@studious-lms/server 1.1.11 → 1.1.13

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,65 @@
1
+ import { prisma } from '../lib/prisma.js';
2
+ import { logger } from './logger.js';
3
+
4
+ const AI_USER_ID = 'AI_ASSISTANT';
5
+
6
+ /**
7
+ * Ensure AI assistant user exists in the database
8
+ */
9
+ export async function ensureAIUserExists(): Promise<void> {
10
+ try {
11
+ // Check if AI user already exists
12
+ const existingAIUser = await prisma.user.findUnique({
13
+ where: { id: AI_USER_ID },
14
+ });
15
+
16
+ if (existingAIUser) {
17
+ return; // AI user already exists
18
+ }
19
+
20
+ // Create AI user
21
+ await prisma.user.create({
22
+ data: {
23
+ id: AI_USER_ID,
24
+ username: 'ai-assistant',
25
+ email: 'ai@studious-lms.com',
26
+ password: 'ai-system-user', // Not used for login
27
+ verified: true,
28
+ role: 'NONE', // Special role for AI
29
+ profile: {
30
+ create: {
31
+ displayName: 'AI Assistant',
32
+ bio: 'Intelligent assistant for lab chats and educational support',
33
+ profilePicture: null,
34
+ },
35
+ },
36
+ },
37
+ });
38
+
39
+ logger.info('AI user created successfully', { userId: AI_USER_ID });
40
+
41
+ } catch (error) {
42
+ // If user already exists (race condition), that's okay
43
+ if (error instanceof Error && error.message.includes('unique constraint')) {
44
+ logger.info('AI user already exists (race condition handled)');
45
+ return;
46
+ }
47
+
48
+ logger.error('Failed to create AI user', { error });
49
+ throw error;
50
+ }
51
+ }
52
+
53
+ /**
54
+ * Get the AI user ID
55
+ */
56
+ export function getAIUserId(): string {
57
+ return AI_USER_ID;
58
+ }
59
+
60
+ /**
61
+ * Check if a user ID belongs to the AI assistant
62
+ */
63
+ export function isAIUser(userId: string): boolean {
64
+ return userId === AI_USER_ID;
65
+ }
@@ -0,0 +1,193 @@
1
+ import OpenAI from 'openai';
2
+ import { logger } from './logger.js';
3
+ import { prisma } from '../lib/prisma.js';
4
+ import { pusher } from '../lib/pusher.js';
5
+ import { ensureAIUserExists, getAIUserId } from './aiUser.js';
6
+
7
+ // Initialize inference client (Cohere via OpenAI SDK)
8
+
9
+ logger.info('Inference API Key', { apiKey: process.env.INFERENCE_API_KEY });
10
+ logger.info('Inference API Base URL', { baseURL: process.env.INFERENCE_API_BASE_URL });
11
+
12
+ export const inferenceClient = new OpenAI({
13
+ apiKey: process.env.INFERENCE_API_KEY,
14
+ baseURL: process.env.INFERENCE_API_BASE_URL,
15
+ });
16
+
17
+ // Types for lab chat context
18
+ export interface LabChatContext {
19
+ subject: string;
20
+ topic: string;
21
+ difficulty: 'beginner' | 'intermediate' | 'advanced';
22
+ objectives: string[];
23
+ resources?: string[];
24
+ persona: string;
25
+ constraints: string[];
26
+ examples?: any[];
27
+ metadata?: Record<string, any>;
28
+ }
29
+
30
+ export interface InferenceResponse {
31
+ content: string;
32
+ model: string;
33
+ tokensUsed: number;
34
+ finishReason: string;
35
+ }
36
+
37
+ /**
38
+ * Centralized function to send AI messages to conversations
39
+ * Handles database storage and Pusher broadcasting
40
+ */
41
+ export async function sendAIMessage(
42
+ content: string,
43
+ conversationId: string,
44
+ options: {
45
+ subject?: string;
46
+ customSender?: {
47
+ displayName: string;
48
+ profilePicture?: string | null;
49
+ };
50
+ } = {}
51
+ ): Promise<{
52
+ id: string;
53
+ content: string;
54
+ senderId: string;
55
+ conversationId: string;
56
+ createdAt: Date;
57
+ }> {
58
+ // Ensure AI user exists
59
+ await ensureAIUserExists();
60
+
61
+ // Create message in database
62
+ const aiMessage = await prisma.message.create({
63
+ data: {
64
+ content,
65
+ senderId: getAIUserId(),
66
+ conversationId,
67
+ },
68
+ });
69
+
70
+ logger.info('AI Message sent', {
71
+ messageId: aiMessage.id,
72
+ conversationId,
73
+ contentLength: content.length,
74
+ });
75
+
76
+ // Prepare sender info
77
+ const senderInfo = {
78
+ id: getAIUserId(),
79
+ username: 'AI Assistant',
80
+ profile: {
81
+ displayName: options.customSender?.displayName || `${options.subject || 'AI'} Assistant`,
82
+ profilePicture: options.customSender?.profilePicture || null,
83
+ },
84
+ };
85
+
86
+ // Broadcast via Pusher
87
+ try {
88
+ await pusher.trigger(`conversation-${conversationId}`, 'new-message', {
89
+ id: aiMessage.id,
90
+ content: aiMessage.content,
91
+ senderId: getAIUserId(),
92
+ conversationId: aiMessage.conversationId,
93
+ createdAt: aiMessage.createdAt,
94
+ sender: senderInfo,
95
+ mentionedUserIds: [],
96
+ });
97
+ } catch (error) {
98
+ logger.error('Failed to broadcast AI message:', { error, messageId: aiMessage.id });
99
+ }
100
+
101
+ return {
102
+ id: aiMessage.id,
103
+ content: aiMessage.content,
104
+ senderId: getAIUserId(),
105
+ conversationId: aiMessage.conversationId,
106
+ createdAt: aiMessage.createdAt,
107
+ };
108
+ }
109
+
110
+ /**
111
+ * Simple inference function for general use
112
+ */
113
+ export async function generateInferenceResponse(
114
+ subject: string,
115
+ question: string,
116
+ options: {
117
+ model?: string;
118
+ maxTokens?: number;
119
+ } = {}
120
+ ): Promise<InferenceResponse> {
121
+ const { model = 'command-r-plus', maxTokens = 500 } = options;
122
+
123
+ try {
124
+ const completion = await inferenceClient.chat.completions.create({
125
+ model,
126
+ messages: [
127
+ {
128
+ role: 'system',
129
+ content: `You are a helpful educational assistant for ${subject}. Provide clear, concise, and accurate answers. Keep responses educational and appropriate for students.`,
130
+ },
131
+ {
132
+ role: 'user',
133
+ content: question,
134
+ },
135
+ ],
136
+ max_tokens: maxTokens,
137
+ temperature: 0.5,
138
+ // Remove OpenAI-specific parameters for Cohere compatibility
139
+ });
140
+
141
+ const response = completion.choices[0]?.message?.content;
142
+
143
+ if (!response) {
144
+ throw new Error('No response generated from inference API');
145
+ }
146
+
147
+ return {
148
+ content: response,
149
+ model,
150
+ tokensUsed: completion.usage?.total_tokens || 0,
151
+ finishReason: completion.choices[0]?.finish_reason || 'unknown',
152
+ };
153
+
154
+ } catch (error) {
155
+ logger.error('Failed to generate inference response', { error, subject, question: question.substring(0, 50) + '...' });
156
+ throw error;
157
+ }
158
+ }
159
+
160
+ /**
161
+ * Validate inference configuration
162
+ */
163
+ export function validateInferenceConfig(): boolean {
164
+ if (!process.env.INFERENCE_API_KEY) {
165
+ logger.error('Inference API key not configured for Cohere');
166
+ return false;
167
+ }
168
+ return true;
169
+ }
170
+
171
+ /**
172
+ * Get available inference models (for admin/config purposes)
173
+ */
174
+ export async function getAvailableModels(): Promise<string[]> {
175
+ try {
176
+ const models = await inferenceClient.models.list();
177
+ return models.data
178
+ .filter(model => model.id.includes('command'))
179
+ .map(model => model.id)
180
+ .sort();
181
+ } catch (error) {
182
+ logger.error('Failed to fetch inference models', { error });
183
+ return ['command-r-plus', 'command-r', 'command-light']; // Fallback Cohere models
184
+ }
185
+ }
186
+
187
+ /**
188
+ * Estimate token count for a message (rough approximation)
189
+ */
190
+ export function estimateTokenCount(text: string): number {
191
+ // Rough approximation: 1 token ≈ 4 characters for English text
192
+ return Math.ceil(text.length / 4);
193
+ }