@stdlib/stats-incr-pcorrmat 0.0.7 → 0.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/LICENSE CHANGED
@@ -175,307 +175,3 @@
175
175
  of your accepting any such warranty or additional liability.
176
176
 
177
177
  END OF TERMS AND CONDITIONS
178
-
179
-
180
-
181
- Boost Software License - Version 1.0 - August 17th, 2003
182
-
183
- Permission is hereby granted, free of charge, to any person or organization
184
- obtaining a copy of the software and accompanying documentation covered by this
185
- license (the "Software") to use, reproduce, display, distribute, execute, and
186
- transmit the Software, and to prepare derivative works of the Software, and to
187
- permit third-parties to whom the Software is furnished to do so, all subject to
188
- the following:
189
-
190
- The copyright notices in the Software and this entire statement, including the
191
- above license grant, this restriction and the following disclaimer, must be
192
- included in all copies of the Software, in whole or in part, and all derivative
193
- works of the Software, unless such copies or derivative works are solely in the
194
- form of machine-executable object code generated by a source language processor.
195
-
196
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
197
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
198
- FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL THE
199
- COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES
200
- OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
201
- OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
202
-
203
-
204
-
205
-
206
- DEPENDENCIES
207
-
208
- The library links against the following external libraries, which have their own
209
- licenses:
210
-
211
- * OpenBLAS <https://raw.githubusercontent.com/xianyi/OpenBLAS/
212
- def146efed8d5908ea04e22668feeab7099599a0/LICENSE>
213
-
214
- Copyright (c) 2011-2014, The OpenBLAS Project
215
- All rights reserved.
216
-
217
- Redistribution and use in source and binary forms, with or without
218
- modification, are permitted provided that the following conditions are
219
- met:
220
-
221
- 1. Redistributions of source code must retain the above copyright
222
- notice, this list of conditions and the following disclaimer.
223
-
224
- 2. Redistributions in binary form must reproduce the above copyright
225
- notice, this list of conditions and the following disclaimer in
226
- the documentation and/or other materials provided with the
227
- distribution.
228
-
229
- 3. Neither the name of the OpenBLAS project nor the names of
230
- its contributors may be used to endorse or promote products
231
- derived from this software without specific prior written
232
- permission.
233
-
234
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
235
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
236
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
237
- ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
238
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
239
- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
240
- GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
241
- HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
242
- LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
243
- THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
244
-
245
-
246
- * Electron <https://raw.githubusercontent.com/electron/electron/
247
- c4cfb3e7110266b9d7ad80e1ae097c4db564501c/LICENSE>
248
-
249
- Copyright (c) 2013-2017 GitHub Inc.
250
-
251
- Permission is hereby granted, free of charge, to any person obtaining
252
- a copy of this software and associated documentation files (the
253
- "Software"), to deal in the Software without restriction, including
254
- without limitation the rights to use, copy, modify, merge, publish,
255
- distribute, sublicense, and/or sell copies of the Software, and to
256
- permit persons to whom the Software is furnished to do so, subject to
257
- the following conditions:
258
-
259
- The above copyright notice and this permission notice shall be
260
- included in all copies or substantial portions of the Software.
261
-
262
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
263
- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
264
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
265
- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
266
- LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
267
- OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
268
- WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
269
-
270
-
271
- * Boost <http://www.boost.org/LICENSE_1_0.txt>
272
-
273
- Boost Software License - Version 1.0 - August 17th, 2003
274
-
275
- Permission is hereby granted, free of charge, to any person or organization
276
- obtaining a copy of the software and accompanying documentation covered by
277
- this license (the "Software") to use, reproduce, display, distribute,
278
- execute, and transmit the Software, and to prepare derivative works of the
279
- Software, and to permit third-parties to whom the Software is furnished to
280
- do so, all subject to the following:
281
-
282
- The copyright notices in the Software and this entire statement, including
283
- the above license grant, this restriction and the following disclaimer,
284
- must be included in all copies of the Software, in whole or in part, and
285
- all derivative works of the Software, unless such copies or derivative
286
- works are solely in the form of machine-executable object code generated by
287
- a source language processor.
288
-
289
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
290
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
291
- FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
292
- SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
293
- FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
294
- ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
295
- DEALINGS IN THE SOFTWARE.
296
-
297
-
298
- * Cephes <http://www.netlib.org/cephes/readme>
299
-
300
- Copyright (c) 1984-2000 Stephen L. Moshier
301
-
302
- Some software in this archive may be from the book _Methods and Programs for
303
- Mathematical Functions_ (Prentice-Hall or Simon & Schuster International, 1989)
304
- or from the Cephes Mathematical Library, a commercial product. In either event,
305
- it is copyrighted by the author. What you see here may be used freely but it
306
- comes with no support or guarantee.
307
-
308
- Stephen L. Moshier
309
- moshier@na-net.ornl.gov
310
-
311
-
312
-
313
- ATTRIBUTION
314
-
315
- The library contains implementations from the following external libraries,
316
- which have their own licenses:
317
-
318
- * FreeBSD <https://svnweb.freebsd.org/>
319
-
320
- Copyright (C) 1993-2004 by Sun Microsystems, Inc. All rights reserved.
321
-
322
- Developed at SunPro, a Sun Microsystems, Inc. business.
323
- Permission to use, copy, modify, and distribute this
324
- software is freely granted, provided that this notice
325
- is preserved.
326
-
327
-
328
- * FDLIBM <http://www.netlib.org/fdlibm/>
329
-
330
- Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
331
-
332
- Developed at SunPro, a Sun Microsystems, Inc. business.
333
- Permission to use, copy, modify, and distribute this
334
- software is freely granted, provided that this notice
335
- is preserved.
336
-
337
-
338
- * Go <https://raw.githubusercontent.com/golang/go/master/LICENSE>
339
-
340
- Copyright (c) 2009 The Go Authors. All rights reserved.
341
-
342
- Redistribution and use in source and binary forms, with or without
343
- modification, are permitted provided that the following conditions are
344
- met:
345
-
346
- * Redistributions of source code must retain the above copyright
347
- notice, this list of conditions and the following disclaimer.
348
- * Redistributions in binary form must reproduce the above
349
- copyright notice, this list of conditions and the following disclaimer
350
- in the documentation and/or other materials provided with the
351
- distribution.
352
- * Neither the name of Google Inc. nor the names of its
353
- contributors may be used to endorse or promote products derived from
354
- this software without specific prior written permission.
355
-
356
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
357
- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
358
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
359
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
360
- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
361
- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
362
- LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
363
- DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
364
- THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
365
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
366
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
367
-
368
-
369
- * SLATEC Common Mathematical Library <http://www.netlib.no/netlib/slatec/>
370
-
371
- Public domain.
372
-
373
-
374
- * ESLint <https://raw.githubusercontent.com/eslint/eslint/master/LICENSE>
375
-
376
- Copyright JS Foundation and other contributors, https://js.foundation
377
-
378
- Permission is hereby granted, free of charge, to any person obtaining a copy
379
- of this software and associated documentation files (the "Software"), to deal
380
- in the Software without restriction, including without limitation the rights
381
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
382
- copies of the Software, and to permit persons to whom the Software is
383
- furnished to do so, subject to the following conditions:
384
-
385
- The above copyright notice and this permission notice shall be included in
386
- all copies or substantial portions of the Software.
387
-
388
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
389
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
390
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
391
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
392
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
393
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
394
- THE SOFTWARE.
395
-
396
-
397
- * StatsFuns.jl <https://raw.githubusercontent.com/JuliaStats/StatsFuns.jl/
398
- e66dd973650c375bc1739c820e5b96bb5bd000a8/LICENSE.md>
399
-
400
- Copyright (c) 2015: Dahua Lin.
401
-
402
- Permission is hereby granted, free of charge, to any person obtaining
403
- a copy of this software and associated documentation files (the
404
- "Software"), to deal in the Software without restriction, including
405
- without limitation the rights to use, copy, modify, merge, publish,
406
- distribute, sublicense, and/or sell copies of the Software, and to
407
- permit persons to whom the Software is furnished to do so, subject to
408
- the following conditions:
409
-
410
- The above copyright notice and this permission notice shall be
411
- included in all copies or substantial portions of the Software.
412
-
413
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
414
- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
415
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
416
- IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
417
- CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
418
- TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
419
- SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
420
-
421
-
422
- * SpecialFunctions.jl <https://raw.githubusercontent.com/JuliaMath/
423
- SpecialFunctions.jl/02a173fbe24a61c4b392aec17a9764ac5727feb1/LICENSE>
424
-
425
- The MIT License (MIT)
426
-
427
- Copyright (c) 2017 Jeff Bezanson, Stefan Karpinski, Viral B. Shah, and others:
428
-
429
- https://github.com/JuliaMath/SpecialFunctions.jl/graphs/contributors
430
-
431
- Permission is hereby granted, free of charge, to any person obtaining a copy
432
- of this software and associated documentation files (the "Software"), to deal
433
- in the Software without restriction, including without limitation the rights
434
- to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
435
- copies of the Software, and to permit persons to whom the Software is
436
- furnished to do so, subject to the following conditions:
437
-
438
- The above copyright notice and this permission notice shall be included in all
439
- copies or substantial portions of the Software.
440
-
441
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
442
- IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
443
- FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
444
- AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
445
- LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
446
- OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
447
- SOFTWARE.
448
-
449
-
450
- * MT19937 <http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/CODES/
451
- mt19937ar.c>
452
-
453
- Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
454
- All rights reserved.
455
-
456
- Redistribution and use in source and binary forms, with or without
457
- modification, are permitted provided that the following conditions
458
- are met:
459
-
460
- 1. Redistributions of source code must retain the above copyright
461
- notice, this list of conditions and the following disclaimer.
462
-
463
- 2. Redistributions in binary form must reproduce the above copyright
464
- notice, this list of conditions and the following disclaimer in the
465
- documentation and/or other materials provided with the distribution.
466
-
467
- 3. The names of its contributors may not be used to endorse or promote
468
- products derived from this software without specific prior written
469
- permission.
470
-
471
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
472
- "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
473
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
474
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
475
- OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
476
- SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
477
- LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
478
- DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
479
- THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
480
- (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
481
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
package/NOTICE CHANGED
@@ -1 +1 @@
1
- Copyright (c) 2016-2022 The Stdlib Authors.
1
+ Copyright (c) 2016-2024 The Stdlib Authors.
package/README.md CHANGED
@@ -18,6 +18,17 @@ limitations under the License.
18
18
 
19
19
  -->
20
20
 
21
+
22
+ <details>
23
+ <summary>
24
+ About stdlib...
25
+ </summary>
26
+ <p>We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.</p>
27
+ <p>The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.</p>
28
+ <p>When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.</p>
29
+ <p>To join us in bringing numerical computing to the web, get started by checking us out on <a href="https://github.com/stdlib-js/stdlib">GitHub</a>, and please consider <a href="https://opencollective.com/stdlib">financially supporting stdlib</a>. We greatly appreciate your continued support!</p>
30
+ </details>
31
+
21
32
  # incrpcorrmat
22
33
 
23
34
  [![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url] <!-- [![dependencies][dependencies-image]][dependencies-url] -->
@@ -33,7 +44,7 @@ A [Pearson product-moment correlation matrix][pearson-correlation] is an M-by-M
33
44
  <div class="equation" align="center" data-raw-text="\rho_{X,Y} = \frac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y}" data-equation="eq:pearson_correlation_coefficient">
34
45
  <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/pcorrmat/docs/img/equation_pearson_correlation_coefficient.svg" alt="Equation for the Pearson product-moment correlation coefficient.">
35
46
  <br>
36
- </div>
47
+ </div> -->
37
48
 
38
49
  <!-- </equation> -->
39
50
 
@@ -41,9 +52,9 @@ where the numerator is the [covariance][covariance] and the denominator is the p
41
52
 
42
53
  For a sample of size `n`, the [sample Pearson product-moment correlation coefficient][pearson-correlation] is defined as
43
54
 
44
- <!-- <equation class="equation" label="eq:sample_pearson_correlation_coefficient" align="center" raw="r = \frac{\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" alt="Equation for the sample Pearson product-moment correlation coefficient."> -->
55
+ <!-- <equation class="equation" label="eq:sample_pearson_correlation_coefficient" align="center" raw="r = \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\displaystyle\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" alt="Equation for the sample Pearson product-moment correlation coefficient."> -->
45
56
 
46
- <div class="equation" align="center" data-raw-text="r = \frac{\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" data-equation="eq:sample_pearson_correlation_coefficient">
57
+ <!-- <div class="equation" align="center" data-raw-text="r = \frac{\displaystyle\sum_{i=0}^{n-1} (x_i - \bar{x})(y_i - \bar{y})}{\displaystyle\sqrt{\sum_{i=0}^{n-1} (x_i - \bar{x})^2} \sqrt{\sum_{i=0}^{n-1} (y_i - \bar{y})^2}}" data-equation="eq:sample_pearson_correlation_coefficient">
47
58
  <img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@49d8cabda84033d55d7b8069f19ee3dd8b8d1496/lib/node_modules/@stdlib/stats/incr/pcorrmat/docs/img/equation_sample_pearson_correlation_coefficient.svg" alt="Equation for the sample Pearson product-moment correlation coefficient.">
48
59
  <br>
49
60
  </div>
@@ -226,9 +237,9 @@ for ( i = 0; i < 100; i++ ) {
226
237
 
227
238
  ## See Also
228
239
 
229
- - <span class="package-name">[`@stdlib/stats/incr/covmat`][@stdlib/stats/incr/covmat]</span><span class="delimiter">: </span><span class="description">compute an unbiased sample covariance matrix incrementally.</span>
230
- - <span class="package-name">[`@stdlib/stats/incr/pcorr`][@stdlib/stats/incr/pcorr]</span><span class="delimiter">: </span><span class="description">compute a sample Pearson product-moment correlation coefficient.</span>
231
- - <span class="package-name">[`@stdlib/stats/incr/pcorrdistmat`][@stdlib/stats/incr/pcorrdistmat]</span><span class="delimiter">: </span><span class="description">compute a sample Pearson product-moment correlation distance matrix incrementally.</span>
240
+ - <span class="package-name">[`@stdlib/stats-incr/covmat`][@stdlib/stats/incr/covmat]</span><span class="delimiter">: </span><span class="description">compute an unbiased sample covariance matrix incrementally.</span>
241
+ - <span class="package-name">[`@stdlib/stats-incr/pcorr`][@stdlib/stats/incr/pcorr]</span><span class="delimiter">: </span><span class="description">compute a sample Pearson product-moment correlation coefficient.</span>
242
+ - <span class="package-name">[`@stdlib/stats-incr/pcorrdistmat`][@stdlib/stats/incr/pcorrdistmat]</span><span class="delimiter">: </span><span class="description">compute a sample Pearson product-moment correlation distance matrix incrementally.</span>
232
243
 
233
244
  </section>
234
245
 
@@ -260,7 +271,7 @@ See [LICENSE][stdlib-license].
260
271
 
261
272
  ## Copyright
262
273
 
263
- Copyright &copy; 2016-2022. The Stdlib [Authors][stdlib-authors].
274
+ Copyright &copy; 2016-2024. The Stdlib [Authors][stdlib-authors].
264
275
 
265
276
  </section>
266
277
 
@@ -273,8 +284,8 @@ Copyright &copy; 2016-2022. The Stdlib [Authors][stdlib-authors].
273
284
  [npm-image]: http://img.shields.io/npm/v/@stdlib/stats-incr-pcorrmat.svg
274
285
  [npm-url]: https://npmjs.org/package/@stdlib/stats-incr-pcorrmat
275
286
 
276
- [test-image]: https://github.com/stdlib-js/stats-incr-pcorrmat/actions/workflows/test.yml/badge.svg
277
- [test-url]: https://github.com/stdlib-js/stats-incr-pcorrmat/actions/workflows/test.yml
287
+ [test-image]: https://github.com/stdlib-js/stats-incr-pcorrmat/actions/workflows/test.yml/badge.svg?branch=v0.2.0
288
+ [test-url]: https://github.com/stdlib-js/stats-incr-pcorrmat/actions/workflows/test.yml?query=branch:v0.2.0
278
289
 
279
290
  [coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/stats-incr-pcorrmat/main.svg
280
291
  [coverage-url]: https://codecov.io/github/stdlib-js/stats-incr-pcorrmat?branch=main
@@ -286,19 +297,23 @@ Copyright &copy; 2016-2022. The Stdlib [Authors][stdlib-authors].
286
297
 
287
298
  -->
288
299
 
300
+ [chat-image]: https://img.shields.io/gitter/room/stdlib-js/stdlib.svg
301
+ [chat-url]: https://app.gitter.im/#/room/#stdlib-js_stdlib:gitter.im
302
+
303
+ [stdlib]: https://github.com/stdlib-js/stdlib
304
+
305
+ [stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors
306
+
289
307
  [umd]: https://github.com/umdjs/umd
290
308
  [es-module]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
291
309
 
292
310
  [deno-url]: https://github.com/stdlib-js/stats-incr-pcorrmat/tree/deno
311
+ [deno-readme]: https://github.com/stdlib-js/stats-incr-pcorrmat/blob/deno/README.md
293
312
  [umd-url]: https://github.com/stdlib-js/stats-incr-pcorrmat/tree/umd
313
+ [umd-readme]: https://github.com/stdlib-js/stats-incr-pcorrmat/blob/umd/README.md
294
314
  [esm-url]: https://github.com/stdlib-js/stats-incr-pcorrmat/tree/esm
295
-
296
- [chat-image]: https://img.shields.io/gitter/room/stdlib-js/stdlib.svg
297
- [chat-url]: https://gitter.im/stdlib-js/stdlib/
298
-
299
- [stdlib]: https://github.com/stdlib-js/stdlib
300
-
301
- [stdlib-authors]: https://github.com/stdlib-js/stdlib/graphs/contributors
315
+ [esm-readme]: https://github.com/stdlib-js/stats-incr-pcorrmat/blob/esm/README.md
316
+ [branches-url]: https://github.com/stdlib-js/stats-incr-pcorrmat/blob/main/branches.md
302
317
 
303
318
  [stdlib-license]: https://raw.githubusercontent.com/stdlib-js/stats-incr-pcorrmat/main/LICENSE
304
319
 
package/SECURITY.md ADDED
@@ -0,0 +1,5 @@
1
+ # Security
2
+
3
+ > Policy for reporting security vulnerabilities.
4
+
5
+ See the security policy [in the main project repository](https://github.com/stdlib-js/stdlib/security).
@@ -0,0 +1,3 @@
1
+ /// <reference path="../docs/types/index.d.ts" />
2
+ import incrpcorrmat from '../docs/types/index';
3
+ export = incrpcorrmat;
package/dist/index.js ADDED
@@ -0,0 +1,5 @@
1
+ "use strict";var I=function(t,o){return function(){return o||t((o={exports:{}}).exports,o),o.exports}};var S=I(function(N,P){
2
+ var L=require('@stdlib/assert-is-positive-integer/dist').isPrimitive,z=require('@stdlib/assert-is-square-matrix/dist'),b=require('@stdlib/assert-is-vector-like/dist'),E=require('@stdlib/array-float64/dist'),y=require('@stdlib/error-tools-fmtprodmsg/dist'),M=require('@stdlib/math-base-special-sqrt/dist'),B=require('@stdlib/ndarray-ctor/dist'),F=require('@stdlib/ndarray-base-ctor/dist'),T=require('@stdlib/ndarray-base-numel/dist');function A(t,o){var e,a,c,u;return o?u=F:u=B,a=new E(t*t),c=[t,t],e=[t,1],u("float64",a,c,e,0,"row-major")}function D(t,o){var e=t.shape[0],a;for(a=0;a<e;a++)t.set(a,a,o);return t}function G(t){var o,e,a;return e=new E(t),a=[t],o=[1],F("float64",e,a,o,0,"row-major")}function H(t,o){var e,a,c,u,q,m,h,v;if(v=0,L(t))e=t,a=A(e,!1);else if(z(t))e=t.shape[0],a=t;else throw new TypeError(y('1JfDf',t));if(a=D(a,1),h=new E(e),c=new E(e),u=new E(e),m=A(e,!0),arguments.length>1){if(!b(o))throw new TypeError(y('1JfDc',o));if(T(o.shape)!==e)throw new Error("invalid argument. The number of elements (means) in the second argument must match correlation matrix dimensions. Expected: "+e+". Actual: "+T(o.shape)+".");return q=o,C}return q=G(e),k;function k(l){var w,g,f,p,i,n,x,d,j,V,r,s;if(arguments.length===0)return v===0?null:a;if(!b(l))throw new TypeError(y('1JfDd',l));if(l.shape[0]!==e)throw new Error(y('1Jf9g',e,l.shape[0]));if(j=v,v+=1,V=j/v,w=j||1,v===1)for(r=0;r<e;r++)for(x=l.get(r),d=q.get(r),n=x-d,d+=n/v,q.set(r,d),h[r]=n,c[r]+=n*(x-d),u[r]=M(c[r]/w),g=V*h[r],s=0;s<r;s++)f=m.get(r,s)+g*h[s],m.set(r,s,f),m.set(s,r,f);else for(r=0;r<e;r++)for(x=l.get(r),d=q.get(r),n=x-d,d+=n/v,q.set(r,d),h[r]=n,c[r]+=n*(x-d),u[r]=M(c[r]/w),g=V*h[r],i=u[r],s=0;s<r;s++)f=m.get(r,s)+g*h[s],m.set(r,s,f),m.set(s,r,f),p=f/w/(i*u[s]),a.set(r,s,p),a.set(s,r,p);return a}function C(l){var w,g,f,p,i,n;if(arguments.length===0)return v===0?null:a;if(!b(l))throw new TypeError(y('1JfDd',l));if(l.shape[0]!==e)throw new Error(y('1Jf9g',e,l.shape[0]));for(v+=1,i=0;i<e;i++)for(p=l.get(i)-q.get(i),h[i]=p,c[i]+=p*p,u[i]=M(c[i]/v),f=u[i],n=0;n<i;n++)g=m.get(i,n)+p*h[n],m.set(i,n,g),m.set(n,i,g),w=g/v/(f*u[n]),a.set(i,n,w),a.set(n,i,w);return a}}P.exports=H
3
+ });var J=S();module.exports=J;
4
+ /** @license Apache-2.0 */
5
+ //# sourceMappingURL=index.js.map
@@ -0,0 +1,7 @@
1
+ {
2
+ "version": 3,
3
+ "sources": ["../lib/main.js", "../lib/index.js"],
4
+ "sourcesContent": ["/**\n* @license Apache-2.0\n*\n* Copyright (c) 2018 The Stdlib Authors.\n*\n* Licensed under the Apache License, Version 2.0 (the \"License\");\n* you may not use this file except in compliance with the License.\n* You may obtain a copy of the License at\n*\n* http://www.apache.org/licenses/LICENSE-2.0\n*\n* Unless required by applicable law or agreed to in writing, software\n* distributed under the License is distributed on an \"AS IS\" BASIS,\n* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n* See the License for the specific language governing permissions and\n* limitations under the License.\n*/\n\n'use strict';\n\n// MODULES //\n\nvar isPositiveInteger = require( '@stdlib/assert-is-positive-integer' ).isPrimitive;\nvar isSquareMatrix = require( '@stdlib/assert-is-square-matrix' );\nvar isVectorLike = require( '@stdlib/assert-is-vector-like' );\nvar Float64Array = require( '@stdlib/array-float64' );\nvar format = require( '@stdlib/string-format' );\nvar sqrt = require( '@stdlib/math-base-special-sqrt' );\nvar ctor = require( '@stdlib/ndarray-ctor' );\nvar bctor = require( '@stdlib/ndarray-base-ctor' );\nvar numel = require( '@stdlib/ndarray-base-numel' );\n\n\n// FUNCTIONS //\n\n/**\n* Returns a matrix.\n*\n* @private\n* @param {PositiveInteger} n - matrix order\n* @param {boolean} bool - boolean indicating whether to create a low-level ndarray\n* @returns {ndarray} matrix\n*/\nfunction createMatrix( n, bool ) {\n\tvar strides;\n\tvar buffer;\n\tvar shape;\n\tvar f;\n\n\tif ( bool ) {\n\t\tf = bctor;\n\t} else {\n\t\tf = ctor;\n\t}\n\tbuffer = new Float64Array( n*n );\n\tshape = [ n, n ];\n\tstrides = [ n, 1 ];\n\treturn f( 'float64', buffer, shape, strides, 0, 'row-major' );\n}\n\n/**\n* Sets the values along the main diagonal of a square matrix.\n*\n* @private\n* @param {ndarray} matrix - input square matrix\n* @param {number} v - value\n* @returns {ndarray} input matrix\n*/\nfunction diagonal( matrix, v ) {\n\tvar M = matrix.shape[ 0 ];\n\tvar i;\n\tfor ( i = 0; i < M; i++ ) {\n\t\tmatrix.set( i, i, v );\n\t}\n\treturn matrix;\n}\n\n/**\n* Returns a vector.\n*\n* @private\n* @param {PositiveInteger} N - number of elements\n* @returns {ndarray} vector\n*/\nfunction createVector( N ) {\n\tvar strides;\n\tvar buffer;\n\tvar shape;\n\n\tbuffer = new Float64Array( N );\n\tshape = [ N ];\n\tstrides = [ 1 ];\n\n\treturn bctor( 'float64', buffer, shape, strides, 0, 'row-major' );\n}\n\n\n// MAIN //\n\n/**\n* Returns an accumulator function which incrementally computes a sample Pearson product-moment correlation matrix.\n*\n* ## Method\n*\n* - For each sample Pearson product-moment correlation coefficient, we begin by defining the co-moment \\\\(C_{jn}\\\\)\n*\n* ```tex\n* C_n = \\sum_{i=1}^{n} ( x_i - \\bar{x}_n ) ( y_i - \\bar{y}_n )\n* ```\n*\n* where \\\\(\\bar{x}_n\\\\) and \\\\(\\bar{y}_n\\\\) are the sample means for \\\\(x\\\\) and \\\\(y\\\\), respectively.\n*\n* - Based on Welford's method, we know the update formulas for the sample means are given by\n*\n* ```tex\n* \\bar{x}_n = \\bar{x}_{n-1} + \\frac{x_n - \\bar{x}_{n-1}}{n}\n* ```\n*\n* and\n*\n* ```tex\n* \\bar{y}_n = \\bar{y}_{n-1} + \\frac{y_n - \\bar{y}_{n-1}}{n}\n* ```\n*\n* - Substituting into the equation for \\\\(C_n\\\\) and rearranging terms\n*\n* ```tex\n* C_n = C_{n-1} + (x_n - \\bar{x}_n) (y_n - \\bar{y}_{n-1})\n* ```\n*\n* where the apparent asymmetry arises from\n*\n* ```tex\n* x_n - \\bar{x}_n = \\frac{n-1}{n} (x_n - \\bar{x}_{n-1})\n* ```\n*\n* and, hence, the update term can be equivalently expressed\n*\n* ```tex\n* \\frac{n-1}{n} (x_n - \\bar{x}_{n-1}) (y_n - \\bar{y}_{n-1})\n* ```\n*\n* - The covariance can be defined\n*\n* ```tex\n* \\begin{align*}\n* \\operatorname{cov}_n(x,y) &= \\frac{C_n}{n} \\\\\n* &= \\frac{C_{n-1} + \\frac{n-1}{n} (x_n - \\bar{x}_{n-1}) (y_n - \\bar{y}_{n-1})}{n} \\\\\n* &= \\frac{(n-1)\\operatorname{cov}_{n-1}(x,y) + \\frac{n-1}{n} (x_n - \\bar{x}_{n-1}) (y_n - \\bar{y}_{n-1})}{n}\n* \\end{align*}\n* ```\n*\n* - Applying Bessel's correction, we arrive at an update formula for calculating an unbiased sample covariance\n*\n* ```tex\n* \\begin{align*}\n* \\operatorname{cov}_n(x,y) &= \\frac{n}{n-1}\\cdot\\frac{(n-1)\\operatorname{cov}_{n-1}(x,y) + \\frac{n-1}{n} (x_n - \\bar{x}_{n-1}) (y_n - \\bar{y}_{n-1})}{n} \\\\\n* &= \\operatorname{cov}_{n-1}(x,y) + \\frac{(x_n - \\bar{x}_{n-1}) (y_n - \\bar{y}_{n-1})}{n} \\\\\n* &= \\frac{C_{n-1}}{n-1} + \\frac{(x_n - \\bar{x}_{n-1}) (y_n - \\bar{y}_{n-1})}{n}\n* &= \\frac{C_{n-1} + \\frac{n-1}{n} (x_n - \\bar{x}_{n-1}) (y_n - \\bar{y}_{n-1})}{n-1}\n* \\end{align*}\n* ```\n*\n* - To calculate the corrected sample standard deviation, we can use Welford's method, which can be derived as follows. We can express the variance as\n*\n* ```tex\n* \\begin{align*}\n* S_n &= n \\sigma_n^2 \\\\\n* &= \\sum_{i=1}^{n} (x_i - \\mu_n)^2 \\\\\n* &= \\biggl(\\sum_{i=1}^{n} x_i^2 \\biggr) - n\\mu_n^2\n* \\end{align*}\n* ```\n*\n* Accordingly,\n*\n* ```tex\n* \\begin{align*}\n* S_n - S_{n-1} &= \\sum_{i=1}^{n} x_i^2 - n\\mu_n^2 - \\sum_{i=1}^{n-1} x_i^2 + (n-1)\\mu_{n-1}^2 \\\\\n* &= x_n^2 - n\\mu_n^2 + (n-1)\\mu_{n-1}^2 \\\\\n* &= x_n^2 - \\mu_{n-1}^2 + n(\\mu_{n-1}^2 - \\mu_n^2) \\\\\n* &= x_n^2 - \\mu_{n-1}^2 + n(\\mu_{n-1} - \\mu_n)(\\mu_{n-1} + \\mu_n) \\\\\n* &= x_n^2 - \\mu_{n-1}^2 + (\\mu_{n-1} - x_n)(\\mu_{n-1} + \\mu_n) \\\\\n* &= x_n^2 - \\mu_{n-1}^2 + \\mu_{n-1}^2 - x_n\\mu_n - x_n\\mu_{n-1} + \\mu_n\\mu_{n-1} \\\\\n* &= x_n^2 - x_n\\mu_n - x_n\\mu_{n-1} + \\mu_n\\mu_{n-1} \\\\\n* &= (x_n - \\mu_{n-1})(x_n - \\mu_n) \\\\\n* &= S_{n-1} + (x_n - \\mu_{n-1})(x_n - \\mu_n)\n* \\end{align*}\n* ```\n*\n* where we use the identity\n*\n* ```tex\n* x_n - \\mu_{n-1} = n (\\mu_n - \\mu_{n-1})\n* ```\n*\n* - To compute the corrected sample standard deviation, we apply Bessel's correction and take the square root.\n*\n* - The sample Pearson product-moment correlation coefficient can thus be calculated as\n*\n* ```tex\n* r = \\frac{\\operatorname{cov}_n(x,y)}{\\sigma_x \\sigma_y}\n* ```\n*\n* where \\\\(\\sigma_x\\\\) and \\\\(\\sigma_y\\\\) are the corrected sample standard deviations for \\\\(x\\\\) and \\\\(y\\\\), respectively.\n*\n* @param {(PositiveInteger|ndarray)} out - order of the correlation matrix or a square 2-dimensional output ndarray for storing the correlation matrix\n* @param {ndarray} [means] - mean values\n* @throws {TypeError} first argument must be either a positive integer or a 2-dimensional ndarray having equal dimensions\n* @throws {TypeError} second argument must be a 1-dimensional ndarray\n* @throws {Error} number of means must match correlation matrix dimensions\n* @returns {Function} accumulator function\n*\n* @example\n* var Float64Array = require( '@stdlib/array-float64' );\n* var ndarray = require( '@stdlib/ndarray-ctor' );\n*\n* // Create an output correlation matrix:\n* var buffer = new Float64Array( 4 );\n* var shape = [ 2, 2 ];\n* var strides = [ 2, 1 ];\n* var offset = 0;\n* var order = 'row-major';\n*\n* var corr = ndarray( 'float64', buffer, shape, strides, offset, order );\n*\n* // Create a correlation matrix accumulator:\n* var accumulator = incrpcorrmat( corr );\n*\n* var out = accumulator();\n* // returns null\n*\n* // Create a data vector:\n* buffer = new Float64Array( 2 );\n* shape = [ 2 ];\n* strides = [ 1 ];\n*\n* var vec = ndarray( 'float64', buffer, shape, strides, offset, order );\n*\n* // Provide data to the accumulator:\n* vec.set( 0, 2.0 );\n* vec.set( 1, 1.0 );\n*\n* out = accumulator( vec );\n* // returns <ndarray>\n*\n* var bool = ( out === corr );\n* // returns true\n*\n* vec.set( 0, -5.0 );\n* vec.set( 1, 3.14 );\n*\n* out = accumulator( vec );\n* // returns <ndarray>\n*\n* // Retrieve the correlation matrix:\n* out = accumulator();\n* // returns <ndarray>\n*/\nfunction incrpcorrmat( out, means ) {\n\tvar order;\n\tvar corr;\n\tvar M2;\n\tvar sd;\n\tvar mu;\n\tvar C;\n\tvar d;\n\tvar N;\n\n\tN = 0;\n\tif ( isPositiveInteger( out ) ) {\n\t\torder = out;\n\t\tcorr = createMatrix( order, false );\n\t} else if ( isSquareMatrix( out ) ) {\n\t\torder = out.shape[ 0 ];\n\t\tcorr = out;\n\t} else {\n\t\tthrow new TypeError( format( 'invalid argument. First argument must either specify the order of the correlation matrix or be a square two-dimensional ndarray for storing the correlation matrix. Value: `%s`.', out ) );\n\t}\n\t// Set the values along the correlation matrix diagonal to `1` (i.e., a random variable is always perfectly correlated with itself):\n\tcorr = diagonal( corr, 1.0 );\n\n\t// Create a scratch array for storing residuals (i.e., `x_i - xbar_{i-1}`):\n\td = new Float64Array( order );\n\n\t// Create a scratch array for storing second moments:\n\tM2 = new Float64Array( order );\n\n\t// Create a scratch array for storing standard deviations:\n\tsd = new Float64Array( order );\n\n\t// Create a low-level scratch matrix for storing co-moments:\n\tC = createMatrix( order, true );\n\n\tif ( arguments.length > 1 ) {\n\t\tif ( !isVectorLike( means ) ) {\n\t\t\tthrow new TypeError( format( 'invalid argument. Second argument must be a one-dimensional ndarray. Value: `%s`.', means ) );\n\t\t}\n\t\tif ( numel( means.shape ) !== order ) {\n\t\t\tthrow new Error( 'invalid argument. The number of elements (means) in the second argument must match correlation matrix dimensions. Expected: '+order+'. Actual: '+numel( means.shape )+'.' );\n\t\t}\n\t\tmu = means; // TODO: should we copy this? Otherwise, internal state could be \"corrupted\" due to mutation outside the accumulator\n\t\treturn accumulator2;\n\t}\n\t// Create an ndarray vector for storing sample means (note: an ndarray interface is not necessary, but it reduces implementation complexity by ensuring a consistent abstraction for accessing and updating sample means):\n\tmu = createVector( order );\n\n\treturn accumulator1;\n\n\t/**\n\t* If provided a data vector, the accumulator function returns an updated sample correlation matrix. If not provided a data vector, the accumulator function returns the current sample correlation matrix.\n\t*\n\t* @private\n\t* @param {ndarray} [v] - data vector\n\t* @throws {TypeError} must provide a 1-dimensional ndarray\n\t* @throws {Error} vector length must match correlation matrix dimensions\n\t* @returns {(ndarray|null)} sample correlation matrix or null\n\t*/\n\tfunction accumulator1( v ) {\n\t\tvar denom;\n\t\tvar rdx;\n\t\tvar cij;\n\t\tvar rij;\n\t\tvar sdi;\n\t\tvar di;\n\t\tvar vi;\n\t\tvar m;\n\t\tvar n;\n\t\tvar r;\n\t\tvar i;\n\t\tvar j;\n\t\tif ( arguments.length === 0 ) {\n\t\t\tif ( N === 0 ) {\n\t\t\t\treturn null;\n\t\t\t}\n\t\t\treturn corr;\n\t\t}\n\t\tif ( !isVectorLike( v ) ) {\n\t\t\tthrow new TypeError( format( 'invalid argument. Must provide a one-dimensional ndarray. Value: `%s`.', v ) );\n\t\t}\n\t\tif ( v.shape[ 0 ] !== order ) {\n\t\t\tthrow new Error( format( 'invalid argument. Vector length must match correlation matrix dimensions. Expected: `%u`. Actual: `%u`.', order, v.shape[ 0 ] ) );\n\t\t}\n\t\tn = N;\n\t\tN += 1;\n\t\tr = n / N;\n\n\t\tdenom = n || 1; // Bessel's correction (avoiding divide-by-zero below)\n\n\t\tif ( N === 1 ) {\n\t\t\tfor ( i = 0; i < order; i++ ) {\n\t\t\t\tvi = v.get( i );\n\t\t\t\tm = mu.get( i );\n\n\t\t\t\t// Compute the residual:\n\t\t\t\tdi = vi - m;\n\n\t\t\t\t// Update the sample mean:\n\t\t\t\tm += di / N;\n\t\t\t\tmu.set( i, m );\n\n\t\t\t\t// Update the sample standard deviation:\n\t\t\t\td[ i ] = di;\n\t\t\t\tM2[ i ] += di * ( vi-m );\n\t\t\t\tsd[ i ] = sqrt( M2[i]/denom );\n\n\t\t\t\t// Update the co-moments and correlation matrix, recognizing that the matrices are symmetric...\n\t\t\t\trdx = r * d[i]; // if `n=0`, `r=0.0`\n\t\t\t\tfor ( j = 0; j < i; j++ ) {\n\t\t\t\t\tcij = C.get( i, j ) + ( rdx*d[j] );\n\t\t\t\t\tC.set( i, j, cij );\n\t\t\t\t\tC.set( j, i, cij ); // via symmetry\n\t\t\t\t}\n\t\t\t}\n\t\t} else {\n\t\t\tfor ( i = 0; i < order; i++ ) {\n\t\t\t\tvi = v.get( i );\n\t\t\t\tm = mu.get( i );\n\n\t\t\t\t// Compute the residual:\n\t\t\t\tdi = vi - m;\n\n\t\t\t\t// Update the sample mean:\n\t\t\t\tm += di / N;\n\t\t\t\tmu.set( i, m );\n\n\t\t\t\t// Update the sample standard deviation:\n\t\t\t\td[ i ] = di;\n\t\t\t\tM2[ i ] += di * ( vi-m );\n\t\t\t\tsd[ i ] = sqrt( M2[i]/denom );\n\n\t\t\t\trdx = r * d[i];\n\t\t\t\tsdi = sd[ i ];\n\t\t\t\tfor ( j = 0; j < i; j++ ) {\n\t\t\t\t\tcij = C.get( i, j ) + ( rdx*d[j] );\n\t\t\t\t\tC.set( i, j, cij );\n\t\t\t\t\tC.set( j, i, cij ); // via symmetry\n\n\t\t\t\t\trij = ( cij/denom ) / ( sdi*sd[j] );\n\t\t\t\t\tcorr.set( i, j, rij );\n\t\t\t\t\tcorr.set( j, i, rij ); // via symmetry\n\t\t\t\t}\n\t\t\t}\n\t\t}\n\t\treturn corr;\n\t}\n\n\t/**\n\t* If provided a data vector, the accumulator function returns an updated sample correlation matrix. If not provided a data vector, the accumulator function returns the current sample correlation matrix.\n\t*\n\t* @private\n\t* @param {ndarray} [v] - data vector\n\t* @throws {TypeError} must provide a 1-dimensional ndarray\n\t* @throws {Error} vector length must match correlation matrix dimensions\n\t* @returns {(ndarray|null)} sample correlation matrix or null\n\t*/\n\tfunction accumulator2( v ) {\n\t\tvar rij;\n\t\tvar cij;\n\t\tvar sdi;\n\t\tvar di;\n\t\tvar i;\n\t\tvar j;\n\t\tif ( arguments.length === 0 ) {\n\t\t\tif ( N === 0 ) {\n\t\t\t\treturn null;\n\t\t\t}\n\t\t\treturn corr;\n\t\t}\n\t\tif ( !isVectorLike( v ) ) {\n\t\t\tthrow new TypeError( format( 'invalid argument. Must provide a one-dimensional ndarray. Value: `%s`.', v ) );\n\t\t}\n\t\tif ( v.shape[ 0 ] !== order ) {\n\t\t\tthrow new Error( format( 'invalid argument. Vector length must match correlation matrix dimensions. Expected: `%u`. Actual: `%u`.', order, v.shape[ 0 ] ) );\n\t\t}\n\t\tN += 1;\n\t\tfor ( i = 0; i < order; i++ ) {\n\t\t\t// Compute the residual:\n\t\t\tdi = v.get( i ) - mu.get( i );\n\t\t\td[ i ] = di;\n\n\t\t\t// Update the standard deviation:\n\t\t\tM2[ i ] += di * di;\n\t\t\tsd[ i ] = sqrt( M2[i]/N );\n\n\t\t\t// Update the co-moments and correlation matrix, recognizing that the matrices are symmetric...\n\t\t\tsdi = sd[ i ];\n\t\t\tfor ( j = 0; j < i; j++ ) {\n\t\t\t\tcij = C.get( i, j ) + ( di*d[j] );\n\t\t\t\tC.set( i, j, cij );\n\t\t\t\tC.set( j, i, cij ); // via symmetry\n\n\t\t\t\trij = ( cij/N ) / ( sdi*sd[j] );\n\t\t\t\tcorr.set( i, j, rij );\n\t\t\t\tcorr.set( j, i, rij ); // via symmetry\n\t\t\t}\n\t\t}\n\t\treturn corr;\n\t}\n}\n\n\n// EXPORTS //\n\nmodule.exports = incrpcorrmat;\n", "/**\n* @license Apache-2.0\n*\n* Copyright (c) 2018 The Stdlib Authors.\n*\n* Licensed under the Apache License, Version 2.0 (the \"License\");\n* you may not use this file except in compliance with the License.\n* You may obtain a copy of the License at\n*\n* http://www.apache.org/licenses/LICENSE-2.0\n*\n* Unless required by applicable law or agreed to in writing, software\n* distributed under the License is distributed on an \"AS IS\" BASIS,\n* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n* See the License for the specific language governing permissions and\n* limitations under the License.\n*/\n\n'use strict';\n\n/**\n* Compute a sample Pearson product-moment correlation matrix incrementally.\n*\n* @module @stdlib/stats-incr-pcorrmat\n*\n* @example\n* var Float64Array = require( '@stdlib/array-float64' );\n* var ndarray = require( '@stdlib/ndarray-ctor' );\n* var incrpcorrmat = require( '@stdlib/stats-incr-pcorrmat' );\n*\n* // Create an output correlation matrix:\n* var buffer = new Float64Array( 4 );\n* var shape = [ 2, 2 ];\n* var strides = [ 2, 1 ];\n* var offset = 0;\n* var order = 'row-major';\n*\n* var corr = ndarray( 'float64', buffer, shape, strides, offset, order );\n*\n* // Create a correlation matrix accumulator:\n* var accumulator = incrpcorrmat( corr );\n*\n* var out = accumulator();\n* // returns null\n*\n* // Create a data vector:\n* buffer = new Float64Array( 2 );\n* shape = [ 2 ];\n* strides = [ 1 ];\n*\n* var vec = ndarray( 'float64', buffer, shape, strides, offset, order );\n*\n* // Provide data to the accumulator:\n* vec.set( 0, 2.0 );\n* vec.set( 1, 1.0 );\n*\n* out = accumulator( vec );\n* // returns <ndarray>\n*\n* var bool = ( out === corr );\n* // returns true\n*\n* vec.set( 0, -5.0 );\n* vec.set( 1, 3.14 );\n*\n* out = accumulator( vec );\n* // returns <ndarray>\n*\n* // Retrieve the correlation matrix:\n* out = accumulator();\n* // returns <ndarray>\n*/\n\n// MODULES //\n\nvar main = require( './main.js' );\n\n\n// EXPORTS //\n\nmodule.exports = main;\n"],
5
+ "mappings": "uGAAA,IAAAA,EAAAC,EAAA,SAAAC,EAAAC,EAAA,cAsBA,IAAIC,EAAoB,QAAS,oCAAqC,EAAE,YACpEC,EAAiB,QAAS,iCAAkC,EAC5DC,EAAe,QAAS,+BAAgC,EACxDC,EAAe,QAAS,uBAAwB,EAChDC,EAAS,QAAS,uBAAwB,EAC1CC,EAAO,QAAS,gCAAiC,EACjDC,EAAO,QAAS,sBAAuB,EACvCC,EAAQ,QAAS,2BAA4B,EAC7CC,EAAQ,QAAS,4BAA6B,EAalD,SAASC,EAAcC,EAAGC,EAAO,CAChC,IAAIC,EACAC,EACAC,EACAC,EAEJ,OAAKJ,EACJI,EAAIR,EAEJQ,EAAIT,EAELO,EAAS,IAAIV,EAAcO,EAAEA,CAAE,EAC/BI,EAAQ,CAAEJ,EAAGA,CAAE,EACfE,EAAU,CAAEF,EAAG,CAAE,EACVK,EAAG,UAAWF,EAAQC,EAAOF,EAAS,EAAG,WAAY,CAC7D,CAUA,SAASI,EAAUC,EAAQC,EAAI,CAC9B,IAAIC,EAAIF,EAAO,MAAO,CAAE,EACpBG,EACJ,IAAMA,EAAI,EAAGA,EAAID,EAAGC,IACnBH,EAAO,IAAKG,EAAGA,EAAGF,CAAE,EAErB,OAAOD,CACR,CASA,SAASI,EAAcC,EAAI,CAC1B,IAAIV,EACAC,EACAC,EAEJ,OAAAD,EAAS,IAAIV,EAAcmB,CAAE,EAC7BR,EAAQ,CAAEQ,CAAE,EACZV,EAAU,CAAE,CAAE,EAEPL,EAAO,UAAWM,EAAQC,EAAOF,EAAS,EAAG,WAAY,CACjE,CAoKA,SAASW,EAAcC,EAAKC,EAAQ,CACnC,IAAIC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAV,EAGJ,GADAA,EAAI,EACCtB,EAAmBwB,CAAI,EAC3BE,EAAQF,EACRG,EAAOlB,EAAciB,EAAO,EAAM,UACvBzB,EAAgBuB,CAAI,EAC/BE,EAAQF,EAAI,MAAO,CAAE,EACrBG,EAAOH,MAEP,OAAM,IAAI,UAAWpB,EAAQ,mLAAoLoB,CAAI,CAAE,EAiBxN,GAdAG,EAAOX,EAAUW,EAAM,CAAI,EAG3BK,EAAI,IAAI7B,EAAcuB,CAAM,EAG5BE,EAAK,IAAIzB,EAAcuB,CAAM,EAG7BG,EAAK,IAAI1B,EAAcuB,CAAM,EAG7BK,EAAItB,EAAciB,EAAO,EAAK,EAEzB,UAAU,OAAS,EAAI,CAC3B,GAAK,CAACxB,EAAcuB,CAAM,EACzB,MAAM,IAAI,UAAWrB,EAAQ,oFAAqFqB,CAAM,CAAE,EAE3H,GAAKjB,EAAOiB,EAAM,KAAM,IAAMC,EAC7B,MAAM,IAAI,MAAO,+HAA+HA,EAAM,aAAalB,EAAOiB,EAAM,KAAM,EAAE,GAAI,EAE7L,OAAAK,EAAKL,EACEQ,CACR,CAEA,OAAAH,EAAKT,EAAcK,CAAM,EAElBQ,EAWP,SAASA,EAAchB,EAAI,CAC1B,IAAIiB,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAhC,EACAiC,EACAvB,EACAwB,EACJ,GAAK,UAAU,SAAW,EACzB,OAAKtB,IAAM,EACH,KAEDK,EAER,GAAK,CAACzB,EAAcgB,CAAE,EACrB,MAAM,IAAI,UAAWd,EAAQ,yEAA0Ec,CAAE,CAAE,EAE5G,GAAKA,EAAE,MAAO,CAAE,IAAMQ,EACrB,MAAM,IAAI,MAAOtB,EAAQ,0GAA2GsB,EAAOR,EAAE,MAAO,CAAE,CAAE,CAAE,EAQ3J,GANAR,EAAIY,EACJA,GAAK,EACLqB,EAAIjC,EAAIY,EAERa,EAAQzB,GAAK,EAERY,IAAM,EACV,IAAMF,EAAI,EAAGA,EAAIM,EAAON,IAkBvB,IAjBAqB,EAAKvB,EAAE,IAAKE,CAAE,EACdsB,EAAIZ,EAAG,IAAKV,CAAE,EAGdoB,EAAKC,EAAKC,EAGVA,GAAKF,EAAKlB,EACVQ,EAAG,IAAKV,EAAGsB,CAAE,EAGbV,EAAGZ,CAAE,EAAIoB,EACTZ,EAAIR,CAAE,GAAKoB,GAAOC,EAAGC,GACrBb,EAAIT,CAAE,EAAIf,EAAMuB,EAAGR,CAAC,EAAEe,CAAM,EAG5BC,EAAMO,EAAIX,EAAEZ,CAAC,EACPwB,EAAI,EAAGA,EAAIxB,EAAGwB,IACnBP,EAAMN,EAAE,IAAKX,EAAGwB,CAAE,EAAMR,EAAIJ,EAAEY,CAAC,EAC/Bb,EAAE,IAAKX,EAAGwB,EAAGP,CAAI,EACjBN,EAAE,IAAKa,EAAGxB,EAAGiB,CAAI,MAInB,KAAMjB,EAAI,EAAGA,EAAIM,EAAON,IAkBvB,IAjBAqB,EAAKvB,EAAE,IAAKE,CAAE,EACdsB,EAAIZ,EAAG,IAAKV,CAAE,EAGdoB,EAAKC,EAAKC,EAGVA,GAAKF,EAAKlB,EACVQ,EAAG,IAAKV,EAAGsB,CAAE,EAGbV,EAAGZ,CAAE,EAAIoB,EACTZ,EAAIR,CAAE,GAAKoB,GAAOC,EAAGC,GACrBb,EAAIT,CAAE,EAAIf,EAAMuB,EAAGR,CAAC,EAAEe,CAAM,EAE5BC,EAAMO,EAAIX,EAAEZ,CAAC,EACbmB,EAAMV,EAAIT,CAAE,EACNwB,EAAI,EAAGA,EAAIxB,EAAGwB,IACnBP,EAAMN,EAAE,IAAKX,EAAGwB,CAAE,EAAMR,EAAIJ,EAAEY,CAAC,EAC/Bb,EAAE,IAAKX,EAAGwB,EAAGP,CAAI,EACjBN,EAAE,IAAKa,EAAGxB,EAAGiB,CAAI,EAEjBC,EAAQD,EAAIF,GAAYI,EAAIV,EAAGe,CAAC,GAChCjB,EAAK,IAAKP,EAAGwB,EAAGN,CAAI,EACpBX,EAAK,IAAKiB,EAAGxB,EAAGkB,CAAI,EAIvB,OAAOX,CACR,CAWA,SAASM,EAAcf,EAAI,CAC1B,IAAIoB,EACAD,EACAE,EACAC,EACA,EACAI,EACJ,GAAK,UAAU,SAAW,EACzB,OAAKtB,IAAM,EACH,KAEDK,EAER,GAAK,CAACzB,EAAcgB,CAAE,EACrB,MAAM,IAAI,UAAWd,EAAQ,yEAA0Ec,CAAE,CAAE,EAE5G,GAAKA,EAAE,MAAO,CAAE,IAAMQ,EACrB,MAAM,IAAI,MAAOtB,EAAQ,0GAA2GsB,EAAOR,EAAE,MAAO,CAAE,CAAE,CAAE,EAG3J,IADAI,GAAK,EACC,EAAI,EAAG,EAAII,EAAO,IAWvB,IATAc,EAAKtB,EAAE,IAAK,CAAE,EAAIY,EAAG,IAAK,CAAE,EAC5BE,EAAG,CAAE,EAAIQ,EAGTZ,EAAI,CAAE,GAAKY,EAAKA,EAChBX,EAAI,CAAE,EAAIxB,EAAMuB,EAAG,CAAC,EAAEN,CAAE,EAGxBiB,EAAMV,EAAI,CAAE,EACNe,EAAI,EAAGA,EAAI,EAAGA,IACnBP,EAAMN,EAAE,IAAK,EAAGa,CAAE,EAAMJ,EAAGR,EAAEY,CAAC,EAC9Bb,EAAE,IAAK,EAAGa,EAAGP,CAAI,EACjBN,EAAE,IAAKa,EAAG,EAAGP,CAAI,EAEjBC,EAAQD,EAAIf,GAAQiB,EAAIV,EAAGe,CAAC,GAC5BjB,EAAK,IAAK,EAAGiB,EAAGN,CAAI,EACpBX,EAAK,IAAKiB,EAAG,EAAGN,CAAI,EAGtB,OAAOX,CACR,CACD,CAKA5B,EAAO,QAAUwB,ICpYjB,IAAIsB,EAAO,IAKX,OAAO,QAAUA",
6
+ "names": ["require_main", "__commonJSMin", "exports", "module", "isPositiveInteger", "isSquareMatrix", "isVectorLike", "Float64Array", "format", "sqrt", "ctor", "bctor", "numel", "createMatrix", "n", "bool", "strides", "buffer", "shape", "f", "diagonal", "matrix", "v", "M", "i", "createVector", "N", "incrpcorrmat", "out", "means", "order", "corr", "M2", "sd", "mu", "C", "d", "accumulator2", "accumulator1", "denom", "rdx", "cij", "rij", "sdi", "di", "vi", "m", "r", "j", "main"]
7
+ }
@@ -16,7 +16,7 @@
16
16
  * limitations under the License.
17
17
  */
18
18
 
19
- // TypeScript Version: 2.0
19
+ // TypeScript Version: 4.1
20
20
 
21
21
  /// <reference types="@stdlib/types"/>
22
22
 
@@ -43,8 +43,8 @@ type accumulator = ( vector?: ndarray ) => ndarray | null;
43
43
  * @returns accumulator function
44
44
  *
45
45
  * @example
46
- * var Float64Array = require( `@stdlib/array/float64` );
47
- * var ndarray = require( `@stdlib/ndarray/ctor` );
46
+ * var Float64Array = require( '@stdlib/array-float64' );
47
+ * var ndarray = require( '@stdlib/ndarray-ctor' );
48
48
  *
49
49
  * // Create an output correlation matrix:
50
50
  * var buffer = new Float64Array( 4 );
@@ -88,7 +88,7 @@ type accumulator = ( vector?: ndarray ) => ndarray | null;
88
88
  * out = accumulator();
89
89
  * // returns <ndarray>
90
90
  */
91
- declare function incrpcorrmat( out: number | ndarray, means?: ndarray ): accumulator; // tslint-disable-line max-line-length
91
+ declare function incrpcorrmat( out: number | ndarray, means?: ndarray ): accumulator;
92
92
 
93
93
 
94
94
  // EXPORTS //
package/lib/index.js CHANGED
@@ -73,9 +73,9 @@
73
73
 
74
74
  // MODULES //
75
75
 
76
- var incrpcorrmat = require( './main.js' );
76
+ var main = require( './main.js' );
77
77
 
78
78
 
79
79
  // EXPORTS //
80
80
 
81
- module.exports = incrpcorrmat;
81
+ module.exports = main;
package/lib/main.js CHANGED
@@ -24,6 +24,7 @@ var isPositiveInteger = require( '@stdlib/assert-is-positive-integer' ).isPrimit
24
24
  var isSquareMatrix = require( '@stdlib/assert-is-square-matrix' );
25
25
  var isVectorLike = require( '@stdlib/assert-is-vector-like' );
26
26
  var Float64Array = require( '@stdlib/array-float64' );
27
+ var format = require( '@stdlib/string-format' );
27
28
  var sqrt = require( '@stdlib/math-base-special-sqrt' );
28
29
  var ctor = require( '@stdlib/ndarray-ctor' );
29
30
  var bctor = require( '@stdlib/ndarray-base-ctor' );
@@ -273,7 +274,7 @@ function incrpcorrmat( out, means ) {
273
274
  order = out.shape[ 0 ];
274
275
  corr = out;
275
276
  } else {
276
- throw new TypeError( 'invalid argument. First argument must either specify the order of the correlation matrix or be a square 2-dimensional ndarray for storing the correlation matrix. Value: `' + out + '`.' );
277
+ throw new TypeError( format( 'invalid argument. First argument must either specify the order of the correlation matrix or be a square two-dimensional ndarray for storing the correlation matrix. Value: `%s`.', out ) );
277
278
  }
278
279
  // Set the values along the correlation matrix diagonal to `1` (i.e., a random variable is always perfectly correlated with itself):
279
280
  corr = diagonal( corr, 1.0 );
@@ -292,7 +293,7 @@ function incrpcorrmat( out, means ) {
292
293
 
293
294
  if ( arguments.length > 1 ) {
294
295
  if ( !isVectorLike( means ) ) {
295
- throw new TypeError( 'invalid argument. Second argument must be a 1-dimensional ndarray. Value: `' + means + '`.' );
296
+ throw new TypeError( format( 'invalid argument. Second argument must be a one-dimensional ndarray. Value: `%s`.', means ) );
296
297
  }
297
298
  if ( numel( means.shape ) !== order ) {
298
299
  throw new Error( 'invalid argument. The number of elements (means) in the second argument must match correlation matrix dimensions. Expected: '+order+'. Actual: '+numel( means.shape )+'.' );
@@ -334,10 +335,10 @@ function incrpcorrmat( out, means ) {
334
335
  return corr;
335
336
  }
336
337
  if ( !isVectorLike( v ) ) {
337
- throw new TypeError( 'invalid argument. Must provide a 1-dimensional ndarray. Value: `' + v + '`.' );
338
+ throw new TypeError( format( 'invalid argument. Must provide a one-dimensional ndarray. Value: `%s`.', v ) );
338
339
  }
339
340
  if ( v.shape[ 0 ] !== order ) {
340
- throw new Error( 'invalid argument. Vector length must match correlation matrix dimensions. Expected: '+order+'. Actual: '+v.shape[ 0 ]+'.' );
341
+ throw new Error( format( 'invalid argument. Vector length must match correlation matrix dimensions. Expected: `%u`. Actual: `%u`.', order, v.shape[ 0 ] ) );
341
342
  }
342
343
  n = N;
343
344
  N += 1;
@@ -426,10 +427,10 @@ function incrpcorrmat( out, means ) {
426
427
  return corr;
427
428
  }
428
429
  if ( !isVectorLike( v ) ) {
429
- throw new TypeError( 'invalid argument. Must provide a 1-dimensional ndarray. Value: `' + v + '`.' );
430
+ throw new TypeError( format( 'invalid argument. Must provide a one-dimensional ndarray. Value: `%s`.', v ) );
430
431
  }
431
432
  if ( v.shape[ 0 ] !== order ) {
432
- throw new Error( 'invalid argument. Vector length must match correlation matrix dimensions. Expected: '+order+'. Actual: '+v.shape[ 0 ]+'.' );
433
+ throw new Error( format( 'invalid argument. Vector length must match correlation matrix dimensions. Expected: `%u`. Actual: `%u`.', order, v.shape[ 0 ] ) );
433
434
  }
434
435
  N += 1;
435
436
  for ( i = 0; i < order; i++ ) {
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@stdlib/stats-incr-pcorrmat",
3
- "version": "0.0.7",
3
+ "version": "0.2.0",
4
4
  "description": "Compute a sample Pearson product-moment correlation matrix incrementally.",
5
5
  "license": "Apache-2.0",
6
6
  "author": {
@@ -37,25 +37,28 @@
37
37
  "url": "https://github.com/stdlib-js/stdlib/issues"
38
38
  },
39
39
  "dependencies": {
40
- "@stdlib/array-float64": "^0.0.x",
41
- "@stdlib/assert-is-positive-integer": "^0.0.x",
42
- "@stdlib/assert-is-square-matrix": "^0.0.x",
43
- "@stdlib/assert-is-vector-like": "^0.0.x",
44
- "@stdlib/math-base-special-sqrt": "^0.0.x",
45
- "@stdlib/ndarray-base-ctor": "^0.0.x",
46
- "@stdlib/ndarray-base-numel": "^0.0.x",
47
- "@stdlib/ndarray-ctor": "^0.0.x",
48
- "@stdlib/types": "^0.0.x"
40
+ "@stdlib/array-float64": "^0.2.0",
41
+ "@stdlib/assert-is-positive-integer": "^0.2.0",
42
+ "@stdlib/assert-is-square-matrix": "^0.2.0",
43
+ "@stdlib/assert-is-vector-like": "^0.2.0",
44
+ "@stdlib/math-base-special-sqrt": "^0.2.0",
45
+ "@stdlib/ndarray-base-ctor": "^0.2.0",
46
+ "@stdlib/ndarray-base-numel": "^0.2.0",
47
+ "@stdlib/ndarray-ctor": "^0.2.0",
48
+ "@stdlib/string-format": "^0.2.0",
49
+ "@stdlib/types": "^0.3.1",
50
+ "@stdlib/error-tools-fmtprodmsg": "^0.2.0"
49
51
  },
50
52
  "devDependencies": {
51
- "@stdlib/assert-is-symmetric-matrix": "^0.0.x",
52
- "@stdlib/bench": "^0.0.x",
53
- "@stdlib/constants-float64-eps": "^0.0.x",
54
- "@stdlib/math-base-special-abs": "^0.0.x",
55
- "@stdlib/random-base-randu": "^0.0.x",
53
+ "@stdlib/assert-is-symmetric-matrix": "^0.2.0",
54
+ "@stdlib/constants-float64-eps": "^0.2.0",
55
+ "@stdlib/math-base-special-abs": "^0.2.0",
56
+ "@stdlib/random-base-randu": "^0.1.0",
56
57
  "tape": "git+https://github.com/kgryte/tape.git#fix/globby",
57
58
  "istanbul": "^0.4.1",
58
- "tap-spec": "5.x.x"
59
+ "tap-min": "git+https://github.com/Planeshifter/tap-min.git",
60
+ "@stdlib/bench-harness": "^0.2.0",
61
+ "@stdlib/bench": "^0.3.1"
59
62
  },
60
63
  "engines": {
61
64
  "node": ">=0.10.0",
@@ -98,7 +101,7 @@
98
101
  "accumulator"
99
102
  ],
100
103
  "funding": {
101
- "type": "patreon",
102
- "url": "https://www.patreon.com/athan"
104
+ "type": "opencollective",
105
+ "url": "https://opencollective.com/stdlib"
103
106
  }
104
107
  }
package/docs/repl.txt DELETED
@@ -1,46 +0,0 @@
1
-
2
- {{alias}}( out[, means] )
3
- Returns an accumulator function which incrementally computes a sample
4
- Pearson product-moment correlation matrix.
5
-
6
- If provided a data vector, the accumulator function returns an updated
7
- sample correlation matrix. If not provided a data vector, the accumulator
8
- function returns the current sample correlation matrix.
9
-
10
- Parameters
11
- ----------
12
- out: integer|ndarray
13
- Order of the correlation matrix or a square 2-dimensional ndarray for
14
- storing the correlation matrix.
15
-
16
- means: ndarray (optional)
17
- Known means.
18
-
19
- Returns
20
- -------
21
- acc: Function
22
- Accumulator function.
23
-
24
- Examples
25
- --------
26
- > var accumulator = {{alias}}( 2 );
27
- > var out = accumulator()
28
- <ndarray>
29
- > var buf = new {{alias:@stdlib/array/float64}}( 2 );
30
- > var shape = [ 2 ];
31
- > var strides = [ 1 ];
32
- > var v = {{alias:@stdlib/ndarray/ctor}}( 'float64', buf, shape, strides, 0, 'row-major' );
33
- > v.set( 0, 2.0 );
34
- > v.set( 1, 1.0 );
35
- > out = accumulator( v )
36
- <ndarray>
37
- > v.set( 0, -5.0 );
38
- > v.set( 1, 3.14 );
39
- > out = accumulator( v )
40
- <ndarray>
41
- > out = accumulator()
42
- <ndarray>
43
-
44
- See Also
45
- --------
46
-
@@ -1,161 +0,0 @@
1
- /*
2
- * @license Apache-2.0
3
- *
4
- * Copyright (c) 2021 The Stdlib Authors.
5
- *
6
- * Licensed under the Apache License, Version 2.0 (the "License");
7
- * you may not use this file except in compliance with the License.
8
- * You may obtain a copy of the License at
9
- *
10
- * http://www.apache.org/licenses/LICENSE-2.0
11
- *
12
- * Unless required by applicable law or agreed to in writing, software
13
- * distributed under the License is distributed on an "AS IS" BASIS,
14
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
- * See the License for the specific language governing permissions and
16
- * limitations under the License.
17
- */
18
-
19
- import Float64Array = require( '@stdlib/array-float64' );
20
- import ndarray = require( '@stdlib/ndarray-ctor' );
21
- import incrpcorrmat = require( './index' );
22
-
23
-
24
- // TESTS //
25
-
26
- // The function returns an accumulator function...
27
- {
28
- let buffer = new Float64Array( 4 );
29
- let shape = [ 2, 2 ];
30
- let strides = [ 2, 1 ];
31
-
32
- // Create a 2-dimensional output covariance matrix:
33
- const cov = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
34
-
35
- incrpcorrmat( cov ); // $ExpectType accumulator
36
- incrpcorrmat( 2 ); // $ExpectType accumulator
37
-
38
- buffer = new Float64Array( 2 );
39
- shape = [ 2 ];
40
- strides = [ 1 ];
41
-
42
- const means = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
43
- means.set( 0, 3.0 );
44
- means.set( 1, -5.5 );
45
- incrpcorrmat( 2, means ); // $ExpectType accumulator
46
- }
47
-
48
- // The compiler throws an error if the function is provided a first argument which is not an ndarray or number...
49
- {
50
- incrpcorrmat( '5' ); // $ExpectError
51
- incrpcorrmat( true ); // $ExpectError
52
- incrpcorrmat( false ); // $ExpectError
53
- incrpcorrmat( null ); // $ExpectError
54
- incrpcorrmat( undefined ); // $ExpectError
55
- incrpcorrmat( [] ); // $ExpectError
56
- incrpcorrmat( {} ); // $ExpectError
57
- incrpcorrmat( ( x: number ): number => x ); // $ExpectError
58
- }
59
-
60
- // The compiler throws an error if the function is provided a second argument which is not an ndarray...
61
- {
62
- incrpcorrmat( 2, '5' ); // $ExpectError
63
- incrpcorrmat( 2, true ); // $ExpectError
64
- incrpcorrmat( 2, false ); // $ExpectError
65
- incrpcorrmat( 2, null ); // $ExpectError
66
- incrpcorrmat( 2, [] ); // $ExpectError
67
- incrpcorrmat( 2, {} ); // $ExpectError
68
- incrpcorrmat( 2, ( x: number ): number => x ); // $ExpectError
69
- }
70
-
71
- // The compiler throws an error if the function is provided an invalid number of arguments...
72
- {
73
- let buffer = new Float64Array( 4 );
74
- let shape = [ 2, 2 ];
75
- let strides = [ 2, 1 ];
76
-
77
- // Create a 2-dimensional output covariance matrix:
78
- const cov = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
79
-
80
- buffer = new Float64Array( 2 );
81
- shape = [ 2 ];
82
- strides = [ 1 ];
83
-
84
- const means = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
85
- means.set( 0, 3.0 );
86
- means.set( 1, -5.5 );
87
-
88
- incrpcorrmat(); // $ExpectError
89
- incrpcorrmat( cov, means, {} ); // $ExpectError
90
- }
91
-
92
- // The function returns an accumulator function which returns an accumulated result...
93
- {
94
- const acc = incrpcorrmat( 2 );
95
- acc(); // $ExpectType ndarray | null
96
-
97
- const buffer = new Float64Array( 2 );
98
- const shape = [ 2 ];
99
- const strides = [ 1 ];
100
-
101
- const vec = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
102
- vec.set( 0, 37.0 );
103
- vec.set( 1, 45.0 );
104
- acc( vec ); // $ExpectType ndarray | null
105
- }
106
-
107
- // The function returns an accumulator function which returns an accumulated result (known means)...
108
- {
109
- let buffer = new Float64Array( 2 );
110
- let shape = [ 2 ];
111
- let strides = [ 1 ];
112
-
113
- const means = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
114
- means.set( 0, 3.0 );
115
- means.set( 1, -5.5 );
116
- const acc = incrpcorrmat( 2, means );
117
-
118
- acc(); // $ExpectType ndarray | null
119
- buffer = new Float64Array( 2 );
120
- shape = [ 2 ];
121
- strides = [ 1 ];
122
-
123
- const vec = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
124
- vec.set( 0, 37.0 );
125
- vec.set( 1, 45.0 );
126
- acc( vec ); // $ExpectType ndarray | null
127
- }
128
-
129
- // The compiler throws an error if the returned accumulator function is provided an argument which is not an ndarray...
130
- {
131
- const acc = incrpcorrmat( 2 );
132
-
133
- acc( 123 ); // $ExpectError
134
- acc( 'abc' ); // $ExpectError
135
- acc( true ); // $ExpectError
136
- acc( false ); // $ExpectError
137
- acc( null ); // $ExpectError
138
- acc( [] ); // $ExpectError
139
- acc( {} ); // $ExpectError
140
- acc( ( x: number ): number => x ); // $ExpectError
141
- }
142
-
143
- // The compiler throws an error if the returned accumulator function is provided invalid arguments (known means)...
144
- {
145
- const buffer = new Float64Array( 2 );
146
- const shape = [ 2 ];
147
- const strides = [ 1 ];
148
-
149
- const means = ndarray( 'float64', buffer, shape, strides, 0, 'row-major' );
150
- means.set( 0, 3.0 );
151
- means.set( 1, -5.5 );
152
- const acc = incrpcorrmat( 2, means );
153
-
154
- acc( '5' ); // $ExpectError
155
- acc( true ); // $ExpectError
156
- acc( false ); // $ExpectError
157
- acc( null ); // $ExpectError
158
- acc( [] ); // $ExpectError
159
- acc( {} ); // $ExpectError
160
- acc( ( x: number ): number => x ); // $ExpectError
161
- }