@stdlib/stats-base-snanvarianceyc 0.0.7 → 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CITATION.cff +30 -0
- package/NOTICE +1 -1
- package/README.md +26 -15
- package/dist/index.d.ts +3 -0
- package/dist/index.js +9 -0
- package/dist/index.js.map +7 -0
- package/docs/types/index.d.ts +1 -1
- package/lib/index.js +2 -1
- package/package.json +17 -16
- package/docs/repl.txt +0 -122
- package/docs/types/test.ts +0 -187
package/CITATION.cff
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
cff-version: 1.2.0
|
|
2
|
+
title: stdlib
|
|
3
|
+
message: >-
|
|
4
|
+
If you use this software, please cite it using the
|
|
5
|
+
metadata from this file.
|
|
6
|
+
|
|
7
|
+
type: software
|
|
8
|
+
|
|
9
|
+
authors:
|
|
10
|
+
- name: The Stdlib Authors
|
|
11
|
+
url: https://github.com/stdlib-js/stdlib/graphs/contributors
|
|
12
|
+
|
|
13
|
+
repository-code: https://github.com/stdlib-js/stdlib
|
|
14
|
+
url: https://stdlib.io
|
|
15
|
+
|
|
16
|
+
abstract: |
|
|
17
|
+
Standard library for JavaScript and Node.js.
|
|
18
|
+
|
|
19
|
+
keywords:
|
|
20
|
+
- JavaScript
|
|
21
|
+
- Node.js
|
|
22
|
+
- TypeScript
|
|
23
|
+
- standard library
|
|
24
|
+
- scientific computing
|
|
25
|
+
- numerical computing
|
|
26
|
+
- statistical computing
|
|
27
|
+
|
|
28
|
+
license: Apache-2.0 AND BSL-1.0
|
|
29
|
+
|
|
30
|
+
date-released: 2016
|
package/NOTICE
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
Copyright (c) 2016-
|
|
1
|
+
Copyright (c) 2016-2023 The Stdlib Authors.
|
package/README.md
CHANGED
|
@@ -18,6 +18,17 @@ limitations under the License.
|
|
|
18
18
|
|
|
19
19
|
-->
|
|
20
20
|
|
|
21
|
+
|
|
22
|
+
<details>
|
|
23
|
+
<summary>
|
|
24
|
+
About stdlib...
|
|
25
|
+
</summary>
|
|
26
|
+
<p>We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.</p>
|
|
27
|
+
<p>The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.</p>
|
|
28
|
+
<p>When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.</p>
|
|
29
|
+
<p>To join us in bringing numerical computing to the web, get started by checking us out on <a href="https://github.com/stdlib-js/stdlib">GitHub</a>, and please consider <a href="https://opencollective.com/stdlib">financially supporting stdlib</a>. We greatly appreciate your continued support!</p>
|
|
30
|
+
</details>
|
|
31
|
+
|
|
21
32
|
# snanvarianceyc
|
|
22
33
|
|
|
23
34
|
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url] <!-- [![dependencies][dependencies-image]][dependencies-url] -->
|
|
@@ -33,7 +44,7 @@ The population [variance][variance] of a finite size population of size `N` is g
|
|
|
33
44
|
<div class="equation" align="center" data-raw-text="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" data-equation="eq:population_variance">
|
|
34
45
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@47b7d7689f3a010a891ded0d7e6c5fe4e35151ac/lib/node_modules/@stdlib/stats/base/snanvarianceyc/docs/img/equation_population_variance.svg" alt="Equation for the population variance.">
|
|
35
46
|
<br>
|
|
36
|
-
</div>
|
|
47
|
+
</div> -->
|
|
37
48
|
|
|
38
49
|
<!-- </equation> -->
|
|
39
50
|
|
|
@@ -41,10 +52,10 @@ where the population mean is given by
|
|
|
41
52
|
|
|
42
53
|
<!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> -->
|
|
43
54
|
|
|
44
|
-
<div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean">
|
|
55
|
+
<!-- <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean">
|
|
45
56
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@47b7d7689f3a010a891ded0d7e6c5fe4e35151ac/lib/node_modules/@stdlib/stats/base/snanvarianceyc/docs/img/equation_population_mean.svg" alt="Equation for the population mean.">
|
|
46
57
|
<br>
|
|
47
|
-
</div>
|
|
58
|
+
</div> -->
|
|
48
59
|
|
|
49
60
|
<!-- </equation> -->
|
|
50
61
|
|
|
@@ -52,10 +63,10 @@ Often in the analysis of data, the true population [variance][variance] is not k
|
|
|
52
63
|
|
|
53
64
|
<!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" alt="Equation for computing an unbiased sample variance."> -->
|
|
54
65
|
|
|
55
|
-
<div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" data-equation="eq:unbiased_sample_variance">
|
|
66
|
+
<!-- <div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" data-equation="eq:unbiased_sample_variance">
|
|
56
67
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@47b7d7689f3a010a891ded0d7e6c5fe4e35151ac/lib/node_modules/@stdlib/stats/base/snanvarianceyc/docs/img/equation_unbiased_sample_variance.svg" alt="Equation for computing an unbiased sample variance.">
|
|
57
68
|
<br>
|
|
58
|
-
</div>
|
|
69
|
+
</div> -->
|
|
59
70
|
|
|
60
71
|
<!-- </equation> -->
|
|
61
72
|
|
|
@@ -63,7 +74,7 @@ where the sample mean is given by
|
|
|
63
74
|
|
|
64
75
|
<!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> -->
|
|
65
76
|
|
|
66
|
-
<div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean">
|
|
77
|
+
<!-- <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean">
|
|
67
78
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@47b7d7689f3a010a891ded0d7e6c5fe4e35151ac/lib/node_modules/@stdlib/stats/base/snanvarianceyc/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean.">
|
|
68
79
|
<br>
|
|
69
80
|
</div>
|
|
@@ -238,11 +249,11 @@ console.log( v );
|
|
|
238
249
|
|
|
239
250
|
## See Also
|
|
240
251
|
|
|
241
|
-
- <span class="package-name">[`@stdlib/stats
|
|
242
|
-
- <span class="package-name">[`@stdlib/stats
|
|
243
|
-
- <span class="package-name">[`@stdlib/stats
|
|
244
|
-
- <span class="package-name">[`@stdlib/stats
|
|
245
|
-
- <span class="package-name">[`@stdlib/stats
|
|
252
|
+
- <span class="package-name">[`@stdlib/stats-base/dnanvarianceyc`][@stdlib/stats/base/dnanvarianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring NaN values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
|
|
253
|
+
- <span class="package-name">[`@stdlib/stats-base/nanvarianceyc`][@stdlib/stats/base/nanvarianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring NaN values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
|
|
254
|
+
- <span class="package-name">[`@stdlib/stats-base/snanstdevyc`][@stdlib/stats/base/snanstdevyc]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array ignoring NaN values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
|
|
255
|
+
- <span class="package-name">[`@stdlib/stats-base/snanvariance`][@stdlib/stats/base/snanvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array ignoring NaN values.</span>
|
|
256
|
+
- <span class="package-name">[`@stdlib/stats-base/svarianceyc`][@stdlib/stats/base/svarianceyc]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
|
|
246
257
|
|
|
247
258
|
</section>
|
|
248
259
|
|
|
@@ -274,7 +285,7 @@ See [LICENSE][stdlib-license].
|
|
|
274
285
|
|
|
275
286
|
## Copyright
|
|
276
287
|
|
|
277
|
-
Copyright © 2016-
|
|
288
|
+
Copyright © 2016-2023. The Stdlib [Authors][stdlib-authors].
|
|
278
289
|
|
|
279
290
|
</section>
|
|
280
291
|
|
|
@@ -287,8 +298,8 @@ Copyright © 2016-2022. The Stdlib [Authors][stdlib-authors].
|
|
|
287
298
|
[npm-image]: http://img.shields.io/npm/v/@stdlib/stats-base-snanvarianceyc.svg
|
|
288
299
|
[npm-url]: https://npmjs.org/package/@stdlib/stats-base-snanvarianceyc
|
|
289
300
|
|
|
290
|
-
[test-image]: https://github.com/stdlib-js/stats-base-snanvarianceyc/actions/workflows/test.yml/badge.svg?branch=v0.0
|
|
291
|
-
[test-url]: https://github.com/stdlib-js/stats-base-snanvarianceyc/actions/workflows/test.yml?query=branch:v0.0
|
|
301
|
+
[test-image]: https://github.com/stdlib-js/stats-base-snanvarianceyc/actions/workflows/test.yml/badge.svg?branch=v0.1.0
|
|
302
|
+
[test-url]: https://github.com/stdlib-js/stats-base-snanvarianceyc/actions/workflows/test.yml?query=branch:v0.1.0
|
|
292
303
|
|
|
293
304
|
[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/stats-base-snanvarianceyc/main.svg
|
|
294
305
|
[coverage-url]: https://codecov.io/github/stdlib-js/stats-base-snanvarianceyc?branch=main
|
|
@@ -301,7 +312,7 @@ Copyright © 2016-2022. The Stdlib [Authors][stdlib-authors].
|
|
|
301
312
|
-->
|
|
302
313
|
|
|
303
314
|
[chat-image]: https://img.shields.io/gitter/room/stdlib-js/stdlib.svg
|
|
304
|
-
[chat-url]: https://gitter.im
|
|
315
|
+
[chat-url]: https://app.gitter.im/#/room/#stdlib-js_stdlib:gitter.im
|
|
305
316
|
|
|
306
317
|
[stdlib]: https://github.com/stdlib-js/stdlib
|
|
307
318
|
|
package/dist/index.d.ts
ADDED
package/dist/index.js
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
"use strict";var m=function(a,u){return function(){return u||a((u={exports:{}}).exports,u),u.exports}};var j=m(function(B,N){
|
|
2
|
+
var c=require('@stdlib/number-float64-base-to-float32/dist');function T(a,u,y,v){var l,i,t,o,r,e,f,n;if(a<=0)return NaN;if(a===1||v===0)return r=y[0],r===r&&a-u>0?0:NaN;for(v<0?i=(1-a)*v:i=0,n=0;n<a&&(r=y[i],r!==r);n++)i+=v;if(n===a)return NaN;for(i+=v,l=r,o=0,n+=1,f=1,n;n<a;n++)r=y[i],r===r&&(f+=1,l=c(l+r),e=c(c(f*r)-l),o=c(o+c(c(c(1/(f*(f-1)))*e)*e))),i+=v;return t=f-u,t<=0?NaN:c(o/t)}N.exports=T
|
|
3
|
+
});var k=m(function(C,b){
|
|
4
|
+
var q=require('@stdlib/number-float64-base-to-float32/dist');function _(a,u,y,v,l){var i,t,o,r,e,f,n,s;if(a<=0)return NaN;if(a===1||v===0)return e=y[l],e===e&&a-u>0?0:NaN;for(t=l,s=0;s<a&&(e=y[t],e!==e);s++)t+=v;if(s===a)return NaN;for(t+=v,i=e,r=0,s+=1,n=1,s;s<a;s++)e=y[t],e===e&&(n+=1,i=q(i+e),f=q(q(n*e)-i),r=q(r+q(q(q(1/(n*(n-1)))*f)*f))),t+=v;return o=n-u,o<=0?NaN:q(r/o)}b.exports=_
|
|
5
|
+
});var R=m(function(D,F){
|
|
6
|
+
var E=require('@stdlib/utils-define-nonenumerable-read-only-property/dist'),x=j(),O=k();E(x,"ndarray",O);F.exports=x
|
|
7
|
+
});var g=require("path").join,h=require('@stdlib/utils-try-require/dist'),w=require('@stdlib/assert-is-error/dist'),z=R(),p,S=h(g(__dirname,"./native.js"));w(S)?p=z:p=S;module.exports=p;
|
|
8
|
+
/** @license Apache-2.0 */
|
|
9
|
+
//# sourceMappingURL=index.js.map
|
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
{
|
|
2
|
+
"version": 3,
|
|
3
|
+
"sources": ["../lib/snanvarianceyc.js", "../lib/ndarray.js", "../lib/main.js", "../lib/index.js"],
|
|
4
|
+
"sourcesContent": ["/**\n* @license Apache-2.0\n*\n* Copyright (c) 2020 The Stdlib Authors.\n*\n* Licensed under the Apache License, Version 2.0 (the \"License\");\n* you may not use this file except in compliance with the License.\n* You may obtain a copy of the License at\n*\n* http://www.apache.org/licenses/LICENSE-2.0\n*\n* Unless required by applicable law or agreed to in writing, software\n* distributed under the License is distributed on an \"AS IS\" BASIS,\n* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n* See the License for the specific language governing permissions and\n* limitations under the License.\n*/\n\n'use strict';\n\n// MODULES //\n\nvar float64ToFloat32 = require( '@stdlib/number-float64-base-to-float32' );\n\n\n// MAIN //\n\n/**\n* Computes the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.\n*\n* ## Method\n*\n* - This implementation uses a one-pass algorithm, as proposed by Youngs and Cramer (1971).\n*\n* ## References\n*\n* - Youngs, Edward A., and Elliot M. Cramer. 1971. \"Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms.\" _Technometrics_ 13 (3): 657\u201365. doi:[10.1080/00401706.1971.10488826](https://doi.org/10.1080/00401706.1971.10488826).\n*\n* @param {PositiveInteger} N - number of indexed elements\n* @param {number} correction - degrees of freedom adjustment\n* @param {Float32Array} x - input array\n* @param {integer} stride - stride length\n* @returns {number} variance\n*\n* @example\n* var Float32Array = require( '@stdlib/array-float32' );\n*\n* var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );\n* var N = x.length;\n*\n* var v = snanvarianceyc( N, 1, x, 1 );\n* // returns ~4.3333\n*/\nfunction snanvarianceyc( N, correction, x, stride ) {\n\tvar sum;\n\tvar ix;\n\tvar nc;\n\tvar S;\n\tvar v;\n\tvar d;\n\tvar n;\n\tvar i;\n\n\tif ( N <= 0 ) {\n\t\treturn NaN;\n\t}\n\tif ( N === 1 || stride === 0 ) {\n\t\tv = x[ 0 ];\n\t\tif ( v === v && N-correction > 0.0 ) {\n\t\t\treturn 0.0;\n\t\t}\n\t\treturn NaN;\n\t}\n\tif ( stride < 0 ) {\n\t\tix = (1-N) * stride;\n\t} else {\n\t\tix = 0;\n\t}\n\t// Find the first non-NaN element...\n\tfor ( i = 0; i < N; i++ ) {\n\t\tv = x[ ix ];\n\t\tif ( v === v ) {\n\t\t\tbreak;\n\t\t}\n\t\tix += stride;\n\t}\n\tif ( i === N ) {\n\t\treturn NaN;\n\t}\n\tix += stride;\n\tsum = v;\n\tS = 0.0;\n\ti += 1;\n\tn = 1;\n\tfor ( i; i < N; i++ ) {\n\t\tv = x[ ix ];\n\t\tif ( v === v ) {\n\t\t\tn += 1;\n\t\t\tsum = float64ToFloat32( sum + v );\n\t\t\td = float64ToFloat32( float64ToFloat32(n*v) - sum );\n\t\t\tS = float64ToFloat32( S + float64ToFloat32( float64ToFloat32( float64ToFloat32(1.0/(n*(n-1))) * d ) * d ) ); // eslint-disable-line max-len\n\t\t}\n\t\tix += stride;\n\t}\n\tnc = n - correction;\n\tif ( nc <= 0.0 ) {\n\t\treturn NaN;\n\t}\n\treturn float64ToFloat32( S / nc );\n}\n\n\n// EXPORTS //\n\nmodule.exports = snanvarianceyc;\n", "/**\n* @license Apache-2.0\n*\n* Copyright (c) 2020 The Stdlib Authors.\n*\n* Licensed under the Apache License, Version 2.0 (the \"License\");\n* you may not use this file except in compliance with the License.\n* You may obtain a copy of the License at\n*\n* http://www.apache.org/licenses/LICENSE-2.0\n*\n* Unless required by applicable law or agreed to in writing, software\n* distributed under the License is distributed on an \"AS IS\" BASIS,\n* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n* See the License for the specific language governing permissions and\n* limitations under the License.\n*/\n\n'use strict';\n\n// MODULES //\n\nvar float64ToFloat32 = require( '@stdlib/number-float64-base-to-float32' );\n\n\n// MAIN //\n\n/**\n* Computes the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.\n*\n* ## Method\n*\n* - This implementation uses a one-pass algorithm, as proposed by Youngs and Cramer (1971).\n*\n* ## References\n*\n* - Youngs, Edward A., and Elliot M. Cramer. 1971. \"Some Results Relevant to Choice of Sum and Sum-of-Product Algorithms.\" _Technometrics_ 13 (3): 657\u201365. doi:[10.1080/00401706.1971.10488826](https://doi.org/10.1080/00401706.1971.10488826).\n*\n* @param {PositiveInteger} N - number of indexed elements\n* @param {number} correction - degrees of freedom adjustment\n* @param {Float32Array} x - input array\n* @param {integer} stride - stride length\n* @param {NonNegativeInteger} offset - starting index\n* @returns {number} variance\n*\n* @example\n* var Float32Array = require( '@stdlib/array-float32' );\n* var floor = require( '@stdlib/math-base-special-floor' );\n*\n* var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );\n* var N = floor( x.length / 2 );\n*\n* var v = snanvarianceyc( N, 1, x, 2, 1 );\n* // returns 6.25\n*/\nfunction snanvarianceyc( N, correction, x, stride, offset ) {\n\tvar sum;\n\tvar ix;\n\tvar nc;\n\tvar S;\n\tvar v;\n\tvar d;\n\tvar n;\n\tvar i;\n\n\tif ( N <= 0 ) {\n\t\treturn NaN;\n\t}\n\tif ( N === 1 || stride === 0 ) {\n\t\tv = x[ offset ];\n\t\tif ( v === v && N-correction > 0.0 ) {\n\t\t\treturn 0.0;\n\t\t}\n\t\treturn NaN;\n\t}\n\tix = offset;\n\n\t// Find the first non-NaN element...\n\tfor ( i = 0; i < N; i++ ) {\n\t\tv = x[ ix ];\n\t\tif ( v === v ) {\n\t\t\tbreak;\n\t\t}\n\t\tix += stride;\n\t}\n\tif ( i === N ) {\n\t\treturn NaN;\n\t}\n\tix += stride;\n\tsum = v;\n\tS = 0.0;\n\ti += 1;\n\tn = 1;\n\tfor ( i; i < N; i++ ) {\n\t\tv = x[ ix ];\n\t\tif ( v === v ) {\n\t\t\tn += 1;\n\t\t\tsum = float64ToFloat32( sum + v );\n\t\t\td = float64ToFloat32( float64ToFloat32(n*v) - sum );\n\t\t\tS = float64ToFloat32( S + float64ToFloat32( float64ToFloat32( float64ToFloat32(1.0/(n*(n-1))) * d ) * d ) ); // eslint-disable-line max-len\n\t\t}\n\t\tix += stride;\n\t}\n\tnc = n - correction;\n\tif ( nc <= 0.0 ) {\n\t\treturn NaN;\n\t}\n\treturn float64ToFloat32( S / nc );\n}\n\n\n// EXPORTS //\n\nmodule.exports = snanvarianceyc;\n", "/**\n* @license Apache-2.0\n*\n* Copyright (c) 2020 The Stdlib Authors.\n*\n* Licensed under the Apache License, Version 2.0 (the \"License\");\n* you may not use this file except in compliance with the License.\n* You may obtain a copy of the License at\n*\n* http://www.apache.org/licenses/LICENSE-2.0\n*\n* Unless required by applicable law or agreed to in writing, software\n* distributed under the License is distributed on an \"AS IS\" BASIS,\n* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n* See the License for the specific language governing permissions and\n* limitations under the License.\n*/\n\n'use strict';\n\n// MODULES //\n\nvar setReadOnly = require( '@stdlib/utils-define-nonenumerable-read-only-property' );\nvar snanvarianceyc = require( './snanvarianceyc.js' );\nvar ndarray = require( './ndarray.js' );\n\n\n// MAIN //\n\nsetReadOnly( snanvarianceyc, 'ndarray', ndarray );\n\n\n// EXPORTS //\n\nmodule.exports = snanvarianceyc;\n", "/**\n* @license Apache-2.0\n*\n* Copyright (c) 2020 The Stdlib Authors.\n*\n* Licensed under the Apache License, Version 2.0 (the \"License\");\n* you may not use this file except in compliance with the License.\n* You may obtain a copy of the License at\n*\n* http://www.apache.org/licenses/LICENSE-2.0\n*\n* Unless required by applicable law or agreed to in writing, software\n* distributed under the License is distributed on an \"AS IS\" BASIS,\n* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n* See the License for the specific language governing permissions and\n* limitations under the License.\n*/\n\n'use strict';\n\n/**\n* Compute the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.\n*\n* @module @stdlib/stats-base-snanvarianceyc\n*\n* @example\n* var Float32Array = require( '@stdlib/array-float32' );\n* var snanvarianceyc = require( '@stdlib/stats-base-snanvarianceyc' );\n*\n* var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );\n*\n* var v = snanvarianceyc( x.length, 1, x, 1 );\n* // returns ~4.3333\n*\n* @example\n* var Float32Array = require( '@stdlib/array-float32' );\n* var floor = require( '@stdlib/math-base-special-floor' );\n* var snanvarianceyc = require( '@stdlib/stats-base-snanvarianceyc' );\n*\n* var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );\n* var N = floor( x.length / 2 );\n*\n* var v = snanvarianceyc.ndarray( N, 1, x, 2, 1 );\n* // returns 6.25\n*/\n\n// MODULES //\n\nvar join = require( 'path' ).join;\nvar tryRequire = require( '@stdlib/utils-try-require' );\nvar isError = require( '@stdlib/assert-is-error' );\nvar main = require( './main.js' );\n\n\n// MAIN //\n\nvar snanvarianceyc;\nvar tmp = tryRequire( join( __dirname, './native.js' ) );\nif ( isError( tmp ) ) {\n\tsnanvarianceyc = main;\n} else {\n\tsnanvarianceyc = tmp;\n}\n\n\n// EXPORTS //\n\nmodule.exports = snanvarianceyc;\n\n// exports: { \"ndarray\": \"snanvarianceyc.ndarray\" }\n"],
|
|
5
|
+
"mappings": "uGAAA,IAAAA,EAAAC,EAAA,SAAAC,EAAAC,EAAA,cAsBA,IAAIC,EAAmB,QAAS,wCAAyC,EA+BzE,SAASC,EAAgBC,EAAGC,EAAYC,EAAGC,EAAS,CACnD,IAAIC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EAEJ,GAAKX,GAAK,EACT,MAAO,KAER,GAAKA,IAAM,GAAKG,IAAW,EAE1B,OADAK,EAAIN,EAAG,CAAE,EACJM,IAAMA,GAAKR,EAAEC,EAAa,EACvB,EAED,IAQR,IANKE,EAAS,EACbE,GAAM,EAAEL,GAAKG,EAEbE,EAAK,EAGAM,EAAI,EAAGA,EAAIX,IAChBQ,EAAIN,EAAGG,CAAG,EACLG,IAAMA,GAFQG,IAKnBN,GAAMF,EAEP,GAAKQ,IAAMX,EACV,MAAO,KAOR,IALAK,GAAMF,EACNC,EAAMI,EACND,EAAI,EACJI,GAAK,EACLD,EAAI,EACEC,EAAGA,EAAIX,EAAGW,IACfH,EAAIN,EAAGG,CAAG,EACLG,IAAMA,IACVE,GAAK,EACLN,EAAMN,EAAkBM,EAAMI,CAAE,EAChCC,EAAIX,EAAkBA,EAAiBY,EAAEF,CAAC,EAAIJ,CAAI,EAClDG,EAAIT,EAAkBS,EAAIT,EAAkBA,EAAkBA,EAAiB,GAAKY,GAAGA,EAAE,GAAG,EAAID,CAAE,EAAIA,CAAE,CAAE,GAE3GJ,GAAMF,EAGP,OADAG,EAAKI,EAAIT,EACJK,GAAM,EACH,IAEDR,EAAkBS,EAAID,CAAG,CACjC,CAKAT,EAAO,QAAUE,IClHjB,IAAAa,EAAAC,EAAA,SAAAC,EAAAC,EAAA,cAsBA,IAAIC,EAAmB,QAAS,wCAAyC,EAiCzE,SAASC,EAAgBC,EAAGC,EAAYC,EAAGC,EAAQC,EAAS,CAC3D,IAAIC,EACAC,EACAC,EACAC,EACAC,EACAC,EACA,EACAC,EAEJ,GAAKX,GAAK,EACT,MAAO,KAER,GAAKA,IAAM,GAAKG,IAAW,EAE1B,OADAM,EAAIP,EAAGE,CAAO,EACTK,IAAMA,GAAKT,EAAEC,EAAa,EACvB,EAED,IAKR,IAHAK,EAAKF,EAGCO,EAAI,EAAGA,EAAIX,IAChBS,EAAIP,EAAGI,CAAG,EACLG,IAAMA,GAFQE,IAKnBL,GAAMH,EAEP,GAAKQ,IAAMX,EACV,MAAO,KAOR,IALAM,GAAMH,EACNE,EAAMI,EACND,EAAI,EACJG,GAAK,EACL,EAAI,EACEA,EAAGA,EAAIX,EAAGW,IACfF,EAAIP,EAAGI,CAAG,EACLG,IAAMA,IACV,GAAK,EACLJ,EAAMP,EAAkBO,EAAMI,CAAE,EAChCC,EAAIZ,EAAkBA,EAAiB,EAAEW,CAAC,EAAIJ,CAAI,EAClDG,EAAIV,EAAkBU,EAAIV,EAAkBA,EAAkBA,EAAiB,GAAK,GAAG,EAAE,GAAG,EAAIY,CAAE,EAAIA,CAAE,CAAE,GAE3GJ,GAAMH,EAGP,OADAI,EAAK,EAAIN,EACJM,GAAM,EACH,IAEDT,EAAkBU,EAAID,CAAG,CACjC,CAKAV,EAAO,QAAUE,ICjHjB,IAAAa,EAAAC,EAAA,SAAAC,EAAAC,EAAA,cAsBA,IAAIC,EAAc,QAAS,uDAAwD,EAC/EC,EAAiB,IACjBC,EAAU,IAKdF,EAAaC,EAAgB,UAAWC,CAAQ,EAKhDH,EAAO,QAAUE,ICcjB,IAAIE,EAAO,QAAS,MAAO,EAAE,KACzBC,EAAa,QAAS,2BAA4B,EAClDC,EAAU,QAAS,yBAA0B,EAC7CC,EAAO,IAKPC,EACAC,EAAMJ,EAAYD,EAAM,UAAW,aAAc,CAAE,EAClDE,EAASG,CAAI,EACjBD,EAAiBD,EAEjBC,EAAiBC,EAMlB,OAAO,QAAUD",
|
|
6
|
+
"names": ["require_snanvarianceyc", "__commonJSMin", "exports", "module", "float64ToFloat32", "snanvarianceyc", "N", "correction", "x", "stride", "sum", "ix", "nc", "S", "v", "d", "n", "i", "require_ndarray", "__commonJSMin", "exports", "module", "float64ToFloat32", "snanvarianceyc", "N", "correction", "x", "stride", "offset", "sum", "ix", "nc", "S", "v", "d", "i", "require_main", "__commonJSMin", "exports", "module", "setReadOnly", "snanvarianceyc", "ndarray", "join", "tryRequire", "isError", "main", "snanvarianceyc", "tmp"]
|
|
7
|
+
}
|
package/docs/types/index.d.ts
CHANGED
package/lib/index.js
CHANGED
|
@@ -48,6 +48,7 @@
|
|
|
48
48
|
|
|
49
49
|
var join = require( 'path' ).join;
|
|
50
50
|
var tryRequire = require( '@stdlib/utils-try-require' );
|
|
51
|
+
var isError = require( '@stdlib/assert-is-error' );
|
|
51
52
|
var main = require( './main.js' );
|
|
52
53
|
|
|
53
54
|
|
|
@@ -55,7 +56,7 @@ var main = require( './main.js' );
|
|
|
55
56
|
|
|
56
57
|
var snanvarianceyc;
|
|
57
58
|
var tmp = tryRequire( join( __dirname, './native.js' ) );
|
|
58
|
-
if ( tmp
|
|
59
|
+
if ( isError( tmp ) ) {
|
|
59
60
|
snanvarianceyc = main;
|
|
60
61
|
} else {
|
|
61
62
|
snanvarianceyc = tmp;
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@stdlib/stats-base-snanvarianceyc",
|
|
3
|
-
"version": "0.0
|
|
3
|
+
"version": "0.1.0",
|
|
4
4
|
"description": "Calculate the variance of a single-precision floating-point strided array ignoring NaN values and using a one-pass algorithm proposed by Youngs and Cramer.",
|
|
5
5
|
"license": "Apache-2.0",
|
|
6
6
|
"author": {
|
|
@@ -41,24 +41,25 @@
|
|
|
41
41
|
"url": "https://github.com/stdlib-js/stdlib/issues"
|
|
42
42
|
},
|
|
43
43
|
"dependencies": {
|
|
44
|
-
"@stdlib/
|
|
45
|
-
"@stdlib/
|
|
46
|
-
"@stdlib/utils-
|
|
47
|
-
"@stdlib/utils-
|
|
44
|
+
"@stdlib/assert-is-error": "^0.1.0",
|
|
45
|
+
"@stdlib/number-float64-base-to-float32": "^0.1.0",
|
|
46
|
+
"@stdlib/utils-define-nonenumerable-read-only-property": "^0.1.0",
|
|
47
|
+
"@stdlib/utils-library-manifest": "^0.1.0",
|
|
48
|
+
"@stdlib/utils-try-require": "^0.1.0"
|
|
48
49
|
},
|
|
49
50
|
"devDependencies": {
|
|
50
|
-
"@stdlib/array-float32": "^0.0
|
|
51
|
-
"@stdlib/assert-is-browser": "^0.0
|
|
52
|
-
"@stdlib/bench": "^0.0
|
|
53
|
-
"@stdlib/math-base-assert-is-nanf": "^0.0
|
|
54
|
-
"@stdlib/math-base-special-floor": "^0.0.
|
|
55
|
-
"@stdlib/math-base-special-pow": "^0.0.
|
|
56
|
-
"@stdlib/math-base-special-round": "^0.0
|
|
57
|
-
"@stdlib/random-base-randu": "^0.0.
|
|
51
|
+
"@stdlib/array-float32": "^0.1.0",
|
|
52
|
+
"@stdlib/assert-is-browser": "^0.1.0",
|
|
53
|
+
"@stdlib/bench": "^0.1.0",
|
|
54
|
+
"@stdlib/math-base-assert-is-nanf": "^0.1.0",
|
|
55
|
+
"@stdlib/math-base-special-floor": "^0.0.8",
|
|
56
|
+
"@stdlib/math-base-special-pow": "^0.0.7",
|
|
57
|
+
"@stdlib/math-base-special-round": "^0.1.0",
|
|
58
|
+
"@stdlib/random-base-randu": "^0.0.8",
|
|
58
59
|
"proxyquire": "^2.0.0",
|
|
59
60
|
"tape": "git+https://github.com/kgryte/tape.git#fix/globby",
|
|
60
61
|
"istanbul": "^0.4.1",
|
|
61
|
-
"tap-
|
|
62
|
+
"tap-min": "git+https://github.com/Planeshifter/tap-min.git"
|
|
62
63
|
},
|
|
63
64
|
"engines": {
|
|
64
65
|
"node": ">=0.10.0",
|
|
@@ -102,7 +103,7 @@
|
|
|
102
103
|
],
|
|
103
104
|
"__stdlib__": {},
|
|
104
105
|
"funding": {
|
|
105
|
-
"type": "
|
|
106
|
-
"url": "https://
|
|
106
|
+
"type": "opencollective",
|
|
107
|
+
"url": "https://opencollective.com/stdlib"
|
|
107
108
|
}
|
|
108
109
|
}
|
package/docs/repl.txt
DELETED
|
@@ -1,122 +0,0 @@
|
|
|
1
|
-
|
|
2
|
-
{{alias}}( N, correction, x, stride )
|
|
3
|
-
Computes the variance of a single-precision floating-point strided array
|
|
4
|
-
ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and
|
|
5
|
-
Cramer.
|
|
6
|
-
|
|
7
|
-
The `N` and `stride` parameters determine which elements in `x` are accessed
|
|
8
|
-
at runtime.
|
|
9
|
-
|
|
10
|
-
Indexing is relative to the first index. To introduce an offset, use a typed
|
|
11
|
-
array view.
|
|
12
|
-
|
|
13
|
-
If `N <= 0`, the function returns `NaN`.
|
|
14
|
-
|
|
15
|
-
If every indexed element is `NaN`, the function returns `NaN`.
|
|
16
|
-
|
|
17
|
-
Parameters
|
|
18
|
-
----------
|
|
19
|
-
N: integer
|
|
20
|
-
Number of indexed elements.
|
|
21
|
-
|
|
22
|
-
correction: number
|
|
23
|
-
Degrees of freedom adjustment. Setting this parameter to a value other
|
|
24
|
-
than `0` has the effect of adjusting the divisor during the calculation
|
|
25
|
-
of the variance according to `n - c` where `c` corresponds to the
|
|
26
|
-
provided degrees of freedom adjustment and `n` corresponds to the number
|
|
27
|
-
of non-`NaN` indexed elements. When computing the variance of a
|
|
28
|
-
population, setting this parameter to `0` is the standard choice (i.e.,
|
|
29
|
-
the provided array contains data constituting an entire population).
|
|
30
|
-
When computing the unbiased sample variance, setting this parameter to
|
|
31
|
-
`1` is the standard choice (i.e., the provided array contains data
|
|
32
|
-
sampled from a larger population; this is commonly referred to as
|
|
33
|
-
Bessel's correction).
|
|
34
|
-
|
|
35
|
-
x: Float32Array
|
|
36
|
-
Input array.
|
|
37
|
-
|
|
38
|
-
stride: integer
|
|
39
|
-
Index increment.
|
|
40
|
-
|
|
41
|
-
Returns
|
|
42
|
-
-------
|
|
43
|
-
out: number
|
|
44
|
-
The variance.
|
|
45
|
-
|
|
46
|
-
Examples
|
|
47
|
-
--------
|
|
48
|
-
// Standard Usage:
|
|
49
|
-
> var x = new {{alias:@stdlib/array/float32}}( [ 1.0, -2.0, NaN, 2.0 ] );
|
|
50
|
-
> {{alias}}( x.length, 1, x, 1 )
|
|
51
|
-
~4.3333
|
|
52
|
-
|
|
53
|
-
// Using `N` and `stride` parameters:
|
|
54
|
-
> x = new {{alias:@stdlib/array/float32}}( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0 ] );
|
|
55
|
-
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
|
|
56
|
-
> {{alias}}( N, 1, x, 2 )
|
|
57
|
-
~4.3333
|
|
58
|
-
|
|
59
|
-
// Using view offsets:
|
|
60
|
-
> var x0 = new {{alias:@stdlib/array/float32}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );
|
|
61
|
-
> var x1 = new {{alias:@stdlib/array/float32}}( x0.buffer, x0.BYTES_PER_ELEMENT*1 );
|
|
62
|
-
> N = {{alias:@stdlib/math/base/special/floor}}( x0.length / 2 );
|
|
63
|
-
> {{alias}}( N, 1, x1, 2 )
|
|
64
|
-
~4.3333
|
|
65
|
-
|
|
66
|
-
{{alias}}.ndarray( N, correction, x, stride, offset )
|
|
67
|
-
Computes the variance of a single-precision floating-point strided array
|
|
68
|
-
ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and
|
|
69
|
-
Cramer and alternative indexing semantics.
|
|
70
|
-
|
|
71
|
-
While typed array views mandate a view offset based on the underlying
|
|
72
|
-
buffer, the `offset` parameter supports indexing semantics based on a
|
|
73
|
-
starting index.
|
|
74
|
-
|
|
75
|
-
Parameters
|
|
76
|
-
----------
|
|
77
|
-
N: integer
|
|
78
|
-
Number of indexed elements.
|
|
79
|
-
|
|
80
|
-
correction: number
|
|
81
|
-
Degrees of freedom adjustment. Setting this parameter to a value other
|
|
82
|
-
than `0` has the effect of adjusting the divisor during the calculation
|
|
83
|
-
of the variance according to `n - c` where `c` corresponds to the
|
|
84
|
-
provided degrees of freedom adjustment and `n` corresponds to the number
|
|
85
|
-
of non-`NaN` indexed elements. When computing the variance of a
|
|
86
|
-
population, setting this parameter to `0` is the standard choice (i.e.,
|
|
87
|
-
the provided array contains data constituting an entire population).
|
|
88
|
-
When computing the unbiased sample variance, setting this parameter to
|
|
89
|
-
`1` is the standard choice (i.e., the provided array contains data
|
|
90
|
-
sampled from a larger population; this is commonly referred to as
|
|
91
|
-
Bessel's correction).
|
|
92
|
-
|
|
93
|
-
x: Float32Array
|
|
94
|
-
Input array.
|
|
95
|
-
|
|
96
|
-
stride: integer
|
|
97
|
-
Index increment.
|
|
98
|
-
|
|
99
|
-
offset: integer
|
|
100
|
-
Starting index.
|
|
101
|
-
|
|
102
|
-
Returns
|
|
103
|
-
-------
|
|
104
|
-
out: number
|
|
105
|
-
The variance.
|
|
106
|
-
|
|
107
|
-
Examples
|
|
108
|
-
--------
|
|
109
|
-
// Standard Usage:
|
|
110
|
-
> var x = new {{alias:@stdlib/array/float32}}( [ 1.0, -2.0, NaN, 2.0 ] );
|
|
111
|
-
> {{alias}}.ndarray( x.length, 1, x, 1, 0 )
|
|
112
|
-
~4.3333
|
|
113
|
-
|
|
114
|
-
// Using offset parameter:
|
|
115
|
-
> var x = new {{alias:@stdlib/array/float32}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );
|
|
116
|
-
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
|
|
117
|
-
> {{alias}}.ndarray( N, 1, x, 2, 1 )
|
|
118
|
-
~4.3333
|
|
119
|
-
|
|
120
|
-
See Also
|
|
121
|
-
--------
|
|
122
|
-
|
package/docs/types/test.ts
DELETED
|
@@ -1,187 +0,0 @@
|
|
|
1
|
-
/*
|
|
2
|
-
* @license Apache-2.0
|
|
3
|
-
*
|
|
4
|
-
* Copyright (c) 2020 The Stdlib Authors.
|
|
5
|
-
*
|
|
6
|
-
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
7
|
-
* you may not use this file except in compliance with the License.
|
|
8
|
-
* You may obtain a copy of the License at
|
|
9
|
-
*
|
|
10
|
-
* http://www.apache.org/licenses/LICENSE-2.0
|
|
11
|
-
*
|
|
12
|
-
* Unless required by applicable law or agreed to in writing, software
|
|
13
|
-
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
14
|
-
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
15
|
-
* See the License for the specific language governing permissions and
|
|
16
|
-
* limitations under the License.
|
|
17
|
-
*/
|
|
18
|
-
|
|
19
|
-
import snanvarianceyc = require( './index' );
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
// TESTS //
|
|
23
|
-
|
|
24
|
-
// The function returns a number...
|
|
25
|
-
{
|
|
26
|
-
const x = new Float32Array( 10 );
|
|
27
|
-
|
|
28
|
-
snanvarianceyc( x.length, 1, x, 1 ); // $ExpectType number
|
|
29
|
-
}
|
|
30
|
-
|
|
31
|
-
// The compiler throws an error if the function is provided a first argument which is not a number...
|
|
32
|
-
{
|
|
33
|
-
const x = new Float32Array( 10 );
|
|
34
|
-
|
|
35
|
-
snanvarianceyc( '10', 1, x, 1 ); // $ExpectError
|
|
36
|
-
snanvarianceyc( true, 1, x, 1 ); // $ExpectError
|
|
37
|
-
snanvarianceyc( false, 1, x, 1 ); // $ExpectError
|
|
38
|
-
snanvarianceyc( null, 1, x, 1 ); // $ExpectError
|
|
39
|
-
snanvarianceyc( undefined, 1, x, 1 ); // $ExpectError
|
|
40
|
-
snanvarianceyc( [], 1, x, 1 ); // $ExpectError
|
|
41
|
-
snanvarianceyc( {}, 1, x, 1 ); // $ExpectError
|
|
42
|
-
snanvarianceyc( ( x: number ): number => x, 1, x, 1 ); // $ExpectError
|
|
43
|
-
}
|
|
44
|
-
|
|
45
|
-
// The compiler throws an error if the function is provided a second argument which is not a number...
|
|
46
|
-
{
|
|
47
|
-
const x = new Float32Array( 10 );
|
|
48
|
-
|
|
49
|
-
snanvarianceyc( x.length, '10', x, 1 ); // $ExpectError
|
|
50
|
-
snanvarianceyc( x.length, true, x, 1 ); // $ExpectError
|
|
51
|
-
snanvarianceyc( x.length, false, x, 1 ); // $ExpectError
|
|
52
|
-
snanvarianceyc( x.length, null, x, 1 ); // $ExpectError
|
|
53
|
-
snanvarianceyc( x.length, undefined, x, 1 ); // $ExpectError
|
|
54
|
-
snanvarianceyc( x.length, [], x, 1 ); // $ExpectError
|
|
55
|
-
snanvarianceyc( x.length, {}, x, 1 ); // $ExpectError
|
|
56
|
-
snanvarianceyc( x.length, ( x: number ): number => x, x, 1 ); // $ExpectError
|
|
57
|
-
}
|
|
58
|
-
|
|
59
|
-
// The compiler throws an error if the function is provided a third argument which is not a Float32Array...
|
|
60
|
-
{
|
|
61
|
-
const x = new Float32Array( 10 );
|
|
62
|
-
|
|
63
|
-
snanvarianceyc( x.length, 1, 10, 1 ); // $ExpectError
|
|
64
|
-
snanvarianceyc( x.length, 1, '10', 1 ); // $ExpectError
|
|
65
|
-
snanvarianceyc( x.length, 1, true, 1 ); // $ExpectError
|
|
66
|
-
snanvarianceyc( x.length, 1, false, 1 ); // $ExpectError
|
|
67
|
-
snanvarianceyc( x.length, 1, null, 1 ); // $ExpectError
|
|
68
|
-
snanvarianceyc( x.length, 1, undefined, 1 ); // $ExpectError
|
|
69
|
-
snanvarianceyc( x.length, 1, [], 1 ); // $ExpectError
|
|
70
|
-
snanvarianceyc( x.length, 1, {}, 1 ); // $ExpectError
|
|
71
|
-
snanvarianceyc( x.length, 1, ( x: number ): number => x, 1 ); // $ExpectError
|
|
72
|
-
}
|
|
73
|
-
|
|
74
|
-
// The compiler throws an error if the function is provided a fourth argument which is not a number...
|
|
75
|
-
{
|
|
76
|
-
const x = new Float32Array( 10 );
|
|
77
|
-
|
|
78
|
-
snanvarianceyc( x.length, 1, x, '10' ); // $ExpectError
|
|
79
|
-
snanvarianceyc( x.length, 1, x, true ); // $ExpectError
|
|
80
|
-
snanvarianceyc( x.length, 1, x, false ); // $ExpectError
|
|
81
|
-
snanvarianceyc( x.length, 1, x, null ); // $ExpectError
|
|
82
|
-
snanvarianceyc( x.length, 1, x, undefined ); // $ExpectError
|
|
83
|
-
snanvarianceyc( x.length, 1, x, [] ); // $ExpectError
|
|
84
|
-
snanvarianceyc( x.length, 1, x, {} ); // $ExpectError
|
|
85
|
-
snanvarianceyc( x.length, 1, x, ( x: number ): number => x ); // $ExpectError
|
|
86
|
-
}
|
|
87
|
-
|
|
88
|
-
// The compiler throws an error if the function is provided an unsupported number of arguments...
|
|
89
|
-
{
|
|
90
|
-
const x = new Float32Array( 10 );
|
|
91
|
-
|
|
92
|
-
snanvarianceyc(); // $ExpectError
|
|
93
|
-
snanvarianceyc( x.length ); // $ExpectError
|
|
94
|
-
snanvarianceyc( x.length, 1 ); // $ExpectError
|
|
95
|
-
snanvarianceyc( x.length, 1, x ); // $ExpectError
|
|
96
|
-
snanvarianceyc( x.length, 1, x, 1, 10 ); // $ExpectError
|
|
97
|
-
}
|
|
98
|
-
|
|
99
|
-
// Attached to main export is an `ndarray` method which returns a number...
|
|
100
|
-
{
|
|
101
|
-
const x = new Float32Array( 10 );
|
|
102
|
-
|
|
103
|
-
snanvarianceyc.ndarray( x.length, 1, x, 1, 0 ); // $ExpectType number
|
|
104
|
-
}
|
|
105
|
-
|
|
106
|
-
// The compiler throws an error if the `ndarray` method is provided a first argument which is not a number...
|
|
107
|
-
{
|
|
108
|
-
const x = new Float32Array( 10 );
|
|
109
|
-
|
|
110
|
-
snanvarianceyc.ndarray( '10', 1, x, 1, 0 ); // $ExpectError
|
|
111
|
-
snanvarianceyc.ndarray( true, 1, x, 1, 0 ); // $ExpectError
|
|
112
|
-
snanvarianceyc.ndarray( false, 1, x, 1, 0 ); // $ExpectError
|
|
113
|
-
snanvarianceyc.ndarray( null, 1, x, 1, 0 ); // $ExpectError
|
|
114
|
-
snanvarianceyc.ndarray( undefined, 1, x, 1, 0 ); // $ExpectError
|
|
115
|
-
snanvarianceyc.ndarray( [], 1, x, 1, 0 ); // $ExpectError
|
|
116
|
-
snanvarianceyc.ndarray( {}, 1, x, 1, 0 ); // $ExpectError
|
|
117
|
-
snanvarianceyc.ndarray( ( x: number ): number => x, 1, x, 1, 0 ); // $ExpectError
|
|
118
|
-
}
|
|
119
|
-
|
|
120
|
-
// The compiler throws an error if the `ndarray` method is provided a second argument which is not a number...
|
|
121
|
-
{
|
|
122
|
-
const x = new Float32Array( 10 );
|
|
123
|
-
|
|
124
|
-
snanvarianceyc.ndarray( x.length, '10', x, 1, 0 ); // $ExpectError
|
|
125
|
-
snanvarianceyc.ndarray( x.length, true, x, 1, 0 ); // $ExpectError
|
|
126
|
-
snanvarianceyc.ndarray( x.length, false, x, 1, 0 ); // $ExpectError
|
|
127
|
-
snanvarianceyc.ndarray( x.length, null, x, 1, 0 ); // $ExpectError
|
|
128
|
-
snanvarianceyc.ndarray( x.length, undefined, x, 1, 0 ); // $ExpectError
|
|
129
|
-
snanvarianceyc.ndarray( x.length, [], x, 1, 0 ); // $ExpectError
|
|
130
|
-
snanvarianceyc.ndarray( x.length, {}, x, 1, 0 ); // $ExpectError
|
|
131
|
-
snanvarianceyc.ndarray( x.length, ( x: number ): number => x, x, 1, 0 ); // $ExpectError
|
|
132
|
-
}
|
|
133
|
-
|
|
134
|
-
// The compiler throws an error if the `ndarray` method is provided a third argument which is not a Float32Array...
|
|
135
|
-
{
|
|
136
|
-
const x = new Float32Array( 10 );
|
|
137
|
-
|
|
138
|
-
snanvarianceyc.ndarray( x.length, 1, 10, 1, 0 ); // $ExpectError
|
|
139
|
-
snanvarianceyc.ndarray( x.length, 1, '10', 1, 0 ); // $ExpectError
|
|
140
|
-
snanvarianceyc.ndarray( x.length, 1, true, 1, 0 ); // $ExpectError
|
|
141
|
-
snanvarianceyc.ndarray( x.length, 1, false, 1, 0 ); // $ExpectError
|
|
142
|
-
snanvarianceyc.ndarray( x.length, 1, null, 1, 0 ); // $ExpectError
|
|
143
|
-
snanvarianceyc.ndarray( x.length, 1, undefined, 1, 0 ); // $ExpectError
|
|
144
|
-
snanvarianceyc.ndarray( x.length, 1, [], 1, 0 ); // $ExpectError
|
|
145
|
-
snanvarianceyc.ndarray( x.length, 1, {}, 1, 0 ); // $ExpectError
|
|
146
|
-
snanvarianceyc.ndarray( x.length, 1, ( x: number ): number => x, 1, 0 ); // $ExpectError
|
|
147
|
-
}
|
|
148
|
-
|
|
149
|
-
// The compiler throws an error if the `ndarray` method is provided a fourth argument which is not a number...
|
|
150
|
-
{
|
|
151
|
-
const x = new Float32Array( 10 );
|
|
152
|
-
|
|
153
|
-
snanvarianceyc.ndarray( x.length, 1, x, '10', 0 ); // $ExpectError
|
|
154
|
-
snanvarianceyc.ndarray( x.length, 1, x, true, 0 ); // $ExpectError
|
|
155
|
-
snanvarianceyc.ndarray( x.length, 1, x, false, 0 ); // $ExpectError
|
|
156
|
-
snanvarianceyc.ndarray( x.length, 1, x, null, 0 ); // $ExpectError
|
|
157
|
-
snanvarianceyc.ndarray( x.length, 1, x, undefined, 0 ); // $ExpectError
|
|
158
|
-
snanvarianceyc.ndarray( x.length, 1, x, [], 0 ); // $ExpectError
|
|
159
|
-
snanvarianceyc.ndarray( x.length, 1, x, {}, 0 ); // $ExpectError
|
|
160
|
-
snanvarianceyc.ndarray( x.length, 1, x, ( x: number ): number => x, 0 ); // $ExpectError
|
|
161
|
-
}
|
|
162
|
-
|
|
163
|
-
// The compiler throws an error if the `ndarray` method is provided a fifth argument which is not a number...
|
|
164
|
-
{
|
|
165
|
-
const x = new Float32Array( 10 );
|
|
166
|
-
|
|
167
|
-
snanvarianceyc.ndarray( x.length, 1, x, 1, '10' ); // $ExpectError
|
|
168
|
-
snanvarianceyc.ndarray( x.length, 1, x, 1, true ); // $ExpectError
|
|
169
|
-
snanvarianceyc.ndarray( x.length, 1, x, 1, false ); // $ExpectError
|
|
170
|
-
snanvarianceyc.ndarray( x.length, 1, x, 1, null ); // $ExpectError
|
|
171
|
-
snanvarianceyc.ndarray( x.length, 1, x, 1, undefined ); // $ExpectError
|
|
172
|
-
snanvarianceyc.ndarray( x.length, 1, x, 1, [] ); // $ExpectError
|
|
173
|
-
snanvarianceyc.ndarray( x.length, 1, x, 1, {} ); // $ExpectError
|
|
174
|
-
snanvarianceyc.ndarray( x.length, 1, x, 1, ( x: number ): number => x ); // $ExpectError
|
|
175
|
-
}
|
|
176
|
-
|
|
177
|
-
// The compiler throws an error if the `ndarray` method is provided an unsupported number of arguments...
|
|
178
|
-
{
|
|
179
|
-
const x = new Float32Array( 10 );
|
|
180
|
-
|
|
181
|
-
snanvarianceyc.ndarray(); // $ExpectError
|
|
182
|
-
snanvarianceyc.ndarray( x.length ); // $ExpectError
|
|
183
|
-
snanvarianceyc.ndarray( x.length, 1 ); // $ExpectError
|
|
184
|
-
snanvarianceyc.ndarray( x.length, 1, x ); // $ExpectError
|
|
185
|
-
snanvarianceyc.ndarray( x.length, 1, x, 1 ); // $ExpectError
|
|
186
|
-
snanvarianceyc.ndarray( x.length, 1, x, 1, 0, 10 ); // $ExpectError
|
|
187
|
-
}
|