@storecraft/database-mongodb 1.0.11 → 1.0.12

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -8,6 +8,7 @@
8
8
  [![MongoDB](https://github.com/store-craft/storecraft/actions/workflows/test.database-mongodb.yml/badge.svg)](https://github.com/store-craft/storecraft/actions/workflows/test.database-mongodb.yml)
9
9
 
10
10
  Official `mongodb` driver for `StoreCraft` on **Node.js** / **Deno** / **Bun** platforms.
11
+ Also, an example of [Semantic Vector Search](https://www.mongodb.com/developer/products/atlas/semantic-search-mongodb-atlas-vector-search/) extension at `@storecraft/database-mongodb/vector-search-extension`
11
12
 
12
13
  ```bash
13
14
  npm i @storecraft/database-mongodb
@@ -20,8 +21,10 @@ import 'dotenv/config';
20
21
  import http from "node:http";
21
22
  import { App } from '@storecraft/core'
22
23
  import { NodePlatform } from '@storecraft/core/platform/node';
23
- import { MongoDB, migrateToLatest } from '@storecraft/database-mongodb'
24
+ import { MongoDB } from '@storecraft/database-mongodb'
25
+ import { migrateToLatest } from '@storecraft/database-mongodb/migrate.js'
24
26
  import { NodeLocalStorage } from '@storecraft/core/storage/node'
27
+ import { MongoVectorSearch } from '@storecraft/database-mongodb/vector-search-extension'
25
28
 
26
29
  const app = new App(
27
30
  {
@@ -32,6 +35,9 @@ const app = new App(
32
35
  )
33
36
  .withPlatform(new NodePlatform())
34
37
  .withDatabase(new MongoDB({ db_name: 'test', url: '...', options: {}}))
38
+ .withExtensions(
39
+ 'mongo-vector-search': new MongoVectorSearch({ openai_key: process.env.OPENAI })
40
+ )
35
41
 
36
42
  await app.init();
37
43
  await migrateToLatest(app.db, false);
@@ -45,6 +51,63 @@ const server = http.createServer(app.handler).listen(
45
51
 
46
52
  ```
47
53
 
54
+ ## (Recommended) setup semantic/ai vector search extension for products
55
+
56
+ 1. in [Atlas](https://cloud.mongodb.com/) dashboard, create a vector index (call it `vector_index`) for `products` collection:
57
+
58
+ ```json
59
+ {
60
+ "fields": [
61
+ {
62
+ "numDimensions": 1536,
63
+ "path": "embedding",
64
+ "similarity": "cosine",
65
+ "type": "vector"
66
+ }
67
+ ]
68
+ }
69
+ ```
70
+
71
+ 2. Now, every upserted product will be eligible for semantic search by it's title + description.
72
+ 3. The extension is publicly available via HTTP (`POST` request)
73
+ ```js
74
+ await fetch(
75
+ 'http://localhost:8000/api/extensions/mongo-vector-search/search',
76
+ {
77
+ method: 'POST',
78
+ body: JSON.stringify(
79
+ {
80
+ query: 'I am interested in Nintendo related clothing, such as shirts',
81
+ limit: 1
82
+ }
83
+ )
84
+ }
85
+ )
86
+ ```
87
+
88
+ returns `ProductType[]` array
89
+
90
+ ```json
91
+ [
92
+ {
93
+ "title": "Super Mario T Shirt",
94
+ "handle": "super-mario-t-shirt",
95
+ "description": "This Super mario shirt is XL size and
96
+ features a colorful print of Lugi and Mario.",
97
+ "media": [
98
+ "storage://images/super-mario-shirt_1738686680944_w_819_h_460.jpeg"
99
+ ],
100
+ "price": 100,
101
+ "qty": 1,
102
+ "active": true,
103
+ "id": "pr_67a240e4000000d34bcf0743",
104
+ "created_at": "2025-02-04T16:31:32.909Z",
105
+ "updated_at": "2025-02-04T16:58:25.286Z"
106
+ }
107
+ ]
108
+ ```
109
+
110
+
48
111
  ```text
49
112
  Author: Tomer Shalev <tomer.shalev@gmail.com>
50
113
  ```
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@storecraft/database-mongodb",
3
- "version": "1.0.11",
3
+ "version": "1.0.12",
4
4
  "description": "Storecraft database driver for mongodb on node / bun / deno platform",
5
5
  "license": "MIT",
6
6
  "author": "Tomer Shalev (https://github.com/store-craft)",
@@ -19,6 +19,15 @@
19
19
  "type": "module",
20
20
  "main": "index.js",
21
21
  "types": "./types.public.d.ts",
22
+ "exports": {
23
+ ".": {
24
+ "import": "./index.js",
25
+ "types": "./types.public.d.ts"
26
+ },
27
+ "./*": {
28
+ "import": "./*"
29
+ }
30
+ },
22
31
  "scripts": {
23
32
  "database-mongodb:test": "node ./tests/runner.test.js",
24
33
  "test": "npm run database-mongodb:test",
@@ -0,0 +1,110 @@
1
+ /**
2
+ * @import {extension} from '@storecraft/core/extensions'
3
+ */
4
+ import { MongoDB } from './index.js';
5
+ /**
6
+ *
7
+ * @typedef {object} Config
8
+ * @property {string} openai_key OpenAI key
9
+ */
10
+
11
+ /**
12
+ * @implements {extension<Config>}
13
+ */
14
+ export class MongoVectorSearch {
15
+ /** @param {Config} config */
16
+ constructor(config) {
17
+ this.config = config
18
+ }
19
+
20
+ info = {
21
+ name: 'Mongo Vector Search',
22
+ }
23
+
24
+ /** @type {extension["onInit"]} */
25
+ onInit = (app) => {
26
+ this.app = app;
27
+
28
+ app.pubsub.on(
29
+ 'products/upsert',
30
+ async (evt) => {
31
+ const product = evt.payload.current;
32
+ // @ts-ignore
33
+ product.embedding = await embed_text(
34
+ `This product's title is ${product.title}, it's price is
35
+ ${product.price} and has the following description
36
+ ${product.description}`
37
+ );
38
+ console.log('Update Product ' + product.handle);
39
+ }
40
+ )
41
+ }
42
+
43
+ /** @type {extension["invokeAction"]} */
44
+ invokeAction = (handle) => {
45
+
46
+ if (handle==='search') {
47
+ /** @param {{query: string, limit:number}} args */
48
+ return async (args) => {
49
+
50
+ const db = (/** @type {MongoDB} */ (this.app.db));
51
+
52
+ return db.collection('products').aggregate(
53
+ [
54
+ {
55
+ "$vectorSearch": {
56
+ queryVector: await embed_text(
57
+ args.query, this.config.openai_key
58
+ ),
59
+ path: "embedding",
60
+ exact: true,
61
+ limit: args.limit ?? 1,
62
+ index: "vector_index",
63
+ },
64
+ },
65
+ {
66
+ "$project": {
67
+ embedding: 0, _relations: 0, _id: 0
68
+ }
69
+ }
70
+ ],
71
+ ).toArray();
72
+
73
+ }
74
+ }
75
+ }
76
+
77
+ }
78
+
79
+
80
+ /**
81
+ *
82
+ * @param {string} text
83
+ * @param {string} openai_key
84
+ * @returns {Promise<number[]>} 1536 vector
85
+ */
86
+ export const embed_text = async (text = 'hello', openai_key) => {
87
+
88
+ const r = await fetch(
89
+ 'https://api.openai.com/v1/embeddings',
90
+ {
91
+ method: 'POST',
92
+ headers: {
93
+ 'Authorization': `Bearer ${openai_key}`,
94
+ 'Content-Type': 'application/json'
95
+ },
96
+ body: JSON.stringify(
97
+ {
98
+ input: text,
99
+ model: 'text-embedding-3-small',
100
+ encoding_format: 'float',
101
+ dimensions: 1536
102
+ }
103
+ )
104
+ }
105
+ );
106
+
107
+ const json = await r.json();
108
+
109
+ return json.data?.[0]?.embedding;
110
+ }