@sylphx/flow 2.11.0 → 2.12.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (27) hide show
  1. package/CHANGELOG.md +6 -0
  2. package/assets/slash-commands/review-account-security.md +16 -23
  3. package/assets/slash-commands/review-admin.md +17 -32
  4. package/assets/slash-commands/review-auth.md +16 -17
  5. package/assets/slash-commands/review-billing.md +16 -25
  6. package/assets/slash-commands/review-code-quality.md +18 -19
  7. package/assets/slash-commands/review-data-architecture.md +19 -18
  8. package/assets/slash-commands/review-database.md +19 -15
  9. package/assets/slash-commands/review-delivery.md +19 -30
  10. package/assets/slash-commands/review-discovery.md +19 -15
  11. package/assets/slash-commands/review-growth.md +15 -32
  12. package/assets/slash-commands/review-i18n.md +15 -28
  13. package/assets/slash-commands/review-ledger.md +19 -14
  14. package/assets/slash-commands/review-observability.md +16 -18
  15. package/assets/slash-commands/review-operability.md +16 -24
  16. package/assets/slash-commands/review-performance.md +15 -21
  17. package/assets/slash-commands/review-pricing.md +17 -22
  18. package/assets/slash-commands/review-privacy.md +17 -28
  19. package/assets/slash-commands/review-pwa.md +15 -18
  20. package/assets/slash-commands/review-referral.md +16 -25
  21. package/assets/slash-commands/review-security.md +20 -28
  22. package/assets/slash-commands/review-seo.md +22 -33
  23. package/assets/slash-commands/review-storage.md +18 -15
  24. package/assets/slash-commands/review-support.md +18 -20
  25. package/assets/slash-commands/review-trust-safety.md +42 -0
  26. package/assets/slash-commands/review-uiux.md +14 -24
  27. package/package.json +1 -1
@@ -1,6 +1,6 @@
1
1
  ---
2
2
  name: review-growth
3
- description: Review growth - onboarding, viral mechanics, retention
3
+ description: Review growth - activation, retention, virality
4
4
  agent: coder
5
5
  ---
6
6
 
@@ -12,46 +12,29 @@ agent: coder
12
12
  * **Delegate to multiple workers** to research different aspects in parallel; you act as the **final gate** to synthesize and verify quality.
13
13
  * Deliverables must be stated as **findings, gaps, and actionable recommendations**.
14
14
  * **Single-pass delivery**: no deferrals; deliver a complete assessment.
15
- * **Explore beyond the spec**: identify growth opportunities and conversion improvements.
15
+ * **Explore beyond the spec**: identify growth opportunities that don't yet exist.
16
16
 
17
17
  ## Tech Stack
18
18
 
19
19
  * **Analytics**: PostHog
20
20
  * **Framework**: Next.js
21
21
 
22
- ## Review Scope
22
+ ## Non-Negotiables
23
23
 
24
- ### Growth System (Onboarding, Share/Viral, Retention)
24
+ * Sharing/virality mechanics must be consent-aware
25
+ * Growth instrumentation must not violate privacy constraints
25
26
 
26
- * The review must produce a coherent, measurable growth system for activation, sharing/virality, and retention, aligned with compliance and anti-abuse constraints.
27
+ ## Context
27
28
 
28
- ### Onboarding
29
+ Growth isn't about tricks — it's about removing friction from value delivery. Users who quickly experience value stay; users who don't, leave.
29
30
 
30
- * Onboarding must be:
31
- * Outcome-oriented
32
- * Localized
33
- * Accessible
34
- * Instrumented
31
+ The review should consider: what's preventing users from reaching their "aha moment" faster? What would make them want to share? What brings them back? These aren't features to add — they're fundamental product questions.
35
32
 
36
- ### Sharing/Virality
33
+ ## Driving Questions
37
34
 
38
- * Sharing/virality must be:
39
- * Consent-aware
40
- * Abuse-resistant
41
- * Measurable end-to-end
42
-
43
- ### Retention
44
-
45
- * Retention must be:
46
- * Intentionally engineered
47
- * Monitored
48
- * Protected against regressions
49
-
50
- ## Key Areas to Explore
51
-
52
- * What is the current activation rate and where do users drop off?
53
- * How can time-to-value be reduced for new users?
54
- * What viral mechanics exist and how effective are they?
55
- * What retention patterns exist and what predicts churn?
56
- * How does the product re-engage dormant users?
57
- * What experiments could drive meaningful growth improvements?
35
+ * Where do users drop off before experiencing value?
36
+ * What would cut time-to-value in half?
37
+ * Why would a user tell someone else about this product?
38
+ * What brings users back after their first session?
39
+ * What signals predict churn before it happens?
40
+ * What would a 10x better onboarding look like?
@@ -1,6 +1,6 @@
1
1
  ---
2
2
  name: review-i18n
3
- description: Review i18n - locales, routing, canonicalization, UGC
3
+ description: Review i18n - localization, routing, translation quality
4
4
  agent: coder
5
5
  ---
6
6
 
@@ -12,43 +12,30 @@ agent: coder
12
12
  * **Delegate to multiple workers** to research different aspects in parallel; you act as the **final gate** to synthesize and verify quality.
13
13
  * Deliverables must be stated as **findings, gaps, and actionable recommendations**.
14
14
  * **Single-pass delivery**: no deferrals; deliver a complete assessment.
15
- * **Explore beyond the spec**: identify improvements for coverage, quality, and user experience.
15
+ * **Explore beyond the spec**: identify what would make the product feel native to each locale.
16
16
 
17
17
  ## Tech Stack
18
18
 
19
19
  * **i18n**: next-intl
20
20
  * **Framework**: Next.js
21
21
 
22
- ## Review Scope
22
+ ## Non-Negotiables
23
23
 
24
- ### Supported Locales
25
-
26
- `en`, `zh-Hans`, `zh-Hant`, `es`, `ja`, `ko`, `de`, `fr`, `pt-BR`, `it`, `nl`, `pl`, `tr`, `id`, `th`, `vi`
27
-
28
- ### URL Strategy: Prefix Except Default
29
-
30
- * English is default and non-prefixed.
31
- * `/en/*` must not exist; permanently redirect to non-prefixed equivalent.
32
- * All non-default locales are `/<locale>/...`.
33
-
34
- ### Globalization Rules
35
-
36
- * Intl formatting for dates, numbers, currency
37
- * Explicit fallback rules
24
+ * `/en/*` must not exist (permanently redirect to non-prefixed)
38
25
  * Missing translation keys must fail build
39
26
  * No hardcoded user-facing strings outside localization
40
27
 
41
- ### UGC Canonicalization
28
+ ## Context
29
+
30
+ Internationalization isn't just translation — it's making the product feel native to each market. Bad i18n is obvious to users and signals that they're second-class citizens. Good i18n is invisible.
42
31
 
43
- * Separate UI language from content language.
44
- * Exactly one canonical URL per UGC resource determined by content language.
45
- * No indexable locale-prefixed duplicates unless primary content is truly localized; otherwise redirect to canonical.
46
- * Canonical/hreflang/sitemap must reflect only true localized variants.
32
+ Consider: dates, numbers, currency, pluralization, text direction, cultural norms. Does the product feel like it was built for each locale, or does it feel like a translation of an English product?
47
33
 
48
- ## Key Areas to Explore
34
+ ## Driving Questions
49
35
 
50
- * How complete and consistent are the translations across all locales?
51
- * What user-facing strings are hardcoded and missing from localization?
52
- * How does the routing handle edge cases (unknown locales, malformed URLs)?
53
- * What is the translation workflow and how can it be improved?
54
- * How does the system handle RTL languages if needed in the future?
36
+ * What would make the product feel native to a non-English user?
37
+ * Where do translations feel awkward or machine-generated?
38
+ * What cultural assumptions are baked into the UX that don't translate?
39
+ * How painful is the translation workflow for adding new strings?
40
+ * What locales are we missing that represent real market opportunity?
41
+ * Where do we fall back to English in ways users would notice?
@@ -1,6 +1,6 @@
1
1
  ---
2
2
  name: review-ledger
3
- description: Review ledger - financial-grade balance system, immutable ledger
3
+ description: Review ledger - balance systems, financial integrity, reconciliation
4
4
  agent: coder
5
5
  ---
6
6
 
@@ -12,7 +12,7 @@ agent: coder
12
12
  * **Delegate to multiple workers** to research different aspects in parallel; you act as the **final gate** to synthesize and verify quality.
13
13
  * Deliverables must be stated as **findings, gaps, and actionable recommendations**.
14
14
  * **Single-pass delivery**: no deferrals; deliver a complete assessment.
15
- * **Explore beyond the spec**: identify improvements for accuracy, auditability, and reconciliation.
15
+ * **Explore beyond the spec**: identify financial integrity risks before they become real problems.
16
16
 
17
17
  ## Tech Stack
18
18
 
@@ -20,19 +20,24 @@ agent: coder
20
20
  * **Database**: Neon (Postgres)
21
21
  * **ORM**: Drizzle
22
22
 
23
- ## Review Scope
23
+ ## Non-Negotiables
24
24
 
25
- ### Financial-Grade Balance System (Only if "balance/credits/wallet" exists)
25
+ * Balances must be immutable ledger (append-only), not mutable fields
26
+ * No floating-point for money (use deterministic precision)
27
+ * All financial mutations must be idempotent
28
+ * Monetary flows must be reconcilable with Stripe
26
29
 
27
- * Any balance concept must be implemented as an **immutable ledger** (append-only source of truth), not a mutable balance field.
28
- * Deterministic precision (no floats), idempotent posting, concurrency safety, transactional integrity, and auditability are required.
29
- * Monetary flows must be currency-based and reconcilable with Stripe; credits (if used) must be governed as non-cash entitlements.
30
+ ## Context
30
31
 
31
- ## Key Areas to Explore
32
+ Financial systems are unforgiving. A bug that creates or destroys money — even briefly — is a serious incident. Users trust us with their money; that trust is easily lost and hard to regain.
32
33
 
33
- * Is there a balance/credits system and how is it implemented?
34
- * If mutable balances exist, what are the risks and how to migrate to immutable ledger?
35
- * How does the system handle concurrent transactions?
36
- * What is the reconciliation process with Stripe?
37
- * How are edge cases handled (refunds, disputes, partial payments)?
38
- * What audit trail exists for financial mutations?
34
+ If balance/credits/wallet exists, it must be bulletproof. If it doesn't exist yet, consider whether the current design would support adding it correctly. Retrofitting financial integrity is painful.
35
+
36
+ ## Driving Questions
37
+
38
+ * Does a balance/credits system exist, and is it implemented correctly?
39
+ * Where could money be created or destroyed by a bug?
40
+ * What happens during concurrent transactions?
41
+ * How would we detect if balances drifted from reality?
42
+ * Can we prove every balance by replaying the ledger?
43
+ * What financial edge cases (refunds, disputes, chargebacks) aren't handled?
@@ -1,6 +1,6 @@
1
1
  ---
2
2
  name: review-observability
3
- description: Review observability - logs, Sentry, correlation IDs, alerting
3
+ description: Review observability - logging, tracing, alerting, debugging
4
4
  agent: coder
5
5
  ---
6
6
 
@@ -12,7 +12,7 @@ agent: coder
12
12
  * **Delegate to multiple workers** to research different aspects in parallel; you act as the **final gate** to synthesize and verify quality.
13
13
  * Deliverables must be stated as **findings, gaps, and actionable recommendations**.
14
14
  * **Single-pass delivery**: no deferrals; deliver a complete assessment.
15
- * **Explore beyond the spec**: identify blind spots and debugging improvements.
15
+ * **Explore beyond the spec**: identify the production issues we can't debug today.
16
16
 
17
17
  ## Tech Stack
18
18
 
@@ -20,24 +20,22 @@ agent: coder
20
20
  * **Analytics**: PostHog
21
21
  * **Platform**: Vercel
22
22
 
23
- ## Review Scope
23
+ ## Non-Negotiables
24
24
 
25
- ### Observability and Alerting (Mandatory)
25
+ * Correlation IDs must exist end-to-end (request → job → webhook)
26
+ * Alerts must exist for critical failures (webhook failures, auth attacks, drift)
26
27
 
27
- * Structured logs and correlation IDs must exist end-to-end (request/job/webhook) with consistent traceability
28
- * Define critical-path SLO/SLI posture
29
- * Define actionable alerts for:
30
- * Webhook failures
31
- * Ledger/entitlement drift
32
- * Authentication attacks
33
- * Abuse spikes
34
- * Drift detection
28
+ ## Context
35
29
 
36
- ## Key Areas to Explore
30
+ Observability is about answering questions when things go wrong. It's 3am, something is broken, users are complaining — can you figure out what happened? How fast?
37
31
 
38
- * How easy is it to debug a production issue end-to-end?
32
+ Good observability makes debugging easy. Bad observability means you're guessing, adding log lines, redeploying, and hoping. Consider: what questions would you need to answer during an incident, and can you answer them today?
33
+
34
+ ## Driving Questions
35
+
36
+ * If something breaks in production right now, how would we find out?
39
37
  * What blind spots exist where errors go unnoticed?
40
- * How effective are the current alerts (signal vs noise)?
41
- * What SLOs/SLIs are defined and are they meaningful?
42
- * How does log correlation work across async boundaries?
43
- * What dashboards exist and do they answer the right questions?
38
+ * How long would it take to trace a user's request through the entire system?
39
+ * What alerts exist, and do they fire for the right things?
40
+ * Where do we have noise that's training people to ignore alerts?
41
+ * What production issue in the last month was hard to debug, and why?
@@ -1,6 +1,6 @@
1
1
  ---
2
2
  name: review-operability
3
- description: Review operability - async workflows, DLQ, retries, drift detection
3
+ description: Review operability - workflows, retries, DLQ, incident response
4
4
  agent: coder
5
5
  ---
6
6
 
@@ -12,7 +12,7 @@ agent: coder
12
12
  * **Delegate to multiple workers** to research different aspects in parallel; you act as the **final gate** to synthesize and verify quality.
13
13
  * Deliverables must be stated as **findings, gaps, and actionable recommendations**.
14
14
  * **Single-pass delivery**: no deferrals; deliver a complete assessment.
15
- * **Explore beyond the spec**: identify operational risks and reliability improvements.
15
+ * **Explore beyond the spec**: identify what will break at 3am and how we'd fix it.
16
16
 
17
17
  ## Tech Stack
18
18
 
@@ -20,31 +20,23 @@ agent: coder
20
20
  * **Cache**: Upstash Redis
21
21
  * **Platform**: Vercel
22
22
 
23
- ## Review Scope
23
+ ## Non-Negotiables
24
24
 
25
- ### Async/Workflows Governance (Hard Requirement)
25
+ * Dead-letter handling must exist and be operable (visible, replayable)
26
+ * Side-effects (email, billing, ledger) must be idempotent or safely re-entrant
27
+ * Drift alerts must have remediation playbooks
26
28
 
27
- * Define idempotency and deduplication posture
28
- * Define controlled retries/backoff
29
- * **Dead-letter handling must exist and be observable and operable**
30
- * **Safe replay must be supported**
31
- * Side-effects (email/billing/ledger/entitlements) must be governed such that they are either proven effectively-once or safely re-entrant
29
+ ## Context
32
30
 
33
- ### Drift Detection (Hard Requirement)
31
+ Operability is about running the system in production — not just building it. Systems fail. Jobs get stuck. State drifts. The question is: when something goes wrong, can an operator fix it without deploying code?
34
32
 
35
- * Drift alerts must have a defined remediation playbook (automated fix or operator workflow)
36
- * Each remediation must be auditable and support post-incident traceability
33
+ Consider the operator experience during an incident. What tools do they have? What runbooks exist? Can they safely retry failed jobs? Can they detect and fix drift?
37
34
 
38
- ### Release Safety
35
+ ## Driving Questions
39
36
 
40
- * Define safe rollout posture with backward compatibility
41
- * Rollback expectations for billing/ledger/auth changes
42
-
43
- ## Key Areas to Explore
44
-
45
- * How does the system handle job failures and retries?
46
- * What happens to messages that fail permanently (DLQ)?
47
- * How are operators notified of and able to resolve stuck workflows?
48
- * What drift can occur between systems and how is it detected?
49
- * How safe is the deployment process for critical paths?
50
- * What runbooks exist for common operational issues?
37
+ * What happens when a job fails permanently?
38
+ * How would an operator know something is stuck?
39
+ * Can failed workflows be safely replayed without duplicating side-effects?
40
+ * What drift can occur between systems, and how would we detect it?
41
+ * What's the rollback plan if a deploy breaks something critical?
42
+ * What runbooks exist, and what runbooks should exist but don't?
@@ -1,6 +1,6 @@
1
1
  ---
2
2
  name: review-performance
3
- description: Review performance - budgets, Core Web Vitals, caching
3
+ description: Review performance - speed, Core Web Vitals, bottlenecks
4
4
  agent: coder
5
5
  ---
6
6
 
@@ -12,7 +12,7 @@ agent: coder
12
12
  * **Delegate to multiple workers** to research different aspects in parallel; you act as the **final gate** to synthesize and verify quality.
13
13
  * Deliverables must be stated as **findings, gaps, and actionable recommendations**.
14
14
  * **Single-pass delivery**: no deferrals; deliver a complete assessment.
15
- * **Explore beyond the spec**: identify bottlenecks and optimization opportunities.
15
+ * **Explore beyond the spec**: identify what's making the product feel slow.
16
16
 
17
17
  ## Tech Stack
18
18
 
@@ -20,28 +20,22 @@ agent: coder
20
20
  * **Platform**: Vercel
21
21
  * **Tooling**: Bun
22
22
 
23
- ## Review Scope
23
+ ## Non-Negotiables
24
24
 
25
- ### Performance Requirements
25
+ * Core Web Vitals must meet thresholds (LCP < 2.5s, CLS < 0.1, INP < 200ms)
26
+ * Performance regressions must be detectable
26
27
 
27
- * Performance must be **measurable and regression-resistant**:
28
- * Define and enforce performance budgets for key journeys
29
- * Define caching boundaries and correctness requirements across SSR/ISR/static and service worker behavior
30
- * Monitor Core Web Vitals and server latency
31
- * Alert on regressions
28
+ ## Context
32
29
 
33
- ### Core Web Vitals Targets
30
+ Performance is a feature. Slow products feel broken, even when they're correct. Users don't read loading spinners — they leave. Every 100ms of latency costs engagement.
34
31
 
35
- * LCP (Largest Contentful Paint) < 2.5s
36
- * FID (First Input Delay) < 100ms
37
- * CLS (Cumulative Layout Shift) < 0.1
38
- * INP (Interaction to Next Paint) < 200ms
32
+ Don't just measure understand. Where does time go? What's blocking the critical path? What would make the product feel instant? Sometimes small architectural changes have bigger impact than optimization.
39
33
 
40
- ## Key Areas to Explore
34
+ ## Driving Questions
41
35
 
42
- * What are the current Core Web Vitals scores and where do they fall short?
43
- * Which pages or components are the biggest performance bottlenecks?
44
- * How effective is the current caching strategy?
45
- * What opportunities exist for code splitting and lazy loading?
46
- * How does the bundle size compare to industry benchmarks?
47
- * What database queries are slow and how can they be optimized?
36
+ * What makes the product feel slow to users?
37
+ * Where are the biggest bottlenecks in the critical user journeys?
38
+ * What's in the critical rendering path that shouldn't be?
39
+ * How large is the JavaScript bundle, and what's bloating it?
40
+ * What database queries are slow, and why?
41
+ * If we could make one thing 10x faster, what would have the most impact?
@@ -1,6 +1,6 @@
1
1
  ---
2
2
  name: review-pricing
3
- description: Review pricing - pricing governance, grandfathering, migrations
3
+ description: Review pricing - strategy, packaging, monetization
4
4
  agent: coder
5
5
  ---
6
6
 
@@ -8,38 +8,33 @@ agent: coder
8
8
 
9
9
  ## Mandate
10
10
 
11
- * Perform a **deep, thorough review** of pricing governance in this codebase.
11
+ * Perform a **deep, thorough review** of pricing in this codebase.
12
12
  * **Delegate to multiple workers** to research different aspects in parallel; you act as the **final gate** to synthesize and verify quality.
13
13
  * Deliverables must be stated as **findings, gaps, and actionable recommendations**.
14
14
  * **Single-pass delivery**: no deferrals; deliver a complete assessment.
15
- * **Explore beyond the spec**: identify monetization opportunities and pricing strategy improvements.
15
+ * **Explore beyond the spec**: identify monetization opportunities and pricing friction.
16
16
 
17
17
  ## Tech Stack
18
18
 
19
19
  * **Payments**: Stripe
20
20
 
21
- ## Review Scope
21
+ ## Non-Negotiables
22
22
 
23
- ### Stripe Pricing Governance (Stripe-first, not Dashboard-first)
23
+ * Stripe is system-of-record; internal systems must not contradict Stripe truth
24
+ * Pricing changes must create new Stripe Prices (historical prices immutable)
25
+ * Non-admin Stripe Dashboard changes must be detectable (drift)
24
26
 
25
- * Stripe is the system-of-record for products, prices, subscriptions, invoices, and disputes; internal systems must not contradict Stripe truth.
26
- * Pricing changes must be performed by creating new Stripe Prices and updating the "active sellable price" policy; historical prices must remain immutable for existing subscriptions unless an approved migration is executed.
27
- * Default pricing change policy is **grandfathering**: existing subscribers keep their current price; new customers use the currently active sellable price.
27
+ ## Context
28
28
 
29
- ### Pricing Admin Requirements
29
+ Pricing is strategy, not just configuration. The right pricing captures value, reduces friction, and aligns incentives. The wrong pricing leaves money on the table or drives users away.
30
30
 
31
- * An operational-grade Pricing Admin must exist to manage:
32
- * Creation of new Stripe Prices
33
- * Activation/deactivation of sellable prices
34
- * Controlled bulk subscription migrations (optional)
35
- * All actions must be governed by RBAC, step-up controls, and audit logs.
36
- * Stripe Dashboard is treated as monitoring/emergency access; non-admin Stripe changes must be detectable (drift), alertable, and remediable.
31
+ Consider the entire monetization journey: how users discover value, how they decide to pay, how they upgrade/downgrade. Where is there friction? Where are we undercharging? Where are we losing conversions?
37
32
 
38
- ## Key Areas to Explore
33
+ ## Driving Questions
39
34
 
40
- * How does the pricing model compare to competitors?
41
- * What friction exists in the upgrade/downgrade paths?
42
- * How is grandfathering implemented and communicated?
43
- * What tools exist for pricing experimentation (A/B tests)?
44
- * How are pricing changes rolled out safely?
45
- * What analytics exist for pricing optimization decisions?
35
+ * How does our pricing compare to competitors?
36
+ * Where do users abandon the upgrade flow?
37
+ * What would make upgrading feel like an obvious decision?
38
+ * How do we communicate value at each pricing tier?
39
+ * What pricing experiments would teach us the most?
40
+ * If we could change one thing about pricing, what would have the biggest impact?
@@ -1,6 +1,6 @@
1
1
  ---
2
2
  name: review-privacy
3
- description: Review privacy - consent, PII handling, data lifecycle, GDPR
3
+ description: Review privacy - consent, PII, data lifecycle, compliance
4
4
  agent: coder
5
5
  ---
6
6
 
@@ -21,36 +21,25 @@ agent: coder
21
21
  * **Tag Management**: GTM (marketing only)
22
22
  * **Observability**: Sentry
23
23
 
24
- ## Review Scope
24
+ ## Non-Negotiables
25
25
 
26
- ### Consent Governance (Release-Blocking)
26
+ * Analytics and marketing must not fire before user consent
27
+ * PII must not leak into logs, Sentry, PostHog, or third-party services
28
+ * Account deletion must propagate to all third-party processors
29
+ * Marketing tags (GTM, Google Ads) must not load without consent
30
+ * Conversion tracking must be server-truth aligned, idempotent, and deduplicated
27
31
 
28
- * Analytics (PostHog) and marketing/newsletter communications (Resend) must be governed by consent and user preferences.
29
- * Marketing tags (including GTM and Google Ads) must not load or fire without the appropriate consent.
30
- * Without consent, tracking and marketing sends must not occur, except for strictly necessary service communications.
31
- * Event schemas and attributes must follow data minimization, with explicit PII classification and handling rules.
32
+ ## Context
32
33
 
33
- ### PII and Sensitive Data Controls (Hard Requirement)
34
+ Privacy isn't just compliance it's trust. Users share data expecting it to be handled responsibly. Every log line, every analytics event, every third-party integration is a potential privacy leak.
34
35
 
35
- * PII rules apply to logs, Sentry, PostHog, support tooling, email systems, and marketing tags/conversion payloads.
36
- * A consistent scrubbing/redaction standard must exist, and must be covered by automated tests to prevent leakage to third parties.
36
+ The review should verify that actual behavior matches stated policy. If the privacy policy says "we don't track without consent," does the code actually enforce that? Mismatches are not just bugs — they're trust violations.
37
37
 
38
- ### Data Lifecycle
38
+ ## Driving Questions
39
39
 
40
- * Define deletion/deactivation semantics
41
- * Deletion propagation to third parties
42
- * Export where applicable
43
- * **Define data classification, retention periods, deletion propagation to third-party processors, and explicit exceptions** (legal/tax/anti-fraud)
44
-
45
- ### Behavioral Consistency
46
-
47
- * **Behavioral consistency is required**: policy and disclosures must match actual behavior across UI, data handling, logging/observability, analytics, support operations, and marketing tags; mismatches are release-blocking.
48
-
49
- ## Key Areas to Explore
50
-
51
- * Does the consent implementation actually block tracking before consent?
52
- * Where does PII leak into logs, analytics, or error tracking?
53
- * How does account deletion propagate to all third-party services?
54
- * Does the privacy policy accurately reflect actual data practices?
55
- * What data retention policies exist and are they enforced?
56
- * How would the system handle a GDPR data subject access request?
40
+ * Does the consent implementation actually block tracking, or just record preference?
41
+ * Where does PII leak that we haven't noticed?
42
+ * If a user requests data deletion, what actually gets deleted vs. retained?
43
+ * Does the privacy policy accurately reflect what the code actually does?
44
+ * How would we handle a GDPR data subject access request today?
45
+ * What data are we collecting that we don't actually need?
@@ -1,6 +1,6 @@
1
1
  ---
2
2
  name: review-pwa
3
- description: Review PWA - manifest, service worker, caching, push notifications
3
+ description: Review PWA - offline experience, installation, engagement
4
4
  agent: coder
5
5
  ---
6
6
 
@@ -12,32 +12,29 @@ agent: coder
12
12
  * **Delegate to multiple workers** to research different aspects in parallel; you act as the **final gate** to synthesize and verify quality.
13
13
  * Deliverables must be stated as **findings, gaps, and actionable recommendations**.
14
14
  * **Single-pass delivery**: no deferrals; deliver a complete assessment.
15
- * **Explore beyond the spec**: identify engagement opportunities and offline capabilities.
15
+ * **Explore beyond the spec**: identify what would make the web experience feel native.
16
16
 
17
17
  ## Tech Stack
18
18
 
19
19
  * **Framework**: Next.js
20
20
  * **Platform**: Vercel
21
21
 
22
- ## Review Scope
22
+ ## Non-Negotiables
23
23
 
24
- ### PWA Requirements
24
+ * Service worker must not cache personalized/sensitive/authorized content
25
+ * Cache invalidation on deploy must be correct (no stale content)
25
26
 
26
- * Manifest file complete and valid
27
- * Service worker with explicit cache correctness
28
- * Push notifications using VAPID where applicable
27
+ ## Context
29
28
 
30
- ### Service Worker Caching Boundary (Mandatory)
29
+ A PWA is an opportunity to deliver native-like experience without an app store. But a bad PWA is worse than no PWA — stale content, broken offline states, and confusing installation prompts erode trust.
31
30
 
32
- * Service worker must not cache personalized/sensitive/authorized content
33
- * Authenticated and entitlement-sensitive routes must have explicit cache-control and SW rules
34
- * Must be validated by tests to prevent stale or unauthorized state exposure
31
+ Consider: what would make users want to install this? What should work offline? How do we handle the transition between online and offline gracefully?
35
32
 
36
- ## Key Areas to Explore
33
+ ## Driving Questions
37
34
 
38
- * Does the PWA meet installation criteria on all platforms?
39
- * What is the offline experience and how can it be improved?
40
- * How does the service worker handle cache invalidation on deploys?
41
- * What push notification capabilities exist and how are they used?
42
- * Are there any caching bugs that expose stale or unauthorized content?
43
- * How does the PWA experience compare to native app expectations?
35
+ * Would users actually want to install this as an app? Why or why not?
36
+ * What should the offline experience be, and what is it today?
37
+ * What happens when users go offline in the middle of something important?
38
+ * How do we handle cache invalidation without breaking the experience?
39
+ * What push notification opportunities exist that we're not using?
40
+ * What would make the installed experience better than the browser experience?
@@ -1,6 +1,6 @@
1
1
  ---
2
2
  name: review-referral
3
- description: Review referral - attribution, anti-fraud, rewards, clawback
3
+ description: Review referral - attribution, rewards, fraud prevention
4
4
  agent: coder
5
5
  ---
6
6
 
@@ -12,39 +12,30 @@ agent: coder
12
12
  * **Delegate to multiple workers** to research different aspects in parallel; you act as the **final gate** to synthesize and verify quality.
13
13
  * Deliverables must be stated as **findings, gaps, and actionable recommendations**.
14
14
  * **Single-pass delivery**: no deferrals; deliver a complete assessment.
15
- * **Explore beyond the spec**: identify growth opportunities and fraud prevention improvements.
15
+ * **Explore beyond the spec**: identify growth opportunities and fraud vectors.
16
16
 
17
17
  ## Tech Stack
18
18
 
19
19
  * **Analytics**: PostHog
20
20
  * **Database**: Neon (Postgres)
21
21
 
22
- ## Review Scope
22
+ ## Non-Negotiables
23
23
 
24
- ### Referral (Anti-Abuse Baseline Required)
24
+ * Referral rewards must have clawback capability for fraud
25
+ * Attribution must be auditable (who referred whom, when, reward status)
26
+ * Velocity controls must exist to prevent abuse
25
27
 
26
- * Referral must be measurable, abuse-resistant, and governed:
27
- * Attribution semantics
28
- * Reward lifecycle governance (including revocation/clawbacks)
29
- * Anti-fraud measures
30
- * Admin reporting/audit
31
- * Localized and instrumented
28
+ ## Context
32
29
 
33
- ### Referral Anti-Fraud Minimum Baseline (Mandatory)
30
+ Referral programs can drive explosive growth — or become fraud magnets. The best referral programs make sharing natural and rewarding. The worst become liability when abusers exploit them.
34
31
 
35
- * Define a minimum set of risk signals and enforcement measures, including:
36
- * Velocity controls
37
- * Account/device linkage posture
38
- * Risk-tiered enforcement
39
- * Reward delay/hold/freeze
40
- * Clawback conditions
41
- * Auditable manual review/appeal posture where applicable
32
+ Consider both sides: what makes users want to share? And what prevents bad actors from gaming the system? A referral program that's easy to abuse is worse than no referral program.
42
33
 
43
- ## Key Areas to Explore
34
+ ## Driving Questions
44
35
 
45
- * How effective is the current referral program at driving growth?
46
- * What fraud patterns have been observed and how are they mitigated?
47
- * How does the attribution model handle edge cases (multiple touches, expired links)?
48
- * What is the reward fulfillment process and where can it fail?
49
- * How do users discover and share referral links?
50
- * What analytics exist to measure referral program ROI?
36
+ * Why would a user share this product with someone they know?
37
+ * How easy is it for a bad actor to generate fake referrals?
38
+ * What fraud patterns exist that we haven't addressed?
39
+ * What is the actual ROI of the referral program?
40
+ * Where do users drop off in the referral/share flow?
41
+ * If we redesigned referrals from scratch, what would be different?