@superatomai/sdk-node 0.0.13 → 0.0.15
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/index.d.mts +15 -1
- package/dist/index.d.ts +15 -1
- package/dist/index.js +1480 -1524
- package/dist/index.js.map +1 -1
- package/dist/index.mjs +1480 -1524
- package/dist/index.mjs.map +1 -1
- package/package.json +1 -1
package/dist/index.mjs
CHANGED
|
@@ -522,6 +522,25 @@ var ReportsRequestMessageSchema = z3.object({
|
|
|
522
522
|
type: z3.literal("REPORTS"),
|
|
523
523
|
payload: ReportsRequestPayloadSchema
|
|
524
524
|
});
|
|
525
|
+
var UIBlockSchema = z3.object({
|
|
526
|
+
id: z3.string().optional(),
|
|
527
|
+
userQuestion: z3.string().optional(),
|
|
528
|
+
text: z3.string().optional(),
|
|
529
|
+
textResponse: z3.string().optional(),
|
|
530
|
+
component: ComponentSchema.optional(),
|
|
531
|
+
// Legacy field
|
|
532
|
+
generatedComponentMetadata: ComponentSchema.optional(),
|
|
533
|
+
// Actual field used by UIBlock class
|
|
534
|
+
componentData: z3.record(z3.any()).optional(),
|
|
535
|
+
actions: z3.array(z3.any()).optional(),
|
|
536
|
+
isFetchingActions: z3.boolean().optional(),
|
|
537
|
+
createdAt: z3.string().optional(),
|
|
538
|
+
metadata: z3.object({
|
|
539
|
+
timestamp: z3.number().optional(),
|
|
540
|
+
userPrompt: z3.string().optional(),
|
|
541
|
+
similarity: z3.number().optional()
|
|
542
|
+
}).optional()
|
|
543
|
+
});
|
|
525
544
|
var BookmarkDataSchema = z3.object({
|
|
526
545
|
id: z3.number().optional(),
|
|
527
546
|
uiblock: z3.any(),
|
|
@@ -530,9 +549,11 @@ var BookmarkDataSchema = z3.object({
|
|
|
530
549
|
updated_at: z3.string().optional()
|
|
531
550
|
});
|
|
532
551
|
var BookmarksRequestPayloadSchema = z3.object({
|
|
533
|
-
operation: z3.enum(["create", "update", "delete", "getAll", "getOne"]),
|
|
552
|
+
operation: z3.enum(["create", "update", "delete", "getAll", "getOne", "getByUser", "getByThread"]),
|
|
534
553
|
data: z3.object({
|
|
535
554
|
id: z3.number().optional(),
|
|
555
|
+
userId: z3.number().optional(),
|
|
556
|
+
threadId: z3.string().optional(),
|
|
536
557
|
uiblock: z3.any().optional()
|
|
537
558
|
}).optional()
|
|
538
559
|
});
|
|
@@ -1360,7 +1381,7 @@ async function cleanupUserStorage() {
|
|
|
1360
1381
|
}
|
|
1361
1382
|
|
|
1362
1383
|
// src/auth/validator.ts
|
|
1363
|
-
function validateUser(credentials) {
|
|
1384
|
+
async function validateUser(credentials, collections) {
|
|
1364
1385
|
const { username, email, password } = credentials;
|
|
1365
1386
|
const identifier = username || email;
|
|
1366
1387
|
logger.debug("[validateUser] Starting user validation");
|
|
@@ -1372,7 +1393,39 @@ function validateUser(credentials) {
|
|
|
1372
1393
|
error: "Username or email and password are required"
|
|
1373
1394
|
};
|
|
1374
1395
|
}
|
|
1375
|
-
|
|
1396
|
+
if (collections && collections["users"] && collections["users"]["authenticate"]) {
|
|
1397
|
+
logger.debug(`[validateUser] Attempting database authentication for: ${identifier}`);
|
|
1398
|
+
try {
|
|
1399
|
+
const dbResult = await collections["users"]["authenticate"]({
|
|
1400
|
+
identifier,
|
|
1401
|
+
password
|
|
1402
|
+
});
|
|
1403
|
+
logger.info("[validateUser] Database authentication attempt completed", dbResult);
|
|
1404
|
+
if (dbResult && dbResult.success && dbResult.data) {
|
|
1405
|
+
logger.info(`[validateUser] \u2713 User authenticated via database: ${dbResult.data.username}`);
|
|
1406
|
+
return {
|
|
1407
|
+
success: true,
|
|
1408
|
+
data: dbResult.data.username,
|
|
1409
|
+
username: dbResult.data.username,
|
|
1410
|
+
userId: dbResult.data.id
|
|
1411
|
+
};
|
|
1412
|
+
} else {
|
|
1413
|
+
logger.debug(`[validateUser] Database auth failed for ${identifier}: ${dbResult?.error || "Invalid credentials"}`);
|
|
1414
|
+
if (dbResult && dbResult.error === "Invalid credentials") {
|
|
1415
|
+
return {
|
|
1416
|
+
success: false,
|
|
1417
|
+
error: "Invalid credentials"
|
|
1418
|
+
};
|
|
1419
|
+
}
|
|
1420
|
+
}
|
|
1421
|
+
} catch (error) {
|
|
1422
|
+
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
1423
|
+
logger.debug(`[validateUser] Database lookup error: ${errorMsg}, falling back to file storage`);
|
|
1424
|
+
}
|
|
1425
|
+
} else {
|
|
1426
|
+
logger.debug("[validateUser] No users collection available, using file storage only");
|
|
1427
|
+
}
|
|
1428
|
+
logger.info(`[validateUser] Attempting file-based validation for: ${identifier}`);
|
|
1376
1429
|
const user = findUserByUsernameOrEmail(identifier);
|
|
1377
1430
|
if (!user) {
|
|
1378
1431
|
logger.warn(`[validateUser] Validation failed: User not found - ${identifier}`);
|
|
@@ -1381,7 +1434,7 @@ function validateUser(credentials) {
|
|
|
1381
1434
|
error: "Invalid username or email"
|
|
1382
1435
|
};
|
|
1383
1436
|
}
|
|
1384
|
-
logger.debug(`[validateUser] User found: ${user.username}, verifying password`);
|
|
1437
|
+
logger.debug(`[validateUser] User found in file storage: ${user.username}, verifying password`);
|
|
1385
1438
|
const hashedPassword = hashPassword(user.password);
|
|
1386
1439
|
if (hashedPassword !== password) {
|
|
1387
1440
|
logger.warn(`[validateUser] Validation failed: Invalid password for user - ${user.username}`);
|
|
@@ -1391,19 +1444,18 @@ function validateUser(credentials) {
|
|
|
1391
1444
|
error: "Invalid password"
|
|
1392
1445
|
};
|
|
1393
1446
|
}
|
|
1394
|
-
logger.info(`[validateUser] \u2713 User validated
|
|
1395
|
-
logger.debug(`[validateUser] Returning user data for: ${user.username}`);
|
|
1447
|
+
logger.info(`[validateUser] \u2713 User validated via file storage: ${user.username}`);
|
|
1396
1448
|
return {
|
|
1397
1449
|
success: true,
|
|
1398
1450
|
data: user.username,
|
|
1399
1451
|
username: user.username
|
|
1400
1452
|
};
|
|
1401
1453
|
}
|
|
1402
|
-
function authenticateAndStoreWsId(credentials, wsId) {
|
|
1454
|
+
async function authenticateAndStoreWsId(credentials, wsId, collections) {
|
|
1403
1455
|
const identifier = credentials.username || credentials.email;
|
|
1404
1456
|
logger.debug("[authenticateAndStoreWsId] Starting authentication and WebSocket ID storage");
|
|
1405
1457
|
logger.debug("[authenticateAndStoreWsId] Validating user credentials");
|
|
1406
|
-
const validationResult = validateUser(credentials);
|
|
1458
|
+
const validationResult = await validateUser(credentials, collections);
|
|
1407
1459
|
if (!validationResult.success) {
|
|
1408
1460
|
logger.warn(`[authenticateAndStoreWsId] User validation failed for: ${identifier}`);
|
|
1409
1461
|
return validationResult;
|
|
@@ -1415,7 +1467,7 @@ function authenticateAndStoreWsId(credentials, wsId) {
|
|
|
1415
1467
|
logger.debug(`[authenticateAndStoreWsId] WebSocket ID ${wsId} associated with user ${username}`);
|
|
1416
1468
|
return validationResult;
|
|
1417
1469
|
}
|
|
1418
|
-
function verifyAuthToken(authToken) {
|
|
1470
|
+
async function verifyAuthToken(authToken, collections) {
|
|
1419
1471
|
try {
|
|
1420
1472
|
logger.debug("[verifyAuthToken] Starting token verification");
|
|
1421
1473
|
logger.debug("[verifyAuthToken] Decoding base64 token");
|
|
@@ -1425,7 +1477,7 @@ function verifyAuthToken(authToken) {
|
|
|
1425
1477
|
logger.debug("[verifyAuthToken] Token decoded and parsed successfully");
|
|
1426
1478
|
logger.debug(`[verifyAuthToken] Token contains username: ${credentials.username ? "\u2713" : "\u2717"}`);
|
|
1427
1479
|
logger.debug("[verifyAuthToken] Validating credentials from token");
|
|
1428
|
-
const result = validateUser(credentials);
|
|
1480
|
+
const result = await validateUser(credentials, collections);
|
|
1429
1481
|
if (result.success) {
|
|
1430
1482
|
logger.info(`[verifyAuthToken] \u2713 Token verified successfully for user: ${credentials.username || "unknown"}`);
|
|
1431
1483
|
} else {
|
|
@@ -1444,7 +1496,7 @@ function verifyAuthToken(authToken) {
|
|
|
1444
1496
|
}
|
|
1445
1497
|
|
|
1446
1498
|
// src/handlers/auth-login-requests.ts
|
|
1447
|
-
async function handleAuthLoginRequest(data, sendMessage) {
|
|
1499
|
+
async function handleAuthLoginRequest(data, collections, sendMessage) {
|
|
1448
1500
|
try {
|
|
1449
1501
|
logger.debug("[AUTH_LOGIN_REQ] Parsing incoming auth login request");
|
|
1450
1502
|
const authRequest = AuthLoginRequestMessageSchema.parse(data);
|
|
@@ -1503,12 +1555,12 @@ async function handleAuthLoginRequest(data, sendMessage) {
|
|
|
1503
1555
|
}, sendMessage, wsId);
|
|
1504
1556
|
return;
|
|
1505
1557
|
}
|
|
1506
|
-
logger.info(`[AUTH_LOGIN_REQ ${id}] Credentials validated, authenticating user: ${identifier}`);
|
|
1507
|
-
logger.debug(`[AUTH_LOGIN_REQ ${id}] WebSocket ID: ${wsId}`);
|
|
1558
|
+
logger.info(`[AUTH_LOGIN_REQ ${id}] Credentials validated, authenticating user: ${identifier} username: ${username} email: ${email} password: ${password}`);
|
|
1508
1559
|
logger.debug(`[AUTH_LOGIN_REQ ${id}] Calling authenticateAndStoreWsId for user: ${identifier}`);
|
|
1509
|
-
const authResult = authenticateAndStoreWsId(
|
|
1560
|
+
const authResult = await authenticateAndStoreWsId(
|
|
1510
1561
|
{ username, email, password },
|
|
1511
|
-
wsId
|
|
1562
|
+
wsId,
|
|
1563
|
+
collections
|
|
1512
1564
|
);
|
|
1513
1565
|
logger.info(`[AUTH_LOGIN_REQ ${id}] Authentication result for ${identifier}: ${authResult.success ? "success" : "failed"}`);
|
|
1514
1566
|
if (!authResult.success) {
|
|
@@ -1560,7 +1612,7 @@ function sendDataResponse2(id, res, sendMessage, clientId) {
|
|
|
1560
1612
|
}
|
|
1561
1613
|
|
|
1562
1614
|
// src/handlers/auth-verify-request.ts
|
|
1563
|
-
async function handleAuthVerifyRequest(data, sendMessage) {
|
|
1615
|
+
async function handleAuthVerifyRequest(data, collections, sendMessage) {
|
|
1564
1616
|
try {
|
|
1565
1617
|
logger.debug("[AUTH_VERIFY_REQ] Parsing incoming auth verify request");
|
|
1566
1618
|
const authRequest = AuthVerifyRequestMessageSchema.parse(data);
|
|
@@ -1590,7 +1642,7 @@ async function handleAuthVerifyRequest(data, sendMessage) {
|
|
|
1590
1642
|
logger.debug(`[AUTH_VERIFY_REQ ${id}] WebSocket ID: ${wsId}`);
|
|
1591
1643
|
logger.debug(`[AUTH_VERIFY_REQ ${id}] Calling verifyAuthToken`);
|
|
1592
1644
|
const startTime = Date.now();
|
|
1593
|
-
const authResult = verifyAuthToken(token);
|
|
1645
|
+
const authResult = await verifyAuthToken(token, collections);
|
|
1594
1646
|
const verificationTime = Date.now() - startTime;
|
|
1595
1647
|
logger.info(`[AUTH_VERIFY_REQ ${id}] Token verification completed in ${verificationTime}ms - ${authResult.success ? "valid" : "invalid"}`);
|
|
1596
1648
|
if (!authResult.success) {
|
|
@@ -1789,489 +1841,126 @@ import path3 from "path";
|
|
|
1789
1841
|
|
|
1790
1842
|
// src/userResponse/prompts.ts
|
|
1791
1843
|
var PROMPTS = {
|
|
1792
|
-
"
|
|
1793
|
-
system: `You are an
|
|
1794
|
-
|
|
1795
|
-
CRITICAL: You MUST respond with ONLY valid JSON, no other text before or after.
|
|
1796
|
-
|
|
1797
|
-
## Previous Conversation
|
|
1798
|
-
{{CONVERSATION_HISTORY}}
|
|
1799
|
-
|
|
1800
|
-
**Note:** If there is previous conversation history, use it to understand context. For example:
|
|
1801
|
-
- If user previously asked about "sales" and now asks "show me trends", understand it refers to sales trends
|
|
1802
|
-
- If user asked for "revenue by region" and now says "make it a pie chart", understand they want to modify the previous visualization
|
|
1803
|
-
- Use the history to resolve ambiguous references like "that", "it", "them", "the data"
|
|
1804
|
-
|
|
1805
|
-
Your task is to analyze the user's question and determine:
|
|
1806
|
-
|
|
1807
|
-
1. **Question Type:**
|
|
1808
|
-
- "analytical": Questions asking to VIEW, ANALYZE, or VISUALIZE data
|
|
1809
|
-
|
|
1810
|
-
- "data_modification": Questions asking to CREATE, UPDATE, DELETE, or MODIFY data
|
|
1811
|
-
|
|
1812
|
-
- "general": General questions, greetings, or requests not related to data
|
|
1813
|
-
|
|
1814
|
-
2. **Required Visualizations** (only for analytical questions):
|
|
1815
|
-
Determine which visualization type(s) would BEST answer the user's question:
|
|
1816
|
-
|
|
1817
|
-
- **KPICard**: Single metric, total, count, average, percentage, or summary number
|
|
1818
|
-
|
|
1819
|
-
- **LineChart**: Trends over time, time series, growth/decline patterns
|
|
1820
|
-
|
|
1821
|
-
|
|
1822
|
-
- **BarChart**: Comparing categories, rankings, distributions across groups
|
|
1823
|
-
|
|
1824
|
-
|
|
1825
|
-
- **PieChart**: Proportions, percentages, composition, market share
|
|
1826
|
-
|
|
1827
|
-
|
|
1828
|
-
- **DataTable**: Detailed lists, multiple attributes, when user needs to see records
|
|
1829
|
-
|
|
1830
|
-
|
|
1831
|
-
3. **Multiple Visualizations:**
|
|
1832
|
-
User may need MULTIPLE visualizations together:
|
|
1833
|
-
|
|
1834
|
-
Common combinations:
|
|
1835
|
-
- KPICard + LineChart
|
|
1836
|
-
- KPICard + BarChart
|
|
1837
|
-
- KPICard + DataTable
|
|
1838
|
-
- BarChart + PieChart:
|
|
1839
|
-
- LineChart + DataTable
|
|
1840
|
-
Set needsMultipleComponents to true if user needs multiple views of the data.
|
|
1844
|
+
"text-response": {
|
|
1845
|
+
system: `You are an intelligent AI assistant that provides helpful, accurate, and contextual text responses to user questions. You have access to a database and can execute SQL queries and external tools to answer user requests.
|
|
1841
1846
|
|
|
1842
|
-
|
|
1843
|
-
- If user explicitly mentions a chart type RESPECT that preference
|
|
1844
|
-
- If question is vague or needs both summary and detail, suggest KPICard + DataTable
|
|
1845
|
-
- Only return visualizations for "analytical" questions
|
|
1846
|
-
- For "data_modification" or "general", return empty array for visualizations
|
|
1847
|
+
## Your Task
|
|
1847
1848
|
|
|
1848
|
-
|
|
1849
|
-
{
|
|
1850
|
-
"questionType": "analytical" | "data_modification" | "general",
|
|
1851
|
-
"visualizations": ["KPICard", "LineChart", ...], // Empty array if not analytical
|
|
1852
|
-
"reasoning": "Explanation of classification and visualization choices",
|
|
1853
|
-
"needsMultipleComponents": boolean
|
|
1854
|
-
}
|
|
1855
|
-
`,
|
|
1856
|
-
user: `{{USER_PROMPT}}
|
|
1857
|
-
`
|
|
1858
|
-
},
|
|
1859
|
-
"match-component": {
|
|
1860
|
-
system: `You are an expert AI assistant specialized in matching user requests to the most appropriate data visualization components.
|
|
1849
|
+
Analyze the user's question and provide a helpful text response. Your response should:
|
|
1861
1850
|
|
|
1862
|
-
|
|
1851
|
+
1. **Be Clear and Concise**: Provide direct answers without unnecessary verbosity
|
|
1852
|
+
2. **Be Contextual**: Use conversation history to understand what the user is asking about
|
|
1853
|
+
3. **Be Accurate**: Provide factually correct information based on the context
|
|
1854
|
+
4. **Be Helpful**: Offer additional relevant information or suggestions when appropriate
|
|
1863
1855
|
|
|
1864
|
-
##
|
|
1865
|
-
{{CONVERSATION_HISTORY}}
|
|
1856
|
+
## Available Tools
|
|
1866
1857
|
|
|
1867
|
-
|
|
1868
|
-
- If there is conversation history, use it to understand what the user is referring to
|
|
1869
|
-
- When user says "show that as a chart" or "change it", they are referring to a previous component
|
|
1870
|
-
- If user asks to "modify" or "update" something, match to the component they previously saw
|
|
1871
|
-
- Use context to resolve ambiguous requests like "show trends for that" or "make it interactive"
|
|
1872
|
-
|
|
1873
|
-
Your task is to analyze the user's natural language request and find the BEST matching component from the available list.
|
|
1874
|
-
|
|
1875
|
-
Available Components:
|
|
1876
|
-
{{COMPONENTS_TEXT}}
|
|
1877
|
-
|
|
1878
|
-
**Matching Guidelines:**
|
|
1879
|
-
|
|
1880
|
-
1. **Understand User Intent:**
|
|
1881
|
-
- What type of data visualization do they need? (KPI/metric, chart, table, etc.)
|
|
1882
|
-
- What metric or data are they asking about? (revenue, orders, customers, etc.)
|
|
1883
|
-
- Are they asking for a summary (KPI), trend (line chart), distribution (bar/pie), or detailed list (table)?
|
|
1884
|
-
- Do they want to compare categories, see trends over time, or show proportions?
|
|
1885
|
-
|
|
1886
|
-
2. **Component Type Matching:**
|
|
1887
|
-
- KPICard: Single metric/number (total, average, count, percentage, rate)
|
|
1888
|
-
- LineChart: Trends over time, time series data
|
|
1889
|
-
- BarChart: Comparing categories, distributions, rankings
|
|
1890
|
-
- PieChart/DonutChart: Proportions, percentages, market share
|
|
1891
|
-
- DataTable: Detailed lists, rankings with multiple attributes
|
|
1892
|
-
|
|
1893
|
-
3. **Keyword & Semantic Matching:**
|
|
1894
|
-
- Match user query terms with component keywords
|
|
1895
|
-
- Consider synonyms (e.g., "sales" = "revenue", "items" = "products")
|
|
1896
|
-
- Look for category matches (financial, orders, customers, products, suppliers, logistics, geographic, operations)
|
|
1897
|
-
|
|
1898
|
-
4. **Scoring Criteria:**
|
|
1899
|
-
- Exact keyword matches: High priority
|
|
1900
|
-
- Component type alignment: High priority
|
|
1901
|
-
- Category alignment: Medium priority
|
|
1902
|
-
- Semantic similarity: Medium priority
|
|
1903
|
-
- Specificity: Prefer more specific components over generic ones
|
|
1904
|
-
|
|
1905
|
-
**Output Requirements:**
|
|
1906
|
-
|
|
1907
|
-
Respond with a JSON object containing:
|
|
1908
|
-
- componentIndex: the 1-based index of the BEST matching component (or null if confidence < 50%)
|
|
1909
|
-
- componentId: the ID of the matched component
|
|
1910
|
-
- reasoning: detailed explanation of why this component was chosen
|
|
1911
|
-
- confidence: confidence score 0-100 (100 = perfect match)
|
|
1912
|
-
- alternativeMatches: array of up to 2 alternative component indices with scores (optional)
|
|
1913
|
-
|
|
1914
|
-
Example response:
|
|
1915
|
-
{
|
|
1916
|
-
"componentIndex": 5,
|
|
1917
|
-
"componentId": "total_revenue_kpi",
|
|
1918
|
-
"reasoning": "User asks for 'total revenue' which perfectly matches the TotalRevenueKPI component (KPICard type) designed to show total revenue across all orders. Keywords match: 'total revenue', 'sales'.",
|
|
1919
|
-
"confidence": 95,
|
|
1920
|
-
"alternativeMatches": [
|
|
1921
|
-
{"index": 3, "id": "monthly_revenue_kpi", "score": 75, "reason": "Could show monthly revenue if time period was intended"},
|
|
1922
|
-
{"index": 8, "id": "revenue_trend_chart", "score": 60, "reason": "Could show revenue trend if historical view was intended"}
|
|
1923
|
-
]
|
|
1924
|
-
}
|
|
1858
|
+
The following external tools are available for this request (if applicable):
|
|
1925
1859
|
|
|
1926
|
-
|
|
1927
|
-
- Only return componentIndex if confidence >= 50%
|
|
1928
|
-
- Return null if no reasonable match exists
|
|
1929
|
-
- Prefer components that exactly match the user's metric over generic ones
|
|
1930
|
-
- Consider the full context of the request, not just individual words`,
|
|
1931
|
-
user: `Current user request: {{USER_PROMPT}}
|
|
1860
|
+
{{AVAILABLE_EXTERNAL_TOOLS}}
|
|
1932
1861
|
|
|
1933
|
-
|
|
1934
|
-
|
|
1935
|
-
|
|
1936
|
-
|
|
1862
|
+
When a tool is needed to complete the user's request:
|
|
1863
|
+
1. **Analyze the request** to determine which tool(s) are needed
|
|
1864
|
+
2. **Extract parameters** from the user's question that the tool requires
|
|
1865
|
+
3. **Execute the tool** by calling it with the extracted parameters
|
|
1866
|
+
4. **Present the results** in your response in a clear, user-friendly format
|
|
1867
|
+
5. **Combine with other data** if the user's request requires both database queries and external tool results
|
|
1937
1868
|
|
|
1938
|
-
|
|
1869
|
+
## Handling Data Questions
|
|
1939
1870
|
|
|
1940
|
-
|
|
1941
|
-
- A user's natural language request
|
|
1942
|
-
- Component name: {{COMPONENT_NAME}}
|
|
1943
|
-
- Component type: {{COMPONENT_TYPE}}
|
|
1944
|
-
- Component description: {{COMPONENT_DESCRIPTION}}
|
|
1871
|
+
When the user asks about data
|
|
1945
1872
|
|
|
1946
|
-
|
|
1947
|
-
|
|
1948
|
-
|
|
1949
|
-
|
|
1950
|
-
title?: string, // Component title
|
|
1951
|
-
description?: string, // Component description
|
|
1952
|
-
config?: { // Additional configuration
|
|
1953
|
-
[key: string]: any
|
|
1954
|
-
}
|
|
1955
|
-
}
|
|
1873
|
+
1. **Generate a SQL query** using the database schema provided above
|
|
1874
|
+
2. **Use the execute_query tool** to run the query
|
|
1875
|
+
3. **If the query fails**, analyze the error and generate a corrected query
|
|
1876
|
+
4. **Format the results** in a clear, readable way for the user
|
|
1956
1877
|
|
|
1957
|
-
|
|
1958
|
-
|
|
1878
|
+
**Query Guidelines:**
|
|
1879
|
+
- Use correct table and column names from the schema
|
|
1880
|
+
- ALWAYS include a LIMIT clause with a MAXIMUM of 32 rows
|
|
1881
|
+
- Ensure valid SQL syntax
|
|
1882
|
+
- For time-based queries, use appropriate date functions
|
|
1883
|
+
- When using subqueries with scalar operators (=, <, >, etc.), add LIMIT 1 to prevent "more than one row" errors
|
|
1959
1884
|
|
|
1960
|
-
Database Schema
|
|
1885
|
+
## Database Schema
|
|
1961
1886
|
{{SCHEMA_DOC}}
|
|
1962
1887
|
|
|
1963
|
-
|
|
1964
|
-
{{CONVERSATION_HISTORY}}
|
|
1965
|
-
|
|
1966
|
-
**Context Instructions:**
|
|
1967
|
-
- Review the conversation history to understand the evolution of the component
|
|
1968
|
-
- If user says "add filter for X", understand they want to modify the current query
|
|
1969
|
-
- If user says "change to last month" or "filter by Y", apply modifications to existing query
|
|
1970
|
-
- Previous questions can clarify what the user means by ambiguous requests like "change that filter"
|
|
1971
|
-
- Use context to determine appropriate time ranges if user says "recent" or "latest"
|
|
1972
|
-
|
|
1973
|
-
Your task is to intelligently modify the props based on the user's request:
|
|
1888
|
+
**Database Type: PostgreSQL**
|
|
1974
1889
|
|
|
1975
|
-
|
|
1976
|
-
- Modify SQL query if user requests different data, filters, time ranges, limits, or aggregations
|
|
1977
|
-
- Use correct table and column names from the schema
|
|
1978
|
-
- Ensure valid SQL syntax
|
|
1979
|
-
- ALWAYS include a LIMIT clause (default: {{DEFAULT_LIMIT}} rows) to prevent large result sets
|
|
1980
|
-
- Preserve the query structure that the component expects (e.g., column aliases)
|
|
1890
|
+
**CRITICAL PostgreSQL Query Rules:**
|
|
1981
1891
|
|
|
1982
|
-
|
|
1892
|
+
1. **NO AGGREGATE FUNCTIONS IN WHERE CLAUSE** - This is a fundamental SQL error
|
|
1893
|
+
\u274C WRONG: \`WHERE COUNT(orders) > 0\`
|
|
1894
|
+
\u274C WRONG: \`WHERE SUM(price) > 100\`
|
|
1895
|
+
\u274C WRONG: \`WHERE AVG(rating) > 4.5\`
|
|
1896
|
+
\u274C WRONG: \`WHERE FLOOR(AVG(rating)) = 4\` (aggregate inside any function is still not allowed)
|
|
1897
|
+
\u274C WRONG: \`WHERE ROUND(SUM(price), 2) > 100\`
|
|
1983
1898
|
|
|
1984
|
-
**NO AGGREGATE FUNCTIONS IN WHERE CLAUSE:**
|
|
1985
|
-
\u274C WRONG: \`WHERE COUNT(orders) > 0\` or \`WHERE SUM(price) > 100\`
|
|
1986
1899
|
\u2705 CORRECT: Use HAVING (with GROUP BY), EXISTS, or subquery
|
|
1900
|
+
\u2705 CORRECT: Move aggregate logic to HAVING: \`GROUP BY ... HAVING FLOOR(AVG(rating)) = 4\`
|
|
1901
|
+
\u2705 CORRECT: Use subquery for filtering: \`WHERE product_id IN (SELECT product_id FROM ... GROUP BY ... HAVING AVG(rating) >= 4)\`
|
|
1987
1902
|
|
|
1988
|
-
|
|
1989
|
-
**WHERE vs HAVING:**
|
|
1903
|
+
2. **WHERE vs HAVING**
|
|
1990
1904
|
- WHERE filters rows BEFORE grouping (cannot use aggregates)
|
|
1991
1905
|
- HAVING filters groups AFTER grouping (can use aggregates)
|
|
1992
1906
|
- If using HAVING, you MUST have GROUP BY
|
|
1993
1907
|
|
|
1994
|
-
|
|
1995
|
-
|
|
1996
|
-
|
|
1997
|
-
- Example: \`WHERE location_id = (SELECT store_id FROM orders ORDER BY total_amount DESC LIMIT 1)\`
|
|
1998
|
-
- For multiple values, use \`IN\` instead: \`WHERE location_id IN (SELECT store_id FROM orders)\`
|
|
1999
|
-
- Test your subqueries mentally: if they could return multiple rows, add LIMIT 1 or use IN
|
|
2000
|
-
|
|
2001
|
-
2. **Title Modification**:
|
|
2002
|
-
- Update title to reflect the user's specific request
|
|
2003
|
-
- Keep it concise and descriptive
|
|
2004
|
-
- Match the tone of the original title
|
|
2005
|
-
|
|
2006
|
-
3. **Description Modification**:
|
|
2007
|
-
- Update description to explain what data is shown
|
|
2008
|
-
- Be specific about filters, time ranges, or groupings applied
|
|
2009
|
-
|
|
2010
|
-
4. **Config Modification** (based on component type):
|
|
2011
|
-
- For KPICard: formatter, gradient, icon
|
|
2012
|
-
- For Charts: colors, height, xKey, yKey, nameKey, valueKey
|
|
2013
|
-
- For Tables: columns, pageSize, formatters
|
|
2014
|
-
|
|
2015
|
-
|
|
2016
|
-
Respond with a JSON object:
|
|
2017
|
-
{
|
|
2018
|
-
"props": { /* modified props object with query, title, description, config */ },
|
|
2019
|
-
"isModified": boolean,
|
|
2020
|
-
"reasoning": "brief explanation of changes",
|
|
2021
|
-
"modifications": ["list of specific changes made"]
|
|
2022
|
-
}
|
|
2023
|
-
|
|
2024
|
-
IMPORTANT:
|
|
2025
|
-
- Return the COMPLETE props object, not just modified fields
|
|
2026
|
-
- Preserve the structure expected by the component type
|
|
2027
|
-
- Ensure query returns columns with expected aliases
|
|
2028
|
-
- Keep config properties that aren't affected by the request`,
|
|
2029
|
-
user: `{{USER_PROMPT}}`
|
|
2030
|
-
},
|
|
2031
|
-
"single-component": {
|
|
2032
|
-
system: `You are an expert AI assistant specialized in matching user requests to the most appropriate component from a filtered list.
|
|
2033
|
-
|
|
2034
|
-
CRITICAL: You MUST respond with ONLY valid JSON, no other text before or after.
|
|
2035
|
-
|
|
2036
|
-
|
|
2037
|
-
## Previous Conversation
|
|
2038
|
-
{{CONVERSATION_HISTORY}}
|
|
2039
|
-
|
|
2040
|
-
**Context Instructions:**
|
|
2041
|
-
- If there is previous conversation history, use it to understand what the user is referring to
|
|
2042
|
-
- When user says "show trends", "add filters", "change that", understand they may be building on previous queries
|
|
2043
|
-
- Use previous component types and queries as context to inform your current matching
|
|
2044
|
-
|
|
2045
|
-
## Available Components (Type: {{COMPONENT_TYPE}})
|
|
2046
|
-
The following components have been filtered by type {{COMPONENT_TYPE}}. Select the BEST matching one:
|
|
2047
|
-
|
|
2048
|
-
{{COMPONENTS_LIST}}
|
|
2049
|
-
|
|
2050
|
-
{{VISUALIZATION_CONSTRAINT}}
|
|
2051
|
-
|
|
2052
|
-
**Select the BEST matching component** from the available {{COMPONENT_TYPE}} components listed above that would best answer the user's question.
|
|
2053
|
-
|
|
2054
|
-
**Matching Guidelines:**
|
|
2055
|
-
1. **Semantic Matching:**
|
|
2056
|
-
- Match based on component name, description, and keywords
|
|
2057
|
-
- Consider what metrics/data the user is asking about
|
|
2058
|
-
- Look for semantic similarity (e.g., "sales" matches "revenue", "orders" matches "purchases")
|
|
2059
|
-
|
|
2060
|
-
2. **Query Relevance:**
|
|
2061
|
-
- Consider the component's existing query structure
|
|
2062
|
-
- Does it query the right tables/columns for the user's question?
|
|
2063
|
-
- Can it be modified to answer the user's specific question?
|
|
2064
|
-
|
|
2065
|
-
3. **Scoring Criteria:**
|
|
2066
|
-
- Exact keyword matches in name/description: High priority
|
|
2067
|
-
- Semantic similarity to user intent: High priority
|
|
2068
|
-
- Appropriate aggregation/grouping: Medium priority
|
|
2069
|
-
- Category alignment: Medium priority
|
|
2070
|
-
|
|
2071
|
-
**Output Requirements:**
|
|
2072
|
-
|
|
2073
|
-
Respond with a JSON object:
|
|
2074
|
-
{
|
|
2075
|
-
"componentId": "matched_component_id",
|
|
2076
|
-
"componentIndex": 1, // 1-based index from the filtered list above
|
|
2077
|
-
"reasoning": "Detailed explanation of why this component best matches the user's question",
|
|
2078
|
-
"confidence": 85, // Confidence score 0-100
|
|
2079
|
-
"canGenerate": true // false if no suitable component found (confidence < 50)
|
|
2080
|
-
}
|
|
2081
|
-
|
|
2082
|
-
**Important:**
|
|
2083
|
-
- Only set canGenerate to true if confidence >= 50%
|
|
2084
|
-
- If no component from the list matches well (all have low relevance), set canGenerate to false
|
|
2085
|
-
- Consider the full context of the request and conversation history
|
|
2086
|
-
- The component's props (query, title, description, config) will be modified later based on the user's specific request
|
|
2087
|
-
- Focus on finding the component that is closest to what the user needs, even if it needs modification`,
|
|
2088
|
-
user: `{{USER_PROMPT}}
|
|
2089
|
-
|
|
2090
|
-
`
|
|
2091
|
-
},
|
|
2092
|
-
"mutli-component": {
|
|
2093
|
-
system: `You are an expert data analyst AI that creates comprehensive multi-component analytical dashboards with aesthetically pleasing and balanced layouts.
|
|
2094
|
-
|
|
2095
|
-
CRITICAL: You MUST respond with ONLY valid JSON, no other text before or after.
|
|
2096
|
-
|
|
2097
|
-
Database Schema:
|
|
2098
|
-
{{SCHEMA_DOC}}
|
|
2099
|
-
|
|
2100
|
-
## Previous Conversation
|
|
2101
|
-
{{CONVERSATION_HISTORY}}
|
|
2102
|
-
|
|
2103
|
-
**Context Instructions:**
|
|
2104
|
-
- Review the conversation history to understand what the user has asked before
|
|
2105
|
-
- If user is building on previous insights (e.g., "now show me X and Y"), use context to inform dashboard design
|
|
2106
|
-
- Previous queries can help determine appropriate filters, date ranges, or categories to use
|
|
2107
|
-
- If user asks for "comprehensive view" or "dashboard for X", include complementary components based on context
|
|
2108
|
-
|
|
2109
|
-
Given a user's analytical question and the required visualization types, your task is to:
|
|
2110
|
-
|
|
2111
|
-
1. **Determine Container Metadata:**
|
|
2112
|
-
- title: Clear, descriptive title for the entire dashboard (2-5 words)
|
|
2113
|
-
- description: Brief explanation of what insights this dashboard provides (1-2 sentences)
|
|
2114
|
-
|
|
2115
|
-
2. **Generate Props for Each Component:**
|
|
2116
|
-
For each visualization type requested, create tailored props:
|
|
2117
|
-
|
|
2118
|
-
- **query**: SQL query specific to this visualization using the database schema
|
|
2119
|
-
* Use correct table and column names
|
|
2120
|
-
* **DO NOT USE TOP keyword - use LIMIT instead (e.g., LIMIT 20, not TOP 20)**
|
|
2121
|
-
* ALWAYS include LIMIT clause ONCE at the end (default: {{DEFAULT_LIMIT}})
|
|
2122
|
-
* For KPICard: Return single row with column alias "value"
|
|
2123
|
-
* For Charts: Return appropriate columns (name/label and value, or x and y)
|
|
2124
|
-
* For Table: Return relevant columns
|
|
2125
|
-
|
|
2126
|
-
- **title**: Specific title for this component (2-4 words)
|
|
2127
|
-
|
|
2128
|
-
- **description**: What this specific component shows (1 sentence)
|
|
2129
|
-
|
|
2130
|
-
- **config**: Type-specific configuration
|
|
2131
|
-
* KPICard: { gradient, formatter, icon }
|
|
2132
|
-
* BarChart: { xKey, yKey, colors, height }
|
|
2133
|
-
* LineChart: { xKey, yKeys, colors, height }
|
|
2134
|
-
* PieChart: { nameKey, valueKey, colors, height }
|
|
2135
|
-
* DataTable: { pageSize }
|
|
2136
|
-
|
|
2137
|
-
3. **CRITICAL: Component Hierarchy and Ordering:**
|
|
2138
|
-
The ORDER of components in the array MUST follow this STRICT hierarchy for proper visual layout:
|
|
2139
|
-
|
|
2140
|
-
**HIERARCHY RULES (MUST FOLLOW IN THIS ORDER):**
|
|
2141
|
-
1. KPICards - ALWAYS FIRST (top of dashboard for summary metrics)
|
|
2142
|
-
2. Charts/Graphs - AFTER KPICards (middle of dashboard for visualizations)
|
|
2143
|
-
* BarChart, LineChart, PieChart, DonutChart
|
|
2144
|
-
3. DataTable - ALWAYS LAST (bottom of dashboard, full width for detailed data)
|
|
2145
|
-
|
|
2146
|
-
**LAYOUT BEHAVIOR (Frontend enforces):**
|
|
2147
|
-
- KPICards: Display in responsive grid (3 columns)
|
|
2148
|
-
- Single Chart (if only 1 chart): Takes FULL WIDTH
|
|
2149
|
-
- Multiple Charts (if 2+ charts): Display in 2-column grid
|
|
2150
|
-
- DataTable (if present): Always spans FULL WIDTH at bottom
|
|
2151
|
-
|
|
2152
|
-
|
|
2153
|
-
**ABSOLUTELY DO NOT deviate from this hierarchy. Always place:**
|
|
2154
|
-
- KPICards first
|
|
2155
|
-
- Charts/Graphs second
|
|
2156
|
-
- DataTable last (if present)
|
|
2157
|
-
|
|
2158
|
-
**Important Guidelines:**
|
|
2159
|
-
- Each component should answer a DIFFERENT aspect of the user's question
|
|
2160
|
-
- Queries should be complementary, not duplicated
|
|
2161
|
-
- If user asks "Show total revenue and trend", generate:
|
|
2162
|
-
* KPICard: Single total value (FIRST)
|
|
2163
|
-
* LineChart: Revenue over time (SECOND)
|
|
2164
|
-
- Ensure queries use valid columns from the schema
|
|
2165
|
-
- Make titles descriptive and specific to what each component shows
|
|
2166
|
-
- **Snowflake Syntax MUST be used:**
|
|
2167
|
-
* Use LIMIT (not TOP)
|
|
2168
|
-
* Use DATE_TRUNC, DATEDIFF (not DATEPART)
|
|
2169
|
-
* Include LIMIT only ONCE per query at the end
|
|
2170
|
-
|
|
2171
|
-
**Output Format:**
|
|
2172
|
-
{
|
|
2173
|
-
"containerTitle": "Dashboard Title",
|
|
2174
|
-
"containerDescription": "Brief description of the dashboard insights",
|
|
2175
|
-
"components": [
|
|
2176
|
-
{
|
|
2177
|
-
"componentType": "KPICard" | "BarChart" | "LineChart" | "PieChart" | "DataTable",
|
|
2178
|
-
"query": "SQL query",
|
|
2179
|
-
"title": "Component title",
|
|
2180
|
-
"description": "Component description",
|
|
2181
|
-
"config": { /* type-specific config */ }
|
|
2182
|
-
},
|
|
2183
|
-
...
|
|
2184
|
-
],
|
|
2185
|
-
"reasoning": "Explanation of the dashboard design and component ordering",
|
|
2186
|
-
"canGenerate": boolean
|
|
2187
|
-
}`,
|
|
2188
|
-
user: `Current user question: {{USER_PROMPT}}
|
|
2189
|
-
|
|
2190
|
-
Required visualization types: {{VISUALIZATION_TYPES}}
|
|
2191
|
-
|
|
2192
|
-
Generate a complete multi-component dashboard with appropriate container metadata and tailored props for each component. Consider the conversation history above when designing the dashboard. Return ONLY valid JSON.`
|
|
2193
|
-
},
|
|
2194
|
-
"container-metadata": {
|
|
2195
|
-
system: `You are an expert AI assistant that generates titles and descriptions for multi-component dashboards.
|
|
2196
|
-
|
|
2197
|
-
CRITICAL: You MUST respond with ONLY valid JSON, no other text before or after.
|
|
2198
|
-
|
|
2199
|
-
## Previous Conversation
|
|
2200
|
-
{{CONVERSATION_HISTORY}}
|
|
2201
|
-
|
|
2202
|
-
**Context Instructions:**
|
|
2203
|
-
- If there is previous conversation history, use it to understand what the user is referring to
|
|
2204
|
-
- Use context to create relevant titles and descriptions that align with the user's intent
|
|
2205
|
-
|
|
2206
|
-
Your task is to generate a concise title and description for a multi-component dashboard that will contain the following visualization types:
|
|
2207
|
-
{{VISUALIZATION_TYPES}}
|
|
2208
|
-
|
|
2209
|
-
**Guidelines:**
|
|
2210
|
-
|
|
2211
|
-
1. **Title:**
|
|
2212
|
-
- Should be clear and descriptive (3-8 words)
|
|
2213
|
-
- Should reflect what the user is asking about
|
|
2214
|
-
- Should NOT include "Dashboard" suffix (that will be added automatically)
|
|
2215
|
-
|
|
2216
|
-
2. **Description:**
|
|
2217
|
-
- Should be a brief summary (1-2 sentences)
|
|
2218
|
-
- Should explain what insights the dashboard provides
|
|
2219
|
-
|
|
2220
|
-
**Output Requirements:**
|
|
2221
|
-
|
|
2222
|
-
Respond with a JSON object:
|
|
2223
|
-
{
|
|
2224
|
-
"title": "Dashboard title without 'Dashboard' suffix",
|
|
2225
|
-
"description": "Brief description of what this dashboard shows"
|
|
2226
|
-
}
|
|
2227
|
-
|
|
2228
|
-
**Important:**
|
|
2229
|
-
- Keep the title concise and meaningful
|
|
2230
|
-
- Make the description informative but brief
|
|
2231
|
-
- Focus on what insights the user will gain
|
|
2232
|
-
`,
|
|
2233
|
-
user: `{{USER_PROMPT}}
|
|
2234
|
-
`
|
|
2235
|
-
},
|
|
2236
|
-
"text-response": {
|
|
2237
|
-
system: `You are an intelligent AI assistant that provides helpful, accurate, and contextual text responses to user questions.
|
|
2238
|
-
|
|
2239
|
-
## Your Task
|
|
2240
|
-
|
|
2241
|
-
Analyze the user's question and provide a helpful text response. Your response should:
|
|
1908
|
+
3. **NO NESTED AGGREGATE FUNCTIONS** - PostgreSQL does NOT allow aggregates inside aggregates
|
|
1909
|
+
\u274C WRONG: \`AVG(ROUND(AVG(column), 2))\` or \`SELECT AVG(SUM(price)) FROM ...\`
|
|
1910
|
+
\u2705 CORRECT: \`ROUND(AVG(column), 2)\`
|
|
2242
1911
|
|
|
2243
|
-
|
|
2244
|
-
|
|
2245
|
-
|
|
2246
|
-
4. **Be Helpful**: Offer additional relevant information or suggestions when appropriate
|
|
1912
|
+
4. **GROUP BY Requirements**
|
|
1913
|
+
- ALL non-aggregated columns in SELECT must be in GROUP BY
|
|
1914
|
+
- If you SELECT a column and don't aggregate it, add it to GROUP BY
|
|
2247
1915
|
|
|
2248
|
-
|
|
1916
|
+
5. **LIMIT Clause**
|
|
1917
|
+
- ALWAYS include LIMIT (max 32 rows)
|
|
1918
|
+
- For scalar subqueries in WHERE/HAVING, add LIMIT 1
|
|
2249
1919
|
|
|
2250
|
-
|
|
1920
|
+
6. **String Escaping** - PostgreSQL uses double single-quotes, NOT backslash
|
|
1921
|
+
\u274C WRONG: \`'Children\\'s furniture'\`
|
|
1922
|
+
\u2705 CORRECT: \`'Children''s furniture'\`
|
|
2251
1923
|
|
|
2252
|
-
|
|
2253
|
-
|
|
2254
|
-
|
|
2255
|
-
|
|
1924
|
+
7. **Always Use Table Aliases for Column References** - Prevent ambiguous column errors
|
|
1925
|
+
\u274C WRONG: \`SELECT product_id FROM products p JOIN product_variants pv ON p.product_id = pv.product_id\`
|
|
1926
|
+
\u2705 CORRECT: \`SELECT p.product_id FROM products p JOIN product_variants pv ON p.product_id = pv.product_id\`
|
|
1927
|
+
- Always prefix columns with table alias (e.g., \`p.product_id\`, \`c.name\`)
|
|
1928
|
+
- Especially critical in subqueries and joins where multiple tables share column names
|
|
2256
1929
|
|
|
2257
|
-
**Query Guidelines:**
|
|
2258
|
-
- Use correct table and column names from the schema
|
|
2259
|
-
- ALWAYS include a LIMIT clause with a MAXIMUM of 32 rows
|
|
2260
|
-
- Ensure valid SQL syntax
|
|
2261
|
-
- For time-based queries, use appropriate date functions
|
|
2262
|
-
- When using subqueries with scalar operators (=, <, >, etc.), add LIMIT 1 to prevent "more than one row" errors
|
|
2263
1930
|
|
|
2264
1931
|
## Response Guidelines
|
|
2265
1932
|
|
|
2266
|
-
- If the question is about data, use the execute_query tool to fetch data and present it
|
|
1933
|
+
- If the question is about viewing data, use the execute_query tool to fetch data and present it
|
|
1934
|
+
- If the question is about creating/updating/deleting data:
|
|
1935
|
+
1. Acknowledge that the system supports this via forms
|
|
1936
|
+
2. **CRITICAL:** Use the database schema to determine which fields are required based on \`nullable\` property
|
|
1937
|
+
3. **CRITICAL:** If the form will have select fields for foreign keys, you MUST fetch the options data using execute_query
|
|
1938
|
+
4. **CRITICAL FOR UPDATE/DELETE OPERATIONS:** If it's an update/edit/modify/delete question:
|
|
1939
|
+
- **NEVER update ID/primary key columns** (e.g., order_id, customer_id, product_id) - these are immutable identifiers
|
|
1940
|
+
- You MUST first fetch the CURRENT values of the record using a SELECT query
|
|
1941
|
+
- Identify the record (from user's question - e.g., "update order 123" or "delete order 123" means order_id = 123)
|
|
1942
|
+
- Execute: \`SELECT * FROM table_name WHERE id = <value> LIMIT 1\`
|
|
1943
|
+
- Present the current values in your response (e.g., "Current order status: Pending, payment method: Credit Card")
|
|
1944
|
+
- For DELETE: These values will be shown in a disabled form as confirmation before deletion
|
|
1945
|
+
- For UPDATE: These values will populate as default values for editing
|
|
1946
|
+
5. Present the options data in your response (e.g., "Available categories: Furniture (id: 1), Kitchen (id: 2), Decor (id: 3)")
|
|
1947
|
+
6. The form component will be generated automatically using this data
|
|
2267
1948
|
- If the question is general knowledge, provide a helpful conversational response
|
|
2268
1949
|
- If asking for clarification, provide options or ask specific follow-up questions
|
|
2269
1950
|
- If you don't have enough information, acknowledge it and ask for more details
|
|
2270
1951
|
- Keep responses focused and avoid going off-topic
|
|
2271
1952
|
|
|
1953
|
+
**Example for data modification with foreign keys:**
|
|
1954
|
+
User: "I want to create a new product"
|
|
1955
|
+
You should:
|
|
1956
|
+
1. Execute query: \`SELECT category_id, name FROM categories LIMIT 32\`
|
|
1957
|
+
2. Execute query: \`SELECT store_id, name FROM stores LIMIT 32\`
|
|
1958
|
+
3. Present: "I can help you create a new product. Available categories: Furniture (id: 1), Kitchen (id: 2)... Available stores: Store A (id: 10), Store B (id: 20)..."
|
|
1959
|
+
4. Suggest Form component
|
|
1960
|
+
|
|
2272
1961
|
## Component Suggestions
|
|
2273
1962
|
|
|
2274
|
-
After analyzing the
|
|
1963
|
+
After analyzing the user's question, you MUST suggest appropriate dashboard components. Use this format:
|
|
2275
1964
|
|
|
2276
1965
|
<DashboardComponents>
|
|
2277
1966
|
**Dashboard Components:**
|
|
@@ -2279,12 +1968,22 @@ Format: \`{number}.{component_type} : {clear reasoning}\`
|
|
|
2279
1968
|
|
|
2280
1969
|
|
|
2281
1970
|
**Rules for component suggestions:**
|
|
2282
|
-
1.
|
|
2283
|
-
2.
|
|
2284
|
-
3.
|
|
1971
|
+
1. If a conclusive answer can be provided based on user question, suggest that as the first component.
|
|
1972
|
+
2. ALways suggest context/supporting components that will give the user more information and allow them to explore further.
|
|
1973
|
+
3. If the question includes a time range, also explore time-based components for past time ranges.
|
|
1974
|
+
4. **For data viewing/analysis questions**: Suggest visualization components (KPICard, BarChart, LineChart, PieChart, DataTable, etc.).
|
|
1975
|
+
5. **For data modification questions** (create/add/update/delete):
|
|
1976
|
+
- Always suggest 1-2 context components first to provide relevant information (prefer KPICard for showing key metrics)
|
|
1977
|
+
- Then suggest \`Form\` component for the actual modification
|
|
1978
|
+
- Example: "1.KPICard : Show current order total and status" then "2.Form : To update order details"
|
|
1979
|
+
6. Analyze the query results structure and data type
|
|
1980
|
+
7. Each component suggestion must be on a new line
|
|
2285
1981
|
</DashboardComponents>
|
|
2286
1982
|
|
|
2287
|
-
IMPORTANT:
|
|
1983
|
+
IMPORTANT:
|
|
1984
|
+
- Always wrap component suggestions with <DashboardComponents> tags
|
|
1985
|
+
- For data viewing: Include at least one component suggestion when data is returned
|
|
1986
|
+
- For data modifications: Always suggest 1-2 context components before Form (e.g., "1.KPICard : Show current order value" then "2.Form : To update order status")
|
|
2288
1987
|
|
|
2289
1988
|
## Output Format
|
|
2290
1989
|
|
|
@@ -2299,37 +1998,22 @@ Respond with plain text that includes:
|
|
|
2299
1998
|
- Return ONLY plain text (no JSON, no markdown code blocks)
|
|
2300
1999
|
|
|
2301
2000
|
|
|
2302
|
-
You have access to a database and can execute SQL queries to answer data-related questions.
|
|
2303
|
-
## Database Schema
|
|
2304
|
-
{{SCHEMA_DOC}}
|
|
2305
|
-
|
|
2306
|
-
**Database Type: PostgreSQL**
|
|
2001
|
+
You have access to a database and can execute SQL queries to answer data-related questions. For data modifications, the system provides form-based interfaces.
|
|
2307
2002
|
|
|
2308
|
-
**CRITICAL PostgreSQL Query Rules:**
|
|
2309
|
-
|
|
2310
|
-
1. **NO AGGREGATE FUNCTIONS IN WHERE CLAUSE** - This is a fundamental SQL error
|
|
2311
|
-
\u274C WRONG: \`WHERE COUNT(orders) > 0\`
|
|
2312
|
-
\u274C WRONG: \`WHERE SUM(price) > 100\`
|
|
2313
|
-
\u274C WRONG: \`WHERE AVG(rating) > 4.5\`
|
|
2314
2003
|
|
|
2315
|
-
|
|
2004
|
+
## External Tool Results
|
|
2316
2005
|
|
|
2317
|
-
|
|
2318
|
-
- WHERE filters rows BEFORE grouping (cannot use aggregates)
|
|
2319
|
-
- HAVING filters groups AFTER grouping (can use aggregates)
|
|
2320
|
-
- If using HAVING, you MUST have GROUP BY
|
|
2006
|
+
The following external tools were executed for this request (if applicable):
|
|
2321
2007
|
|
|
2322
|
-
|
|
2323
|
-
\u274C WRONG: \`AVG(ROUND(AVG(column), 2))\` or \`SELECT AVG(SUM(price)) FROM ...\`
|
|
2324
|
-
\u2705 CORRECT: \`ROUND(AVG(column), 2)\`
|
|
2008
|
+
{{EXTERNAL_TOOL_CONTEXT}}
|
|
2325
2009
|
|
|
2326
|
-
|
|
2327
|
-
|
|
2328
|
-
|
|
2010
|
+
Use this external tool data to:
|
|
2011
|
+
- Provide information from external sources (emails, calendar, etc.)
|
|
2012
|
+
- Present the data in a user-friendly format
|
|
2013
|
+
- Combine external data with database queries when relevant
|
|
2014
|
+
- Reference specific results in your response
|
|
2329
2015
|
|
|
2330
|
-
|
|
2331
|
-
- ALWAYS include LIMIT (max 32 rows)
|
|
2332
|
-
- For scalar subqueries in WHERE/HAVING, add LIMIT 1
|
|
2016
|
+
**Note:** If external tools were not needed, this section will indicate "No external tools were used for this request."
|
|
2333
2017
|
|
|
2334
2018
|
|
|
2335
2019
|
## Knowledge Base Context
|
|
@@ -2352,10 +2036,8 @@ Use this knowledge base information to:
|
|
|
2352
2036
|
## Previous Conversation
|
|
2353
2037
|
{{CONVERSATION_HISTORY}}
|
|
2354
2038
|
|
|
2355
|
-
|
|
2356
2039
|
`,
|
|
2357
2040
|
user: `{{USER_PROMPT}}
|
|
2358
|
-
|
|
2359
2041
|
`
|
|
2360
2042
|
},
|
|
2361
2043
|
"match-text-components": {
|
|
@@ -2369,11 +2051,21 @@ You will receive a text response containing:
|
|
|
2369
2051
|
3. **Dashboard Components:** suggestions (1:component_type : reasoning format)
|
|
2370
2052
|
|
|
2371
2053
|
Your job is to:
|
|
2372
|
-
1. **
|
|
2373
|
-
|
|
2374
|
-
|
|
2375
|
-
|
|
2376
|
-
|
|
2054
|
+
1. **FIRST: Generate a direct answer component** (if the user question can be answered with a single visualization)
|
|
2055
|
+
- Determine the BEST visualization type (KPICard, BarChart, DataTable, PieChart, LineChart, etc.) to directly answer the user's question
|
|
2056
|
+
- Select the matching component from the available components list
|
|
2057
|
+
- Generate complete props for this component (query, title, description, config)
|
|
2058
|
+
- This component will be placed in the \`answerComponent\` field
|
|
2059
|
+
- This component will be streamed to the frontend IMMEDIATELY for instant user feedback
|
|
2060
|
+
- **CRITICAL**: Generate this FIRST in your JSON response
|
|
2061
|
+
|
|
2062
|
+
2. **THEN: Parse ALL dashboard component suggestions** from the text response (format: 1:component_type : reasoning)
|
|
2063
|
+
3. **Match EACH suggestion with an actual component** from the available list
|
|
2064
|
+
4. **CRITICAL**: \`matchedComponents\` must include **ALL** dashboard components suggested in the text, INCLUDING the component you used as \`answerComponent\`
|
|
2065
|
+
- The answerComponent is shown first for quick feedback, but the full dashboard shows everything
|
|
2066
|
+
5. **Generate proper props** for each matched component to **visualize the analysis results** that were already fetched
|
|
2067
|
+
6. **Generate title and description** for the dashboard container
|
|
2068
|
+
7. **Generate intelligent follow-up questions (actions)** that the user might naturally ask next based on the data analysis
|
|
2377
2069
|
|
|
2378
2070
|
**CRITICAL GOAL**: Create dashboard components that display the **same data that was already analyzed** - NOT new data. The queries already ran and got results. You're just creating different visualizations of those results.
|
|
2379
2071
|
|
|
@@ -2408,7 +2100,8 @@ For each matched component, generate complete props:
|
|
|
2408
2100
|
|
|
2409
2101
|
**Option B: GENERATE a new query** (when necessary)
|
|
2410
2102
|
- Only generate new queries when you need DIFFERENT data
|
|
2411
|
-
- Use the database schema below to write valid SQL
|
|
2103
|
+
- For SELECT queries: Use the database schema below to write valid SQL
|
|
2104
|
+
- For mutations (INSERT/UPDATE/DELETE): Only if matching a Form component, generate mutation query with $fieldName placeholders
|
|
2412
2105
|
|
|
2413
2106
|
|
|
2414
2107
|
**Decision Logic:**
|
|
@@ -2426,8 +2119,12 @@ For each matched component, generate complete props:
|
|
|
2426
2119
|
\u274C WRONG: \`WHERE COUNT(orders) > 0\`
|
|
2427
2120
|
\u274C WRONG: \`WHERE SUM(price) > 100\`
|
|
2428
2121
|
\u274C WRONG: \`WHERE AVG(rating) > 4.5\`
|
|
2122
|
+
\u274C WRONG: \`WHERE FLOOR(AVG(rating)) = 4\` (aggregate inside any function is still not allowed)
|
|
2123
|
+
\u274C WRONG: \`WHERE ROUND(SUM(price), 2) > 100\`
|
|
2429
2124
|
|
|
2430
2125
|
\u2705 CORRECT: Use HAVING (with GROUP BY), EXISTS, or subquery
|
|
2126
|
+
\u2705 CORRECT: Move aggregate logic to HAVING: \`GROUP BY ... HAVING FLOOR(AVG(rating)) = 4\`
|
|
2127
|
+
\u2705 CORRECT: Use subquery for filtering: \`WHERE product_id IN (SELECT product_id FROM ... GROUP BY ... HAVING AVG(rating) >= 4)\`
|
|
2431
2128
|
|
|
2432
2129
|
2. **NO NESTED AGGREGATE FUNCTIONS** - PostgreSQL does NOT allow aggregates inside aggregates
|
|
2433
2130
|
\u274C WRONG: \`AVG(ROUND(AVG(column), 2))\`
|
|
@@ -2456,6 +2153,16 @@ For each matched component, generate complete props:
|
|
|
2456
2153
|
- Subqueries used with =, <, >, etc. must return single value
|
|
2457
2154
|
- Always add LIMIT 1 to scalar subqueries
|
|
2458
2155
|
|
|
2156
|
+
8. **String Escaping** - PostgreSQL uses double single-quotes, NOT backslash
|
|
2157
|
+
\u274C WRONG: \`'Children\\'s furniture'\`
|
|
2158
|
+
\u2705 CORRECT: \`'Children''s furniture'\`
|
|
2159
|
+
|
|
2160
|
+
9. **Always Use Table Aliases for Column References** - Prevent ambiguous column errors
|
|
2161
|
+
\u274C WRONG: \`SELECT product_id FROM products p JOIN product_variants pv ON p.product_id = pv.product_id\`
|
|
2162
|
+
\u2705 CORRECT: \`SELECT p.product_id FROM products p JOIN product_variants pv ON p.product_id = pv.product_id\`
|
|
2163
|
+
- Always prefix columns with table alias (e.g., \`p.product_id\`, \`c.name\`)
|
|
2164
|
+
- Especially critical in subqueries and joins where multiple tables share column names
|
|
2165
|
+
|
|
2459
2166
|
**Query Generation Guidelines** (when creating new queries):
|
|
2460
2167
|
- Use correct table and column names from the schema above
|
|
2461
2168
|
- ALWAYS include LIMIT clause (max 32 rows)
|
|
@@ -2469,7 +2176,7 @@ For each matched component, generate complete props:
|
|
|
2469
2176
|
- Brief explanation of what this component displays
|
|
2470
2177
|
- Why it's useful for this data
|
|
2471
2178
|
|
|
2472
|
-
### 4. Config
|
|
2179
|
+
### 4. Config (for visualization components)
|
|
2473
2180
|
- **CRITICAL**: Look at the component's "Props Structure" to see what config fields it expects
|
|
2474
2181
|
- Map query result columns to the appropriate config fields
|
|
2475
2182
|
- Keep other existing config properties that don't need to change
|
|
@@ -2481,20 +2188,130 @@ For each matched component, generate complete props:
|
|
|
2481
2188
|
- \`orientation\` = "vertical" or "horizontal" (controls visual direction only)
|
|
2482
2189
|
- **DO NOT swap xAxisKey/yAxisKey based on orientation** - they always represent category and value respectively
|
|
2483
2190
|
|
|
2484
|
-
|
|
2485
|
-
|
|
2486
|
-
|
|
2487
|
-
|
|
2488
|
-
1. **Build upon the data analysis** shown in the text response and components
|
|
2489
|
-
2. **Explore natural next steps** in the data exploration journey
|
|
2490
|
-
3. **Be progressively more detailed or specific** - go deeper into the analysis
|
|
2491
|
-
4. **Consider the insights revealed** - suggest questions that help users understand implications
|
|
2492
|
-
5. **Be phrased naturally** as if a real user would ask them
|
|
2493
|
-
6. **Vary in scope** - include both broad trends and specific details
|
|
2494
|
-
7. **Avoid redundancy** - don't ask questions already answered in the text response
|
|
2191
|
+
### 5. Additional Props (match according to component type)
|
|
2192
|
+
- **CRITICAL**: Look at the matched component's "Props Structure" in the available components list
|
|
2193
|
+
- Generate props that match EXACTLY what the component expects
|
|
2495
2194
|
|
|
2195
|
+
**For Form components (type: "Form"):**
|
|
2496
2196
|
|
|
2497
|
-
|
|
2197
|
+
Props structure:
|
|
2198
|
+
- **query**: \`{ sql: "INSERT/UPDATE/DELETE query with $fieldName placeholders", params: [] }\`
|
|
2199
|
+
- **For UPDATE queries**: Check the database schema - if the table has an \`updated_at\` or \`last_updated\` column, always include it in the SET clause with \`CURRENT_TIMESTAMP\` (e.g., \`UPDATE table_name SET field = $field, updated_at = CURRENT_TIMESTAMP WHERE id = value\`)
|
|
2200
|
+
- **title**: "Update Order 5000", "Create New Product", or "Delete Order 5000"
|
|
2201
|
+
- **description**: What the form does
|
|
2202
|
+
- **submitButtonText**: Button text (default: "Submit"). For delete: "Delete", "Confirm Delete"
|
|
2203
|
+
- **submitButtonColor**: "primary" (blue) or "danger" (red). Use "danger" for DELETE operations
|
|
2204
|
+
- **successMessage**: Success message (default: "Form submitted successfully!"). For delete: "Record deleted successfully!"
|
|
2205
|
+
- **disableFields**: Set \`true\` for DELETE operations to show current values but prevent editing
|
|
2206
|
+
- **fields**: Array of field objects (structure below)
|
|
2207
|
+
|
|
2208
|
+
**Field object:**
|
|
2209
|
+
\`\`\`json
|
|
2210
|
+
{
|
|
2211
|
+
"name": "field_name", // Matches $field_name in SQL query
|
|
2212
|
+
"description": "Field Label",
|
|
2213
|
+
"type": "text|number|email|date|select|multiselect|checkbox|textarea",
|
|
2214
|
+
"required": true, // Set based on schema: nullable=false \u2192 required=true, nullable=true \u2192 required=false
|
|
2215
|
+
"defaultValue": "current_value", // For UPDATE: extract from text response
|
|
2216
|
+
"placeholder": "hint text",
|
|
2217
|
+
"options": [...], // For select/multiselect
|
|
2218
|
+
"validation": {
|
|
2219
|
+
"minLength": { "value": 5, "message": "..." },
|
|
2220
|
+
"maxLength": { "value": 100, "message": "..." },
|
|
2221
|
+
"min": { "value": 18, "message": "..." },
|
|
2222
|
+
"max": { "value": 120, "message": "..." },
|
|
2223
|
+
"pattern": { "value": "regex", "message": "..." }
|
|
2224
|
+
}
|
|
2225
|
+
}
|
|
2226
|
+
\`\`\`
|
|
2227
|
+
|
|
2228
|
+
**CRITICAL - Set required based on database schema:**
|
|
2229
|
+
- Check the column's \`nullable\` property in the database schema
|
|
2230
|
+
- If \`nullable: false\` \u2192 set \`required: true\` (field is mandatory)
|
|
2231
|
+
- If \`nullable: true\` \u2192 set \`required: false\` (field is optional)
|
|
2232
|
+
- Never set fields as required if the schema allows NULL
|
|
2233
|
+
|
|
2234
|
+
**Default Values for UPDATE:**
|
|
2235
|
+
- **NEVER include ID/primary key fields in UPDATE forms** (e.g., order_id, customer_id, product_id) - these cannot be changed
|
|
2236
|
+
- Detect UPDATE by checking if SQL contains "UPDATE" keyword
|
|
2237
|
+
- Extract current values from text response (look for "Current values:" or SELECT results)
|
|
2238
|
+
- Set \`defaultValue\` for each field with the extracted current value
|
|
2239
|
+
|
|
2240
|
+
**CRITICAL - Single field with current value pre-selected:**
|
|
2241
|
+
For UPDATE operations, use ONE field with defaultValue set to current value (not two separate fields).
|
|
2242
|
+
|
|
2243
|
+
\u2705 CORRECT - Single field, current value pre-selected:
|
|
2244
|
+
\`\`\`json
|
|
2245
|
+
{
|
|
2246
|
+
"name": "category_id",
|
|
2247
|
+
"type": "select",
|
|
2248
|
+
"defaultValue": 5,
|
|
2249
|
+
"options": [{"id": 1, "name": "Kitchen"}, {"id": 5, "name": "Furniture"}, {"id": 7, "name": "Decor"}]
|
|
2250
|
+
}
|
|
2251
|
+
\`\`\`
|
|
2252
|
+
User sees dropdown with "Furniture" selected, can change to any other category.
|
|
2253
|
+
|
|
2254
|
+
\u274C WRONG - Two separate fields:
|
|
2255
|
+
\`\`\`json
|
|
2256
|
+
[
|
|
2257
|
+
{"name": "current_category", "type": "text", "defaultValue": "Furniture", "disabled": true},
|
|
2258
|
+
{"name": "new_category", "type": "select", "options": [...]}
|
|
2259
|
+
]
|
|
2260
|
+
\`\`\`
|
|
2261
|
+
|
|
2262
|
+
**Options Format:**
|
|
2263
|
+
- **Enum/status fields** (non-foreign keys): String array \`["Pending", "Shipped", "Delivered"]\`
|
|
2264
|
+
- **Foreign keys** (reference tables): Object array \`[{"id": 1, "name": "Furniture"}, {"id": 2, "name": "Kitchen"}]\`
|
|
2265
|
+
- Extract from text response queries and match format to field type
|
|
2266
|
+
|
|
2267
|
+
**Example UPDATE form field:**
|
|
2268
|
+
\`\`\`json
|
|
2269
|
+
{
|
|
2270
|
+
"name": "status",
|
|
2271
|
+
"description": "Order Status",
|
|
2272
|
+
"type": "select",
|
|
2273
|
+
"required": true,
|
|
2274
|
+
"defaultValue": "Pending", // Current value from database
|
|
2275
|
+
"options": ["Pending", "Processing", "Shipped", "Delivered"]
|
|
2276
|
+
}
|
|
2277
|
+
\`\`\`
|
|
2278
|
+
|
|
2279
|
+
**Example DELETE form props:**
|
|
2280
|
+
\`\`\`json
|
|
2281
|
+
{
|
|
2282
|
+
"query": { "sql": "DELETE FROM orders WHERE order_id = 123", "params": [] },
|
|
2283
|
+
"title": "Delete Order 123",
|
|
2284
|
+
"description": "Are you sure you want to delete this order?",
|
|
2285
|
+
"submitButtonText": "Confirm Delete",
|
|
2286
|
+
"submitButtonColor": "danger",
|
|
2287
|
+
"successMessage": "Order deleted successfully!",
|
|
2288
|
+
"disableFields": true,
|
|
2289
|
+
"fields": [
|
|
2290
|
+
{ "name": "order_id", "description": "Order ID", "type": "text", "defaultValue": "123" },
|
|
2291
|
+
{ "name": "status", "description": "Status", "type": "text", "defaultValue": "Pending" }
|
|
2292
|
+
]
|
|
2293
|
+
}
|
|
2294
|
+
\`\`\`
|
|
2295
|
+
|
|
2296
|
+
**For visualization components (Charts, Tables, KPIs):**
|
|
2297
|
+
- **query**: String (SQL SELECT query)
|
|
2298
|
+
- **title**, **description**, **config**: As per component's props structure
|
|
2299
|
+
- Do NOT include fields array
|
|
2300
|
+
|
|
2301
|
+
## Follow-Up Questions (Actions) Generation
|
|
2302
|
+
|
|
2303
|
+
After analyzing the text response and matched components, generate 4-5 intelligent follow-up questions that the user might naturally ask next. These questions should:
|
|
2304
|
+
|
|
2305
|
+
1. **Build upon the data analysis** shown in the text response and components
|
|
2306
|
+
2. **Explore natural next steps** in the data exploration journey
|
|
2307
|
+
3. **Be progressively more detailed or specific** - go deeper into the analysis
|
|
2308
|
+
4. **Consider the insights revealed** - suggest questions that help users understand implications
|
|
2309
|
+
5. **Be phrased naturally** as if a real user would ask them
|
|
2310
|
+
6. **Vary in scope** - include both broad trends and specific details
|
|
2311
|
+
7. **Avoid redundancy** - don't ask questions already answered in the text response
|
|
2312
|
+
|
|
2313
|
+
|
|
2314
|
+
## Output Format
|
|
2498
2315
|
|
|
2499
2316
|
You MUST respond with ONLY a valid JSON object (no markdown, no code blocks):
|
|
2500
2317
|
|
|
@@ -2505,8 +2322,25 @@ You MUST respond with ONLY a valid JSON object (no markdown, no code blocks):
|
|
|
2505
2322
|
- Do NOT use markdown code blocks (no \`\`\`)
|
|
2506
2323
|
- Return ONLY the JSON object, nothing else
|
|
2507
2324
|
|
|
2325
|
+
**Example 1: With answer component** (when user question can be answered with single visualization)
|
|
2508
2326
|
\`\`\`json
|
|
2509
2327
|
{
|
|
2328
|
+
"hasAnswerComponent": true,
|
|
2329
|
+
"answerComponent": {
|
|
2330
|
+
"componentId": "id_from_available_list",
|
|
2331
|
+
"componentName": "name_of_component",
|
|
2332
|
+
"componentType": "type_of_component (can be KPICard, BarChart, LineChart, PieChart, DataTable, etc.)",
|
|
2333
|
+
"reasoning": "Why this visualization type best answers the user's question",
|
|
2334
|
+
"props": {
|
|
2335
|
+
"query": "SQL query for this component",
|
|
2336
|
+
"title": "Component title that directly answers the user's question",
|
|
2337
|
+
"description": "Component description",
|
|
2338
|
+
"config": {
|
|
2339
|
+
"field1": "value1",
|
|
2340
|
+
"field2": "value2"
|
|
2341
|
+
}
|
|
2342
|
+
}
|
|
2343
|
+
},
|
|
2510
2344
|
"layoutTitle": "Clear, concise title for the overall dashboard/layout (5-10 words)",
|
|
2511
2345
|
"layoutDescription": "Brief description of what the dashboard shows and its purpose (1-2 sentences)",
|
|
2512
2346
|
"matchedComponents": [
|
|
@@ -2514,7 +2348,7 @@ You MUST respond with ONLY a valid JSON object (no markdown, no code blocks):
|
|
|
2514
2348
|
"componentId": "id_from_available_list",
|
|
2515
2349
|
"componentName": "name_of_component",
|
|
2516
2350
|
"componentType": "type_of_component",
|
|
2517
|
-
"reasoning": "Why this component was selected for
|
|
2351
|
+
"reasoning": "Why this component was selected for the dashboard",
|
|
2518
2352
|
"originalSuggestion": "c1:table : original reasoning from text",
|
|
2519
2353
|
"props": {
|
|
2520
2354
|
"query": "SQL query for this component",
|
|
@@ -2537,21 +2371,65 @@ You MUST respond with ONLY a valid JSON object (no markdown, no code blocks):
|
|
|
2537
2371
|
}
|
|
2538
2372
|
\`\`\`
|
|
2539
2373
|
|
|
2374
|
+
**Example 2: Without answer component** (when user question needs multiple visualizations or dashboard)
|
|
2375
|
+
\`\`\`json
|
|
2376
|
+
{
|
|
2377
|
+
"hasAnswerComponent": false,
|
|
2378
|
+
"answerComponent": null,
|
|
2379
|
+
"layoutTitle": "Clear, concise title for the overall dashboard/layout (5-10 words)",
|
|
2380
|
+
"layoutDescription": "Brief description of what the dashboard shows and its purpose (1-2 sentences)",
|
|
2381
|
+
"matchedComponents": [
|
|
2382
|
+
{
|
|
2383
|
+
"componentId": "id_from_available_list",
|
|
2384
|
+
"componentName": "name_of_component",
|
|
2385
|
+
"componentType": "type_of_component",
|
|
2386
|
+
"reasoning": "Why this component was selected for the dashboard",
|
|
2387
|
+
"originalSuggestion": "c1:chart : original reasoning from text",
|
|
2388
|
+
"props": {
|
|
2389
|
+
"query": "SQL query for this component",
|
|
2390
|
+
"title": "Component title",
|
|
2391
|
+
"description": "Component description",
|
|
2392
|
+
"config": {
|
|
2393
|
+
"field1": "value1",
|
|
2394
|
+
"field2": "value2"
|
|
2395
|
+
}
|
|
2396
|
+
}
|
|
2397
|
+
}
|
|
2398
|
+
],
|
|
2399
|
+
"actions": [
|
|
2400
|
+
"Follow-up question 1?",
|
|
2401
|
+
"Follow-up question 2?",
|
|
2402
|
+
"Follow-up question 3?",
|
|
2403
|
+
"Follow-up question 4?",
|
|
2404
|
+
"Follow-up question 5?"
|
|
2405
|
+
]
|
|
2406
|
+
}
|
|
2407
|
+
\`\`\`
|
|
2408
|
+
|
|
2540
2409
|
**CRITICAL:**
|
|
2541
|
-
- \`
|
|
2410
|
+
- **\`hasAnswerComponent\` determines if an answer component exists**
|
|
2411
|
+
- Set to \`true\` if the user question can be answered with a single visualization
|
|
2412
|
+
- Set to \`false\` if the user question can not be answered with single visualisation and needs multiple visualizations or a dashboard overview
|
|
2413
|
+
- **If \`hasAnswerComponent\` is \`true\`:**
|
|
2414
|
+
- \`answerComponent\` MUST be generated FIRST in the JSON before \`layoutTitle\`
|
|
2415
|
+
- Generate complete props (query, title, description, config)
|
|
2416
|
+
- **If \`hasAnswerComponent\` is \`false\`:**
|
|
2417
|
+
- Set \`answerComponent\` to \`null\`
|
|
2418
|
+
- **\`matchedComponents\` MUST include ALL dashboard components from the text analysis**
|
|
2419
|
+
- **CRITICAL**: Even if you used a component as \`answerComponent\`, you MUST STILL include it in \`matchedComponents\`
|
|
2420
|
+
- The count of matchedComponents should EQUAL the count of dashboard suggestions in the text (e.g., if text has 4 suggestions, matchedComponents should have 4 items)
|
|
2421
|
+
- Do NOT skip the answerComponent from matchedComponents
|
|
2422
|
+
- \`matchedComponents\` come from the dashboard component suggestions in the text response
|
|
2542
2423
|
- \`layoutTitle\` MUST be a clear, concise title (5-10 words) that summarizes what the entire dashboard shows
|
|
2543
|
-
- Examples: "Sales Performance Overview", "Customer Metrics Analysis", "Product Category Breakdown"
|
|
2544
2424
|
- \`layoutDescription\` MUST be a brief description (1-2 sentences) explaining the purpose and scope of the dashboard
|
|
2545
2425
|
- Should describe what insights the dashboard provides and what data it shows
|
|
2546
2426
|
- \`actions\` MUST be an array of 4-5 intelligent follow-up questions based on the analysis
|
|
2547
2427
|
- Return ONLY valid JSON (no markdown code blocks, no text before/after)
|
|
2548
|
-
- Generate complete props for each component
|
|
2549
|
-
|
|
2550
|
-
|
|
2428
|
+
- Generate complete props for each component
|
|
2551
2429
|
`,
|
|
2552
|
-
user: `##
|
|
2430
|
+
user: `## Analysis Content
|
|
2553
2431
|
|
|
2554
|
-
{{
|
|
2432
|
+
{{ANALYSIS_CONTENT}}
|
|
2555
2433
|
|
|
2556
2434
|
---
|
|
2557
2435
|
|
|
@@ -2598,70 +2476,269 @@ Format your response as a JSON object with this structure:
|
|
|
2598
2476
|
|
|
2599
2477
|
Return ONLY valid JSON.`
|
|
2600
2478
|
},
|
|
2601
|
-
"
|
|
2602
|
-
system: `You are an expert AI
|
|
2479
|
+
"category-classification": {
|
|
2480
|
+
system: `You are an expert AI that categorizes user questions into specific action categories and identifies required tools/resources.
|
|
2603
2481
|
|
|
2604
|
-
You
|
|
2482
|
+
CRITICAL: You MUST respond with ONLY valid JSON, no other text before or after.
|
|
2605
2483
|
|
|
2606
2484
|
## Available External Tools
|
|
2485
|
+
|
|
2607
2486
|
{{AVAILABLE_TOOLS}}
|
|
2608
2487
|
|
|
2609
|
-
|
|
2488
|
+
---
|
|
2610
2489
|
|
|
2611
|
-
|
|
2612
|
-
|
|
2613
|
-
1. **
|
|
2614
|
-
-
|
|
2615
|
-
|
|
2616
|
-
|
|
2617
|
-
|
|
2618
|
-
|
|
2619
|
-
-
|
|
2620
|
-
|
|
2621
|
-
|
|
2622
|
-
|
|
2623
|
-
|
|
2624
|
-
|
|
2625
|
-
-
|
|
2626
|
-
|
|
2627
|
-
|
|
2628
|
-
|
|
2629
|
-
|
|
2630
|
-
|
|
2631
|
-
|
|
2632
|
-
|
|
2633
|
-
|
|
2634
|
-
|
|
2635
|
-
|
|
2636
|
-
|
|
2637
|
-
|
|
2638
|
-
|
|
2639
|
-
|
|
2640
|
-
|
|
2641
|
-
|
|
2642
|
-
|
|
2643
|
-
|
|
2644
|
-
|
|
2645
|
-
|
|
2646
|
-
|
|
2647
|
-
|
|
2648
|
-
|
|
2649
|
-
|
|
2650
|
-
|
|
2651
|
-
|
|
2652
|
-
|
|
2653
|
-
|
|
2654
|
-
|
|
2655
|
-
|
|
2656
|
-
|
|
2657
|
-
|
|
2658
|
-
|
|
2659
|
-
|
|
2660
|
-
|
|
2661
|
-
|
|
2662
|
-
|
|
2663
|
-
|
|
2664
|
-
|
|
2490
|
+
Your task is to analyze the user's question and determine:
|
|
2491
|
+
|
|
2492
|
+
1. **Question Category:**
|
|
2493
|
+
- "data_analysis": Questions about analyzing, querying, reading, or visualizing data from the database (SELECT operations)
|
|
2494
|
+
- "data_modification": Questions about creating, updating, deleting, or modifying data in the database (INSERT, UPDATE, DELETE operations)
|
|
2495
|
+
|
|
2496
|
+
2. **External Tools Required** (for both categories):
|
|
2497
|
+
From the available tools listed above, identify which ones are needed to support the user's request:
|
|
2498
|
+
- Match the tool names/descriptions to what the user is asking for
|
|
2499
|
+
- Extract specific parameters mentioned in the user's question
|
|
2500
|
+
|
|
2501
|
+
3. **Tool Parameters** (if tools are identified):
|
|
2502
|
+
Extract specific parameters the user mentioned:
|
|
2503
|
+
- For each identified tool, extract relevant parameters (email, recipient, content, etc.)
|
|
2504
|
+
- Only include parameters the user explicitly or implicitly mentioned
|
|
2505
|
+
|
|
2506
|
+
**Important Guidelines:**
|
|
2507
|
+
- If user mentions any of the available external tools \u2192 identify those tools and extract their parameters
|
|
2508
|
+
- If user asks to "send", "schedule", "create event", "message" \u2192 check if available tools match
|
|
2509
|
+
- If user asks to "show", "analyze", "compare", "calculate" data \u2192 "data_analysis"
|
|
2510
|
+
- If user asks to modify/create/update/delete data \u2192 "data_modification"
|
|
2511
|
+
- Always identify tools from the available tools list (not from generic descriptions)
|
|
2512
|
+
- Be precise in identifying tool types and required parameters
|
|
2513
|
+
- Only include tools that are explicitly mentioned or clearly needed
|
|
2514
|
+
|
|
2515
|
+
**Output Format:**
|
|
2516
|
+
\`\`\`json
|
|
2517
|
+
{
|
|
2518
|
+
"category": "data_analysis" | "data_modification",
|
|
2519
|
+
"reasoning": "Brief explanation of why this category was chosen",
|
|
2520
|
+
"externalTools": [
|
|
2521
|
+
{
|
|
2522
|
+
"type": "tool_id_from_available_tools",
|
|
2523
|
+
"name": "Tool Display Name",
|
|
2524
|
+
"description": "What this tool will do",
|
|
2525
|
+
"parameters": {
|
|
2526
|
+
"param1": "extracted value",
|
|
2527
|
+
"param2": "extracted value"
|
|
2528
|
+
}
|
|
2529
|
+
}
|
|
2530
|
+
],
|
|
2531
|
+
"dataAnalysisType": "visualization" | "calculation" | "comparison" | "trend" | null,
|
|
2532
|
+
"confidence": 0-100
|
|
2533
|
+
}
|
|
2534
|
+
\`\`\`
|
|
2535
|
+
|
|
2536
|
+
|
|
2537
|
+
## Previous Conversation
|
|
2538
|
+
{{CONVERSATION_HISTORY}}`,
|
|
2539
|
+
user: `{{USER_PROMPT}}`
|
|
2540
|
+
},
|
|
2541
|
+
"adapt-ui-block-params": {
|
|
2542
|
+
system: `You are an expert AI that adapts and modifies UI block component parameters based on the user's current question.
|
|
2543
|
+
|
|
2544
|
+
CRITICAL: You MUST respond with ONLY valid JSON, no other text before or after.
|
|
2545
|
+
|
|
2546
|
+
## Database Schema Reference
|
|
2547
|
+
|
|
2548
|
+
{{SCHEMA_DOC}}
|
|
2549
|
+
|
|
2550
|
+
Use this schema to understand available tables, columns, and relationships when modifying SQL queries. Ensure all table and column names you use in adapted queries are valid according to this schema.
|
|
2551
|
+
|
|
2552
|
+
## Context
|
|
2553
|
+
You are given:
|
|
2554
|
+
1. A previous UI Block response (with component and its props) that matched the user's current question with >90% semantic similarity
|
|
2555
|
+
2. The user's current question
|
|
2556
|
+
3. The component that needs parameter adaptation
|
|
2557
|
+
|
|
2558
|
+
Your task is to:
|
|
2559
|
+
1. **Analyze the difference** between the original question (from the matched UIBlock) and the current user question
|
|
2560
|
+
2. **Identify what parameters need to change** in the component props to answer the current question
|
|
2561
|
+
3. **Modify the props** to match the current request while keeping the same component type(s)
|
|
2562
|
+
4. **Preserve component structure** - only change props, not the components themselves
|
|
2563
|
+
|
|
2564
|
+
## Component Structure Handling
|
|
2565
|
+
|
|
2566
|
+
### For Single Components:
|
|
2567
|
+
- Modify props directly (config, actions, query, filters, etc.)
|
|
2568
|
+
|
|
2569
|
+
### For MultiComponentContainer:
|
|
2570
|
+
The component will have structure:
|
|
2571
|
+
\`\`\`json
|
|
2572
|
+
{
|
|
2573
|
+
"type": "Container",
|
|
2574
|
+
"name": "MultiComponentContainer",
|
|
2575
|
+
"props": {
|
|
2576
|
+
"config": {
|
|
2577
|
+
"components": [...], // Array of nested components - ADAPT EACH ONE
|
|
2578
|
+
"title": "...", // Container title - UPDATE based on new question
|
|
2579
|
+
"description": "..." // Container description - UPDATE based on new question
|
|
2580
|
+
},
|
|
2581
|
+
"actions": [...] // ADAPT actions if needed
|
|
2582
|
+
}
|
|
2583
|
+
}
|
|
2584
|
+
\`\`\`
|
|
2585
|
+
|
|
2586
|
+
When adapting MultiComponentContainer:
|
|
2587
|
+
- Update the container-level \`title\` and \`description\` to reflect the new user question
|
|
2588
|
+
- For each component in \`config.components\`:
|
|
2589
|
+
- Identify what data it shows and how the new question changes what's needed
|
|
2590
|
+
- Adapt its query parameters (WHERE clauses, LIMIT, ORDER BY, filters, date ranges)
|
|
2591
|
+
- Update its title/description to match the new context
|
|
2592
|
+
- Update its config settings (colors, sorting, grouping, metrics)
|
|
2593
|
+
- Update \`actions\` if the new question requires different actions
|
|
2594
|
+
|
|
2595
|
+
## Important Guidelines:
|
|
2596
|
+
- Keep the same component type (don't change KPICard to LineChart)
|
|
2597
|
+
- Keep the same number of components in the container
|
|
2598
|
+
- For each nested component, update:
|
|
2599
|
+
- Query WHERE clauses, LIMIT, ORDER BY, filters, date ranges, metrics
|
|
2600
|
+
- Title and description to reflect the new question
|
|
2601
|
+
- Config settings like colors, sorting, grouping if needed
|
|
2602
|
+
- Maintain each component's core purpose while answering the new question
|
|
2603
|
+
- If query modification is needed, ensure all table/column names remain valid
|
|
2604
|
+
- CRITICAL: Ensure JSON is valid and complete for all nested structures
|
|
2605
|
+
|
|
2606
|
+
|
|
2607
|
+
## Output Format:
|
|
2608
|
+
|
|
2609
|
+
### For Single Component:
|
|
2610
|
+
\`\`\`json
|
|
2611
|
+
{
|
|
2612
|
+
"success": true,
|
|
2613
|
+
"adaptedComponent": {
|
|
2614
|
+
"id": "original_component_id",
|
|
2615
|
+
"name": "component_name",
|
|
2616
|
+
"type": "component_type",
|
|
2617
|
+
"description": "updated_description",
|
|
2618
|
+
"props": {
|
|
2619
|
+
"config": { },
|
|
2620
|
+
"actions": [],
|
|
2621
|
+
}
|
|
2622
|
+
},
|
|
2623
|
+
"parametersChanged": [
|
|
2624
|
+
{
|
|
2625
|
+
"field": "query",
|
|
2626
|
+
"reason": "Added Q4 date filter"
|
|
2627
|
+
},
|
|
2628
|
+
{
|
|
2629
|
+
"field": "title",
|
|
2630
|
+
"reason": "Updated to reflect Q4 focus"
|
|
2631
|
+
}
|
|
2632
|
+
],
|
|
2633
|
+
"explanation": "How the component was adapted to answer the new question"
|
|
2634
|
+
}
|
|
2635
|
+
\`\`\`
|
|
2636
|
+
|
|
2637
|
+
### For MultiComponentContainer:
|
|
2638
|
+
\`\`\`json
|
|
2639
|
+
{
|
|
2640
|
+
"success": true,
|
|
2641
|
+
"adaptedComponent": {
|
|
2642
|
+
"id": "original_container_id",
|
|
2643
|
+
"name": "MultiComponentContainer",
|
|
2644
|
+
"type": "Container",
|
|
2645
|
+
"description": "updated_container_description",
|
|
2646
|
+
"props": {
|
|
2647
|
+
"config": {
|
|
2648
|
+
"title": "Updated dashboard title based on new question",
|
|
2649
|
+
"description": "Updated description reflecting new question context",
|
|
2650
|
+
"components": [
|
|
2651
|
+
{
|
|
2652
|
+
"id": "component_1_id",
|
|
2653
|
+
"name": "component_1_name",
|
|
2654
|
+
"type": "component_1_type",
|
|
2655
|
+
"description": "updated description for this specific component",
|
|
2656
|
+
"props": {
|
|
2657
|
+
"query": "Modified SQL query with updated WHERE/LIMIT/ORDER BY",
|
|
2658
|
+
"config": { "metric": "updated_metric", "filters": {...} }
|
|
2659
|
+
}
|
|
2660
|
+
},
|
|
2661
|
+
{
|
|
2662
|
+
"id": "component_2_id",
|
|
2663
|
+
"name": "component_2_name",
|
|
2664
|
+
"type": "component_2_type",
|
|
2665
|
+
"description": "updated description for this component",
|
|
2666
|
+
"props": {
|
|
2667
|
+
"query": "Modified SQL query for this component",
|
|
2668
|
+
"config": { "metric": "updated_metric", "filters": {...} }
|
|
2669
|
+
}
|
|
2670
|
+
}
|
|
2671
|
+
]
|
|
2672
|
+
},
|
|
2673
|
+
"actions": []
|
|
2674
|
+
}
|
|
2675
|
+
},
|
|
2676
|
+
"parametersChanged": [
|
|
2677
|
+
{
|
|
2678
|
+
"field": "container.title",
|
|
2679
|
+
"reason": "Updated to reflect new dashboard focus"
|
|
2680
|
+
},
|
|
2681
|
+
{
|
|
2682
|
+
"field": "components[0].query",
|
|
2683
|
+
"reason": "Modified WHERE clause for new metrics"
|
|
2684
|
+
},
|
|
2685
|
+
{
|
|
2686
|
+
"field": "components[1].config.metric",
|
|
2687
|
+
"reason": "Changed metric from X to Y based on new question"
|
|
2688
|
+
}
|
|
2689
|
+
],
|
|
2690
|
+
"explanation": "Detailed explanation of how each component was adapted"
|
|
2691
|
+
}
|
|
2692
|
+
\`\`\`
|
|
2693
|
+
|
|
2694
|
+
If adaptation is not possible or would fundamentally change the component:
|
|
2695
|
+
\`\`\`json
|
|
2696
|
+
{
|
|
2697
|
+
"success": false,
|
|
2698
|
+
"reason": "Cannot adapt component - the new question requires a different visualization type",
|
|
2699
|
+
"explanation": "The original component shows KPI cards but the new question needs a trend chart"
|
|
2700
|
+
}
|
|
2701
|
+
\`\`\``,
|
|
2702
|
+
user: `## Previous Matched UIBlock
|
|
2703
|
+
|
|
2704
|
+
**Original Question:** {{ORIGINAL_USER_PROMPT}}
|
|
2705
|
+
|
|
2706
|
+
**Matched UIBlock Component:**
|
|
2707
|
+
\`\`\`json
|
|
2708
|
+
{{MATCHED_UI_BLOCK_COMPONENT}}
|
|
2709
|
+
\`\`\`
|
|
2710
|
+
|
|
2711
|
+
**Component Properties:**
|
|
2712
|
+
\`\`\`json
|
|
2713
|
+
{{COMPONENT_PROPS}}
|
|
2714
|
+
\`\`\`
|
|
2715
|
+
|
|
2716
|
+
## Current User Question
|
|
2717
|
+
{{CURRENT_USER_PROMPT}}
|
|
2718
|
+
|
|
2719
|
+
---
|
|
2720
|
+
|
|
2721
|
+
## Adaptation Instructions
|
|
2722
|
+
|
|
2723
|
+
1. **Analyze the difference** between the original question and the current question
|
|
2724
|
+
2. **Identify what data needs to change**:
|
|
2725
|
+
- For single components: adapt the query/config/actions
|
|
2726
|
+
- For MultiComponentContainer: adapt the container title/description AND each nested component's parameters
|
|
2727
|
+
|
|
2728
|
+
3. **Modify the parameters**:
|
|
2729
|
+
- **Container level** (if MultiComponentContainer):
|
|
2730
|
+
- Update \`title\` and \`description\` to reflect the new user question
|
|
2731
|
+
- Update \`actions\` if needed
|
|
2732
|
+
|
|
2733
|
+
- **For each component** (single or nested in container):
|
|
2734
|
+
- Identify what it shows (sales, revenue, inventory, etc.)
|
|
2735
|
+
- Adapt SQL queries: modify WHERE clauses, LIMIT, ORDER BY, filters, date ranges
|
|
2736
|
+
- Update component title and description
|
|
2737
|
+
- Update config settings (metrics, colors, sorting, grouping)
|
|
2738
|
+
|
|
2739
|
+
4. **Preserve structure**: Keep the same number and type of components
|
|
2740
|
+
|
|
2741
|
+
5. **Return complete JSON** with all adapted properties for all components`
|
|
2665
2742
|
}
|
|
2666
2743
|
};
|
|
2667
2744
|
|
|
@@ -2739,9 +2816,10 @@ var PromptLoader = class {
|
|
|
2739
2816
|
}
|
|
2740
2817
|
/**
|
|
2741
2818
|
* Load both system and user prompts from cache and replace variables
|
|
2819
|
+
* Supports prompt caching by splitting static and dynamic content
|
|
2742
2820
|
* @param promptName - Name of the prompt
|
|
2743
2821
|
* @param variables - Variables to replace in the templates
|
|
2744
|
-
* @returns Object containing both system and user prompts
|
|
2822
|
+
* @returns Object containing both system and user prompts (system can be string or array for caching)
|
|
2745
2823
|
*/
|
|
2746
2824
|
async loadPrompts(promptName, variables) {
|
|
2747
2825
|
if (!this.isInitialized) {
|
|
@@ -2752,6 +2830,26 @@ var PromptLoader = class {
|
|
|
2752
2830
|
if (!template) {
|
|
2753
2831
|
throw new Error(`Prompt template '${promptName}' not found in cache. Available prompts: ${Array.from(this.promptCache.keys()).join(", ")}`);
|
|
2754
2832
|
}
|
|
2833
|
+
const contextMarker = "---\n\n## CONTEXT";
|
|
2834
|
+
if (template.system.includes(contextMarker)) {
|
|
2835
|
+
const [staticPart, contextPart] = template.system.split(contextMarker);
|
|
2836
|
+
logger.debug(`\u2713 Prompt caching enabled for '${promptName}' (static: ${staticPart.length} chars, context: ${contextPart.length} chars)`);
|
|
2837
|
+
const processedContext = this.replaceVariables(contextMarker + contextPart, variables);
|
|
2838
|
+
return {
|
|
2839
|
+
system: [
|
|
2840
|
+
{
|
|
2841
|
+
type: "text",
|
|
2842
|
+
text: staticPart.trim(),
|
|
2843
|
+
cache_control: { type: "ephemeral" }
|
|
2844
|
+
},
|
|
2845
|
+
{
|
|
2846
|
+
type: "text",
|
|
2847
|
+
text: processedContext.trim()
|
|
2848
|
+
}
|
|
2849
|
+
],
|
|
2850
|
+
user: this.replaceVariables(template.user, variables)
|
|
2851
|
+
};
|
|
2852
|
+
}
|
|
2755
2853
|
return {
|
|
2756
2854
|
system: this.replaceVariables(template.system, variables),
|
|
2757
2855
|
user: this.replaceVariables(template.user, variables)
|
|
@@ -2838,6 +2936,75 @@ var LLM = class {
|
|
|
2838
2936
|
// ============================================================
|
|
2839
2937
|
// PRIVATE HELPER METHODS
|
|
2840
2938
|
// ============================================================
|
|
2939
|
+
/**
|
|
2940
|
+
* Normalize system prompt to Anthropic format
|
|
2941
|
+
* Converts string to array format if needed
|
|
2942
|
+
* @param sys - System prompt (string or array of blocks)
|
|
2943
|
+
* @returns Normalized system prompt for Anthropic API
|
|
2944
|
+
*/
|
|
2945
|
+
static _normalizeSystemPrompt(sys) {
|
|
2946
|
+
if (typeof sys === "string") {
|
|
2947
|
+
return sys;
|
|
2948
|
+
}
|
|
2949
|
+
return sys;
|
|
2950
|
+
}
|
|
2951
|
+
/**
|
|
2952
|
+
* Log cache usage metrics from Anthropic API response
|
|
2953
|
+
* Shows cache hits, costs, and savings
|
|
2954
|
+
*/
|
|
2955
|
+
static _logCacheUsage(usage) {
|
|
2956
|
+
if (!usage) return;
|
|
2957
|
+
const inputTokens = usage.input_tokens || 0;
|
|
2958
|
+
const cacheCreationTokens = usage.cache_creation_input_tokens || 0;
|
|
2959
|
+
const cacheReadTokens = usage.cache_read_input_tokens || 0;
|
|
2960
|
+
const outputTokens = usage.output_tokens || 0;
|
|
2961
|
+
const INPUT_PRICE = 0.8;
|
|
2962
|
+
const OUTPUT_PRICE = 4;
|
|
2963
|
+
const CACHE_WRITE_PRICE = 1;
|
|
2964
|
+
const CACHE_READ_PRICE = 0.08;
|
|
2965
|
+
const regularInputCost = inputTokens / 1e6 * INPUT_PRICE;
|
|
2966
|
+
const cacheWriteCost = cacheCreationTokens / 1e6 * CACHE_WRITE_PRICE;
|
|
2967
|
+
const cacheReadCost = cacheReadTokens / 1e6 * CACHE_READ_PRICE;
|
|
2968
|
+
const outputCost = outputTokens / 1e6 * OUTPUT_PRICE;
|
|
2969
|
+
const totalCost = regularInputCost + cacheWriteCost + cacheReadCost + outputCost;
|
|
2970
|
+
const totalInputTokens = inputTokens + cacheCreationTokens + cacheReadTokens;
|
|
2971
|
+
const costWithoutCache = totalInputTokens / 1e6 * INPUT_PRICE + outputCost;
|
|
2972
|
+
const savings = costWithoutCache - totalCost;
|
|
2973
|
+
const savingsPercent = costWithoutCache > 0 ? savings / costWithoutCache * 100 : 0;
|
|
2974
|
+
console.log("\n\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501");
|
|
2975
|
+
console.log("\u{1F4B0} PROMPT CACHING METRICS");
|
|
2976
|
+
console.log("\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501");
|
|
2977
|
+
console.log("\n\u{1F4CA} Token Usage:");
|
|
2978
|
+
console.log(` Input (regular): ${inputTokens.toLocaleString()} tokens`);
|
|
2979
|
+
if (cacheCreationTokens > 0) {
|
|
2980
|
+
console.log(` Cache write: ${cacheCreationTokens.toLocaleString()} tokens (first request)`);
|
|
2981
|
+
}
|
|
2982
|
+
if (cacheReadTokens > 0) {
|
|
2983
|
+
console.log(` Cache read: ${cacheReadTokens.toLocaleString()} tokens \u26A1 HIT!`);
|
|
2984
|
+
}
|
|
2985
|
+
console.log(` Output: ${outputTokens.toLocaleString()} tokens`);
|
|
2986
|
+
console.log(` Total input: ${totalInputTokens.toLocaleString()} tokens`);
|
|
2987
|
+
console.log("\n\u{1F4B5} Cost Breakdown:");
|
|
2988
|
+
console.log(` Input (regular): $${regularInputCost.toFixed(6)}`);
|
|
2989
|
+
if (cacheCreationTokens > 0) {
|
|
2990
|
+
console.log(` Cache write: $${cacheWriteCost.toFixed(6)}`);
|
|
2991
|
+
}
|
|
2992
|
+
if (cacheReadTokens > 0) {
|
|
2993
|
+
console.log(` Cache read: $${cacheReadCost.toFixed(6)} (90% off!)`);
|
|
2994
|
+
}
|
|
2995
|
+
console.log(` Output: $${outputCost.toFixed(6)}`);
|
|
2996
|
+
console.log(` \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500`);
|
|
2997
|
+
console.log(` Total cost: $${totalCost.toFixed(6)}`);
|
|
2998
|
+
if (cacheReadTokens > 0) {
|
|
2999
|
+
console.log(`
|
|
3000
|
+
\u{1F48E} Savings: $${savings.toFixed(6)} (${savingsPercent.toFixed(1)}% off)`);
|
|
3001
|
+
console.log(` Without cache: $${costWithoutCache.toFixed(6)}`);
|
|
3002
|
+
} else if (cacheCreationTokens > 0) {
|
|
3003
|
+
console.log(`
|
|
3004
|
+
\u23F1\uFE0F Cache created - next request will be ~90% cheaper!`);
|
|
3005
|
+
}
|
|
3006
|
+
console.log("\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\n");
|
|
3007
|
+
}
|
|
2841
3008
|
/**
|
|
2842
3009
|
* Parse model string to extract provider and model name
|
|
2843
3010
|
* @param modelString - Format: "provider/model-name" or just "model-name"
|
|
@@ -2872,7 +3039,7 @@ var LLM = class {
|
|
|
2872
3039
|
model: modelName,
|
|
2873
3040
|
max_tokens: options.maxTokens || 1e3,
|
|
2874
3041
|
temperature: options.temperature,
|
|
2875
|
-
system: messages.sys,
|
|
3042
|
+
system: this._normalizeSystemPrompt(messages.sys),
|
|
2876
3043
|
messages: [{
|
|
2877
3044
|
role: "user",
|
|
2878
3045
|
content: messages.user
|
|
@@ -2890,7 +3057,7 @@ var LLM = class {
|
|
|
2890
3057
|
model: modelName,
|
|
2891
3058
|
max_tokens: options.maxTokens || 1e3,
|
|
2892
3059
|
temperature: options.temperature,
|
|
2893
|
-
system: messages.sys,
|
|
3060
|
+
system: this._normalizeSystemPrompt(messages.sys),
|
|
2894
3061
|
messages: [{
|
|
2895
3062
|
role: "user",
|
|
2896
3063
|
content: messages.user
|
|
@@ -2898,6 +3065,7 @@ var LLM = class {
|
|
|
2898
3065
|
stream: true
|
|
2899
3066
|
});
|
|
2900
3067
|
let fullText = "";
|
|
3068
|
+
let usage = null;
|
|
2901
3069
|
for await (const chunk of stream) {
|
|
2902
3070
|
if (chunk.type === "content_block_delta" && chunk.delta.type === "text_delta") {
|
|
2903
3071
|
const text = chunk.delta.text;
|
|
@@ -2905,8 +3073,12 @@ var LLM = class {
|
|
|
2905
3073
|
if (options.partial) {
|
|
2906
3074
|
options.partial(text);
|
|
2907
3075
|
}
|
|
3076
|
+
} else if (chunk.type === "message_delta" && chunk.usage) {
|
|
3077
|
+
usage = chunk.usage;
|
|
2908
3078
|
}
|
|
2909
3079
|
}
|
|
3080
|
+
if (usage) {
|
|
3081
|
+
}
|
|
2910
3082
|
if (json) {
|
|
2911
3083
|
return this._parseJSON(fullText);
|
|
2912
3084
|
}
|
|
@@ -2929,7 +3101,7 @@ var LLM = class {
|
|
|
2929
3101
|
model: modelName,
|
|
2930
3102
|
max_tokens: options.maxTokens || 4e3,
|
|
2931
3103
|
temperature: options.temperature,
|
|
2932
|
-
system: messages.sys,
|
|
3104
|
+
system: this._normalizeSystemPrompt(messages.sys),
|
|
2933
3105
|
messages: conversationMessages,
|
|
2934
3106
|
tools,
|
|
2935
3107
|
stream: true
|
|
@@ -2939,6 +3111,7 @@ var LLM = class {
|
|
|
2939
3111
|
const contentBlocks = [];
|
|
2940
3112
|
let currentTextBlock = "";
|
|
2941
3113
|
let currentToolUse = null;
|
|
3114
|
+
let usage = null;
|
|
2942
3115
|
for await (const chunk of stream) {
|
|
2943
3116
|
if (chunk.type === "message_start") {
|
|
2944
3117
|
contentBlocks.length = 0;
|
|
@@ -2989,11 +3162,16 @@ var LLM = class {
|
|
|
2989
3162
|
}
|
|
2990
3163
|
if (chunk.type === "message_delta") {
|
|
2991
3164
|
stopReason = chunk.delta.stop_reason || stopReason;
|
|
3165
|
+
if (chunk.usage) {
|
|
3166
|
+
usage = chunk.usage;
|
|
3167
|
+
}
|
|
2992
3168
|
}
|
|
2993
3169
|
if (chunk.type === "message_stop") {
|
|
2994
3170
|
break;
|
|
2995
3171
|
}
|
|
2996
3172
|
}
|
|
3173
|
+
if (usage) {
|
|
3174
|
+
}
|
|
2997
3175
|
if (stopReason === "end_turn") {
|
|
2998
3176
|
break;
|
|
2999
3177
|
}
|
|
@@ -3165,6 +3343,57 @@ var KB = {
|
|
|
3165
3343
|
};
|
|
3166
3344
|
var knowledge_base_default = KB;
|
|
3167
3345
|
|
|
3346
|
+
// src/userResponse/conversation-search.ts
|
|
3347
|
+
var searchConversations = async ({
|
|
3348
|
+
userPrompt,
|
|
3349
|
+
collections,
|
|
3350
|
+
userId,
|
|
3351
|
+
similarityThreshold = 0.6
|
|
3352
|
+
}) => {
|
|
3353
|
+
try {
|
|
3354
|
+
if (!collections || !collections["conversation-history"] || !collections["conversation-history"]["search"]) {
|
|
3355
|
+
logger.info("[ConversationSearch] conversation-history.search collection not registered, skipping");
|
|
3356
|
+
return null;
|
|
3357
|
+
}
|
|
3358
|
+
logger.info(`[ConversationSearch] Searching conversations for: "${userPrompt.substring(0, 50)}..."`);
|
|
3359
|
+
logger.info(`[ConversationSearch] Using similarity threshold: ${(similarityThreshold * 100).toFixed(0)}%`);
|
|
3360
|
+
const result = await collections["conversation-history"]["search"]({
|
|
3361
|
+
userPrompt,
|
|
3362
|
+
userId,
|
|
3363
|
+
threshold: similarityThreshold
|
|
3364
|
+
});
|
|
3365
|
+
if (!result) {
|
|
3366
|
+
logger.info("[ConversationSearch] No matching conversations found");
|
|
3367
|
+
return null;
|
|
3368
|
+
}
|
|
3369
|
+
if (!result.uiBlock) {
|
|
3370
|
+
logger.error("[ConversationSearch] No UI block in conversation search result");
|
|
3371
|
+
return null;
|
|
3372
|
+
}
|
|
3373
|
+
const similarity = result.similarity || 0;
|
|
3374
|
+
logger.info(`[ConversationSearch] Best match similarity: ${(similarity * 100).toFixed(2)}%`);
|
|
3375
|
+
if (similarity < similarityThreshold) {
|
|
3376
|
+
logger.info(
|
|
3377
|
+
`[ConversationSearch] Best match has similarity ${(similarity * 100).toFixed(2)}% but below threshold ${(similarityThreshold * 100).toFixed(2)}%`
|
|
3378
|
+
);
|
|
3379
|
+
return null;
|
|
3380
|
+
}
|
|
3381
|
+
logger.info(
|
|
3382
|
+
`[ConversationSearch] Found matching conversation with similarity ${(similarity * 100).toFixed(2)}%`
|
|
3383
|
+
);
|
|
3384
|
+
logger.debug(`[ConversationSearch] Matched prompt: "${result.metadata?.userPrompt?.substring(0, 50)}..."`);
|
|
3385
|
+
return result;
|
|
3386
|
+
} catch (error) {
|
|
3387
|
+
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
3388
|
+
logger.warn(`[ConversationSearch] Error searching conversations: ${errorMsg}`);
|
|
3389
|
+
return null;
|
|
3390
|
+
}
|
|
3391
|
+
};
|
|
3392
|
+
var ConversationSearch = {
|
|
3393
|
+
searchConversations
|
|
3394
|
+
};
|
|
3395
|
+
var conversation_search_default = ConversationSearch;
|
|
3396
|
+
|
|
3168
3397
|
// src/userResponse/base-llm.ts
|
|
3169
3398
|
var BaseLLM = class {
|
|
3170
3399
|
constructor(config) {
|
|
@@ -3179,564 +3408,39 @@ var BaseLLM = class {
|
|
|
3179
3408
|
return apiKey || this.apiKey || this.getDefaultApiKey();
|
|
3180
3409
|
}
|
|
3181
3410
|
/**
|
|
3182
|
-
*
|
|
3411
|
+
* Match components from text response suggestions and generate follow-up questions
|
|
3412
|
+
* Takes a text response with component suggestions (c1:type format) and matches with available components
|
|
3413
|
+
* Also generates title, description, and intelligent follow-up questions (actions) based on the analysis
|
|
3414
|
+
* All components are placed in a default MultiComponentContainer layout
|
|
3415
|
+
* @param analysisContent - The text response containing component suggestions
|
|
3416
|
+
* @param components - List of available components
|
|
3417
|
+
* @param apiKey - Optional API key
|
|
3418
|
+
* @param logCollector - Optional log collector
|
|
3419
|
+
* @param componentStreamCallback - Optional callback to stream primary KPI component as soon as it's identified
|
|
3420
|
+
* @returns Object containing matched components, layout title/description, and follow-up actions
|
|
3183
3421
|
*/
|
|
3184
|
-
async
|
|
3422
|
+
async matchComponentsFromAnalysis(analysisContent, components, apiKey, logCollector, componentStreamCallback) {
|
|
3185
3423
|
try {
|
|
3186
|
-
|
|
3187
|
-
|
|
3188
|
-
|
|
3189
|
-
|
|
3190
|
-
|
|
3191
|
-
|
|
3192
|
-
|
|
3193
|
-
|
|
3194
|
-
|
|
3195
|
-
|
|
3196
|
-
|
|
3197
|
-
|
|
3198
|
-
|
|
3199
|
-
|
|
3200
|
-
|
|
3201
|
-
|
|
3202
|
-
|
|
3203
|
-
|
|
3204
|
-
|
|
3205
|
-
|
|
3206
|
-
result.reasoning || "No reasoning provided",
|
|
3207
|
-
{
|
|
3208
|
-
questionType: result.questionType || "general",
|
|
3209
|
-
visualizations: result.visualizations || [],
|
|
3210
|
-
needsMultipleComponents: result.needsMultipleComponents || false
|
|
3211
|
-
}
|
|
3212
|
-
);
|
|
3213
|
-
return {
|
|
3214
|
-
questionType: result.questionType || "general",
|
|
3215
|
-
visualizations: result.visualizations || [],
|
|
3216
|
-
reasoning: result.reasoning || "No reasoning provided",
|
|
3217
|
-
needsMultipleComponents: result.needsMultipleComponents || false
|
|
3218
|
-
};
|
|
3219
|
-
} catch (error) {
|
|
3220
|
-
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
3221
|
-
logger.error(`[${this.getProviderName()}] Error classifying user question: ${errorMsg}`);
|
|
3222
|
-
logger.debug(`[${this.getProviderName()}] Classification error details:`, error);
|
|
3223
|
-
throw error;
|
|
3224
|
-
}
|
|
3225
|
-
}
|
|
3226
|
-
/**
|
|
3227
|
-
* Enhanced function that validates and modifies the entire props object based on user request
|
|
3228
|
-
* This includes query, title, description, and config properties
|
|
3229
|
-
*/
|
|
3230
|
-
async validateAndModifyProps(userPrompt, originalProps, componentName, componentType, componentDescription, apiKey, logCollector, conversationHistory) {
|
|
3231
|
-
const schemaDoc = schema.generateSchemaDocumentation();
|
|
3232
|
-
try {
|
|
3233
|
-
const prompts = await promptLoader.loadPrompts("modify-props", {
|
|
3234
|
-
COMPONENT_NAME: componentName,
|
|
3235
|
-
COMPONENT_TYPE: componentType,
|
|
3236
|
-
COMPONENT_DESCRIPTION: componentDescription || "No description",
|
|
3237
|
-
SCHEMA_DOC: schemaDoc || "No schema available",
|
|
3238
|
-
DEFAULT_LIMIT: this.defaultLimit,
|
|
3239
|
-
USER_PROMPT: userPrompt,
|
|
3240
|
-
CURRENT_PROPS: JSON.stringify(originalProps, null, 2),
|
|
3241
|
-
CONVERSATION_HISTORY: conversationHistory || "No previous conversation"
|
|
3242
|
-
});
|
|
3243
|
-
logger.debug("props-modification: System prompt\n", prompts.system.substring(0, 100), "\n\n\n", "User prompt:", prompts.user.substring(0, 50));
|
|
3244
|
-
const result = await LLM.stream(
|
|
3245
|
-
{
|
|
3246
|
-
sys: prompts.system,
|
|
3247
|
-
user: prompts.user
|
|
3248
|
-
},
|
|
3249
|
-
{
|
|
3250
|
-
model: this.model,
|
|
3251
|
-
maxTokens: 2500,
|
|
3252
|
-
temperature: 0.2,
|
|
3253
|
-
apiKey: this.getApiKey(apiKey)
|
|
3254
|
-
},
|
|
3255
|
-
true
|
|
3256
|
-
// Parse as JSON
|
|
3257
|
-
);
|
|
3258
|
-
const props = result.props || originalProps;
|
|
3259
|
-
if (props && props.query) {
|
|
3260
|
-
props.query = fixScalarSubqueries(props.query);
|
|
3261
|
-
props.query = ensureQueryLimit(props.query, this.defaultLimit);
|
|
3262
|
-
}
|
|
3263
|
-
if (props && props.query) {
|
|
3264
|
-
logCollector?.logQuery(
|
|
3265
|
-
"Props query modified",
|
|
3266
|
-
props.query,
|
|
3267
|
-
{
|
|
3268
|
-
modifications: result.modifications || [],
|
|
3269
|
-
reasoning: result.reasoning || "No modifications needed"
|
|
3270
|
-
}
|
|
3271
|
-
);
|
|
3272
|
-
}
|
|
3273
|
-
if (result.reasoning) {
|
|
3274
|
-
logCollector?.logExplanation(
|
|
3275
|
-
"Props modification explanation",
|
|
3276
|
-
result.reasoning,
|
|
3277
|
-
{ modifications: result.modifications || [] }
|
|
3278
|
-
);
|
|
3279
|
-
}
|
|
3280
|
-
return {
|
|
3281
|
-
props,
|
|
3282
|
-
isModified: result.isModified || false,
|
|
3283
|
-
reasoning: result.reasoning || "No modifications needed",
|
|
3284
|
-
modifications: result.modifications || []
|
|
3285
|
-
};
|
|
3286
|
-
} catch (error) {
|
|
3287
|
-
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
3288
|
-
logger.error(`[${this.getProviderName()}] Error validating/modifying props: ${errorMsg}`);
|
|
3289
|
-
logger.debug(`[${this.getProviderName()}] Props validation error details:`, error);
|
|
3290
|
-
throw error;
|
|
3291
|
-
}
|
|
3292
|
-
}
|
|
3293
|
-
/**
|
|
3294
|
-
* Match and select a component from available components filtered by type
|
|
3295
|
-
* This picks the best matching component based on user prompt and modifies its props
|
|
3296
|
-
*/
|
|
3297
|
-
async generateAnalyticalComponent(userPrompt, components, preferredVisualizationType, apiKey, logCollector, conversationHistory) {
|
|
3298
|
-
try {
|
|
3299
|
-
const filteredComponents = preferredVisualizationType ? components.filter((c) => c.type === preferredVisualizationType) : components;
|
|
3300
|
-
if (filteredComponents.length === 0) {
|
|
3301
|
-
logCollector?.warn(
|
|
3302
|
-
`No components found of type ${preferredVisualizationType}`,
|
|
3303
|
-
"explanation",
|
|
3304
|
-
{ reason: "No matching components available for this visualization type" }
|
|
3305
|
-
);
|
|
3306
|
-
return {
|
|
3307
|
-
component: null,
|
|
3308
|
-
reasoning: `No components available of type ${preferredVisualizationType}`,
|
|
3309
|
-
isGenerated: false
|
|
3310
|
-
};
|
|
3311
|
-
}
|
|
3312
|
-
const componentsText = filteredComponents.map((comp, idx) => {
|
|
3313
|
-
const keywords = comp.keywords ? comp.keywords.join(", ") : "";
|
|
3314
|
-
const category = comp.category || "general";
|
|
3315
|
-
const propsPreview = comp.props ? JSON.stringify(comp.props, null, 2) : "No props";
|
|
3316
|
-
return `${idx + 1}. ID: ${comp.id}
|
|
3317
|
-
Name: ${comp.name}
|
|
3318
|
-
Type: ${comp.type}
|
|
3319
|
-
Category: ${category}
|
|
3320
|
-
Description: ${comp.description || "No description"}
|
|
3321
|
-
Keywords: ${keywords}
|
|
3322
|
-
Props Preview: ${propsPreview}`;
|
|
3323
|
-
}).join("\n\n");
|
|
3324
|
-
const visualizationConstraint = preferredVisualizationType ? `
|
|
3325
|
-
**IMPORTANT: Components are filtered to type ${preferredVisualizationType}. Select the best match.**
|
|
3326
|
-
` : "";
|
|
3327
|
-
const prompts = await promptLoader.loadPrompts("single-component", {
|
|
3328
|
-
COMPONENT_TYPE: preferredVisualizationType || "any",
|
|
3329
|
-
COMPONENTS_LIST: componentsText,
|
|
3330
|
-
VISUALIZATION_CONSTRAINT: visualizationConstraint,
|
|
3331
|
-
USER_PROMPT: userPrompt,
|
|
3332
|
-
CONVERSATION_HISTORY: conversationHistory || "No previous conversation"
|
|
3333
|
-
});
|
|
3334
|
-
logger.debug("single-component: System prompt\n", prompts.system.substring(0, 100), "\n\n\n", "User prompt:", prompts.user.substring(0, 50));
|
|
3335
|
-
const result = await LLM.stream(
|
|
3336
|
-
{
|
|
3337
|
-
sys: prompts.system,
|
|
3338
|
-
user: prompts.user
|
|
3339
|
-
},
|
|
3340
|
-
{
|
|
3341
|
-
model: this.model,
|
|
3342
|
-
maxTokens: 2e3,
|
|
3343
|
-
temperature: 0.2,
|
|
3344
|
-
apiKey: this.getApiKey(apiKey)
|
|
3345
|
-
},
|
|
3346
|
-
true
|
|
3347
|
-
// Parse as JSON
|
|
3348
|
-
);
|
|
3349
|
-
if (!result.canGenerate || result.confidence < 50) {
|
|
3350
|
-
logCollector?.warn(
|
|
3351
|
-
"Cannot match component",
|
|
3352
|
-
"explanation",
|
|
3353
|
-
{ reason: result.reasoning || "Unable to find matching component for this question" }
|
|
3354
|
-
);
|
|
3355
|
-
return {
|
|
3356
|
-
component: null,
|
|
3357
|
-
reasoning: result.reasoning || "Unable to find matching component for this question",
|
|
3358
|
-
isGenerated: false
|
|
3359
|
-
};
|
|
3360
|
-
}
|
|
3361
|
-
const componentIndex = result.componentIndex;
|
|
3362
|
-
const componentId = result.componentId;
|
|
3363
|
-
let matchedComponent = null;
|
|
3364
|
-
if (componentId) {
|
|
3365
|
-
matchedComponent = filteredComponents.find((c) => c.id === componentId);
|
|
3366
|
-
}
|
|
3367
|
-
if (!matchedComponent && componentIndex) {
|
|
3368
|
-
matchedComponent = filteredComponents[componentIndex - 1];
|
|
3369
|
-
}
|
|
3370
|
-
if (!matchedComponent) {
|
|
3371
|
-
logCollector?.warn("Component not found in filtered list");
|
|
3372
|
-
return {
|
|
3373
|
-
component: null,
|
|
3374
|
-
reasoning: "Component not found in filtered list",
|
|
3375
|
-
isGenerated: false
|
|
3376
|
-
};
|
|
3377
|
-
}
|
|
3378
|
-
logCollector?.info(`Matched component: ${matchedComponent.name} (confidence: ${result.confidence}%)`);
|
|
3379
|
-
const propsValidation = await this.validateAndModifyProps(
|
|
3380
|
-
userPrompt,
|
|
3381
|
-
matchedComponent.props,
|
|
3382
|
-
matchedComponent.name,
|
|
3383
|
-
matchedComponent.type,
|
|
3384
|
-
matchedComponent.description,
|
|
3385
|
-
apiKey,
|
|
3386
|
-
logCollector,
|
|
3387
|
-
conversationHistory
|
|
3388
|
-
);
|
|
3389
|
-
const modifiedComponent = {
|
|
3390
|
-
...matchedComponent,
|
|
3391
|
-
props: propsValidation.props
|
|
3392
|
-
};
|
|
3393
|
-
logCollector?.logExplanation(
|
|
3394
|
-
"Analytical component selected and modified",
|
|
3395
|
-
result.reasoning || "Selected component based on analytical question",
|
|
3396
|
-
{
|
|
3397
|
-
componentName: matchedComponent.name,
|
|
3398
|
-
componentType: matchedComponent.type,
|
|
3399
|
-
confidence: result.confidence,
|
|
3400
|
-
propsModified: propsValidation.isModified
|
|
3401
|
-
}
|
|
3402
|
-
);
|
|
3403
|
-
return {
|
|
3404
|
-
component: modifiedComponent,
|
|
3405
|
-
reasoning: result.reasoning || "Selected and modified component based on analytical question",
|
|
3406
|
-
isGenerated: true
|
|
3407
|
-
};
|
|
3408
|
-
} catch (error) {
|
|
3409
|
-
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
3410
|
-
logger.error(`[${this.getProviderName()}] Error generating analytical component: ${errorMsg}`);
|
|
3411
|
-
logger.debug(`[${this.getProviderName()}] Analytical component generation error details:`, error);
|
|
3412
|
-
throw error;
|
|
3413
|
-
}
|
|
3414
|
-
}
|
|
3415
|
-
/**
|
|
3416
|
-
* Generate container metadata (title and description) for multi-component dashboard
|
|
3417
|
-
*/
|
|
3418
|
-
async generateContainerMetadata(userPrompt, visualizationTypes, apiKey, logCollector, conversationHistory) {
|
|
3419
|
-
try {
|
|
3420
|
-
const prompts = await promptLoader.loadPrompts("container-metadata", {
|
|
3421
|
-
USER_PROMPT: userPrompt,
|
|
3422
|
-
VISUALIZATION_TYPES: visualizationTypes.join(", "),
|
|
3423
|
-
CONVERSATION_HISTORY: conversationHistory || "No previous conversation"
|
|
3424
|
-
});
|
|
3425
|
-
const result = await LLM.stream(
|
|
3426
|
-
{
|
|
3427
|
-
sys: prompts.system,
|
|
3428
|
-
user: prompts.user
|
|
3429
|
-
},
|
|
3430
|
-
{
|
|
3431
|
-
model: this.model,
|
|
3432
|
-
maxTokens: 500,
|
|
3433
|
-
temperature: 0.3,
|
|
3434
|
-
apiKey: this.getApiKey(apiKey)
|
|
3435
|
-
},
|
|
3436
|
-
true
|
|
3437
|
-
// Parse as JSON
|
|
3438
|
-
);
|
|
3439
|
-
logCollector?.logExplanation(
|
|
3440
|
-
"Container metadata generated",
|
|
3441
|
-
`Generated title and description for multi-component dashboard`,
|
|
3442
|
-
{
|
|
3443
|
-
title: result.title,
|
|
3444
|
-
description: result.description,
|
|
3445
|
-
visualizationTypes
|
|
3446
|
-
}
|
|
3447
|
-
);
|
|
3448
|
-
return {
|
|
3449
|
-
title: result.title || `${userPrompt} - Dashboard`,
|
|
3450
|
-
description: result.description || `Multi-component dashboard showing ${visualizationTypes.join(", ")}`
|
|
3451
|
-
};
|
|
3452
|
-
} catch (error) {
|
|
3453
|
-
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
3454
|
-
logger.error(`[${this.getProviderName()}] Error generating container metadata: ${errorMsg}`);
|
|
3455
|
-
logger.debug(`[${this.getProviderName()}] Container metadata error details:`, error);
|
|
3456
|
-
return {
|
|
3457
|
-
title: `${userPrompt} - Dashboard`,
|
|
3458
|
-
description: `Multi-component dashboard showing ${visualizationTypes.join(", ")}`
|
|
3459
|
-
};
|
|
3460
|
-
}
|
|
3461
|
-
}
|
|
3462
|
-
/**
|
|
3463
|
-
* Match component from a list with enhanced props modification
|
|
3464
|
-
*/
|
|
3465
|
-
async matchComponent(userPrompt, components, apiKey, logCollector, conversationHistory) {
|
|
3466
|
-
try {
|
|
3467
|
-
const componentsText = components.map((comp, idx) => {
|
|
3468
|
-
const keywords = comp.keywords ? comp.keywords.join(", ") : "";
|
|
3469
|
-
const category = comp.category || "general";
|
|
3470
|
-
return `${idx + 1}. ID: ${comp.id}
|
|
3471
|
-
Name: ${comp.name}
|
|
3472
|
-
Type: ${comp.type}
|
|
3473
|
-
Category: ${category}
|
|
3474
|
-
Description: ${comp.description || "No description"}
|
|
3475
|
-
Keywords: ${keywords}`;
|
|
3476
|
-
}).join("\n\n");
|
|
3477
|
-
const prompts = await promptLoader.loadPrompts("match-component", {
|
|
3478
|
-
COMPONENTS_TEXT: componentsText,
|
|
3479
|
-
USER_PROMPT: userPrompt,
|
|
3480
|
-
CONVERSATION_HISTORY: conversationHistory || "No previous conversation"
|
|
3481
|
-
});
|
|
3482
|
-
const result = await LLM.stream(
|
|
3483
|
-
{
|
|
3484
|
-
sys: prompts.system,
|
|
3485
|
-
user: prompts.user
|
|
3486
|
-
},
|
|
3487
|
-
{
|
|
3488
|
-
model: this.model,
|
|
3489
|
-
maxTokens: 800,
|
|
3490
|
-
temperature: 0.2,
|
|
3491
|
-
apiKey: this.getApiKey(apiKey)
|
|
3492
|
-
},
|
|
3493
|
-
true
|
|
3494
|
-
// Parse as JSON
|
|
3495
|
-
);
|
|
3496
|
-
const componentIndex = result.componentIndex;
|
|
3497
|
-
const componentId = result.componentId;
|
|
3498
|
-
const confidence = result.confidence || 0;
|
|
3499
|
-
let component = null;
|
|
3500
|
-
if (componentId) {
|
|
3501
|
-
component = components.find((c) => c.id === componentId);
|
|
3502
|
-
}
|
|
3503
|
-
if (!component && componentIndex) {
|
|
3504
|
-
component = components[componentIndex - 1];
|
|
3505
|
-
}
|
|
3506
|
-
const matchedMsg = `${this.getProviderName()} matched component: ${component?.name || "None"}`;
|
|
3507
|
-
logger.info(`[${this.getProviderName()}] \u2713 ${matchedMsg}`);
|
|
3508
|
-
logCollector?.info(matchedMsg);
|
|
3509
|
-
if (result.alternativeMatches && result.alternativeMatches.length > 0) {
|
|
3510
|
-
logger.debug(`[${this.getProviderName()}] Alternative matches found: ${result.alternativeMatches.length}`);
|
|
3511
|
-
const altMatches = result.alternativeMatches.map(
|
|
3512
|
-
(alt) => `${components[alt.index - 1]?.name} (${alt.score}%): ${alt.reason}`
|
|
3513
|
-
).join(" | ");
|
|
3514
|
-
logCollector?.info(`Alternative matches: ${altMatches}`);
|
|
3515
|
-
result.alternativeMatches.forEach((alt) => {
|
|
3516
|
-
logger.debug(`[${this.getProviderName()}] - ${components[alt.index - 1]?.name} (${alt.score}%): ${alt.reason}`);
|
|
3517
|
-
});
|
|
3518
|
-
}
|
|
3519
|
-
if (!component) {
|
|
3520
|
-
const noMatchMsg = `No matching component found (confidence: ${confidence}%)`;
|
|
3521
|
-
logger.warn(`[${this.getProviderName()}] \u2717 ${noMatchMsg}`);
|
|
3522
|
-
logCollector?.warn(noMatchMsg);
|
|
3523
|
-
const genMsg = "Attempting to match component from analytical question...";
|
|
3524
|
-
logger.info(`[${this.getProviderName()}] \u2713 ${genMsg}`);
|
|
3525
|
-
logCollector?.info(genMsg);
|
|
3526
|
-
const generatedResult = await this.generateAnalyticalComponent(userPrompt, components, void 0, apiKey, logCollector, conversationHistory);
|
|
3527
|
-
if (generatedResult.component) {
|
|
3528
|
-
const genSuccessMsg = `Successfully matched component: ${generatedResult.component.name}`;
|
|
3529
|
-
logCollector?.info(genSuccessMsg);
|
|
3530
|
-
return {
|
|
3531
|
-
component: generatedResult.component,
|
|
3532
|
-
reasoning: generatedResult.reasoning,
|
|
3533
|
-
method: `${this.getProviderName()}-generated`,
|
|
3534
|
-
confidence: 100,
|
|
3535
|
-
// Generated components are considered 100% match to the question
|
|
3536
|
-
propsModified: false,
|
|
3537
|
-
queryModified: false
|
|
3538
|
-
};
|
|
3539
|
-
}
|
|
3540
|
-
logCollector?.error("Failed to match component");
|
|
3541
|
-
return {
|
|
3542
|
-
component: null,
|
|
3543
|
-
reasoning: result.reasoning || "No matching component found and unable to match component",
|
|
3544
|
-
method: `${this.getProviderName()}-llm`,
|
|
3545
|
-
confidence
|
|
3546
|
-
};
|
|
3547
|
-
}
|
|
3548
|
-
let propsModified = false;
|
|
3549
|
-
let propsModifications = [];
|
|
3550
|
-
let queryModified = false;
|
|
3551
|
-
let queryReasoning = "";
|
|
3552
|
-
if (component && component.props) {
|
|
3553
|
-
const propsValidation = await this.validateAndModifyProps(
|
|
3554
|
-
userPrompt,
|
|
3555
|
-
component.props,
|
|
3556
|
-
component.name,
|
|
3557
|
-
component.type,
|
|
3558
|
-
component.description,
|
|
3559
|
-
apiKey,
|
|
3560
|
-
logCollector,
|
|
3561
|
-
conversationHistory
|
|
3562
|
-
);
|
|
3563
|
-
const originalQuery = component.props.query;
|
|
3564
|
-
const modifiedQuery = propsValidation.props.query;
|
|
3565
|
-
component = {
|
|
3566
|
-
...component,
|
|
3567
|
-
props: propsValidation.props
|
|
3568
|
-
};
|
|
3569
|
-
propsModified = propsValidation.isModified;
|
|
3570
|
-
propsModifications = propsValidation.modifications;
|
|
3571
|
-
queryModified = originalQuery !== modifiedQuery;
|
|
3572
|
-
queryReasoning = propsValidation.reasoning;
|
|
3573
|
-
}
|
|
3574
|
-
return {
|
|
3575
|
-
component,
|
|
3576
|
-
reasoning: result.reasoning || "No reasoning provided",
|
|
3577
|
-
queryModified,
|
|
3578
|
-
queryReasoning,
|
|
3579
|
-
propsModified,
|
|
3580
|
-
propsModifications,
|
|
3581
|
-
method: `${this.getProviderName()}-llm`,
|
|
3582
|
-
confidence
|
|
3583
|
-
};
|
|
3584
|
-
} catch (error) {
|
|
3585
|
-
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
3586
|
-
logger.error(`[${this.getProviderName()}] Error matching component: ${errorMsg}`);
|
|
3587
|
-
logger.debug(`[${this.getProviderName()}] Component matching error details:`, error);
|
|
3588
|
-
logCollector?.error(`Error matching component: ${errorMsg}`);
|
|
3589
|
-
throw error;
|
|
3590
|
-
}
|
|
3591
|
-
}
|
|
3592
|
-
/**
|
|
3593
|
-
* Match multiple components for analytical questions by visualization types
|
|
3594
|
-
* This is used when the user needs multiple visualizations
|
|
3595
|
-
*/
|
|
3596
|
-
async generateMultipleAnalyticalComponents(userPrompt, availableComponents, visualizationTypes, apiKey, logCollector, conversationHistory) {
|
|
3597
|
-
try {
|
|
3598
|
-
console.log("\u2713 Matching multiple components:", visualizationTypes);
|
|
3599
|
-
const components = [];
|
|
3600
|
-
for (const vizType of visualizationTypes) {
|
|
3601
|
-
const result = await this.generateAnalyticalComponent(userPrompt, availableComponents, vizType, apiKey, logCollector, conversationHistory);
|
|
3602
|
-
if (result.component) {
|
|
3603
|
-
components.push(result.component);
|
|
3604
|
-
}
|
|
3605
|
-
}
|
|
3606
|
-
if (components.length === 0) {
|
|
3607
|
-
return {
|
|
3608
|
-
components: [],
|
|
3609
|
-
reasoning: "Failed to match any components",
|
|
3610
|
-
isGenerated: false
|
|
3611
|
-
};
|
|
3612
|
-
}
|
|
3613
|
-
return {
|
|
3614
|
-
components,
|
|
3615
|
-
reasoning: `Matched ${components.length} components: ${visualizationTypes.join(", ")}`,
|
|
3616
|
-
isGenerated: true
|
|
3617
|
-
};
|
|
3618
|
-
} catch (error) {
|
|
3619
|
-
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
3620
|
-
logger.error(`[${this.getProviderName()}] Error matching multiple analytical components: ${errorMsg}`);
|
|
3621
|
-
logger.debug(`[${this.getProviderName()}] Multiple components matching error details:`, error);
|
|
3622
|
-
return {
|
|
3623
|
-
components: [],
|
|
3624
|
-
reasoning: "Error occurred while matching components",
|
|
3625
|
-
isGenerated: false
|
|
3626
|
-
};
|
|
3627
|
-
}
|
|
3628
|
-
}
|
|
3629
|
-
/**
|
|
3630
|
-
* Match multiple components and wrap them in a container
|
|
3631
|
-
*/
|
|
3632
|
-
async generateMultiComponentResponse(userPrompt, availableComponents, visualizationTypes, apiKey, logCollector, conversationHistory) {
|
|
3633
|
-
try {
|
|
3634
|
-
const matchResult = await this.generateMultipleAnalyticalComponents(
|
|
3635
|
-
userPrompt,
|
|
3636
|
-
availableComponents,
|
|
3637
|
-
visualizationTypes,
|
|
3638
|
-
apiKey,
|
|
3639
|
-
logCollector,
|
|
3640
|
-
conversationHistory
|
|
3641
|
-
);
|
|
3642
|
-
if (!matchResult.isGenerated || matchResult.components.length === 0) {
|
|
3643
|
-
return {
|
|
3644
|
-
containerComponent: null,
|
|
3645
|
-
reasoning: matchResult.reasoning || "Unable to match multi-component dashboard",
|
|
3646
|
-
isGenerated: false
|
|
3647
|
-
};
|
|
3648
|
-
}
|
|
3649
|
-
const generatedComponents = matchResult.components;
|
|
3650
|
-
generatedComponents.forEach((component, index) => {
|
|
3651
|
-
if (component.props.query) {
|
|
3652
|
-
logCollector?.logQuery(
|
|
3653
|
-
`Multi-component query generated (${index + 1}/${generatedComponents.length})`,
|
|
3654
|
-
component.props.query,
|
|
3655
|
-
{
|
|
3656
|
-
componentType: component.type,
|
|
3657
|
-
title: component.props.title,
|
|
3658
|
-
position: index + 1,
|
|
3659
|
-
totalComponents: generatedComponents.length
|
|
3660
|
-
}
|
|
3661
|
-
);
|
|
3662
|
-
}
|
|
3663
|
-
});
|
|
3664
|
-
const containerTitle = `${userPrompt} - Dashboard`;
|
|
3665
|
-
const containerDescription = `Multi-component dashboard showing ${visualizationTypes.join(", ")}`;
|
|
3666
|
-
logCollector?.logExplanation(
|
|
3667
|
-
"Multi-component dashboard matched",
|
|
3668
|
-
matchResult.reasoning || `Matched ${generatedComponents.length} components for comprehensive analysis`,
|
|
3669
|
-
{
|
|
3670
|
-
totalComponents: generatedComponents.length,
|
|
3671
|
-
componentTypes: generatedComponents.map((c) => c.type),
|
|
3672
|
-
componentNames: generatedComponents.map((c) => c.name),
|
|
3673
|
-
containerTitle,
|
|
3674
|
-
containerDescription
|
|
3675
|
-
}
|
|
3676
|
-
);
|
|
3677
|
-
const containerComponent = {
|
|
3678
|
-
id: `multi_container_${Date.now()}`,
|
|
3679
|
-
name: "MultiComponentContainer",
|
|
3680
|
-
type: "Container",
|
|
3681
|
-
description: containerDescription,
|
|
3682
|
-
category: "dynamic",
|
|
3683
|
-
keywords: ["multi", "container", "dashboard"],
|
|
3684
|
-
props: {
|
|
3685
|
-
config: {
|
|
3686
|
-
components: generatedComponents,
|
|
3687
|
-
layout: "grid",
|
|
3688
|
-
spacing: 24,
|
|
3689
|
-
title: containerTitle,
|
|
3690
|
-
description: containerDescription
|
|
3691
|
-
}
|
|
3692
|
-
}
|
|
3693
|
-
};
|
|
3694
|
-
return {
|
|
3695
|
-
containerComponent,
|
|
3696
|
-
reasoning: matchResult.reasoning || `Matched multi-component dashboard with ${generatedComponents.length} components`,
|
|
3697
|
-
isGenerated: true
|
|
3698
|
-
};
|
|
3699
|
-
} catch (error) {
|
|
3700
|
-
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
3701
|
-
logger.error(`[${this.getProviderName()}] Error generating multi-component response: ${errorMsg}`);
|
|
3702
|
-
logger.debug(`[${this.getProviderName()}] Multi-component response error details:`, error);
|
|
3703
|
-
throw error;
|
|
3704
|
-
}
|
|
3705
|
-
}
|
|
3706
|
-
/**
|
|
3707
|
-
* Match components from text response suggestions and generate follow-up questions
|
|
3708
|
-
* Takes a text response with component suggestions (c1:type format) and matches with available components
|
|
3709
|
-
* Also generates title, description, and intelligent follow-up questions (actions) based on the analysis
|
|
3710
|
-
* All components are placed in a default MultiComponentContainer layout
|
|
3711
|
-
* @param analysisContent - The text response containing component suggestions
|
|
3712
|
-
* @param components - List of available components
|
|
3713
|
-
* @param apiKey - Optional API key
|
|
3714
|
-
* @param logCollector - Optional log collector
|
|
3715
|
-
* @param componentStreamCallback - Optional callback to stream primary KPI component as soon as it's identified
|
|
3716
|
-
* @returns Object containing matched components, layout title/description, and follow-up actions
|
|
3717
|
-
*/
|
|
3718
|
-
async matchComponentsFromAnalysis(analysisContent, components, apiKey, logCollector, componentStreamCallback) {
|
|
3719
|
-
try {
|
|
3720
|
-
logger.debug(`[${this.getProviderName()}] Starting component matching from text response`);
|
|
3721
|
-
let availableComponentsText = "No components available";
|
|
3722
|
-
if (components && components.length > 0) {
|
|
3723
|
-
availableComponentsText = components.map((comp, idx) => {
|
|
3724
|
-
const keywords = comp.keywords ? comp.keywords.join(", ") : "";
|
|
3725
|
-
const propsPreview = comp.props ? JSON.stringify(comp.props, null, 2) : "No props";
|
|
3726
|
-
return `${idx + 1}. ID: ${comp.id}
|
|
3727
|
-
Name: ${comp.name}
|
|
3728
|
-
Type: ${comp.type}
|
|
3729
|
-
Description: ${comp.description || "No description"}
|
|
3730
|
-
Keywords: ${keywords}
|
|
3731
|
-
Props Structure: ${propsPreview}`;
|
|
3732
|
-
}).join("\n\n");
|
|
3733
|
-
}
|
|
3734
|
-
const schemaDoc = schema.generateSchemaDocumentation();
|
|
3735
|
-
logger.file("\n=============================\nText analysis response:", analysisContent);
|
|
3736
|
-
const prompts = await promptLoader.loadPrompts("match-text-components", {
|
|
3737
|
-
ANALYSIS_CONTENT: analysisContent,
|
|
3738
|
-
AVAILABLE_COMPONENTS: availableComponentsText,
|
|
3739
|
-
SCHEMA_DOC: schemaDoc
|
|
3424
|
+
logger.debug(`[${this.getProviderName()}] Starting component matching from text response`);
|
|
3425
|
+
let availableComponentsText = "No components available";
|
|
3426
|
+
if (components && components.length > 0) {
|
|
3427
|
+
availableComponentsText = components.map((comp, idx) => {
|
|
3428
|
+
const keywords = comp.keywords ? comp.keywords.join(", ") : "";
|
|
3429
|
+
const propsPreview = comp.props ? JSON.stringify(comp.props, null, 2) : "No props";
|
|
3430
|
+
return `${idx + 1}. ID: ${comp.id}
|
|
3431
|
+
Name: ${comp.name}
|
|
3432
|
+
Type: ${comp.type}
|
|
3433
|
+
Description: ${comp.description || "No description"}
|
|
3434
|
+
Keywords: ${keywords}
|
|
3435
|
+
Props Structure: ${propsPreview}`;
|
|
3436
|
+
}).join("\n\n");
|
|
3437
|
+
}
|
|
3438
|
+
const schemaDoc = schema.generateSchemaDocumentation();
|
|
3439
|
+
logger.file("\n=============================\nText analysis response:", analysisContent);
|
|
3440
|
+
const prompts = await promptLoader.loadPrompts("match-text-components", {
|
|
3441
|
+
ANALYSIS_CONTENT: analysisContent,
|
|
3442
|
+
AVAILABLE_COMPONENTS: availableComponentsText,
|
|
3443
|
+
SCHEMA_DOC: schemaDoc
|
|
3740
3444
|
});
|
|
3741
3445
|
logger.debug(`[${this.getProviderName()}] Loaded match-text-components prompts`);
|
|
3742
3446
|
logger.file("\n=============================\nmatch text components system prompt:", prompts.system);
|
|
@@ -3928,148 +3632,136 @@ var BaseLLM = class {
|
|
|
3928
3632
|
}
|
|
3929
3633
|
}
|
|
3930
3634
|
/**
|
|
3931
|
-
*
|
|
3932
|
-
*
|
|
3933
|
-
* @param userPrompt - The user's question/request
|
|
3934
|
-
* @param availableTools - Array of available external tools
|
|
3935
|
-
* @param apiKey - Optional API key for LLM
|
|
3936
|
-
* @param logCollector - Optional log collector
|
|
3937
|
-
* @returns Object containing tool execution results and summary
|
|
3635
|
+
* Classify user question into category and detect external tools needed
|
|
3636
|
+
* Determines if question is for data analysis, requires external tools, or needs text response
|
|
3938
3637
|
*/
|
|
3939
|
-
async
|
|
3940
|
-
const MAX_TOOL_ATTEMPTS = 3;
|
|
3941
|
-
const toolResults = [];
|
|
3638
|
+
async classifyQuestionCategory(userPrompt, apiKey, logCollector, conversationHistory, externalTools) {
|
|
3942
3639
|
try {
|
|
3943
|
-
|
|
3944
|
-
|
|
3945
|
-
|
|
3946
|
-
|
|
3947
|
-
|
|
3948
|
-
|
|
3949
|
-
|
|
3950
|
-
|
|
3951
|
-
|
|
3952
|
-
|
|
3953
|
-
required.push(key);
|
|
3954
|
-
});
|
|
3955
|
-
return {
|
|
3956
|
-
name: tool.id,
|
|
3957
|
-
description: tool.description,
|
|
3958
|
-
input_schema: {
|
|
3959
|
-
type: "object",
|
|
3960
|
-
properties,
|
|
3961
|
-
required
|
|
3962
|
-
}
|
|
3963
|
-
};
|
|
3640
|
+
const availableToolsDoc = externalTools && externalTools.length > 0 ? externalTools.map((tool) => {
|
|
3641
|
+
const paramsStr = Object.entries(tool.params || {}).map(([key, type]) => `${key}: ${type}`).join(", ");
|
|
3642
|
+
return `- **${tool.name}** (id: ${tool.id})
|
|
3643
|
+
Description: ${tool.description}
|
|
3644
|
+
Parameters: ${paramsStr}`;
|
|
3645
|
+
}).join("\n\n") : "No external tools available";
|
|
3646
|
+
const prompts = await promptLoader.loadPrompts("category-classification", {
|
|
3647
|
+
USER_PROMPT: userPrompt,
|
|
3648
|
+
CONVERSATION_HISTORY: conversationHistory || "No previous conversation",
|
|
3649
|
+
AVAILABLE_TOOLS: availableToolsDoc
|
|
3964
3650
|
});
|
|
3965
|
-
const
|
|
3966
|
-
|
|
3967
|
-
|
|
3968
|
-
|
|
3969
|
-
|
|
3970
|
-
|
|
3971
|
-
|
|
3972
|
-
|
|
3973
|
-
|
|
3974
|
-
|
|
3975
|
-
|
|
3976
|
-
|
|
3977
|
-
|
|
3978
|
-
|
|
3979
|
-
|
|
3980
|
-
|
|
3981
|
-
|
|
3982
|
-
|
|
3983
|
-
|
|
3984
|
-
|
|
3985
|
-
|
|
3986
|
-
|
|
3987
|
-
});
|
|
3988
|
-
throw new Error(errorMsg);
|
|
3989
|
-
}
|
|
3990
|
-
try {
|
|
3991
|
-
logger.debug(`[${this.getProviderName()}] Tool ${tool.name} parameters:`, toolInput);
|
|
3992
|
-
const result2 = await tool.fn(toolInput);
|
|
3993
|
-
logger.info(`[${this.getProviderName()}] Tool ${tool.name} executed successfully`);
|
|
3994
|
-
logCollector?.info(`\u2713 ${tool.name} completed successfully`);
|
|
3995
|
-
toolResults.push({
|
|
3996
|
-
toolName: tool.name,
|
|
3997
|
-
toolId: tool.id,
|
|
3998
|
-
result: result2
|
|
3999
|
-
});
|
|
4000
|
-
return JSON.stringify(result2, null, 2);
|
|
4001
|
-
} catch (error) {
|
|
4002
|
-
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
4003
|
-
logger.error(`[${this.getProviderName()}] Tool ${tool.name} failed (attempt ${attempts}): ${errorMsg}`);
|
|
4004
|
-
logCollector?.error(`\u2717 ${tool.name} failed: ${errorMsg}`);
|
|
4005
|
-
if (attempts >= MAX_TOOL_ATTEMPTS) {
|
|
4006
|
-
toolResults.push({
|
|
4007
|
-
toolName: tool.name,
|
|
4008
|
-
toolId: tool.id,
|
|
4009
|
-
result: null,
|
|
4010
|
-
error: errorMsg
|
|
4011
|
-
});
|
|
4012
|
-
}
|
|
4013
|
-
throw new Error(`Tool execution failed: ${errorMsg}`);
|
|
3651
|
+
const result = await LLM.stream(
|
|
3652
|
+
{
|
|
3653
|
+
sys: prompts.system,
|
|
3654
|
+
user: prompts.user
|
|
3655
|
+
},
|
|
3656
|
+
{
|
|
3657
|
+
model: this.model,
|
|
3658
|
+
maxTokens: 1e3,
|
|
3659
|
+
temperature: 0.2,
|
|
3660
|
+
apiKey: this.getApiKey(apiKey)
|
|
3661
|
+
},
|
|
3662
|
+
true
|
|
3663
|
+
// Parse as JSON
|
|
3664
|
+
);
|
|
3665
|
+
logCollector?.logExplanation(
|
|
3666
|
+
"Question category classified",
|
|
3667
|
+
result.reasoning || "No reasoning provided",
|
|
3668
|
+
{
|
|
3669
|
+
category: result.category,
|
|
3670
|
+
externalTools: result.externalTools || [],
|
|
3671
|
+
dataAnalysisType: result.dataAnalysisType,
|
|
3672
|
+
confidence: result.confidence
|
|
4014
3673
|
}
|
|
3674
|
+
);
|
|
3675
|
+
return {
|
|
3676
|
+
category: result.category || "data_analysis",
|
|
3677
|
+
externalTools: result.externalTools || [],
|
|
3678
|
+
dataAnalysisType: result.dataAnalysisType,
|
|
3679
|
+
reasoning: result.reasoning || "No reasoning provided",
|
|
3680
|
+
confidence: result.confidence || 0
|
|
4015
3681
|
};
|
|
4016
|
-
|
|
4017
|
-
|
|
4018
|
-
|
|
4019
|
-
|
|
4020
|
-
|
|
4021
|
-
|
|
4022
|
-
|
|
4023
|
-
|
|
4024
|
-
|
|
4025
|
-
|
|
3682
|
+
} catch (error) {
|
|
3683
|
+
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
3684
|
+
logger.error(`[${this.getProviderName()}] Error classifying question category: ${errorMsg}`);
|
|
3685
|
+
logger.debug(`[${this.getProviderName()}] Category classification error details:`, error);
|
|
3686
|
+
throw error;
|
|
3687
|
+
}
|
|
3688
|
+
}
|
|
3689
|
+
/**
|
|
3690
|
+
* Adapt UI block parameters based on current user question
|
|
3691
|
+
* Takes a matched UI block from semantic search and modifies its props to answer the new question
|
|
3692
|
+
*/
|
|
3693
|
+
async adaptUIBlockParameters(currentUserPrompt, originalUserPrompt, matchedUIBlock, apiKey, logCollector) {
|
|
3694
|
+
try {
|
|
3695
|
+
const component = matchedUIBlock?.generatedComponentMetadata || matchedUIBlock?.component;
|
|
3696
|
+
if (!matchedUIBlock || !component) {
|
|
3697
|
+
return {
|
|
3698
|
+
success: false,
|
|
3699
|
+
explanation: "No component found in matched UI block"
|
|
3700
|
+
};
|
|
3701
|
+
}
|
|
3702
|
+
const schemaDoc = schema.generateSchemaDocumentation();
|
|
3703
|
+
const prompts = await promptLoader.loadPrompts("adapt-ui-block-params", {
|
|
3704
|
+
ORIGINAL_USER_PROMPT: originalUserPrompt,
|
|
3705
|
+
CURRENT_USER_PROMPT: currentUserPrompt,
|
|
3706
|
+
MATCHED_UI_BLOCK_COMPONENT: JSON.stringify(component, null, 2),
|
|
3707
|
+
COMPONENT_PROPS: JSON.stringify(component.props, null, 2),
|
|
3708
|
+
SCHEMA_DOC: schemaDoc || "No schema available"
|
|
4026
3709
|
});
|
|
4027
|
-
|
|
4028
|
-
logCollector?.info("Analyzing request and executing external tools...");
|
|
4029
|
-
const result = await LLM.streamWithTools(
|
|
3710
|
+
const result = await LLM.stream(
|
|
4030
3711
|
{
|
|
4031
3712
|
sys: prompts.system,
|
|
4032
3713
|
user: prompts.user
|
|
4033
3714
|
},
|
|
4034
|
-
llmTools,
|
|
4035
|
-
toolHandler,
|
|
4036
3715
|
{
|
|
4037
3716
|
model: this.model,
|
|
4038
3717
|
maxTokens: 2e3,
|
|
4039
3718
|
temperature: 0.2,
|
|
4040
3719
|
apiKey: this.getApiKey(apiKey)
|
|
4041
3720
|
},
|
|
4042
|
-
|
|
4043
|
-
//
|
|
3721
|
+
true
|
|
3722
|
+
// Parse as JSON
|
|
4044
3723
|
);
|
|
4045
|
-
|
|
4046
|
-
|
|
4047
|
-
|
|
4048
|
-
|
|
4049
|
-
|
|
4050
|
-
|
|
4051
|
-
|
|
4052
|
-
|
|
4053
|
-
|
|
4054
|
-
|
|
3724
|
+
if (!result.success) {
|
|
3725
|
+
logger.info(
|
|
3726
|
+
`[${this.getProviderName()}] Could not adapt UI block: ${result.reason}`
|
|
3727
|
+
);
|
|
3728
|
+
logCollector?.warn(
|
|
3729
|
+
"Could not adapt matched UI block",
|
|
3730
|
+
"explanation",
|
|
3731
|
+
{ reason: result.reason }
|
|
3732
|
+
);
|
|
3733
|
+
return {
|
|
3734
|
+
success: false,
|
|
3735
|
+
explanation: result.explanation || "Adaptation not possible"
|
|
3736
|
+
};
|
|
4055
3737
|
}
|
|
4056
|
-
if (
|
|
4057
|
-
|
|
3738
|
+
if (result.adaptedComponent?.props?.query) {
|
|
3739
|
+
result.adaptedComponent.props.query = ensureQueryLimit(
|
|
3740
|
+
result.adaptedComponent.props.query,
|
|
3741
|
+
this.defaultLimit
|
|
3742
|
+
);
|
|
4058
3743
|
}
|
|
4059
|
-
|
|
3744
|
+
logCollector?.logExplanation(
|
|
3745
|
+
"UI block parameters adapted",
|
|
3746
|
+
result.explanation || "Parameters adapted successfully",
|
|
3747
|
+
{
|
|
3748
|
+
parametersChanged: result.parametersChanged || [],
|
|
3749
|
+
componentType: result.adaptedComponent?.type
|
|
3750
|
+
}
|
|
3751
|
+
);
|
|
4060
3752
|
return {
|
|
4061
|
-
|
|
4062
|
-
|
|
4063
|
-
|
|
3753
|
+
success: true,
|
|
3754
|
+
adaptedComponent: result.adaptedComponent,
|
|
3755
|
+
parametersChanged: result.parametersChanged,
|
|
3756
|
+
explanation: result.explanation || "Parameters adapted successfully"
|
|
4064
3757
|
};
|
|
4065
3758
|
} catch (error) {
|
|
4066
3759
|
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
4067
|
-
logger.error(`[${this.getProviderName()}] Error
|
|
4068
|
-
|
|
3760
|
+
logger.error(`[${this.getProviderName()}] Error adapting UI block parameters: ${errorMsg}`);
|
|
3761
|
+
logger.debug(`[${this.getProviderName()}] Adaptation error details:`, error);
|
|
4069
3762
|
return {
|
|
4070
|
-
|
|
4071
|
-
|
|
4072
|
-
hasResults: false
|
|
3763
|
+
success: false,
|
|
3764
|
+
explanation: `Error adapting parameters: ${errorMsg}`
|
|
4073
3765
|
};
|
|
4074
3766
|
}
|
|
4075
3767
|
}
|
|
@@ -4088,32 +3780,24 @@ ${paramsText}`;
|
|
|
4088
3780
|
logger.debug(`[${this.getProviderName()}] Starting text response generation`);
|
|
4089
3781
|
logger.debug(`[${this.getProviderName()}] User prompt: "${userPrompt.substring(0, 50)}..."`);
|
|
4090
3782
|
try {
|
|
4091
|
-
let
|
|
3783
|
+
let availableToolsDoc = "No external tools are available for this request.";
|
|
4092
3784
|
if (externalTools && externalTools.length > 0) {
|
|
4093
|
-
logger.info(`[${this.getProviderName()}]
|
|
4094
|
-
|
|
4095
|
-
|
|
4096
|
-
|
|
4097
|
-
|
|
4098
|
-
|
|
4099
|
-
|
|
4100
|
-
|
|
4101
|
-
const toolResultsText = toolExecution.toolResults.map((tr) => {
|
|
4102
|
-
if (tr.error) {
|
|
4103
|
-
return `**${tr.toolName}** (Failed): ${tr.error}`;
|
|
3785
|
+
logger.info(`[${this.getProviderName()}] External tools available: ${externalTools.map((t) => t.name).join(", ")}`);
|
|
3786
|
+
availableToolsDoc = "\u26A0\uFE0F **EXECUTE THESE TOOLS IMMEDIATELY** \u26A0\uFE0F\n\nThe following external tools have been identified as necessary for this request. You MUST call them:\n\n" + externalTools.map((tool, idx) => {
|
|
3787
|
+
const paramsText = Object.entries(tool.params || {}).map(([key, value]) => {
|
|
3788
|
+
const valueType = typeof value;
|
|
3789
|
+
if (valueType === "string" && ["string", "number", "integer", "boolean", "array", "object"].includes(String(value).toLowerCase())) {
|
|
3790
|
+
return `- ${key}: ${value}`;
|
|
3791
|
+
} else {
|
|
3792
|
+
return `- ${key}: ${JSON.stringify(value)} (default value - use this)`;
|
|
4104
3793
|
}
|
|
4105
|
-
|
|
4106
|
-
|
|
4107
|
-
|
|
4108
|
-
|
|
4109
|
-
|
|
4110
|
-
${
|
|
4111
|
-
|
|
4112
|
-
${toolResultsText}`;
|
|
4113
|
-
logger.info(`[${this.getProviderName()}] External tools executed, results available`);
|
|
4114
|
-
} else {
|
|
4115
|
-
logger.info(`[${this.getProviderName()}] No external tools were needed`);
|
|
4116
|
-
}
|
|
3794
|
+
}).join("\n ");
|
|
3795
|
+
return `${idx + 1}. **${tool.name}** (ID: ${tool.id})
|
|
3796
|
+
Description: ${tool.description}
|
|
3797
|
+
**ACTION REQUIRED**: Call this tool with the parameters below
|
|
3798
|
+
Parameters:
|
|
3799
|
+
${paramsText}`;
|
|
3800
|
+
}).join("\n\n");
|
|
4117
3801
|
}
|
|
4118
3802
|
const schemaDoc = schema.generateSchemaDocumentation();
|
|
4119
3803
|
const knowledgeBaseContext = await knowledge_base_default.getKnowledgeBase({
|
|
@@ -4122,13 +3806,12 @@ ${toolResultsText}`;
|
|
|
4122
3806
|
topK: 1
|
|
4123
3807
|
});
|
|
4124
3808
|
logger.file("\n=============================\nknowledge base context:", knowledgeBaseContext);
|
|
4125
|
-
logger.file("\n=============================\nexternal tool context:", externalToolContext);
|
|
4126
3809
|
const prompts = await promptLoader.loadPrompts("text-response", {
|
|
4127
3810
|
USER_PROMPT: userPrompt,
|
|
4128
3811
|
CONVERSATION_HISTORY: conversationHistory || "No previous conversation",
|
|
4129
3812
|
SCHEMA_DOC: schemaDoc,
|
|
4130
3813
|
KNOWLEDGE_BASE_CONTEXT: knowledgeBaseContext || "No additional knowledge base context available.",
|
|
4131
|
-
|
|
3814
|
+
AVAILABLE_EXTERNAL_TOOLS: availableToolsDoc
|
|
4132
3815
|
});
|
|
4133
3816
|
logger.file("\n=============================\nsystem prompt:", prompts.system);
|
|
4134
3817
|
logger.file("\n=============================\nuser prompt:", prompts.user);
|
|
@@ -4149,12 +3832,89 @@ ${toolResultsText}`;
|
|
|
4149
3832
|
type: "string",
|
|
4150
3833
|
description: "Brief explanation of what this query does and why it answers the user's question."
|
|
4151
3834
|
}
|
|
4152
|
-
},
|
|
4153
|
-
required: ["query"]
|
|
4154
|
-
|
|
4155
|
-
|
|
3835
|
+
},
|
|
3836
|
+
required: ["query"],
|
|
3837
|
+
additionalProperties: false
|
|
3838
|
+
}
|
|
3839
|
+
}];
|
|
3840
|
+
if (externalTools && externalTools.length > 0) {
|
|
3841
|
+
externalTools.forEach((tool) => {
|
|
3842
|
+
logger.info(`[${this.getProviderName()}] Processing external tool:`, JSON.stringify(tool, null, 2));
|
|
3843
|
+
const properties = {};
|
|
3844
|
+
const required = [];
|
|
3845
|
+
Object.entries(tool.params || {}).forEach(([key, typeOrValue]) => {
|
|
3846
|
+
let schemaType;
|
|
3847
|
+
let hasDefaultValue = false;
|
|
3848
|
+
let defaultValue;
|
|
3849
|
+
const valueType = typeof typeOrValue;
|
|
3850
|
+
if (valueType === "number") {
|
|
3851
|
+
schemaType = Number.isInteger(typeOrValue) ? "integer" : "number";
|
|
3852
|
+
hasDefaultValue = true;
|
|
3853
|
+
defaultValue = typeOrValue;
|
|
3854
|
+
} else if (valueType === "boolean") {
|
|
3855
|
+
schemaType = "boolean";
|
|
3856
|
+
hasDefaultValue = true;
|
|
3857
|
+
defaultValue = typeOrValue;
|
|
3858
|
+
} else if (Array.isArray(typeOrValue)) {
|
|
3859
|
+
schemaType = "array";
|
|
3860
|
+
hasDefaultValue = true;
|
|
3861
|
+
defaultValue = typeOrValue;
|
|
3862
|
+
} else if (valueType === "object" && typeOrValue !== null) {
|
|
3863
|
+
schemaType = "object";
|
|
3864
|
+
hasDefaultValue = true;
|
|
3865
|
+
defaultValue = typeOrValue;
|
|
3866
|
+
} else {
|
|
3867
|
+
const typeStr = String(typeOrValue).toLowerCase().trim();
|
|
3868
|
+
if (typeStr === "string" || typeStr === "str") {
|
|
3869
|
+
schemaType = "string";
|
|
3870
|
+
} else if (typeStr === "number" || typeStr === "num" || typeStr === "float" || typeStr === "double") {
|
|
3871
|
+
schemaType = "number";
|
|
3872
|
+
} else if (typeStr === "integer" || typeStr === "int") {
|
|
3873
|
+
schemaType = "integer";
|
|
3874
|
+
} else if (typeStr === "boolean" || typeStr === "bool") {
|
|
3875
|
+
schemaType = "boolean";
|
|
3876
|
+
} else if (typeStr === "array" || typeStr === "list") {
|
|
3877
|
+
schemaType = "array";
|
|
3878
|
+
} else if (typeStr === "object" || typeStr === "dict") {
|
|
3879
|
+
schemaType = "object";
|
|
3880
|
+
} else {
|
|
3881
|
+
schemaType = "string";
|
|
3882
|
+
hasDefaultValue = true;
|
|
3883
|
+
defaultValue = typeOrValue;
|
|
3884
|
+
}
|
|
3885
|
+
}
|
|
3886
|
+
const propertySchema = {
|
|
3887
|
+
type: schemaType,
|
|
3888
|
+
description: `${key} parameter for ${tool.name}`
|
|
3889
|
+
};
|
|
3890
|
+
if (hasDefaultValue) {
|
|
3891
|
+
propertySchema.default = defaultValue;
|
|
3892
|
+
} else {
|
|
3893
|
+
required.push(key);
|
|
3894
|
+
}
|
|
3895
|
+
properties[key] = propertySchema;
|
|
3896
|
+
});
|
|
3897
|
+
const inputSchema = {
|
|
3898
|
+
type: "object",
|
|
3899
|
+
properties,
|
|
3900
|
+
additionalProperties: false
|
|
3901
|
+
};
|
|
3902
|
+
if (required.length > 0) {
|
|
3903
|
+
inputSchema.required = required;
|
|
3904
|
+
}
|
|
3905
|
+
tools.push({
|
|
3906
|
+
name: tool.id,
|
|
3907
|
+
description: tool.description,
|
|
3908
|
+
input_schema: inputSchema
|
|
3909
|
+
});
|
|
3910
|
+
});
|
|
3911
|
+
logger.info(`[${this.getProviderName()}] Added ${externalTools.length} external tools to tool calling capability`);
|
|
3912
|
+
logger.info(`[${this.getProviderName()}] Complete tools array:`, JSON.stringify(tools, null, 2));
|
|
3913
|
+
}
|
|
4156
3914
|
const queryAttempts = /* @__PURE__ */ new Map();
|
|
4157
3915
|
const MAX_QUERY_ATTEMPTS = 6;
|
|
3916
|
+
const toolAttempts = /* @__PURE__ */ new Map();
|
|
3917
|
+
const MAX_TOOL_ATTEMPTS = 3;
|
|
4158
3918
|
let maxAttemptsReached = false;
|
|
4159
3919
|
let fullStreamedText = "";
|
|
4160
3920
|
const wrappedStreamCallback = streamCallback ? (chunk) => {
|
|
@@ -4296,8 +4056,75 @@ ${errorMsg}
|
|
|
4296
4056
|
}
|
|
4297
4057
|
throw new Error(`Query execution failed: ${errorMsg}`);
|
|
4298
4058
|
}
|
|
4059
|
+
} else {
|
|
4060
|
+
const externalTool = externalTools?.find((t) => t.id === toolName);
|
|
4061
|
+
if (externalTool) {
|
|
4062
|
+
const attempts = (toolAttempts.get(toolName) || 0) + 1;
|
|
4063
|
+
toolAttempts.set(toolName, attempts);
|
|
4064
|
+
logger.info(`[${this.getProviderName()}] Executing external tool: ${externalTool.name} (attempt ${attempts}/${MAX_TOOL_ATTEMPTS})`);
|
|
4065
|
+
logCollector?.info(`Executing external tool: ${externalTool.name} (attempt ${attempts}/${MAX_TOOL_ATTEMPTS})...`);
|
|
4066
|
+
if (attempts > MAX_TOOL_ATTEMPTS) {
|
|
4067
|
+
const errorMsg = `Maximum attempts (${MAX_TOOL_ATTEMPTS}) reached for tool: ${externalTool.name}`;
|
|
4068
|
+
logger.error(`[${this.getProviderName()}] ${errorMsg}`);
|
|
4069
|
+
logCollector?.error(errorMsg);
|
|
4070
|
+
if (wrappedStreamCallback) {
|
|
4071
|
+
wrappedStreamCallback(`
|
|
4072
|
+
|
|
4073
|
+
\u274C ${errorMsg}
|
|
4074
|
+
|
|
4075
|
+
Please try rephrasing your request or contact support.
|
|
4076
|
+
|
|
4077
|
+
`);
|
|
4078
|
+
}
|
|
4079
|
+
throw new Error(errorMsg);
|
|
4080
|
+
}
|
|
4081
|
+
try {
|
|
4082
|
+
if (wrappedStreamCallback) {
|
|
4083
|
+
if (attempts === 1) {
|
|
4084
|
+
wrappedStreamCallback(`
|
|
4085
|
+
|
|
4086
|
+
\u{1F517} **Executing ${externalTool.name}...**
|
|
4087
|
+
|
|
4088
|
+
`);
|
|
4089
|
+
} else {
|
|
4090
|
+
wrappedStreamCallback(`
|
|
4091
|
+
|
|
4092
|
+
\u{1F504} **Retrying ${externalTool.name} (attempt ${attempts}/${MAX_TOOL_ATTEMPTS})...**
|
|
4093
|
+
|
|
4094
|
+
`);
|
|
4095
|
+
}
|
|
4096
|
+
}
|
|
4097
|
+
const result2 = await externalTool.fn(toolInput);
|
|
4098
|
+
logger.info(`[${this.getProviderName()}] External tool ${externalTool.name} executed successfully`);
|
|
4099
|
+
logCollector?.info(`\u2713 ${externalTool.name} executed successfully`);
|
|
4100
|
+
if (wrappedStreamCallback) {
|
|
4101
|
+
wrappedStreamCallback(`\u2705 **${externalTool.name} completed successfully**
|
|
4102
|
+
|
|
4103
|
+
`);
|
|
4104
|
+
}
|
|
4105
|
+
return JSON.stringify(result2, null, 2);
|
|
4106
|
+
} catch (error) {
|
|
4107
|
+
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
4108
|
+
logger.error(`[${this.getProviderName()}] External tool ${externalTool.name} failed (attempt ${attempts}/${MAX_TOOL_ATTEMPTS}): ${errorMsg}`);
|
|
4109
|
+
logCollector?.error(`\u2717 ${externalTool.name} failed: ${errorMsg}`);
|
|
4110
|
+
if (wrappedStreamCallback) {
|
|
4111
|
+
wrappedStreamCallback(`\u274C **${externalTool.name} failed:**
|
|
4112
|
+
\`\`\`
|
|
4113
|
+
${errorMsg}
|
|
4114
|
+
\`\`\`
|
|
4115
|
+
|
|
4116
|
+
`);
|
|
4117
|
+
if (attempts < MAX_TOOL_ATTEMPTS) {
|
|
4118
|
+
wrappedStreamCallback(`\u{1F527} **Retrying with adjusted parameters...**
|
|
4119
|
+
|
|
4120
|
+
`);
|
|
4121
|
+
}
|
|
4122
|
+
}
|
|
4123
|
+
throw new Error(`Tool execution failed: ${errorMsg}`);
|
|
4124
|
+
}
|
|
4125
|
+
}
|
|
4126
|
+
throw new Error(`Unknown tool: ${toolName}`);
|
|
4299
4127
|
}
|
|
4300
|
-
throw new Error(`Unknown tool: ${toolName}`);
|
|
4301
4128
|
};
|
|
4302
4129
|
const result = await LLM.streamWithTools(
|
|
4303
4130
|
{
|
|
@@ -4314,8 +4141,8 @@ ${errorMsg}
|
|
|
4314
4141
|
partial: wrappedStreamCallback
|
|
4315
4142
|
// Pass the wrapped streaming callback to LLM
|
|
4316
4143
|
},
|
|
4317
|
-
|
|
4318
|
-
// max iterations: allows for 6 retries + final response + buffer
|
|
4144
|
+
20
|
|
4145
|
+
// max iterations: allows for 6 query retries + 3 tool retries + final response + buffer
|
|
4319
4146
|
);
|
|
4320
4147
|
logger.info(`[${this.getProviderName()}] Text response stream completed`);
|
|
4321
4148
|
const textResponse = fullStreamedText || result || "I apologize, but I was unable to generate a response.";
|
|
@@ -4370,24 +4197,22 @@ ${errorMsg}
|
|
|
4370
4197
|
}
|
|
4371
4198
|
let container_componet = null;
|
|
4372
4199
|
if (matchedComponents.length > 0) {
|
|
4200
|
+
logger.info(`[${this.getProviderName()}] Created MultiComponentContainer: "${layoutTitle}" with ${matchedComponents.length} components and ${actions.length} actions`);
|
|
4201
|
+
logCollector?.info(`Created dashboard: "${layoutTitle}" with ${matchedComponents.length} components and ${actions.length} actions`);
|
|
4373
4202
|
container_componet = {
|
|
4374
|
-
id: `
|
|
4203
|
+
id: `container_${Date.now()}`,
|
|
4375
4204
|
name: "MultiComponentContainer",
|
|
4376
4205
|
type: "Container",
|
|
4377
4206
|
description: layoutDescription,
|
|
4378
|
-
category: "dynamic",
|
|
4379
|
-
keywords: ["dashboard", "layout", "container"],
|
|
4380
4207
|
props: {
|
|
4381
4208
|
config: {
|
|
4382
|
-
components: matchedComponents,
|
|
4383
4209
|
title: layoutTitle,
|
|
4384
|
-
description: layoutDescription
|
|
4210
|
+
description: layoutDescription,
|
|
4211
|
+
components: matchedComponents
|
|
4385
4212
|
},
|
|
4386
4213
|
actions
|
|
4387
4214
|
}
|
|
4388
4215
|
};
|
|
4389
|
-
logger.info(`[${this.getProviderName()}] Created MultiComponentContainer: "${layoutTitle}" with ${matchedComponents.length} components and ${actions.length} actions`);
|
|
4390
|
-
logCollector?.info(`Created dashboard: "${layoutTitle}" with ${matchedComponents.length} components and ${actions.length} actions`);
|
|
4391
4216
|
}
|
|
4392
4217
|
return {
|
|
4393
4218
|
success: true,
|
|
@@ -4418,201 +4243,134 @@ ${errorMsg}
|
|
|
4418
4243
|
}
|
|
4419
4244
|
}
|
|
4420
4245
|
/**
|
|
4421
|
-
*
|
|
4422
|
-
*
|
|
4423
|
-
*
|
|
4246
|
+
* Main orchestration function with semantic search and multi-step classification
|
|
4247
|
+
* NEW FLOW (Recommended):
|
|
4248
|
+
* 1. Semantic search: Check previous conversations (>60% match)
|
|
4249
|
+
* - If match found → Adapt UI block parameters and return
|
|
4250
|
+
* 2. Category classification: Determine if data_analysis, requires_external_tools, or text_response
|
|
4251
|
+
* 3. Route appropriately based on category and response mode
|
|
4252
|
+
*
|
|
4253
|
+
* @param responseMode - 'component' for component generation (default), 'text' for text responses
|
|
4254
|
+
* @param streamCallback - Optional callback function to receive text chunks as they stream (only for text mode)
|
|
4255
|
+
* @param collections - Collection registry for executing database queries (required for text mode)
|
|
4256
|
+
* @param externalTools - Optional array of external tools (email, calendar, etc.) that can be called (only for text mode)
|
|
4424
4257
|
*/
|
|
4425
|
-
async
|
|
4426
|
-
const
|
|
4258
|
+
async handleUserRequest(userPrompt, components, apiKey, logCollector, conversationHistory, responseMode = "text", streamCallback, collections, externalTools, userId) {
|
|
4259
|
+
const startTime = Date.now();
|
|
4260
|
+
logger.info(`[${this.getProviderName()}] handleUserRequest called with responseMode: ${responseMode}`);
|
|
4261
|
+
logCollector?.info(`Starting request processing with mode: ${responseMode}`);
|
|
4427
4262
|
try {
|
|
4428
|
-
logger.info(`[${this.getProviderName()}]
|
|
4429
|
-
|
|
4430
|
-
|
|
4431
|
-
|
|
4432
|
-
|
|
4433
|
-
|
|
4434
|
-
|
|
4435
|
-
|
|
4436
|
-
|
|
4437
|
-
|
|
4438
|
-
|
|
4439
|
-
|
|
4440
|
-
|
|
4441
|
-
|
|
4442
|
-
|
|
4443
|
-
|
|
4444
|
-
|
|
4445
|
-
|
|
4446
|
-
|
|
4447
|
-
|
|
4448
|
-
});
|
|
4449
|
-
|
|
4450
|
-
const
|
|
4451
|
-
for (const settledResult of settledResults) {
|
|
4452
|
-
if (settledResult.status === "fulfilled") {
|
|
4453
|
-
const { vizType, result } = settledResult.value;
|
|
4454
|
-
if (result.component) {
|
|
4455
|
-
matchedComponents.push(result.component);
|
|
4456
|
-
logCollector?.info(`Matched: ${result.component.name}`);
|
|
4457
|
-
logger.info("Component : ", result.component.name, " props: ", result.component.props);
|
|
4458
|
-
} else {
|
|
4459
|
-
logCollector?.warn(`Failed to match component for type: ${vizType}`);
|
|
4460
|
-
}
|
|
4461
|
-
} else {
|
|
4462
|
-
logCollector?.warn(`Error matching component: ${settledResult.reason?.message || "Unknown error"}`);
|
|
4463
|
-
}
|
|
4464
|
-
}
|
|
4465
|
-
logger.debug(`[${this.getProviderName()}] Matched ${matchedComponents.length} components for multi-component container`);
|
|
4466
|
-
if (matchedComponents.length === 0) {
|
|
4467
|
-
return {
|
|
4468
|
-
success: true,
|
|
4469
|
-
data: {
|
|
4470
|
-
component: null,
|
|
4471
|
-
reasoning: "Failed to match any components for the requested visualization types",
|
|
4472
|
-
method: "classification-multi-failed",
|
|
4473
|
-
questionType: classification.questionType,
|
|
4474
|
-
needsMultipleComponents: true,
|
|
4475
|
-
propsModified: false,
|
|
4476
|
-
queryModified: false
|
|
4477
|
-
},
|
|
4478
|
-
errors: []
|
|
4479
|
-
};
|
|
4480
|
-
}
|
|
4481
|
-
logCollector?.info("Generating container metadata...");
|
|
4482
|
-
const containerMetadata = await this.generateContainerMetadata(
|
|
4483
|
-
userPrompt,
|
|
4484
|
-
classification.visualizations,
|
|
4485
|
-
apiKey,
|
|
4486
|
-
logCollector,
|
|
4487
|
-
conversationHistory
|
|
4488
|
-
);
|
|
4489
|
-
const containerComponent = {
|
|
4490
|
-
id: `multi_container_${Date.now()}`,
|
|
4491
|
-
name: "MultiComponentContainer",
|
|
4492
|
-
type: "Container",
|
|
4493
|
-
description: containerMetadata.description,
|
|
4494
|
-
category: "dynamic",
|
|
4495
|
-
keywords: ["multi", "container", "dashboard"],
|
|
4496
|
-
props: {
|
|
4497
|
-
config: {
|
|
4498
|
-
components: matchedComponents,
|
|
4499
|
-
layout: "grid",
|
|
4500
|
-
spacing: 24,
|
|
4501
|
-
title: containerMetadata.title,
|
|
4502
|
-
description: containerMetadata.description
|
|
4503
|
-
}
|
|
4504
|
-
}
|
|
4505
|
-
};
|
|
4506
|
-
logCollector?.info(`Created multi-component container with ${matchedComponents.length} components: "${containerMetadata.title}"`);
|
|
4263
|
+
logger.info(`[${this.getProviderName()}] Step 1: Searching previous conversations...`);
|
|
4264
|
+
logCollector?.info("Step 1: Searching for similar previous conversations...");
|
|
4265
|
+
const conversationMatch = await conversation_search_default.searchConversations({
|
|
4266
|
+
userPrompt,
|
|
4267
|
+
collections,
|
|
4268
|
+
userId,
|
|
4269
|
+
similarityThreshold: 0.6
|
|
4270
|
+
// 60% threshold
|
|
4271
|
+
});
|
|
4272
|
+
logger.info("conversationMatch:", conversationMatch);
|
|
4273
|
+
if (conversationMatch) {
|
|
4274
|
+
logger.info(
|
|
4275
|
+
`[${this.getProviderName()}] \u2713 Found matching conversation with ${(conversationMatch.similarity * 100).toFixed(2)}% similarity`
|
|
4276
|
+
);
|
|
4277
|
+
logCollector?.info(
|
|
4278
|
+
`\u2713 Found similar conversation (${(conversationMatch.similarity * 100).toFixed(2)}% match)`
|
|
4279
|
+
);
|
|
4280
|
+
if (conversationMatch.similarity >= 0.99) {
|
|
4281
|
+
const elapsedTime2 = Date.now() - startTime;
|
|
4282
|
+
logger.info(`[${this.getProviderName()}] \u2713 100% match - returning UI block directly without adaptation`);
|
|
4283
|
+
logCollector?.info(`\u2713 Exact match (${(conversationMatch.similarity * 100).toFixed(2)}%) - returning cached result`);
|
|
4284
|
+
logCollector?.info(`Total time taken: ${elapsedTime2}ms (${(elapsedTime2 / 1e3).toFixed(2)}s)`);
|
|
4285
|
+
const component = conversationMatch.uiBlock?.generatedComponentMetadata || conversationMatch.uiBlock?.component;
|
|
4507
4286
|
return {
|
|
4508
4287
|
success: true,
|
|
4509
4288
|
data: {
|
|
4510
|
-
component
|
|
4511
|
-
reasoning: `
|
|
4512
|
-
method:
|
|
4513
|
-
|
|
4514
|
-
needsMultipleComponents: true,
|
|
4515
|
-
propsModified: false,
|
|
4516
|
-
queryModified: false
|
|
4289
|
+
component,
|
|
4290
|
+
reasoning: `Exact match from previous conversation (${(conversationMatch.similarity * 100).toFixed(2)}% similarity)`,
|
|
4291
|
+
method: `${this.getProviderName()}-semantic-match-exact`,
|
|
4292
|
+
semanticSimilarity: conversationMatch.similarity
|
|
4517
4293
|
},
|
|
4518
4294
|
errors: []
|
|
4519
4295
|
};
|
|
4520
|
-
}
|
|
4521
|
-
|
|
4522
|
-
|
|
4523
|
-
|
|
4296
|
+
}
|
|
4297
|
+
logCollector?.info(`Adapting parameters for similar question...`);
|
|
4298
|
+
const originalPrompt = conversationMatch.metadata?.userPrompt || "Previous question";
|
|
4299
|
+
const adaptResult = await this.adaptUIBlockParameters(
|
|
4300
|
+
userPrompt,
|
|
4301
|
+
originalPrompt,
|
|
4302
|
+
conversationMatch.uiBlock,
|
|
4303
|
+
apiKey,
|
|
4304
|
+
logCollector
|
|
4305
|
+
);
|
|
4306
|
+
if (adaptResult.success && adaptResult.adaptedComponent) {
|
|
4307
|
+
const elapsedTime2 = Date.now() - startTime;
|
|
4308
|
+
logger.info(`[${this.getProviderName()}] \u2713 Successfully adapted UI block parameters`);
|
|
4309
|
+
logger.info(`[${this.getProviderName()}] Total time taken: ${elapsedTime2}ms (${(elapsedTime2 / 1e3).toFixed(2)}s)`);
|
|
4310
|
+
logCollector?.info(`\u2713 UI block adapted successfully`);
|
|
4311
|
+
logCollector?.info(`Total time taken: ${elapsedTime2}ms (${(elapsedTime2 / 1e3).toFixed(2)}s)`);
|
|
4524
4312
|
return {
|
|
4525
4313
|
success: true,
|
|
4526
4314
|
data: {
|
|
4527
|
-
component:
|
|
4528
|
-
reasoning:
|
|
4529
|
-
method:
|
|
4530
|
-
|
|
4531
|
-
|
|
4532
|
-
propsModified: false,
|
|
4533
|
-
queryModified: false
|
|
4315
|
+
component: adaptResult.adaptedComponent,
|
|
4316
|
+
reasoning: `Adapted from previous conversation: ${originalPrompt}`,
|
|
4317
|
+
method: `${this.getProviderName()}-semantic-match`,
|
|
4318
|
+
semanticSimilarity: conversationMatch.similarity,
|
|
4319
|
+
parametersChanged: adaptResult.parametersChanged
|
|
4534
4320
|
},
|
|
4535
4321
|
errors: []
|
|
4536
4322
|
};
|
|
4537
4323
|
} else {
|
|
4538
|
-
|
|
4539
|
-
|
|
4540
|
-
return {
|
|
4541
|
-
success: true,
|
|
4542
|
-
data: {
|
|
4543
|
-
component: result.component,
|
|
4544
|
-
reasoning: result.reasoning,
|
|
4545
|
-
method: "classification-generated-auto",
|
|
4546
|
-
questionType: classification.questionType,
|
|
4547
|
-
needsMultipleComponents: false,
|
|
4548
|
-
propsModified: false,
|
|
4549
|
-
queryModified: false
|
|
4550
|
-
},
|
|
4551
|
-
errors: []
|
|
4552
|
-
};
|
|
4324
|
+
logger.info(`[${this.getProviderName()}] Could not adapt matched conversation, continuing to category classification`);
|
|
4325
|
+
logCollector?.warn(`Could not adapt matched conversation: ${adaptResult.explanation}`);
|
|
4553
4326
|
}
|
|
4554
|
-
} else if (classification.questionType === "data_modification" || classification.questionType === "general") {
|
|
4555
|
-
const matchMsg = "Using component matching for data modification...";
|
|
4556
|
-
logCollector?.info(matchMsg);
|
|
4557
|
-
const matchResult = await this.matchComponent(userPrompt, components, apiKey, logCollector, conversationHistory);
|
|
4558
|
-
return {
|
|
4559
|
-
success: true,
|
|
4560
|
-
data: {
|
|
4561
|
-
component: matchResult.component,
|
|
4562
|
-
reasoning: matchResult.reasoning,
|
|
4563
|
-
method: "classification-matched",
|
|
4564
|
-
questionType: classification.questionType,
|
|
4565
|
-
needsMultipleComponents: false,
|
|
4566
|
-
propsModified: matchResult.propsModified,
|
|
4567
|
-
queryModified: matchResult.queryModified
|
|
4568
|
-
},
|
|
4569
|
-
errors: []
|
|
4570
|
-
};
|
|
4571
4327
|
} else {
|
|
4572
|
-
|
|
4573
|
-
|
|
4574
|
-
|
|
4575
|
-
|
|
4576
|
-
|
|
4577
|
-
|
|
4578
|
-
|
|
4579
|
-
|
|
4580
|
-
|
|
4581
|
-
|
|
4582
|
-
|
|
4583
|
-
|
|
4584
|
-
|
|
4585
|
-
}
|
|
4328
|
+
logger.info(`[${this.getProviderName()}] No matching previous conversations found, proceeding to category classification`);
|
|
4329
|
+
logCollector?.info("No similar previous conversations found. Proceeding to category classification...");
|
|
4330
|
+
}
|
|
4331
|
+
logger.info(`[${this.getProviderName()}] Step 2: Classifying question category...`);
|
|
4332
|
+
logCollector?.info("Step 2: Classifying question category...");
|
|
4333
|
+
const categoryClassification = await this.classifyQuestionCategory(
|
|
4334
|
+
userPrompt,
|
|
4335
|
+
apiKey,
|
|
4336
|
+
logCollector,
|
|
4337
|
+
conversationHistory,
|
|
4338
|
+
externalTools
|
|
4339
|
+
);
|
|
4340
|
+
logger.info(
|
|
4341
|
+
`[${this.getProviderName()}] Question classified as: ${categoryClassification.category} (confidence: ${categoryClassification.confidence}%)`
|
|
4342
|
+
);
|
|
4343
|
+
logCollector?.info(
|
|
4344
|
+
`Category: ${categoryClassification.category} | Confidence: ${categoryClassification.confidence}%`
|
|
4345
|
+
);
|
|
4346
|
+
let toolsToUse = [];
|
|
4347
|
+
if (categoryClassification.externalTools && categoryClassification.externalTools.length > 0) {
|
|
4348
|
+
logger.info(`[${this.getProviderName()}] Identified ${categoryClassification.externalTools.length} external tools needed`);
|
|
4349
|
+
logCollector?.info(`Identified external tools: ${categoryClassification.externalTools.map((t) => t.name || t.type).join(", ")}`);
|
|
4350
|
+
toolsToUse = categoryClassification.externalTools?.map((t) => ({
|
|
4351
|
+
id: t.type,
|
|
4352
|
+
name: t.name,
|
|
4353
|
+
description: t.description,
|
|
4354
|
+
params: t.parameters || {},
|
|
4355
|
+
fn: (() => {
|
|
4356
|
+
const realTool = externalTools?.find((tool) => tool.id === t.type);
|
|
4357
|
+
if (realTool) {
|
|
4358
|
+
logger.info(`[${this.getProviderName()}] Using real tool implementation for ${t.type}`);
|
|
4359
|
+
return realTool.fn;
|
|
4360
|
+
} else {
|
|
4361
|
+
logger.warn(`[${this.getProviderName()}] Tool ${t.type} not found in registered tools`);
|
|
4362
|
+
return async () => ({ success: false, message: `Tool ${t.name || t.type} not registered` });
|
|
4363
|
+
}
|
|
4364
|
+
})()
|
|
4365
|
+
})) || [];
|
|
4366
|
+
}
|
|
4367
|
+
if (categoryClassification.category === "data_analysis") {
|
|
4368
|
+
logger.info(`[${this.getProviderName()}] Routing to data analysis (SELECT operations)`);
|
|
4369
|
+
logCollector?.info("Routing to data analysis...");
|
|
4370
|
+
} else if (categoryClassification.category === "data_modification") {
|
|
4371
|
+
logger.info(`[${this.getProviderName()}] Routing to data modification (INSERT/UPDATE/DELETE operations)`);
|
|
4372
|
+
logCollector?.info("Routing to data modification...");
|
|
4586
4373
|
}
|
|
4587
|
-
} catch (error) {
|
|
4588
|
-
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
4589
|
-
logger.error(`[${this.getProviderName()}] Error generating component response: ${errorMsg}`);
|
|
4590
|
-
logger.debug(`[${this.getProviderName()}] Component response generation error details:`, error);
|
|
4591
|
-
logCollector?.error(`Error generating component response: ${errorMsg}`);
|
|
4592
|
-
errors.push(errorMsg);
|
|
4593
|
-
return {
|
|
4594
|
-
success: false,
|
|
4595
|
-
errors,
|
|
4596
|
-
data: void 0
|
|
4597
|
-
};
|
|
4598
|
-
}
|
|
4599
|
-
}
|
|
4600
|
-
/**
|
|
4601
|
-
* Main orchestration function that classifies question and routes to appropriate handler
|
|
4602
|
-
* This is the NEW recommended entry point for handling user requests
|
|
4603
|
-
* Supports both component generation and text response modes
|
|
4604
|
-
*
|
|
4605
|
-
* @param responseMode - 'component' for component generation (default), 'text' for text responses
|
|
4606
|
-
* @param streamCallback - Optional callback function to receive text chunks as they stream (only for text mode)
|
|
4607
|
-
* @param collections - Collection registry for executing database queries (required for text mode)
|
|
4608
|
-
* @param externalTools - Optional array of external tools (email, calendar, etc.) that can be called (only for text mode)
|
|
4609
|
-
*/
|
|
4610
|
-
async handleUserRequest(userPrompt, components, apiKey, logCollector, conversationHistory, responseMode = "component", streamCallback, collections, externalTools) {
|
|
4611
|
-
const startTime = Date.now();
|
|
4612
|
-
logger.info(`[${this.getProviderName()}] handleUserRequest called with responseMode: ${responseMode}`);
|
|
4613
|
-
if (responseMode === "text") {
|
|
4614
|
-
logger.info(`[${this.getProviderName()}] Using text response mode`);
|
|
4615
|
-
logCollector?.info("Generating text response...");
|
|
4616
4374
|
const textResponse = await this.generateTextResponse(
|
|
4617
4375
|
userPrompt,
|
|
4618
4376
|
apiKey,
|
|
@@ -4621,40 +4379,29 @@ ${errorMsg}
|
|
|
4621
4379
|
streamCallback,
|
|
4622
4380
|
collections,
|
|
4623
4381
|
components,
|
|
4624
|
-
|
|
4382
|
+
toolsToUse
|
|
4625
4383
|
);
|
|
4626
|
-
|
|
4627
|
-
|
|
4628
|
-
|
|
4629
|
-
logger.info(`[${this.getProviderName()}] Total time taken: ${elapsedTime3}ms (${(elapsedTime3 / 1e3).toFixed(2)}s)`);
|
|
4630
|
-
logCollector?.info(`Total time taken: ${elapsedTime3}ms (${(elapsedTime3 / 1e3).toFixed(2)}s)`);
|
|
4631
|
-
return textResponse;
|
|
4632
|
-
}
|
|
4633
|
-
const elapsedTime2 = Date.now() - startTime;
|
|
4634
|
-
logger.info(`[${this.getProviderName()}] Text response generated successfully`);
|
|
4635
|
-
logger.info(`[${this.getProviderName()}] Total time taken: ${elapsedTime2}ms (${(elapsedTime2 / 1e3).toFixed(2)}s)`);
|
|
4636
|
-
logCollector?.info(`Total time taken: ${elapsedTime2}ms (${(elapsedTime2 / 1e3).toFixed(2)}s)`);
|
|
4384
|
+
const elapsedTime = Date.now() - startTime;
|
|
4385
|
+
logger.info(`[${this.getProviderName()}] Total time taken: ${elapsedTime}ms (${(elapsedTime / 1e3).toFixed(2)}s)`);
|
|
4386
|
+
logCollector?.info(`Total time taken: ${elapsedTime}ms (${(elapsedTime / 1e3).toFixed(2)}s)`);
|
|
4637
4387
|
return textResponse;
|
|
4388
|
+
} catch (error) {
|
|
4389
|
+
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
4390
|
+
logger.error(`[${this.getProviderName()}] Error in handleUserRequest: ${errorMsg}`);
|
|
4391
|
+
logger.debug(`[${this.getProviderName()}] Error details:`, error);
|
|
4392
|
+
logCollector?.error(`Error processing request: ${errorMsg}`);
|
|
4393
|
+
const elapsedTime = Date.now() - startTime;
|
|
4394
|
+
logger.info(`[${this.getProviderName()}] Total time taken: ${elapsedTime}ms (${(elapsedTime / 1e3).toFixed(2)}s)`);
|
|
4395
|
+
logCollector?.info(`Total time taken: ${elapsedTime}ms (${(elapsedTime / 1e3).toFixed(2)}s)`);
|
|
4396
|
+
return {
|
|
4397
|
+
success: false,
|
|
4398
|
+
errors: [errorMsg],
|
|
4399
|
+
data: {
|
|
4400
|
+
text: "I apologize, but I encountered an error processing your request. Please try again.",
|
|
4401
|
+
method: `${this.getProviderName()}-orchestration-error`
|
|
4402
|
+
}
|
|
4403
|
+
};
|
|
4638
4404
|
}
|
|
4639
|
-
const componentResponse = await this.generateComponentResponse(
|
|
4640
|
-
userPrompt,
|
|
4641
|
-
components,
|
|
4642
|
-
apiKey,
|
|
4643
|
-
logCollector,
|
|
4644
|
-
conversationHistory
|
|
4645
|
-
);
|
|
4646
|
-
if (!componentResponse.success) {
|
|
4647
|
-
const elapsedTime2 = Date.now() - startTime;
|
|
4648
|
-
logger.error(`[${this.getProviderName()}] Component response generation failed`);
|
|
4649
|
-
logger.info(`[${this.getProviderName()}] Total time taken: ${elapsedTime2}ms (${(elapsedTime2 / 1e3).toFixed(2)}s)`);
|
|
4650
|
-
logCollector?.info(`Total time taken: ${elapsedTime2}ms (${(elapsedTime2 / 1e3).toFixed(2)}s)`);
|
|
4651
|
-
return componentResponse;
|
|
4652
|
-
}
|
|
4653
|
-
const elapsedTime = Date.now() - startTime;
|
|
4654
|
-
logger.info(`[${this.getProviderName()}] Component response generated successfully`);
|
|
4655
|
-
logger.info(`[${this.getProviderName()}] Total time taken: ${elapsedTime}ms (${(elapsedTime / 1e3).toFixed(2)}s)`);
|
|
4656
|
-
logCollector?.info(`Total time taken: ${elapsedTime}ms (${(elapsedTime / 1e3).toFixed(2)}s)`);
|
|
4657
|
-
return componentResponse;
|
|
4658
4405
|
}
|
|
4659
4406
|
/**
|
|
4660
4407
|
* Generate next questions that the user might ask based on the original prompt and generated component
|
|
@@ -4767,7 +4514,7 @@ function getLLMProviders() {
|
|
|
4767
4514
|
return DEFAULT_PROVIDERS;
|
|
4768
4515
|
}
|
|
4769
4516
|
}
|
|
4770
|
-
var useAnthropicMethod = async (prompt, components, apiKey, logCollector, conversationHistory, responseMode = "component", streamCallback, collections, externalTools) => {
|
|
4517
|
+
var useAnthropicMethod = async (prompt, components, apiKey, logCollector, conversationHistory, responseMode = "component", streamCallback, collections, externalTools, userId) => {
|
|
4771
4518
|
logger.debug("[useAnthropicMethod] Initializing Anthropic Claude matching method");
|
|
4772
4519
|
logger.debug(`[useAnthropicMethod] Response mode: ${responseMode}`);
|
|
4773
4520
|
const msg = `Using Anthropic Claude ${responseMode === "text" ? "text response" : "matching"} method...`;
|
|
@@ -4779,11 +4526,11 @@ var useAnthropicMethod = async (prompt, components, apiKey, logCollector, conver
|
|
|
4779
4526
|
return { success: false, errors: [emptyMsg] };
|
|
4780
4527
|
}
|
|
4781
4528
|
logger.debug(`[useAnthropicMethod] Processing with ${components.length} components`);
|
|
4782
|
-
const matchResult = await anthropicLLM.handleUserRequest(prompt, components, apiKey, logCollector, conversationHistory, responseMode, streamCallback, collections, externalTools);
|
|
4529
|
+
const matchResult = await anthropicLLM.handleUserRequest(prompt, components, apiKey, logCollector, conversationHistory, responseMode, streamCallback, collections, externalTools, userId);
|
|
4783
4530
|
logger.info(`[useAnthropicMethod] Successfully generated ${responseMode} using Anthropic`);
|
|
4784
4531
|
return matchResult;
|
|
4785
4532
|
};
|
|
4786
|
-
var useGroqMethod = async (prompt, components, apiKey, logCollector, conversationHistory, responseMode = "component", streamCallback, collections, externalTools) => {
|
|
4533
|
+
var useGroqMethod = async (prompt, components, apiKey, logCollector, conversationHistory, responseMode = "component", streamCallback, collections, externalTools, userId) => {
|
|
4787
4534
|
logger.debug("[useGroqMethod] Initializing Groq LLM matching method");
|
|
4788
4535
|
logger.debug(`[useGroqMethod] Response mode: ${responseMode}`);
|
|
4789
4536
|
const msg = `Using Groq LLM ${responseMode === "text" ? "text response" : "matching"} method...`;
|
|
@@ -4796,14 +4543,14 @@ var useGroqMethod = async (prompt, components, apiKey, logCollector, conversatio
|
|
|
4796
4543
|
return { success: false, errors: [emptyMsg] };
|
|
4797
4544
|
}
|
|
4798
4545
|
logger.debug(`[useGroqMethod] Processing with ${components.length} components`);
|
|
4799
|
-
const matchResult = await groqLLM.handleUserRequest(prompt, components, apiKey, logCollector, conversationHistory, responseMode, streamCallback, collections, externalTools);
|
|
4546
|
+
const matchResult = await groqLLM.handleUserRequest(prompt, components, apiKey, logCollector, conversationHistory, responseMode, streamCallback, collections, externalTools, userId);
|
|
4800
4547
|
logger.info(`[useGroqMethod] Successfully generated ${responseMode} using Groq`);
|
|
4801
4548
|
return matchResult;
|
|
4802
4549
|
};
|
|
4803
4550
|
var getUserResponseFromCache = async (prompt) => {
|
|
4804
4551
|
return false;
|
|
4805
4552
|
};
|
|
4806
|
-
var get_user_response = async (prompt, components, anthropicApiKey, groqApiKey, llmProviders, logCollector, conversationHistory, responseMode = "component", streamCallback, collections, externalTools) => {
|
|
4553
|
+
var get_user_response = async (prompt, components, anthropicApiKey, groqApiKey, llmProviders, logCollector, conversationHistory, responseMode = "component", streamCallback, collections, externalTools, userId) => {
|
|
4807
4554
|
logger.debug(`[get_user_response] Starting user response generation for prompt: "${prompt.substring(0, 50)}..."`);
|
|
4808
4555
|
logger.debug(`[get_user_response] Response mode: ${responseMode}`);
|
|
4809
4556
|
logger.debug("[get_user_response] Checking cache for existing response");
|
|
@@ -4836,9 +4583,9 @@ var get_user_response = async (prompt, components, anthropicApiKey, groqApiKey,
|
|
|
4836
4583
|
logCollector?.info(attemptMsg);
|
|
4837
4584
|
let result;
|
|
4838
4585
|
if (provider === "anthropic") {
|
|
4839
|
-
result = await useAnthropicMethod(prompt, components, anthropicApiKey, logCollector, conversationHistory, responseMode, streamCallback, collections, externalTools);
|
|
4586
|
+
result = await useAnthropicMethod(prompt, components, anthropicApiKey, logCollector, conversationHistory, responseMode, streamCallback, collections, externalTools, userId);
|
|
4840
4587
|
} else if (provider === "groq") {
|
|
4841
|
-
result = await useGroqMethod(prompt, components, groqApiKey, logCollector, conversationHistory, responseMode, streamCallback, collections, externalTools);
|
|
4588
|
+
result = await useGroqMethod(prompt, components, groqApiKey, logCollector, conversationHistory, responseMode, streamCallback, collections, externalTools, userId);
|
|
4842
4589
|
} else {
|
|
4843
4590
|
logger.warn(`[get_user_response] Unknown provider: ${provider} - skipping`);
|
|
4844
4591
|
errors.push(`Unknown provider: ${provider}`);
|
|
@@ -5055,6 +4802,123 @@ var UILogCollector = class {
|
|
|
5055
4802
|
}
|
|
5056
4803
|
};
|
|
5057
4804
|
|
|
4805
|
+
// src/utils/conversation-saver.ts
|
|
4806
|
+
function transformUIBlockForDB(uiblock, userPrompt, uiBlockId) {
|
|
4807
|
+
const component = uiblock?.generatedComponentMetadata && Object.keys(uiblock.generatedComponentMetadata).length > 0 ? uiblock.generatedComponentMetadata : null;
|
|
4808
|
+
return {
|
|
4809
|
+
id: uiBlockId || uiblock?.id || "",
|
|
4810
|
+
component,
|
|
4811
|
+
analysis: uiblock?.textResponse || null,
|
|
4812
|
+
user_prompt: userPrompt || uiblock?.userQuestion || ""
|
|
4813
|
+
};
|
|
4814
|
+
}
|
|
4815
|
+
async function saveConversation(params) {
|
|
4816
|
+
const { userId, userPrompt, uiblock, uiBlockId, threadId, collections } = params;
|
|
4817
|
+
if (!userId) {
|
|
4818
|
+
logger.warn("[CONVERSATION_SAVER] Skipping save: userId not provided");
|
|
4819
|
+
return {
|
|
4820
|
+
success: false,
|
|
4821
|
+
error: "userId is required"
|
|
4822
|
+
};
|
|
4823
|
+
}
|
|
4824
|
+
if (!userPrompt) {
|
|
4825
|
+
logger.warn("[CONVERSATION_SAVER] Skipping save: userPrompt not provided");
|
|
4826
|
+
return {
|
|
4827
|
+
success: false,
|
|
4828
|
+
error: "userPrompt is required"
|
|
4829
|
+
};
|
|
4830
|
+
}
|
|
4831
|
+
if (!uiblock) {
|
|
4832
|
+
logger.warn("[CONVERSATION_SAVER] Skipping save: uiblock not provided");
|
|
4833
|
+
return {
|
|
4834
|
+
success: false,
|
|
4835
|
+
error: "uiblock is required"
|
|
4836
|
+
};
|
|
4837
|
+
}
|
|
4838
|
+
if (!threadId) {
|
|
4839
|
+
logger.warn("[CONVERSATION_SAVER] Skipping save: threadId not provided");
|
|
4840
|
+
return {
|
|
4841
|
+
success: false,
|
|
4842
|
+
error: "threadId is required"
|
|
4843
|
+
};
|
|
4844
|
+
}
|
|
4845
|
+
if (!uiBlockId) {
|
|
4846
|
+
logger.warn("[CONVERSATION_SAVER] Skipping save: uiBlockId not provided");
|
|
4847
|
+
return {
|
|
4848
|
+
success: false,
|
|
4849
|
+
error: "uiBlockId is required"
|
|
4850
|
+
};
|
|
4851
|
+
}
|
|
4852
|
+
if (!collections?.["user-conversations"]?.["create"]) {
|
|
4853
|
+
logger.debug('[CONVERSATION_SAVER] Collection "user-conversations.create" not available, skipping save');
|
|
4854
|
+
return {
|
|
4855
|
+
success: false,
|
|
4856
|
+
error: "user-conversations.create collection not available"
|
|
4857
|
+
};
|
|
4858
|
+
}
|
|
4859
|
+
try {
|
|
4860
|
+
logger.info(`[CONVERSATION_SAVER] Saving conversation for userId: ${userId}, uiBlockId: ${uiBlockId}, threadId: ${threadId}`);
|
|
4861
|
+
const userIdNumber = Number(userId);
|
|
4862
|
+
if (isNaN(userIdNumber)) {
|
|
4863
|
+
logger.warn(`[CONVERSATION_SAVER] Invalid userId: ${userId} (not a valid number)`);
|
|
4864
|
+
return {
|
|
4865
|
+
success: false,
|
|
4866
|
+
error: `Invalid userId: ${userId} (not a valid number)`
|
|
4867
|
+
};
|
|
4868
|
+
}
|
|
4869
|
+
const dbUIBlock = transformUIBlockForDB(uiblock, userPrompt, uiBlockId);
|
|
4870
|
+
logger.debug(`[CONVERSATION_SAVER] Transformed UIBlock for DB: ${JSON.stringify(dbUIBlock)}`);
|
|
4871
|
+
const saveResult = await collections["user-conversations"]["create"]({
|
|
4872
|
+
userId: userIdNumber,
|
|
4873
|
+
userPrompt,
|
|
4874
|
+
uiblock: dbUIBlock,
|
|
4875
|
+
threadId
|
|
4876
|
+
});
|
|
4877
|
+
if (!saveResult?.success) {
|
|
4878
|
+
logger.warn(`[CONVERSATION_SAVER] Failed to save conversation to PostgreSQL: ${saveResult?.message || "Unknown error"}`);
|
|
4879
|
+
return {
|
|
4880
|
+
success: false,
|
|
4881
|
+
error: saveResult?.message || "Unknown error from backend"
|
|
4882
|
+
};
|
|
4883
|
+
}
|
|
4884
|
+
logger.info(`[CONVERSATION_SAVER] Successfully saved conversation to PostgreSQL, id: ${saveResult.data?.id}`);
|
|
4885
|
+
if (collections?.["conversation-history"]?.["embed"]) {
|
|
4886
|
+
try {
|
|
4887
|
+
logger.info("[CONVERSATION_SAVER] Creating embedding for semantic search...");
|
|
4888
|
+
const embedResult = await collections["conversation-history"]["embed"]({
|
|
4889
|
+
uiBlockId,
|
|
4890
|
+
userPrompt,
|
|
4891
|
+
uiBlock: dbUIBlock,
|
|
4892
|
+
// Use the transformed UIBlock
|
|
4893
|
+
userId: userIdNumber
|
|
4894
|
+
});
|
|
4895
|
+
if (embedResult?.success) {
|
|
4896
|
+
logger.info("[CONVERSATION_SAVER] Successfully created embedding");
|
|
4897
|
+
} else {
|
|
4898
|
+
logger.warn("[CONVERSATION_SAVER] Failed to create embedding:", embedResult?.error || "Unknown error");
|
|
4899
|
+
}
|
|
4900
|
+
} catch (embedError) {
|
|
4901
|
+
const embedErrorMsg = embedError instanceof Error ? embedError.message : String(embedError);
|
|
4902
|
+
logger.warn("[CONVERSATION_SAVER] Error creating embedding:", embedErrorMsg);
|
|
4903
|
+
}
|
|
4904
|
+
} else {
|
|
4905
|
+
logger.debug("[CONVERSATION_SAVER] Embedding collection not available, skipping ChromaDB storage");
|
|
4906
|
+
}
|
|
4907
|
+
return {
|
|
4908
|
+
success: true,
|
|
4909
|
+
conversationId: saveResult.data?.id,
|
|
4910
|
+
message: "Conversation saved successfully"
|
|
4911
|
+
};
|
|
4912
|
+
} catch (error) {
|
|
4913
|
+
const errorMessage = error instanceof Error ? error.message : String(error);
|
|
4914
|
+
logger.error("[CONVERSATION_SAVER] Error saving conversation:", errorMessage);
|
|
4915
|
+
return {
|
|
4916
|
+
success: false,
|
|
4917
|
+
error: errorMessage
|
|
4918
|
+
};
|
|
4919
|
+
}
|
|
4920
|
+
}
|
|
4921
|
+
|
|
5058
4922
|
// src/config/context.ts
|
|
5059
4923
|
var CONTEXT_CONFIG = {
|
|
5060
4924
|
/**
|
|
@@ -5066,7 +4930,7 @@ var CONTEXT_CONFIG = {
|
|
|
5066
4930
|
};
|
|
5067
4931
|
|
|
5068
4932
|
// src/handlers/user-prompt-request.ts
|
|
5069
|
-
var get_user_request = async (data, components, sendMessage, anthropicApiKey, groqApiKey, llmProviders, collections, externalTools) => {
|
|
4933
|
+
var get_user_request = async (data, components, sendMessage, anthropicApiKey, groqApiKey, llmProviders, collections, externalTools, userId) => {
|
|
5070
4934
|
const errors = [];
|
|
5071
4935
|
logger.debug("[USER_PROMPT_REQ] Parsing incoming message data");
|
|
5072
4936
|
const parseResult = UserPromptRequestMessageSchema.safeParse(data);
|
|
@@ -5147,7 +5011,8 @@ var get_user_request = async (data, components, sendMessage, anthropicApiKey, gr
|
|
|
5147
5011
|
responseMode,
|
|
5148
5012
|
streamCallback,
|
|
5149
5013
|
collections,
|
|
5150
|
-
externalTools
|
|
5014
|
+
externalTools,
|
|
5015
|
+
userId
|
|
5151
5016
|
);
|
|
5152
5017
|
logCollector.info("User prompt request completed");
|
|
5153
5018
|
const uiBlockId = existingUiBlockId;
|
|
@@ -5198,6 +5063,34 @@ var get_user_request = async (data, components, sendMessage, anthropicApiKey, gr
|
|
|
5198
5063
|
}
|
|
5199
5064
|
thread.addUIBlock(uiBlock);
|
|
5200
5065
|
logger.info(`Created UIBlock: ${uiBlockId} in Thread: ${threadId}`);
|
|
5066
|
+
if (userId) {
|
|
5067
|
+
const responseMethod = userResponse.data?.method || "";
|
|
5068
|
+
const semanticSimilarity = userResponse.data?.semanticSimilarity || 0;
|
|
5069
|
+
const isExactMatch = responseMethod.includes("semantic-match") && semanticSimilarity >= 0.99;
|
|
5070
|
+
if (isExactMatch) {
|
|
5071
|
+
logger.info(
|
|
5072
|
+
`Skipping conversation save - response from exact semantic match (${(semanticSimilarity * 100).toFixed(2)}% similarity)`
|
|
5073
|
+
);
|
|
5074
|
+
logCollector.info(
|
|
5075
|
+
`Using exact cached result (${(semanticSimilarity * 100).toFixed(2)}% match) - not saving duplicate conversation`
|
|
5076
|
+
);
|
|
5077
|
+
} else {
|
|
5078
|
+
const uiBlockData = uiBlock.toJSON();
|
|
5079
|
+
const saveResult = await saveConversation({
|
|
5080
|
+
userId,
|
|
5081
|
+
userPrompt: prompt,
|
|
5082
|
+
uiblock: uiBlockData,
|
|
5083
|
+
uiBlockId,
|
|
5084
|
+
threadId,
|
|
5085
|
+
collections
|
|
5086
|
+
});
|
|
5087
|
+
if (saveResult.success) {
|
|
5088
|
+
logger.info(`Conversation saved with ID: ${saveResult.conversationId}`);
|
|
5089
|
+
} else {
|
|
5090
|
+
logger.warn(`Failed to save conversation: ${saveResult.error}`);
|
|
5091
|
+
}
|
|
5092
|
+
}
|
|
5093
|
+
}
|
|
5201
5094
|
return {
|
|
5202
5095
|
success: userResponse.success,
|
|
5203
5096
|
data: userResponse.data,
|
|
@@ -5208,8 +5101,8 @@ var get_user_request = async (data, components, sendMessage, anthropicApiKey, gr
|
|
|
5208
5101
|
wsId
|
|
5209
5102
|
};
|
|
5210
5103
|
};
|
|
5211
|
-
async function handleUserPromptRequest(data, components, sendMessage, anthropicApiKey, groqApiKey, llmProviders, collections, externalTools) {
|
|
5212
|
-
const response = await get_user_request(data, components, sendMessage, anthropicApiKey, groqApiKey, llmProviders, collections, externalTools);
|
|
5104
|
+
async function handleUserPromptRequest(data, components, sendMessage, anthropicApiKey, groqApiKey, llmProviders, collections, externalTools, userId) {
|
|
5105
|
+
const response = await get_user_request(data, components, sendMessage, anthropicApiKey, groqApiKey, llmProviders, collections, externalTools, userId);
|
|
5213
5106
|
sendDataResponse4(
|
|
5214
5107
|
response.id || data.id,
|
|
5215
5108
|
{
|
|
@@ -6296,13 +6189,15 @@ async function handleBookmarksRequest(data, collections, sendMessage) {
|
|
|
6296
6189
|
const { id, payload, from } = request;
|
|
6297
6190
|
const { operation, data: requestData } = payload;
|
|
6298
6191
|
const bookmarkId = requestData?.id;
|
|
6192
|
+
const userId = requestData?.userId;
|
|
6193
|
+
const threadId = requestData?.threadId;
|
|
6299
6194
|
const uiblock = requestData?.uiblock;
|
|
6300
6195
|
switch (operation) {
|
|
6301
6196
|
case "create":
|
|
6302
|
-
await handleCreate4(id, uiblock, executeCollection, sendMessage, from.id);
|
|
6197
|
+
await handleCreate4(id, userId, threadId, uiblock, executeCollection, sendMessage, from.id);
|
|
6303
6198
|
break;
|
|
6304
6199
|
case "update":
|
|
6305
|
-
await handleUpdate4(id, bookmarkId, uiblock, executeCollection, sendMessage, from.id);
|
|
6200
|
+
await handleUpdate4(id, bookmarkId, threadId, uiblock, executeCollection, sendMessage, from.id);
|
|
6306
6201
|
break;
|
|
6307
6202
|
case "delete":
|
|
6308
6203
|
await handleDelete4(id, bookmarkId, executeCollection, sendMessage, from.id);
|
|
@@ -6313,6 +6208,12 @@ async function handleBookmarksRequest(data, collections, sendMessage) {
|
|
|
6313
6208
|
case "getOne":
|
|
6314
6209
|
await handleGetOne4(id, bookmarkId, executeCollection, sendMessage, from.id);
|
|
6315
6210
|
break;
|
|
6211
|
+
case "getByUser":
|
|
6212
|
+
await handleGetByUser(id, userId, threadId, executeCollection, sendMessage, from.id);
|
|
6213
|
+
break;
|
|
6214
|
+
case "getByThread":
|
|
6215
|
+
await handleGetByThread(id, threadId, executeCollection, sendMessage, from.id);
|
|
6216
|
+
break;
|
|
6316
6217
|
default:
|
|
6317
6218
|
sendResponse6(id, {
|
|
6318
6219
|
success: false,
|
|
@@ -6327,7 +6228,14 @@ async function handleBookmarksRequest(data, collections, sendMessage) {
|
|
|
6327
6228
|
}, sendMessage);
|
|
6328
6229
|
}
|
|
6329
6230
|
}
|
|
6330
|
-
async function handleCreate4(id, uiblock, executeCollection, sendMessage, clientId) {
|
|
6231
|
+
async function handleCreate4(id, userId, threadId, uiblock, executeCollection, sendMessage, clientId) {
|
|
6232
|
+
if (!userId) {
|
|
6233
|
+
sendResponse6(id, {
|
|
6234
|
+
success: false,
|
|
6235
|
+
error: "userId is required"
|
|
6236
|
+
}, sendMessage, clientId);
|
|
6237
|
+
return;
|
|
6238
|
+
}
|
|
6331
6239
|
if (!uiblock) {
|
|
6332
6240
|
sendResponse6(id, {
|
|
6333
6241
|
success: false,
|
|
@@ -6336,7 +6244,7 @@ async function handleCreate4(id, uiblock, executeCollection, sendMessage, client
|
|
|
6336
6244
|
return;
|
|
6337
6245
|
}
|
|
6338
6246
|
try {
|
|
6339
|
-
const result = await executeCollection("bookmarks", "create", { uiblock });
|
|
6247
|
+
const result = await executeCollection("bookmarks", "create", { userId, threadId, uiblock });
|
|
6340
6248
|
sendResponse6(id, {
|
|
6341
6249
|
success: true,
|
|
6342
6250
|
data: result.data,
|
|
@@ -6350,7 +6258,7 @@ async function handleCreate4(id, uiblock, executeCollection, sendMessage, client
|
|
|
6350
6258
|
}, sendMessage, clientId);
|
|
6351
6259
|
}
|
|
6352
6260
|
}
|
|
6353
|
-
async function handleUpdate4(id, bookmarkId, uiblock, executeCollection, sendMessage, clientId) {
|
|
6261
|
+
async function handleUpdate4(id, bookmarkId, threadId, uiblock, executeCollection, sendMessage, clientId) {
|
|
6354
6262
|
if (!bookmarkId) {
|
|
6355
6263
|
sendResponse6(id, {
|
|
6356
6264
|
success: false,
|
|
@@ -6366,7 +6274,7 @@ async function handleUpdate4(id, bookmarkId, uiblock, executeCollection, sendMes
|
|
|
6366
6274
|
return;
|
|
6367
6275
|
}
|
|
6368
6276
|
try {
|
|
6369
|
-
const result = await executeCollection("bookmarks", "update", { id: bookmarkId, uiblock });
|
|
6277
|
+
const result = await executeCollection("bookmarks", "update", { id: bookmarkId, threadId, uiblock });
|
|
6370
6278
|
sendResponse6(id, {
|
|
6371
6279
|
success: true,
|
|
6372
6280
|
data: result.data,
|
|
@@ -6443,6 +6351,54 @@ async function handleGetOne4(id, bookmarkId, executeCollection, sendMessage, cli
|
|
|
6443
6351
|
}, sendMessage, clientId);
|
|
6444
6352
|
}
|
|
6445
6353
|
}
|
|
6354
|
+
async function handleGetByUser(id, userId, threadId, executeCollection, sendMessage, clientId) {
|
|
6355
|
+
if (!userId) {
|
|
6356
|
+
sendResponse6(id, {
|
|
6357
|
+
success: false,
|
|
6358
|
+
error: "userId is required"
|
|
6359
|
+
}, sendMessage, clientId);
|
|
6360
|
+
return;
|
|
6361
|
+
}
|
|
6362
|
+
try {
|
|
6363
|
+
const result = await executeCollection("bookmarks", "getByUser", { userId, threadId });
|
|
6364
|
+
sendResponse6(id, {
|
|
6365
|
+
success: true,
|
|
6366
|
+
data: result.data,
|
|
6367
|
+
count: result.count,
|
|
6368
|
+
message: `Retrieved ${result.count} bookmarks for user ${userId}`
|
|
6369
|
+
}, sendMessage, clientId);
|
|
6370
|
+
logger.info(`Retrieved bookmarks for user ${userId} (count: ${result.count})`);
|
|
6371
|
+
} catch (error) {
|
|
6372
|
+
sendResponse6(id, {
|
|
6373
|
+
success: false,
|
|
6374
|
+
error: error instanceof Error ? error.message : "Failed to get bookmarks by user"
|
|
6375
|
+
}, sendMessage, clientId);
|
|
6376
|
+
}
|
|
6377
|
+
}
|
|
6378
|
+
async function handleGetByThread(id, threadId, executeCollection, sendMessage, clientId) {
|
|
6379
|
+
if (!threadId) {
|
|
6380
|
+
sendResponse6(id, {
|
|
6381
|
+
success: false,
|
|
6382
|
+
error: "threadId is required"
|
|
6383
|
+
}, sendMessage, clientId);
|
|
6384
|
+
return;
|
|
6385
|
+
}
|
|
6386
|
+
try {
|
|
6387
|
+
const result = await executeCollection("bookmarks", "getByThread", { threadId });
|
|
6388
|
+
sendResponse6(id, {
|
|
6389
|
+
success: true,
|
|
6390
|
+
data: result.data,
|
|
6391
|
+
count: result.count,
|
|
6392
|
+
message: `Retrieved ${result.count} bookmarks for thread ${threadId}`
|
|
6393
|
+
}, sendMessage, clientId);
|
|
6394
|
+
logger.info(`Retrieved bookmarks for thread ${threadId} (count: ${result.count})`);
|
|
6395
|
+
} catch (error) {
|
|
6396
|
+
sendResponse6(id, {
|
|
6397
|
+
success: false,
|
|
6398
|
+
error: error instanceof Error ? error.message : "Failed to get bookmarks by thread"
|
|
6399
|
+
}, sendMessage, clientId);
|
|
6400
|
+
}
|
|
6401
|
+
}
|
|
6446
6402
|
function sendResponse6(id, res, sendMessage, clientId) {
|
|
6447
6403
|
const response = {
|
|
6448
6404
|
id: id || "unknown",
|
|
@@ -7429,17 +7385,17 @@ var SuperatomSDK = class {
|
|
|
7429
7385
|
});
|
|
7430
7386
|
break;
|
|
7431
7387
|
case "AUTH_LOGIN_REQ":
|
|
7432
|
-
handleAuthLoginRequest(parsed, (msg) => this.send(msg)).catch((error) => {
|
|
7388
|
+
handleAuthLoginRequest(parsed, this.collections, (msg) => this.send(msg)).catch((error) => {
|
|
7433
7389
|
logger.error("Failed to handle auth login request:", error);
|
|
7434
7390
|
});
|
|
7435
7391
|
break;
|
|
7436
7392
|
case "AUTH_VERIFY_REQ":
|
|
7437
|
-
handleAuthVerifyRequest(parsed, (msg) => this.send(msg)).catch((error) => {
|
|
7393
|
+
handleAuthVerifyRequest(parsed, this.collections, (msg) => this.send(msg)).catch((error) => {
|
|
7438
7394
|
logger.error("Failed to handle auth verify request:", error);
|
|
7439
7395
|
});
|
|
7440
7396
|
break;
|
|
7441
7397
|
case "USER_PROMPT_REQ":
|
|
7442
|
-
handleUserPromptRequest(parsed, this.components, (msg) => this.send(msg), this.anthropicApiKey, this.groqApiKey, this.llmProviders, this.collections, this.tools).catch((error) => {
|
|
7398
|
+
handleUserPromptRequest(parsed, this.components, (msg) => this.send(msg), this.anthropicApiKey, this.groqApiKey, this.llmProviders, this.collections, this.tools, this.userId).catch((error) => {
|
|
7443
7399
|
logger.error("Failed to handle user prompt request:", error);
|
|
7444
7400
|
});
|
|
7445
7401
|
break;
|