *\n * @description\n * The \"range\" methods (`forEach, forRange, editRange`) will return the number\n * of elements that were scanned. In addition, the callback can return {break:R}\n * to stop early and return R from the outer function.\n *\n * - TODO: Test performance of preallocating values array at max size\n * - TODO: Add fast initialization when a sorted array is provided to constructor\n *\n * For more documentation see https://github.com/qwertie/btree-typescript\n *\n * Are you a C# developer? You might like the similar data structures I made for C#:\n * BDictionary, BList, etc. See http://core.loyc.net/collections/\n *\n * @author David Piepgrass\n */\nexport class BTree<K = any, V = any> {\n private _root: BNode<K, V> = EmptyLeaf as BNode<K, V>\n _size = 0\n _maxNodeSize: number\n\n /**\n * provides a total order over keys (and a strict partial order over the type K)\n * @returns a negative value if a < b, 0 if a === b and a positive value if a > b\n */\n _compare: (a: K, b: K) => number\n\n /**\n * Initializes an empty B+ tree.\n * @param compare Custom function to compare pairs of elements in the tree.\n * If not specified, defaultComparator will be used which is valid as long as K extends DefaultComparable.\n * @param entries A set of key-value pairs to initialize the tree\n * @param maxNodeSize Branching factor (maximum items or children per node)\n * Must be in range 4..256. If undefined or <4 then default is used; if >256 then 256.\n */\n public constructor(\n compare: (a: K, b: K) => number,\n entries?: Array<[K, V]>,\n maxNodeSize?: number\n ) {\n this._maxNodeSize = maxNodeSize! >= 4 ? Math.min(maxNodeSize!, 256) : 32\n this._compare = compare\n if (entries) this.setPairs(entries)\n }\n\n // ///////////////////////////////////////////////////////////////////////////\n // ES6 Map<K,V> methods /////////////////////////////////////////////////////\n\n /** Gets the number of key-value pairs in the tree. */\n get size() {\n return this._size\n }\n /** Gets the number of key-value pairs in the tree. */\n get length() {\n return this._size\n }\n /** Returns true iff the tree contains no key-value pairs. */\n get isEmpty() {\n return this._size === 0\n }\n\n /** Releases the tree so that its size is 0. */\n clear() {\n this._root = EmptyLeaf as BNode<K, V>\n this._size = 0\n }\n\n /**\n * Finds a pair in the tree and returns the associated value.\n * @param defaultValue a value to return if the key was not found.\n * @returns the value, or defaultValue if the key was not found.\n * @description Computational complexity: O(log size)\n */\n get(key: K, defaultValue?: V): V | undefined {\n return this._root.get(key, defaultValue, this)\n }\n\n /**\n * Adds or overwrites a key-value pair in the B+ tree.\n * @param key the key is used to determine the sort order of\n * data in the tree.\n * @param value data to associate with the key (optional)\n * @param overwrite Whether to overwrite an existing key-value pair\n * (default: true). If this is false and there is an existing\n * key-value pair then this method has no effect.\n * @returns true if a new key-value pair was added.\n * @description Computational complexity: O(log size)\n * Note: when overwriting a previous entry, the key is updated\n * as well as the value. This has no effect unless the new key\n * has data that does not affect its sort order.\n */\n set(key: K, value: V, overwrite?: boolean): boolean {\n if (this._root.isShared) this._root = this._root.clone()\n const result = this._root.set(key, value, overwrite, this)\n if (result === true || result === false) return result\n // Root node has split, so create a new root node.\n this._root = new BNodeInternal<K, V>([this._root, result])\n return true\n }\n\n /**\n * Returns true if the key exists in the B+ tree, false if not.\n * Use get() for best performance; use has() if you need to\n * distinguish between \"undefined value\" and \"key not present\".\n * @param key Key to detect\n * @description Computational complexity: O(log size)\n */\n has(key: K): boolean {\n return this.forRange(key, key, true, undefined) !== 0\n }\n\n /**\n * Removes a single key-value pair from the B+ tree.\n * @param key Key to find\n * @returns true if a pair was found and removed, false otherwise.\n * @description Computational complexity: O(log size)\n */\n delete(key: K): boolean {\n return this.editRange(key, key, true, DeleteRange) !== 0\n }\n\n // ///////////////////////////////////////////////////////////////////////////\n // Additional methods ///////////////////////////////////////////////////////\n\n /** Returns the maximum number of children/values before nodes will split. */\n get maxNodeSize() {\n return this._maxNodeSize\n }\n\n /** Gets the lowest key in the tree. Complexity: O(log size) */\n minKey(): K | undefined {\n return this._root.minKey()\n }\n\n /** Gets the highest key in the tree. Complexity: O(1) */\n maxKey(): K | undefined {\n return this._root.maxKey()\n }\n\n /** Gets an array of all keys, sorted */\n keysArray() {\n const results: Array<K> = []\n this._root.forRange(\n this.minKey()!,\n this.maxKey()!,\n true,\n false,\n this,\n 0,\n (k, _v) => {\n results.push(k)\n }\n )\n return results\n }\n\n /** Returns the next pair whose key is larger than the specified key (or undefined if there is none).\n * If key === undefined, this function returns the lowest pair.\n * @param key The key to search for.\n * @param reusedArray Optional array used repeatedly to store key-value pairs, to\n * avoid creating a new array on every iteration.\n */\n nextHigherPair(key: K | undefined, reusedArray?: [K, V]): [K, V] | undefined {\n reusedArray = reusedArray || ([] as unknown as [K, V])\n if (key === undefined) {\n return this._root.minPair(reusedArray)\n }\n return this._root.getPairOrNextHigher(\n key,\n this._compare,\n false,\n reusedArray\n )\n }\n\n /** Returns the next key larger than the specified key, or undefined if there is none.\n * Also, nextHigherKey(undefined) returns the lowest key.\n */\n nextHigherKey(key: K | undefined): K | undefined {\n const p = this.nextHigherPair(key, ReusedArray as [K, V])\n return p && p[0]\n }\n\n /** Returns the next pair whose key is smaller than the specified key (or undefined if there is none).\n * If key === undefined, this function returns the highest pair.\n * @param key The key to search for.\n * @param reusedArray Optional array used repeatedly to store key-value pairs, to\n * avoid creating a new array each time you call this method.\n */\n nextLowerPair(key: K | undefined, reusedArray?: [K, V]): [K, V] | undefined {\n reusedArray = reusedArray || ([] as unknown as [K, V])\n if (key === undefined) {\n return this._root.maxPair(reusedArray)\n }\n return this._root.getPairOrNextLower(key, this._compare, false, reusedArray)\n }\n\n /** Returns the next key smaller than the specified key, or undefined if there is none.\n * Also, nextLowerKey(undefined) returns the highest key.\n */\n nextLowerKey(key: K | undefined): K | undefined {\n const p = this.nextLowerPair(key, ReusedArray as [K, V])\n return p && p[0]\n }\n\n /** Adds all pairs from a list of key-value pairs.\n * @param pairs Pairs to add to this tree. If there are duplicate keys,\n * later pairs currently overwrite earlier ones (e.g. [[0,1],[0,7]]\n * associates 0 with 7.)\n * @param overwrite Whether to overwrite pairs that already exist (if false,\n * pairs[i] is ignored when the key pairs[i][0] already exists.)\n * @returns The number of pairs added to the collection.\n * @description Computational complexity: O(pairs.length * log(size + pairs.length))\n */\n setPairs(pairs: Array<[K, V]>, overwrite?: boolean): number {\n let added = 0\n for (const pair of pairs) {\n if (this.set(pair[0], pair[1], overwrite)) added++\n }\n return added\n }\n\n forRange(\n low: K,\n high: K,\n includeHigh: boolean,\n onFound?: (k: K, v: V, counter: number) => void,\n initialCounter?: number\n ): number\n\n /**\n * Scans the specified range of keys, in ascending order by key.\n * Note: the callback `onFound` must not insert or remove items in the\n * collection. Doing so may cause incorrect data to be sent to the\n * callback afterward.\n * @param low The first key scanned will be greater than or equal to `low`.\n * @param high Scanning stops when a key larger than this is reached.\n * @param includeHigh If the `high` key is present, `onFound` is called for\n * that final pair if and only if this parameter is true.\n * @param onFound A function that is called for each key-value pair. This\n * function can return {break:R} to stop early with result R.\n * @param initialCounter Initial third argument of onFound. This value\n * increases by one each time `onFound` is called. Default: 0\n * @returns The number of values found, or R if the callback returned\n * `{break:R}` to stop early.\n * @description Computational complexity: O(number of items scanned + log size)\n */\n forRange<R = number>(\n low: K,\n high: K,\n includeHigh: boolean,\n onFound?: (k: K, v: V, counter: number) => { break?: R } | void,\n initialCounter?: number\n ): R | number {\n const r = this._root.forRange(\n low,\n high,\n includeHigh,\n false,\n this,\n initialCounter || 0,\n onFound\n )\n return typeof r === `number` ? r : r.break!\n }\n\n /**\n * Scans and potentially modifies values for a subsequence of keys.\n * Note: the callback `onFound` should ideally be a pure function.\n * Specfically, it must not insert items, call clone(), or change\n * the collection except via return value; out-of-band editing may\n * cause an exception or may cause incorrect data to be sent to\n * the callback (duplicate or missed items). It must not cause a\n * clone() of the collection, otherwise the clone could be modified\n * by changes requested by the callback.\n * @param low The first key scanned will be greater than or equal to `low`.\n * @param high Scanning stops when a key larger than this is reached.\n * @param includeHigh If the `high` key is present, `onFound` is called for\n * that final pair if and only if this parameter is true.\n * @param onFound A function that is called for each key-value pair. This\n * function can return `{value:v}` to change the value associated\n * with the current key, `{delete:true}` to delete the current pair,\n * `{break:R}` to stop early with result R, or it can return nothing\n * (undefined or {}) to cause no effect and continue iterating.\n * `{break:R}` can be combined with one of the other two commands.\n * The third argument `counter` is the number of items iterated\n * previously; it equals 0 when `onFound` is called the first time.\n * @returns The number of values scanned, or R if the callback returned\n * `{break:R}` to stop early.\n * @description\n * Computational complexity: O(number of items scanned + log size)\n * Note: if the tree has been cloned with clone(), any shared\n * nodes are copied before `onFound` is called. This takes O(n) time\n * where n is proportional to the amount of shared data scanned.\n */\n editRange<R = V>(\n low: K,\n high: K,\n includeHigh: boolean,\n onFound: (k: K, v: V, counter: number) => EditRangeResult<V, R> | void,\n initialCounter?: number\n ): R | number {\n let root = this._root\n if (root.isShared) this._root = root = root.clone()\n try {\n const r = root.forRange(\n low,\n high,\n includeHigh,\n true,\n this,\n initialCounter || 0,\n onFound\n )\n return typeof r === `number` ? r : r.break!\n } finally {\n let isShared\n while (root.keys.length <= 1 && !root.isLeaf) {\n isShared ||= root.isShared\n this._root = root =\n root.keys.length === 0\n ? EmptyLeaf\n : (root as any as BNodeInternal<K, V>).children[0]!\n }\n // If any ancestor of the new root was shared, the new root must also be shared\n if (isShared) {\n root.isShared = true\n }\n }\n }\n}\n\n/** Leaf node / base class. **************************************************/\nclass BNode<K, V> {\n // If this is an internal node, _keys[i] is the highest key in children[i].\n keys: Array<K>\n values: Array<V>\n // True if this node might be within multiple `BTree`s (or have multiple parents).\n // If so, it must be cloned before being mutated to avoid changing an unrelated tree.\n // This is transitive: if it's true, children are also shared even if `isShared!=true`\n // in those children. (Certain operations will propagate isShared=true to children.)\n isShared: true | undefined\n get isLeaf() {\n return (this as any).children === undefined\n }\n\n constructor(keys: Array<K> = [], values?: Array<V>) {\n this.keys = keys\n this.values = values || undefVals\n this.isShared = undefined\n }\n\n // /////////////////////////////////////////////////////////////////////////\n // Shared methods /////////////////////////////////////////////////////////\n\n maxKey() {\n return this.keys[this.keys.length - 1]\n }\n\n // If key not found, returns i^failXor where i is the insertion index.\n // Callers that don't care whether there was a match will set failXor=0.\n indexOf(key: K, failXor: number, cmp: (a: K, b: K) => number): index {\n const keys = this.keys\n let lo = 0,\n hi = keys.length,\n mid = hi >> 1\n while (lo < hi) {\n const c = cmp(keys[mid]!, key)\n if (c < 0) lo = mid + 1\n else if (c > 0)\n // key < keys[mid]\n hi = mid\n else if (c === 0) return mid\n else {\n // c is NaN or otherwise invalid\n if (key === key)\n // at least the search key is not NaN\n return keys.length\n else throw new Error(`BTree: NaN was used as a key`)\n }\n mid = (lo + hi) >> 1\n }\n return mid ^ failXor\n }\n\n // ///////////////////////////////////////////////////////////////////////////\n // Leaf Node: misc //////////////////////////////////////////////////////////\n\n minKey(): K | undefined {\n return this.keys[0]\n }\n\n minPair(reusedArray: [K, V]): [K, V] | undefined {\n if (this.keys.length === 0) return undefined\n reusedArray[0] = this.keys[0]!\n reusedArray[1] = this.values[0]!\n return reusedArray\n }\n\n maxPair(reusedArray: [K, V]): [K, V] | undefined {\n if (this.keys.length === 0) return undefined\n const lastIndex = this.keys.length - 1\n reusedArray[0] = this.keys[lastIndex]!\n reusedArray[1] = this.values[lastIndex]!\n return reusedArray\n }\n\n clone(): BNode<K, V> {\n const v = this.values\n return new BNode<K, V>(this.keys.slice(0), v === undefVals ? v : v.slice(0))\n }\n\n get(key: K, defaultValue: V | undefined, tree: BTree<K, V>): V | undefined {\n const i = this.indexOf(key, -1, tree._compare)\n return i < 0 ? defaultValue : this.values[i]\n }\n\n getPairOrNextLower(\n key: K,\n compare: (a: K, b: K) => number,\n inclusive: boolean,\n reusedArray: [K, V]\n ): [K, V] | undefined {\n const i = this.indexOf(key, -1, compare)\n const indexOrLower = i < 0 ? ~i - 1 : inclusive ? i : i - 1\n if (indexOrLower >= 0) {\n reusedArray[0] = this.keys[indexOrLower]!\n reusedArray[1] = this.values[indexOrLower]!\n return reusedArray\n }\n return undefined\n }\n\n getPairOrNextHigher(\n key: K,\n compare: (a: K, b: K) => number,\n inclusive: boolean,\n reusedArray: [K, V]\n ): [K, V] | undefined {\n const i = this.indexOf(key, -1, compare)\n const indexOrLower = i < 0 ? ~i : inclusive ? i : i + 1\n const keys = this.keys\n if (indexOrLower < keys.length) {\n reusedArray[0] = keys[indexOrLower]!\n reusedArray[1] = this.values[indexOrLower]!\n return reusedArray\n }\n return undefined\n }\n\n // ///////////////////////////////////////////////////////////////////////////\n // Leaf Node: set & node splitting //////////////////////////////////////////\n\n set(\n key: K,\n value: V,\n overwrite: boolean | undefined,\n tree: BTree<K, V>\n ): boolean | BNode<K, V> {\n let i = this.indexOf(key, -1, tree._compare)\n if (i < 0) {\n // key does not exist yet\n i = ~i\n tree._size++\n\n if (this.keys.length < tree._maxNodeSize) {\n return this.insertInLeaf(i, key, value, tree)\n } else {\n // This leaf node is full and must split\n const newRightSibling = this.splitOffRightSide()\n let target: BNode<K, V> = this\n if (i > this.keys.length) {\n i -= this.keys.length\n target = newRightSibling\n }\n target.insertInLeaf(i, key, value, tree)\n return newRightSibling\n }\n } else {\n // Key already exists\n if (overwrite !== false) {\n if (value !== undefined) this.reifyValues()\n // usually this is a no-op, but some users may wish to edit the key\n this.keys[i] = key\n this.values[i] = value\n }\n return false\n }\n }\n\n reifyValues() {\n if (this.values === undefVals)\n return (this.values = this.values.slice(0, this.keys.length))\n return this.values\n }\n\n insertInLeaf(i: index, key: K, value: V, tree: BTree<K, V>) {\n this.keys.splice(i, 0, key)\n if (this.values === undefVals) {\n while (undefVals.length < tree._maxNodeSize) undefVals.push(undefined)\n if (value === undefined) {\n return true\n } else {\n this.values = undefVals.slice(0, this.keys.length - 1)\n }\n }\n this.values.splice(i, 0, value)\n return true\n }\n\n takeFromRight(rhs: BNode<K, V>) {\n // Reminder: parent node must update its copy of key for this node\n // assert: neither node is shared\n // assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)\n let v = this.values\n if (rhs.values === undefVals) {\n if (v !== undefVals) v.push(undefined as any)\n } else {\n v = this.reifyValues()\n v.push(rhs.values.shift()!)\n }\n this.keys.push(rhs.keys.shift()!)\n }\n\n takeFromLeft(lhs: BNode<K, V>) {\n // Reminder: parent node must update its copy of key for this node\n // assert: neither node is shared\n // assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)\n let v = this.values\n if (lhs.values === undefVals) {\n if (v !== undefVals) v.unshift(undefined as any)\n } else {\n v = this.reifyValues()\n v.unshift(lhs.values.pop()!)\n }\n this.keys.unshift(lhs.keys.pop()!)\n }\n\n splitOffRightSide(): BNode<K, V> {\n // Reminder: parent node must update its copy of key for this node\n const half = this.keys.length >> 1,\n keys = this.keys.splice(half)\n const values =\n this.values === undefVals ? undefVals : this.values.splice(half)\n return new BNode<K, V>(keys, values)\n }\n\n // ///////////////////////////////////////////////////////////////////////////\n // Leaf Node: scanning & deletions //////////////////////////////////////////\n\n forRange<R>(\n low: K,\n high: K,\n includeHigh: boolean | undefined,\n editMode: boolean,\n tree: BTree<K, V>,\n count: number,\n onFound?: (k: K, v: V, counter: number) => EditRangeResult<V, R> | void\n ): EditRangeResult<V, R> | number {\n const cmp = tree._compare\n let iLow, iHigh\n if (high === low) {\n if (!includeHigh) return count\n iHigh = (iLow = this.indexOf(low, -1, cmp)) + 1\n if (iLow < 0) return count\n } else {\n iLow = this.indexOf(low, 0, cmp)\n iHigh = this.indexOf(high, -1, cmp)\n if (iHigh < 0) iHigh = ~iHigh\n else if (includeHigh === true) iHigh++\n }\n const keys = this.keys,\n values = this.values\n if (onFound !== undefined) {\n for (let i = iLow; i < iHigh; i++) {\n const key = keys[i]!\n const result = onFound(key, values[i]!, count++)\n if (result !== undefined) {\n if (editMode === true) {\n if (key !== keys[i] || this.isShared === true)\n throw new Error(`BTree illegally changed or cloned in editRange`)\n if (result.delete) {\n this.keys.splice(i, 1)\n if (this.values !== undefVals) this.values.splice(i, 1)\n tree._size--\n i--\n iHigh--\n } else if (result.hasOwnProperty(`value`)) {\n values[i] = result.value!\n }\n }\n if (result.break !== undefined) return result\n }\n }\n } else count += iHigh - iLow\n return count\n }\n\n /** Adds entire contents of right-hand sibling (rhs is left unchanged) */\n mergeSibling(rhs: BNode<K, V>, _: number) {\n this.keys.push.apply(this.keys, rhs.keys)\n if (this.values === undefVals) {\n if (rhs.values === undefVals) return\n this.values = this.values.slice(0, this.keys.length)\n }\n this.values.push.apply(this.values, rhs.reifyValues())\n }\n}\n\n/** Internal node (non-leaf node) ********************************************/\nclass BNodeInternal<K, V> extends BNode<K, V> {\n // Note: conventionally B+ trees have one fewer key than the number of\n // children, but I find it easier to keep the array lengths equal: each\n // keys[i] caches the value of children[i].maxKey().\n children: Array<BNode<K, V>>\n\n /**\n * This does not mark `children` as shared, so it is the responsibility of the caller\n * to ensure children are either marked shared, or aren't included in another tree.\n */\n constructor(children: Array<BNode<K, V>>, keys?: Array<K>) {\n if (!keys) {\n keys = []\n for (let i = 0; i < children.length; i++) keys[i] = children[i]!.maxKey()!\n }\n super(keys)\n this.children = children\n }\n\n minKey() {\n return this.children[0]!.minKey()\n }\n\n minPair(reusedArray: [K, V]): [K, V] | undefined {\n return this.children[0]!.minPair(reusedArray)\n }\n\n maxPair(reusedArray: [K, V]): [K, V] | undefined {\n return this.children[this.children.length - 1]!.maxPair(reusedArray)\n }\n\n get(key: K, defaultValue: V | undefined, tree: BTree<K, V>): V | undefined {\n const i = this.indexOf(key, 0, tree._compare),\n children = this.children\n return i < children.length\n ? children[i]!.get(key, defaultValue, tree)\n : undefined\n }\n\n getPairOrNextLower(\n key: K,\n compare: (a: K, b: K) => number,\n inclusive: boolean,\n reusedArray: [K, V]\n ): [K, V] | undefined {\n const i = this.indexOf(key, 0, compare),\n children = this.children\n if (i >= children.length) return this.maxPair(reusedArray)\n const result = children[i]!.getPairOrNextLower(\n key,\n compare,\n inclusive,\n reusedArray\n )\n if (result === undefined && i > 0) {\n return children[i - 1]!.maxPair(reusedArray)\n }\n return result\n }\n\n getPairOrNextHigher(\n key: K,\n compare: (a: K, b: K) => number,\n inclusive: boolean,\n reusedArray: [K, V]\n ): [K, V] | undefined {\n const i = this.indexOf(key, 0, compare),\n children = this.children,\n length = children.length\n if (i >= length) return undefined\n const result = children[i]!.getPairOrNextHigher(\n key,\n compare,\n inclusive,\n reusedArray\n )\n if (result === undefined && i < length - 1) {\n return children[i + 1]!.minPair(reusedArray)\n }\n return result\n }\n\n // ///////////////////////////////////////////////////////////////////////////\n // Internal Node: set & node splitting //////////////////////////////////////\n\n set(\n key: K,\n value: V,\n overwrite: boolean | undefined,\n tree: BTree<K, V>\n ): boolean | BNodeInternal<K, V> {\n const c = this.children,\n max = tree._maxNodeSize,\n cmp = tree._compare\n let i = Math.min(this.indexOf(key, 0, cmp), c.length - 1),\n child = c[i]!\n\n if (child.isShared) c[i] = child = child.clone()\n if (child.keys.length >= max) {\n // child is full; inserting anything else will cause a split.\n // Shifting an item to the left or right sibling may avoid a split.\n // We can do a shift if the adjacent node is not full and if the\n // current key can still be placed in the same node after the shift.\n let other: BNode<K, V> | undefined\n if (\n i > 0 &&\n (other = c[i - 1]!).keys.length < max &&\n cmp(child.keys[0]!, key) < 0\n ) {\n if (other.isShared) c[i - 1] = other = other.clone()\n other.takeFromRight(child)\n this.keys[i - 1] = other.maxKey()!\n } else if (\n (other = c[i + 1]) !== undefined &&\n other.keys.length < max &&\n cmp(child.maxKey()!, key) < 0\n ) {\n if (other.isShared) c[i + 1] = other = other.clone()\n other.takeFromLeft(child)\n this.keys[i] = c[i]!.maxKey()!\n }\n }\n\n const result = child.set(key, value, overwrite, tree)\n if (result === false) return false\n this.keys[i] = child.maxKey()!\n if (result === true) return true\n\n // The child has split and `result` is a new right child... does it fit?\n if (this.keys.length < max) {\n // yes\n this.insert(i + 1, result)\n return true\n } else {\n // no, we must split also\n const newRightSibling = this.splitOffRightSide()\n let target: BNodeInternal<K, V> = this\n if (cmp(result.maxKey()!, this.maxKey()!) > 0) {\n target = newRightSibling\n i -= this.keys.length\n }\n target.insert(i + 1, result)\n return newRightSibling\n }\n }\n\n /**\n * Inserts `child` at index `i`.\n * This does not mark `child` as shared, so it is the responsibility of the caller\n * to ensure that either child is marked shared, or it is not included in another tree.\n */\n insert(i: index, child: BNode<K, V>) {\n this.children.splice(i, 0, child)\n this.keys.splice(i, 0, child.maxKey()!)\n }\n\n /**\n * Split this node.\n * Modifies this to remove the second half of the items, returning a separate node containing them.\n */\n splitOffRightSide() {\n // assert !this.isShared;\n const half = this.children.length >> 1\n return new BNodeInternal<K, V>(\n this.children.splice(half),\n this.keys.splice(half)\n )\n }\n\n takeFromRight(rhs: BNode<K, V>) {\n // Reminder: parent node must update its copy of key for this node\n // assert: neither node is shared\n // assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)\n this.keys.push(rhs.keys.shift()!)\n this.children.push((rhs as BNodeInternal<K, V>).children.shift()!)\n }\n\n takeFromLeft(lhs: BNode<K, V>) {\n // Reminder: parent node must update its copy of key for this node\n // assert: neither node is shared\n // assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)\n this.keys.unshift(lhs.keys.pop()!)\n this.children.unshift((lhs as BNodeInternal<K, V>).children.pop()!)\n }\n\n // ///////////////////////////////////////////////////////////////////////////\n // Internal Node: scanning & deletions //////////////////////////////////////\n\n // Note: `count` is the next value of the third argument to `onFound`.\n // A leaf node's `forRange` function returns a new value for this counter,\n // unless the operation is to stop early.\n forRange<R>(\n low: K,\n high: K,\n includeHigh: boolean | undefined,\n editMode: boolean,\n tree: BTree<K, V>,\n count: number,\n onFound?: (k: K, v: V, counter: number) => EditRangeResult<V, R> | void\n ): EditRangeResult<V, R> | number {\n const cmp = tree._compare\n const keys = this.keys,\n children = this.children\n let iLow = this.indexOf(low, 0, cmp),\n i = iLow\n const iHigh = Math.min(\n high === low ? iLow : this.indexOf(high, 0, cmp),\n keys.length - 1\n )\n if (!editMode) {\n // Simple case\n for (; i <= iHigh; i++) {\n const result = children[i]!.forRange(\n low,\n high,\n includeHigh,\n editMode,\n tree,\n count,\n onFound\n )\n if (typeof result !== `number`) return result\n count = result\n }\n } else if (i <= iHigh) {\n try {\n for (; i <= iHigh; i++) {\n if (children[i]!.isShared) children[i] = children[i]!.clone()\n const result = children[i]!.forRange(\n low,\n high,\n includeHigh,\n editMode,\n tree,\n count,\n onFound\n )\n // Note: if children[i] is empty then keys[i]=undefined.\n // This is an invalid state, but it is fixed below.\n keys[i] = children[i]!.maxKey()!\n if (typeof result !== `number`) return result\n count = result\n }\n } finally {\n // Deletions may have occurred, so look for opportunities to merge nodes.\n const half = tree._maxNodeSize >> 1\n if (iLow > 0) iLow--\n for (i = iHigh; i >= iLow; i--) {\n if (children[i]!.keys.length <= half) {\n if (children[i]!.keys.length !== 0) {\n this.tryMerge(i, tree._maxNodeSize)\n } else {\n // child is empty! delete it!\n keys.splice(i, 1)\n children.splice(i, 1)\n }\n }\n }\n if (children.length !== 0 && children[0]!.keys.length === 0)\n check(false, `emptiness bug`)\n }\n }\n return count\n }\n\n /** Merges child i with child i+1 if their combined size is not too large */\n tryMerge(i: index, maxSize: number): boolean {\n const children = this.children\n if (i >= 0 && i + 1 < children.length) {\n if (children[i]!.keys.length + children[i + 1]!.keys.length <= maxSize) {\n if (children[i]!.isShared)\n // cloned already UNLESS i is outside scan range\n children[i] = children[i]!.clone()\n children[i]!.mergeSibling(children[i + 1]!, maxSize)\n children.splice(i + 1, 1)\n this.keys.splice(i + 1, 1)\n this.keys[i] = children[i]!.maxKey()!\n return true\n }\n }\n return false\n }\n\n /**\n * Move children from `rhs` into this.\n * `rhs` must be part of this tree, and be removed from it after this call\n * (otherwise isShared for its children could be incorrect).\n */\n mergeSibling(rhs: BNode<K, V>, maxNodeSize: number) {\n // assert !this.isShared;\n const oldLength = this.keys.length\n this.keys.push.apply(this.keys, rhs.keys)\n const rhsChildren = (rhs as any as BNodeInternal<K, V>).children\n this.children.push.apply(this.children, rhsChildren)\n\n if (rhs.isShared && !this.isShared) {\n // All children of a shared node are implicitly shared, and since their new\n // parent is not shared, they must now be explicitly marked as shared.\n for (const child of rhsChildren) child.isShared = true\n }\n\n // If our children are themselves almost empty due to a mass-delete,\n // they may need to be merged too (but only the oldLength-1 and its\n // right sibling should need this).\n this.tryMerge(oldLength - 1, maxNodeSize)\n }\n}\n\n// Optimization: this array of `undefined`s is used instead of a normal\n// array of values in nodes where `undefined` is the only value.\n// Its length is extended to max node size on first use; since it can\n// be shared between trees with different maximums, its length can only\n// increase, never decrease. Its type should be undefined[] but strangely\n// TypeScript won't allow the comparison V[] === undefined[]. To prevent\n// users from making this array too large, BTree has a maximum node size.\n//\n// FAQ: undefVals[i] is already undefined, so why increase the array size?\n// Reading outside the bounds of an array is relatively slow because it\n// has the side effect of scanning the prototype chain.\nconst undefVals: Array<any> = []\n\nconst Delete = { delete: true },\n DeleteRange = () => Delete\nconst EmptyLeaf = (function () {\n const n = new BNode<any, any>()\n n.isShared = true\n return n\n})()\nconst ReusedArray: Array<any> = [] // assumed thread-local\n\nfunction check(fact: boolean, ...args: Array<any>) {\n if (!fact) {\n args.unshift(`B+ tree`) // at beginning of message\n throw new Error(args.join(` `))\n }\n}\n"],"names":[],"mappings":"AAiGO,MAAM,MAAwB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAmB5B,YACL,SACA,SACA,aACA;AAtBF,SAAQ,QAAqB;AAC7B,SAAA,QAAQ;AAsBN,SAAK,eAAe,eAAgB,IAAI,KAAK,IAAI,aAAc,GAAG,IAAI;AACtE,SAAK,WAAW;AAChB,QAAI,QAAS,MAAK,SAAS,OAAO;AAAA,EACpC;AAAA;AAAA;AAAA;AAAA,EAMA,IAAI,OAAO;AACT,WAAO,KAAK;AAAA,EACd;AAAA;AAAA,EAEA,IAAI,SAAS;AACX,WAAO,KAAK;AAAA,EACd;AAAA;AAAA,EAEA,IAAI,UAAU;AACZ,WAAO,KAAK,UAAU;AAAA,EACxB;AAAA;AAAA,EAGA,QAAQ;AACN,SAAK,QAAQ;AACb,SAAK,QAAQ;AAAA,EACf;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAQA,IAAI,KAAQ,cAAiC;AAC3C,WAAO,KAAK,MAAM,IAAI,KAAK,cAAc,IAAI;AAAA,EAC/C;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAgBA,IAAI,KAAQ,OAAU,WAA8B;AAClD,QAAI,KAAK,MAAM,eAAe,QAAQ,KAAK,MAAM,MAAA;AACjD,UAAM,SAAS,KAAK,MAAM,IAAI,KAAK,OAAO,WAAW,IAAI;AACzD,QAAI,WAAW,QAAQ,WAAW,MAAO,QAAO;AAEhD,SAAK,QAAQ,IAAI,cAAoB,CAAC,KAAK,OAAO,MAAM,CAAC;AACzD,WAAO;AAAA,EACT;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,IAAI,KAAiB;AACnB,WAAO,KAAK,SAAS,KAAK,KAAK,MAAM,MAAS,MAAM;AAAA,EACtD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAQA,OAAO,KAAiB;AACtB,WAAO,KAAK,UAAU,KAAK,KAAK,MAAM,WAAW,MAAM;AAAA,EACzD;AAAA;AAAA;AAAA;AAAA,EAMA,IAAI,cAAc;AAChB,WAAO,KAAK;AAAA,EACd;AAAA;AAAA,EAGA,SAAwB;AACtB,WAAO,KAAK,MAAM,OAAA;AAAA,EACpB;AAAA;AAAA,EAGA,SAAwB;AACtB,WAAO,KAAK,MAAM,OAAA;AAAA,EACpB;AAAA;AAAA,EAGA,YAAY;AACV,UAAM,UAAoB,CAAA;AAC1B,SAAK,MAAM;AAAA,MACT,KAAK,OAAA;AAAA,MACL,KAAK,OAAA;AAAA,MACL;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA,CAAC,GAAG,OAAO;AACT,gBAAQ,KAAK,CAAC;AAAA,MAChB;AAAA,IAAA;AAEF,WAAO;AAAA,EACT;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAQA,eAAe,KAAoB,aAA0C;AAC3E,kBAAc,eAAgB,CAAA;AAC9B,QAAI,QAAQ,QAAW;AACrB,aAAO,KAAK,MAAM,QAAQ,WAAW;AAAA,IACvC;AACA,WAAO,KAAK,MAAM;AAAA,MAChB;AAAA,MACA,KAAK;AAAA,MACL;AAAA,MACA;AAAA,IAAA;AAAA,EAEJ;AAAA;AAAA;AAAA;AAAA,EAKA,cAAc,KAAmC;AAC/C,UAAM,IAAI,KAAK,eAAe,KAAK,WAAqB;AACxD,WAAO,KAAK,EAAE,CAAC;AAAA,EACjB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAQA,cAAc,KAAoB,aAA0C;AAC1E,kBAAc,eAAgB,CAAA;AAC9B,QAAI,QAAQ,QAAW;AACrB,aAAO,KAAK,MAAM,QAAQ,WAAW;AAAA,IACvC;AACA,WAAO,KAAK,MAAM,mBAAmB,KAAK,KAAK,UAAU,OAAO,WAAW;AAAA,EAC7E;AAAA;AAAA;AAAA;AAAA,EAKA,aAAa,KAAmC;AAC9C,UAAM,IAAI,KAAK,cAAc,KAAK,WAAqB;AACvD,WAAO,KAAK,EAAE,CAAC;AAAA,EACjB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAWA,SAAS,OAAsB,WAA6B;AAC1D,QAAI,QAAQ;AACZ,eAAW,QAAQ,OAAO;AACxB,UAAI,KAAK,IAAI,KAAK,CAAC,GAAG,KAAK,CAAC,GAAG,SAAS,EAAG;AAAA,IAC7C;AACA,WAAO;AAAA,EACT;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EA2BA,SACE,KACA,MACA,aACA,SACA,gBACY;AACZ,UAAM,IAAI,KAAK,MAAM;AAAA,MACnB;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA,kBAAkB;AAAA,MAClB;AAAA,IAAA;AAEF,WAAO,OAAO,MAAM,WAAW,IAAI,EAAE;AAAA,EACvC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EA+BA,UACE,KACA,MACA,aACA,SACA,gBACY;AACZ,QAAI,OAAO,KAAK;AAChB,QAAI,KAAK,SAAU,MAAK,QAAQ,OAAO,KAAK,MAAA;AAC5C,QAAI;AACF,YAAM,IAAI,KAAK;AAAA,QACb;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA,kBAAkB;AAAA,QAClB;AAAA,MAAA;AAEF,aAAO,OAAO,MAAM,WAAW,IAAI,EAAE;AAAA,IACvC,UAAA;AACE,UAAI;AACJ,aAAO,KAAK,KAAK,UAAU,KAAK,CAAC,KAAK,QAAQ;AAC5C,gCAAa,KAAK;AAClB,aAAK,QAAQ,OACX,KAAK,KAAK,WAAW,IACjB,YACC,KAAoC,SAAS,CAAC;AAAA,MACvD;AAEA,UAAI,UAAU;AACZ,aAAK,WAAW;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,MAAM,MAAY;AAAA,EAShB,IAAI,SAAS;AACX,WAAQ,KAAa,aAAa;AAAA,EACpC;AAAA,EAEA,YAAY,OAAiB,CAAA,GAAI,QAAmB;AAClD,SAAK,OAAO;AACZ,SAAK,SAAS,UAAU;AACxB,SAAK,WAAW;AAAA,EAClB;AAAA;AAAA;AAAA,EAKA,SAAS;AACP,WAAO,KAAK,KAAK,KAAK,KAAK,SAAS,CAAC;AAAA,EACvC;AAAA;AAAA;AAAA,EAIA,QAAQ,KAAQ,SAAiB,KAAoC;AACnE,UAAM,OAAO,KAAK;AAClB,QAAI,KAAK,GACP,KAAK,KAAK,QACV,MAAM,MAAM;AACd,WAAO,KAAK,IAAI;AACd,YAAM,IAAI,IAAI,KAAK,GAAG,GAAI,GAAG;AAC7B,UAAI,IAAI,EAAG,MAAK,MAAM;AAAA,eACb,IAAI;AAEX,aAAK;AAAA,eACE,MAAM,EAAG,QAAO;AAAA,WACpB;AAEH,YAAI,QAAQ;AAEV,iBAAO,KAAK;AAAA,YACT,OAAM,IAAI,MAAM,8BAA8B;AAAA,MACrD;AACA,YAAO,KAAK,MAAO;AAAA,IACrB;AACA,WAAO,MAAM;AAAA,EACf;AAAA;AAAA;AAAA,EAKA,SAAwB;AACtB,WAAO,KAAK,KAAK,CAAC;AAAA,EACpB;AAAA,EAEA,QAAQ,aAAyC;AAC/C,QAAI,KAAK,KAAK,WAAW,EAAG,QAAO;AACnC,gBAAY,CAAC,IAAI,KAAK,KAAK,CAAC;AAC5B,gBAAY,CAAC,IAAI,KAAK,OAAO,CAAC;AAC9B,WAAO;AAAA,EACT;AAAA,EAEA,QAAQ,aAAyC;AAC/C,QAAI,KAAK,KAAK,WAAW,EAAG,QAAO;AACnC,UAAM,YAAY,KAAK,KAAK,SAAS;AACrC,gBAAY,CAAC,IAAI,KAAK,KAAK,SAAS;AACpC,gBAAY,CAAC,IAAI,KAAK,OAAO,SAAS;AACtC,WAAO;AAAA,EACT;AAAA,EAEA,QAAqB;AACnB,UAAM,IAAI,KAAK;AACf,WAAO,IAAI,MAAY,KAAK,KAAK,MAAM,CAAC,GAAG,MAAM,YAAY,IAAI,EAAE,MAAM,CAAC,CAAC;AAAA,EAC7E;AAAA,EAEA,IAAI,KAAQ,cAA6B,MAAkC;AACzE,UAAM,IAAI,KAAK,QAAQ,KAAK,IAAI,KAAK,QAAQ;AAC7C,WAAO,IAAI,IAAI,eAAe,KAAK,OAAO,CAAC;AAAA,EAC7C;AAAA,EAEA,mBACE,KACA,SACA,WACA,aACoB;AACpB,UAAM,IAAI,KAAK,QAAQ,KAAK,IAAI,OAAO;AACvC,UAAM,eAAe,IAAI,IAAI,CAAC,IAAI,IAAI,YAAY,IAAI,IAAI;AAC1D,QAAI,gBAAgB,GAAG;AACrB,kBAAY,CAAC,IAAI,KAAK,KAAK,YAAY;AACvC,kBAAY,CAAC,IAAI,KAAK,OAAO,YAAY;AACzC,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT;AAAA,EAEA,oBACE,KACA,SACA,WACA,aACoB;AACpB,UAAM,IAAI,KAAK,QAAQ,KAAK,IAAI,OAAO;AACvC,UAAM,eAAe,IAAI,IAAI,CAAC,IAAI,YAAY,IAAI,IAAI;AACtD,UAAM,OAAO,KAAK;AAClB,QAAI,eAAe,KAAK,QAAQ;AAC9B,kBAAY,CAAC,IAAI,KAAK,YAAY;AAClC,kBAAY,CAAC,IAAI,KAAK,OAAO,YAAY;AACzC,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT;AAAA;AAAA;AAAA,EAKA,IACE,KACA,OACA,WACA,MACuB;AACvB,QAAI,IAAI,KAAK,QAAQ,KAAK,IAAI,KAAK,QAAQ;AAC3C,QAAI,IAAI,GAAG;AAET,UAAI,CAAC;AACL,WAAK;AAEL,UAAI,KAAK,KAAK,SAAS,KAAK,cAAc;AACxC,eAAO,KAAK,aAAa,GAAG,KAAK,OAAO,IAAI;AAAA,MAC9C,OAAO;AAEL,cAAM,kBAAkB,KAAK,kBAAA;AAC7B,YAAI,SAAsB;AAC1B,YAAI,IAAI,KAAK,KAAK,QAAQ;AACxB,eAAK,KAAK,KAAK;AACf,mBAAS;AAAA,QACX;AACA,eAAO,aAAa,GAAG,KAAK,OAAO,IAAI;AACvC,eAAO;AAAA,MACT;AAAA,IACF,OAAO;AAEL,UAAI,cAAc,OAAO;AACvB,YAAI,UAAU,OAAW,MAAK,YAAA;AAE9B,aAAK,KAAK,CAAC,IAAI;AACf,aAAK,OAAO,CAAC,IAAI;AAAA,MACnB;AACA,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EAEA,cAAc;AACZ,QAAI,KAAK,WAAW;AAClB,aAAQ,KAAK,SAAS,KAAK,OAAO,MAAM,GAAG,KAAK,KAAK,MAAM;AAC7D,WAAO,KAAK;AAAA,EACd;AAAA,EAEA,aAAa,GAAU,KAAQ,OAAU,MAAmB;AAC1D,SAAK,KAAK,OAAO,GAAG,GAAG,GAAG;AAC1B,QAAI,KAAK,WAAW,WAAW;AAC7B,aAAO,UAAU,SAAS,KAAK,aAAc,WAAU,KAAK,MAAS;AACrE,UAAI,UAAU,QAAW;AACvB,eAAO;AAAA,MACT,OAAO;AACL,aAAK,SAAS,UAAU,MAAM,GAAG,KAAK,KAAK,SAAS,CAAC;AAAA,MACvD;AAAA,IACF;AACA,SAAK,OAAO,OAAO,GAAG,GAAG,KAAK;AAC9B,WAAO;AAAA,EACT;AAAA,EAEA,cAAc,KAAkB;AAI9B,QAAI,IAAI,KAAK;AACb,QAAI,IAAI,WAAW,WAAW;AAC5B,UAAI,MAAM,UAAW,GAAE,KAAK,MAAgB;AAAA,IAC9C,OAAO;AACL,UAAI,KAAK,YAAA;AACT,QAAE,KAAK,IAAI,OAAO,MAAA,CAAQ;AAAA,IAC5B;AACA,SAAK,KAAK,KAAK,IAAI,KAAK,OAAQ;AAAA,EAClC;AAAA,EAEA,aAAa,KAAkB;AAI7B,QAAI,IAAI,KAAK;AACb,QAAI,IAAI,WAAW,WAAW;AAC5B,UAAI,MAAM,UAAW,GAAE,QAAQ,MAAgB;AAAA,IACjD,OAAO;AACL,UAAI,KAAK,YAAA;AACT,QAAE,QAAQ,IAAI,OAAO,IAAA,CAAM;AAAA,IAC7B;AACA,SAAK,KAAK,QAAQ,IAAI,KAAK,KAAM;AAAA,EACnC;AAAA,EAEA,oBAAiC;AAE/B,UAAM,OAAO,KAAK,KAAK,UAAU,GAC/B,OAAO,KAAK,KAAK,OAAO,IAAI;AAC9B,UAAM,SACJ,KAAK,WAAW,YAAY,YAAY,KAAK,OAAO,OAAO,IAAI;AACjE,WAAO,IAAI,MAAY,MAAM,MAAM;AAAA,EACrC;AAAA;AAAA;AAAA,EAKA,SACE,KACA,MACA,aACA,UACA,MACA,OACA,SACgC;AAChC,UAAM,MAAM,KAAK;AACjB,QAAI,MAAM;AACV,QAAI,SAAS,KAAK;AAChB,UAAI,CAAC,YAAa,QAAO;AACzB,eAAS,OAAO,KAAK,QAAQ,KAAK,IAAI,GAAG,KAAK;AAC9C,UAAI,OAAO,EAAG,QAAO;AAAA,IACvB,OAAO;AACL,aAAO,KAAK,QAAQ,KAAK,GAAG,GAAG;AAC/B,cAAQ,KAAK,QAAQ,MAAM,IAAI,GAAG;AAClC,UAAI,QAAQ,EAAG,SAAQ,CAAC;AAAA,eACf,gBAAgB,KAAM;AAAA,IACjC;AACA,UAAM,OAAO,KAAK,MAChB,SAAS,KAAK;AAChB,QAAI,YAAY,QAAW;AACzB,eAAS,IAAI,MAAM,IAAI,OAAO,KAAK;AACjC,cAAM,MAAM,KAAK,CAAC;AAClB,cAAM,SAAS,QAAQ,KAAK,OAAO,CAAC,GAAI,OAAO;AAC/C,YAAI,WAAW,QAAW;AACxB,cAAI,aAAa,MAAM;AACrB,gBAAI,QAAQ,KAAK,CAAC,KAAK,KAAK,aAAa;AACvC,oBAAM,IAAI,MAAM,gDAAgD;AAClE,gBAAI,OAAO,QAAQ;AACjB,mBAAK,KAAK,OAAO,GAAG,CAAC;AACrB,kBAAI,KAAK,WAAW,gBAAgB,OAAO,OAAO,GAAG,CAAC;AACtD,mBAAK;AACL;AACA;AAAA,YACF,WAAW,OAAO,eAAe,OAAO,GAAG;AACzC,qBAAO,CAAC,IAAI,OAAO;AAAA,YACrB;AAAA,UACF;AACA,cAAI,OAAO,UAAU,OAAW,QAAO;AAAA,QACzC;AAAA,MACF;AAAA,IACF,gBAAgB,QAAQ;AACxB,WAAO;AAAA,EACT;AAAA;AAAA,EAGA,aAAa,KAAkB,GAAW;AACxC,SAAK,KAAK,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AACxC,QAAI,KAAK,WAAW,WAAW;AAC7B,UAAI,IAAI,WAAW,UAAW;AAC9B,WAAK,SAAS,KAAK,OAAO,MAAM,GAAG,KAAK,KAAK,MAAM;AAAA,IACrD;AACA,SAAK,OAAO,KAAK,MAAM,KAAK,QAAQ,IAAI,aAAa;AAAA,EACvD;AACF;AAGA,MAAM,sBAA4B,MAAY;AAAA;AAAA;AAAA;AAAA;AAAA,EAU5C,YAAY,UAA8B,MAAiB;AACzD,QAAI,CAAC,MAAM;AACT,aAAO,CAAA;AACP,eAAS,IAAI,GAAG,IAAI,SAAS,QAAQ,IAAK,MAAK,CAAC,IAAI,SAAS,CAAC,EAAG,OAAA;AAAA,IACnE;AACA,UAAM,IAAI;AACV,SAAK,WAAW;AAAA,EAClB;AAAA,EAEA,SAAS;AACP,WAAO,KAAK,SAAS,CAAC,EAAG,OAAA;AAAA,EAC3B;AAAA,EAEA,QAAQ,aAAyC;AAC/C,WAAO,KAAK,SAAS,CAAC,EAAG,QAAQ,WAAW;AAAA,EAC9C;AAAA,EAEA,QAAQ,aAAyC;AAC/C,WAAO,KAAK,SAAS,KAAK,SAAS,SAAS,CAAC,EAAG,QAAQ,WAAW;AAAA,EACrE;AAAA,EAEA,IAAI,KAAQ,cAA6B,MAAkC;AACzE,UAAM,IAAI,KAAK,QAAQ,KAAK,GAAG,KAAK,QAAQ,GAC1C,WAAW,KAAK;AAClB,WAAO,IAAI,SAAS,SAChB,SAAS,CAAC,EAAG,IAAI,KAAK,cAAc,IAAI,IACxC;AAAA,EACN;AAAA,EAEA,mBACE,KACA,SACA,WACA,aACoB;AACpB,UAAM,IAAI,KAAK,QAAQ,KAAK,GAAG,OAAO,GACpC,WAAW,KAAK;AAClB,QAAI,KAAK,SAAS,OAAQ,QAAO,KAAK,QAAQ,WAAW;AACzD,UAAM,SAAS,SAAS,CAAC,EAAG;AAAA,MAC1B;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IAAA;AAEF,QAAI,WAAW,UAAa,IAAI,GAAG;AACjC,aAAO,SAAS,IAAI,CAAC,EAAG,QAAQ,WAAW;AAAA,IAC7C;AACA,WAAO;AAAA,EACT;AAAA,EAEA,oBACE,KACA,SACA,WACA,aACoB;AACpB,UAAM,IAAI,KAAK,QAAQ,KAAK,GAAG,OAAO,GACpC,WAAW,KAAK,UAChB,SAAS,SAAS;AACpB,QAAI,KAAK,OAAQ,QAAO;AACxB,UAAM,SAAS,SAAS,CAAC,EAAG;AAAA,MAC1B;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IAAA;AAEF,QAAI,WAAW,UAAa,IAAI,SAAS,GAAG;AAC1C,aAAO,SAAS,IAAI,CAAC,EAAG,QAAQ,WAAW;AAAA,IAC7C;AACA,WAAO;AAAA,EACT;AAAA;AAAA;AAAA,EAKA,IACE,KACA,OACA,WACA,MAC+B;AAC/B,UAAM,IAAI,KAAK,UACb,MAAM,KAAK,cACX,MAAM,KAAK;AACb,QAAI,IAAI,KAAK,IAAI,KAAK,QAAQ,KAAK,GAAG,GAAG,GAAG,EAAE,SAAS,CAAC,GACtD,QAAQ,EAAE,CAAC;AAEb,QAAI,MAAM,SAAU,GAAE,CAAC,IAAI,QAAQ,MAAM,MAAA;AACzC,QAAI,MAAM,KAAK,UAAU,KAAK;AAK5B,UAAI;AACJ,UACE,IAAI,MACH,QAAQ,EAAE,IAAI,CAAC,GAAI,KAAK,SAAS,OAClC,IAAI,MAAM,KAAK,CAAC,GAAI,GAAG,IAAI,GAC3B;AACA,YAAI,MAAM,SAAU,GAAE,IAAI,CAAC,IAAI,QAAQ,MAAM,MAAA;AAC7C,cAAM,cAAc,KAAK;AACzB,aAAK,KAAK,IAAI,CAAC,IAAI,MAAM,OAAA;AAAA,MAC3B,YACG,QAAQ,EAAE,IAAI,CAAC,OAAO,UACvB,MAAM,KAAK,SAAS,OACpB,IAAI,MAAM,UAAW,GAAG,IAAI,GAC5B;AACA,YAAI,MAAM,SAAU,GAAE,IAAI,CAAC,IAAI,QAAQ,MAAM,MAAA;AAC7C,cAAM,aAAa,KAAK;AACxB,aAAK,KAAK,CAAC,IAAI,EAAE,CAAC,EAAG,OAAA;AAAA,MACvB;AAAA,IACF;AAEA,UAAM,SAAS,MAAM,IAAI,KAAK,OAAO,WAAW,IAAI;AACpD,QAAI,WAAW,MAAO,QAAO;AAC7B,SAAK,KAAK,CAAC,IAAI,MAAM,OAAA;AACrB,QAAI,WAAW,KAAM,QAAO;AAG5B,QAAI,KAAK,KAAK,SAAS,KAAK;AAE1B,WAAK,OAAO,IAAI,GAAG,MAAM;AACzB,aAAO;AAAA,IACT,OAAO;AAEL,YAAM,kBAAkB,KAAK,kBAAA;AAC7B,UAAI,SAA8B;AAClC,UAAI,IAAI,OAAO,OAAA,GAAW,KAAK,OAAA,CAAS,IAAI,GAAG;AAC7C,iBAAS;AACT,aAAK,KAAK,KAAK;AAAA,MACjB;AACA,aAAO,OAAO,IAAI,GAAG,MAAM;AAC3B,aAAO;AAAA,IACT;AAAA,EACF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAOA,OAAO,GAAU,OAAoB;AACnC,SAAK,SAAS,OAAO,GAAG,GAAG,KAAK;AAChC,SAAK,KAAK,OAAO,GAAG,GAAG,MAAM,QAAS;AAAA,EACxC;AAAA;AAAA;AAAA;AAAA;AAAA,EAMA,oBAAoB;AAElB,UAAM,OAAO,KAAK,SAAS,UAAU;AACrC,WAAO,IAAI;AAAA,MACT,KAAK,SAAS,OAAO,IAAI;AAAA,MACzB,KAAK,KAAK,OAAO,IAAI;AAAA,IAAA;AAAA,EAEzB;AAAA,EAEA,cAAc,KAAkB;AAI9B,SAAK,KAAK,KAAK,IAAI,KAAK,OAAQ;AAChC,SAAK,SAAS,KAAM,IAA4B,SAAS,OAAQ;AAAA,EACnE;AAAA,EAEA,aAAa,KAAkB;AAI7B,SAAK,KAAK,QAAQ,IAAI,KAAK,KAAM;AACjC,SAAK,SAAS,QAAS,IAA4B,SAAS,KAAM;AAAA,EACpE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAQA,SACE,KACA,MACA,aACA,UACA,MACA,OACA,SACgC;AAChC,UAAM,MAAM,KAAK;AACjB,UAAM,OAAO,KAAK,MAChB,WAAW,KAAK;AAClB,QAAI,OAAO,KAAK,QAAQ,KAAK,GAAG,GAAG,GACjC,IAAI;AACN,UAAM,QAAQ,KAAK;AAAA,MACjB,SAAS,MAAM,OAAO,KAAK,QAAQ,MAAM,GAAG,GAAG;AAAA,MAC/C,KAAK,SAAS;AAAA,IAAA;AAEhB,QAAI,CAAC,UAAU;AAEb,aAAO,KAAK,OAAO,KAAK;AACtB,cAAM,SAAS,SAAS,CAAC,EAAG;AAAA,UAC1B;AAAA,UACA;AAAA,UACA;AAAA,UACA;AAAA,UACA;AAAA,UACA;AAAA,UACA;AAAA,QAAA;AAEF,YAAI,OAAO,WAAW,SAAU,QAAO;AACvC,gBAAQ;AAAA,MACV;AAAA,IACF,WAAW,KAAK,OAAO;AACrB,UAAI;AACF,eAAO,KAAK,OAAO,KAAK;AACtB,cAAI,SAAS,CAAC,EAAG,SAAU,UAAS,CAAC,IAAI,SAAS,CAAC,EAAG,MAAA;AACtD,gBAAM,SAAS,SAAS,CAAC,EAAG;AAAA,YAC1B;AAAA,YACA;AAAA,YACA;AAAA,YACA;AAAA,YACA;AAAA,YACA;AAAA,YACA;AAAA,UAAA;AAIF,eAAK,CAAC,IAAI,SAAS,CAAC,EAAG,OAAA;AACvB,cAAI,OAAO,WAAW,SAAU,QAAO;AACvC,kBAAQ;AAAA,QACV;AAAA,MACF,UAAA;AAEE,cAAM,OAAO,KAAK,gBAAgB;AAClC,YAAI,OAAO,EAAG;AACd,aAAK,IAAI,OAAO,KAAK,MAAM,KAAK;AAC9B,cAAI,SAAS,CAAC,EAAG,KAAK,UAAU,MAAM;AACpC,gBAAI,SAAS,CAAC,EAAG,KAAK,WAAW,GAAG;AAClC,mBAAK,SAAS,GAAG,KAAK,YAAY;AAAA,YACpC,OAAO;AAEL,mBAAK,OAAO,GAAG,CAAC;AAChB,uBAAS,OAAO,GAAG,CAAC;AAAA,YACtB;AAAA,UACF;AAAA,QACF;AACA,YAAI,SAAS,WAAW,KAAK,SAAS,CAAC,EAAG,KAAK,WAAW;AACxD,gBAAM,OAAO,eAAe;AAAA,MAChC;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA;AAAA,EAGA,SAAS,GAAU,SAA0B;AAC3C,UAAM,WAAW,KAAK;AACtB,QAAI,KAAK,KAAK,IAAI,IAAI,SAAS,QAAQ;AACrC,UAAI,SAAS,CAAC,EAAG,KAAK,SAAS,SAAS,IAAI,CAAC,EAAG,KAAK,UAAU,SAAS;AACtE,YAAI,SAAS,CAAC,EAAG;AAEf,mBAAS,CAAC,IAAI,SAAS,CAAC,EAAG,MAAA;AAC7B,iBAAS,CAAC,EAAG,aAAa,SAAS,IAAI,CAAC,GAAI,OAAO;AACnD,iBAAS,OAAO,IAAI,GAAG,CAAC;AACxB,aAAK,KAAK,OAAO,IAAI,GAAG,CAAC;AACzB,aAAK,KAAK,CAAC,IAAI,SAAS,CAAC,EAAG,OAAA;AAC5B,eAAO;AAAA,MACT;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAOA,aAAa,KAAkB,aAAqB;AAElD,UAAM,YAAY,KAAK,KAAK;AAC5B,SAAK,KAAK,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AACxC,UAAM,cAAe,IAAmC;AACxD,SAAK,SAAS,KAAK,MAAM,KAAK,UAAU,WAAW;AAEnD,QAAI,IAAI,YAAY,CAAC,KAAK,UAAU;AAGlC,iBAAW,SAAS,YAAa,OAAM,WAAW;AAAA,IACpD;AAKA,SAAK,SAAS,YAAY,GAAG,WAAW;AAAA,EAC1C;AACF;AAaA,MAAM,YAAwB,CAAA;AAE9B,MAAM,SAAS,EAAE,QAAQ,KAAA,GACvB,cAAc,MAAM;AACtB,MAAM,YAAa,WAAY;AAC7B,QAAM,IAAI,IAAI,MAAA;AACd,IAAE,WAAW;AACb,SAAO;AACT,EAAA;AACA,MAAM,cAA0B,CAAA;AAEhC,SAAS,MAAM,SAAkB,MAAkB;AACtC;AACT,SAAK,QAAQ,SAAS;AACtB,UAAM,IAAI,MAAM,KAAK,KAAK,GAAG,CAAC;AAAA,EAChC;AACF;"}
|
|
1
|
+
{"version":3,"file":"btree.js","sources":["../../../src/utils/btree.ts"],"sourcesContent":["// This file was copied from https://github.com/qwertie/btree-typescript/tree/master and adapted to our needs.\n// We removed methods that we don't need.\n\n// B+ tree by David Piepgrass. License: MIT\ntype EditRangeResult<V, R = number> = {\n value?: V\n break?: R\n delete?: boolean\n}\n\ntype index = number\n\n// Informative microbenchmarks & stuff:\n// http://www.jayconrod.com/posts/52/a-tour-of-v8-object-representation (very educational)\n// https://blog.mozilla.org/luke/2012/10/02/optimizing-javascript-variable-access/ (local vars are faster than properties)\n// http://benediktmeurer.de/2017/12/13/an-introduction-to-speculative-optimization-in-v8/ (other stuff)\n// https://jsperf.com/js-in-operator-vs-alternatives (avoid 'in' operator; `.p!==undefined` faster than `hasOwnProperty('p')` in all browsers)\n// https://jsperf.com/instanceof-vs-typeof-vs-constructor-vs-member (speed of type tests varies wildly across browsers)\n// https://jsperf.com/detecting-arrays-new (a.constructor===Array is best across browsers, assuming a is an object)\n// https://jsperf.com/shallow-cloning-methods (a constructor is faster than Object.create; hand-written clone faster than Object.assign)\n// https://jsperf.com/ways-to-fill-an-array (slice-and-replace is fastest)\n// https://jsperf.com/math-min-max-vs-ternary-vs-if (Math.min/max is slow on Edge)\n// https://jsperf.com/array-vs-property-access-speed (v.x/v.y is faster than a[0]/a[1] in major browsers IF hidden class is constant)\n// https://jsperf.com/detect-not-null-or-undefined (`x==null` slightly slower than `x===null||x===undefined` on all browsers)\n// Overall, microbenchmarks suggest Firefox is the fastest browser for JavaScript and Edge is the slowest.\n// Lessons from https://v8project.blogspot.com/2017/09/elements-kinds-in-v8.html:\n// - Avoid holes in arrays. Avoid `new Array(N)`, it will be \"holey\" permanently.\n// - Don't read outside bounds of an array (it scans prototype chain).\n// - Small integer arrays are stored differently from doubles\n// - Adding non-numbers to an array deoptimizes it permanently into a general array\n// - Objects can be used like arrays (e.g. have length property) but are slower\n// - V8 source (NewElementsCapacity in src/objects.h): arrays grow by 50% + 16 elements\n\n/**\n * A reasonably fast collection of key-value pairs with a powerful API.\n * Largely compatible with the standard Map. BTree is a B+ tree data structure,\n * so the collection is sorted by key.\n *\n * B+ trees tend to use memory more efficiently than hashtables such as the\n * standard Map, especially when the collection contains a large number of\n * items. However, maintaining the sort order makes them modestly slower:\n * O(log size) rather than O(1). This B+ tree implementation supports O(1)\n * fast cloning. It also supports freeze(), which can be used to ensure that\n * a BTree is not changed accidentally.\n *\n * Confusingly, the ES6 Map.forEach(c) method calls c(value,key) instead of\n * c(key,value), in contrast to other methods such as set() and entries()\n * which put the key first. I can only assume that the order was reversed on\n * the theory that users would usually want to examine values and ignore keys.\n * BTree's forEach() therefore works the same way, but a second method\n * `.forEachPair((key,value)=>{...})` is provided which sends you the key\n * first and the value second; this method is slightly faster because it is\n * the \"native\" for-each method for this class.\n *\n * Out of the box, BTree supports keys that are numbers, strings, arrays of\n * numbers/strings, Date, and objects that have a valueOf() method returning a\n * number or string. Other data types, such as arrays of Date or custom\n * objects, require a custom comparator, which you must pass as the second\n * argument to the constructor (the first argument is an optional list of\n * initial items). Symbols cannot be used as keys because they are unordered\n * (one Symbol is never \"greater\" or \"less\" than another).\n *\n * @example\n * Given a {name: string, age: number} object, you can create a tree sorted by\n * name and then by age like this:\n *\n * var tree = new BTree(undefined, (a, b) => {\n * if (a.name > b.name)\n * return 1; // Return a number >0 when a > b\n * else if (a.name < b.name)\n * return -1; // Return a number <0 when a < b\n * else // names are equal (or incomparable)\n * return a.age - b.age; // Return >0 when a.age > b.age\n * });\n *\n * tree.set({name:\"Bill\", age:17}, \"happy\");\n * tree.set({name:\"Fran\", age:40}, \"busy & stressed\");\n * tree.set({name:\"Bill\", age:55}, \"recently laid off\");\n * tree.forEachPair((k, v) => {\n * console.log(`Name: ${k.name} Age: ${k.age} Status: ${v}`);\n * });\n *\n * @description\n * The \"range\" methods (`forEach, forRange, editRange`) will return the number\n * of elements that were scanned. In addition, the callback can return {break:R}\n * to stop early and return R from the outer function.\n *\n * - TODO: Test performance of preallocating values array at max size\n * - TODO: Add fast initialization when a sorted array is provided to constructor\n *\n * For more documentation see https://github.com/qwertie/btree-typescript\n *\n * Are you a C# developer? You might like the similar data structures I made for C#:\n * BDictionary, BList, etc. See http://core.loyc.net/collections/\n *\n * @author David Piepgrass\n */\nexport class BTree<K = any, V = any> {\n private _root: BNode<K, V> = EmptyLeaf as BNode<K, V>\n _size = 0\n _maxNodeSize: number\n\n /**\n * provides a total order over keys (and a strict partial order over the type K)\n * @returns a negative value if a < b, 0 if a === b and a positive value if a > b\n */\n _compare: (a: K, b: K) => number\n\n /**\n * Initializes an empty B+ tree.\n * @param compare Custom function to compare pairs of elements in the tree.\n * If not specified, defaultComparator will be used which is valid as long as K extends DefaultComparable.\n * @param entries A set of key-value pairs to initialize the tree\n * @param maxNodeSize Branching factor (maximum items or children per node)\n * Must be in range 4..256. If undefined or <4 then default is used; if >256 then 256.\n */\n public constructor(\n compare: (a: K, b: K) => number,\n entries?: Array<[K, V]>,\n maxNodeSize?: number\n ) {\n this._maxNodeSize = maxNodeSize! >= 4 ? Math.min(maxNodeSize!, 256) : 32\n this._compare = compare\n if (entries) this.setPairs(entries)\n }\n\n // ///////////////////////////////////////////////////////////////////////////\n // ES6 Map<K,V> methods /////////////////////////////////////////////////////\n\n /** Gets the number of key-value pairs in the tree. */\n get size() {\n return this._size\n }\n /** Gets the number of key-value pairs in the tree. */\n get length() {\n return this._size\n }\n /** Returns true iff the tree contains no key-value pairs. */\n get isEmpty() {\n return this._size === 0\n }\n\n /** Releases the tree so that its size is 0. */\n clear() {\n this._root = EmptyLeaf as BNode<K, V>\n this._size = 0\n }\n\n /**\n * Finds a pair in the tree and returns the associated value.\n * @param defaultValue a value to return if the key was not found.\n * @returns the value, or defaultValue if the key was not found.\n * @description Computational complexity: O(log size)\n */\n get(key: K, defaultValue?: V): V | undefined {\n return this._root.get(key, defaultValue, this)\n }\n\n /**\n * Adds or overwrites a key-value pair in the B+ tree.\n * @param key the key is used to determine the sort order of\n * data in the tree.\n * @param value data to associate with the key (optional)\n * @param overwrite Whether to overwrite an existing key-value pair\n * (default: true). If this is false and there is an existing\n * key-value pair then this method has no effect.\n * @returns true if a new key-value pair was added.\n * @description Computational complexity: O(log size)\n * Note: when overwriting a previous entry, the key is updated\n * as well as the value. This has no effect unless the new key\n * has data that does not affect its sort order.\n */\n set(key: K, value: V, overwrite?: boolean): boolean {\n if (this._root.isShared) this._root = this._root.clone()\n const result = this._root.set(key, value, overwrite, this)\n if (result === true || result === false) return result\n // Root node has split, so create a new root node.\n this._root = new BNodeInternal<K, V>([this._root, result])\n return true\n }\n\n /**\n * Returns true if the key exists in the B+ tree, false if not.\n * Use get() for best performance; use has() if you need to\n * distinguish between \"undefined value\" and \"key not present\".\n * @param key Key to detect\n * @description Computational complexity: O(log size)\n */\n has(key: K): boolean {\n return this.forRange(key, key, true, undefined) !== 0\n }\n\n /**\n * Removes a single key-value pair from the B+ tree.\n * @param key Key to find\n * @returns true if a pair was found and removed, false otherwise.\n * @description Computational complexity: O(log size)\n */\n delete(key: K): boolean {\n return this.editRange(key, key, true, DeleteRange) !== 0\n }\n\n // ///////////////////////////////////////////////////////////////////////////\n // Additional methods ///////////////////////////////////////////////////////\n\n /** Returns the maximum number of children/values before nodes will split. */\n get maxNodeSize() {\n return this._maxNodeSize\n }\n\n /** Gets the lowest key in the tree. Complexity: O(log size) */\n minKey(): K | undefined {\n return this._root.minKey()\n }\n\n /** Gets the highest key in the tree. Complexity: O(1) */\n maxKey(): K | undefined {\n return this._root.maxKey()\n }\n\n /** Gets an array of all keys, sorted */\n keysArray() {\n const results: Array<K> = []\n this._root.forRange(\n this.minKey()!,\n this.maxKey()!,\n true,\n false,\n this,\n 0,\n (k, _v) => {\n results.push(k)\n }\n )\n return results\n }\n\n /** Returns the next pair whose key is larger than the specified key (or undefined if there is none).\n * If key === undefined, this function returns the lowest pair.\n * @param key The key to search for.\n * @param reusedArray Optional array used repeatedly to store key-value pairs, to\n * avoid creating a new array on every iteration.\n */\n nextHigherPair(key: K | undefined, reusedArray?: [K, V]): [K, V] | undefined {\n reusedArray = reusedArray || ([] as unknown as [K, V])\n if (key === undefined) {\n return this._root.minPair(reusedArray)\n }\n return this._root.getPairOrNextHigher(\n key,\n this._compare,\n false,\n reusedArray\n )\n }\n\n /** Returns the next key larger than the specified key, or undefined if there is none.\n * Also, nextHigherKey(undefined) returns the lowest key.\n */\n nextHigherKey(key: K | undefined): K | undefined {\n const p = this.nextHigherPair(key, ReusedArray as [K, V])\n return p && p[0]\n }\n\n /** Returns the next pair whose key is smaller than the specified key (or undefined if there is none).\n * If key === undefined, this function returns the highest pair.\n * @param key The key to search for.\n * @param reusedArray Optional array used repeatedly to store key-value pairs, to\n * avoid creating a new array each time you call this method.\n */\n nextLowerPair(key: K | undefined, reusedArray?: [K, V]): [K, V] | undefined {\n reusedArray = reusedArray || ([] as unknown as [K, V])\n if (key === undefined) {\n return this._root.maxPair(reusedArray)\n }\n return this._root.getPairOrNextLower(key, this._compare, false, reusedArray)\n }\n\n /** Returns the next key smaller than the specified key, or undefined if there is none.\n * Also, nextLowerKey(undefined) returns the highest key.\n */\n nextLowerKey(key: K | undefined): K | undefined {\n const p = this.nextLowerPair(key, ReusedArray as [K, V])\n return p && p[0]\n }\n\n /** Adds all pairs from a list of key-value pairs.\n * @param pairs Pairs to add to this tree. If there are duplicate keys,\n * later pairs currently overwrite earlier ones (e.g. [[0,1],[0,7]]\n * associates 0 with 7.)\n * @param overwrite Whether to overwrite pairs that already exist (if false,\n * pairs[i] is ignored when the key pairs[i][0] already exists.)\n * @returns The number of pairs added to the collection.\n * @description Computational complexity: O(pairs.length * log(size + pairs.length))\n */\n setPairs(pairs: Array<[K, V]>, overwrite?: boolean): number {\n let added = 0\n for (const pair of pairs) {\n if (this.set(pair[0], pair[1], overwrite)) added++\n }\n return added\n }\n\n forRange(\n low: K,\n high: K,\n includeHigh: boolean,\n onFound?: (k: K, v: V, counter: number) => void,\n initialCounter?: number\n ): number\n\n /**\n * Scans the specified range of keys, in ascending order by key.\n * Note: the callback `onFound` must not insert or remove items in the\n * collection. Doing so may cause incorrect data to be sent to the\n * callback afterward.\n * @param low The first key scanned will be greater than or equal to `low`.\n * @param high Scanning stops when a key larger than this is reached.\n * @param includeHigh If the `high` key is present, `onFound` is called for\n * that final pair if and only if this parameter is true.\n * @param onFound A function that is called for each key-value pair. This\n * function can return {break:R} to stop early with result R.\n * @param initialCounter Initial third argument of onFound. This value\n * increases by one each time `onFound` is called. Default: 0\n * @returns The number of values found, or R if the callback returned\n * `{break:R}` to stop early.\n * @description Computational complexity: O(number of items scanned + log size)\n */\n forRange<R = number>(\n low: K,\n high: K,\n includeHigh: boolean,\n onFound?: (k: K, v: V, counter: number) => { break?: R } | void,\n initialCounter?: number\n ): R | number {\n const r = this._root.forRange(\n low,\n high,\n includeHigh,\n false,\n this,\n initialCounter || 0,\n onFound\n )\n return typeof r === `number` ? r : r.break!\n }\n\n /**\n * Scans and potentially modifies values for a subsequence of keys.\n * Note: the callback `onFound` should ideally be a pure function.\n * Specfically, it must not insert items, call clone(), or change\n * the collection except via return value; out-of-band editing may\n * cause an exception or may cause incorrect data to be sent to\n * the callback (duplicate or missed items). It must not cause a\n * clone() of the collection, otherwise the clone could be modified\n * by changes requested by the callback.\n * @param low The first key scanned will be greater than or equal to `low`.\n * @param high Scanning stops when a key larger than this is reached.\n * @param includeHigh If the `high` key is present, `onFound` is called for\n * that final pair if and only if this parameter is true.\n * @param onFound A function that is called for each key-value pair. This\n * function can return `{value:v}` to change the value associated\n * with the current key, `{delete:true}` to delete the current pair,\n * `{break:R}` to stop early with result R, or it can return nothing\n * (undefined or {}) to cause no effect and continue iterating.\n * `{break:R}` can be combined with one of the other two commands.\n * The third argument `counter` is the number of items iterated\n * previously; it equals 0 when `onFound` is called the first time.\n * @returns The number of values scanned, or R if the callback returned\n * `{break:R}` to stop early.\n * @description\n * Computational complexity: O(number of items scanned + log size)\n * Note: if the tree has been cloned with clone(), any shared\n * nodes are copied before `onFound` is called. This takes O(n) time\n * where n is proportional to the amount of shared data scanned.\n */\n editRange<R = V>(\n low: K,\n high: K,\n includeHigh: boolean,\n onFound: (k: K, v: V, counter: number) => EditRangeResult<V, R> | void,\n initialCounter?: number\n ): R | number {\n let root = this._root\n if (root.isShared) this._root = root = root.clone()\n try {\n const r = root.forRange(\n low,\n high,\n includeHigh,\n true,\n this,\n initialCounter || 0,\n onFound\n )\n return typeof r === `number` ? r : r.break!\n } finally {\n let isShared\n while (root.keys.length <= 1 && !root.isLeaf) {\n isShared ||= root.isShared\n this._root = root =\n root.keys.length === 0\n ? EmptyLeaf\n : (root as any as BNodeInternal<K, V>).children[0]!\n }\n // If any ancestor of the new root was shared, the new root must also be shared\n if (isShared) {\n root.isShared = true\n }\n }\n }\n}\n\n/** Leaf node / base class. **************************************************/\nclass BNode<K, V> {\n // If this is an internal node, _keys[i] is the highest key in children[i].\n keys: Array<K>\n values: Array<V>\n // True if this node might be within multiple `BTree`s (or have multiple parents).\n // If so, it must be cloned before being mutated to avoid changing an unrelated tree.\n // This is transitive: if it's true, children are also shared even if `isShared!=true`\n // in those children. (Certain operations will propagate isShared=true to children.)\n isShared: true | undefined\n get isLeaf() {\n return (this as any).children === undefined\n }\n\n constructor(keys: Array<K> = [], values?: Array<V>) {\n this.keys = keys\n this.values = values || undefVals\n this.isShared = undefined\n }\n\n // /////////////////////////////////////////////////////////////////////////\n // Shared methods /////////////////////////////////////////////////////////\n\n maxKey() {\n return this.keys[this.keys.length - 1]\n }\n\n // If key not found, returns i^failXor where i is the insertion index.\n // Callers that don't care whether there was a match will set failXor=0.\n indexOf(key: K, failXor: number, cmp: (a: K, b: K) => number): index {\n const keys = this.keys\n let lo = 0,\n hi = keys.length,\n mid = hi >> 1\n while (lo < hi) {\n const c = cmp(keys[mid]!, key)\n if (c < 0) lo = mid + 1\n else if (c > 0)\n // key < keys[mid]\n hi = mid\n else if (c === 0) return mid\n else {\n // c is NaN or otherwise invalid\n if (key === key)\n // at least the search key is not NaN\n return keys.length\n else throw new Error(`BTree: NaN was used as a key`)\n }\n mid = (lo + hi) >> 1\n }\n return mid ^ failXor\n }\n\n // ///////////////////////////////////////////////////////////////////////////\n // Leaf Node: misc //////////////////////////////////////////////////////////\n\n minKey(): K | undefined {\n return this.keys[0]\n }\n\n minPair(reusedArray: [K, V]): [K, V] | undefined {\n if (this.keys.length === 0) return undefined\n reusedArray[0] = this.keys[0]!\n reusedArray[1] = this.values[0]!\n return reusedArray\n }\n\n maxPair(reusedArray: [K, V]): [K, V] | undefined {\n if (this.keys.length === 0) return undefined\n const lastIndex = this.keys.length - 1\n reusedArray[0] = this.keys[lastIndex]!\n reusedArray[1] = this.values[lastIndex]!\n return reusedArray\n }\n\n clone(): BNode<K, V> {\n const v = this.values\n return new BNode<K, V>(this.keys.slice(0), v === undefVals ? v : v.slice(0))\n }\n\n get(key: K, defaultValue: V | undefined, tree: BTree<K, V>): V | undefined {\n const i = this.indexOf(key, -1, tree._compare)\n return i < 0 ? defaultValue : this.values[i]\n }\n\n getPairOrNextLower(\n key: K,\n compare: (a: K, b: K) => number,\n inclusive: boolean,\n reusedArray: [K, V]\n ): [K, V] | undefined {\n const i = this.indexOf(key, -1, compare)\n const indexOrLower = i < 0 ? ~i - 1 : inclusive ? i : i - 1\n if (indexOrLower >= 0) {\n reusedArray[0] = this.keys[indexOrLower]!\n reusedArray[1] = this.values[indexOrLower]!\n return reusedArray\n }\n return undefined\n }\n\n getPairOrNextHigher(\n key: K,\n compare: (a: K, b: K) => number,\n inclusive: boolean,\n reusedArray: [K, V]\n ): [K, V] | undefined {\n const i = this.indexOf(key, -1, compare)\n const indexOrLower = i < 0 ? ~i : inclusive ? i : i + 1\n const keys = this.keys\n if (indexOrLower < keys.length) {\n reusedArray[0] = keys[indexOrLower]!\n reusedArray[1] = this.values[indexOrLower]!\n return reusedArray\n }\n return undefined\n }\n\n // ///////////////////////////////////////////////////////////////////////////\n // Leaf Node: set & node splitting //////////////////////////////////////////\n\n set(\n key: K,\n value: V,\n overwrite: boolean | undefined,\n tree: BTree<K, V>\n ): boolean | BNode<K, V> {\n let i = this.indexOf(key, -1, tree._compare)\n if (i < 0) {\n // key does not exist yet\n i = ~i\n tree._size++\n\n if (this.keys.length < tree._maxNodeSize) {\n return this.insertInLeaf(i, key, value, tree)\n } else {\n // This leaf node is full and must split\n const newRightSibling = this.splitOffRightSide()\n let target: BNode<K, V> = this\n if (i > this.keys.length) {\n i -= this.keys.length\n target = newRightSibling\n }\n target.insertInLeaf(i, key, value, tree)\n return newRightSibling\n }\n } else {\n // Key already exists\n if (overwrite !== false) {\n if (value !== undefined) this.reifyValues()\n // usually this is a no-op, but some users may wish to edit the key\n this.keys[i] = key\n this.values[i] = value\n }\n return false\n }\n }\n\n reifyValues() {\n if (this.values === undefVals)\n return (this.values = this.values.slice(0, this.keys.length))\n return this.values\n }\n\n insertInLeaf(i: index, key: K, value: V, tree: BTree<K, V>) {\n this.keys.splice(i, 0, key)\n if (this.values === undefVals) {\n while (undefVals.length < tree._maxNodeSize) undefVals.push(undefined)\n if (value === undefined) {\n return true\n } else {\n this.values = undefVals.slice(0, this.keys.length - 1)\n }\n }\n this.values.splice(i, 0, value)\n return true\n }\n\n takeFromRight(rhs: BNode<K, V>) {\n // Reminder: parent node must update its copy of key for this node\n // assert: neither node is shared\n // assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)\n let v = this.values\n if (rhs.values === undefVals) {\n if (v !== undefVals) v.push(undefined as any)\n } else {\n v = this.reifyValues()\n v.push(rhs.values.shift()!)\n }\n this.keys.push(rhs.keys.shift()!)\n }\n\n takeFromLeft(lhs: BNode<K, V>) {\n // Reminder: parent node must update its copy of key for this node\n // assert: neither node is shared\n // assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)\n let v = this.values\n if (lhs.values === undefVals) {\n if (v !== undefVals) v.unshift(undefined as any)\n } else {\n v = this.reifyValues()\n v.unshift(lhs.values.pop()!)\n }\n this.keys.unshift(lhs.keys.pop()!)\n }\n\n splitOffRightSide(): BNode<K, V> {\n // Reminder: parent node must update its copy of key for this node\n const half = this.keys.length >> 1,\n keys = this.keys.splice(half)\n const values =\n this.values === undefVals ? undefVals : this.values.splice(half)\n return new BNode<K, V>(keys, values)\n }\n\n // ///////////////////////////////////////////////////////////////////////////\n // Leaf Node: scanning & deletions //////////////////////////////////////////\n\n forRange<R>(\n low: K,\n high: K,\n includeHigh: boolean | undefined,\n editMode: boolean,\n tree: BTree<K, V>,\n count: number,\n onFound?: (k: K, v: V, counter: number) => EditRangeResult<V, R> | void\n ): EditRangeResult<V, R> | number {\n const cmp = tree._compare\n let iLow, iHigh\n if (high === low) {\n if (!includeHigh) return count\n iHigh = (iLow = this.indexOf(low, -1, cmp)) + 1\n if (iLow < 0) return count\n } else {\n iLow = this.indexOf(low, 0, cmp)\n iHigh = this.indexOf(high, -1, cmp)\n if (iHigh < 0) iHigh = ~iHigh\n else if (includeHigh === true) iHigh++\n }\n const keys = this.keys,\n values = this.values\n if (onFound !== undefined) {\n for (let i = iLow; i < iHigh; i++) {\n const key = keys[i]!\n const result = onFound(key, values[i]!, count++)\n if (result !== undefined) {\n if (editMode === true) {\n if (key !== keys[i] || this.isShared === true)\n throw new Error(`BTree illegally changed or cloned in editRange`)\n if (result.delete) {\n this.keys.splice(i, 1)\n if (this.values !== undefVals) this.values.splice(i, 1)\n tree._size--\n i--\n iHigh--\n } else if (result.hasOwnProperty(`value`)) {\n values[i] = result.value!\n }\n }\n if (result.break !== undefined) return result\n }\n }\n } else count += iHigh - iLow\n return count\n }\n\n /** Adds entire contents of right-hand sibling (rhs is left unchanged) */\n mergeSibling(rhs: BNode<K, V>, _: number) {\n this.keys.push.apply(this.keys, rhs.keys)\n if (this.values === undefVals) {\n if (rhs.values === undefVals) return\n this.values = this.values.slice(0, this.keys.length)\n }\n this.values.push.apply(this.values, rhs.reifyValues())\n }\n}\n\n/** Internal node (non-leaf node) ********************************************/\nclass BNodeInternal<K, V> extends BNode<K, V> {\n // Note: conventionally B+ trees have one fewer key than the number of\n // children, but I find it easier to keep the array lengths equal: each\n // keys[i] caches the value of children[i].maxKey().\n children: Array<BNode<K, V>>\n\n /**\n * This does not mark `children` as shared, so it is the responsibility of the caller\n * to ensure children are either marked shared, or aren't included in another tree.\n */\n constructor(children: Array<BNode<K, V>>, keys?: Array<K>) {\n if (!keys) {\n keys = []\n for (let i = 0; i < children.length; i++) keys[i] = children[i]!.maxKey()!\n }\n super(keys)\n this.children = children\n }\n\n minKey() {\n return this.children[0]!.minKey()\n }\n\n minPair(reusedArray: [K, V]): [K, V] | undefined {\n return this.children[0]!.minPair(reusedArray)\n }\n\n maxPair(reusedArray: [K, V]): [K, V] | undefined {\n return this.children[this.children.length - 1]!.maxPair(reusedArray)\n }\n\n get(key: K, defaultValue: V | undefined, tree: BTree<K, V>): V | undefined {\n const i = this.indexOf(key, 0, tree._compare),\n children = this.children\n return i < children.length\n ? children[i]!.get(key, defaultValue, tree)\n : undefined\n }\n\n getPairOrNextLower(\n key: K,\n compare: (a: K, b: K) => number,\n inclusive: boolean,\n reusedArray: [K, V]\n ): [K, V] | undefined {\n const i = this.indexOf(key, 0, compare),\n children = this.children\n if (i >= children.length) return this.maxPair(reusedArray)\n const result = children[i]!.getPairOrNextLower(\n key,\n compare,\n inclusive,\n reusedArray\n )\n if (result === undefined && i > 0) {\n return children[i - 1]!.maxPair(reusedArray)\n }\n return result\n }\n\n getPairOrNextHigher(\n key: K,\n compare: (a: K, b: K) => number,\n inclusive: boolean,\n reusedArray: [K, V]\n ): [K, V] | undefined {\n const i = this.indexOf(key, 0, compare),\n children = this.children,\n length = children.length\n if (i >= length) return undefined\n const result = children[i]!.getPairOrNextHigher(\n key,\n compare,\n inclusive,\n reusedArray\n )\n if (result === undefined && i < length - 1) {\n return children[i + 1]!.minPair(reusedArray)\n }\n return result\n }\n\n // ///////////////////////////////////////////////////////////////////////////\n // Internal Node: set & node splitting //////////////////////////////////////\n\n set(\n key: K,\n value: V,\n overwrite: boolean | undefined,\n tree: BTree<K, V>\n ): boolean | BNodeInternal<K, V> {\n const c = this.children,\n max = tree._maxNodeSize,\n cmp = tree._compare\n let i = Math.min(this.indexOf(key, 0, cmp), c.length - 1),\n child = c[i]!\n\n if (child.isShared) c[i] = child = child.clone()\n if (child.keys.length >= max) {\n // child is full; inserting anything else will cause a split.\n // Shifting an item to the left or right sibling may avoid a split.\n // We can do a shift if the adjacent node is not full and if the\n // current key can still be placed in the same node after the shift.\n let other: BNode<K, V> | undefined\n if (\n i > 0 &&\n (other = c[i - 1]!).keys.length < max &&\n cmp(child.keys[0]!, key) < 0\n ) {\n if (other.isShared) c[i - 1] = other = other.clone()\n other.takeFromRight(child)\n this.keys[i - 1] = other.maxKey()!\n } else if (\n (other = c[i + 1]) !== undefined &&\n other.keys.length < max &&\n cmp(child.maxKey()!, key) < 0\n ) {\n if (other.isShared) c[i + 1] = other = other.clone()\n other.takeFromLeft(child)\n this.keys[i] = c[i]!.maxKey()!\n }\n }\n\n const result = child.set(key, value, overwrite, tree)\n if (result === false) return false\n this.keys[i] = child.maxKey()!\n if (result === true) return true\n\n // The child has split and `result` is a new right child... does it fit?\n if (this.keys.length < max) {\n // yes\n this.insert(i + 1, result)\n return true\n } else {\n // no, we must split also\n const newRightSibling = this.splitOffRightSide()\n let target: BNodeInternal<K, V> = this\n if (cmp(result.maxKey()!, this.maxKey()!) > 0) {\n target = newRightSibling\n i -= this.keys.length\n }\n target.insert(i + 1, result)\n return newRightSibling\n }\n }\n\n /**\n * Inserts `child` at index `i`.\n * This does not mark `child` as shared, so it is the responsibility of the caller\n * to ensure that either child is marked shared, or it is not included in another tree.\n */\n insert(i: index, child: BNode<K, V>) {\n this.children.splice(i, 0, child)\n this.keys.splice(i, 0, child.maxKey()!)\n }\n\n /**\n * Split this node.\n * Modifies this to remove the second half of the items, returning a separate node containing them.\n */\n splitOffRightSide() {\n // assert !this.isShared;\n const half = this.children.length >> 1\n return new BNodeInternal<K, V>(\n this.children.splice(half),\n this.keys.splice(half)\n )\n }\n\n takeFromRight(rhs: BNode<K, V>) {\n // Reminder: parent node must update its copy of key for this node\n // assert: neither node is shared\n // assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)\n this.keys.push(rhs.keys.shift()!)\n this.children.push((rhs as BNodeInternal<K, V>).children.shift()!)\n }\n\n takeFromLeft(lhs: BNode<K, V>) {\n // Reminder: parent node must update its copy of key for this node\n // assert: neither node is shared\n // assert rhs.keys.length > (maxNodeSize/2 && this.keys.length<maxNodeSize)\n this.keys.unshift(lhs.keys.pop()!)\n this.children.unshift((lhs as BNodeInternal<K, V>).children.pop()!)\n }\n\n // ///////////////////////////////////////////////////////////////////////////\n // Internal Node: scanning & deletions //////////////////////////////////////\n\n // Note: `count` is the next value of the third argument to `onFound`.\n // A leaf node's `forRange` function returns a new value for this counter,\n // unless the operation is to stop early.\n forRange<R>(\n low: K,\n high: K,\n includeHigh: boolean | undefined,\n editMode: boolean,\n tree: BTree<K, V>,\n count: number,\n onFound?: (k: K, v: V, counter: number) => EditRangeResult<V, R> | void\n ): EditRangeResult<V, R> | number {\n const cmp = tree._compare\n const keys = this.keys,\n children = this.children\n let iLow = this.indexOf(low, 0, cmp),\n i = iLow\n const iHigh = Math.min(\n high === low ? iLow : this.indexOf(high, 0, cmp),\n keys.length - 1\n )\n if (!editMode) {\n // Simple case\n for (; i <= iHigh; i++) {\n const result = children[i]!.forRange(\n low,\n high,\n includeHigh,\n editMode,\n tree,\n count,\n onFound\n )\n if (typeof result !== `number`) return result\n count = result\n }\n } else if (i <= iHigh) {\n try {\n for (; i <= iHigh; i++) {\n if (children[i]!.isShared) children[i] = children[i]!.clone()\n const result = children[i]!.forRange(\n low,\n high,\n includeHigh,\n editMode,\n tree,\n count,\n onFound\n )\n // Note: if children[i] is empty then keys[i]=undefined.\n // This is an invalid state, but it is fixed below.\n keys[i] = children[i]!.maxKey()!\n if (typeof result !== `number`) return result\n count = result\n }\n } finally {\n // Deletions may have occurred, so look for opportunities to merge nodes.\n const half = tree._maxNodeSize >> 1\n if (iLow > 0) iLow--\n for (i = iHigh; i >= iLow; i--) {\n if (children[i]!.keys.length <= half) {\n if (children[i]!.keys.length !== 0) {\n this.tryMerge(i, tree._maxNodeSize)\n } else {\n // child is empty! delete it!\n keys.splice(i, 1)\n children.splice(i, 1)\n }\n }\n }\n if (children.length !== 0 && children[0]!.keys.length === 0)\n check(false, `emptiness bug`)\n }\n }\n return count\n }\n\n /** Merges child i with child i+1 if their combined size is not too large */\n tryMerge(i: index, maxSize: number): boolean {\n const children = this.children\n if (i >= 0 && i + 1 < children.length) {\n if (children[i]!.keys.length + children[i + 1]!.keys.length <= maxSize) {\n if (children[i]!.isShared)\n // cloned already UNLESS i is outside scan range\n children[i] = children[i]!.clone()\n children[i]!.mergeSibling(children[i + 1]!, maxSize)\n children.splice(i + 1, 1)\n this.keys.splice(i + 1, 1)\n this.keys[i] = children[i]!.maxKey()!\n return true\n }\n }\n return false\n }\n\n /**\n * Move children from `rhs` into this.\n * `rhs` must be part of this tree, and be removed from it after this call\n * (otherwise isShared for its children could be incorrect).\n */\n mergeSibling(rhs: BNode<K, V>, maxNodeSize: number) {\n // assert !this.isShared;\n const oldLength = this.keys.length\n this.keys.push.apply(this.keys, rhs.keys)\n const rhsChildren = (rhs as any as BNodeInternal<K, V>).children\n this.children.push.apply(this.children, rhsChildren)\n\n if (rhs.isShared && !this.isShared) {\n // All children of a shared node are implicitly shared, and since their new\n // parent is not shared, they must now be explicitly marked as shared.\n for (const child of rhsChildren) child.isShared = true\n }\n\n // If our children are themselves almost empty due to a mass-delete,\n // they may need to be merged too (but only the oldLength-1 and its\n // right sibling should need this).\n this.tryMerge(oldLength - 1, maxNodeSize)\n }\n}\n\n// Optimization: this array of `undefined`s is used instead of a normal\n// array of values in nodes where `undefined` is the only value.\n// Its length is extended to max node size on first use; since it can\n// be shared between trees with different maximums, its length can only\n// increase, never decrease. Its type should be undefined[] but strangely\n// TypeScript won't allow the comparison V[] === undefined[]. To prevent\n// users from making this array too large, BTree has a maximum node size.\n//\n// FAQ: undefVals[i] is already undefined, so why increase the array size?\n// Reading outside the bounds of an array is relatively slow because it\n// has the side effect of scanning the prototype chain.\nconst undefVals: Array<any> = []\n\nconst Delete = { delete: true },\n DeleteRange = () => Delete\nconst EmptyLeaf = (function () {\n const n = new BNode<any, any>()\n n.isShared = true\n return n\n})()\nconst ReusedArray: Array<any> = [] // assumed thread-local\n\nfunction check(fact: boolean, ...args: Array<any>) {\n if (!fact) {\n args.unshift(`B+ tree`) // at beginning of message\n throw new Error(args.join(` `))\n }\n}\n"],"names":[],"mappings":"AAiGO,MAAM,MAAwB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAmB5B,YACL,SACA,SACA,aACA;AAtBF,SAAQ,QAAqB;AAC7B,SAAA,QAAQ;AAsBN,SAAK,eAAe,eAAgB,IAAI,KAAK,IAAI,aAAc,GAAG,IAAI;AACtE,SAAK,WAAW;AAChB,QAAI,QAAS,MAAK,SAAS,OAAO;AAAA,EACpC;AAAA;AAAA;AAAA;AAAA,EAMA,IAAI,OAAO;AACT,WAAO,KAAK;AAAA,EACd;AAAA;AAAA,EAEA,IAAI,SAAS;AACX,WAAO,KAAK;AAAA,EACd;AAAA;AAAA,EAEA,IAAI,UAAU;AACZ,WAAO,KAAK,UAAU;AAAA,EACxB;AAAA;AAAA,EAGA,QAAQ;AACN,SAAK,QAAQ;AACb,SAAK,QAAQ;AAAA,EACf;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAQA,IAAI,KAAQ,cAAiC;AAC3C,WAAO,KAAK,MAAM,IAAI,KAAK,cAAc,IAAI;AAAA,EAC/C;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAgBA,IAAI,KAAQ,OAAU,WAA8B;AAClD,QAAI,KAAK,MAAM,eAAe,QAAQ,KAAK,MAAM,MAAA;AACjD,UAAM,SAAS,KAAK,MAAM,IAAI,KAAK,OAAO,WAAW,IAAI;AACzD,QAAI,WAAW,QAAQ,WAAW,MAAO,QAAO;AAEhD,SAAK,QAAQ,IAAI,cAAoB,CAAC,KAAK,OAAO,MAAM,CAAC;AACzD,WAAO;AAAA,EACT;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EASA,IAAI,KAAiB;AACnB,WAAO,KAAK,SAAS,KAAK,KAAK,MAAM,MAAS,MAAM;AAAA,EACtD;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAQA,OAAO,KAAiB;AACtB,WAAO,KAAK,UAAU,KAAK,KAAK,MAAM,WAAW,MAAM;AAAA,EACzD;AAAA;AAAA;AAAA;AAAA,EAMA,IAAI,cAAc;AAChB,WAAO,KAAK;AAAA,EACd;AAAA;AAAA,EAGA,SAAwB;AACtB,WAAO,KAAK,MAAM,OAAA;AAAA,EACpB;AAAA;AAAA,EAGA,SAAwB;AACtB,WAAO,KAAK,MAAM,OAAA;AAAA,EACpB;AAAA;AAAA,EAGA,YAAY;AACV,UAAM,UAAoB,CAAA;AAC1B,SAAK,MAAM;AAAA,MACT,KAAK,OAAA;AAAA,MACL,KAAK,OAAA;AAAA,MACL;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA,CAAC,GAAG,OAAO;AACT,gBAAQ,KAAK,CAAC;AAAA,MAChB;AAAA,IAAA;AAEF,WAAO;AAAA,EACT;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAQA,eAAe,KAAoB,aAA0C;AAC3E,kBAAc,eAAgB,CAAA;AAC9B,QAAI,QAAQ,QAAW;AACrB,aAAO,KAAK,MAAM,QAAQ,WAAW;AAAA,IACvC;AACA,WAAO,KAAK,MAAM;AAAA,MAChB;AAAA,MACA,KAAK;AAAA,MACL;AAAA,MACA;AAAA,IAAA;AAAA,EAEJ;AAAA;AAAA;AAAA;AAAA,EAKA,cAAc,KAAmC;AAC/C,UAAM,IAAI,KAAK,eAAe,KAAK,WAAqB;AACxD,WAAO,KAAK,EAAE,CAAC;AAAA,EACjB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAQA,cAAc,KAAoB,aAA0C;AAC1E,kBAAc,eAAgB,CAAA;AAC9B,QAAI,QAAQ,QAAW;AACrB,aAAO,KAAK,MAAM,QAAQ,WAAW;AAAA,IACvC;AACA,WAAO,KAAK,MAAM,mBAAmB,KAAK,KAAK,UAAU,OAAO,WAAW;AAAA,EAC7E;AAAA;AAAA;AAAA;AAAA,EAKA,aAAa,KAAmC;AAC9C,UAAM,IAAI,KAAK,cAAc,KAAK,WAAqB;AACvD,WAAO,KAAK,EAAE,CAAC;AAAA,EACjB;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAWA,SAAS,OAAsB,WAA6B;AAC1D,QAAI,QAAQ;AACZ,eAAW,QAAQ,OAAO;AACxB,UAAI,KAAK,IAAI,KAAK,CAAC,GAAG,KAAK,CAAC,GAAG,SAAS,EAAG;AAAA,IAC7C;AACA,WAAO;AAAA,EACT;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EA2BA,SACE,KACA,MACA,aACA,SACA,gBACY;AACZ,UAAM,IAAI,KAAK,MAAM;AAAA,MACnB;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,MACA,kBAAkB;AAAA,MAClB;AAAA,IAAA;AAEF,WAAO,OAAO,MAAM,WAAW,IAAI,EAAE;AAAA,EACvC;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EA+BA,UACE,KACA,MACA,aACA,SACA,gBACY;AACZ,QAAI,OAAO,KAAK;AAChB,QAAI,KAAK,SAAU,MAAK,QAAQ,OAAO,KAAK,MAAA;AAC5C,QAAI;AACF,YAAM,IAAI,KAAK;AAAA,QACb;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA;AAAA,QACA,kBAAkB;AAAA,QAClB;AAAA,MAAA;AAEF,aAAO,OAAO,MAAM,WAAW,IAAI,EAAE;AAAA,IACvC,UAAA;AACE,UAAI;AACJ,aAAO,KAAK,KAAK,UAAU,KAAK,CAAC,KAAK,QAAQ;AAC5C,gCAAa,KAAK;AAClB,aAAK,QAAQ,OACX,KAAK,KAAK,WAAW,IACjB,YACC,KAAoC,SAAS,CAAC;AAAA,MACvD;AAEA,UAAI,UAAU;AACZ,aAAK,WAAW;AAAA,MAClB;AAAA,IACF;AAAA,EACF;AACF;AAGA,MAAM,MAAY;AAAA,EAShB,IAAI,SAAS;AACX,WAAQ,KAAa,aAAa;AAAA,EACpC;AAAA,EAEA,YAAY,OAAiB,CAAA,GAAI,QAAmB;AAClD,SAAK,OAAO;AACZ,SAAK,SAAS,UAAU;AACxB,SAAK,WAAW;AAAA,EAClB;AAAA;AAAA;AAAA,EAKA,SAAS;AACP,WAAO,KAAK,KAAK,KAAK,KAAK,SAAS,CAAC;AAAA,EACvC;AAAA;AAAA;AAAA,EAIA,QAAQ,KAAQ,SAAiB,KAAoC;AACnE,UAAM,OAAO,KAAK;AAClB,QAAI,KAAK,GACP,KAAK,KAAK,QACV,MAAM,MAAM;AACd,WAAO,KAAK,IAAI;AACd,YAAM,IAAI,IAAI,KAAK,GAAG,GAAI,GAAG;AAC7B,UAAI,IAAI,EAAG,MAAK,MAAM;AAAA,eACb,IAAI;AAEX,aAAK;AAAA,eACE,MAAM,EAAG,QAAO;AAAA,WACpB;AAEH,YAAI,QAAQ;AAEV,iBAAO,KAAK;AAAA,YACT,OAAM,IAAI,MAAM,8BAA8B;AAAA,MACrD;AACA,YAAO,KAAK,MAAO;AAAA,IACrB;AACA,WAAO,MAAM;AAAA,EACf;AAAA;AAAA;AAAA,EAKA,SAAwB;AACtB,WAAO,KAAK,KAAK,CAAC;AAAA,EACpB;AAAA,EAEA,QAAQ,aAAyC;AAC/C,QAAI,KAAK,KAAK,WAAW,EAAG,QAAO;AACnC,gBAAY,CAAC,IAAI,KAAK,KAAK,CAAC;AAC5B,gBAAY,CAAC,IAAI,KAAK,OAAO,CAAC;AAC9B,WAAO;AAAA,EACT;AAAA,EAEA,QAAQ,aAAyC;AAC/C,QAAI,KAAK,KAAK,WAAW,EAAG,QAAO;AACnC,UAAM,YAAY,KAAK,KAAK,SAAS;AACrC,gBAAY,CAAC,IAAI,KAAK,KAAK,SAAS;AACpC,gBAAY,CAAC,IAAI,KAAK,OAAO,SAAS;AACtC,WAAO;AAAA,EACT;AAAA,EAEA,QAAqB;AACnB,UAAM,IAAI,KAAK;AACf,WAAO,IAAI,MAAY,KAAK,KAAK,MAAM,CAAC,GAAG,MAAM,YAAY,IAAI,EAAE,MAAM,CAAC,CAAC;AAAA,EAC7E;AAAA,EAEA,IAAI,KAAQ,cAA6B,MAAkC;AACzE,UAAM,IAAI,KAAK,QAAQ,KAAK,IAAI,KAAK,QAAQ;AAC7C,WAAO,IAAI,IAAI,eAAe,KAAK,OAAO,CAAC;AAAA,EAC7C;AAAA,EAEA,mBACE,KACA,SACA,WACA,aACoB;AACpB,UAAM,IAAI,KAAK,QAAQ,KAAK,IAAI,OAAO;AACvC,UAAM,eAAe,IAAI,IAAI,CAAC,IAAI,IAAI,YAAY,IAAI,IAAI;AAC1D,QAAI,gBAAgB,GAAG;AACrB,kBAAY,CAAC,IAAI,KAAK,KAAK,YAAY;AACvC,kBAAY,CAAC,IAAI,KAAK,OAAO,YAAY;AACzC,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT;AAAA,EAEA,oBACE,KACA,SACA,WACA,aACoB;AACpB,UAAM,IAAI,KAAK,QAAQ,KAAK,IAAI,OAAO;AACvC,UAAM,eAAe,IAAI,IAAI,CAAC,IAAI,YAAY,IAAI,IAAI;AACtD,UAAM,OAAO,KAAK;AAClB,QAAI,eAAe,KAAK,QAAQ;AAC9B,kBAAY,CAAC,IAAI,KAAK,YAAY;AAClC,kBAAY,CAAC,IAAI,KAAK,OAAO,YAAY;AACzC,aAAO;AAAA,IACT;AACA,WAAO;AAAA,EACT;AAAA;AAAA;AAAA,EAKA,IACE,KACA,OACA,WACA,MACuB;AACvB,QAAI,IAAI,KAAK,QAAQ,KAAK,IAAI,KAAK,QAAQ;AAC3C,QAAI,IAAI,GAAG;AAET,UAAI,CAAC;AACL,WAAK;AAEL,UAAI,KAAK,KAAK,SAAS,KAAK,cAAc;AACxC,eAAO,KAAK,aAAa,GAAG,KAAK,OAAO,IAAI;AAAA,MAC9C,OAAO;AAEL,cAAM,kBAAkB,KAAK,kBAAA;AAC7B,YAAI,SAAsB;AAC1B,YAAI,IAAI,KAAK,KAAK,QAAQ;AACxB,eAAK,KAAK,KAAK;AACf,mBAAS;AAAA,QACX;AACA,eAAO,aAAa,GAAG,KAAK,OAAO,IAAI;AACvC,eAAO;AAAA,MACT;AAAA,IACF,OAAO;AAEL,UAAI,cAAc,OAAO;AACvB,YAAI,UAAU,OAAW,MAAK,YAAA;AAE9B,aAAK,KAAK,CAAC,IAAI;AACf,aAAK,OAAO,CAAC,IAAI;AAAA,MACnB;AACA,aAAO;AAAA,IACT;AAAA,EACF;AAAA,EAEA,cAAc;AACZ,QAAI,KAAK,WAAW;AAClB,aAAQ,KAAK,SAAS,KAAK,OAAO,MAAM,GAAG,KAAK,KAAK,MAAM;AAC7D,WAAO,KAAK;AAAA,EACd;AAAA,EAEA,aAAa,GAAU,KAAQ,OAAU,MAAmB;AAC1D,SAAK,KAAK,OAAO,GAAG,GAAG,GAAG;AAC1B,QAAI,KAAK,WAAW,WAAW;AAC7B,aAAO,UAAU,SAAS,KAAK,aAAc,WAAU,KAAK,MAAS;AACrE,UAAI,UAAU,QAAW;AACvB,eAAO;AAAA,MACT,OAAO;AACL,aAAK,SAAS,UAAU,MAAM,GAAG,KAAK,KAAK,SAAS,CAAC;AAAA,MACvD;AAAA,IACF;AACA,SAAK,OAAO,OAAO,GAAG,GAAG,KAAK;AAC9B,WAAO;AAAA,EACT;AAAA,EAEA,cAAc,KAAkB;AAI9B,QAAI,IAAI,KAAK;AACb,QAAI,IAAI,WAAW,WAAW;AAC5B,UAAI,MAAM,UAAW,GAAE,KAAK,MAAgB;AAAA,IAC9C,OAAO;AACL,UAAI,KAAK,YAAA;AACT,QAAE,KAAK,IAAI,OAAO,MAAA,CAAQ;AAAA,IAC5B;AACA,SAAK,KAAK,KAAK,IAAI,KAAK,OAAQ;AAAA,EAClC;AAAA,EAEA,aAAa,KAAkB;AAI7B,QAAI,IAAI,KAAK;AACb,QAAI,IAAI,WAAW,WAAW;AAC5B,UAAI,MAAM,UAAW,GAAE,QAAQ,MAAgB;AAAA,IACjD,OAAO;AACL,UAAI,KAAK,YAAA;AACT,QAAE,QAAQ,IAAI,OAAO,IAAA,CAAM;AAAA,IAC7B;AACA,SAAK,KAAK,QAAQ,IAAI,KAAK,KAAM;AAAA,EACnC;AAAA,EAEA,oBAAiC;AAE/B,UAAM,OAAO,KAAK,KAAK,UAAU,GAC/B,OAAO,KAAK,KAAK,OAAO,IAAI;AAC9B,UAAM,SACJ,KAAK,WAAW,YAAY,YAAY,KAAK,OAAO,OAAO,IAAI;AACjE,WAAO,IAAI,MAAY,MAAM,MAAM;AAAA,EACrC;AAAA;AAAA;AAAA,EAKA,SACE,KACA,MACA,aACA,UACA,MACA,OACA,SACgC;AAChC,UAAM,MAAM,KAAK;AACjB,QAAI,MAAM;AACV,QAAI,SAAS,KAAK;AAChB,UAAI,CAAC,YAAa,QAAO;AACzB,eAAS,OAAO,KAAK,QAAQ,KAAK,IAAI,GAAG,KAAK;AAC9C,UAAI,OAAO,EAAG,QAAO;AAAA,IACvB,OAAO;AACL,aAAO,KAAK,QAAQ,KAAK,GAAG,GAAG;AAC/B,cAAQ,KAAK,QAAQ,MAAM,IAAI,GAAG;AAClC,UAAI,QAAQ,EAAG,SAAQ,CAAC;AAAA,eACf,gBAAgB,KAAM;AAAA,IACjC;AACA,UAAM,OAAO,KAAK,MAChB,SAAS,KAAK;AAChB,QAAI,YAAY,QAAW;AACzB,eAAS,IAAI,MAAM,IAAI,OAAO,KAAK;AACjC,cAAM,MAAM,KAAK,CAAC;AAClB,cAAM,SAAS,QAAQ,KAAK,OAAO,CAAC,GAAI,OAAO;AAC/C,YAAI,WAAW,QAAW;AACxB,cAAI,aAAa,MAAM;AACrB,gBAAI,QAAQ,KAAK,CAAC,KAAK,KAAK,aAAa;AACvC,oBAAM,IAAI,MAAM,gDAAgD;AAClE,gBAAI,OAAO,QAAQ;AACjB,mBAAK,KAAK,OAAO,GAAG,CAAC;AACrB,kBAAI,KAAK,WAAW,gBAAgB,OAAO,OAAO,GAAG,CAAC;AACtD,mBAAK;AACL;AACA;AAAA,YACF,WAAW,OAAO,eAAe,OAAO,GAAG;AACzC,qBAAO,CAAC,IAAI,OAAO;AAAA,YACrB;AAAA,UACF;AACA,cAAI,OAAO,UAAU,OAAW,QAAO;AAAA,QACzC;AAAA,MACF;AAAA,IACF,gBAAgB,QAAQ;AACxB,WAAO;AAAA,EACT;AAAA;AAAA,EAGA,aAAa,KAAkB,GAAW;AACxC,SAAK,KAAK,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AACxC,QAAI,KAAK,WAAW,WAAW;AAC7B,UAAI,IAAI,WAAW,UAAW;AAC9B,WAAK,SAAS,KAAK,OAAO,MAAM,GAAG,KAAK,KAAK,MAAM;AAAA,IACrD;AACA,SAAK,OAAO,KAAK,MAAM,KAAK,QAAQ,IAAI,aAAa;AAAA,EACvD;AACF;AAGA,MAAM,sBAA4B,MAAY;AAAA;AAAA;AAAA;AAAA;AAAA,EAU5C,YAAY,UAA8B,MAAiB;AACzD,QAAI,CAAC,MAAM;AACT,aAAO,CAAA;AACP,eAAS,IAAI,GAAG,IAAI,SAAS,QAAQ,IAAK,MAAK,CAAC,IAAI,SAAS,CAAC,EAAG,OAAA;AAAA,IACnE;AACA,UAAM,IAAI;AACV,SAAK,WAAW;AAAA,EAClB;AAAA,EAEA,SAAS;AACP,WAAO,KAAK,SAAS,CAAC,EAAG,OAAA;AAAA,EAC3B;AAAA,EAEA,QAAQ,aAAyC;AAC/C,WAAO,KAAK,SAAS,CAAC,EAAG,QAAQ,WAAW;AAAA,EAC9C;AAAA,EAEA,QAAQ,aAAyC;AAC/C,WAAO,KAAK,SAAS,KAAK,SAAS,SAAS,CAAC,EAAG,QAAQ,WAAW;AAAA,EACrE;AAAA,EAEA,IAAI,KAAQ,cAA6B,MAAkC;AACzE,UAAM,IAAI,KAAK,QAAQ,KAAK,GAAG,KAAK,QAAQ,GAC1C,WAAW,KAAK;AAClB,WAAO,IAAI,SAAS,SAChB,SAAS,CAAC,EAAG,IAAI,KAAK,cAAc,IAAI,IACxC;AAAA,EACN;AAAA,EAEA,mBACE,KACA,SACA,WACA,aACoB;AACpB,UAAM,IAAI,KAAK,QAAQ,KAAK,GAAG,OAAO,GACpC,WAAW,KAAK;AAClB,QAAI,KAAK,SAAS,OAAQ,QAAO,KAAK,QAAQ,WAAW;AACzD,UAAM,SAAS,SAAS,CAAC,EAAG;AAAA,MAC1B;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IAAA;AAEF,QAAI,WAAW,UAAa,IAAI,GAAG;AACjC,aAAO,SAAS,IAAI,CAAC,EAAG,QAAQ,WAAW;AAAA,IAC7C;AACA,WAAO;AAAA,EACT;AAAA,EAEA,oBACE,KACA,SACA,WACA,aACoB;AACpB,UAAM,IAAI,KAAK,QAAQ,KAAK,GAAG,OAAO,GACpC,WAAW,KAAK,UAChB,SAAS,SAAS;AACpB,QAAI,KAAK,OAAQ,QAAO;AACxB,UAAM,SAAS,SAAS,CAAC,EAAG;AAAA,MAC1B;AAAA,MACA;AAAA,MACA;AAAA,MACA;AAAA,IAAA;AAEF,QAAI,WAAW,UAAa,IAAI,SAAS,GAAG;AAC1C,aAAO,SAAS,IAAI,CAAC,EAAG,QAAQ,WAAW;AAAA,IAC7C;AACA,WAAO;AAAA,EACT;AAAA;AAAA;AAAA,EAKA,IACE,KACA,OACA,WACA,MAC+B;AAC/B,UAAM,IAAI,KAAK,UACb,MAAM,KAAK,cACX,MAAM,KAAK;AACb,QAAI,IAAI,KAAK,IAAI,KAAK,QAAQ,KAAK,GAAG,GAAG,GAAG,EAAE,SAAS,CAAC,GACtD,QAAQ,EAAE,CAAC;AAEb,QAAI,MAAM,SAAU,GAAE,CAAC,IAAI,QAAQ,MAAM,MAAA;AACzC,QAAI,MAAM,KAAK,UAAU,KAAK;AAK5B,UAAI;AACJ,UACE,IAAI,MACH,QAAQ,EAAE,IAAI,CAAC,GAAI,KAAK,SAAS,OAClC,IAAI,MAAM,KAAK,CAAC,GAAI,GAAG,IAAI,GAC3B;AACA,YAAI,MAAM,SAAU,GAAE,IAAI,CAAC,IAAI,QAAQ,MAAM,MAAA;AAC7C,cAAM,cAAc,KAAK;AACzB,aAAK,KAAK,IAAI,CAAC,IAAI,MAAM,OAAA;AAAA,MAC3B,YACG,QAAQ,EAAE,IAAI,CAAC,OAAO,UACvB,MAAM,KAAK,SAAS,OACpB,IAAI,MAAM,UAAW,GAAG,IAAI,GAC5B;AACA,YAAI,MAAM,SAAU,GAAE,IAAI,CAAC,IAAI,QAAQ,MAAM,MAAA;AAC7C,cAAM,aAAa,KAAK;AACxB,aAAK,KAAK,CAAC,IAAI,EAAE,CAAC,EAAG,OAAA;AAAA,MACvB;AAAA,IACF;AAEA,UAAM,SAAS,MAAM,IAAI,KAAK,OAAO,WAAW,IAAI;AACpD,QAAI,WAAW,MAAO,QAAO;AAC7B,SAAK,KAAK,CAAC,IAAI,MAAM,OAAA;AACrB,QAAI,WAAW,KAAM,QAAO;AAG5B,QAAI,KAAK,KAAK,SAAS,KAAK;AAE1B,WAAK,OAAO,IAAI,GAAG,MAAM;AACzB,aAAO;AAAA,IACT,OAAO;AAEL,YAAM,kBAAkB,KAAK,kBAAA;AAC7B,UAAI,SAA8B;AAClC,UAAI,IAAI,OAAO,OAAA,GAAW,KAAK,OAAA,CAAS,IAAI,GAAG;AAC7C,iBAAS;AACT,aAAK,KAAK,KAAK;AAAA,MACjB;AACA,aAAO,OAAO,IAAI,GAAG,MAAM;AAC3B,aAAO;AAAA,IACT;AAAA,EACF;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAOA,OAAO,GAAU,OAAoB;AACnC,SAAK,SAAS,OAAO,GAAG,GAAG,KAAK;AAChC,SAAK,KAAK,OAAO,GAAG,GAAG,MAAM,QAAS;AAAA,EACxC;AAAA;AAAA;AAAA;AAAA;AAAA,EAMA,oBAAoB;AAElB,UAAM,OAAO,KAAK,SAAS,UAAU;AACrC,WAAO,IAAI;AAAA,MACT,KAAK,SAAS,OAAO,IAAI;AAAA,MACzB,KAAK,KAAK,OAAO,IAAI;AAAA,IAAA;AAAA,EAEzB;AAAA,EAEA,cAAc,KAAkB;AAI9B,SAAK,KAAK,KAAK,IAAI,KAAK,OAAQ;AAChC,SAAK,SAAS,KAAM,IAA4B,SAAS,OAAQ;AAAA,EACnE;AAAA,EAEA,aAAa,KAAkB;AAI7B,SAAK,KAAK,QAAQ,IAAI,KAAK,KAAM;AACjC,SAAK,SAAS,QAAS,IAA4B,SAAS,KAAM;AAAA,EACpE;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAQA,SACE,KACA,MACA,aACA,UACA,MACA,OACA,SACgC;AAChC,UAAM,MAAM,KAAK;AACjB,UAAM,OAAO,KAAK,MAChB,WAAW,KAAK;AAClB,QAAI,OAAO,KAAK,QAAQ,KAAK,GAAG,GAAG,GACjC,IAAI;AACN,UAAM,QAAQ,KAAK;AAAA,MACjB,SAAS,MAAM,OAAO,KAAK,QAAQ,MAAM,GAAG,GAAG;AAAA,MAC/C,KAAK,SAAS;AAAA,IAAA;AAEhB,QAAI,CAAC,UAAU;AAEb,aAAO,KAAK,OAAO,KAAK;AACtB,cAAM,SAAS,SAAS,CAAC,EAAG;AAAA,UAC1B;AAAA,UACA;AAAA,UACA;AAAA,UACA;AAAA,UACA;AAAA,UACA;AAAA,UACA;AAAA,QAAA;AAEF,YAAI,OAAO,WAAW,SAAU,QAAO;AACvC,gBAAQ;AAAA,MACV;AAAA,IACF,WAAW,KAAK,OAAO;AACrB,UAAI;AACF,eAAO,KAAK,OAAO,KAAK;AACtB,cAAI,SAAS,CAAC,EAAG,SAAU,UAAS,CAAC,IAAI,SAAS,CAAC,EAAG,MAAA;AACtD,gBAAM,SAAS,SAAS,CAAC,EAAG;AAAA,YAC1B;AAAA,YACA;AAAA,YACA;AAAA,YACA;AAAA,YACA;AAAA,YACA;AAAA,YACA;AAAA,UAAA;AAIF,eAAK,CAAC,IAAI,SAAS,CAAC,EAAG,OAAA;AACvB,cAAI,OAAO,WAAW,SAAU,QAAO;AACvC,kBAAQ;AAAA,QACV;AAAA,MACF,UAAA;AAEE,cAAM,OAAO,KAAK,gBAAgB;AAClC,YAAI,OAAO,EAAG;AACd,aAAK,IAAI,OAAO,KAAK,MAAM,KAAK;AAC9B,cAAI,SAAS,CAAC,EAAG,KAAK,UAAU,MAAM;AACpC,gBAAI,SAAS,CAAC,EAAG,KAAK,WAAW,GAAG;AAClC,mBAAK,SAAS,GAAG,KAAK,YAAY;AAAA,YACpC,OAAO;AAEL,mBAAK,OAAO,GAAG,CAAC;AAChB,uBAAS,OAAO,GAAG,CAAC;AAAA,YACtB;AAAA,UACF;AAAA,QACF;AACA,YAAI,SAAS,WAAW,KAAK,SAAS,CAAC,EAAG,KAAK,WAAW;AACxD,gBAAM,OAAO,eAAe;AAAA,MAChC;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA;AAAA,EAGA,SAAS,GAAU,SAA0B;AAC3C,UAAM,WAAW,KAAK;AACtB,QAAI,KAAK,KAAK,IAAI,IAAI,SAAS,QAAQ;AACrC,UAAI,SAAS,CAAC,EAAG,KAAK,SAAS,SAAS,IAAI,CAAC,EAAG,KAAK,UAAU,SAAS;AACtE,YAAI,SAAS,CAAC,EAAG;AAEf,mBAAS,CAAC,IAAI,SAAS,CAAC,EAAG,MAAA;AAC7B,iBAAS,CAAC,EAAG,aAAa,SAAS,IAAI,CAAC,GAAI,OAAO;AACnD,iBAAS,OAAO,IAAI,GAAG,CAAC;AACxB,aAAK,KAAK,OAAO,IAAI,GAAG,CAAC;AACzB,aAAK,KAAK,CAAC,IAAI,SAAS,CAAC,EAAG,OAAA;AAC5B,eAAO;AAAA,MACT;AAAA,IACF;AACA,WAAO;AAAA,EACT;AAAA;AAAA;AAAA;AAAA;AAAA;AAAA,EAOA,aAAa,KAAkB,aAAqB;AAElD,UAAM,YAAY,KAAK,KAAK;AAC5B,SAAK,KAAK,KAAK,MAAM,KAAK,MAAM,IAAI,IAAI;AACxC,UAAM,cAAe,IAAmC;AACxD,SAAK,SAAS,KAAK,MAAM,KAAK,UAAU,WAAW;AAEnD,QAAI,IAAI,YAAY,CAAC,KAAK,UAAU;AAGlC,iBAAW,SAAS,YAAa,OAAM,WAAW;AAAA,IACpD;AAKA,SAAK,SAAS,YAAY,GAAG,WAAW;AAAA,EAC1C;AACF;AAaA,MAAM,YAAwB,CAAA;AAE9B,MAAM,SAAS,EAAE,QAAQ,KAAA,GACvB,cAAc,MAAM;AACtB,MAAM,aAAa,WAAY;AAC7B,QAAM,IAAI,IAAI,MAAA;AACd,IAAE,WAAW;AACb,SAAO;AACT,GAAA;AACA,MAAM,cAA0B,CAAA;AAEhC,SAAS,MAAM,SAAkB,MAAkB;AACtC;AACT,SAAK,QAAQ,SAAS;AACtB,UAAM,IAAI,MAAM,KAAK,KAAK,GAAG,CAAC;AAAA,EAChC;AACF;"}
|
package/package.json
CHANGED
|
@@ -1,14 +1,14 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@tanstack/db",
|
|
3
3
|
"description": "A reactive client store for building super fast apps on sync",
|
|
4
|
-
"version": "0.2.
|
|
4
|
+
"version": "0.2.3",
|
|
5
5
|
"dependencies": {
|
|
6
6
|
"@standard-schema/spec": "^1.0.0",
|
|
7
|
-
"@tanstack/db-ivm": "0.1.
|
|
7
|
+
"@tanstack/db-ivm": "0.1.5"
|
|
8
8
|
},
|
|
9
9
|
"devDependencies": {
|
|
10
|
-
"@vitest/coverage-istanbul": "^3.
|
|
11
|
-
"arktype": "^2.1.
|
|
10
|
+
"@vitest/coverage-istanbul": "^3.2.4",
|
|
11
|
+
"arktype": "^2.1.22",
|
|
12
12
|
"temporal-polyfill": "^0.3.0"
|
|
13
13
|
},
|
|
14
14
|
"exports": {
|
package/src/collection.ts
CHANGED
|
@@ -395,13 +395,14 @@ export class CollectionImpl<
|
|
|
395
395
|
const callbacks = [...this.onFirstReadyCallbacks]
|
|
396
396
|
this.onFirstReadyCallbacks = []
|
|
397
397
|
callbacks.forEach((callback) => callback())
|
|
398
|
-
|
|
399
|
-
// to notify subscribers (like LiveQueryCollection) that the collection is ready
|
|
400
|
-
if (this.changeListeners.size > 0) {
|
|
401
|
-
this.emitEmptyReadyEvent()
|
|
402
|
-
}
|
|
403
398
|
}
|
|
404
399
|
}
|
|
400
|
+
|
|
401
|
+
// Always notify dependents when markReady is called, after status is set
|
|
402
|
+
// This ensures live queries get notified when their dependencies become ready
|
|
403
|
+
if (this.changeListeners.size > 0) {
|
|
404
|
+
this.emitEmptyReadyEvent()
|
|
405
|
+
}
|
|
405
406
|
}
|
|
406
407
|
|
|
407
408
|
public id = ``
|
|
@@ -1270,6 +1271,13 @@ export class CollectionImpl<
|
|
|
1270
1271
|
this.syncedData.clear()
|
|
1271
1272
|
this.syncedMetadata.clear()
|
|
1272
1273
|
this.syncedKeys.clear()
|
|
1274
|
+
|
|
1275
|
+
// 3) Clear currentVisibleState for truncated keys to ensure subsequent operations
|
|
1276
|
+
// are compared against the post-truncate state (undefined) rather than pre-truncate state
|
|
1277
|
+
// This ensures that re-inserted keys are emitted as INSERT events, not UPDATE events
|
|
1278
|
+
for (const key of changedKeys) {
|
|
1279
|
+
currentVisibleState.delete(key)
|
|
1280
|
+
}
|
|
1273
1281
|
}
|
|
1274
1282
|
|
|
1275
1283
|
for (const operation of transaction.operations) {
|