@stdlib/stats-base-snanvariancech 0.0.7 → 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CITATION.cff +30 -0
- package/NOTICE +1 -1
- package/README.md +26 -15
- package/dist/index.d.ts +3 -0
- package/dist/index.js +9 -0
- package/dist/index.js.map +7 -0
- package/docs/types/index.d.ts +1 -1
- package/lib/index.js +2 -1
- package/package.json +17 -16
- package/docs/repl.txt +0 -121
- package/docs/types/test.ts +0 -187
package/CITATION.cff
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
1
|
+
cff-version: 1.2.0
|
|
2
|
+
title: stdlib
|
|
3
|
+
message: >-
|
|
4
|
+
If you use this software, please cite it using the
|
|
5
|
+
metadata from this file.
|
|
6
|
+
|
|
7
|
+
type: software
|
|
8
|
+
|
|
9
|
+
authors:
|
|
10
|
+
- name: The Stdlib Authors
|
|
11
|
+
url: https://github.com/stdlib-js/stdlib/graphs/contributors
|
|
12
|
+
|
|
13
|
+
repository-code: https://github.com/stdlib-js/stdlib
|
|
14
|
+
url: https://stdlib.io
|
|
15
|
+
|
|
16
|
+
abstract: |
|
|
17
|
+
Standard library for JavaScript and Node.js.
|
|
18
|
+
|
|
19
|
+
keywords:
|
|
20
|
+
- JavaScript
|
|
21
|
+
- Node.js
|
|
22
|
+
- TypeScript
|
|
23
|
+
- standard library
|
|
24
|
+
- scientific computing
|
|
25
|
+
- numerical computing
|
|
26
|
+
- statistical computing
|
|
27
|
+
|
|
28
|
+
license: Apache-2.0 AND BSL-1.0
|
|
29
|
+
|
|
30
|
+
date-released: 2016
|
package/NOTICE
CHANGED
|
@@ -1 +1 @@
|
|
|
1
|
-
Copyright (c) 2016-
|
|
1
|
+
Copyright (c) 2016-2023 The Stdlib Authors.
|
package/README.md
CHANGED
|
@@ -18,6 +18,17 @@ limitations under the License.
|
|
|
18
18
|
|
|
19
19
|
-->
|
|
20
20
|
|
|
21
|
+
|
|
22
|
+
<details>
|
|
23
|
+
<summary>
|
|
24
|
+
About stdlib...
|
|
25
|
+
</summary>
|
|
26
|
+
<p>We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.</p>
|
|
27
|
+
<p>The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.</p>
|
|
28
|
+
<p>When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.</p>
|
|
29
|
+
<p>To join us in bringing numerical computing to the web, get started by checking us out on <a href="https://github.com/stdlib-js/stdlib">GitHub</a>, and please consider <a href="https://opencollective.com/stdlib">financially supporting stdlib</a>. We greatly appreciate your continued support!</p>
|
|
30
|
+
</details>
|
|
31
|
+
|
|
21
32
|
# snanvariancech
|
|
22
33
|
|
|
23
34
|
[![NPM version][npm-image]][npm-url] [![Build Status][test-image]][test-url] [![Coverage Status][coverage-image]][coverage-url] <!-- [![dependencies][dependencies-image]][dependencies-url] -->
|
|
@@ -33,7 +44,7 @@ The population [variance][variance] of a finite size population of size `N` is g
|
|
|
33
44
|
<div class="equation" align="center" data-raw-text="\sigma^2 = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu)^2" data-equation="eq:population_variance">
|
|
34
45
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@593b8d50a1058699be05a387cbf1bb752f63b581/lib/node_modules/@stdlib/stats/base/snanvariancech/docs/img/equation_population_variance.svg" alt="Equation for the population variance.">
|
|
35
46
|
<br>
|
|
36
|
-
</div>
|
|
47
|
+
</div> -->
|
|
37
48
|
|
|
38
49
|
<!-- </equation> -->
|
|
39
50
|
|
|
@@ -41,10 +52,10 @@ where the population mean is given by
|
|
|
41
52
|
|
|
42
53
|
<!-- <equation class="equation" label="eq:population_mean" align="center" raw="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean."> -->
|
|
43
54
|
|
|
44
|
-
<div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean">
|
|
55
|
+
<!-- <div class="equation" align="center" data-raw-text="\mu = \frac{1}{N} \sum_{i=0}^{N-1} x_i" data-equation="eq:population_mean">
|
|
45
56
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@593b8d50a1058699be05a387cbf1bb752f63b581/lib/node_modules/@stdlib/stats/base/snanvariancech/docs/img/equation_population_mean.svg" alt="Equation for the population mean.">
|
|
46
57
|
<br>
|
|
47
|
-
</div>
|
|
58
|
+
</div> -->
|
|
48
59
|
|
|
49
60
|
<!-- </equation> -->
|
|
50
61
|
|
|
@@ -52,10 +63,10 @@ Often in the analysis of data, the true population [variance][variance] is not k
|
|
|
52
63
|
|
|
53
64
|
<!-- <equation class="equation" label="eq:unbiased_sample_variance" align="center" raw="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" alt="Equation for computing an unbiased sample variance."> -->
|
|
54
65
|
|
|
55
|
-
<div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" data-equation="eq:unbiased_sample_variance">
|
|
66
|
+
<!-- <div class="equation" align="center" data-raw-text="s^2 = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x})^2" data-equation="eq:unbiased_sample_variance">
|
|
56
67
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@593b8d50a1058699be05a387cbf1bb752f63b581/lib/node_modules/@stdlib/stats/base/snanvariancech/docs/img/equation_unbiased_sample_variance.svg" alt="Equation for computing an unbiased sample variance.">
|
|
57
68
|
<br>
|
|
58
|
-
</div>
|
|
69
|
+
</div> -->
|
|
59
70
|
|
|
60
71
|
<!-- </equation> -->
|
|
61
72
|
|
|
@@ -63,7 +74,7 @@ where the sample mean is given by
|
|
|
63
74
|
|
|
64
75
|
<!-- <equation class="equation" label="eq:sample_mean" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean."> -->
|
|
65
76
|
|
|
66
|
-
<div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean">
|
|
77
|
+
<!-- <div class="equation" align="center" data-raw-text="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" data-equation="eq:sample_mean">
|
|
67
78
|
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@593b8d50a1058699be05a387cbf1bb752f63b581/lib/node_modules/@stdlib/stats/base/snanvariancech/docs/img/equation_sample_mean.svg" alt="Equation for the sample mean.">
|
|
68
79
|
<br>
|
|
69
80
|
</div>
|
|
@@ -242,11 +253,11 @@ console.log( v );
|
|
|
242
253
|
|
|
243
254
|
## See Also
|
|
244
255
|
|
|
245
|
-
- <span class="package-name">[`@stdlib/stats
|
|
246
|
-
- <span class="package-name">[`@stdlib/stats
|
|
247
|
-
- <span class="package-name">[`@stdlib/stats
|
|
248
|
-
- <span class="package-name">[`@stdlib/stats
|
|
249
|
-
- <span class="package-name">[`@stdlib/stats
|
|
256
|
+
- <span class="package-name">[`@stdlib/stats-base/dnanvariancech`][@stdlib/stats/base/dnanvariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a double-precision floating-point strided array ignoring NaN values and using a one-pass trial mean algorithm.</span>
|
|
257
|
+
- <span class="package-name">[`@stdlib/stats-base/nanvariancech`][@stdlib/stats/base/nanvariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a strided array ignoring NaN values and using a one-pass trial mean algorithm.</span>
|
|
258
|
+
- <span class="package-name">[`@stdlib/stats-base/snanstdevch`][@stdlib/stats/base/snanstdevch]</span><span class="delimiter">: </span><span class="description">calculate the standard deviation of a single-precision floating-point strided array ignoring NaN values and using a one-pass trial mean algorithm.</span>
|
|
259
|
+
- <span class="package-name">[`@stdlib/stats-base/snanvariance`][@stdlib/stats/base/snanvariance]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array ignoring NaN values.</span>
|
|
260
|
+
- <span class="package-name">[`@stdlib/stats-base/svariancech`][@stdlib/stats/base/svariancech]</span><span class="delimiter">: </span><span class="description">calculate the variance of a single-precision floating-point strided array using a one-pass trial mean algorithm.</span>
|
|
250
261
|
|
|
251
262
|
</section>
|
|
252
263
|
|
|
@@ -278,7 +289,7 @@ See [LICENSE][stdlib-license].
|
|
|
278
289
|
|
|
279
290
|
## Copyright
|
|
280
291
|
|
|
281
|
-
Copyright © 2016-
|
|
292
|
+
Copyright © 2016-2023. The Stdlib [Authors][stdlib-authors].
|
|
282
293
|
|
|
283
294
|
</section>
|
|
284
295
|
|
|
@@ -291,8 +302,8 @@ Copyright © 2016-2022. The Stdlib [Authors][stdlib-authors].
|
|
|
291
302
|
[npm-image]: http://img.shields.io/npm/v/@stdlib/stats-base-snanvariancech.svg
|
|
292
303
|
[npm-url]: https://npmjs.org/package/@stdlib/stats-base-snanvariancech
|
|
293
304
|
|
|
294
|
-
[test-image]: https://github.com/stdlib-js/stats-base-snanvariancech/actions/workflows/test.yml/badge.svg?branch=v0.0
|
|
295
|
-
[test-url]: https://github.com/stdlib-js/stats-base-snanvariancech/actions/workflows/test.yml?query=branch:v0.0
|
|
305
|
+
[test-image]: https://github.com/stdlib-js/stats-base-snanvariancech/actions/workflows/test.yml/badge.svg?branch=v0.1.0
|
|
306
|
+
[test-url]: https://github.com/stdlib-js/stats-base-snanvariancech/actions/workflows/test.yml?query=branch:v0.1.0
|
|
296
307
|
|
|
297
308
|
[coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/stats-base-snanvariancech/main.svg
|
|
298
309
|
[coverage-url]: https://codecov.io/github/stdlib-js/stats-base-snanvariancech?branch=main
|
|
@@ -305,7 +316,7 @@ Copyright © 2016-2022. The Stdlib [Authors][stdlib-authors].
|
|
|
305
316
|
-->
|
|
306
317
|
|
|
307
318
|
[chat-image]: https://img.shields.io/gitter/room/stdlib-js/stdlib.svg
|
|
308
|
-
[chat-url]: https://gitter.im
|
|
319
|
+
[chat-url]: https://app.gitter.im/#/room/#stdlib-js_stdlib:gitter.im
|
|
309
320
|
|
|
310
321
|
[stdlib]: https://github.com/stdlib-js/stdlib
|
|
311
322
|
|
package/dist/index.d.ts
ADDED
package/dist/index.js
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
1
|
+
"use strict";var N=function(r,u){return function(){return u||r((u={exports:{}}).exports,u),u.exports}};var M=N(function(C,y){
|
|
2
|
+
var s=require('@stdlib/number-float64-base-to-float32/dist');function T(r,u,m,i){var p,t,v,c,f,o,a,e,n;if(r<=0)return NaN;if(r===1||i===0)return a=m[0],a===a&&r-u>0?0:NaN;for(i<0?t=(1-r)*i:t=0,n=0;n<r;n++){if(a=m[t],a===a){p=a;break}t+=i}if(n===r)return NaN;for(t+=i,n+=1,v=0,f=0,e=1,n;n<r;n++)a=m[t],a===a&&(o=s(a-p),v=s(v+s(o*o)),f=s(f+o),e+=1),t+=i;return c=e-u,c<=0?NaN:s(s(v/c)-s(s(f/e)*s(f/c)))}y.exports=T
|
|
3
|
+
});var b=N(function(D,j){
|
|
4
|
+
var q=require('@stdlib/number-float64-base-to-float32/dist');function _(r,u,m,i,p){var t,v,c,f,o,a,e,n,l;if(r<=0)return NaN;if(r===1||i===0)return e=m[p],e===e&&r-u>0?0:NaN;for(v=p,l=0;l<r;l++){if(e=m[v],e===e){t=e;break}v+=i}if(l===r)return NaN;for(v+=i,l+=1,c=0,o=0,n=1,l;l<r;l++)e=m[v],e===e&&(a=q(e-t),c=q(c+q(a*a)),o=q(o+a),n+=1),v+=i;return f=n-u,f<=0?NaN:q(q(c/f)-q(q(o/n)*q(o/f)))}j.exports=_
|
|
5
|
+
});var F=N(function(G,x){
|
|
6
|
+
var E=require('@stdlib/utils-define-nonenumerable-read-only-property/dist'),k=M(),O=b();E(k,"ndarray",O);x.exports=k
|
|
7
|
+
});var g=require("path").join,w=require('@stdlib/utils-try-require/dist'),z=require('@stdlib/assert-is-error/dist'),A=F(),h,R=w(g(__dirname,"./native.js"));z(R)?h=A:h=R;module.exports=h;
|
|
8
|
+
/** @license Apache-2.0 */
|
|
9
|
+
//# sourceMappingURL=index.js.map
|
|
@@ -0,0 +1,7 @@
|
|
|
1
|
+
{
|
|
2
|
+
"version": 3,
|
|
3
|
+
"sources": ["../lib/snanvariancech.js", "../lib/ndarray.js", "../lib/main.js", "../lib/index.js"],
|
|
4
|
+
"sourcesContent": ["/**\n* @license Apache-2.0\n*\n* Copyright (c) 2020 The Stdlib Authors.\n*\n* Licensed under the Apache License, Version 2.0 (the \"License\");\n* you may not use this file except in compliance with the License.\n* You may obtain a copy of the License at\n*\n* http://www.apache.org/licenses/LICENSE-2.0\n*\n* Unless required by applicable law or agreed to in writing, software\n* distributed under the License is distributed on an \"AS IS\" BASIS,\n* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n* See the License for the specific language governing permissions and\n* limitations under the License.\n*/\n\n'use strict';\n\n// MODULES //\n\nvar float64ToFloat32 = require( '@stdlib/number-float64-base-to-float32' );\n\n\n// MAIN //\n\n/**\n* Computes the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.\n*\n* ## Method\n*\n* - This implementation uses a one-pass trial mean approach, as suggested by Chan et al (1983).\n*\n* ## References\n*\n* - Neely, Peter M. 1966. \"Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients.\" _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496\u201399. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).\n* - Ling, Robert F. 1974. \"Comparison of Several Algorithms for Computing Sample Means and Variances.\" _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859\u201366. doi:[10.2307/2286154](https://doi.org/10.2307/2286154).\n* - Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. \"Algorithms for Computing the Sample Variance: Analysis and Recommendations.\" _The American Statistician_ 37 (3). American Statistical Association, Taylor & Francis, Ltd.: 242\u201347. doi:[10.1080/00031305.1983.10483115](https://doi.org/10.1080/00031305.1983.10483115).\n* - Schubert, Erich, and Michael Gertz. 2018. \"Numerically Stable Parallel Computation of (Co-)Variance.\" In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).\n*\n* @param {PositiveInteger} N - number of indexed elements\n* @param {number} correction - degrees of freedom adjustment\n* @param {Float32Array} x - input array\n* @param {integer} stride - stride length\n* @returns {number} variance\n*\n* @example\n* var Float32Array = require( '@stdlib/array-float32' );\n*\n* var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );\n* var N = x.length;\n*\n* var v = snanvariancech( N, 1, x, 1 );\n* // returns ~4.3333\n*/\nfunction snanvariancech( N, correction, x, stride ) {\n\tvar mu;\n\tvar ix;\n\tvar M2;\n\tvar nc;\n\tvar M;\n\tvar d;\n\tvar v;\n\tvar n;\n\tvar i;\n\n\tif ( N <= 0 ) {\n\t\treturn NaN;\n\t}\n\tif ( N === 1 || stride === 0 ) {\n\t\tv = x[ 0 ];\n\t\tif ( v === v && N-correction > 0.0 ) {\n\t\t\treturn 0.0;\n\t\t}\n\t\treturn NaN;\n\t}\n\tif ( stride < 0 ) {\n\t\tix = (1-N) * stride;\n\t} else {\n\t\tix = 0;\n\t}\n\t// Find an estimate for the mean...\n\tfor ( i = 0; i < N; i++ ) {\n\t\tv = x[ ix ];\n\t\tif ( v === v ) {\n\t\t\tmu = v;\n\t\t\tbreak;\n\t\t}\n\t\tix += stride;\n\t}\n\tif ( i === N ) {\n\t\treturn NaN;\n\t}\n\tix += stride;\n\ti += 1;\n\n\t// Compute the variance...\n\tM2 = 0.0;\n\tM = 0.0;\n\tn = 1;\n\tfor ( i; i < N; i++ ) {\n\t\tv = x[ ix ];\n\t\tif ( v === v ) {\n\t\t\td = float64ToFloat32( v - mu );\n\t\t\tM2 = float64ToFloat32( M2 + float64ToFloat32( d*d ) );\n\t\t\tM = float64ToFloat32( M + d );\n\t\t\tn += 1;\n\t\t}\n\t\tix += stride;\n\t}\n\tnc = n - correction;\n\tif ( nc <= 0.0 ) {\n\t\treturn NaN;\n\t}\n\treturn float64ToFloat32( float64ToFloat32(M2/nc) - float64ToFloat32(float64ToFloat32(M/n)*float64ToFloat32(M/nc)) ); // eslint-disable-line max-len\n}\n\n\n// EXPORTS //\n\nmodule.exports = snanvariancech;\n", "/**\n* @license Apache-2.0\n*\n* Copyright (c) 2020 The Stdlib Authors.\n*\n* Licensed under the Apache License, Version 2.0 (the \"License\");\n* you may not use this file except in compliance with the License.\n* You may obtain a copy of the License at\n*\n* http://www.apache.org/licenses/LICENSE-2.0\n*\n* Unless required by applicable law or agreed to in writing, software\n* distributed under the License is distributed on an \"AS IS\" BASIS,\n* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n* See the License for the specific language governing permissions and\n* limitations under the License.\n*/\n\n'use strict';\n\n// MODULES //\n\nvar float64ToFloat32 = require( '@stdlib/number-float64-base-to-float32' );\n\n\n// MAIN //\n\n/**\n* Computes the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.\n*\n* ## Method\n*\n* - This implementation uses a one-pass trial mean approach, as suggested by Chan et al (1983).\n*\n* ## References\n*\n* - Neely, Peter M. 1966. \"Comparison of Several Algorithms for Computation of Means, Standard Deviations and Correlation Coefficients.\" _Communications of the ACM_ 9 (7). Association for Computing Machinery: 496\u201399. doi:[10.1145/365719.365958](https://doi.org/10.1145/365719.365958).\n* - Ling, Robert F. 1974. \"Comparison of Several Algorithms for Computing Sample Means and Variances.\" _Journal of the American Statistical Association_ 69 (348). American Statistical Association, Taylor & Francis, Ltd.: 859\u201366. doi:[10.2307/2286154](https://doi.org/10.2307/2286154).\n* - Chan, Tony F., Gene H. Golub, and Randall J. LeVeque. 1983. \"Algorithms for Computing the Sample Variance: Analysis and Recommendations.\" _The American Statistician_ 37 (3). American Statistical Association, Taylor & Francis, Ltd.: 242\u201347. doi:[10.1080/00031305.1983.10483115](https://doi.org/10.1080/00031305.1983.10483115).\n* - Schubert, Erich, and Michael Gertz. 2018. \"Numerically Stable Parallel Computation of (Co-)Variance.\" In _Proceedings of the 30th International Conference on Scientific and Statistical Database Management_. New York, NY, USA: Association for Computing Machinery. doi:[10.1145/3221269.3223036](https://doi.org/10.1145/3221269.3223036).\n*\n* @param {PositiveInteger} N - number of indexed elements\n* @param {number} correction - degrees of freedom adjustment\n* @param {Float32Array} x - input array\n* @param {integer} stride - stride length\n* @param {NonNegativeInteger} offset - starting index\n* @returns {number} variance\n*\n* @example\n* var Float32Array = require( '@stdlib/array-float32' );\n* var floor = require( '@stdlib/math-base-special-floor' );\n*\n* var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );\n* var N = floor( x.length / 2 );\n*\n* var v = snanvariancech( N, 1, x, 2, 1 );\n* // returns 6.25\n*/\nfunction snanvariancech( N, correction, x, stride, offset ) {\n\tvar mu;\n\tvar ix;\n\tvar M2;\n\tvar nc;\n\tvar M;\n\tvar d;\n\tvar v;\n\tvar n;\n\tvar i;\n\n\tif ( N <= 0 ) {\n\t\treturn NaN;\n\t}\n\tif ( N === 1 || stride === 0 ) {\n\t\tv = x[ offset ];\n\t\tif ( v === v && N-correction > 0.0 ) {\n\t\t\treturn 0.0;\n\t\t}\n\t\treturn NaN;\n\t}\n\tix = offset;\n\n\t// Find an estimate for the mean...\n\tfor ( i = 0; i < N; i++ ) {\n\t\tv = x[ ix ];\n\t\tif ( v === v ) {\n\t\t\tmu = v;\n\t\t\tbreak;\n\t\t}\n\t\tix += stride;\n\t}\n\tif ( i === N ) {\n\t\treturn NaN;\n\t}\n\tix += stride;\n\ti += 1;\n\n\t// Compute the variance...\n\tM2 = 0.0;\n\tM = 0.0;\n\tn = 1;\n\tfor ( i; i < N; i++ ) {\n\t\tv = x[ ix ];\n\t\tif ( v === v ) {\n\t\t\td = float64ToFloat32( v - mu );\n\t\t\tM2 = float64ToFloat32( M2 + float64ToFloat32( d*d ) );\n\t\t\tM = float64ToFloat32( M + d );\n\t\t\tn += 1;\n\t\t}\n\t\tix += stride;\n\t}\n\tnc = n - correction;\n\tif ( nc <= 0.0 ) {\n\t\treturn NaN;\n\t}\n\treturn float64ToFloat32( float64ToFloat32(M2/nc) - float64ToFloat32(float64ToFloat32(M/n)*float64ToFloat32(M/nc)) ); // eslint-disable-line max-len\n}\n\n\n// EXPORTS //\n\nmodule.exports = snanvariancech;\n", "/**\n* @license Apache-2.0\n*\n* Copyright (c) 2020 The Stdlib Authors.\n*\n* Licensed under the Apache License, Version 2.0 (the \"License\");\n* you may not use this file except in compliance with the License.\n* You may obtain a copy of the License at\n*\n* http://www.apache.org/licenses/LICENSE-2.0\n*\n* Unless required by applicable law or agreed to in writing, software\n* distributed under the License is distributed on an \"AS IS\" BASIS,\n* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n* See the License for the specific language governing permissions and\n* limitations under the License.\n*/\n\n'use strict';\n\n// MODULES //\n\nvar setReadOnly = require( '@stdlib/utils-define-nonenumerable-read-only-property' );\nvar snanvariancech = require( './snanvariancech.js' );\nvar ndarray = require( './ndarray.js' );\n\n\n// MAIN //\n\nsetReadOnly( snanvariancech, 'ndarray', ndarray );\n\n\n// EXPORTS //\n\nmodule.exports = snanvariancech;\n", "/**\n* @license Apache-2.0\n*\n* Copyright (c) 2020 The Stdlib Authors.\n*\n* Licensed under the Apache License, Version 2.0 (the \"License\");\n* you may not use this file except in compliance with the License.\n* You may obtain a copy of the License at\n*\n* http://www.apache.org/licenses/LICENSE-2.0\n*\n* Unless required by applicable law or agreed to in writing, software\n* distributed under the License is distributed on an \"AS IS\" BASIS,\n* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n* See the License for the specific language governing permissions and\n* limitations under the License.\n*/\n\n'use strict';\n\n/**\n* Compute the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass trial mean algorithm.\n*\n* @module @stdlib/stats-base-snanvariancech\n*\n* @example\n* var Float32Array = require( '@stdlib/array-float32' );\n* var snanvariancech = require( '@stdlib/stats-base-snanvariancech' );\n*\n* var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );\n*\n* var v = snanvariancech( x.length, 1, x, 1 );\n* // returns ~4.3333\n*\n* @example\n* var Float32Array = require( '@stdlib/array-float32' );\n* var floor = require( '@stdlib/math-base-special-floor' );\n* var snanvariancech = require( '@stdlib/stats-base-snanvariancech' );\n*\n* var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );\n* var N = floor( x.length / 2 );\n*\n* var v = snanvariancech.ndarray( N, 1, x, 2, 1 );\n* // returns 6.25\n*/\n\n// MODULES //\n\nvar join = require( 'path' ).join;\nvar tryRequire = require( '@stdlib/utils-try-require' );\nvar isError = require( '@stdlib/assert-is-error' );\nvar main = require( './main.js' );\n\n\n// MAIN //\n\nvar snanvariancech;\nvar tmp = tryRequire( join( __dirname, './native.js' ) );\nif ( isError( tmp ) ) {\n\tsnanvariancech = main;\n} else {\n\tsnanvariancech = tmp;\n}\n\n\n// EXPORTS //\n\nmodule.exports = snanvariancech;\n\n// exports: { \"ndarray\": \"snanvariancech.ndarray\" }\n"],
|
|
5
|
+
"mappings": "uGAAA,IAAAA,EAAAC,EAAA,SAAAC,EAAAC,EAAA,cAsBA,IAAIC,EAAmB,QAAS,wCAAyC,EAkCzE,SAASC,EAAgBC,EAAGC,EAAYC,EAAGC,EAAS,CACnD,IAAIC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EAEJ,GAAKZ,GAAK,EACT,MAAO,KAER,GAAKA,IAAM,GAAKG,IAAW,EAE1B,OADAO,EAAIR,EAAG,CAAE,EACJQ,IAAMA,GAAKV,EAAEC,EAAa,EACvB,EAED,IAQR,IANKE,EAAS,EACbE,GAAM,EAAEL,GAAKG,EAEbE,EAAK,EAGAO,EAAI,EAAGA,EAAIZ,EAAGY,IAAM,CAEzB,GADAF,EAAIR,EAAGG,CAAG,EACLK,IAAMA,EAAI,CACdN,EAAKM,EACL,KACD,CACAL,GAAMF,CACP,CACA,GAAKS,IAAMZ,EACV,MAAO,KASR,IAPAK,GAAMF,EACNS,GAAK,EAGLN,EAAK,EACLE,EAAI,EACJG,EAAI,EACEC,EAAGA,EAAIZ,EAAGY,IACfF,EAAIR,EAAGG,CAAG,EACLK,IAAMA,IACVD,EAAIX,EAAkBY,EAAIN,CAAG,EAC7BE,EAAKR,EAAkBQ,EAAKR,EAAkBW,EAAEA,CAAE,CAAE,EACpDD,EAAIV,EAAkBU,EAAIC,CAAE,EAC5BE,GAAK,GAENN,GAAMF,EAGP,OADAI,EAAKI,EAAIV,EACJM,GAAM,EACH,IAEDT,EAAkBA,EAAiBQ,EAAGC,CAAE,EAAIT,EAAiBA,EAAiBU,EAAEG,CAAC,EAAEb,EAAiBU,EAAED,CAAE,CAAC,CAAE,CACnH,CAKAV,EAAO,QAAUE,ICzHjB,IAAAc,EAAAC,EAAA,SAAAC,EAAAC,EAAA,cAsBA,IAAIC,EAAmB,QAAS,wCAAyC,EAoCzE,SAASC,EAAgBC,EAAGC,EAAYC,EAAGC,EAAQC,EAAS,CAC3D,IAAIC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACA,EACAC,EAEJ,GAAKZ,GAAK,EACT,MAAO,KAER,GAAKA,IAAM,GAAKG,IAAW,EAE1B,OADAQ,EAAIT,EAAGE,CAAO,EACTO,IAAMA,GAAKX,EAAEC,EAAa,EACvB,EAED,IAKR,IAHAK,EAAKF,EAGCQ,EAAI,EAAGA,EAAIZ,EAAGY,IAAM,CAEzB,GADAD,EAAIT,EAAGI,CAAG,EACLK,IAAMA,EAAI,CACdN,EAAKM,EACL,KACD,CACAL,GAAMH,CACP,CACA,GAAKS,IAAMZ,EACV,MAAO,KASR,IAPAM,GAAMH,EACNS,GAAK,EAGLL,EAAK,EACLE,EAAI,EACJ,EAAI,EACEG,EAAGA,EAAIZ,EAAGY,IACfD,EAAIT,EAAGI,CAAG,EACLK,IAAMA,IACVD,EAAIZ,EAAkBa,EAAIN,CAAG,EAC7BE,EAAKT,EAAkBS,EAAKT,EAAkBY,EAAEA,CAAE,CAAE,EACpDD,EAAIX,EAAkBW,EAAIC,CAAE,EAC5B,GAAK,GAENJ,GAAMH,EAGP,OADAK,EAAK,EAAIP,EACJO,GAAM,EACH,IAEDV,EAAkBA,EAAiBS,EAAGC,CAAE,EAAIV,EAAiBA,EAAiBW,EAAE,CAAC,EAAEX,EAAiBW,EAAED,CAAE,CAAC,CAAE,CACnH,CAKAX,EAAO,QAAUE,ICxHjB,IAAAc,EAAAC,EAAA,SAAAC,EAAAC,EAAA,cAsBA,IAAIC,EAAc,QAAS,uDAAwD,EAC/EC,EAAiB,IACjBC,EAAU,IAKdF,EAAaC,EAAgB,UAAWC,CAAQ,EAKhDH,EAAO,QAAUE,ICcjB,IAAIE,EAAO,QAAS,MAAO,EAAE,KACzBC,EAAa,QAAS,2BAA4B,EAClDC,EAAU,QAAS,yBAA0B,EAC7CC,EAAO,IAKPC,EACAC,EAAMJ,EAAYD,EAAM,UAAW,aAAc,CAAE,EAClDE,EAASG,CAAI,EACjBD,EAAiBD,EAEjBC,EAAiBC,EAMlB,OAAO,QAAUD",
|
|
6
|
+
"names": ["require_snanvariancech", "__commonJSMin", "exports", "module", "float64ToFloat32", "snanvariancech", "N", "correction", "x", "stride", "mu", "ix", "M2", "nc", "M", "d", "v", "n", "i", "require_ndarray", "__commonJSMin", "exports", "module", "float64ToFloat32", "snanvariancech", "N", "correction", "x", "stride", "offset", "mu", "ix", "M2", "nc", "M", "d", "v", "i", "require_main", "__commonJSMin", "exports", "module", "setReadOnly", "snanvariancech", "ndarray", "join", "tryRequire", "isError", "main", "snanvariancech", "tmp"]
|
|
7
|
+
}
|
package/docs/types/index.d.ts
CHANGED
package/lib/index.js
CHANGED
|
@@ -48,6 +48,7 @@
|
|
|
48
48
|
|
|
49
49
|
var join = require( 'path' ).join;
|
|
50
50
|
var tryRequire = require( '@stdlib/utils-try-require' );
|
|
51
|
+
var isError = require( '@stdlib/assert-is-error' );
|
|
51
52
|
var main = require( './main.js' );
|
|
52
53
|
|
|
53
54
|
|
|
@@ -55,7 +56,7 @@ var main = require( './main.js' );
|
|
|
55
56
|
|
|
56
57
|
var snanvariancech;
|
|
57
58
|
var tmp = tryRequire( join( __dirname, './native.js' ) );
|
|
58
|
-
if ( tmp
|
|
59
|
+
if ( isError( tmp ) ) {
|
|
59
60
|
snanvariancech = main;
|
|
60
61
|
} else {
|
|
61
62
|
snanvariancech = tmp;
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@stdlib/stats-base-snanvariancech",
|
|
3
|
-
"version": "0.0
|
|
3
|
+
"version": "0.1.0",
|
|
4
4
|
"description": "Calculate the variance of a single-precision floating-point strided array ignoring NaN values and using a one-pass trial mean algorithm.",
|
|
5
5
|
"license": "Apache-2.0",
|
|
6
6
|
"author": {
|
|
@@ -41,24 +41,25 @@
|
|
|
41
41
|
"url": "https://github.com/stdlib-js/stdlib/issues"
|
|
42
42
|
},
|
|
43
43
|
"dependencies": {
|
|
44
|
-
"@stdlib/
|
|
45
|
-
"@stdlib/
|
|
46
|
-
"@stdlib/utils-
|
|
47
|
-
"@stdlib/utils-
|
|
44
|
+
"@stdlib/assert-is-error": "^0.1.0",
|
|
45
|
+
"@stdlib/number-float64-base-to-float32": "^0.1.0",
|
|
46
|
+
"@stdlib/utils-define-nonenumerable-read-only-property": "^0.1.0",
|
|
47
|
+
"@stdlib/utils-library-manifest": "^0.1.0",
|
|
48
|
+
"@stdlib/utils-try-require": "^0.1.0"
|
|
48
49
|
},
|
|
49
50
|
"devDependencies": {
|
|
50
|
-
"@stdlib/array-float32": "^0.0
|
|
51
|
-
"@stdlib/assert-is-browser": "^0.0
|
|
52
|
-
"@stdlib/bench": "^0.0
|
|
53
|
-
"@stdlib/math-base-assert-is-nanf": "^0.0
|
|
54
|
-
"@stdlib/math-base-special-floor": "^0.0.
|
|
55
|
-
"@stdlib/math-base-special-pow": "^0.0.
|
|
56
|
-
"@stdlib/math-base-special-round": "^0.0
|
|
57
|
-
"@stdlib/random-base-randu": "^0.0.
|
|
51
|
+
"@stdlib/array-float32": "^0.1.0",
|
|
52
|
+
"@stdlib/assert-is-browser": "^0.1.0",
|
|
53
|
+
"@stdlib/bench": "^0.1.0",
|
|
54
|
+
"@stdlib/math-base-assert-is-nanf": "^0.1.0",
|
|
55
|
+
"@stdlib/math-base-special-floor": "^0.0.8",
|
|
56
|
+
"@stdlib/math-base-special-pow": "^0.0.7",
|
|
57
|
+
"@stdlib/math-base-special-round": "^0.1.0",
|
|
58
|
+
"@stdlib/random-base-randu": "^0.0.8",
|
|
58
59
|
"proxyquire": "^2.0.0",
|
|
59
60
|
"tape": "git+https://github.com/kgryte/tape.git#fix/globby",
|
|
60
61
|
"istanbul": "^0.4.1",
|
|
61
|
-
"tap-
|
|
62
|
+
"tap-min": "git+https://github.com/Planeshifter/tap-min.git"
|
|
62
63
|
},
|
|
63
64
|
"engines": {
|
|
64
65
|
"node": ">=0.10.0",
|
|
@@ -102,7 +103,7 @@
|
|
|
102
103
|
],
|
|
103
104
|
"__stdlib__": {},
|
|
104
105
|
"funding": {
|
|
105
|
-
"type": "
|
|
106
|
-
"url": "https://
|
|
106
|
+
"type": "opencollective",
|
|
107
|
+
"url": "https://opencollective.com/stdlib"
|
|
107
108
|
}
|
|
108
109
|
}
|
package/docs/repl.txt
DELETED
|
@@ -1,121 +0,0 @@
|
|
|
1
|
-
|
|
2
|
-
{{alias}}( N, correction, x, stride )
|
|
3
|
-
Computes the variance of a single-precision floating-point strided array
|
|
4
|
-
ignoring `NaN` values and using a one-pass trial mean algorithm.
|
|
5
|
-
|
|
6
|
-
The `N` and `stride` parameters determine which elements in `x` are accessed
|
|
7
|
-
at runtime.
|
|
8
|
-
|
|
9
|
-
Indexing is relative to the first index. To introduce an offset, use a typed
|
|
10
|
-
array view.
|
|
11
|
-
|
|
12
|
-
If `N <= 0`, the function returns `NaN`.
|
|
13
|
-
|
|
14
|
-
If every indexed element is `NaN`, the function returns `NaN`.
|
|
15
|
-
|
|
16
|
-
Parameters
|
|
17
|
-
----------
|
|
18
|
-
N: integer
|
|
19
|
-
Number of indexed elements.
|
|
20
|
-
|
|
21
|
-
correction: number
|
|
22
|
-
Degrees of freedom adjustment. Setting this parameter to a value other
|
|
23
|
-
than `0` has the effect of adjusting the divisor during the calculation
|
|
24
|
-
of the variance according to `n - c` where `c` corresponds to the
|
|
25
|
-
provided degrees of freedom adjustment and `n` corresponds to the number
|
|
26
|
-
of non-`NaN` indexed elements. When computing the variance of a
|
|
27
|
-
population, setting this parameter to `0` is the standard choice (i.e.,
|
|
28
|
-
the provided array contains data constituting an entire population).
|
|
29
|
-
When computing the unbiased sample variance, setting this parameter to
|
|
30
|
-
`1` is the standard choice (i.e., the provided array contains data
|
|
31
|
-
sampled from a larger population; this is commonly referred to as
|
|
32
|
-
Bessel's correction).
|
|
33
|
-
|
|
34
|
-
x: Float32Array
|
|
35
|
-
Input array.
|
|
36
|
-
|
|
37
|
-
stride: integer
|
|
38
|
-
Index increment.
|
|
39
|
-
|
|
40
|
-
Returns
|
|
41
|
-
-------
|
|
42
|
-
out: number
|
|
43
|
-
The variance.
|
|
44
|
-
|
|
45
|
-
Examples
|
|
46
|
-
--------
|
|
47
|
-
// Standard Usage:
|
|
48
|
-
> var x = new {{alias:@stdlib/array/float32}}( [ 1.0, -2.0, NaN, 2.0 ] );
|
|
49
|
-
> {{alias}}( x.length, 1, x, 1 )
|
|
50
|
-
~4.3333
|
|
51
|
-
|
|
52
|
-
// Using `N` and `stride` parameters:
|
|
53
|
-
> x = new {{alias:@stdlib/array/float32}}( [ -2.0, 1.0, 1.0, -5.0, 2.0, -1.0 ] );
|
|
54
|
-
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
|
|
55
|
-
> {{alias}}( N, 1, x, 2 )
|
|
56
|
-
~4.3333
|
|
57
|
-
|
|
58
|
-
// Using view offsets:
|
|
59
|
-
> var x0 = new {{alias:@stdlib/array/float32}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );
|
|
60
|
-
> var x1 = new {{alias:@stdlib/array/float32}}( x0.buffer, x0.BYTES_PER_ELEMENT*1 );
|
|
61
|
-
> N = {{alias:@stdlib/math/base/special/floor}}( x0.length / 2 );
|
|
62
|
-
> {{alias}}( N, 1, x1, 2 )
|
|
63
|
-
~4.3333
|
|
64
|
-
|
|
65
|
-
{{alias}}.ndarray( N, correction, x, stride, offset )
|
|
66
|
-
Computes the variance of a single-precision floating-point strided array
|
|
67
|
-
ignoring `NaN` values and using a one-pass trial mean algorithm and
|
|
68
|
-
alternative indexing semantics.
|
|
69
|
-
|
|
70
|
-
While typed array views mandate a view offset based on the underlying
|
|
71
|
-
buffer, the `offset` parameter supports indexing semantics based on a
|
|
72
|
-
starting index.
|
|
73
|
-
|
|
74
|
-
Parameters
|
|
75
|
-
----------
|
|
76
|
-
N: integer
|
|
77
|
-
Number of indexed elements.
|
|
78
|
-
|
|
79
|
-
correction: number
|
|
80
|
-
Degrees of freedom adjustment. Setting this parameter to a value other
|
|
81
|
-
than `0` has the effect of adjusting the divisor during the calculation
|
|
82
|
-
of the variance according to `n - c` where `c` corresponds to the
|
|
83
|
-
provided degrees of freedom adjustment and `n` corresponds to the number
|
|
84
|
-
of non-`NaN` indexed elements. When computing the variance of a
|
|
85
|
-
population, setting this parameter to `0` is the standard choice (i.e.,
|
|
86
|
-
the provided array contains data constituting an entire population).
|
|
87
|
-
When computing the unbiased sample variance, setting this parameter to
|
|
88
|
-
`1` is the standard choice (i.e., the provided array contains data
|
|
89
|
-
sampled from a larger population; this is commonly referred to as
|
|
90
|
-
Bessel's correction).
|
|
91
|
-
|
|
92
|
-
x: Float32Array
|
|
93
|
-
Input array.
|
|
94
|
-
|
|
95
|
-
stride: integer
|
|
96
|
-
Index increment.
|
|
97
|
-
|
|
98
|
-
offset: integer
|
|
99
|
-
Starting index.
|
|
100
|
-
|
|
101
|
-
Returns
|
|
102
|
-
-------
|
|
103
|
-
out: number
|
|
104
|
-
The variance.
|
|
105
|
-
|
|
106
|
-
Examples
|
|
107
|
-
--------
|
|
108
|
-
// Standard Usage:
|
|
109
|
-
> var x = new {{alias:@stdlib/array/float32}}( [ 1.0, -2.0, NaN, 2.0 ] );
|
|
110
|
-
> {{alias}}.ndarray( x.length, 1, x, 1, 0 )
|
|
111
|
-
~4.3333
|
|
112
|
-
|
|
113
|
-
// Using offset parameter:
|
|
114
|
-
> var x = new {{alias:@stdlib/array/float32}}( [ 1.0, -2.0, 3.0, 2.0, 5.0, -1.0 ] );
|
|
115
|
-
> var N = {{alias:@stdlib/math/base/special/floor}}( x.length / 2 );
|
|
116
|
-
> {{alias}}.ndarray( N, 1, x, 2, 1 )
|
|
117
|
-
~4.3333
|
|
118
|
-
|
|
119
|
-
See Also
|
|
120
|
-
--------
|
|
121
|
-
|
package/docs/types/test.ts
DELETED
|
@@ -1,187 +0,0 @@
|
|
|
1
|
-
/*
|
|
2
|
-
* @license Apache-2.0
|
|
3
|
-
*
|
|
4
|
-
* Copyright (c) 2020 The Stdlib Authors.
|
|
5
|
-
*
|
|
6
|
-
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
7
|
-
* you may not use this file except in compliance with the License.
|
|
8
|
-
* You may obtain a copy of the License at
|
|
9
|
-
*
|
|
10
|
-
* http://www.apache.org/licenses/LICENSE-2.0
|
|
11
|
-
*
|
|
12
|
-
* Unless required by applicable law or agreed to in writing, software
|
|
13
|
-
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
14
|
-
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
15
|
-
* See the License for the specific language governing permissions and
|
|
16
|
-
* limitations under the License.
|
|
17
|
-
*/
|
|
18
|
-
|
|
19
|
-
import snanvariancech = require( './index' );
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
// TESTS //
|
|
23
|
-
|
|
24
|
-
// The function returns a number...
|
|
25
|
-
{
|
|
26
|
-
const x = new Float32Array( 10 );
|
|
27
|
-
|
|
28
|
-
snanvariancech( x.length, 1, x, 1 ); // $ExpectType number
|
|
29
|
-
}
|
|
30
|
-
|
|
31
|
-
// The compiler throws an error if the function is provided a first argument which is not a number...
|
|
32
|
-
{
|
|
33
|
-
const x = new Float32Array( 10 );
|
|
34
|
-
|
|
35
|
-
snanvariancech( '10', 1, x, 1 ); // $ExpectError
|
|
36
|
-
snanvariancech( true, 1, x, 1 ); // $ExpectError
|
|
37
|
-
snanvariancech( false, 1, x, 1 ); // $ExpectError
|
|
38
|
-
snanvariancech( null, 1, x, 1 ); // $ExpectError
|
|
39
|
-
snanvariancech( undefined, 1, x, 1 ); // $ExpectError
|
|
40
|
-
snanvariancech( [], 1, x, 1 ); // $ExpectError
|
|
41
|
-
snanvariancech( {}, 1, x, 1 ); // $ExpectError
|
|
42
|
-
snanvariancech( ( x: number ): number => x, 1, x, 1 ); // $ExpectError
|
|
43
|
-
}
|
|
44
|
-
|
|
45
|
-
// The compiler throws an error if the function is provided a second argument which is not a number...
|
|
46
|
-
{
|
|
47
|
-
const x = new Float32Array( 10 );
|
|
48
|
-
|
|
49
|
-
snanvariancech( x.length, '10', x, 1 ); // $ExpectError
|
|
50
|
-
snanvariancech( x.length, true, x, 1 ); // $ExpectError
|
|
51
|
-
snanvariancech( x.length, false, x, 1 ); // $ExpectError
|
|
52
|
-
snanvariancech( x.length, null, x, 1 ); // $ExpectError
|
|
53
|
-
snanvariancech( x.length, undefined, x, 1 ); // $ExpectError
|
|
54
|
-
snanvariancech( x.length, [], x, 1 ); // $ExpectError
|
|
55
|
-
snanvariancech( x.length, {}, x, 1 ); // $ExpectError
|
|
56
|
-
snanvariancech( x.length, ( x: number ): number => x, x, 1 ); // $ExpectError
|
|
57
|
-
}
|
|
58
|
-
|
|
59
|
-
// The compiler throws an error if the function is provided a third argument which is not a Float32Array...
|
|
60
|
-
{
|
|
61
|
-
const x = new Float32Array( 10 );
|
|
62
|
-
|
|
63
|
-
snanvariancech( x.length, 1, 10, 1 ); // $ExpectError
|
|
64
|
-
snanvariancech( x.length, 1, '10', 1 ); // $ExpectError
|
|
65
|
-
snanvariancech( x.length, 1, true, 1 ); // $ExpectError
|
|
66
|
-
snanvariancech( x.length, 1, false, 1 ); // $ExpectError
|
|
67
|
-
snanvariancech( x.length, 1, null, 1 ); // $ExpectError
|
|
68
|
-
snanvariancech( x.length, 1, undefined, 1 ); // $ExpectError
|
|
69
|
-
snanvariancech( x.length, 1, [], 1 ); // $ExpectError
|
|
70
|
-
snanvariancech( x.length, 1, {}, 1 ); // $ExpectError
|
|
71
|
-
snanvariancech( x.length, 1, ( x: number ): number => x, 1 ); // $ExpectError
|
|
72
|
-
}
|
|
73
|
-
|
|
74
|
-
// The compiler throws an error if the function is provided a fourth argument which is not a number...
|
|
75
|
-
{
|
|
76
|
-
const x = new Float32Array( 10 );
|
|
77
|
-
|
|
78
|
-
snanvariancech( x.length, 1, x, '10' ); // $ExpectError
|
|
79
|
-
snanvariancech( x.length, 1, x, true ); // $ExpectError
|
|
80
|
-
snanvariancech( x.length, 1, x, false ); // $ExpectError
|
|
81
|
-
snanvariancech( x.length, 1, x, null ); // $ExpectError
|
|
82
|
-
snanvariancech( x.length, 1, x, undefined ); // $ExpectError
|
|
83
|
-
snanvariancech( x.length, 1, x, [] ); // $ExpectError
|
|
84
|
-
snanvariancech( x.length, 1, x, {} ); // $ExpectError
|
|
85
|
-
snanvariancech( x.length, 1, x, ( x: number ): number => x ); // $ExpectError
|
|
86
|
-
}
|
|
87
|
-
|
|
88
|
-
// The compiler throws an error if the function is provided an unsupported number of arguments...
|
|
89
|
-
{
|
|
90
|
-
const x = new Float32Array( 10 );
|
|
91
|
-
|
|
92
|
-
snanvariancech(); // $ExpectError
|
|
93
|
-
snanvariancech( x.length ); // $ExpectError
|
|
94
|
-
snanvariancech( x.length, 1 ); // $ExpectError
|
|
95
|
-
snanvariancech( x.length, 1, x ); // $ExpectError
|
|
96
|
-
snanvariancech( x.length, 1, x, 1, 10 ); // $ExpectError
|
|
97
|
-
}
|
|
98
|
-
|
|
99
|
-
// Attached to main export is an `ndarray` method which returns a number...
|
|
100
|
-
{
|
|
101
|
-
const x = new Float32Array( 10 );
|
|
102
|
-
|
|
103
|
-
snanvariancech.ndarray( x.length, 1, x, 1, 0 ); // $ExpectType number
|
|
104
|
-
}
|
|
105
|
-
|
|
106
|
-
// The compiler throws an error if the `ndarray` method is provided a first argument which is not a number...
|
|
107
|
-
{
|
|
108
|
-
const x = new Float32Array( 10 );
|
|
109
|
-
|
|
110
|
-
snanvariancech.ndarray( '10', 1, x, 1, 0 ); // $ExpectError
|
|
111
|
-
snanvariancech.ndarray( true, 1, x, 1, 0 ); // $ExpectError
|
|
112
|
-
snanvariancech.ndarray( false, 1, x, 1, 0 ); // $ExpectError
|
|
113
|
-
snanvariancech.ndarray( null, 1, x, 1, 0 ); // $ExpectError
|
|
114
|
-
snanvariancech.ndarray( undefined, 1, x, 1, 0 ); // $ExpectError
|
|
115
|
-
snanvariancech.ndarray( [], 1, x, 1, 0 ); // $ExpectError
|
|
116
|
-
snanvariancech.ndarray( {}, 1, x, 1, 0 ); // $ExpectError
|
|
117
|
-
snanvariancech.ndarray( ( x: number ): number => x, 1, x, 1, 0 ); // $ExpectError
|
|
118
|
-
}
|
|
119
|
-
|
|
120
|
-
// The compiler throws an error if the `ndarray` method is provided a second argument which is not a number...
|
|
121
|
-
{
|
|
122
|
-
const x = new Float32Array( 10 );
|
|
123
|
-
|
|
124
|
-
snanvariancech.ndarray( x.length, '10', x, 1, 0 ); // $ExpectError
|
|
125
|
-
snanvariancech.ndarray( x.length, true, x, 1, 0 ); // $ExpectError
|
|
126
|
-
snanvariancech.ndarray( x.length, false, x, 1, 0 ); // $ExpectError
|
|
127
|
-
snanvariancech.ndarray( x.length, null, x, 1, 0 ); // $ExpectError
|
|
128
|
-
snanvariancech.ndarray( x.length, undefined, x, 1, 0 ); // $ExpectError
|
|
129
|
-
snanvariancech.ndarray( x.length, [], x, 1, 0 ); // $ExpectError
|
|
130
|
-
snanvariancech.ndarray( x.length, {}, x, 1, 0 ); // $ExpectError
|
|
131
|
-
snanvariancech.ndarray( x.length, ( x: number ): number => x, x, 1, 0 ); // $ExpectError
|
|
132
|
-
}
|
|
133
|
-
|
|
134
|
-
// The compiler throws an error if the `ndarray` method is provided a third argument which is not a Float32Array...
|
|
135
|
-
{
|
|
136
|
-
const x = new Float32Array( 10 );
|
|
137
|
-
|
|
138
|
-
snanvariancech.ndarray( x.length, 1, 10, 1, 0 ); // $ExpectError
|
|
139
|
-
snanvariancech.ndarray( x.length, 1, '10', 1, 0 ); // $ExpectError
|
|
140
|
-
snanvariancech.ndarray( x.length, 1, true, 1, 0 ); // $ExpectError
|
|
141
|
-
snanvariancech.ndarray( x.length, 1, false, 1, 0 ); // $ExpectError
|
|
142
|
-
snanvariancech.ndarray( x.length, 1, null, 1, 0 ); // $ExpectError
|
|
143
|
-
snanvariancech.ndarray( x.length, 1, undefined, 1, 0 ); // $ExpectError
|
|
144
|
-
snanvariancech.ndarray( x.length, 1, [], 1, 0 ); // $ExpectError
|
|
145
|
-
snanvariancech.ndarray( x.length, 1, {}, 1, 0 ); // $ExpectError
|
|
146
|
-
snanvariancech.ndarray( x.length, 1, ( x: number ): number => x, 1, 0 ); // $ExpectError
|
|
147
|
-
}
|
|
148
|
-
|
|
149
|
-
// The compiler throws an error if the `ndarray` method is provided a fourth argument which is not a number...
|
|
150
|
-
{
|
|
151
|
-
const x = new Float32Array( 10 );
|
|
152
|
-
|
|
153
|
-
snanvariancech.ndarray( x.length, 1, x, '10', 0 ); // $ExpectError
|
|
154
|
-
snanvariancech.ndarray( x.length, 1, x, true, 0 ); // $ExpectError
|
|
155
|
-
snanvariancech.ndarray( x.length, 1, x, false, 0 ); // $ExpectError
|
|
156
|
-
snanvariancech.ndarray( x.length, 1, x, null, 0 ); // $ExpectError
|
|
157
|
-
snanvariancech.ndarray( x.length, 1, x, undefined, 0 ); // $ExpectError
|
|
158
|
-
snanvariancech.ndarray( x.length, 1, x, [], 0 ); // $ExpectError
|
|
159
|
-
snanvariancech.ndarray( x.length, 1, x, {}, 0 ); // $ExpectError
|
|
160
|
-
snanvariancech.ndarray( x.length, 1, x, ( x: number ): number => x, 0 ); // $ExpectError
|
|
161
|
-
}
|
|
162
|
-
|
|
163
|
-
// The compiler throws an error if the `ndarray` method is provided a fifth argument which is not a number...
|
|
164
|
-
{
|
|
165
|
-
const x = new Float32Array( 10 );
|
|
166
|
-
|
|
167
|
-
snanvariancech.ndarray( x.length, 1, x, 1, '10' ); // $ExpectError
|
|
168
|
-
snanvariancech.ndarray( x.length, 1, x, 1, true ); // $ExpectError
|
|
169
|
-
snanvariancech.ndarray( x.length, 1, x, 1, false ); // $ExpectError
|
|
170
|
-
snanvariancech.ndarray( x.length, 1, x, 1, null ); // $ExpectError
|
|
171
|
-
snanvariancech.ndarray( x.length, 1, x, 1, undefined ); // $ExpectError
|
|
172
|
-
snanvariancech.ndarray( x.length, 1, x, 1, [] ); // $ExpectError
|
|
173
|
-
snanvariancech.ndarray( x.length, 1, x, 1, {} ); // $ExpectError
|
|
174
|
-
snanvariancech.ndarray( x.length, 1, x, 1, ( x: number ): number => x ); // $ExpectError
|
|
175
|
-
}
|
|
176
|
-
|
|
177
|
-
// The compiler throws an error if the `ndarray` method is provided an unsupported number of arguments...
|
|
178
|
-
{
|
|
179
|
-
const x = new Float32Array( 10 );
|
|
180
|
-
|
|
181
|
-
snanvariancech.ndarray(); // $ExpectError
|
|
182
|
-
snanvariancech.ndarray( x.length ); // $ExpectError
|
|
183
|
-
snanvariancech.ndarray( x.length, 1 ); // $ExpectError
|
|
184
|
-
snanvariancech.ndarray( x.length, 1, x ); // $ExpectError
|
|
185
|
-
snanvariancech.ndarray( x.length, 1, x, 1 ); // $ExpectError
|
|
186
|
-
snanvariancech.ndarray( x.length, 1, x, 1, 0, 10 ); // $ExpectError
|
|
187
|
-
}
|