@superatomai/sdk-node 0.0.13 → 0.0.14
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/index.d.mts +15 -1
- package/dist/index.d.ts +15 -1
- package/dist/index.js +1325 -1477
- package/dist/index.js.map +1 -1
- package/dist/index.mjs +1325 -1477
- package/dist/index.mjs.map +1 -1
- package/package.json +1 -1
package/dist/index.mjs
CHANGED
|
@@ -522,6 +522,25 @@ var ReportsRequestMessageSchema = z3.object({
|
|
|
522
522
|
type: z3.literal("REPORTS"),
|
|
523
523
|
payload: ReportsRequestPayloadSchema
|
|
524
524
|
});
|
|
525
|
+
var UIBlockSchema = z3.object({
|
|
526
|
+
id: z3.string().optional(),
|
|
527
|
+
userQuestion: z3.string().optional(),
|
|
528
|
+
text: z3.string().optional(),
|
|
529
|
+
textResponse: z3.string().optional(),
|
|
530
|
+
component: ComponentSchema.optional(),
|
|
531
|
+
// Legacy field
|
|
532
|
+
generatedComponentMetadata: ComponentSchema.optional(),
|
|
533
|
+
// Actual field used by UIBlock class
|
|
534
|
+
componentData: z3.record(z3.any()).optional(),
|
|
535
|
+
actions: z3.array(z3.any()).optional(),
|
|
536
|
+
isFetchingActions: z3.boolean().optional(),
|
|
537
|
+
createdAt: z3.string().optional(),
|
|
538
|
+
metadata: z3.object({
|
|
539
|
+
timestamp: z3.number().optional(),
|
|
540
|
+
userPrompt: z3.string().optional(),
|
|
541
|
+
similarity: z3.number().optional()
|
|
542
|
+
}).optional()
|
|
543
|
+
});
|
|
525
544
|
var BookmarkDataSchema = z3.object({
|
|
526
545
|
id: z3.number().optional(),
|
|
527
546
|
uiblock: z3.any(),
|
|
@@ -1789,489 +1808,126 @@ import path3 from "path";
|
|
|
1789
1808
|
|
|
1790
1809
|
// src/userResponse/prompts.ts
|
|
1791
1810
|
var PROMPTS = {
|
|
1792
|
-
"
|
|
1793
|
-
system: `You are an
|
|
1794
|
-
|
|
1795
|
-
CRITICAL: You MUST respond with ONLY valid JSON, no other text before or after.
|
|
1796
|
-
|
|
1797
|
-
## Previous Conversation
|
|
1798
|
-
{{CONVERSATION_HISTORY}}
|
|
1799
|
-
|
|
1800
|
-
**Note:** If there is previous conversation history, use it to understand context. For example:
|
|
1801
|
-
- If user previously asked about "sales" and now asks "show me trends", understand it refers to sales trends
|
|
1802
|
-
- If user asked for "revenue by region" and now says "make it a pie chart", understand they want to modify the previous visualization
|
|
1803
|
-
- Use the history to resolve ambiguous references like "that", "it", "them", "the data"
|
|
1804
|
-
|
|
1805
|
-
Your task is to analyze the user's question and determine:
|
|
1806
|
-
|
|
1807
|
-
1. **Question Type:**
|
|
1808
|
-
- "analytical": Questions asking to VIEW, ANALYZE, or VISUALIZE data
|
|
1809
|
-
|
|
1810
|
-
- "data_modification": Questions asking to CREATE, UPDATE, DELETE, or MODIFY data
|
|
1811
|
-
|
|
1812
|
-
- "general": General questions, greetings, or requests not related to data
|
|
1813
|
-
|
|
1814
|
-
2. **Required Visualizations** (only for analytical questions):
|
|
1815
|
-
Determine which visualization type(s) would BEST answer the user's question:
|
|
1816
|
-
|
|
1817
|
-
- **KPICard**: Single metric, total, count, average, percentage, or summary number
|
|
1818
|
-
|
|
1819
|
-
- **LineChart**: Trends over time, time series, growth/decline patterns
|
|
1820
|
-
|
|
1821
|
-
|
|
1822
|
-
- **BarChart**: Comparing categories, rankings, distributions across groups
|
|
1823
|
-
|
|
1824
|
-
|
|
1825
|
-
- **PieChart**: Proportions, percentages, composition, market share
|
|
1826
|
-
|
|
1827
|
-
|
|
1828
|
-
- **DataTable**: Detailed lists, multiple attributes, when user needs to see records
|
|
1829
|
-
|
|
1830
|
-
|
|
1831
|
-
3. **Multiple Visualizations:**
|
|
1832
|
-
User may need MULTIPLE visualizations together:
|
|
1833
|
-
|
|
1834
|
-
Common combinations:
|
|
1835
|
-
- KPICard + LineChart
|
|
1836
|
-
- KPICard + BarChart
|
|
1837
|
-
- KPICard + DataTable
|
|
1838
|
-
- BarChart + PieChart:
|
|
1839
|
-
- LineChart + DataTable
|
|
1840
|
-
Set needsMultipleComponents to true if user needs multiple views of the data.
|
|
1811
|
+
"text-response": {
|
|
1812
|
+
system: `You are an intelligent AI assistant that provides helpful, accurate, and contextual text responses to user questions. You have access to a database and can execute SQL queries and external tools to answer user requests.
|
|
1841
1813
|
|
|
1842
|
-
|
|
1843
|
-
- If user explicitly mentions a chart type RESPECT that preference
|
|
1844
|
-
- If question is vague or needs both summary and detail, suggest KPICard + DataTable
|
|
1845
|
-
- Only return visualizations for "analytical" questions
|
|
1846
|
-
- For "data_modification" or "general", return empty array for visualizations
|
|
1814
|
+
## Your Task
|
|
1847
1815
|
|
|
1848
|
-
|
|
1849
|
-
{
|
|
1850
|
-
"questionType": "analytical" | "data_modification" | "general",
|
|
1851
|
-
"visualizations": ["KPICard", "LineChart", ...], // Empty array if not analytical
|
|
1852
|
-
"reasoning": "Explanation of classification and visualization choices",
|
|
1853
|
-
"needsMultipleComponents": boolean
|
|
1854
|
-
}
|
|
1855
|
-
`,
|
|
1856
|
-
user: `{{USER_PROMPT}}
|
|
1857
|
-
`
|
|
1858
|
-
},
|
|
1859
|
-
"match-component": {
|
|
1860
|
-
system: `You are an expert AI assistant specialized in matching user requests to the most appropriate data visualization components.
|
|
1816
|
+
Analyze the user's question and provide a helpful text response. Your response should:
|
|
1861
1817
|
|
|
1862
|
-
|
|
1818
|
+
1. **Be Clear and Concise**: Provide direct answers without unnecessary verbosity
|
|
1819
|
+
2. **Be Contextual**: Use conversation history to understand what the user is asking about
|
|
1820
|
+
3. **Be Accurate**: Provide factually correct information based on the context
|
|
1821
|
+
4. **Be Helpful**: Offer additional relevant information or suggestions when appropriate
|
|
1863
1822
|
|
|
1864
|
-
##
|
|
1865
|
-
{{CONVERSATION_HISTORY}}
|
|
1823
|
+
## Available Tools
|
|
1866
1824
|
|
|
1867
|
-
|
|
1868
|
-
- If there is conversation history, use it to understand what the user is referring to
|
|
1869
|
-
- When user says "show that as a chart" or "change it", they are referring to a previous component
|
|
1870
|
-
- If user asks to "modify" or "update" something, match to the component they previously saw
|
|
1871
|
-
- Use context to resolve ambiguous requests like "show trends for that" or "make it interactive"
|
|
1872
|
-
|
|
1873
|
-
Your task is to analyze the user's natural language request and find the BEST matching component from the available list.
|
|
1874
|
-
|
|
1875
|
-
Available Components:
|
|
1876
|
-
{{COMPONENTS_TEXT}}
|
|
1877
|
-
|
|
1878
|
-
**Matching Guidelines:**
|
|
1879
|
-
|
|
1880
|
-
1. **Understand User Intent:**
|
|
1881
|
-
- What type of data visualization do they need? (KPI/metric, chart, table, etc.)
|
|
1882
|
-
- What metric or data are they asking about? (revenue, orders, customers, etc.)
|
|
1883
|
-
- Are they asking for a summary (KPI), trend (line chart), distribution (bar/pie), or detailed list (table)?
|
|
1884
|
-
- Do they want to compare categories, see trends over time, or show proportions?
|
|
1885
|
-
|
|
1886
|
-
2. **Component Type Matching:**
|
|
1887
|
-
- KPICard: Single metric/number (total, average, count, percentage, rate)
|
|
1888
|
-
- LineChart: Trends over time, time series data
|
|
1889
|
-
- BarChart: Comparing categories, distributions, rankings
|
|
1890
|
-
- PieChart/DonutChart: Proportions, percentages, market share
|
|
1891
|
-
- DataTable: Detailed lists, rankings with multiple attributes
|
|
1892
|
-
|
|
1893
|
-
3. **Keyword & Semantic Matching:**
|
|
1894
|
-
- Match user query terms with component keywords
|
|
1895
|
-
- Consider synonyms (e.g., "sales" = "revenue", "items" = "products")
|
|
1896
|
-
- Look for category matches (financial, orders, customers, products, suppliers, logistics, geographic, operations)
|
|
1897
|
-
|
|
1898
|
-
4. **Scoring Criteria:**
|
|
1899
|
-
- Exact keyword matches: High priority
|
|
1900
|
-
- Component type alignment: High priority
|
|
1901
|
-
- Category alignment: Medium priority
|
|
1902
|
-
- Semantic similarity: Medium priority
|
|
1903
|
-
- Specificity: Prefer more specific components over generic ones
|
|
1904
|
-
|
|
1905
|
-
**Output Requirements:**
|
|
1906
|
-
|
|
1907
|
-
Respond with a JSON object containing:
|
|
1908
|
-
- componentIndex: the 1-based index of the BEST matching component (or null if confidence < 50%)
|
|
1909
|
-
- componentId: the ID of the matched component
|
|
1910
|
-
- reasoning: detailed explanation of why this component was chosen
|
|
1911
|
-
- confidence: confidence score 0-100 (100 = perfect match)
|
|
1912
|
-
- alternativeMatches: array of up to 2 alternative component indices with scores (optional)
|
|
1913
|
-
|
|
1914
|
-
Example response:
|
|
1915
|
-
{
|
|
1916
|
-
"componentIndex": 5,
|
|
1917
|
-
"componentId": "total_revenue_kpi",
|
|
1918
|
-
"reasoning": "User asks for 'total revenue' which perfectly matches the TotalRevenueKPI component (KPICard type) designed to show total revenue across all orders. Keywords match: 'total revenue', 'sales'.",
|
|
1919
|
-
"confidence": 95,
|
|
1920
|
-
"alternativeMatches": [
|
|
1921
|
-
{"index": 3, "id": "monthly_revenue_kpi", "score": 75, "reason": "Could show monthly revenue if time period was intended"},
|
|
1922
|
-
{"index": 8, "id": "revenue_trend_chart", "score": 60, "reason": "Could show revenue trend if historical view was intended"}
|
|
1923
|
-
]
|
|
1924
|
-
}
|
|
1825
|
+
The following external tools are available for this request (if applicable):
|
|
1925
1826
|
|
|
1926
|
-
|
|
1927
|
-
- Only return componentIndex if confidence >= 50%
|
|
1928
|
-
- Return null if no reasonable match exists
|
|
1929
|
-
- Prefer components that exactly match the user's metric over generic ones
|
|
1930
|
-
- Consider the full context of the request, not just individual words`,
|
|
1931
|
-
user: `Current user request: {{USER_PROMPT}}
|
|
1827
|
+
{{AVAILABLE_EXTERNAL_TOOLS}}
|
|
1932
1828
|
|
|
1933
|
-
|
|
1934
|
-
|
|
1935
|
-
|
|
1936
|
-
|
|
1829
|
+
When a tool is needed to complete the user's request:
|
|
1830
|
+
1. **Analyze the request** to determine which tool(s) are needed
|
|
1831
|
+
2. **Extract parameters** from the user's question that the tool requires
|
|
1832
|
+
3. **Execute the tool** by calling it with the extracted parameters
|
|
1833
|
+
4. **Present the results** in your response in a clear, user-friendly format
|
|
1834
|
+
5. **Combine with other data** if the user's request requires both database queries and external tool results
|
|
1937
1835
|
|
|
1938
|
-
|
|
1836
|
+
## Handling Data Questions
|
|
1939
1837
|
|
|
1940
|
-
|
|
1941
|
-
- A user's natural language request
|
|
1942
|
-
- Component name: {{COMPONENT_NAME}}
|
|
1943
|
-
- Component type: {{COMPONENT_TYPE}}
|
|
1944
|
-
- Component description: {{COMPONENT_DESCRIPTION}}
|
|
1838
|
+
When the user asks about data
|
|
1945
1839
|
|
|
1946
|
-
|
|
1947
|
-
|
|
1948
|
-
|
|
1949
|
-
|
|
1950
|
-
title?: string, // Component title
|
|
1951
|
-
description?: string, // Component description
|
|
1952
|
-
config?: { // Additional configuration
|
|
1953
|
-
[key: string]: any
|
|
1954
|
-
}
|
|
1955
|
-
}
|
|
1840
|
+
1. **Generate a SQL query** using the database schema provided above
|
|
1841
|
+
2. **Use the execute_query tool** to run the query
|
|
1842
|
+
3. **If the query fails**, analyze the error and generate a corrected query
|
|
1843
|
+
4. **Format the results** in a clear, readable way for the user
|
|
1956
1844
|
|
|
1957
|
-
|
|
1958
|
-
|
|
1845
|
+
**Query Guidelines:**
|
|
1846
|
+
- Use correct table and column names from the schema
|
|
1847
|
+
- ALWAYS include a LIMIT clause with a MAXIMUM of 32 rows
|
|
1848
|
+
- Ensure valid SQL syntax
|
|
1849
|
+
- For time-based queries, use appropriate date functions
|
|
1850
|
+
- When using subqueries with scalar operators (=, <, >, etc.), add LIMIT 1 to prevent "more than one row" errors
|
|
1959
1851
|
|
|
1960
|
-
Database Schema
|
|
1852
|
+
## Database Schema
|
|
1961
1853
|
{{SCHEMA_DOC}}
|
|
1962
1854
|
|
|
1963
|
-
|
|
1964
|
-
{{CONVERSATION_HISTORY}}
|
|
1965
|
-
|
|
1966
|
-
**Context Instructions:**
|
|
1967
|
-
- Review the conversation history to understand the evolution of the component
|
|
1968
|
-
- If user says "add filter for X", understand they want to modify the current query
|
|
1969
|
-
- If user says "change to last month" or "filter by Y", apply modifications to existing query
|
|
1970
|
-
- Previous questions can clarify what the user means by ambiguous requests like "change that filter"
|
|
1971
|
-
- Use context to determine appropriate time ranges if user says "recent" or "latest"
|
|
1972
|
-
|
|
1973
|
-
Your task is to intelligently modify the props based on the user's request:
|
|
1855
|
+
**Database Type: PostgreSQL**
|
|
1974
1856
|
|
|
1975
|
-
|
|
1976
|
-
- Modify SQL query if user requests different data, filters, time ranges, limits, or aggregations
|
|
1977
|
-
- Use correct table and column names from the schema
|
|
1978
|
-
- Ensure valid SQL syntax
|
|
1979
|
-
- ALWAYS include a LIMIT clause (default: {{DEFAULT_LIMIT}} rows) to prevent large result sets
|
|
1980
|
-
- Preserve the query structure that the component expects (e.g., column aliases)
|
|
1857
|
+
**CRITICAL PostgreSQL Query Rules:**
|
|
1981
1858
|
|
|
1982
|
-
|
|
1859
|
+
1. **NO AGGREGATE FUNCTIONS IN WHERE CLAUSE** - This is a fundamental SQL error
|
|
1860
|
+
\u274C WRONG: \`WHERE COUNT(orders) > 0\`
|
|
1861
|
+
\u274C WRONG: \`WHERE SUM(price) > 100\`
|
|
1862
|
+
\u274C WRONG: \`WHERE AVG(rating) > 4.5\`
|
|
1863
|
+
\u274C WRONG: \`WHERE FLOOR(AVG(rating)) = 4\` (aggregate inside any function is still not allowed)
|
|
1864
|
+
\u274C WRONG: \`WHERE ROUND(SUM(price), 2) > 100\`
|
|
1983
1865
|
|
|
1984
|
-
**NO AGGREGATE FUNCTIONS IN WHERE CLAUSE:**
|
|
1985
|
-
\u274C WRONG: \`WHERE COUNT(orders) > 0\` or \`WHERE SUM(price) > 100\`
|
|
1986
1866
|
\u2705 CORRECT: Use HAVING (with GROUP BY), EXISTS, or subquery
|
|
1867
|
+
\u2705 CORRECT: Move aggregate logic to HAVING: \`GROUP BY ... HAVING FLOOR(AVG(rating)) = 4\`
|
|
1868
|
+
\u2705 CORRECT: Use subquery for filtering: \`WHERE product_id IN (SELECT product_id FROM ... GROUP BY ... HAVING AVG(rating) >= 4)\`
|
|
1987
1869
|
|
|
1988
|
-
|
|
1989
|
-
**WHERE vs HAVING:**
|
|
1870
|
+
2. **WHERE vs HAVING**
|
|
1990
1871
|
- WHERE filters rows BEFORE grouping (cannot use aggregates)
|
|
1991
1872
|
- HAVING filters groups AFTER grouping (can use aggregates)
|
|
1992
1873
|
- If using HAVING, you MUST have GROUP BY
|
|
1993
1874
|
|
|
1994
|
-
|
|
1995
|
-
|
|
1996
|
-
|
|
1997
|
-
- Example: \`WHERE location_id = (SELECT store_id FROM orders ORDER BY total_amount DESC LIMIT 1)\`
|
|
1998
|
-
- For multiple values, use \`IN\` instead: \`WHERE location_id IN (SELECT store_id FROM orders)\`
|
|
1999
|
-
- Test your subqueries mentally: if they could return multiple rows, add LIMIT 1 or use IN
|
|
2000
|
-
|
|
2001
|
-
2. **Title Modification**:
|
|
2002
|
-
- Update title to reflect the user's specific request
|
|
2003
|
-
- Keep it concise and descriptive
|
|
2004
|
-
- Match the tone of the original title
|
|
2005
|
-
|
|
2006
|
-
3. **Description Modification**:
|
|
2007
|
-
- Update description to explain what data is shown
|
|
2008
|
-
- Be specific about filters, time ranges, or groupings applied
|
|
2009
|
-
|
|
2010
|
-
4. **Config Modification** (based on component type):
|
|
2011
|
-
- For KPICard: formatter, gradient, icon
|
|
2012
|
-
- For Charts: colors, height, xKey, yKey, nameKey, valueKey
|
|
2013
|
-
- For Tables: columns, pageSize, formatters
|
|
2014
|
-
|
|
2015
|
-
|
|
2016
|
-
Respond with a JSON object:
|
|
2017
|
-
{
|
|
2018
|
-
"props": { /* modified props object with query, title, description, config */ },
|
|
2019
|
-
"isModified": boolean,
|
|
2020
|
-
"reasoning": "brief explanation of changes",
|
|
2021
|
-
"modifications": ["list of specific changes made"]
|
|
2022
|
-
}
|
|
2023
|
-
|
|
2024
|
-
IMPORTANT:
|
|
2025
|
-
- Return the COMPLETE props object, not just modified fields
|
|
2026
|
-
- Preserve the structure expected by the component type
|
|
2027
|
-
- Ensure query returns columns with expected aliases
|
|
2028
|
-
- Keep config properties that aren't affected by the request`,
|
|
2029
|
-
user: `{{USER_PROMPT}}`
|
|
2030
|
-
},
|
|
2031
|
-
"single-component": {
|
|
2032
|
-
system: `You are an expert AI assistant specialized in matching user requests to the most appropriate component from a filtered list.
|
|
2033
|
-
|
|
2034
|
-
CRITICAL: You MUST respond with ONLY valid JSON, no other text before or after.
|
|
2035
|
-
|
|
2036
|
-
|
|
2037
|
-
## Previous Conversation
|
|
2038
|
-
{{CONVERSATION_HISTORY}}
|
|
2039
|
-
|
|
2040
|
-
**Context Instructions:**
|
|
2041
|
-
- If there is previous conversation history, use it to understand what the user is referring to
|
|
2042
|
-
- When user says "show trends", "add filters", "change that", understand they may be building on previous queries
|
|
2043
|
-
- Use previous component types and queries as context to inform your current matching
|
|
2044
|
-
|
|
2045
|
-
## Available Components (Type: {{COMPONENT_TYPE}})
|
|
2046
|
-
The following components have been filtered by type {{COMPONENT_TYPE}}. Select the BEST matching one:
|
|
2047
|
-
|
|
2048
|
-
{{COMPONENTS_LIST}}
|
|
2049
|
-
|
|
2050
|
-
{{VISUALIZATION_CONSTRAINT}}
|
|
2051
|
-
|
|
2052
|
-
**Select the BEST matching component** from the available {{COMPONENT_TYPE}} components listed above that would best answer the user's question.
|
|
2053
|
-
|
|
2054
|
-
**Matching Guidelines:**
|
|
2055
|
-
1. **Semantic Matching:**
|
|
2056
|
-
- Match based on component name, description, and keywords
|
|
2057
|
-
- Consider what metrics/data the user is asking about
|
|
2058
|
-
- Look for semantic similarity (e.g., "sales" matches "revenue", "orders" matches "purchases")
|
|
2059
|
-
|
|
2060
|
-
2. **Query Relevance:**
|
|
2061
|
-
- Consider the component's existing query structure
|
|
2062
|
-
- Does it query the right tables/columns for the user's question?
|
|
2063
|
-
- Can it be modified to answer the user's specific question?
|
|
2064
|
-
|
|
2065
|
-
3. **Scoring Criteria:**
|
|
2066
|
-
- Exact keyword matches in name/description: High priority
|
|
2067
|
-
- Semantic similarity to user intent: High priority
|
|
2068
|
-
- Appropriate aggregation/grouping: Medium priority
|
|
2069
|
-
- Category alignment: Medium priority
|
|
2070
|
-
|
|
2071
|
-
**Output Requirements:**
|
|
2072
|
-
|
|
2073
|
-
Respond with a JSON object:
|
|
2074
|
-
{
|
|
2075
|
-
"componentId": "matched_component_id",
|
|
2076
|
-
"componentIndex": 1, // 1-based index from the filtered list above
|
|
2077
|
-
"reasoning": "Detailed explanation of why this component best matches the user's question",
|
|
2078
|
-
"confidence": 85, // Confidence score 0-100
|
|
2079
|
-
"canGenerate": true // false if no suitable component found (confidence < 50)
|
|
2080
|
-
}
|
|
2081
|
-
|
|
2082
|
-
**Important:**
|
|
2083
|
-
- Only set canGenerate to true if confidence >= 50%
|
|
2084
|
-
- If no component from the list matches well (all have low relevance), set canGenerate to false
|
|
2085
|
-
- Consider the full context of the request and conversation history
|
|
2086
|
-
- The component's props (query, title, description, config) will be modified later based on the user's specific request
|
|
2087
|
-
- Focus on finding the component that is closest to what the user needs, even if it needs modification`,
|
|
2088
|
-
user: `{{USER_PROMPT}}
|
|
2089
|
-
|
|
2090
|
-
`
|
|
2091
|
-
},
|
|
2092
|
-
"mutli-component": {
|
|
2093
|
-
system: `You are an expert data analyst AI that creates comprehensive multi-component analytical dashboards with aesthetically pleasing and balanced layouts.
|
|
2094
|
-
|
|
2095
|
-
CRITICAL: You MUST respond with ONLY valid JSON, no other text before or after.
|
|
2096
|
-
|
|
2097
|
-
Database Schema:
|
|
2098
|
-
{{SCHEMA_DOC}}
|
|
2099
|
-
|
|
2100
|
-
## Previous Conversation
|
|
2101
|
-
{{CONVERSATION_HISTORY}}
|
|
2102
|
-
|
|
2103
|
-
**Context Instructions:**
|
|
2104
|
-
- Review the conversation history to understand what the user has asked before
|
|
2105
|
-
- If user is building on previous insights (e.g., "now show me X and Y"), use context to inform dashboard design
|
|
2106
|
-
- Previous queries can help determine appropriate filters, date ranges, or categories to use
|
|
2107
|
-
- If user asks for "comprehensive view" or "dashboard for X", include complementary components based on context
|
|
2108
|
-
|
|
2109
|
-
Given a user's analytical question and the required visualization types, your task is to:
|
|
2110
|
-
|
|
2111
|
-
1. **Determine Container Metadata:**
|
|
2112
|
-
- title: Clear, descriptive title for the entire dashboard (2-5 words)
|
|
2113
|
-
- description: Brief explanation of what insights this dashboard provides (1-2 sentences)
|
|
2114
|
-
|
|
2115
|
-
2. **Generate Props for Each Component:**
|
|
2116
|
-
For each visualization type requested, create tailored props:
|
|
2117
|
-
|
|
2118
|
-
- **query**: SQL query specific to this visualization using the database schema
|
|
2119
|
-
* Use correct table and column names
|
|
2120
|
-
* **DO NOT USE TOP keyword - use LIMIT instead (e.g., LIMIT 20, not TOP 20)**
|
|
2121
|
-
* ALWAYS include LIMIT clause ONCE at the end (default: {{DEFAULT_LIMIT}})
|
|
2122
|
-
* For KPICard: Return single row with column alias "value"
|
|
2123
|
-
* For Charts: Return appropriate columns (name/label and value, or x and y)
|
|
2124
|
-
* For Table: Return relevant columns
|
|
2125
|
-
|
|
2126
|
-
- **title**: Specific title for this component (2-4 words)
|
|
2127
|
-
|
|
2128
|
-
- **description**: What this specific component shows (1 sentence)
|
|
2129
|
-
|
|
2130
|
-
- **config**: Type-specific configuration
|
|
2131
|
-
* KPICard: { gradient, formatter, icon }
|
|
2132
|
-
* BarChart: { xKey, yKey, colors, height }
|
|
2133
|
-
* LineChart: { xKey, yKeys, colors, height }
|
|
2134
|
-
* PieChart: { nameKey, valueKey, colors, height }
|
|
2135
|
-
* DataTable: { pageSize }
|
|
2136
|
-
|
|
2137
|
-
3. **CRITICAL: Component Hierarchy and Ordering:**
|
|
2138
|
-
The ORDER of components in the array MUST follow this STRICT hierarchy for proper visual layout:
|
|
2139
|
-
|
|
2140
|
-
**HIERARCHY RULES (MUST FOLLOW IN THIS ORDER):**
|
|
2141
|
-
1. KPICards - ALWAYS FIRST (top of dashboard for summary metrics)
|
|
2142
|
-
2. Charts/Graphs - AFTER KPICards (middle of dashboard for visualizations)
|
|
2143
|
-
* BarChart, LineChart, PieChart, DonutChart
|
|
2144
|
-
3. DataTable - ALWAYS LAST (bottom of dashboard, full width for detailed data)
|
|
2145
|
-
|
|
2146
|
-
**LAYOUT BEHAVIOR (Frontend enforces):**
|
|
2147
|
-
- KPICards: Display in responsive grid (3 columns)
|
|
2148
|
-
- Single Chart (if only 1 chart): Takes FULL WIDTH
|
|
2149
|
-
- Multiple Charts (if 2+ charts): Display in 2-column grid
|
|
2150
|
-
- DataTable (if present): Always spans FULL WIDTH at bottom
|
|
2151
|
-
|
|
2152
|
-
|
|
2153
|
-
**ABSOLUTELY DO NOT deviate from this hierarchy. Always place:**
|
|
2154
|
-
- KPICards first
|
|
2155
|
-
- Charts/Graphs second
|
|
2156
|
-
- DataTable last (if present)
|
|
2157
|
-
|
|
2158
|
-
**Important Guidelines:**
|
|
2159
|
-
- Each component should answer a DIFFERENT aspect of the user's question
|
|
2160
|
-
- Queries should be complementary, not duplicated
|
|
2161
|
-
- If user asks "Show total revenue and trend", generate:
|
|
2162
|
-
* KPICard: Single total value (FIRST)
|
|
2163
|
-
* LineChart: Revenue over time (SECOND)
|
|
2164
|
-
- Ensure queries use valid columns from the schema
|
|
2165
|
-
- Make titles descriptive and specific to what each component shows
|
|
2166
|
-
- **Snowflake Syntax MUST be used:**
|
|
2167
|
-
* Use LIMIT (not TOP)
|
|
2168
|
-
* Use DATE_TRUNC, DATEDIFF (not DATEPART)
|
|
2169
|
-
* Include LIMIT only ONCE per query at the end
|
|
2170
|
-
|
|
2171
|
-
**Output Format:**
|
|
2172
|
-
{
|
|
2173
|
-
"containerTitle": "Dashboard Title",
|
|
2174
|
-
"containerDescription": "Brief description of the dashboard insights",
|
|
2175
|
-
"components": [
|
|
2176
|
-
{
|
|
2177
|
-
"componentType": "KPICard" | "BarChart" | "LineChart" | "PieChart" | "DataTable",
|
|
2178
|
-
"query": "SQL query",
|
|
2179
|
-
"title": "Component title",
|
|
2180
|
-
"description": "Component description",
|
|
2181
|
-
"config": { /* type-specific config */ }
|
|
2182
|
-
},
|
|
2183
|
-
...
|
|
2184
|
-
],
|
|
2185
|
-
"reasoning": "Explanation of the dashboard design and component ordering",
|
|
2186
|
-
"canGenerate": boolean
|
|
2187
|
-
}`,
|
|
2188
|
-
user: `Current user question: {{USER_PROMPT}}
|
|
2189
|
-
|
|
2190
|
-
Required visualization types: {{VISUALIZATION_TYPES}}
|
|
2191
|
-
|
|
2192
|
-
Generate a complete multi-component dashboard with appropriate container metadata and tailored props for each component. Consider the conversation history above when designing the dashboard. Return ONLY valid JSON.`
|
|
2193
|
-
},
|
|
2194
|
-
"container-metadata": {
|
|
2195
|
-
system: `You are an expert AI assistant that generates titles and descriptions for multi-component dashboards.
|
|
2196
|
-
|
|
2197
|
-
CRITICAL: You MUST respond with ONLY valid JSON, no other text before or after.
|
|
2198
|
-
|
|
2199
|
-
## Previous Conversation
|
|
2200
|
-
{{CONVERSATION_HISTORY}}
|
|
2201
|
-
|
|
2202
|
-
**Context Instructions:**
|
|
2203
|
-
- If there is previous conversation history, use it to understand what the user is referring to
|
|
2204
|
-
- Use context to create relevant titles and descriptions that align with the user's intent
|
|
2205
|
-
|
|
2206
|
-
Your task is to generate a concise title and description for a multi-component dashboard that will contain the following visualization types:
|
|
2207
|
-
{{VISUALIZATION_TYPES}}
|
|
2208
|
-
|
|
2209
|
-
**Guidelines:**
|
|
2210
|
-
|
|
2211
|
-
1. **Title:**
|
|
2212
|
-
- Should be clear and descriptive (3-8 words)
|
|
2213
|
-
- Should reflect what the user is asking about
|
|
2214
|
-
- Should NOT include "Dashboard" suffix (that will be added automatically)
|
|
2215
|
-
|
|
2216
|
-
2. **Description:**
|
|
2217
|
-
- Should be a brief summary (1-2 sentences)
|
|
2218
|
-
- Should explain what insights the dashboard provides
|
|
2219
|
-
|
|
2220
|
-
**Output Requirements:**
|
|
2221
|
-
|
|
2222
|
-
Respond with a JSON object:
|
|
2223
|
-
{
|
|
2224
|
-
"title": "Dashboard title without 'Dashboard' suffix",
|
|
2225
|
-
"description": "Brief description of what this dashboard shows"
|
|
2226
|
-
}
|
|
2227
|
-
|
|
2228
|
-
**Important:**
|
|
2229
|
-
- Keep the title concise and meaningful
|
|
2230
|
-
- Make the description informative but brief
|
|
2231
|
-
- Focus on what insights the user will gain
|
|
2232
|
-
`,
|
|
2233
|
-
user: `{{USER_PROMPT}}
|
|
2234
|
-
`
|
|
2235
|
-
},
|
|
2236
|
-
"text-response": {
|
|
2237
|
-
system: `You are an intelligent AI assistant that provides helpful, accurate, and contextual text responses to user questions.
|
|
2238
|
-
|
|
2239
|
-
## Your Task
|
|
2240
|
-
|
|
2241
|
-
Analyze the user's question and provide a helpful text response. Your response should:
|
|
1875
|
+
3. **NO NESTED AGGREGATE FUNCTIONS** - PostgreSQL does NOT allow aggregates inside aggregates
|
|
1876
|
+
\u274C WRONG: \`AVG(ROUND(AVG(column), 2))\` or \`SELECT AVG(SUM(price)) FROM ...\`
|
|
1877
|
+
\u2705 CORRECT: \`ROUND(AVG(column), 2)\`
|
|
2242
1878
|
|
|
2243
|
-
|
|
2244
|
-
|
|
2245
|
-
|
|
2246
|
-
4. **Be Helpful**: Offer additional relevant information or suggestions when appropriate
|
|
1879
|
+
4. **GROUP BY Requirements**
|
|
1880
|
+
- ALL non-aggregated columns in SELECT must be in GROUP BY
|
|
1881
|
+
- If you SELECT a column and don't aggregate it, add it to GROUP BY
|
|
2247
1882
|
|
|
2248
|
-
|
|
1883
|
+
5. **LIMIT Clause**
|
|
1884
|
+
- ALWAYS include LIMIT (max 32 rows)
|
|
1885
|
+
- For scalar subqueries in WHERE/HAVING, add LIMIT 1
|
|
2249
1886
|
|
|
2250
|
-
|
|
1887
|
+
6. **String Escaping** - PostgreSQL uses double single-quotes, NOT backslash
|
|
1888
|
+
\u274C WRONG: \`'Children\\'s furniture'\`
|
|
1889
|
+
\u2705 CORRECT: \`'Children''s furniture'\`
|
|
2251
1890
|
|
|
2252
|
-
|
|
2253
|
-
|
|
2254
|
-
|
|
2255
|
-
|
|
1891
|
+
7. **Always Use Table Aliases for Column References** - Prevent ambiguous column errors
|
|
1892
|
+
\u274C WRONG: \`SELECT product_id FROM products p JOIN product_variants pv ON p.product_id = pv.product_id\`
|
|
1893
|
+
\u2705 CORRECT: \`SELECT p.product_id FROM products p JOIN product_variants pv ON p.product_id = pv.product_id\`
|
|
1894
|
+
- Always prefix columns with table alias (e.g., \`p.product_id\`, \`c.name\`)
|
|
1895
|
+
- Especially critical in subqueries and joins where multiple tables share column names
|
|
2256
1896
|
|
|
2257
|
-
**Query Guidelines:**
|
|
2258
|
-
- Use correct table and column names from the schema
|
|
2259
|
-
- ALWAYS include a LIMIT clause with a MAXIMUM of 32 rows
|
|
2260
|
-
- Ensure valid SQL syntax
|
|
2261
|
-
- For time-based queries, use appropriate date functions
|
|
2262
|
-
- When using subqueries with scalar operators (=, <, >, etc.), add LIMIT 1 to prevent "more than one row" errors
|
|
2263
1897
|
|
|
2264
1898
|
## Response Guidelines
|
|
2265
1899
|
|
|
2266
|
-
- If the question is about data, use the execute_query tool to fetch data and present it
|
|
1900
|
+
- If the question is about viewing data, use the execute_query tool to fetch data and present it
|
|
1901
|
+
- If the question is about creating/updating/deleting data:
|
|
1902
|
+
1. Acknowledge that the system supports this via forms
|
|
1903
|
+
2. **CRITICAL:** Use the database schema to determine which fields are required based on \`nullable\` property
|
|
1904
|
+
3. **CRITICAL:** If the form will have select fields for foreign keys, you MUST fetch the options data using execute_query
|
|
1905
|
+
4. **CRITICAL FOR UPDATE/DELETE OPERATIONS:** If it's an update/edit/modify/delete question:
|
|
1906
|
+
- **NEVER update ID/primary key columns** (e.g., order_id, customer_id, product_id) - these are immutable identifiers
|
|
1907
|
+
- You MUST first fetch the CURRENT values of the record using a SELECT query
|
|
1908
|
+
- Identify the record (from user's question - e.g., "update order 123" or "delete order 123" means order_id = 123)
|
|
1909
|
+
- Execute: \`SELECT * FROM table_name WHERE id = <value> LIMIT 1\`
|
|
1910
|
+
- Present the current values in your response (e.g., "Current order status: Pending, payment method: Credit Card")
|
|
1911
|
+
- For DELETE: These values will be shown in a disabled form as confirmation before deletion
|
|
1912
|
+
- For UPDATE: These values will populate as default values for editing
|
|
1913
|
+
5. Present the options data in your response (e.g., "Available categories: Furniture (id: 1), Kitchen (id: 2), Decor (id: 3)")
|
|
1914
|
+
6. The form component will be generated automatically using this data
|
|
2267
1915
|
- If the question is general knowledge, provide a helpful conversational response
|
|
2268
1916
|
- If asking for clarification, provide options or ask specific follow-up questions
|
|
2269
1917
|
- If you don't have enough information, acknowledge it and ask for more details
|
|
2270
1918
|
- Keep responses focused and avoid going off-topic
|
|
2271
1919
|
|
|
1920
|
+
**Example for data modification with foreign keys:**
|
|
1921
|
+
User: "I want to create a new product"
|
|
1922
|
+
You should:
|
|
1923
|
+
1. Execute query: \`SELECT category_id, name FROM categories LIMIT 32\`
|
|
1924
|
+
2. Execute query: \`SELECT store_id, name FROM stores LIMIT 32\`
|
|
1925
|
+
3. Present: "I can help you create a new product. Available categories: Furniture (id: 1), Kitchen (id: 2)... Available stores: Store A (id: 10), Store B (id: 20)..."
|
|
1926
|
+
4. Suggest Form component
|
|
1927
|
+
|
|
2272
1928
|
## Component Suggestions
|
|
2273
1929
|
|
|
2274
|
-
After analyzing the
|
|
1930
|
+
After analyzing the user's question, you MUST suggest appropriate dashboard components. Use this format:
|
|
2275
1931
|
|
|
2276
1932
|
<DashboardComponents>
|
|
2277
1933
|
**Dashboard Components:**
|
|
@@ -2279,12 +1935,22 @@ Format: \`{number}.{component_type} : {clear reasoning}\`
|
|
|
2279
1935
|
|
|
2280
1936
|
|
|
2281
1937
|
**Rules for component suggestions:**
|
|
2282
|
-
1.
|
|
2283
|
-
2.
|
|
2284
|
-
3.
|
|
1938
|
+
1. If a conclusive answer can be provided based on user question, suggest that as the first component.
|
|
1939
|
+
2. ALways suggest context/supporting components that will give the user more information and allow them to explore further.
|
|
1940
|
+
3. If the question includes a time range, also explore time-based components for past time ranges.
|
|
1941
|
+
4. **For data viewing/analysis questions**: Suggest visualization components (KPICard, BarChart, LineChart, PieChart, DataTable, etc.).
|
|
1942
|
+
5. **For data modification questions** (create/add/update/delete):
|
|
1943
|
+
- Always suggest 1-2 context components first to provide relevant information (prefer KPICard for showing key metrics)
|
|
1944
|
+
- Then suggest \`Form\` component for the actual modification
|
|
1945
|
+
- Example: "1.KPICard : Show current order total and status" then "2.Form : To update order details"
|
|
1946
|
+
6. Analyze the query results structure and data type
|
|
1947
|
+
7. Each component suggestion must be on a new line
|
|
2285
1948
|
</DashboardComponents>
|
|
2286
1949
|
|
|
2287
|
-
IMPORTANT:
|
|
1950
|
+
IMPORTANT:
|
|
1951
|
+
- Always wrap component suggestions with <DashboardComponents> tags
|
|
1952
|
+
- For data viewing: Include at least one component suggestion when data is returned
|
|
1953
|
+
- For data modifications: Always suggest 1-2 context components before Form (e.g., "1.KPICard : Show current order value" then "2.Form : To update order status")
|
|
2288
1954
|
|
|
2289
1955
|
## Output Format
|
|
2290
1956
|
|
|
@@ -2299,37 +1965,22 @@ Respond with plain text that includes:
|
|
|
2299
1965
|
- Return ONLY plain text (no JSON, no markdown code blocks)
|
|
2300
1966
|
|
|
2301
1967
|
|
|
2302
|
-
You have access to a database and can execute SQL queries to answer data-related questions.
|
|
2303
|
-
## Database Schema
|
|
2304
|
-
{{SCHEMA_DOC}}
|
|
2305
|
-
|
|
2306
|
-
**Database Type: PostgreSQL**
|
|
2307
|
-
|
|
2308
|
-
**CRITICAL PostgreSQL Query Rules:**
|
|
1968
|
+
You have access to a database and can execute SQL queries to answer data-related questions. For data modifications, the system provides form-based interfaces.
|
|
2309
1969
|
|
|
2310
|
-
1. **NO AGGREGATE FUNCTIONS IN WHERE CLAUSE** - This is a fundamental SQL error
|
|
2311
|
-
\u274C WRONG: \`WHERE COUNT(orders) > 0\`
|
|
2312
|
-
\u274C WRONG: \`WHERE SUM(price) > 100\`
|
|
2313
|
-
\u274C WRONG: \`WHERE AVG(rating) > 4.5\`
|
|
2314
1970
|
|
|
2315
|
-
|
|
1971
|
+
## External Tool Results
|
|
2316
1972
|
|
|
2317
|
-
|
|
2318
|
-
- WHERE filters rows BEFORE grouping (cannot use aggregates)
|
|
2319
|
-
- HAVING filters groups AFTER grouping (can use aggregates)
|
|
2320
|
-
- If using HAVING, you MUST have GROUP BY
|
|
1973
|
+
The following external tools were executed for this request (if applicable):
|
|
2321
1974
|
|
|
2322
|
-
|
|
2323
|
-
\u274C WRONG: \`AVG(ROUND(AVG(column), 2))\` or \`SELECT AVG(SUM(price)) FROM ...\`
|
|
2324
|
-
\u2705 CORRECT: \`ROUND(AVG(column), 2)\`
|
|
1975
|
+
{{EXTERNAL_TOOL_CONTEXT}}
|
|
2325
1976
|
|
|
2326
|
-
|
|
2327
|
-
|
|
2328
|
-
|
|
1977
|
+
Use this external tool data to:
|
|
1978
|
+
- Provide information from external sources (emails, calendar, etc.)
|
|
1979
|
+
- Present the data in a user-friendly format
|
|
1980
|
+
- Combine external data with database queries when relevant
|
|
1981
|
+
- Reference specific results in your response
|
|
2329
1982
|
|
|
2330
|
-
|
|
2331
|
-
- ALWAYS include LIMIT (max 32 rows)
|
|
2332
|
-
- For scalar subqueries in WHERE/HAVING, add LIMIT 1
|
|
1983
|
+
**Note:** If external tools were not needed, this section will indicate "No external tools were used for this request."
|
|
2333
1984
|
|
|
2334
1985
|
|
|
2335
1986
|
## Knowledge Base Context
|
|
@@ -2352,10 +2003,8 @@ Use this knowledge base information to:
|
|
|
2352
2003
|
## Previous Conversation
|
|
2353
2004
|
{{CONVERSATION_HISTORY}}
|
|
2354
2005
|
|
|
2355
|
-
|
|
2356
2006
|
`,
|
|
2357
2007
|
user: `{{USER_PROMPT}}
|
|
2358
|
-
|
|
2359
2008
|
`
|
|
2360
2009
|
},
|
|
2361
2010
|
"match-text-components": {
|
|
@@ -2369,11 +2018,21 @@ You will receive a text response containing:
|
|
|
2369
2018
|
3. **Dashboard Components:** suggestions (1:component_type : reasoning format)
|
|
2370
2019
|
|
|
2371
2020
|
Your job is to:
|
|
2372
|
-
1. **
|
|
2373
|
-
|
|
2374
|
-
|
|
2375
|
-
|
|
2376
|
-
|
|
2021
|
+
1. **FIRST: Generate a direct answer component** (if the user question can be answered with a single visualization)
|
|
2022
|
+
- Determine the BEST visualization type (KPICard, BarChart, DataTable, PieChart, LineChart, etc.) to directly answer the user's question
|
|
2023
|
+
- Select the matching component from the available components list
|
|
2024
|
+
- Generate complete props for this component (query, title, description, config)
|
|
2025
|
+
- This component will be placed in the \`answerComponent\` field
|
|
2026
|
+
- This component will be streamed to the frontend IMMEDIATELY for instant user feedback
|
|
2027
|
+
- **CRITICAL**: Generate this FIRST in your JSON response
|
|
2028
|
+
|
|
2029
|
+
2. **THEN: Parse ALL dashboard component suggestions** from the text response (format: 1:component_type : reasoning)
|
|
2030
|
+
3. **Match EACH suggestion with an actual component** from the available list
|
|
2031
|
+
4. **CRITICAL**: \`matchedComponents\` must include **ALL** dashboard components suggested in the text, INCLUDING the component you used as \`answerComponent\`
|
|
2032
|
+
- The answerComponent is shown first for quick feedback, but the full dashboard shows everything
|
|
2033
|
+
5. **Generate proper props** for each matched component to **visualize the analysis results** that were already fetched
|
|
2034
|
+
6. **Generate title and description** for the dashboard container
|
|
2035
|
+
7. **Generate intelligent follow-up questions (actions)** that the user might naturally ask next based on the data analysis
|
|
2377
2036
|
|
|
2378
2037
|
**CRITICAL GOAL**: Create dashboard components that display the **same data that was already analyzed** - NOT new data. The queries already ran and got results. You're just creating different visualizations of those results.
|
|
2379
2038
|
|
|
@@ -2408,7 +2067,8 @@ For each matched component, generate complete props:
|
|
|
2408
2067
|
|
|
2409
2068
|
**Option B: GENERATE a new query** (when necessary)
|
|
2410
2069
|
- Only generate new queries when you need DIFFERENT data
|
|
2411
|
-
- Use the database schema below to write valid SQL
|
|
2070
|
+
- For SELECT queries: Use the database schema below to write valid SQL
|
|
2071
|
+
- For mutations (INSERT/UPDATE/DELETE): Only if matching a Form component, generate mutation query with $fieldName placeholders
|
|
2412
2072
|
|
|
2413
2073
|
|
|
2414
2074
|
**Decision Logic:**
|
|
@@ -2426,8 +2086,12 @@ For each matched component, generate complete props:
|
|
|
2426
2086
|
\u274C WRONG: \`WHERE COUNT(orders) > 0\`
|
|
2427
2087
|
\u274C WRONG: \`WHERE SUM(price) > 100\`
|
|
2428
2088
|
\u274C WRONG: \`WHERE AVG(rating) > 4.5\`
|
|
2089
|
+
\u274C WRONG: \`WHERE FLOOR(AVG(rating)) = 4\` (aggregate inside any function is still not allowed)
|
|
2090
|
+
\u274C WRONG: \`WHERE ROUND(SUM(price), 2) > 100\`
|
|
2429
2091
|
|
|
2430
2092
|
\u2705 CORRECT: Use HAVING (with GROUP BY), EXISTS, or subquery
|
|
2093
|
+
\u2705 CORRECT: Move aggregate logic to HAVING: \`GROUP BY ... HAVING FLOOR(AVG(rating)) = 4\`
|
|
2094
|
+
\u2705 CORRECT: Use subquery for filtering: \`WHERE product_id IN (SELECT product_id FROM ... GROUP BY ... HAVING AVG(rating) >= 4)\`
|
|
2431
2095
|
|
|
2432
2096
|
2. **NO NESTED AGGREGATE FUNCTIONS** - PostgreSQL does NOT allow aggregates inside aggregates
|
|
2433
2097
|
\u274C WRONG: \`AVG(ROUND(AVG(column), 2))\`
|
|
@@ -2456,6 +2120,16 @@ For each matched component, generate complete props:
|
|
|
2456
2120
|
- Subqueries used with =, <, >, etc. must return single value
|
|
2457
2121
|
- Always add LIMIT 1 to scalar subqueries
|
|
2458
2122
|
|
|
2123
|
+
8. **String Escaping** - PostgreSQL uses double single-quotes, NOT backslash
|
|
2124
|
+
\u274C WRONG: \`'Children\\'s furniture'\`
|
|
2125
|
+
\u2705 CORRECT: \`'Children''s furniture'\`
|
|
2126
|
+
|
|
2127
|
+
9. **Always Use Table Aliases for Column References** - Prevent ambiguous column errors
|
|
2128
|
+
\u274C WRONG: \`SELECT product_id FROM products p JOIN product_variants pv ON p.product_id = pv.product_id\`
|
|
2129
|
+
\u2705 CORRECT: \`SELECT p.product_id FROM products p JOIN product_variants pv ON p.product_id = pv.product_id\`
|
|
2130
|
+
- Always prefix columns with table alias (e.g., \`p.product_id\`, \`c.name\`)
|
|
2131
|
+
- Especially critical in subqueries and joins where multiple tables share column names
|
|
2132
|
+
|
|
2459
2133
|
**Query Generation Guidelines** (when creating new queries):
|
|
2460
2134
|
- Use correct table and column names from the schema above
|
|
2461
2135
|
- ALWAYS include LIMIT clause (max 32 rows)
|
|
@@ -2469,7 +2143,7 @@ For each matched component, generate complete props:
|
|
|
2469
2143
|
- Brief explanation of what this component displays
|
|
2470
2144
|
- Why it's useful for this data
|
|
2471
2145
|
|
|
2472
|
-
### 4. Config
|
|
2146
|
+
### 4. Config (for visualization components)
|
|
2473
2147
|
- **CRITICAL**: Look at the component's "Props Structure" to see what config fields it expects
|
|
2474
2148
|
- Map query result columns to the appropriate config fields
|
|
2475
2149
|
- Keep other existing config properties that don't need to change
|
|
@@ -2481,40 +2155,167 @@ For each matched component, generate complete props:
|
|
|
2481
2155
|
- \`orientation\` = "vertical" or "horizontal" (controls visual direction only)
|
|
2482
2156
|
- **DO NOT swap xAxisKey/yAxisKey based on orientation** - they always represent category and value respectively
|
|
2483
2157
|
|
|
2484
|
-
|
|
2158
|
+
### 5. Additional Props (match according to component type)
|
|
2159
|
+
- **CRITICAL**: Look at the matched component's "Props Structure" in the available components list
|
|
2160
|
+
- Generate props that match EXACTLY what the component expects
|
|
2485
2161
|
|
|
2486
|
-
|
|
2162
|
+
**For Form components (type: "Form"):**
|
|
2487
2163
|
|
|
2488
|
-
|
|
2489
|
-
|
|
2490
|
-
|
|
2491
|
-
|
|
2492
|
-
|
|
2493
|
-
|
|
2494
|
-
|
|
2164
|
+
Props structure:
|
|
2165
|
+
- **query**: \`{ sql: "INSERT/UPDATE/DELETE query with $fieldName placeholders", params: [] }\`
|
|
2166
|
+
- **For UPDATE queries**: Check the database schema - if the table has an \`updated_at\` or \`last_updated\` column, always include it in the SET clause with \`CURRENT_TIMESTAMP\` (e.g., \`UPDATE table_name SET field = $field, updated_at = CURRENT_TIMESTAMP WHERE id = value\`)
|
|
2167
|
+
- **title**: "Update Order 5000", "Create New Product", or "Delete Order 5000"
|
|
2168
|
+
- **description**: What the form does
|
|
2169
|
+
- **submitButtonText**: Button text (default: "Submit"). For delete: "Delete", "Confirm Delete"
|
|
2170
|
+
- **submitButtonColor**: "primary" (blue) or "danger" (red). Use "danger" for DELETE operations
|
|
2171
|
+
- **successMessage**: Success message (default: "Form submitted successfully!"). For delete: "Record deleted successfully!"
|
|
2172
|
+
- **disableFields**: Set \`true\` for DELETE operations to show current values but prevent editing
|
|
2173
|
+
- **fields**: Array of field objects (structure below)
|
|
2495
2174
|
|
|
2175
|
+
**Field object:**
|
|
2176
|
+
\`\`\`json
|
|
2177
|
+
{
|
|
2178
|
+
"name": "field_name", // Matches $field_name in SQL query
|
|
2179
|
+
"description": "Field Label",
|
|
2180
|
+
"type": "text|number|email|date|select|multiselect|checkbox|textarea",
|
|
2181
|
+
"required": true, // Set based on schema: nullable=false \u2192 required=true, nullable=true \u2192 required=false
|
|
2182
|
+
"defaultValue": "current_value", // For UPDATE: extract from text response
|
|
2183
|
+
"placeholder": "hint text",
|
|
2184
|
+
"options": [...], // For select/multiselect
|
|
2185
|
+
"validation": {
|
|
2186
|
+
"minLength": { "value": 5, "message": "..." },
|
|
2187
|
+
"maxLength": { "value": 100, "message": "..." },
|
|
2188
|
+
"min": { "value": 18, "message": "..." },
|
|
2189
|
+
"max": { "value": 120, "message": "..." },
|
|
2190
|
+
"pattern": { "value": "regex", "message": "..." }
|
|
2191
|
+
}
|
|
2192
|
+
}
|
|
2193
|
+
\`\`\`
|
|
2496
2194
|
|
|
2497
|
-
|
|
2195
|
+
**CRITICAL - Set required based on database schema:**
|
|
2196
|
+
- Check the column's \`nullable\` property in the database schema
|
|
2197
|
+
- If \`nullable: false\` \u2192 set \`required: true\` (field is mandatory)
|
|
2198
|
+
- If \`nullable: true\` \u2192 set \`required: false\` (field is optional)
|
|
2199
|
+
- Never set fields as required if the schema allows NULL
|
|
2498
2200
|
|
|
2499
|
-
|
|
2201
|
+
**Default Values for UPDATE:**
|
|
2202
|
+
- **NEVER include ID/primary key fields in UPDATE forms** (e.g., order_id, customer_id, product_id) - these cannot be changed
|
|
2203
|
+
- Detect UPDATE by checking if SQL contains "UPDATE" keyword
|
|
2204
|
+
- Extract current values from text response (look for "Current values:" or SELECT results)
|
|
2205
|
+
- Set \`defaultValue\` for each field with the extracted current value
|
|
2500
2206
|
|
|
2501
|
-
**
|
|
2502
|
-
|
|
2503
|
-
- Escape all quotes in SQL properly (use \\" for quotes inside strings)
|
|
2504
|
-
- Remove any newlines, tabs, or special characters from SQL
|
|
2505
|
-
- Do NOT use markdown code blocks (no \`\`\`)
|
|
2506
|
-
- Return ONLY the JSON object, nothing else
|
|
2207
|
+
**CRITICAL - Single field with current value pre-selected:**
|
|
2208
|
+
For UPDATE operations, use ONE field with defaultValue set to current value (not two separate fields).
|
|
2507
2209
|
|
|
2210
|
+
\u2705 CORRECT - Single field, current value pre-selected:
|
|
2508
2211
|
\`\`\`json
|
|
2509
2212
|
{
|
|
2510
|
-
"
|
|
2511
|
-
"
|
|
2512
|
-
"
|
|
2513
|
-
|
|
2514
|
-
|
|
2515
|
-
|
|
2516
|
-
|
|
2517
|
-
|
|
2213
|
+
"name": "category_id",
|
|
2214
|
+
"type": "select",
|
|
2215
|
+
"defaultValue": 5,
|
|
2216
|
+
"options": [{"id": 1, "name": "Kitchen"}, {"id": 5, "name": "Furniture"}, {"id": 7, "name": "Decor"}]
|
|
2217
|
+
}
|
|
2218
|
+
\`\`\`
|
|
2219
|
+
User sees dropdown with "Furniture" selected, can change to any other category.
|
|
2220
|
+
|
|
2221
|
+
\u274C WRONG - Two separate fields:
|
|
2222
|
+
\`\`\`json
|
|
2223
|
+
[
|
|
2224
|
+
{"name": "current_category", "type": "text", "defaultValue": "Furniture", "disabled": true},
|
|
2225
|
+
{"name": "new_category", "type": "select", "options": [...]}
|
|
2226
|
+
]
|
|
2227
|
+
\`\`\`
|
|
2228
|
+
|
|
2229
|
+
**Options Format:**
|
|
2230
|
+
- **Enum/status fields** (non-foreign keys): String array \`["Pending", "Shipped", "Delivered"]\`
|
|
2231
|
+
- **Foreign keys** (reference tables): Object array \`[{"id": 1, "name": "Furniture"}, {"id": 2, "name": "Kitchen"}]\`
|
|
2232
|
+
- Extract from text response queries and match format to field type
|
|
2233
|
+
|
|
2234
|
+
**Example UPDATE form field:**
|
|
2235
|
+
\`\`\`json
|
|
2236
|
+
{
|
|
2237
|
+
"name": "status",
|
|
2238
|
+
"description": "Order Status",
|
|
2239
|
+
"type": "select",
|
|
2240
|
+
"required": true,
|
|
2241
|
+
"defaultValue": "Pending", // Current value from database
|
|
2242
|
+
"options": ["Pending", "Processing", "Shipped", "Delivered"]
|
|
2243
|
+
}
|
|
2244
|
+
\`\`\`
|
|
2245
|
+
|
|
2246
|
+
**Example DELETE form props:**
|
|
2247
|
+
\`\`\`json
|
|
2248
|
+
{
|
|
2249
|
+
"query": { "sql": "DELETE FROM orders WHERE order_id = 123", "params": [] },
|
|
2250
|
+
"title": "Delete Order 123",
|
|
2251
|
+
"description": "Are you sure you want to delete this order?",
|
|
2252
|
+
"submitButtonText": "Confirm Delete",
|
|
2253
|
+
"submitButtonColor": "danger",
|
|
2254
|
+
"successMessage": "Order deleted successfully!",
|
|
2255
|
+
"disableFields": true,
|
|
2256
|
+
"fields": [
|
|
2257
|
+
{ "name": "order_id", "description": "Order ID", "type": "text", "defaultValue": "123" },
|
|
2258
|
+
{ "name": "status", "description": "Status", "type": "text", "defaultValue": "Pending" }
|
|
2259
|
+
]
|
|
2260
|
+
}
|
|
2261
|
+
\`\`\`
|
|
2262
|
+
|
|
2263
|
+
**For visualization components (Charts, Tables, KPIs):**
|
|
2264
|
+
- **query**: String (SQL SELECT query)
|
|
2265
|
+
- **title**, **description**, **config**: As per component's props structure
|
|
2266
|
+
- Do NOT include fields array
|
|
2267
|
+
|
|
2268
|
+
## Follow-Up Questions (Actions) Generation
|
|
2269
|
+
|
|
2270
|
+
After analyzing the text response and matched components, generate 4-5 intelligent follow-up questions that the user might naturally ask next. These questions should:
|
|
2271
|
+
|
|
2272
|
+
1. **Build upon the data analysis** shown in the text response and components
|
|
2273
|
+
2. **Explore natural next steps** in the data exploration journey
|
|
2274
|
+
3. **Be progressively more detailed or specific** - go deeper into the analysis
|
|
2275
|
+
4. **Consider the insights revealed** - suggest questions that help users understand implications
|
|
2276
|
+
5. **Be phrased naturally** as if a real user would ask them
|
|
2277
|
+
6. **Vary in scope** - include both broad trends and specific details
|
|
2278
|
+
7. **Avoid redundancy** - don't ask questions already answered in the text response
|
|
2279
|
+
|
|
2280
|
+
|
|
2281
|
+
## Output Format
|
|
2282
|
+
|
|
2283
|
+
You MUST respond with ONLY a valid JSON object (no markdown, no code blocks):
|
|
2284
|
+
|
|
2285
|
+
**IMPORTANT JSON FORMATTING RULES:**
|
|
2286
|
+
- Put SQL queries on a SINGLE LINE (no newlines in the query string)
|
|
2287
|
+
- Escape all quotes in SQL properly (use \\" for quotes inside strings)
|
|
2288
|
+
- Remove any newlines, tabs, or special characters from SQL
|
|
2289
|
+
- Do NOT use markdown code blocks (no \`\`\`)
|
|
2290
|
+
- Return ONLY the JSON object, nothing else
|
|
2291
|
+
|
|
2292
|
+
**Example 1: With answer component** (when user question can be answered with single visualization)
|
|
2293
|
+
\`\`\`json
|
|
2294
|
+
{
|
|
2295
|
+
"hasAnswerComponent": true,
|
|
2296
|
+
"answerComponent": {
|
|
2297
|
+
"componentId": "id_from_available_list",
|
|
2298
|
+
"componentName": "name_of_component",
|
|
2299
|
+
"componentType": "type_of_component (can be KPICard, BarChart, LineChart, PieChart, DataTable, etc.)",
|
|
2300
|
+
"reasoning": "Why this visualization type best answers the user's question",
|
|
2301
|
+
"props": {
|
|
2302
|
+
"query": "SQL query for this component",
|
|
2303
|
+
"title": "Component title that directly answers the user's question",
|
|
2304
|
+
"description": "Component description",
|
|
2305
|
+
"config": {
|
|
2306
|
+
"field1": "value1",
|
|
2307
|
+
"field2": "value2"
|
|
2308
|
+
}
|
|
2309
|
+
}
|
|
2310
|
+
},
|
|
2311
|
+
"layoutTitle": "Clear, concise title for the overall dashboard/layout (5-10 words)",
|
|
2312
|
+
"layoutDescription": "Brief description of what the dashboard shows and its purpose (1-2 sentences)",
|
|
2313
|
+
"matchedComponents": [
|
|
2314
|
+
{
|
|
2315
|
+
"componentId": "id_from_available_list",
|
|
2316
|
+
"componentName": "name_of_component",
|
|
2317
|
+
"componentType": "type_of_component",
|
|
2318
|
+
"reasoning": "Why this component was selected for the dashboard",
|
|
2518
2319
|
"originalSuggestion": "c1:table : original reasoning from text",
|
|
2519
2320
|
"props": {
|
|
2520
2321
|
"query": "SQL query for this component",
|
|
@@ -2537,21 +2338,65 @@ You MUST respond with ONLY a valid JSON object (no markdown, no code blocks):
|
|
|
2537
2338
|
}
|
|
2538
2339
|
\`\`\`
|
|
2539
2340
|
|
|
2341
|
+
**Example 2: Without answer component** (when user question needs multiple visualizations or dashboard)
|
|
2342
|
+
\`\`\`json
|
|
2343
|
+
{
|
|
2344
|
+
"hasAnswerComponent": false,
|
|
2345
|
+
"answerComponent": null,
|
|
2346
|
+
"layoutTitle": "Clear, concise title for the overall dashboard/layout (5-10 words)",
|
|
2347
|
+
"layoutDescription": "Brief description of what the dashboard shows and its purpose (1-2 sentences)",
|
|
2348
|
+
"matchedComponents": [
|
|
2349
|
+
{
|
|
2350
|
+
"componentId": "id_from_available_list",
|
|
2351
|
+
"componentName": "name_of_component",
|
|
2352
|
+
"componentType": "type_of_component",
|
|
2353
|
+
"reasoning": "Why this component was selected for the dashboard",
|
|
2354
|
+
"originalSuggestion": "c1:chart : original reasoning from text",
|
|
2355
|
+
"props": {
|
|
2356
|
+
"query": "SQL query for this component",
|
|
2357
|
+
"title": "Component title",
|
|
2358
|
+
"description": "Component description",
|
|
2359
|
+
"config": {
|
|
2360
|
+
"field1": "value1",
|
|
2361
|
+
"field2": "value2"
|
|
2362
|
+
}
|
|
2363
|
+
}
|
|
2364
|
+
}
|
|
2365
|
+
],
|
|
2366
|
+
"actions": [
|
|
2367
|
+
"Follow-up question 1?",
|
|
2368
|
+
"Follow-up question 2?",
|
|
2369
|
+
"Follow-up question 3?",
|
|
2370
|
+
"Follow-up question 4?",
|
|
2371
|
+
"Follow-up question 5?"
|
|
2372
|
+
]
|
|
2373
|
+
}
|
|
2374
|
+
\`\`\`
|
|
2375
|
+
|
|
2540
2376
|
**CRITICAL:**
|
|
2541
|
-
- \`
|
|
2377
|
+
- **\`hasAnswerComponent\` determines if an answer component exists**
|
|
2378
|
+
- Set to \`true\` if the user question can be answered with a single visualization
|
|
2379
|
+
- Set to \`false\` if the user question can not be answered with single visualisation and needs multiple visualizations or a dashboard overview
|
|
2380
|
+
- **If \`hasAnswerComponent\` is \`true\`:**
|
|
2381
|
+
- \`answerComponent\` MUST be generated FIRST in the JSON before \`layoutTitle\`
|
|
2382
|
+
- Generate complete props (query, title, description, config)
|
|
2383
|
+
- **If \`hasAnswerComponent\` is \`false\`:**
|
|
2384
|
+
- Set \`answerComponent\` to \`null\`
|
|
2385
|
+
- **\`matchedComponents\` MUST include ALL dashboard components from the text analysis**
|
|
2386
|
+
- **CRITICAL**: Even if you used a component as \`answerComponent\`, you MUST STILL include it in \`matchedComponents\`
|
|
2387
|
+
- The count of matchedComponents should EQUAL the count of dashboard suggestions in the text (e.g., if text has 4 suggestions, matchedComponents should have 4 items)
|
|
2388
|
+
- Do NOT skip the answerComponent from matchedComponents
|
|
2389
|
+
- \`matchedComponents\` come from the dashboard component suggestions in the text response
|
|
2542
2390
|
- \`layoutTitle\` MUST be a clear, concise title (5-10 words) that summarizes what the entire dashboard shows
|
|
2543
|
-
- Examples: "Sales Performance Overview", "Customer Metrics Analysis", "Product Category Breakdown"
|
|
2544
2391
|
- \`layoutDescription\` MUST be a brief description (1-2 sentences) explaining the purpose and scope of the dashboard
|
|
2545
2392
|
- Should describe what insights the dashboard provides and what data it shows
|
|
2546
2393
|
- \`actions\` MUST be an array of 4-5 intelligent follow-up questions based on the analysis
|
|
2547
2394
|
- Return ONLY valid JSON (no markdown code blocks, no text before/after)
|
|
2548
|
-
- Generate complete props for each component
|
|
2549
|
-
|
|
2550
|
-
|
|
2395
|
+
- Generate complete props for each component
|
|
2551
2396
|
`,
|
|
2552
|
-
user: `##
|
|
2397
|
+
user: `## Analysis Content
|
|
2553
2398
|
|
|
2554
|
-
{{
|
|
2399
|
+
{{ANALYSIS_CONTENT}}
|
|
2555
2400
|
|
|
2556
2401
|
---
|
|
2557
2402
|
|
|
@@ -2598,70 +2443,269 @@ Format your response as a JSON object with this structure:
|
|
|
2598
2443
|
|
|
2599
2444
|
Return ONLY valid JSON.`
|
|
2600
2445
|
},
|
|
2601
|
-
"
|
|
2602
|
-
system: `You are an expert AI
|
|
2446
|
+
"category-classification": {
|
|
2447
|
+
system: `You are an expert AI that categorizes user questions into specific action categories and identifies required tools/resources.
|
|
2603
2448
|
|
|
2604
|
-
You
|
|
2449
|
+
CRITICAL: You MUST respond with ONLY valid JSON, no other text before or after.
|
|
2605
2450
|
|
|
2606
2451
|
## Available External Tools
|
|
2452
|
+
|
|
2607
2453
|
{{AVAILABLE_TOOLS}}
|
|
2608
2454
|
|
|
2609
|
-
|
|
2455
|
+
---
|
|
2610
2456
|
|
|
2611
|
-
|
|
2612
|
-
|
|
2613
|
-
1. **
|
|
2614
|
-
-
|
|
2615
|
-
|
|
2616
|
-
|
|
2617
|
-
|
|
2618
|
-
|
|
2619
|
-
-
|
|
2620
|
-
|
|
2621
|
-
|
|
2622
|
-
|
|
2623
|
-
|
|
2624
|
-
|
|
2625
|
-
-
|
|
2626
|
-
|
|
2627
|
-
|
|
2628
|
-
|
|
2629
|
-
|
|
2630
|
-
|
|
2631
|
-
|
|
2632
|
-
|
|
2633
|
-
|
|
2634
|
-
|
|
2635
|
-
|
|
2636
|
-
|
|
2637
|
-
|
|
2638
|
-
|
|
2639
|
-
|
|
2640
|
-
|
|
2641
|
-
|
|
2642
|
-
|
|
2643
|
-
|
|
2644
|
-
|
|
2645
|
-
|
|
2646
|
-
|
|
2647
|
-
|
|
2648
|
-
|
|
2649
|
-
|
|
2650
|
-
|
|
2651
|
-
|
|
2652
|
-
|
|
2653
|
-
|
|
2654
|
-
|
|
2655
|
-
|
|
2656
|
-
|
|
2657
|
-
|
|
2658
|
-
|
|
2659
|
-
|
|
2660
|
-
|
|
2661
|
-
|
|
2662
|
-
|
|
2663
|
-
|
|
2664
|
-
|
|
2457
|
+
Your task is to analyze the user's question and determine:
|
|
2458
|
+
|
|
2459
|
+
1. **Question Category:**
|
|
2460
|
+
- "data_analysis": Questions about analyzing, querying, reading, or visualizing data from the database (SELECT operations)
|
|
2461
|
+
- "data_modification": Questions about creating, updating, deleting, or modifying data in the database (INSERT, UPDATE, DELETE operations)
|
|
2462
|
+
|
|
2463
|
+
2. **External Tools Required** (for both categories):
|
|
2464
|
+
From the available tools listed above, identify which ones are needed to support the user's request:
|
|
2465
|
+
- Match the tool names/descriptions to what the user is asking for
|
|
2466
|
+
- Extract specific parameters mentioned in the user's question
|
|
2467
|
+
|
|
2468
|
+
3. **Tool Parameters** (if tools are identified):
|
|
2469
|
+
Extract specific parameters the user mentioned:
|
|
2470
|
+
- For each identified tool, extract relevant parameters (email, recipient, content, etc.)
|
|
2471
|
+
- Only include parameters the user explicitly or implicitly mentioned
|
|
2472
|
+
|
|
2473
|
+
**Important Guidelines:**
|
|
2474
|
+
- If user mentions any of the available external tools \u2192 identify those tools and extract their parameters
|
|
2475
|
+
- If user asks to "send", "schedule", "create event", "message" \u2192 check if available tools match
|
|
2476
|
+
- If user asks to "show", "analyze", "compare", "calculate" data \u2192 "data_analysis"
|
|
2477
|
+
- If user asks to modify/create/update/delete data \u2192 "data_modification"
|
|
2478
|
+
- Always identify tools from the available tools list (not from generic descriptions)
|
|
2479
|
+
- Be precise in identifying tool types and required parameters
|
|
2480
|
+
- Only include tools that are explicitly mentioned or clearly needed
|
|
2481
|
+
|
|
2482
|
+
**Output Format:**
|
|
2483
|
+
\`\`\`json
|
|
2484
|
+
{
|
|
2485
|
+
"category": "data_analysis" | "data_modification",
|
|
2486
|
+
"reasoning": "Brief explanation of why this category was chosen",
|
|
2487
|
+
"externalTools": [
|
|
2488
|
+
{
|
|
2489
|
+
"type": "tool_id_from_available_tools",
|
|
2490
|
+
"name": "Tool Display Name",
|
|
2491
|
+
"description": "What this tool will do",
|
|
2492
|
+
"parameters": {
|
|
2493
|
+
"param1": "extracted value",
|
|
2494
|
+
"param2": "extracted value"
|
|
2495
|
+
}
|
|
2496
|
+
}
|
|
2497
|
+
],
|
|
2498
|
+
"dataAnalysisType": "visualization" | "calculation" | "comparison" | "trend" | null,
|
|
2499
|
+
"confidence": 0-100
|
|
2500
|
+
}
|
|
2501
|
+
\`\`\`
|
|
2502
|
+
|
|
2503
|
+
|
|
2504
|
+
## Previous Conversation
|
|
2505
|
+
{{CONVERSATION_HISTORY}}`,
|
|
2506
|
+
user: `{{USER_PROMPT}}`
|
|
2507
|
+
},
|
|
2508
|
+
"adapt-ui-block-params": {
|
|
2509
|
+
system: `You are an expert AI that adapts and modifies UI block component parameters based on the user's current question.
|
|
2510
|
+
|
|
2511
|
+
CRITICAL: You MUST respond with ONLY valid JSON, no other text before or after.
|
|
2512
|
+
|
|
2513
|
+
## Database Schema Reference
|
|
2514
|
+
|
|
2515
|
+
{{SCHEMA_DOC}}
|
|
2516
|
+
|
|
2517
|
+
Use this schema to understand available tables, columns, and relationships when modifying SQL queries. Ensure all table and column names you use in adapted queries are valid according to this schema.
|
|
2518
|
+
|
|
2519
|
+
## Context
|
|
2520
|
+
You are given:
|
|
2521
|
+
1. A previous UI Block response (with component and its props) that matched the user's current question with >90% semantic similarity
|
|
2522
|
+
2. The user's current question
|
|
2523
|
+
3. The component that needs parameter adaptation
|
|
2524
|
+
|
|
2525
|
+
Your task is to:
|
|
2526
|
+
1. **Analyze the difference** between the original question (from the matched UIBlock) and the current user question
|
|
2527
|
+
2. **Identify what parameters need to change** in the component props to answer the current question
|
|
2528
|
+
3. **Modify the props** to match the current request while keeping the same component type(s)
|
|
2529
|
+
4. **Preserve component structure** - only change props, not the components themselves
|
|
2530
|
+
|
|
2531
|
+
## Component Structure Handling
|
|
2532
|
+
|
|
2533
|
+
### For Single Components:
|
|
2534
|
+
- Modify props directly (config, actions, query, filters, etc.)
|
|
2535
|
+
|
|
2536
|
+
### For MultiComponentContainer:
|
|
2537
|
+
The component will have structure:
|
|
2538
|
+
\`\`\`json
|
|
2539
|
+
{
|
|
2540
|
+
"type": "Container",
|
|
2541
|
+
"name": "MultiComponentContainer",
|
|
2542
|
+
"props": {
|
|
2543
|
+
"config": {
|
|
2544
|
+
"components": [...], // Array of nested components - ADAPT EACH ONE
|
|
2545
|
+
"title": "...", // Container title - UPDATE based on new question
|
|
2546
|
+
"description": "..." // Container description - UPDATE based on new question
|
|
2547
|
+
},
|
|
2548
|
+
"actions": [...] // ADAPT actions if needed
|
|
2549
|
+
}
|
|
2550
|
+
}
|
|
2551
|
+
\`\`\`
|
|
2552
|
+
|
|
2553
|
+
When adapting MultiComponentContainer:
|
|
2554
|
+
- Update the container-level \`title\` and \`description\` to reflect the new user question
|
|
2555
|
+
- For each component in \`config.components\`:
|
|
2556
|
+
- Identify what data it shows and how the new question changes what's needed
|
|
2557
|
+
- Adapt its query parameters (WHERE clauses, LIMIT, ORDER BY, filters, date ranges)
|
|
2558
|
+
- Update its title/description to match the new context
|
|
2559
|
+
- Update its config settings (colors, sorting, grouping, metrics)
|
|
2560
|
+
- Update \`actions\` if the new question requires different actions
|
|
2561
|
+
|
|
2562
|
+
## Important Guidelines:
|
|
2563
|
+
- Keep the same component type (don't change KPICard to LineChart)
|
|
2564
|
+
- Keep the same number of components in the container
|
|
2565
|
+
- For each nested component, update:
|
|
2566
|
+
- Query WHERE clauses, LIMIT, ORDER BY, filters, date ranges, metrics
|
|
2567
|
+
- Title and description to reflect the new question
|
|
2568
|
+
- Config settings like colors, sorting, grouping if needed
|
|
2569
|
+
- Maintain each component's core purpose while answering the new question
|
|
2570
|
+
- If query modification is needed, ensure all table/column names remain valid
|
|
2571
|
+
- CRITICAL: Ensure JSON is valid and complete for all nested structures
|
|
2572
|
+
|
|
2573
|
+
|
|
2574
|
+
## Output Format:
|
|
2575
|
+
|
|
2576
|
+
### For Single Component:
|
|
2577
|
+
\`\`\`json
|
|
2578
|
+
{
|
|
2579
|
+
"success": true,
|
|
2580
|
+
"adaptedComponent": {
|
|
2581
|
+
"id": "original_component_id",
|
|
2582
|
+
"name": "component_name",
|
|
2583
|
+
"type": "component_type",
|
|
2584
|
+
"description": "updated_description",
|
|
2585
|
+
"props": {
|
|
2586
|
+
"config": { },
|
|
2587
|
+
"actions": [],
|
|
2588
|
+
}
|
|
2589
|
+
},
|
|
2590
|
+
"parametersChanged": [
|
|
2591
|
+
{
|
|
2592
|
+
"field": "query",
|
|
2593
|
+
"reason": "Added Q4 date filter"
|
|
2594
|
+
},
|
|
2595
|
+
{
|
|
2596
|
+
"field": "title",
|
|
2597
|
+
"reason": "Updated to reflect Q4 focus"
|
|
2598
|
+
}
|
|
2599
|
+
],
|
|
2600
|
+
"explanation": "How the component was adapted to answer the new question"
|
|
2601
|
+
}
|
|
2602
|
+
\`\`\`
|
|
2603
|
+
|
|
2604
|
+
### For MultiComponentContainer:
|
|
2605
|
+
\`\`\`json
|
|
2606
|
+
{
|
|
2607
|
+
"success": true,
|
|
2608
|
+
"adaptedComponent": {
|
|
2609
|
+
"id": "original_container_id",
|
|
2610
|
+
"name": "MultiComponentContainer",
|
|
2611
|
+
"type": "Container",
|
|
2612
|
+
"description": "updated_container_description",
|
|
2613
|
+
"props": {
|
|
2614
|
+
"config": {
|
|
2615
|
+
"title": "Updated dashboard title based on new question",
|
|
2616
|
+
"description": "Updated description reflecting new question context",
|
|
2617
|
+
"components": [
|
|
2618
|
+
{
|
|
2619
|
+
"id": "component_1_id",
|
|
2620
|
+
"name": "component_1_name",
|
|
2621
|
+
"type": "component_1_type",
|
|
2622
|
+
"description": "updated description for this specific component",
|
|
2623
|
+
"props": {
|
|
2624
|
+
"query": "Modified SQL query with updated WHERE/LIMIT/ORDER BY",
|
|
2625
|
+
"config": { "metric": "updated_metric", "filters": {...} }
|
|
2626
|
+
}
|
|
2627
|
+
},
|
|
2628
|
+
{
|
|
2629
|
+
"id": "component_2_id",
|
|
2630
|
+
"name": "component_2_name",
|
|
2631
|
+
"type": "component_2_type",
|
|
2632
|
+
"description": "updated description for this component",
|
|
2633
|
+
"props": {
|
|
2634
|
+
"query": "Modified SQL query for this component",
|
|
2635
|
+
"config": { "metric": "updated_metric", "filters": {...} }
|
|
2636
|
+
}
|
|
2637
|
+
}
|
|
2638
|
+
]
|
|
2639
|
+
},
|
|
2640
|
+
"actions": []
|
|
2641
|
+
}
|
|
2642
|
+
},
|
|
2643
|
+
"parametersChanged": [
|
|
2644
|
+
{
|
|
2645
|
+
"field": "container.title",
|
|
2646
|
+
"reason": "Updated to reflect new dashboard focus"
|
|
2647
|
+
},
|
|
2648
|
+
{
|
|
2649
|
+
"field": "components[0].query",
|
|
2650
|
+
"reason": "Modified WHERE clause for new metrics"
|
|
2651
|
+
},
|
|
2652
|
+
{
|
|
2653
|
+
"field": "components[1].config.metric",
|
|
2654
|
+
"reason": "Changed metric from X to Y based on new question"
|
|
2655
|
+
}
|
|
2656
|
+
],
|
|
2657
|
+
"explanation": "Detailed explanation of how each component was adapted"
|
|
2658
|
+
}
|
|
2659
|
+
\`\`\`
|
|
2660
|
+
|
|
2661
|
+
If adaptation is not possible or would fundamentally change the component:
|
|
2662
|
+
\`\`\`json
|
|
2663
|
+
{
|
|
2664
|
+
"success": false,
|
|
2665
|
+
"reason": "Cannot adapt component - the new question requires a different visualization type",
|
|
2666
|
+
"explanation": "The original component shows KPI cards but the new question needs a trend chart"
|
|
2667
|
+
}
|
|
2668
|
+
\`\`\``,
|
|
2669
|
+
user: `## Previous Matched UIBlock
|
|
2670
|
+
|
|
2671
|
+
**Original Question:** {{ORIGINAL_USER_PROMPT}}
|
|
2672
|
+
|
|
2673
|
+
**Matched UIBlock Component:**
|
|
2674
|
+
\`\`\`json
|
|
2675
|
+
{{MATCHED_UI_BLOCK_COMPONENT}}
|
|
2676
|
+
\`\`\`
|
|
2677
|
+
|
|
2678
|
+
**Component Properties:**
|
|
2679
|
+
\`\`\`json
|
|
2680
|
+
{{COMPONENT_PROPS}}
|
|
2681
|
+
\`\`\`
|
|
2682
|
+
|
|
2683
|
+
## Current User Question
|
|
2684
|
+
{{CURRENT_USER_PROMPT}}
|
|
2685
|
+
|
|
2686
|
+
---
|
|
2687
|
+
|
|
2688
|
+
## Adaptation Instructions
|
|
2689
|
+
|
|
2690
|
+
1. **Analyze the difference** between the original question and the current question
|
|
2691
|
+
2. **Identify what data needs to change**:
|
|
2692
|
+
- For single components: adapt the query/config/actions
|
|
2693
|
+
- For MultiComponentContainer: adapt the container title/description AND each nested component's parameters
|
|
2694
|
+
|
|
2695
|
+
3. **Modify the parameters**:
|
|
2696
|
+
- **Container level** (if MultiComponentContainer):
|
|
2697
|
+
- Update \`title\` and \`description\` to reflect the new user question
|
|
2698
|
+
- Update \`actions\` if needed
|
|
2699
|
+
|
|
2700
|
+
- **For each component** (single or nested in container):
|
|
2701
|
+
- Identify what it shows (sales, revenue, inventory, etc.)
|
|
2702
|
+
- Adapt SQL queries: modify WHERE clauses, LIMIT, ORDER BY, filters, date ranges
|
|
2703
|
+
- Update component title and description
|
|
2704
|
+
- Update config settings (metrics, colors, sorting, grouping)
|
|
2705
|
+
|
|
2706
|
+
4. **Preserve structure**: Keep the same number and type of components
|
|
2707
|
+
|
|
2708
|
+
5. **Return complete JSON** with all adapted properties for all components`
|
|
2665
2709
|
}
|
|
2666
2710
|
};
|
|
2667
2711
|
|
|
@@ -2739,9 +2783,10 @@ var PromptLoader = class {
|
|
|
2739
2783
|
}
|
|
2740
2784
|
/**
|
|
2741
2785
|
* Load both system and user prompts from cache and replace variables
|
|
2786
|
+
* Supports prompt caching by splitting static and dynamic content
|
|
2742
2787
|
* @param promptName - Name of the prompt
|
|
2743
2788
|
* @param variables - Variables to replace in the templates
|
|
2744
|
-
* @returns Object containing both system and user prompts
|
|
2789
|
+
* @returns Object containing both system and user prompts (system can be string or array for caching)
|
|
2745
2790
|
*/
|
|
2746
2791
|
async loadPrompts(promptName, variables) {
|
|
2747
2792
|
if (!this.isInitialized) {
|
|
@@ -2752,6 +2797,26 @@ var PromptLoader = class {
|
|
|
2752
2797
|
if (!template) {
|
|
2753
2798
|
throw new Error(`Prompt template '${promptName}' not found in cache. Available prompts: ${Array.from(this.promptCache.keys()).join(", ")}`);
|
|
2754
2799
|
}
|
|
2800
|
+
const contextMarker = "---\n\n## CONTEXT";
|
|
2801
|
+
if (template.system.includes(contextMarker)) {
|
|
2802
|
+
const [staticPart, contextPart] = template.system.split(contextMarker);
|
|
2803
|
+
logger.debug(`\u2713 Prompt caching enabled for '${promptName}' (static: ${staticPart.length} chars, context: ${contextPart.length} chars)`);
|
|
2804
|
+
const processedContext = this.replaceVariables(contextMarker + contextPart, variables);
|
|
2805
|
+
return {
|
|
2806
|
+
system: [
|
|
2807
|
+
{
|
|
2808
|
+
type: "text",
|
|
2809
|
+
text: staticPart.trim(),
|
|
2810
|
+
cache_control: { type: "ephemeral" }
|
|
2811
|
+
},
|
|
2812
|
+
{
|
|
2813
|
+
type: "text",
|
|
2814
|
+
text: processedContext.trim()
|
|
2815
|
+
}
|
|
2816
|
+
],
|
|
2817
|
+
user: this.replaceVariables(template.user, variables)
|
|
2818
|
+
};
|
|
2819
|
+
}
|
|
2755
2820
|
return {
|
|
2756
2821
|
system: this.replaceVariables(template.system, variables),
|
|
2757
2822
|
user: this.replaceVariables(template.user, variables)
|
|
@@ -2838,6 +2903,75 @@ var LLM = class {
|
|
|
2838
2903
|
// ============================================================
|
|
2839
2904
|
// PRIVATE HELPER METHODS
|
|
2840
2905
|
// ============================================================
|
|
2906
|
+
/**
|
|
2907
|
+
* Normalize system prompt to Anthropic format
|
|
2908
|
+
* Converts string to array format if needed
|
|
2909
|
+
* @param sys - System prompt (string or array of blocks)
|
|
2910
|
+
* @returns Normalized system prompt for Anthropic API
|
|
2911
|
+
*/
|
|
2912
|
+
static _normalizeSystemPrompt(sys) {
|
|
2913
|
+
if (typeof sys === "string") {
|
|
2914
|
+
return sys;
|
|
2915
|
+
}
|
|
2916
|
+
return sys;
|
|
2917
|
+
}
|
|
2918
|
+
/**
|
|
2919
|
+
* Log cache usage metrics from Anthropic API response
|
|
2920
|
+
* Shows cache hits, costs, and savings
|
|
2921
|
+
*/
|
|
2922
|
+
static _logCacheUsage(usage) {
|
|
2923
|
+
if (!usage) return;
|
|
2924
|
+
const inputTokens = usage.input_tokens || 0;
|
|
2925
|
+
const cacheCreationTokens = usage.cache_creation_input_tokens || 0;
|
|
2926
|
+
const cacheReadTokens = usage.cache_read_input_tokens || 0;
|
|
2927
|
+
const outputTokens = usage.output_tokens || 0;
|
|
2928
|
+
const INPUT_PRICE = 0.8;
|
|
2929
|
+
const OUTPUT_PRICE = 4;
|
|
2930
|
+
const CACHE_WRITE_PRICE = 1;
|
|
2931
|
+
const CACHE_READ_PRICE = 0.08;
|
|
2932
|
+
const regularInputCost = inputTokens / 1e6 * INPUT_PRICE;
|
|
2933
|
+
const cacheWriteCost = cacheCreationTokens / 1e6 * CACHE_WRITE_PRICE;
|
|
2934
|
+
const cacheReadCost = cacheReadTokens / 1e6 * CACHE_READ_PRICE;
|
|
2935
|
+
const outputCost = outputTokens / 1e6 * OUTPUT_PRICE;
|
|
2936
|
+
const totalCost = regularInputCost + cacheWriteCost + cacheReadCost + outputCost;
|
|
2937
|
+
const totalInputTokens = inputTokens + cacheCreationTokens + cacheReadTokens;
|
|
2938
|
+
const costWithoutCache = totalInputTokens / 1e6 * INPUT_PRICE + outputCost;
|
|
2939
|
+
const savings = costWithoutCache - totalCost;
|
|
2940
|
+
const savingsPercent = costWithoutCache > 0 ? savings / costWithoutCache * 100 : 0;
|
|
2941
|
+
console.log("\n\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501");
|
|
2942
|
+
console.log("\u{1F4B0} PROMPT CACHING METRICS");
|
|
2943
|
+
console.log("\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501");
|
|
2944
|
+
console.log("\n\u{1F4CA} Token Usage:");
|
|
2945
|
+
console.log(` Input (regular): ${inputTokens.toLocaleString()} tokens`);
|
|
2946
|
+
if (cacheCreationTokens > 0) {
|
|
2947
|
+
console.log(` Cache write: ${cacheCreationTokens.toLocaleString()} tokens (first request)`);
|
|
2948
|
+
}
|
|
2949
|
+
if (cacheReadTokens > 0) {
|
|
2950
|
+
console.log(` Cache read: ${cacheReadTokens.toLocaleString()} tokens \u26A1 HIT!`);
|
|
2951
|
+
}
|
|
2952
|
+
console.log(` Output: ${outputTokens.toLocaleString()} tokens`);
|
|
2953
|
+
console.log(` Total input: ${totalInputTokens.toLocaleString()} tokens`);
|
|
2954
|
+
console.log("\n\u{1F4B5} Cost Breakdown:");
|
|
2955
|
+
console.log(` Input (regular): $${regularInputCost.toFixed(6)}`);
|
|
2956
|
+
if (cacheCreationTokens > 0) {
|
|
2957
|
+
console.log(` Cache write: $${cacheWriteCost.toFixed(6)}`);
|
|
2958
|
+
}
|
|
2959
|
+
if (cacheReadTokens > 0) {
|
|
2960
|
+
console.log(` Cache read: $${cacheReadCost.toFixed(6)} (90% off!)`);
|
|
2961
|
+
}
|
|
2962
|
+
console.log(` Output: $${outputCost.toFixed(6)}`);
|
|
2963
|
+
console.log(` \u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500\u2500`);
|
|
2964
|
+
console.log(` Total cost: $${totalCost.toFixed(6)}`);
|
|
2965
|
+
if (cacheReadTokens > 0) {
|
|
2966
|
+
console.log(`
|
|
2967
|
+
\u{1F48E} Savings: $${savings.toFixed(6)} (${savingsPercent.toFixed(1)}% off)`);
|
|
2968
|
+
console.log(` Without cache: $${costWithoutCache.toFixed(6)}`);
|
|
2969
|
+
} else if (cacheCreationTokens > 0) {
|
|
2970
|
+
console.log(`
|
|
2971
|
+
\u23F1\uFE0F Cache created - next request will be ~90% cheaper!`);
|
|
2972
|
+
}
|
|
2973
|
+
console.log("\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\u2501\n");
|
|
2974
|
+
}
|
|
2841
2975
|
/**
|
|
2842
2976
|
* Parse model string to extract provider and model name
|
|
2843
2977
|
* @param modelString - Format: "provider/model-name" or just "model-name"
|
|
@@ -2872,7 +3006,7 @@ var LLM = class {
|
|
|
2872
3006
|
model: modelName,
|
|
2873
3007
|
max_tokens: options.maxTokens || 1e3,
|
|
2874
3008
|
temperature: options.temperature,
|
|
2875
|
-
system: messages.sys,
|
|
3009
|
+
system: this._normalizeSystemPrompt(messages.sys),
|
|
2876
3010
|
messages: [{
|
|
2877
3011
|
role: "user",
|
|
2878
3012
|
content: messages.user
|
|
@@ -2890,7 +3024,7 @@ var LLM = class {
|
|
|
2890
3024
|
model: modelName,
|
|
2891
3025
|
max_tokens: options.maxTokens || 1e3,
|
|
2892
3026
|
temperature: options.temperature,
|
|
2893
|
-
system: messages.sys,
|
|
3027
|
+
system: this._normalizeSystemPrompt(messages.sys),
|
|
2894
3028
|
messages: [{
|
|
2895
3029
|
role: "user",
|
|
2896
3030
|
content: messages.user
|
|
@@ -2898,6 +3032,7 @@ var LLM = class {
|
|
|
2898
3032
|
stream: true
|
|
2899
3033
|
});
|
|
2900
3034
|
let fullText = "";
|
|
3035
|
+
let usage = null;
|
|
2901
3036
|
for await (const chunk of stream) {
|
|
2902
3037
|
if (chunk.type === "content_block_delta" && chunk.delta.type === "text_delta") {
|
|
2903
3038
|
const text = chunk.delta.text;
|
|
@@ -2905,8 +3040,12 @@ var LLM = class {
|
|
|
2905
3040
|
if (options.partial) {
|
|
2906
3041
|
options.partial(text);
|
|
2907
3042
|
}
|
|
3043
|
+
} else if (chunk.type === "message_delta" && chunk.usage) {
|
|
3044
|
+
usage = chunk.usage;
|
|
2908
3045
|
}
|
|
2909
3046
|
}
|
|
3047
|
+
if (usage) {
|
|
3048
|
+
}
|
|
2910
3049
|
if (json) {
|
|
2911
3050
|
return this._parseJSON(fullText);
|
|
2912
3051
|
}
|
|
@@ -2929,7 +3068,7 @@ var LLM = class {
|
|
|
2929
3068
|
model: modelName,
|
|
2930
3069
|
max_tokens: options.maxTokens || 4e3,
|
|
2931
3070
|
temperature: options.temperature,
|
|
2932
|
-
system: messages.sys,
|
|
3071
|
+
system: this._normalizeSystemPrompt(messages.sys),
|
|
2933
3072
|
messages: conversationMessages,
|
|
2934
3073
|
tools,
|
|
2935
3074
|
stream: true
|
|
@@ -2939,6 +3078,7 @@ var LLM = class {
|
|
|
2939
3078
|
const contentBlocks = [];
|
|
2940
3079
|
let currentTextBlock = "";
|
|
2941
3080
|
let currentToolUse = null;
|
|
3081
|
+
let usage = null;
|
|
2942
3082
|
for await (const chunk of stream) {
|
|
2943
3083
|
if (chunk.type === "message_start") {
|
|
2944
3084
|
contentBlocks.length = 0;
|
|
@@ -2989,11 +3129,16 @@ var LLM = class {
|
|
|
2989
3129
|
}
|
|
2990
3130
|
if (chunk.type === "message_delta") {
|
|
2991
3131
|
stopReason = chunk.delta.stop_reason || stopReason;
|
|
3132
|
+
if (chunk.usage) {
|
|
3133
|
+
usage = chunk.usage;
|
|
3134
|
+
}
|
|
2992
3135
|
}
|
|
2993
3136
|
if (chunk.type === "message_stop") {
|
|
2994
3137
|
break;
|
|
2995
3138
|
}
|
|
2996
3139
|
}
|
|
3140
|
+
if (usage) {
|
|
3141
|
+
}
|
|
2997
3142
|
if (stopReason === "end_turn") {
|
|
2998
3143
|
break;
|
|
2999
3144
|
}
|
|
@@ -3165,6 +3310,57 @@ var KB = {
|
|
|
3165
3310
|
};
|
|
3166
3311
|
var knowledge_base_default = KB;
|
|
3167
3312
|
|
|
3313
|
+
// src/userResponse/conversation-search.ts
|
|
3314
|
+
var searchConversations = async ({
|
|
3315
|
+
userPrompt,
|
|
3316
|
+
collections,
|
|
3317
|
+
userId,
|
|
3318
|
+
similarityThreshold = 0.6
|
|
3319
|
+
}) => {
|
|
3320
|
+
try {
|
|
3321
|
+
if (!collections || !collections["conversation-history"] || !collections["conversation-history"]["search"]) {
|
|
3322
|
+
logger.info("[ConversationSearch] conversation-history.search collection not registered, skipping");
|
|
3323
|
+
return null;
|
|
3324
|
+
}
|
|
3325
|
+
logger.info(`[ConversationSearch] Searching conversations for: "${userPrompt.substring(0, 50)}..."`);
|
|
3326
|
+
logger.info(`[ConversationSearch] Using similarity threshold: ${(similarityThreshold * 100).toFixed(0)}%`);
|
|
3327
|
+
const result = await collections["conversation-history"]["search"]({
|
|
3328
|
+
userPrompt,
|
|
3329
|
+
userId,
|
|
3330
|
+
threshold: similarityThreshold
|
|
3331
|
+
});
|
|
3332
|
+
if (!result) {
|
|
3333
|
+
logger.info("[ConversationSearch] No matching conversations found");
|
|
3334
|
+
return null;
|
|
3335
|
+
}
|
|
3336
|
+
if (!result.uiBlock) {
|
|
3337
|
+
logger.error("[ConversationSearch] No UI block in conversation search result");
|
|
3338
|
+
return null;
|
|
3339
|
+
}
|
|
3340
|
+
const similarity = result.similarity || 0;
|
|
3341
|
+
logger.info(`[ConversationSearch] Best match similarity: ${(similarity * 100).toFixed(2)}%`);
|
|
3342
|
+
if (similarity < similarityThreshold) {
|
|
3343
|
+
logger.info(
|
|
3344
|
+
`[ConversationSearch] Best match has similarity ${(similarity * 100).toFixed(2)}% but below threshold ${(similarityThreshold * 100).toFixed(2)}%`
|
|
3345
|
+
);
|
|
3346
|
+
return null;
|
|
3347
|
+
}
|
|
3348
|
+
logger.info(
|
|
3349
|
+
`[ConversationSearch] Found matching conversation with similarity ${(similarity * 100).toFixed(2)}%`
|
|
3350
|
+
);
|
|
3351
|
+
logger.debug(`[ConversationSearch] Matched prompt: "${result.metadata?.userPrompt?.substring(0, 50)}..."`);
|
|
3352
|
+
return result;
|
|
3353
|
+
} catch (error) {
|
|
3354
|
+
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
3355
|
+
logger.warn(`[ConversationSearch] Error searching conversations: ${errorMsg}`);
|
|
3356
|
+
return null;
|
|
3357
|
+
}
|
|
3358
|
+
};
|
|
3359
|
+
var ConversationSearch = {
|
|
3360
|
+
searchConversations
|
|
3361
|
+
};
|
|
3362
|
+
var conversation_search_default = ConversationSearch;
|
|
3363
|
+
|
|
3168
3364
|
// src/userResponse/base-llm.ts
|
|
3169
3365
|
var BaseLLM = class {
|
|
3170
3366
|
constructor(config) {
|
|
@@ -3178,531 +3374,6 @@ var BaseLLM = class {
|
|
|
3178
3374
|
getApiKey(apiKey) {
|
|
3179
3375
|
return apiKey || this.apiKey || this.getDefaultApiKey();
|
|
3180
3376
|
}
|
|
3181
|
-
/**
|
|
3182
|
-
* Classify user question to determine the type and required visualizations
|
|
3183
|
-
*/
|
|
3184
|
-
async classifyUserQuestion(userPrompt, apiKey, logCollector, conversationHistory) {
|
|
3185
|
-
try {
|
|
3186
|
-
const prompts = await promptLoader.loadPrompts("classify", {
|
|
3187
|
-
USER_PROMPT: userPrompt,
|
|
3188
|
-
CONVERSATION_HISTORY: conversationHistory || "No previous conversation"
|
|
3189
|
-
});
|
|
3190
|
-
const result = await LLM.stream(
|
|
3191
|
-
{
|
|
3192
|
-
sys: prompts.system,
|
|
3193
|
-
user: prompts.user
|
|
3194
|
-
},
|
|
3195
|
-
{
|
|
3196
|
-
model: this.model,
|
|
3197
|
-
maxTokens: 800,
|
|
3198
|
-
temperature: 0.2,
|
|
3199
|
-
apiKey: this.getApiKey(apiKey)
|
|
3200
|
-
},
|
|
3201
|
-
true
|
|
3202
|
-
// Parse as JSON
|
|
3203
|
-
);
|
|
3204
|
-
logCollector?.logExplanation(
|
|
3205
|
-
"User question classified",
|
|
3206
|
-
result.reasoning || "No reasoning provided",
|
|
3207
|
-
{
|
|
3208
|
-
questionType: result.questionType || "general",
|
|
3209
|
-
visualizations: result.visualizations || [],
|
|
3210
|
-
needsMultipleComponents: result.needsMultipleComponents || false
|
|
3211
|
-
}
|
|
3212
|
-
);
|
|
3213
|
-
return {
|
|
3214
|
-
questionType: result.questionType || "general",
|
|
3215
|
-
visualizations: result.visualizations || [],
|
|
3216
|
-
reasoning: result.reasoning || "No reasoning provided",
|
|
3217
|
-
needsMultipleComponents: result.needsMultipleComponents || false
|
|
3218
|
-
};
|
|
3219
|
-
} catch (error) {
|
|
3220
|
-
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
3221
|
-
logger.error(`[${this.getProviderName()}] Error classifying user question: ${errorMsg}`);
|
|
3222
|
-
logger.debug(`[${this.getProviderName()}] Classification error details:`, error);
|
|
3223
|
-
throw error;
|
|
3224
|
-
}
|
|
3225
|
-
}
|
|
3226
|
-
/**
|
|
3227
|
-
* Enhanced function that validates and modifies the entire props object based on user request
|
|
3228
|
-
* This includes query, title, description, and config properties
|
|
3229
|
-
*/
|
|
3230
|
-
async validateAndModifyProps(userPrompt, originalProps, componentName, componentType, componentDescription, apiKey, logCollector, conversationHistory) {
|
|
3231
|
-
const schemaDoc = schema.generateSchemaDocumentation();
|
|
3232
|
-
try {
|
|
3233
|
-
const prompts = await promptLoader.loadPrompts("modify-props", {
|
|
3234
|
-
COMPONENT_NAME: componentName,
|
|
3235
|
-
COMPONENT_TYPE: componentType,
|
|
3236
|
-
COMPONENT_DESCRIPTION: componentDescription || "No description",
|
|
3237
|
-
SCHEMA_DOC: schemaDoc || "No schema available",
|
|
3238
|
-
DEFAULT_LIMIT: this.defaultLimit,
|
|
3239
|
-
USER_PROMPT: userPrompt,
|
|
3240
|
-
CURRENT_PROPS: JSON.stringify(originalProps, null, 2),
|
|
3241
|
-
CONVERSATION_HISTORY: conversationHistory || "No previous conversation"
|
|
3242
|
-
});
|
|
3243
|
-
logger.debug("props-modification: System prompt\n", prompts.system.substring(0, 100), "\n\n\n", "User prompt:", prompts.user.substring(0, 50));
|
|
3244
|
-
const result = await LLM.stream(
|
|
3245
|
-
{
|
|
3246
|
-
sys: prompts.system,
|
|
3247
|
-
user: prompts.user
|
|
3248
|
-
},
|
|
3249
|
-
{
|
|
3250
|
-
model: this.model,
|
|
3251
|
-
maxTokens: 2500,
|
|
3252
|
-
temperature: 0.2,
|
|
3253
|
-
apiKey: this.getApiKey(apiKey)
|
|
3254
|
-
},
|
|
3255
|
-
true
|
|
3256
|
-
// Parse as JSON
|
|
3257
|
-
);
|
|
3258
|
-
const props = result.props || originalProps;
|
|
3259
|
-
if (props && props.query) {
|
|
3260
|
-
props.query = fixScalarSubqueries(props.query);
|
|
3261
|
-
props.query = ensureQueryLimit(props.query, this.defaultLimit);
|
|
3262
|
-
}
|
|
3263
|
-
if (props && props.query) {
|
|
3264
|
-
logCollector?.logQuery(
|
|
3265
|
-
"Props query modified",
|
|
3266
|
-
props.query,
|
|
3267
|
-
{
|
|
3268
|
-
modifications: result.modifications || [],
|
|
3269
|
-
reasoning: result.reasoning || "No modifications needed"
|
|
3270
|
-
}
|
|
3271
|
-
);
|
|
3272
|
-
}
|
|
3273
|
-
if (result.reasoning) {
|
|
3274
|
-
logCollector?.logExplanation(
|
|
3275
|
-
"Props modification explanation",
|
|
3276
|
-
result.reasoning,
|
|
3277
|
-
{ modifications: result.modifications || [] }
|
|
3278
|
-
);
|
|
3279
|
-
}
|
|
3280
|
-
return {
|
|
3281
|
-
props,
|
|
3282
|
-
isModified: result.isModified || false,
|
|
3283
|
-
reasoning: result.reasoning || "No modifications needed",
|
|
3284
|
-
modifications: result.modifications || []
|
|
3285
|
-
};
|
|
3286
|
-
} catch (error) {
|
|
3287
|
-
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
3288
|
-
logger.error(`[${this.getProviderName()}] Error validating/modifying props: ${errorMsg}`);
|
|
3289
|
-
logger.debug(`[${this.getProviderName()}] Props validation error details:`, error);
|
|
3290
|
-
throw error;
|
|
3291
|
-
}
|
|
3292
|
-
}
|
|
3293
|
-
/**
|
|
3294
|
-
* Match and select a component from available components filtered by type
|
|
3295
|
-
* This picks the best matching component based on user prompt and modifies its props
|
|
3296
|
-
*/
|
|
3297
|
-
async generateAnalyticalComponent(userPrompt, components, preferredVisualizationType, apiKey, logCollector, conversationHistory) {
|
|
3298
|
-
try {
|
|
3299
|
-
const filteredComponents = preferredVisualizationType ? components.filter((c) => c.type === preferredVisualizationType) : components;
|
|
3300
|
-
if (filteredComponents.length === 0) {
|
|
3301
|
-
logCollector?.warn(
|
|
3302
|
-
`No components found of type ${preferredVisualizationType}`,
|
|
3303
|
-
"explanation",
|
|
3304
|
-
{ reason: "No matching components available for this visualization type" }
|
|
3305
|
-
);
|
|
3306
|
-
return {
|
|
3307
|
-
component: null,
|
|
3308
|
-
reasoning: `No components available of type ${preferredVisualizationType}`,
|
|
3309
|
-
isGenerated: false
|
|
3310
|
-
};
|
|
3311
|
-
}
|
|
3312
|
-
const componentsText = filteredComponents.map((comp, idx) => {
|
|
3313
|
-
const keywords = comp.keywords ? comp.keywords.join(", ") : "";
|
|
3314
|
-
const category = comp.category || "general";
|
|
3315
|
-
const propsPreview = comp.props ? JSON.stringify(comp.props, null, 2) : "No props";
|
|
3316
|
-
return `${idx + 1}. ID: ${comp.id}
|
|
3317
|
-
Name: ${comp.name}
|
|
3318
|
-
Type: ${comp.type}
|
|
3319
|
-
Category: ${category}
|
|
3320
|
-
Description: ${comp.description || "No description"}
|
|
3321
|
-
Keywords: ${keywords}
|
|
3322
|
-
Props Preview: ${propsPreview}`;
|
|
3323
|
-
}).join("\n\n");
|
|
3324
|
-
const visualizationConstraint = preferredVisualizationType ? `
|
|
3325
|
-
**IMPORTANT: Components are filtered to type ${preferredVisualizationType}. Select the best match.**
|
|
3326
|
-
` : "";
|
|
3327
|
-
const prompts = await promptLoader.loadPrompts("single-component", {
|
|
3328
|
-
COMPONENT_TYPE: preferredVisualizationType || "any",
|
|
3329
|
-
COMPONENTS_LIST: componentsText,
|
|
3330
|
-
VISUALIZATION_CONSTRAINT: visualizationConstraint,
|
|
3331
|
-
USER_PROMPT: userPrompt,
|
|
3332
|
-
CONVERSATION_HISTORY: conversationHistory || "No previous conversation"
|
|
3333
|
-
});
|
|
3334
|
-
logger.debug("single-component: System prompt\n", prompts.system.substring(0, 100), "\n\n\n", "User prompt:", prompts.user.substring(0, 50));
|
|
3335
|
-
const result = await LLM.stream(
|
|
3336
|
-
{
|
|
3337
|
-
sys: prompts.system,
|
|
3338
|
-
user: prompts.user
|
|
3339
|
-
},
|
|
3340
|
-
{
|
|
3341
|
-
model: this.model,
|
|
3342
|
-
maxTokens: 2e3,
|
|
3343
|
-
temperature: 0.2,
|
|
3344
|
-
apiKey: this.getApiKey(apiKey)
|
|
3345
|
-
},
|
|
3346
|
-
true
|
|
3347
|
-
// Parse as JSON
|
|
3348
|
-
);
|
|
3349
|
-
if (!result.canGenerate || result.confidence < 50) {
|
|
3350
|
-
logCollector?.warn(
|
|
3351
|
-
"Cannot match component",
|
|
3352
|
-
"explanation",
|
|
3353
|
-
{ reason: result.reasoning || "Unable to find matching component for this question" }
|
|
3354
|
-
);
|
|
3355
|
-
return {
|
|
3356
|
-
component: null,
|
|
3357
|
-
reasoning: result.reasoning || "Unable to find matching component for this question",
|
|
3358
|
-
isGenerated: false
|
|
3359
|
-
};
|
|
3360
|
-
}
|
|
3361
|
-
const componentIndex = result.componentIndex;
|
|
3362
|
-
const componentId = result.componentId;
|
|
3363
|
-
let matchedComponent = null;
|
|
3364
|
-
if (componentId) {
|
|
3365
|
-
matchedComponent = filteredComponents.find((c) => c.id === componentId);
|
|
3366
|
-
}
|
|
3367
|
-
if (!matchedComponent && componentIndex) {
|
|
3368
|
-
matchedComponent = filteredComponents[componentIndex - 1];
|
|
3369
|
-
}
|
|
3370
|
-
if (!matchedComponent) {
|
|
3371
|
-
logCollector?.warn("Component not found in filtered list");
|
|
3372
|
-
return {
|
|
3373
|
-
component: null,
|
|
3374
|
-
reasoning: "Component not found in filtered list",
|
|
3375
|
-
isGenerated: false
|
|
3376
|
-
};
|
|
3377
|
-
}
|
|
3378
|
-
logCollector?.info(`Matched component: ${matchedComponent.name} (confidence: ${result.confidence}%)`);
|
|
3379
|
-
const propsValidation = await this.validateAndModifyProps(
|
|
3380
|
-
userPrompt,
|
|
3381
|
-
matchedComponent.props,
|
|
3382
|
-
matchedComponent.name,
|
|
3383
|
-
matchedComponent.type,
|
|
3384
|
-
matchedComponent.description,
|
|
3385
|
-
apiKey,
|
|
3386
|
-
logCollector,
|
|
3387
|
-
conversationHistory
|
|
3388
|
-
);
|
|
3389
|
-
const modifiedComponent = {
|
|
3390
|
-
...matchedComponent,
|
|
3391
|
-
props: propsValidation.props
|
|
3392
|
-
};
|
|
3393
|
-
logCollector?.logExplanation(
|
|
3394
|
-
"Analytical component selected and modified",
|
|
3395
|
-
result.reasoning || "Selected component based on analytical question",
|
|
3396
|
-
{
|
|
3397
|
-
componentName: matchedComponent.name,
|
|
3398
|
-
componentType: matchedComponent.type,
|
|
3399
|
-
confidence: result.confidence,
|
|
3400
|
-
propsModified: propsValidation.isModified
|
|
3401
|
-
}
|
|
3402
|
-
);
|
|
3403
|
-
return {
|
|
3404
|
-
component: modifiedComponent,
|
|
3405
|
-
reasoning: result.reasoning || "Selected and modified component based on analytical question",
|
|
3406
|
-
isGenerated: true
|
|
3407
|
-
};
|
|
3408
|
-
} catch (error) {
|
|
3409
|
-
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
3410
|
-
logger.error(`[${this.getProviderName()}] Error generating analytical component: ${errorMsg}`);
|
|
3411
|
-
logger.debug(`[${this.getProviderName()}] Analytical component generation error details:`, error);
|
|
3412
|
-
throw error;
|
|
3413
|
-
}
|
|
3414
|
-
}
|
|
3415
|
-
/**
|
|
3416
|
-
* Generate container metadata (title and description) for multi-component dashboard
|
|
3417
|
-
*/
|
|
3418
|
-
async generateContainerMetadata(userPrompt, visualizationTypes, apiKey, logCollector, conversationHistory) {
|
|
3419
|
-
try {
|
|
3420
|
-
const prompts = await promptLoader.loadPrompts("container-metadata", {
|
|
3421
|
-
USER_PROMPT: userPrompt,
|
|
3422
|
-
VISUALIZATION_TYPES: visualizationTypes.join(", "),
|
|
3423
|
-
CONVERSATION_HISTORY: conversationHistory || "No previous conversation"
|
|
3424
|
-
});
|
|
3425
|
-
const result = await LLM.stream(
|
|
3426
|
-
{
|
|
3427
|
-
sys: prompts.system,
|
|
3428
|
-
user: prompts.user
|
|
3429
|
-
},
|
|
3430
|
-
{
|
|
3431
|
-
model: this.model,
|
|
3432
|
-
maxTokens: 500,
|
|
3433
|
-
temperature: 0.3,
|
|
3434
|
-
apiKey: this.getApiKey(apiKey)
|
|
3435
|
-
},
|
|
3436
|
-
true
|
|
3437
|
-
// Parse as JSON
|
|
3438
|
-
);
|
|
3439
|
-
logCollector?.logExplanation(
|
|
3440
|
-
"Container metadata generated",
|
|
3441
|
-
`Generated title and description for multi-component dashboard`,
|
|
3442
|
-
{
|
|
3443
|
-
title: result.title,
|
|
3444
|
-
description: result.description,
|
|
3445
|
-
visualizationTypes
|
|
3446
|
-
}
|
|
3447
|
-
);
|
|
3448
|
-
return {
|
|
3449
|
-
title: result.title || `${userPrompt} - Dashboard`,
|
|
3450
|
-
description: result.description || `Multi-component dashboard showing ${visualizationTypes.join(", ")}`
|
|
3451
|
-
};
|
|
3452
|
-
} catch (error) {
|
|
3453
|
-
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
3454
|
-
logger.error(`[${this.getProviderName()}] Error generating container metadata: ${errorMsg}`);
|
|
3455
|
-
logger.debug(`[${this.getProviderName()}] Container metadata error details:`, error);
|
|
3456
|
-
return {
|
|
3457
|
-
title: `${userPrompt} - Dashboard`,
|
|
3458
|
-
description: `Multi-component dashboard showing ${visualizationTypes.join(", ")}`
|
|
3459
|
-
};
|
|
3460
|
-
}
|
|
3461
|
-
}
|
|
3462
|
-
/**
|
|
3463
|
-
* Match component from a list with enhanced props modification
|
|
3464
|
-
*/
|
|
3465
|
-
async matchComponent(userPrompt, components, apiKey, logCollector, conversationHistory) {
|
|
3466
|
-
try {
|
|
3467
|
-
const componentsText = components.map((comp, idx) => {
|
|
3468
|
-
const keywords = comp.keywords ? comp.keywords.join(", ") : "";
|
|
3469
|
-
const category = comp.category || "general";
|
|
3470
|
-
return `${idx + 1}. ID: ${comp.id}
|
|
3471
|
-
Name: ${comp.name}
|
|
3472
|
-
Type: ${comp.type}
|
|
3473
|
-
Category: ${category}
|
|
3474
|
-
Description: ${comp.description || "No description"}
|
|
3475
|
-
Keywords: ${keywords}`;
|
|
3476
|
-
}).join("\n\n");
|
|
3477
|
-
const prompts = await promptLoader.loadPrompts("match-component", {
|
|
3478
|
-
COMPONENTS_TEXT: componentsText,
|
|
3479
|
-
USER_PROMPT: userPrompt,
|
|
3480
|
-
CONVERSATION_HISTORY: conversationHistory || "No previous conversation"
|
|
3481
|
-
});
|
|
3482
|
-
const result = await LLM.stream(
|
|
3483
|
-
{
|
|
3484
|
-
sys: prompts.system,
|
|
3485
|
-
user: prompts.user
|
|
3486
|
-
},
|
|
3487
|
-
{
|
|
3488
|
-
model: this.model,
|
|
3489
|
-
maxTokens: 800,
|
|
3490
|
-
temperature: 0.2,
|
|
3491
|
-
apiKey: this.getApiKey(apiKey)
|
|
3492
|
-
},
|
|
3493
|
-
true
|
|
3494
|
-
// Parse as JSON
|
|
3495
|
-
);
|
|
3496
|
-
const componentIndex = result.componentIndex;
|
|
3497
|
-
const componentId = result.componentId;
|
|
3498
|
-
const confidence = result.confidence || 0;
|
|
3499
|
-
let component = null;
|
|
3500
|
-
if (componentId) {
|
|
3501
|
-
component = components.find((c) => c.id === componentId);
|
|
3502
|
-
}
|
|
3503
|
-
if (!component && componentIndex) {
|
|
3504
|
-
component = components[componentIndex - 1];
|
|
3505
|
-
}
|
|
3506
|
-
const matchedMsg = `${this.getProviderName()} matched component: ${component?.name || "None"}`;
|
|
3507
|
-
logger.info(`[${this.getProviderName()}] \u2713 ${matchedMsg}`);
|
|
3508
|
-
logCollector?.info(matchedMsg);
|
|
3509
|
-
if (result.alternativeMatches && result.alternativeMatches.length > 0) {
|
|
3510
|
-
logger.debug(`[${this.getProviderName()}] Alternative matches found: ${result.alternativeMatches.length}`);
|
|
3511
|
-
const altMatches = result.alternativeMatches.map(
|
|
3512
|
-
(alt) => `${components[alt.index - 1]?.name} (${alt.score}%): ${alt.reason}`
|
|
3513
|
-
).join(" | ");
|
|
3514
|
-
logCollector?.info(`Alternative matches: ${altMatches}`);
|
|
3515
|
-
result.alternativeMatches.forEach((alt) => {
|
|
3516
|
-
logger.debug(`[${this.getProviderName()}] - ${components[alt.index - 1]?.name} (${alt.score}%): ${alt.reason}`);
|
|
3517
|
-
});
|
|
3518
|
-
}
|
|
3519
|
-
if (!component) {
|
|
3520
|
-
const noMatchMsg = `No matching component found (confidence: ${confidence}%)`;
|
|
3521
|
-
logger.warn(`[${this.getProviderName()}] \u2717 ${noMatchMsg}`);
|
|
3522
|
-
logCollector?.warn(noMatchMsg);
|
|
3523
|
-
const genMsg = "Attempting to match component from analytical question...";
|
|
3524
|
-
logger.info(`[${this.getProviderName()}] \u2713 ${genMsg}`);
|
|
3525
|
-
logCollector?.info(genMsg);
|
|
3526
|
-
const generatedResult = await this.generateAnalyticalComponent(userPrompt, components, void 0, apiKey, logCollector, conversationHistory);
|
|
3527
|
-
if (generatedResult.component) {
|
|
3528
|
-
const genSuccessMsg = `Successfully matched component: ${generatedResult.component.name}`;
|
|
3529
|
-
logCollector?.info(genSuccessMsg);
|
|
3530
|
-
return {
|
|
3531
|
-
component: generatedResult.component,
|
|
3532
|
-
reasoning: generatedResult.reasoning,
|
|
3533
|
-
method: `${this.getProviderName()}-generated`,
|
|
3534
|
-
confidence: 100,
|
|
3535
|
-
// Generated components are considered 100% match to the question
|
|
3536
|
-
propsModified: false,
|
|
3537
|
-
queryModified: false
|
|
3538
|
-
};
|
|
3539
|
-
}
|
|
3540
|
-
logCollector?.error("Failed to match component");
|
|
3541
|
-
return {
|
|
3542
|
-
component: null,
|
|
3543
|
-
reasoning: result.reasoning || "No matching component found and unable to match component",
|
|
3544
|
-
method: `${this.getProviderName()}-llm`,
|
|
3545
|
-
confidence
|
|
3546
|
-
};
|
|
3547
|
-
}
|
|
3548
|
-
let propsModified = false;
|
|
3549
|
-
let propsModifications = [];
|
|
3550
|
-
let queryModified = false;
|
|
3551
|
-
let queryReasoning = "";
|
|
3552
|
-
if (component && component.props) {
|
|
3553
|
-
const propsValidation = await this.validateAndModifyProps(
|
|
3554
|
-
userPrompt,
|
|
3555
|
-
component.props,
|
|
3556
|
-
component.name,
|
|
3557
|
-
component.type,
|
|
3558
|
-
component.description,
|
|
3559
|
-
apiKey,
|
|
3560
|
-
logCollector,
|
|
3561
|
-
conversationHistory
|
|
3562
|
-
);
|
|
3563
|
-
const originalQuery = component.props.query;
|
|
3564
|
-
const modifiedQuery = propsValidation.props.query;
|
|
3565
|
-
component = {
|
|
3566
|
-
...component,
|
|
3567
|
-
props: propsValidation.props
|
|
3568
|
-
};
|
|
3569
|
-
propsModified = propsValidation.isModified;
|
|
3570
|
-
propsModifications = propsValidation.modifications;
|
|
3571
|
-
queryModified = originalQuery !== modifiedQuery;
|
|
3572
|
-
queryReasoning = propsValidation.reasoning;
|
|
3573
|
-
}
|
|
3574
|
-
return {
|
|
3575
|
-
component,
|
|
3576
|
-
reasoning: result.reasoning || "No reasoning provided",
|
|
3577
|
-
queryModified,
|
|
3578
|
-
queryReasoning,
|
|
3579
|
-
propsModified,
|
|
3580
|
-
propsModifications,
|
|
3581
|
-
method: `${this.getProviderName()}-llm`,
|
|
3582
|
-
confidence
|
|
3583
|
-
};
|
|
3584
|
-
} catch (error) {
|
|
3585
|
-
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
3586
|
-
logger.error(`[${this.getProviderName()}] Error matching component: ${errorMsg}`);
|
|
3587
|
-
logger.debug(`[${this.getProviderName()}] Component matching error details:`, error);
|
|
3588
|
-
logCollector?.error(`Error matching component: ${errorMsg}`);
|
|
3589
|
-
throw error;
|
|
3590
|
-
}
|
|
3591
|
-
}
|
|
3592
|
-
/**
|
|
3593
|
-
* Match multiple components for analytical questions by visualization types
|
|
3594
|
-
* This is used when the user needs multiple visualizations
|
|
3595
|
-
*/
|
|
3596
|
-
async generateMultipleAnalyticalComponents(userPrompt, availableComponents, visualizationTypes, apiKey, logCollector, conversationHistory) {
|
|
3597
|
-
try {
|
|
3598
|
-
console.log("\u2713 Matching multiple components:", visualizationTypes);
|
|
3599
|
-
const components = [];
|
|
3600
|
-
for (const vizType of visualizationTypes) {
|
|
3601
|
-
const result = await this.generateAnalyticalComponent(userPrompt, availableComponents, vizType, apiKey, logCollector, conversationHistory);
|
|
3602
|
-
if (result.component) {
|
|
3603
|
-
components.push(result.component);
|
|
3604
|
-
}
|
|
3605
|
-
}
|
|
3606
|
-
if (components.length === 0) {
|
|
3607
|
-
return {
|
|
3608
|
-
components: [],
|
|
3609
|
-
reasoning: "Failed to match any components",
|
|
3610
|
-
isGenerated: false
|
|
3611
|
-
};
|
|
3612
|
-
}
|
|
3613
|
-
return {
|
|
3614
|
-
components,
|
|
3615
|
-
reasoning: `Matched ${components.length} components: ${visualizationTypes.join(", ")}`,
|
|
3616
|
-
isGenerated: true
|
|
3617
|
-
};
|
|
3618
|
-
} catch (error) {
|
|
3619
|
-
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
3620
|
-
logger.error(`[${this.getProviderName()}] Error matching multiple analytical components: ${errorMsg}`);
|
|
3621
|
-
logger.debug(`[${this.getProviderName()}] Multiple components matching error details:`, error);
|
|
3622
|
-
return {
|
|
3623
|
-
components: [],
|
|
3624
|
-
reasoning: "Error occurred while matching components",
|
|
3625
|
-
isGenerated: false
|
|
3626
|
-
};
|
|
3627
|
-
}
|
|
3628
|
-
}
|
|
3629
|
-
/**
|
|
3630
|
-
* Match multiple components and wrap them in a container
|
|
3631
|
-
*/
|
|
3632
|
-
async generateMultiComponentResponse(userPrompt, availableComponents, visualizationTypes, apiKey, logCollector, conversationHistory) {
|
|
3633
|
-
try {
|
|
3634
|
-
const matchResult = await this.generateMultipleAnalyticalComponents(
|
|
3635
|
-
userPrompt,
|
|
3636
|
-
availableComponents,
|
|
3637
|
-
visualizationTypes,
|
|
3638
|
-
apiKey,
|
|
3639
|
-
logCollector,
|
|
3640
|
-
conversationHistory
|
|
3641
|
-
);
|
|
3642
|
-
if (!matchResult.isGenerated || matchResult.components.length === 0) {
|
|
3643
|
-
return {
|
|
3644
|
-
containerComponent: null,
|
|
3645
|
-
reasoning: matchResult.reasoning || "Unable to match multi-component dashboard",
|
|
3646
|
-
isGenerated: false
|
|
3647
|
-
};
|
|
3648
|
-
}
|
|
3649
|
-
const generatedComponents = matchResult.components;
|
|
3650
|
-
generatedComponents.forEach((component, index) => {
|
|
3651
|
-
if (component.props.query) {
|
|
3652
|
-
logCollector?.logQuery(
|
|
3653
|
-
`Multi-component query generated (${index + 1}/${generatedComponents.length})`,
|
|
3654
|
-
component.props.query,
|
|
3655
|
-
{
|
|
3656
|
-
componentType: component.type,
|
|
3657
|
-
title: component.props.title,
|
|
3658
|
-
position: index + 1,
|
|
3659
|
-
totalComponents: generatedComponents.length
|
|
3660
|
-
}
|
|
3661
|
-
);
|
|
3662
|
-
}
|
|
3663
|
-
});
|
|
3664
|
-
const containerTitle = `${userPrompt} - Dashboard`;
|
|
3665
|
-
const containerDescription = `Multi-component dashboard showing ${visualizationTypes.join(", ")}`;
|
|
3666
|
-
logCollector?.logExplanation(
|
|
3667
|
-
"Multi-component dashboard matched",
|
|
3668
|
-
matchResult.reasoning || `Matched ${generatedComponents.length} components for comprehensive analysis`,
|
|
3669
|
-
{
|
|
3670
|
-
totalComponents: generatedComponents.length,
|
|
3671
|
-
componentTypes: generatedComponents.map((c) => c.type),
|
|
3672
|
-
componentNames: generatedComponents.map((c) => c.name),
|
|
3673
|
-
containerTitle,
|
|
3674
|
-
containerDescription
|
|
3675
|
-
}
|
|
3676
|
-
);
|
|
3677
|
-
const containerComponent = {
|
|
3678
|
-
id: `multi_container_${Date.now()}`,
|
|
3679
|
-
name: "MultiComponentContainer",
|
|
3680
|
-
type: "Container",
|
|
3681
|
-
description: containerDescription,
|
|
3682
|
-
category: "dynamic",
|
|
3683
|
-
keywords: ["multi", "container", "dashboard"],
|
|
3684
|
-
props: {
|
|
3685
|
-
config: {
|
|
3686
|
-
components: generatedComponents,
|
|
3687
|
-
layout: "grid",
|
|
3688
|
-
spacing: 24,
|
|
3689
|
-
title: containerTitle,
|
|
3690
|
-
description: containerDescription
|
|
3691
|
-
}
|
|
3692
|
-
}
|
|
3693
|
-
};
|
|
3694
|
-
return {
|
|
3695
|
-
containerComponent,
|
|
3696
|
-
reasoning: matchResult.reasoning || `Matched multi-component dashboard with ${generatedComponents.length} components`,
|
|
3697
|
-
isGenerated: true
|
|
3698
|
-
};
|
|
3699
|
-
} catch (error) {
|
|
3700
|
-
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
3701
|
-
logger.error(`[${this.getProviderName()}] Error generating multi-component response: ${errorMsg}`);
|
|
3702
|
-
logger.debug(`[${this.getProviderName()}] Multi-component response error details:`, error);
|
|
3703
|
-
throw error;
|
|
3704
|
-
}
|
|
3705
|
-
}
|
|
3706
3377
|
/**
|
|
3707
3378
|
* Match components from text response suggestions and generate follow-up questions
|
|
3708
3379
|
* Takes a text response with component suggestions (c1:type format) and matches with available components
|
|
@@ -3928,148 +3599,136 @@ var BaseLLM = class {
|
|
|
3928
3599
|
}
|
|
3929
3600
|
}
|
|
3930
3601
|
/**
|
|
3931
|
-
*
|
|
3932
|
-
*
|
|
3933
|
-
* @param userPrompt - The user's question/request
|
|
3934
|
-
* @param availableTools - Array of available external tools
|
|
3935
|
-
* @param apiKey - Optional API key for LLM
|
|
3936
|
-
* @param logCollector - Optional log collector
|
|
3937
|
-
* @returns Object containing tool execution results and summary
|
|
3602
|
+
* Classify user question into category and detect external tools needed
|
|
3603
|
+
* Determines if question is for data analysis, requires external tools, or needs text response
|
|
3938
3604
|
*/
|
|
3939
|
-
async
|
|
3940
|
-
const MAX_TOOL_ATTEMPTS = 3;
|
|
3941
|
-
const toolResults = [];
|
|
3605
|
+
async classifyQuestionCategory(userPrompt, apiKey, logCollector, conversationHistory, externalTools) {
|
|
3942
3606
|
try {
|
|
3943
|
-
|
|
3944
|
-
|
|
3945
|
-
|
|
3946
|
-
|
|
3947
|
-
|
|
3948
|
-
|
|
3949
|
-
|
|
3950
|
-
|
|
3951
|
-
|
|
3952
|
-
|
|
3953
|
-
required.push(key);
|
|
3954
|
-
});
|
|
3955
|
-
return {
|
|
3956
|
-
name: tool.id,
|
|
3957
|
-
description: tool.description,
|
|
3958
|
-
input_schema: {
|
|
3959
|
-
type: "object",
|
|
3960
|
-
properties,
|
|
3961
|
-
required
|
|
3962
|
-
}
|
|
3963
|
-
};
|
|
3607
|
+
const availableToolsDoc = externalTools && externalTools.length > 0 ? externalTools.map((tool) => {
|
|
3608
|
+
const paramsStr = Object.entries(tool.params || {}).map(([key, type]) => `${key}: ${type}`).join(", ");
|
|
3609
|
+
return `- **${tool.name}** (id: ${tool.id})
|
|
3610
|
+
Description: ${tool.description}
|
|
3611
|
+
Parameters: ${paramsStr}`;
|
|
3612
|
+
}).join("\n\n") : "No external tools available";
|
|
3613
|
+
const prompts = await promptLoader.loadPrompts("category-classification", {
|
|
3614
|
+
USER_PROMPT: userPrompt,
|
|
3615
|
+
CONVERSATION_HISTORY: conversationHistory || "No previous conversation",
|
|
3616
|
+
AVAILABLE_TOOLS: availableToolsDoc
|
|
3964
3617
|
});
|
|
3965
|
-
const
|
|
3966
|
-
|
|
3967
|
-
|
|
3968
|
-
|
|
3969
|
-
|
|
3970
|
-
|
|
3971
|
-
|
|
3972
|
-
|
|
3973
|
-
|
|
3974
|
-
|
|
3975
|
-
|
|
3976
|
-
|
|
3977
|
-
|
|
3978
|
-
|
|
3979
|
-
|
|
3980
|
-
|
|
3981
|
-
|
|
3982
|
-
|
|
3983
|
-
|
|
3984
|
-
|
|
3985
|
-
|
|
3986
|
-
|
|
3987
|
-
});
|
|
3988
|
-
throw new Error(errorMsg);
|
|
3989
|
-
}
|
|
3990
|
-
try {
|
|
3991
|
-
logger.debug(`[${this.getProviderName()}] Tool ${tool.name} parameters:`, toolInput);
|
|
3992
|
-
const result2 = await tool.fn(toolInput);
|
|
3993
|
-
logger.info(`[${this.getProviderName()}] Tool ${tool.name} executed successfully`);
|
|
3994
|
-
logCollector?.info(`\u2713 ${tool.name} completed successfully`);
|
|
3995
|
-
toolResults.push({
|
|
3996
|
-
toolName: tool.name,
|
|
3997
|
-
toolId: tool.id,
|
|
3998
|
-
result: result2
|
|
3999
|
-
});
|
|
4000
|
-
return JSON.stringify(result2, null, 2);
|
|
4001
|
-
} catch (error) {
|
|
4002
|
-
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
4003
|
-
logger.error(`[${this.getProviderName()}] Tool ${tool.name} failed (attempt ${attempts}): ${errorMsg}`);
|
|
4004
|
-
logCollector?.error(`\u2717 ${tool.name} failed: ${errorMsg}`);
|
|
4005
|
-
if (attempts >= MAX_TOOL_ATTEMPTS) {
|
|
4006
|
-
toolResults.push({
|
|
4007
|
-
toolName: tool.name,
|
|
4008
|
-
toolId: tool.id,
|
|
4009
|
-
result: null,
|
|
4010
|
-
error: errorMsg
|
|
4011
|
-
});
|
|
4012
|
-
}
|
|
4013
|
-
throw new Error(`Tool execution failed: ${errorMsg}`);
|
|
3618
|
+
const result = await LLM.stream(
|
|
3619
|
+
{
|
|
3620
|
+
sys: prompts.system,
|
|
3621
|
+
user: prompts.user
|
|
3622
|
+
},
|
|
3623
|
+
{
|
|
3624
|
+
model: this.model,
|
|
3625
|
+
maxTokens: 1e3,
|
|
3626
|
+
temperature: 0.2,
|
|
3627
|
+
apiKey: this.getApiKey(apiKey)
|
|
3628
|
+
},
|
|
3629
|
+
true
|
|
3630
|
+
// Parse as JSON
|
|
3631
|
+
);
|
|
3632
|
+
logCollector?.logExplanation(
|
|
3633
|
+
"Question category classified",
|
|
3634
|
+
result.reasoning || "No reasoning provided",
|
|
3635
|
+
{
|
|
3636
|
+
category: result.category,
|
|
3637
|
+
externalTools: result.externalTools || [],
|
|
3638
|
+
dataAnalysisType: result.dataAnalysisType,
|
|
3639
|
+
confidence: result.confidence
|
|
4014
3640
|
}
|
|
3641
|
+
);
|
|
3642
|
+
return {
|
|
3643
|
+
category: result.category || "data_analysis",
|
|
3644
|
+
externalTools: result.externalTools || [],
|
|
3645
|
+
dataAnalysisType: result.dataAnalysisType,
|
|
3646
|
+
reasoning: result.reasoning || "No reasoning provided",
|
|
3647
|
+
confidence: result.confidence || 0
|
|
4015
3648
|
};
|
|
4016
|
-
|
|
4017
|
-
|
|
4018
|
-
|
|
4019
|
-
|
|
4020
|
-
|
|
4021
|
-
|
|
4022
|
-
|
|
4023
|
-
|
|
4024
|
-
|
|
4025
|
-
|
|
3649
|
+
} catch (error) {
|
|
3650
|
+
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
3651
|
+
logger.error(`[${this.getProviderName()}] Error classifying question category: ${errorMsg}`);
|
|
3652
|
+
logger.debug(`[${this.getProviderName()}] Category classification error details:`, error);
|
|
3653
|
+
throw error;
|
|
3654
|
+
}
|
|
3655
|
+
}
|
|
3656
|
+
/**
|
|
3657
|
+
* Adapt UI block parameters based on current user question
|
|
3658
|
+
* Takes a matched UI block from semantic search and modifies its props to answer the new question
|
|
3659
|
+
*/
|
|
3660
|
+
async adaptUIBlockParameters(currentUserPrompt, originalUserPrompt, matchedUIBlock, apiKey, logCollector) {
|
|
3661
|
+
try {
|
|
3662
|
+
if (!matchedUIBlock || !matchedUIBlock.generatedComponentMetadata) {
|
|
3663
|
+
return {
|
|
3664
|
+
success: false,
|
|
3665
|
+
explanation: "No component found in matched UI block"
|
|
3666
|
+
};
|
|
3667
|
+
}
|
|
3668
|
+
const component = matchedUIBlock.generatedComponentMetadata;
|
|
3669
|
+
const schemaDoc = schema.generateSchemaDocumentation();
|
|
3670
|
+
const prompts = await promptLoader.loadPrompts("adapt-ui-block-params", {
|
|
3671
|
+
ORIGINAL_USER_PROMPT: originalUserPrompt,
|
|
3672
|
+
CURRENT_USER_PROMPT: currentUserPrompt,
|
|
3673
|
+
MATCHED_UI_BLOCK_COMPONENT: JSON.stringify(component, null, 2),
|
|
3674
|
+
COMPONENT_PROPS: JSON.stringify(component.props, null, 2),
|
|
3675
|
+
SCHEMA_DOC: schemaDoc || "No schema available"
|
|
4026
3676
|
});
|
|
4027
|
-
|
|
4028
|
-
logCollector?.info("Analyzing request and executing external tools...");
|
|
4029
|
-
const result = await LLM.streamWithTools(
|
|
3677
|
+
const result = await LLM.stream(
|
|
4030
3678
|
{
|
|
4031
3679
|
sys: prompts.system,
|
|
4032
3680
|
user: prompts.user
|
|
4033
3681
|
},
|
|
4034
|
-
llmTools,
|
|
4035
|
-
toolHandler,
|
|
4036
3682
|
{
|
|
4037
3683
|
model: this.model,
|
|
4038
3684
|
maxTokens: 2e3,
|
|
4039
3685
|
temperature: 0.2,
|
|
4040
3686
|
apiKey: this.getApiKey(apiKey)
|
|
4041
3687
|
},
|
|
4042
|
-
|
|
4043
|
-
//
|
|
3688
|
+
true
|
|
3689
|
+
// Parse as JSON
|
|
4044
3690
|
);
|
|
4045
|
-
|
|
4046
|
-
|
|
4047
|
-
|
|
4048
|
-
|
|
4049
|
-
|
|
4050
|
-
|
|
4051
|
-
|
|
4052
|
-
|
|
4053
|
-
|
|
4054
|
-
|
|
3691
|
+
if (!result.success) {
|
|
3692
|
+
logger.info(
|
|
3693
|
+
`[${this.getProviderName()}] Could not adapt UI block: ${result.reason}`
|
|
3694
|
+
);
|
|
3695
|
+
logCollector?.warn(
|
|
3696
|
+
"Could not adapt matched UI block",
|
|
3697
|
+
"explanation",
|
|
3698
|
+
{ reason: result.reason }
|
|
3699
|
+
);
|
|
3700
|
+
return {
|
|
3701
|
+
success: false,
|
|
3702
|
+
explanation: result.explanation || "Adaptation not possible"
|
|
3703
|
+
};
|
|
4055
3704
|
}
|
|
4056
|
-
if (
|
|
4057
|
-
|
|
3705
|
+
if (result.adaptedComponent?.props?.query) {
|
|
3706
|
+
result.adaptedComponent.props.query = ensureQueryLimit(
|
|
3707
|
+
result.adaptedComponent.props.query,
|
|
3708
|
+
this.defaultLimit
|
|
3709
|
+
);
|
|
4058
3710
|
}
|
|
4059
|
-
|
|
3711
|
+
logCollector?.logExplanation(
|
|
3712
|
+
"UI block parameters adapted",
|
|
3713
|
+
result.explanation || "Parameters adapted successfully",
|
|
3714
|
+
{
|
|
3715
|
+
parametersChanged: result.parametersChanged || [],
|
|
3716
|
+
componentType: result.adaptedComponent?.type
|
|
3717
|
+
}
|
|
3718
|
+
);
|
|
4060
3719
|
return {
|
|
4061
|
-
|
|
4062
|
-
|
|
4063
|
-
|
|
3720
|
+
success: true,
|
|
3721
|
+
adaptedComponent: result.adaptedComponent,
|
|
3722
|
+
parametersChanged: result.parametersChanged,
|
|
3723
|
+
explanation: result.explanation || "Parameters adapted successfully"
|
|
4064
3724
|
};
|
|
4065
3725
|
} catch (error) {
|
|
4066
3726
|
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
4067
|
-
logger.error(`[${this.getProviderName()}] Error
|
|
4068
|
-
|
|
3727
|
+
logger.error(`[${this.getProviderName()}] Error adapting UI block parameters: ${errorMsg}`);
|
|
3728
|
+
logger.debug(`[${this.getProviderName()}] Adaptation error details:`, error);
|
|
4069
3729
|
return {
|
|
4070
|
-
|
|
4071
|
-
|
|
4072
|
-
hasResults: false
|
|
3730
|
+
success: false,
|
|
3731
|
+
explanation: `Error adapting parameters: ${errorMsg}`
|
|
4073
3732
|
};
|
|
4074
3733
|
}
|
|
4075
3734
|
}
|
|
@@ -4088,32 +3747,24 @@ ${paramsText}`;
|
|
|
4088
3747
|
logger.debug(`[${this.getProviderName()}] Starting text response generation`);
|
|
4089
3748
|
logger.debug(`[${this.getProviderName()}] User prompt: "${userPrompt.substring(0, 50)}..."`);
|
|
4090
3749
|
try {
|
|
4091
|
-
let
|
|
3750
|
+
let availableToolsDoc = "No external tools are available for this request.";
|
|
4092
3751
|
if (externalTools && externalTools.length > 0) {
|
|
4093
|
-
logger.info(`[${this.getProviderName()}]
|
|
4094
|
-
|
|
4095
|
-
|
|
4096
|
-
|
|
4097
|
-
|
|
4098
|
-
|
|
4099
|
-
|
|
4100
|
-
|
|
4101
|
-
const toolResultsText = toolExecution.toolResults.map((tr) => {
|
|
4102
|
-
if (tr.error) {
|
|
4103
|
-
return `**${tr.toolName}** (Failed): ${tr.error}`;
|
|
3752
|
+
logger.info(`[${this.getProviderName()}] External tools available: ${externalTools.map((t) => t.name).join(", ")}`);
|
|
3753
|
+
availableToolsDoc = "\u26A0\uFE0F **EXECUTE THESE TOOLS IMMEDIATELY** \u26A0\uFE0F\n\nThe following external tools have been identified as necessary for this request. You MUST call them:\n\n" + externalTools.map((tool, idx) => {
|
|
3754
|
+
const paramsText = Object.entries(tool.params || {}).map(([key, value]) => {
|
|
3755
|
+
const valueType = typeof value;
|
|
3756
|
+
if (valueType === "string" && ["string", "number", "integer", "boolean", "array", "object"].includes(String(value).toLowerCase())) {
|
|
3757
|
+
return `- ${key}: ${value}`;
|
|
3758
|
+
} else {
|
|
3759
|
+
return `- ${key}: ${JSON.stringify(value)} (default value - use this)`;
|
|
4104
3760
|
}
|
|
4105
|
-
|
|
4106
|
-
|
|
4107
|
-
|
|
4108
|
-
|
|
4109
|
-
|
|
4110
|
-
${
|
|
4111
|
-
|
|
4112
|
-
${toolResultsText}`;
|
|
4113
|
-
logger.info(`[${this.getProviderName()}] External tools executed, results available`);
|
|
4114
|
-
} else {
|
|
4115
|
-
logger.info(`[${this.getProviderName()}] No external tools were needed`);
|
|
4116
|
-
}
|
|
3761
|
+
}).join("\n ");
|
|
3762
|
+
return `${idx + 1}. **${tool.name}** (ID: ${tool.id})
|
|
3763
|
+
Description: ${tool.description}
|
|
3764
|
+
**ACTION REQUIRED**: Call this tool with the parameters below
|
|
3765
|
+
Parameters:
|
|
3766
|
+
${paramsText}`;
|
|
3767
|
+
}).join("\n\n");
|
|
4117
3768
|
}
|
|
4118
3769
|
const schemaDoc = schema.generateSchemaDocumentation();
|
|
4119
3770
|
const knowledgeBaseContext = await knowledge_base_default.getKnowledgeBase({
|
|
@@ -4122,13 +3773,12 @@ ${toolResultsText}`;
|
|
|
4122
3773
|
topK: 1
|
|
4123
3774
|
});
|
|
4124
3775
|
logger.file("\n=============================\nknowledge base context:", knowledgeBaseContext);
|
|
4125
|
-
logger.file("\n=============================\nexternal tool context:", externalToolContext);
|
|
4126
3776
|
const prompts = await promptLoader.loadPrompts("text-response", {
|
|
4127
3777
|
USER_PROMPT: userPrompt,
|
|
4128
3778
|
CONVERSATION_HISTORY: conversationHistory || "No previous conversation",
|
|
4129
3779
|
SCHEMA_DOC: schemaDoc,
|
|
4130
3780
|
KNOWLEDGE_BASE_CONTEXT: knowledgeBaseContext || "No additional knowledge base context available.",
|
|
4131
|
-
|
|
3781
|
+
AVAILABLE_EXTERNAL_TOOLS: availableToolsDoc
|
|
4132
3782
|
});
|
|
4133
3783
|
logger.file("\n=============================\nsystem prompt:", prompts.system);
|
|
4134
3784
|
logger.file("\n=============================\nuser prompt:", prompts.user);
|
|
@@ -4150,11 +3800,88 @@ ${toolResultsText}`;
|
|
|
4150
3800
|
description: "Brief explanation of what this query does and why it answers the user's question."
|
|
4151
3801
|
}
|
|
4152
3802
|
},
|
|
4153
|
-
required: ["query"]
|
|
3803
|
+
required: ["query"],
|
|
3804
|
+
additionalProperties: false
|
|
4154
3805
|
}
|
|
4155
3806
|
}];
|
|
3807
|
+
if (externalTools && externalTools.length > 0) {
|
|
3808
|
+
externalTools.forEach((tool) => {
|
|
3809
|
+
logger.info(`[${this.getProviderName()}] Processing external tool:`, JSON.stringify(tool, null, 2));
|
|
3810
|
+
const properties = {};
|
|
3811
|
+
const required = [];
|
|
3812
|
+
Object.entries(tool.params || {}).forEach(([key, typeOrValue]) => {
|
|
3813
|
+
let schemaType;
|
|
3814
|
+
let hasDefaultValue = false;
|
|
3815
|
+
let defaultValue;
|
|
3816
|
+
const valueType = typeof typeOrValue;
|
|
3817
|
+
if (valueType === "number") {
|
|
3818
|
+
schemaType = Number.isInteger(typeOrValue) ? "integer" : "number";
|
|
3819
|
+
hasDefaultValue = true;
|
|
3820
|
+
defaultValue = typeOrValue;
|
|
3821
|
+
} else if (valueType === "boolean") {
|
|
3822
|
+
schemaType = "boolean";
|
|
3823
|
+
hasDefaultValue = true;
|
|
3824
|
+
defaultValue = typeOrValue;
|
|
3825
|
+
} else if (Array.isArray(typeOrValue)) {
|
|
3826
|
+
schemaType = "array";
|
|
3827
|
+
hasDefaultValue = true;
|
|
3828
|
+
defaultValue = typeOrValue;
|
|
3829
|
+
} else if (valueType === "object" && typeOrValue !== null) {
|
|
3830
|
+
schemaType = "object";
|
|
3831
|
+
hasDefaultValue = true;
|
|
3832
|
+
defaultValue = typeOrValue;
|
|
3833
|
+
} else {
|
|
3834
|
+
const typeStr = String(typeOrValue).toLowerCase().trim();
|
|
3835
|
+
if (typeStr === "string" || typeStr === "str") {
|
|
3836
|
+
schemaType = "string";
|
|
3837
|
+
} else if (typeStr === "number" || typeStr === "num" || typeStr === "float" || typeStr === "double") {
|
|
3838
|
+
schemaType = "number";
|
|
3839
|
+
} else if (typeStr === "integer" || typeStr === "int") {
|
|
3840
|
+
schemaType = "integer";
|
|
3841
|
+
} else if (typeStr === "boolean" || typeStr === "bool") {
|
|
3842
|
+
schemaType = "boolean";
|
|
3843
|
+
} else if (typeStr === "array" || typeStr === "list") {
|
|
3844
|
+
schemaType = "array";
|
|
3845
|
+
} else if (typeStr === "object" || typeStr === "dict") {
|
|
3846
|
+
schemaType = "object";
|
|
3847
|
+
} else {
|
|
3848
|
+
schemaType = "string";
|
|
3849
|
+
hasDefaultValue = true;
|
|
3850
|
+
defaultValue = typeOrValue;
|
|
3851
|
+
}
|
|
3852
|
+
}
|
|
3853
|
+
const propertySchema = {
|
|
3854
|
+
type: schemaType,
|
|
3855
|
+
description: `${key} parameter for ${tool.name}`
|
|
3856
|
+
};
|
|
3857
|
+
if (hasDefaultValue) {
|
|
3858
|
+
propertySchema.default = defaultValue;
|
|
3859
|
+
} else {
|
|
3860
|
+
required.push(key);
|
|
3861
|
+
}
|
|
3862
|
+
properties[key] = propertySchema;
|
|
3863
|
+
});
|
|
3864
|
+
const inputSchema = {
|
|
3865
|
+
type: "object",
|
|
3866
|
+
properties,
|
|
3867
|
+
additionalProperties: false
|
|
3868
|
+
};
|
|
3869
|
+
if (required.length > 0) {
|
|
3870
|
+
inputSchema.required = required;
|
|
3871
|
+
}
|
|
3872
|
+
tools.push({
|
|
3873
|
+
name: tool.id,
|
|
3874
|
+
description: tool.description,
|
|
3875
|
+
input_schema: inputSchema
|
|
3876
|
+
});
|
|
3877
|
+
});
|
|
3878
|
+
logger.info(`[${this.getProviderName()}] Added ${externalTools.length} external tools to tool calling capability`);
|
|
3879
|
+
logger.info(`[${this.getProviderName()}] Complete tools array:`, JSON.stringify(tools, null, 2));
|
|
3880
|
+
}
|
|
4156
3881
|
const queryAttempts = /* @__PURE__ */ new Map();
|
|
4157
3882
|
const MAX_QUERY_ATTEMPTS = 6;
|
|
3883
|
+
const toolAttempts = /* @__PURE__ */ new Map();
|
|
3884
|
+
const MAX_TOOL_ATTEMPTS = 3;
|
|
4158
3885
|
let maxAttemptsReached = false;
|
|
4159
3886
|
let fullStreamedText = "";
|
|
4160
3887
|
const wrappedStreamCallback = streamCallback ? (chunk) => {
|
|
@@ -4296,8 +4023,75 @@ ${errorMsg}
|
|
|
4296
4023
|
}
|
|
4297
4024
|
throw new Error(`Query execution failed: ${errorMsg}`);
|
|
4298
4025
|
}
|
|
4026
|
+
} else {
|
|
4027
|
+
const externalTool = externalTools?.find((t) => t.id === toolName);
|
|
4028
|
+
if (externalTool) {
|
|
4029
|
+
const attempts = (toolAttempts.get(toolName) || 0) + 1;
|
|
4030
|
+
toolAttempts.set(toolName, attempts);
|
|
4031
|
+
logger.info(`[${this.getProviderName()}] Executing external tool: ${externalTool.name} (attempt ${attempts}/${MAX_TOOL_ATTEMPTS})`);
|
|
4032
|
+
logCollector?.info(`Executing external tool: ${externalTool.name} (attempt ${attempts}/${MAX_TOOL_ATTEMPTS})...`);
|
|
4033
|
+
if (attempts > MAX_TOOL_ATTEMPTS) {
|
|
4034
|
+
const errorMsg = `Maximum attempts (${MAX_TOOL_ATTEMPTS}) reached for tool: ${externalTool.name}`;
|
|
4035
|
+
logger.error(`[${this.getProviderName()}] ${errorMsg}`);
|
|
4036
|
+
logCollector?.error(errorMsg);
|
|
4037
|
+
if (wrappedStreamCallback) {
|
|
4038
|
+
wrappedStreamCallback(`
|
|
4039
|
+
|
|
4040
|
+
\u274C ${errorMsg}
|
|
4041
|
+
|
|
4042
|
+
Please try rephrasing your request or contact support.
|
|
4043
|
+
|
|
4044
|
+
`);
|
|
4045
|
+
}
|
|
4046
|
+
throw new Error(errorMsg);
|
|
4047
|
+
}
|
|
4048
|
+
try {
|
|
4049
|
+
if (wrappedStreamCallback) {
|
|
4050
|
+
if (attempts === 1) {
|
|
4051
|
+
wrappedStreamCallback(`
|
|
4052
|
+
|
|
4053
|
+
\u{1F517} **Executing ${externalTool.name}...**
|
|
4054
|
+
|
|
4055
|
+
`);
|
|
4056
|
+
} else {
|
|
4057
|
+
wrappedStreamCallback(`
|
|
4058
|
+
|
|
4059
|
+
\u{1F504} **Retrying ${externalTool.name} (attempt ${attempts}/${MAX_TOOL_ATTEMPTS})...**
|
|
4060
|
+
|
|
4061
|
+
`);
|
|
4062
|
+
}
|
|
4063
|
+
}
|
|
4064
|
+
const result2 = await externalTool.fn(toolInput);
|
|
4065
|
+
logger.info(`[${this.getProviderName()}] External tool ${externalTool.name} executed successfully`);
|
|
4066
|
+
logCollector?.info(`\u2713 ${externalTool.name} executed successfully`);
|
|
4067
|
+
if (wrappedStreamCallback) {
|
|
4068
|
+
wrappedStreamCallback(`\u2705 **${externalTool.name} completed successfully**
|
|
4069
|
+
|
|
4070
|
+
`);
|
|
4071
|
+
}
|
|
4072
|
+
return JSON.stringify(result2, null, 2);
|
|
4073
|
+
} catch (error) {
|
|
4074
|
+
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
4075
|
+
logger.error(`[${this.getProviderName()}] External tool ${externalTool.name} failed (attempt ${attempts}/${MAX_TOOL_ATTEMPTS}): ${errorMsg}`);
|
|
4076
|
+
logCollector?.error(`\u2717 ${externalTool.name} failed: ${errorMsg}`);
|
|
4077
|
+
if (wrappedStreamCallback) {
|
|
4078
|
+
wrappedStreamCallback(`\u274C **${externalTool.name} failed:**
|
|
4079
|
+
\`\`\`
|
|
4080
|
+
${errorMsg}
|
|
4081
|
+
\`\`\`
|
|
4082
|
+
|
|
4083
|
+
`);
|
|
4084
|
+
if (attempts < MAX_TOOL_ATTEMPTS) {
|
|
4085
|
+
wrappedStreamCallback(`\u{1F527} **Retrying with adjusted parameters...**
|
|
4086
|
+
|
|
4087
|
+
`);
|
|
4088
|
+
}
|
|
4089
|
+
}
|
|
4090
|
+
throw new Error(`Tool execution failed: ${errorMsg}`);
|
|
4091
|
+
}
|
|
4092
|
+
}
|
|
4093
|
+
throw new Error(`Unknown tool: ${toolName}`);
|
|
4299
4094
|
}
|
|
4300
|
-
throw new Error(`Unknown tool: ${toolName}`);
|
|
4301
4095
|
};
|
|
4302
4096
|
const result = await LLM.streamWithTools(
|
|
4303
4097
|
{
|
|
@@ -4314,8 +4108,8 @@ ${errorMsg}
|
|
|
4314
4108
|
partial: wrappedStreamCallback
|
|
4315
4109
|
// Pass the wrapped streaming callback to LLM
|
|
4316
4110
|
},
|
|
4317
|
-
|
|
4318
|
-
// max iterations: allows for 6 retries + final response + buffer
|
|
4111
|
+
20
|
|
4112
|
+
// max iterations: allows for 6 query retries + 3 tool retries + final response + buffer
|
|
4319
4113
|
);
|
|
4320
4114
|
logger.info(`[${this.getProviderName()}] Text response stream completed`);
|
|
4321
4115
|
const textResponse = fullStreamedText || result || "I apologize, but I was unable to generate a response.";
|
|
@@ -4370,24 +4164,22 @@ ${errorMsg}
|
|
|
4370
4164
|
}
|
|
4371
4165
|
let container_componet = null;
|
|
4372
4166
|
if (matchedComponents.length > 0) {
|
|
4167
|
+
logger.info(`[${this.getProviderName()}] Created MultiComponentContainer: "${layoutTitle}" with ${matchedComponents.length} components and ${actions.length} actions`);
|
|
4168
|
+
logCollector?.info(`Created dashboard: "${layoutTitle}" with ${matchedComponents.length} components and ${actions.length} actions`);
|
|
4373
4169
|
container_componet = {
|
|
4374
|
-
id: `
|
|
4170
|
+
id: `container_${Date.now()}`,
|
|
4375
4171
|
name: "MultiComponentContainer",
|
|
4376
4172
|
type: "Container",
|
|
4377
4173
|
description: layoutDescription,
|
|
4378
|
-
category: "dynamic",
|
|
4379
|
-
keywords: ["dashboard", "layout", "container"],
|
|
4380
4174
|
props: {
|
|
4381
4175
|
config: {
|
|
4382
|
-
components: matchedComponents,
|
|
4383
4176
|
title: layoutTitle,
|
|
4384
|
-
description: layoutDescription
|
|
4177
|
+
description: layoutDescription,
|
|
4178
|
+
components: matchedComponents
|
|
4385
4179
|
},
|
|
4386
4180
|
actions
|
|
4387
4181
|
}
|
|
4388
4182
|
};
|
|
4389
|
-
logger.info(`[${this.getProviderName()}] Created MultiComponentContainer: "${layoutTitle}" with ${matchedComponents.length} components and ${actions.length} actions`);
|
|
4390
|
-
logCollector?.info(`Created dashboard: "${layoutTitle}" with ${matchedComponents.length} components and ${actions.length} actions`);
|
|
4391
4183
|
}
|
|
4392
4184
|
return {
|
|
4393
4185
|
success: true,
|
|
@@ -4418,201 +4210,134 @@ ${errorMsg}
|
|
|
4418
4210
|
}
|
|
4419
4211
|
}
|
|
4420
4212
|
/**
|
|
4421
|
-
*
|
|
4422
|
-
*
|
|
4423
|
-
*
|
|
4213
|
+
* Main orchestration function with semantic search and multi-step classification
|
|
4214
|
+
* NEW FLOW (Recommended):
|
|
4215
|
+
* 1. Semantic search: Check previous conversations (>60% match)
|
|
4216
|
+
* - If match found → Adapt UI block parameters and return
|
|
4217
|
+
* 2. Category classification: Determine if data_analysis, requires_external_tools, or text_response
|
|
4218
|
+
* 3. Route appropriately based on category and response mode
|
|
4219
|
+
*
|
|
4220
|
+
* @param responseMode - 'component' for component generation (default), 'text' for text responses
|
|
4221
|
+
* @param streamCallback - Optional callback function to receive text chunks as they stream (only for text mode)
|
|
4222
|
+
* @param collections - Collection registry for executing database queries (required for text mode)
|
|
4223
|
+
* @param externalTools - Optional array of external tools (email, calendar, etc.) that can be called (only for text mode)
|
|
4424
4224
|
*/
|
|
4425
|
-
async
|
|
4426
|
-
const
|
|
4225
|
+
async handleUserRequest(userPrompt, components, apiKey, logCollector, conversationHistory, responseMode = "text", streamCallback, collections, externalTools, userId) {
|
|
4226
|
+
const startTime = Date.now();
|
|
4227
|
+
logger.info(`[${this.getProviderName()}] handleUserRequest called with responseMode: ${responseMode}`);
|
|
4228
|
+
logCollector?.info(`Starting request processing with mode: ${responseMode}`);
|
|
4427
4229
|
try {
|
|
4428
|
-
logger.info(`[${this.getProviderName()}]
|
|
4429
|
-
|
|
4430
|
-
|
|
4431
|
-
|
|
4432
|
-
|
|
4433
|
-
|
|
4434
|
-
|
|
4435
|
-
|
|
4436
|
-
|
|
4437
|
-
|
|
4438
|
-
|
|
4439
|
-
|
|
4440
|
-
|
|
4441
|
-
|
|
4442
|
-
|
|
4443
|
-
|
|
4444
|
-
|
|
4445
|
-
|
|
4446
|
-
|
|
4447
|
-
|
|
4448
|
-
});
|
|
4449
|
-
|
|
4450
|
-
const
|
|
4451
|
-
for (const settledResult of settledResults) {
|
|
4452
|
-
if (settledResult.status === "fulfilled") {
|
|
4453
|
-
const { vizType, result } = settledResult.value;
|
|
4454
|
-
if (result.component) {
|
|
4455
|
-
matchedComponents.push(result.component);
|
|
4456
|
-
logCollector?.info(`Matched: ${result.component.name}`);
|
|
4457
|
-
logger.info("Component : ", result.component.name, " props: ", result.component.props);
|
|
4458
|
-
} else {
|
|
4459
|
-
logCollector?.warn(`Failed to match component for type: ${vizType}`);
|
|
4460
|
-
}
|
|
4461
|
-
} else {
|
|
4462
|
-
logCollector?.warn(`Error matching component: ${settledResult.reason?.message || "Unknown error"}`);
|
|
4463
|
-
}
|
|
4464
|
-
}
|
|
4465
|
-
logger.debug(`[${this.getProviderName()}] Matched ${matchedComponents.length} components for multi-component container`);
|
|
4466
|
-
if (matchedComponents.length === 0) {
|
|
4467
|
-
return {
|
|
4468
|
-
success: true,
|
|
4469
|
-
data: {
|
|
4470
|
-
component: null,
|
|
4471
|
-
reasoning: "Failed to match any components for the requested visualization types",
|
|
4472
|
-
method: "classification-multi-failed",
|
|
4473
|
-
questionType: classification.questionType,
|
|
4474
|
-
needsMultipleComponents: true,
|
|
4475
|
-
propsModified: false,
|
|
4476
|
-
queryModified: false
|
|
4477
|
-
},
|
|
4478
|
-
errors: []
|
|
4479
|
-
};
|
|
4480
|
-
}
|
|
4481
|
-
logCollector?.info("Generating container metadata...");
|
|
4482
|
-
const containerMetadata = await this.generateContainerMetadata(
|
|
4483
|
-
userPrompt,
|
|
4484
|
-
classification.visualizations,
|
|
4485
|
-
apiKey,
|
|
4486
|
-
logCollector,
|
|
4487
|
-
conversationHistory
|
|
4488
|
-
);
|
|
4489
|
-
const containerComponent = {
|
|
4490
|
-
id: `multi_container_${Date.now()}`,
|
|
4491
|
-
name: "MultiComponentContainer",
|
|
4492
|
-
type: "Container",
|
|
4493
|
-
description: containerMetadata.description,
|
|
4494
|
-
category: "dynamic",
|
|
4495
|
-
keywords: ["multi", "container", "dashboard"],
|
|
4496
|
-
props: {
|
|
4497
|
-
config: {
|
|
4498
|
-
components: matchedComponents,
|
|
4499
|
-
layout: "grid",
|
|
4500
|
-
spacing: 24,
|
|
4501
|
-
title: containerMetadata.title,
|
|
4502
|
-
description: containerMetadata.description
|
|
4503
|
-
}
|
|
4504
|
-
}
|
|
4505
|
-
};
|
|
4506
|
-
logCollector?.info(`Created multi-component container with ${matchedComponents.length} components: "${containerMetadata.title}"`);
|
|
4230
|
+
logger.info(`[${this.getProviderName()}] Step 1: Searching previous conversations...`);
|
|
4231
|
+
logCollector?.info("Step 1: Searching for similar previous conversations...");
|
|
4232
|
+
const conversationMatch = await conversation_search_default.searchConversations({
|
|
4233
|
+
userPrompt,
|
|
4234
|
+
collections,
|
|
4235
|
+
userId,
|
|
4236
|
+
similarityThreshold: 0.6
|
|
4237
|
+
// 60% threshold
|
|
4238
|
+
});
|
|
4239
|
+
logger.info("conversationMatch:", conversationMatch);
|
|
4240
|
+
if (conversationMatch) {
|
|
4241
|
+
logger.info(
|
|
4242
|
+
`[${this.getProviderName()}] \u2713 Found matching conversation with ${(conversationMatch.similarity * 100).toFixed(2)}% similarity`
|
|
4243
|
+
);
|
|
4244
|
+
logCollector?.info(
|
|
4245
|
+
`\u2713 Found similar conversation (${(conversationMatch.similarity * 100).toFixed(2)}% match)`
|
|
4246
|
+
);
|
|
4247
|
+
if (conversationMatch.similarity >= 0.99) {
|
|
4248
|
+
const elapsedTime2 = Date.now() - startTime;
|
|
4249
|
+
logger.info(`[${this.getProviderName()}] \u2713 100% match - returning UI block directly without adaptation`);
|
|
4250
|
+
logCollector?.info(`\u2713 Exact match (${(conversationMatch.similarity * 100).toFixed(2)}%) - returning cached result`);
|
|
4251
|
+
logCollector?.info(`Total time taken: ${elapsedTime2}ms (${(elapsedTime2 / 1e3).toFixed(2)}s)`);
|
|
4252
|
+
const component = conversationMatch.uiBlock?.generatedComponentMetadata || conversationMatch.uiBlock?.component;
|
|
4507
4253
|
return {
|
|
4508
4254
|
success: true,
|
|
4509
4255
|
data: {
|
|
4510
|
-
component
|
|
4511
|
-
reasoning: `
|
|
4512
|
-
method:
|
|
4513
|
-
|
|
4514
|
-
needsMultipleComponents: true,
|
|
4515
|
-
propsModified: false,
|
|
4516
|
-
queryModified: false
|
|
4256
|
+
component,
|
|
4257
|
+
reasoning: `Exact match from previous conversation (${(conversationMatch.similarity * 100).toFixed(2)}% similarity)`,
|
|
4258
|
+
method: `${this.getProviderName()}-semantic-match-exact`,
|
|
4259
|
+
semanticSimilarity: conversationMatch.similarity
|
|
4517
4260
|
},
|
|
4518
4261
|
errors: []
|
|
4519
4262
|
};
|
|
4520
|
-
}
|
|
4521
|
-
|
|
4522
|
-
|
|
4523
|
-
|
|
4263
|
+
}
|
|
4264
|
+
logCollector?.info(`Adapting parameters for similar question...`);
|
|
4265
|
+
const originalPrompt = conversationMatch.metadata?.userPrompt || "Previous question";
|
|
4266
|
+
const adaptResult = await this.adaptUIBlockParameters(
|
|
4267
|
+
userPrompt,
|
|
4268
|
+
originalPrompt,
|
|
4269
|
+
conversationMatch.uiBlock,
|
|
4270
|
+
apiKey,
|
|
4271
|
+
logCollector
|
|
4272
|
+
);
|
|
4273
|
+
if (adaptResult.success && adaptResult.adaptedComponent) {
|
|
4274
|
+
const elapsedTime2 = Date.now() - startTime;
|
|
4275
|
+
logger.info(`[${this.getProviderName()}] \u2713 Successfully adapted UI block parameters`);
|
|
4276
|
+
logger.info(`[${this.getProviderName()}] Total time taken: ${elapsedTime2}ms (${(elapsedTime2 / 1e3).toFixed(2)}s)`);
|
|
4277
|
+
logCollector?.info(`\u2713 UI block adapted successfully`);
|
|
4278
|
+
logCollector?.info(`Total time taken: ${elapsedTime2}ms (${(elapsedTime2 / 1e3).toFixed(2)}s)`);
|
|
4524
4279
|
return {
|
|
4525
4280
|
success: true,
|
|
4526
4281
|
data: {
|
|
4527
|
-
component:
|
|
4528
|
-
reasoning:
|
|
4529
|
-
method:
|
|
4530
|
-
|
|
4531
|
-
|
|
4532
|
-
propsModified: false,
|
|
4533
|
-
queryModified: false
|
|
4282
|
+
component: adaptResult.adaptedComponent,
|
|
4283
|
+
reasoning: `Adapted from previous conversation: ${originalPrompt}`,
|
|
4284
|
+
method: `${this.getProviderName()}-semantic-match`,
|
|
4285
|
+
semanticSimilarity: conversationMatch.similarity,
|
|
4286
|
+
parametersChanged: adaptResult.parametersChanged
|
|
4534
4287
|
},
|
|
4535
4288
|
errors: []
|
|
4536
4289
|
};
|
|
4537
4290
|
} else {
|
|
4538
|
-
|
|
4539
|
-
|
|
4540
|
-
return {
|
|
4541
|
-
success: true,
|
|
4542
|
-
data: {
|
|
4543
|
-
component: result.component,
|
|
4544
|
-
reasoning: result.reasoning,
|
|
4545
|
-
method: "classification-generated-auto",
|
|
4546
|
-
questionType: classification.questionType,
|
|
4547
|
-
needsMultipleComponents: false,
|
|
4548
|
-
propsModified: false,
|
|
4549
|
-
queryModified: false
|
|
4550
|
-
},
|
|
4551
|
-
errors: []
|
|
4552
|
-
};
|
|
4291
|
+
logger.info(`[${this.getProviderName()}] Could not adapt matched conversation, continuing to category classification`);
|
|
4292
|
+
logCollector?.warn(`Could not adapt matched conversation: ${adaptResult.explanation}`);
|
|
4553
4293
|
}
|
|
4554
|
-
} else if (classification.questionType === "data_modification" || classification.questionType === "general") {
|
|
4555
|
-
const matchMsg = "Using component matching for data modification...";
|
|
4556
|
-
logCollector?.info(matchMsg);
|
|
4557
|
-
const matchResult = await this.matchComponent(userPrompt, components, apiKey, logCollector, conversationHistory);
|
|
4558
|
-
return {
|
|
4559
|
-
success: true,
|
|
4560
|
-
data: {
|
|
4561
|
-
component: matchResult.component,
|
|
4562
|
-
reasoning: matchResult.reasoning,
|
|
4563
|
-
method: "classification-matched",
|
|
4564
|
-
questionType: classification.questionType,
|
|
4565
|
-
needsMultipleComponents: false,
|
|
4566
|
-
propsModified: matchResult.propsModified,
|
|
4567
|
-
queryModified: matchResult.queryModified
|
|
4568
|
-
},
|
|
4569
|
-
errors: []
|
|
4570
|
-
};
|
|
4571
4294
|
} else {
|
|
4572
|
-
|
|
4573
|
-
|
|
4574
|
-
|
|
4575
|
-
|
|
4576
|
-
|
|
4577
|
-
|
|
4578
|
-
|
|
4579
|
-
|
|
4580
|
-
|
|
4581
|
-
|
|
4582
|
-
|
|
4583
|
-
|
|
4584
|
-
|
|
4585
|
-
}
|
|
4295
|
+
logger.info(`[${this.getProviderName()}] No matching previous conversations found, proceeding to category classification`);
|
|
4296
|
+
logCollector?.info("No similar previous conversations found. Proceeding to category classification...");
|
|
4297
|
+
}
|
|
4298
|
+
logger.info(`[${this.getProviderName()}] Step 2: Classifying question category...`);
|
|
4299
|
+
logCollector?.info("Step 2: Classifying question category...");
|
|
4300
|
+
const categoryClassification = await this.classifyQuestionCategory(
|
|
4301
|
+
userPrompt,
|
|
4302
|
+
apiKey,
|
|
4303
|
+
logCollector,
|
|
4304
|
+
conversationHistory,
|
|
4305
|
+
externalTools
|
|
4306
|
+
);
|
|
4307
|
+
logger.info(
|
|
4308
|
+
`[${this.getProviderName()}] Question classified as: ${categoryClassification.category} (confidence: ${categoryClassification.confidence}%)`
|
|
4309
|
+
);
|
|
4310
|
+
logCollector?.info(
|
|
4311
|
+
`Category: ${categoryClassification.category} | Confidence: ${categoryClassification.confidence}%`
|
|
4312
|
+
);
|
|
4313
|
+
let toolsToUse = [];
|
|
4314
|
+
if (categoryClassification.externalTools && categoryClassification.externalTools.length > 0) {
|
|
4315
|
+
logger.info(`[${this.getProviderName()}] Identified ${categoryClassification.externalTools.length} external tools needed`);
|
|
4316
|
+
logCollector?.info(`Identified external tools: ${categoryClassification.externalTools.map((t) => t.name || t.type).join(", ")}`);
|
|
4317
|
+
toolsToUse = categoryClassification.externalTools?.map((t) => ({
|
|
4318
|
+
id: t.type,
|
|
4319
|
+
name: t.name,
|
|
4320
|
+
description: t.description,
|
|
4321
|
+
params: t.parameters || {},
|
|
4322
|
+
fn: (() => {
|
|
4323
|
+
const realTool = externalTools?.find((tool) => tool.id === t.type);
|
|
4324
|
+
if (realTool) {
|
|
4325
|
+
logger.info(`[${this.getProviderName()}] Using real tool implementation for ${t.type}`);
|
|
4326
|
+
return realTool.fn;
|
|
4327
|
+
} else {
|
|
4328
|
+
logger.warn(`[${this.getProviderName()}] Tool ${t.type} not found in registered tools`);
|
|
4329
|
+
return async () => ({ success: false, message: `Tool ${t.name || t.type} not registered` });
|
|
4330
|
+
}
|
|
4331
|
+
})()
|
|
4332
|
+
})) || [];
|
|
4333
|
+
}
|
|
4334
|
+
if (categoryClassification.category === "data_analysis") {
|
|
4335
|
+
logger.info(`[${this.getProviderName()}] Routing to data analysis (SELECT operations)`);
|
|
4336
|
+
logCollector?.info("Routing to data analysis...");
|
|
4337
|
+
} else if (categoryClassification.category === "data_modification") {
|
|
4338
|
+
logger.info(`[${this.getProviderName()}] Routing to data modification (INSERT/UPDATE/DELETE operations)`);
|
|
4339
|
+
logCollector?.info("Routing to data modification...");
|
|
4586
4340
|
}
|
|
4587
|
-
} catch (error) {
|
|
4588
|
-
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
4589
|
-
logger.error(`[${this.getProviderName()}] Error generating component response: ${errorMsg}`);
|
|
4590
|
-
logger.debug(`[${this.getProviderName()}] Component response generation error details:`, error);
|
|
4591
|
-
logCollector?.error(`Error generating component response: ${errorMsg}`);
|
|
4592
|
-
errors.push(errorMsg);
|
|
4593
|
-
return {
|
|
4594
|
-
success: false,
|
|
4595
|
-
errors,
|
|
4596
|
-
data: void 0
|
|
4597
|
-
};
|
|
4598
|
-
}
|
|
4599
|
-
}
|
|
4600
|
-
/**
|
|
4601
|
-
* Main orchestration function that classifies question and routes to appropriate handler
|
|
4602
|
-
* This is the NEW recommended entry point for handling user requests
|
|
4603
|
-
* Supports both component generation and text response modes
|
|
4604
|
-
*
|
|
4605
|
-
* @param responseMode - 'component' for component generation (default), 'text' for text responses
|
|
4606
|
-
* @param streamCallback - Optional callback function to receive text chunks as they stream (only for text mode)
|
|
4607
|
-
* @param collections - Collection registry for executing database queries (required for text mode)
|
|
4608
|
-
* @param externalTools - Optional array of external tools (email, calendar, etc.) that can be called (only for text mode)
|
|
4609
|
-
*/
|
|
4610
|
-
async handleUserRequest(userPrompt, components, apiKey, logCollector, conversationHistory, responseMode = "component", streamCallback, collections, externalTools) {
|
|
4611
|
-
const startTime = Date.now();
|
|
4612
|
-
logger.info(`[${this.getProviderName()}] handleUserRequest called with responseMode: ${responseMode}`);
|
|
4613
|
-
if (responseMode === "text") {
|
|
4614
|
-
logger.info(`[${this.getProviderName()}] Using text response mode`);
|
|
4615
|
-
logCollector?.info("Generating text response...");
|
|
4616
4341
|
const textResponse = await this.generateTextResponse(
|
|
4617
4342
|
userPrompt,
|
|
4618
4343
|
apiKey,
|
|
@@ -4621,40 +4346,29 @@ ${errorMsg}
|
|
|
4621
4346
|
streamCallback,
|
|
4622
4347
|
collections,
|
|
4623
4348
|
components,
|
|
4624
|
-
|
|
4349
|
+
toolsToUse
|
|
4625
4350
|
);
|
|
4626
|
-
|
|
4627
|
-
|
|
4628
|
-
|
|
4629
|
-
logger.info(`[${this.getProviderName()}] Total time taken: ${elapsedTime3}ms (${(elapsedTime3 / 1e3).toFixed(2)}s)`);
|
|
4630
|
-
logCollector?.info(`Total time taken: ${elapsedTime3}ms (${(elapsedTime3 / 1e3).toFixed(2)}s)`);
|
|
4631
|
-
return textResponse;
|
|
4632
|
-
}
|
|
4633
|
-
const elapsedTime2 = Date.now() - startTime;
|
|
4634
|
-
logger.info(`[${this.getProviderName()}] Text response generated successfully`);
|
|
4635
|
-
logger.info(`[${this.getProviderName()}] Total time taken: ${elapsedTime2}ms (${(elapsedTime2 / 1e3).toFixed(2)}s)`);
|
|
4636
|
-
logCollector?.info(`Total time taken: ${elapsedTime2}ms (${(elapsedTime2 / 1e3).toFixed(2)}s)`);
|
|
4351
|
+
const elapsedTime = Date.now() - startTime;
|
|
4352
|
+
logger.info(`[${this.getProviderName()}] Total time taken: ${elapsedTime}ms (${(elapsedTime / 1e3).toFixed(2)}s)`);
|
|
4353
|
+
logCollector?.info(`Total time taken: ${elapsedTime}ms (${(elapsedTime / 1e3).toFixed(2)}s)`);
|
|
4637
4354
|
return textResponse;
|
|
4355
|
+
} catch (error) {
|
|
4356
|
+
const errorMsg = error instanceof Error ? error.message : String(error);
|
|
4357
|
+
logger.error(`[${this.getProviderName()}] Error in handleUserRequest: ${errorMsg}`);
|
|
4358
|
+
logger.debug(`[${this.getProviderName()}] Error details:`, error);
|
|
4359
|
+
logCollector?.error(`Error processing request: ${errorMsg}`);
|
|
4360
|
+
const elapsedTime = Date.now() - startTime;
|
|
4361
|
+
logger.info(`[${this.getProviderName()}] Total time taken: ${elapsedTime}ms (${(elapsedTime / 1e3).toFixed(2)}s)`);
|
|
4362
|
+
logCollector?.info(`Total time taken: ${elapsedTime}ms (${(elapsedTime / 1e3).toFixed(2)}s)`);
|
|
4363
|
+
return {
|
|
4364
|
+
success: false,
|
|
4365
|
+
errors: [errorMsg],
|
|
4366
|
+
data: {
|
|
4367
|
+
text: "I apologize, but I encountered an error processing your request. Please try again.",
|
|
4368
|
+
method: `${this.getProviderName()}-orchestration-error`
|
|
4369
|
+
}
|
|
4370
|
+
};
|
|
4638
4371
|
}
|
|
4639
|
-
const componentResponse = await this.generateComponentResponse(
|
|
4640
|
-
userPrompt,
|
|
4641
|
-
components,
|
|
4642
|
-
apiKey,
|
|
4643
|
-
logCollector,
|
|
4644
|
-
conversationHistory
|
|
4645
|
-
);
|
|
4646
|
-
if (!componentResponse.success) {
|
|
4647
|
-
const elapsedTime2 = Date.now() - startTime;
|
|
4648
|
-
logger.error(`[${this.getProviderName()}] Component response generation failed`);
|
|
4649
|
-
logger.info(`[${this.getProviderName()}] Total time taken: ${elapsedTime2}ms (${(elapsedTime2 / 1e3).toFixed(2)}s)`);
|
|
4650
|
-
logCollector?.info(`Total time taken: ${elapsedTime2}ms (${(elapsedTime2 / 1e3).toFixed(2)}s)`);
|
|
4651
|
-
return componentResponse;
|
|
4652
|
-
}
|
|
4653
|
-
const elapsedTime = Date.now() - startTime;
|
|
4654
|
-
logger.info(`[${this.getProviderName()}] Component response generated successfully`);
|
|
4655
|
-
logger.info(`[${this.getProviderName()}] Total time taken: ${elapsedTime}ms (${(elapsedTime / 1e3).toFixed(2)}s)`);
|
|
4656
|
-
logCollector?.info(`Total time taken: ${elapsedTime}ms (${(elapsedTime / 1e3).toFixed(2)}s)`);
|
|
4657
|
-
return componentResponse;
|
|
4658
4372
|
}
|
|
4659
4373
|
/**
|
|
4660
4374
|
* Generate next questions that the user might ask based on the original prompt and generated component
|
|
@@ -4767,7 +4481,7 @@ function getLLMProviders() {
|
|
|
4767
4481
|
return DEFAULT_PROVIDERS;
|
|
4768
4482
|
}
|
|
4769
4483
|
}
|
|
4770
|
-
var useAnthropicMethod = async (prompt, components, apiKey, logCollector, conversationHistory, responseMode = "component", streamCallback, collections, externalTools) => {
|
|
4484
|
+
var useAnthropicMethod = async (prompt, components, apiKey, logCollector, conversationHistory, responseMode = "component", streamCallback, collections, externalTools, userId) => {
|
|
4771
4485
|
logger.debug("[useAnthropicMethod] Initializing Anthropic Claude matching method");
|
|
4772
4486
|
logger.debug(`[useAnthropicMethod] Response mode: ${responseMode}`);
|
|
4773
4487
|
const msg = `Using Anthropic Claude ${responseMode === "text" ? "text response" : "matching"} method...`;
|
|
@@ -4779,11 +4493,11 @@ var useAnthropicMethod = async (prompt, components, apiKey, logCollector, conver
|
|
|
4779
4493
|
return { success: false, errors: [emptyMsg] };
|
|
4780
4494
|
}
|
|
4781
4495
|
logger.debug(`[useAnthropicMethod] Processing with ${components.length} components`);
|
|
4782
|
-
const matchResult = await anthropicLLM.handleUserRequest(prompt, components, apiKey, logCollector, conversationHistory, responseMode, streamCallback, collections, externalTools);
|
|
4496
|
+
const matchResult = await anthropicLLM.handleUserRequest(prompt, components, apiKey, logCollector, conversationHistory, responseMode, streamCallback, collections, externalTools, userId);
|
|
4783
4497
|
logger.info(`[useAnthropicMethod] Successfully generated ${responseMode} using Anthropic`);
|
|
4784
4498
|
return matchResult;
|
|
4785
4499
|
};
|
|
4786
|
-
var useGroqMethod = async (prompt, components, apiKey, logCollector, conversationHistory, responseMode = "component", streamCallback, collections, externalTools) => {
|
|
4500
|
+
var useGroqMethod = async (prompt, components, apiKey, logCollector, conversationHistory, responseMode = "component", streamCallback, collections, externalTools, userId) => {
|
|
4787
4501
|
logger.debug("[useGroqMethod] Initializing Groq LLM matching method");
|
|
4788
4502
|
logger.debug(`[useGroqMethod] Response mode: ${responseMode}`);
|
|
4789
4503
|
const msg = `Using Groq LLM ${responseMode === "text" ? "text response" : "matching"} method...`;
|
|
@@ -4796,14 +4510,14 @@ var useGroqMethod = async (prompt, components, apiKey, logCollector, conversatio
|
|
|
4796
4510
|
return { success: false, errors: [emptyMsg] };
|
|
4797
4511
|
}
|
|
4798
4512
|
logger.debug(`[useGroqMethod] Processing with ${components.length} components`);
|
|
4799
|
-
const matchResult = await groqLLM.handleUserRequest(prompt, components, apiKey, logCollector, conversationHistory, responseMode, streamCallback, collections, externalTools);
|
|
4513
|
+
const matchResult = await groqLLM.handleUserRequest(prompt, components, apiKey, logCollector, conversationHistory, responseMode, streamCallback, collections, externalTools, userId);
|
|
4800
4514
|
logger.info(`[useGroqMethod] Successfully generated ${responseMode} using Groq`);
|
|
4801
4515
|
return matchResult;
|
|
4802
4516
|
};
|
|
4803
4517
|
var getUserResponseFromCache = async (prompt) => {
|
|
4804
4518
|
return false;
|
|
4805
4519
|
};
|
|
4806
|
-
var get_user_response = async (prompt, components, anthropicApiKey, groqApiKey, llmProviders, logCollector, conversationHistory, responseMode = "component", streamCallback, collections, externalTools) => {
|
|
4520
|
+
var get_user_response = async (prompt, components, anthropicApiKey, groqApiKey, llmProviders, logCollector, conversationHistory, responseMode = "component", streamCallback, collections, externalTools, userId) => {
|
|
4807
4521
|
logger.debug(`[get_user_response] Starting user response generation for prompt: "${prompt.substring(0, 50)}..."`);
|
|
4808
4522
|
logger.debug(`[get_user_response] Response mode: ${responseMode}`);
|
|
4809
4523
|
logger.debug("[get_user_response] Checking cache for existing response");
|
|
@@ -4836,9 +4550,9 @@ var get_user_response = async (prompt, components, anthropicApiKey, groqApiKey,
|
|
|
4836
4550
|
logCollector?.info(attemptMsg);
|
|
4837
4551
|
let result;
|
|
4838
4552
|
if (provider === "anthropic") {
|
|
4839
|
-
result = await useAnthropicMethod(prompt, components, anthropicApiKey, logCollector, conversationHistory, responseMode, streamCallback, collections, externalTools);
|
|
4553
|
+
result = await useAnthropicMethod(prompt, components, anthropicApiKey, logCollector, conversationHistory, responseMode, streamCallback, collections, externalTools, userId);
|
|
4840
4554
|
} else if (provider === "groq") {
|
|
4841
|
-
result = await useGroqMethod(prompt, components, groqApiKey, logCollector, conversationHistory, responseMode, streamCallback, collections, externalTools);
|
|
4555
|
+
result = await useGroqMethod(prompt, components, groqApiKey, logCollector, conversationHistory, responseMode, streamCallback, collections, externalTools, userId);
|
|
4842
4556
|
} else {
|
|
4843
4557
|
logger.warn(`[get_user_response] Unknown provider: ${provider} - skipping`);
|
|
4844
4558
|
errors.push(`Unknown provider: ${provider}`);
|
|
@@ -5055,6 +4769,111 @@ var UILogCollector = class {
|
|
|
5055
4769
|
}
|
|
5056
4770
|
};
|
|
5057
4771
|
|
|
4772
|
+
// src/utils/conversation-saver.ts
|
|
4773
|
+
async function saveConversation(params) {
|
|
4774
|
+
const { userId, userPrompt, uiblock, uiBlockId, threadId, collections } = params;
|
|
4775
|
+
if (!userId) {
|
|
4776
|
+
logger.warn("[CONVERSATION_SAVER] Skipping save: userId not provided");
|
|
4777
|
+
return {
|
|
4778
|
+
success: false,
|
|
4779
|
+
error: "userId is required"
|
|
4780
|
+
};
|
|
4781
|
+
}
|
|
4782
|
+
if (!userPrompt) {
|
|
4783
|
+
logger.warn("[CONVERSATION_SAVER] Skipping save: userPrompt not provided");
|
|
4784
|
+
return {
|
|
4785
|
+
success: false,
|
|
4786
|
+
error: "userPrompt is required"
|
|
4787
|
+
};
|
|
4788
|
+
}
|
|
4789
|
+
if (!uiblock) {
|
|
4790
|
+
logger.warn("[CONVERSATION_SAVER] Skipping save: uiblock not provided");
|
|
4791
|
+
return {
|
|
4792
|
+
success: false,
|
|
4793
|
+
error: "uiblock is required"
|
|
4794
|
+
};
|
|
4795
|
+
}
|
|
4796
|
+
if (!threadId) {
|
|
4797
|
+
logger.warn("[CONVERSATION_SAVER] Skipping save: threadId not provided");
|
|
4798
|
+
return {
|
|
4799
|
+
success: false,
|
|
4800
|
+
error: "threadId is required"
|
|
4801
|
+
};
|
|
4802
|
+
}
|
|
4803
|
+
if (!uiBlockId) {
|
|
4804
|
+
logger.warn("[CONVERSATION_SAVER] Skipping save: uiBlockId not provided");
|
|
4805
|
+
return {
|
|
4806
|
+
success: false,
|
|
4807
|
+
error: "uiBlockId is required"
|
|
4808
|
+
};
|
|
4809
|
+
}
|
|
4810
|
+
if (!collections?.["user-conversations"]?.["create"]) {
|
|
4811
|
+
logger.debug('[CONVERSATION_SAVER] Collection "user-conversations.create" not available, skipping save');
|
|
4812
|
+
return {
|
|
4813
|
+
success: false,
|
|
4814
|
+
error: "user-conversations.create collection not available"
|
|
4815
|
+
};
|
|
4816
|
+
}
|
|
4817
|
+
try {
|
|
4818
|
+
logger.info(`[CONVERSATION_SAVER] Saving conversation for userId: ${userId}, uiBlockId: ${uiBlockId}, threadId: ${threadId}`);
|
|
4819
|
+
const userIdNumber = Number(userId);
|
|
4820
|
+
if (isNaN(userIdNumber)) {
|
|
4821
|
+
logger.warn(`[CONVERSATION_SAVER] Invalid userId: ${userId} (not a valid number)`);
|
|
4822
|
+
return {
|
|
4823
|
+
success: false,
|
|
4824
|
+
error: `Invalid userId: ${userId} (not a valid number)`
|
|
4825
|
+
};
|
|
4826
|
+
}
|
|
4827
|
+
const saveResult = await collections["user-conversations"]["create"]({
|
|
4828
|
+
userId: userIdNumber,
|
|
4829
|
+
userPrompt,
|
|
4830
|
+
uiblock,
|
|
4831
|
+
threadId
|
|
4832
|
+
});
|
|
4833
|
+
if (!saveResult?.success) {
|
|
4834
|
+
logger.warn(`[CONVERSATION_SAVER] Failed to save conversation to PostgreSQL: ${saveResult?.message || "Unknown error"}`);
|
|
4835
|
+
return {
|
|
4836
|
+
success: false,
|
|
4837
|
+
error: saveResult?.message || "Unknown error from backend"
|
|
4838
|
+
};
|
|
4839
|
+
}
|
|
4840
|
+
logger.info(`[CONVERSATION_SAVER] Successfully saved conversation to PostgreSQL, id: ${saveResult.data?.id}`);
|
|
4841
|
+
if (collections?.["conversation-history"]?.["embed"]) {
|
|
4842
|
+
try {
|
|
4843
|
+
logger.info("[CONVERSATION_SAVER] Creating embedding for semantic search...");
|
|
4844
|
+
const embedResult = await collections["conversation-history"]["embed"]({
|
|
4845
|
+
uiBlockId,
|
|
4846
|
+
userPrompt,
|
|
4847
|
+
uiBlock: uiblock,
|
|
4848
|
+
userId: userIdNumber
|
|
4849
|
+
});
|
|
4850
|
+
if (embedResult?.success) {
|
|
4851
|
+
logger.info("[CONVERSATION_SAVER] Successfully created embedding");
|
|
4852
|
+
} else {
|
|
4853
|
+
logger.warn("[CONVERSATION_SAVER] Failed to create embedding:", embedResult?.error || "Unknown error");
|
|
4854
|
+
}
|
|
4855
|
+
} catch (embedError) {
|
|
4856
|
+
const embedErrorMsg = embedError instanceof Error ? embedError.message : String(embedError);
|
|
4857
|
+
logger.warn("[CONVERSATION_SAVER] Error creating embedding:", embedErrorMsg);
|
|
4858
|
+
}
|
|
4859
|
+
} else {
|
|
4860
|
+
logger.debug("[CONVERSATION_SAVER] Embedding collection not available, skipping ChromaDB storage");
|
|
4861
|
+
}
|
|
4862
|
+
return {
|
|
4863
|
+
success: true,
|
|
4864
|
+
conversationId: saveResult.data?.id,
|
|
4865
|
+
message: "Conversation saved successfully"
|
|
4866
|
+
};
|
|
4867
|
+
} catch (error) {
|
|
4868
|
+
const errorMessage = error instanceof Error ? error.message : String(error);
|
|
4869
|
+
logger.error("[CONVERSATION_SAVER] Error saving conversation:", errorMessage);
|
|
4870
|
+
return {
|
|
4871
|
+
success: false,
|
|
4872
|
+
error: errorMessage
|
|
4873
|
+
};
|
|
4874
|
+
}
|
|
4875
|
+
}
|
|
4876
|
+
|
|
5058
4877
|
// src/config/context.ts
|
|
5059
4878
|
var CONTEXT_CONFIG = {
|
|
5060
4879
|
/**
|
|
@@ -5066,7 +4885,7 @@ var CONTEXT_CONFIG = {
|
|
|
5066
4885
|
};
|
|
5067
4886
|
|
|
5068
4887
|
// src/handlers/user-prompt-request.ts
|
|
5069
|
-
var get_user_request = async (data, components, sendMessage, anthropicApiKey, groqApiKey, llmProviders, collections, externalTools) => {
|
|
4888
|
+
var get_user_request = async (data, components, sendMessage, anthropicApiKey, groqApiKey, llmProviders, collections, externalTools, userId) => {
|
|
5070
4889
|
const errors = [];
|
|
5071
4890
|
logger.debug("[USER_PROMPT_REQ] Parsing incoming message data");
|
|
5072
4891
|
const parseResult = UserPromptRequestMessageSchema.safeParse(data);
|
|
@@ -5147,7 +4966,8 @@ var get_user_request = async (data, components, sendMessage, anthropicApiKey, gr
|
|
|
5147
4966
|
responseMode,
|
|
5148
4967
|
streamCallback,
|
|
5149
4968
|
collections,
|
|
5150
|
-
externalTools
|
|
4969
|
+
externalTools,
|
|
4970
|
+
userId
|
|
5151
4971
|
);
|
|
5152
4972
|
logCollector.info("User prompt request completed");
|
|
5153
4973
|
const uiBlockId = existingUiBlockId;
|
|
@@ -5198,6 +5018,34 @@ var get_user_request = async (data, components, sendMessage, anthropicApiKey, gr
|
|
|
5198
5018
|
}
|
|
5199
5019
|
thread.addUIBlock(uiBlock);
|
|
5200
5020
|
logger.info(`Created UIBlock: ${uiBlockId} in Thread: ${threadId}`);
|
|
5021
|
+
if (userId) {
|
|
5022
|
+
const responseMethod = userResponse.data?.method || "";
|
|
5023
|
+
const semanticSimilarity = userResponse.data?.semanticSimilarity || 0;
|
|
5024
|
+
const isExactMatch = responseMethod.includes("semantic-match") && semanticSimilarity >= 0.99;
|
|
5025
|
+
if (isExactMatch) {
|
|
5026
|
+
logger.info(
|
|
5027
|
+
`Skipping conversation save - response from exact semantic match (${(semanticSimilarity * 100).toFixed(2)}% similarity)`
|
|
5028
|
+
);
|
|
5029
|
+
logCollector.info(
|
|
5030
|
+
`Using exact cached result (${(semanticSimilarity * 100).toFixed(2)}% match) - not saving duplicate conversation`
|
|
5031
|
+
);
|
|
5032
|
+
} else {
|
|
5033
|
+
const uiBlockData = uiBlock.toJSON();
|
|
5034
|
+
const saveResult = await saveConversation({
|
|
5035
|
+
userId,
|
|
5036
|
+
userPrompt: prompt,
|
|
5037
|
+
uiblock: uiBlockData,
|
|
5038
|
+
uiBlockId,
|
|
5039
|
+
threadId,
|
|
5040
|
+
collections
|
|
5041
|
+
});
|
|
5042
|
+
if (saveResult.success) {
|
|
5043
|
+
logger.info(`Conversation saved with ID: ${saveResult.conversationId}`);
|
|
5044
|
+
} else {
|
|
5045
|
+
logger.warn(`Failed to save conversation: ${saveResult.error}`);
|
|
5046
|
+
}
|
|
5047
|
+
}
|
|
5048
|
+
}
|
|
5201
5049
|
return {
|
|
5202
5050
|
success: userResponse.success,
|
|
5203
5051
|
data: userResponse.data,
|
|
@@ -5208,8 +5056,8 @@ var get_user_request = async (data, components, sendMessage, anthropicApiKey, gr
|
|
|
5208
5056
|
wsId
|
|
5209
5057
|
};
|
|
5210
5058
|
};
|
|
5211
|
-
async function handleUserPromptRequest(data, components, sendMessage, anthropicApiKey, groqApiKey, llmProviders, collections, externalTools) {
|
|
5212
|
-
const response = await get_user_request(data, components, sendMessage, anthropicApiKey, groqApiKey, llmProviders, collections, externalTools);
|
|
5059
|
+
async function handleUserPromptRequest(data, components, sendMessage, anthropicApiKey, groqApiKey, llmProviders, collections, externalTools, userId) {
|
|
5060
|
+
const response = await get_user_request(data, components, sendMessage, anthropicApiKey, groqApiKey, llmProviders, collections, externalTools, userId);
|
|
5213
5061
|
sendDataResponse4(
|
|
5214
5062
|
response.id || data.id,
|
|
5215
5063
|
{
|
|
@@ -7439,7 +7287,7 @@ var SuperatomSDK = class {
|
|
|
7439
7287
|
});
|
|
7440
7288
|
break;
|
|
7441
7289
|
case "USER_PROMPT_REQ":
|
|
7442
|
-
handleUserPromptRequest(parsed, this.components, (msg) => this.send(msg), this.anthropicApiKey, this.groqApiKey, this.llmProviders, this.collections, this.tools).catch((error) => {
|
|
7290
|
+
handleUserPromptRequest(parsed, this.components, (msg) => this.send(msg), this.anthropicApiKey, this.groqApiKey, this.llmProviders, this.collections, this.tools, this.userId).catch((error) => {
|
|
7443
7291
|
logger.error("Failed to handle user prompt request:", error);
|
|
7444
7292
|
});
|
|
7445
7293
|
break;
|