@stdlib/ndarray-base-nullary-strided1d 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,424 @@
1
+ /**
2
+ * @license Apache-2.0
3
+ *
4
+ * Copyright (c) 2025 The Stdlib Authors.
5
+ *
6
+ * Licensed under the Apache License, Version 2.0 (the "License");
7
+ * you may not use this file except in compliance with the License.
8
+ * You may obtain a copy of the License at
9
+ *
10
+ * http://www.apache.org/licenses/LICENSE-2.0
11
+ *
12
+ * Unless required by applicable law or agreed to in writing, software
13
+ * distributed under the License is distributed on an "AS IS" BASIS,
14
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ * See the License for the specific language governing permissions and
16
+ * limitations under the License.
17
+ */
18
+
19
+ /* eslint-disable max-depth, max-len */
20
+
21
+ 'use strict';
22
+
23
+ // MODULES //
24
+
25
+ var loopOrder = require( '@stdlib/ndarray-base-nullary-loop-interchange-order' );
26
+ var blockSize = require( '@stdlib/ndarray-base-nullary-tiling-block-size' );
27
+ var takeIndexed = require( '@stdlib/array-base-take-indexed' );
28
+ var copyIndexed = require( '@stdlib/array-base-copy-indexed' );
29
+ var zeros = require( '@stdlib/array-base-zeros' );
30
+ var incrementOffsets = require( './increment_offsets.js' );
31
+ var setViewOffsets = require( './set_view_offsets.js' );
32
+ var offsets = require( './offsets.js' );
33
+
34
+
35
+ // MAIN //
36
+
37
+ /**
38
+ * Applies a one-dimensional strided array function to a list of specified dimensions in an ndarray via loop blocking.
39
+ *
40
+ * @private
41
+ * @param {Function} fcn - wrapper for a one-dimensional strided array reduction function
42
+ * @param {Array<Object>} arrays - ndarrays
43
+ * @param {Array<Object>} views - initialized ndarray-like objects representing sub-array views
44
+ * @param {NonNegativeIntegerArray} shape - loop dimensions
45
+ * @param {IntegerArray} stridesX - loop dimension strides for the ndarray
46
+ * @param {Object} strategyX - strategy for marshaling data to and from an ndarray view
47
+ * @param {Options} opts - function options
48
+ * @returns {void}
49
+ *
50
+ * @example
51
+ * var ndarray2array = require( '@stdlib/ndarray-base-to-array' );
52
+ * var getStride = require( '@stdlib/ndarray-base-stride' );
53
+ * var getOffset = require( '@stdlib/ndarray-base-offset' );
54
+ * var getData = require( '@stdlib/ndarray-base-data-buffer' );
55
+ * var numelDimension = require( '@stdlib/ndarray-base-numel-dimension' );
56
+ * var ndarraylike2scalar = require( '@stdlib/ndarray-base-ndarraylike2scalar' );
57
+ * var gsorthp = require( '@stdlib/blas-ext-base-gsorthp' ).ndarray;
58
+ *
59
+ * function wrapper( arrays ) {
60
+ * var x = arrays[ 0 ];
61
+ * var o = arrays[ 1 ];
62
+ * return gsorthp( numelDimension( x, 0 ), ndarraylike2scalar( o ), getData( x ), getStride( x, 0 ), getOffset( x ) );
63
+ * }
64
+ *
65
+ * // Create a data buffer:
66
+ * var xbuf = [ 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0 ];
67
+ *
68
+ * // Define an array shape:
69
+ * var xsh = [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2 ];
70
+ *
71
+ * // Define the array strides:
72
+ * var sx = [ 12, 12, 12, 12, 12, 12, 12, 12, 12, 4, 2, 1 ];
73
+ *
74
+ * // Define the index offset:
75
+ * var ox = 0;
76
+ *
77
+ * // Create an ndarray-like object:
78
+ * var x = {
79
+ * 'dtype': 'generic',
80
+ * 'data': xbuf,
81
+ * 'shape': xsh,
82
+ * 'strides': sx,
83
+ * 'offset': ox,
84
+ * 'order': 'row-major'
85
+ * };
86
+ *
87
+ * // Create an ndarray-like object for the sort order:
88
+ * var sortOrder = {
89
+ * 'dtype': 'generic',
90
+ * 'data': [ 1.0 ],
91
+ * 'shape': [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 3 ],
92
+ * 'strides': [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
93
+ * 'offset': 0,
94
+ * 'order': 'row-major'
95
+ * };
96
+ *
97
+ * // Initialize ndarray-like objects representing sub-array views:
98
+ * var views = [
99
+ * {
100
+ * 'dtype': x.dtype,
101
+ * 'data': x.data,
102
+ * 'shape': [ 2, 2 ],
103
+ * 'strides': [ 2, 1 ],
104
+ * 'offset': x.offset,
105
+ * 'order': x.order
106
+ * },
107
+ * {
108
+ * 'dtype': sortOrder.dtype,
109
+ * 'data': sortOrder.data,
110
+ * 'shape': [],
111
+ * 'strides': [ 0 ],
112
+ * 'offset': sortOrder.offset,
113
+ * 'order': sortOrder.order
114
+ * }
115
+ * ];
116
+ *
117
+ * // Define an input strategy:
118
+ * function inputStrategy( x ) {
119
+ * return {
120
+ * 'dtype': x.dtype,
121
+ * 'data': x.data,
122
+ * 'shape': [ 4 ],
123
+ * 'strides': [ 1 ],
124
+ * 'offset': x.offset,
125
+ * 'order': x.order
126
+ * };
127
+ * }
128
+ *
129
+ * // Define an output strategy:
130
+ * function outputStrategy( x ) {
131
+ * return x;
132
+ * }
133
+ *
134
+ * var strategy = {
135
+ * 'input': inputStrategy,
136
+ * 'output': outputStrategy
137
+ * }
138
+ *
139
+ * // Apply strided function:
140
+ * blockednullary10d( wrapper, [ x, sortOrder ], views, [ 1, 1, 1, 1, 1, 1, 1, 1, 1, 3 ], [ 12, 12, 12, 12, 12, 12, 12, 12, 12, 4 ], strategy, {} );
141
+ *
142
+ * var arr = ndarray2array( x.data, x.shape, x.strides, x.offset, x.order );
143
+ * // returns [ [ [ [ [ [ [ [ [ [ [ [ 9.0, 10.0 ], [ 11.0, 12.0 ] ], [ [ 5.0, 6.0 ], [ 7.0, 8.0 ] ], [ [ 1.0, 2.0 ], [ 3.0, 4.0 ] ] ] ] ] ] ] ] ] ] ] ]
144
+ */
145
+ function blockednullary10d( fcn, arrays, views, shape, stridesX, strategyX, opts ) { // eslint-disable-line max-statements, max-lines-per-function
146
+ var bsize;
147
+ var dv0;
148
+ var dv1;
149
+ var dv2;
150
+ var dv3;
151
+ var dv4;
152
+ var dv5;
153
+ var dv6;
154
+ var dv7;
155
+ var dv8;
156
+ var dv9;
157
+ var ov1;
158
+ var ov2;
159
+ var ov3;
160
+ var ov4;
161
+ var ov5;
162
+ var ov6;
163
+ var ov7;
164
+ var ov8;
165
+ var ov9;
166
+ var sh;
167
+ var s0;
168
+ var s1;
169
+ var s2;
170
+ var s3;
171
+ var s4;
172
+ var s5;
173
+ var s6;
174
+ var s7;
175
+ var s8;
176
+ var s9;
177
+ var sv;
178
+ var ov;
179
+ var iv;
180
+ var i0;
181
+ var i1;
182
+ var i2;
183
+ var i3;
184
+ var i4;
185
+ var i5;
186
+ var i6;
187
+ var i7;
188
+ var i8;
189
+ var i9;
190
+ var j0;
191
+ var j1;
192
+ var j2;
193
+ var j3;
194
+ var j4;
195
+ var j5;
196
+ var j6;
197
+ var j7;
198
+ var j8;
199
+ var j9;
200
+ var N;
201
+ var x;
202
+ var v;
203
+ var o;
204
+ var k;
205
+
206
+ // Note on variable naming convention: S#, dv#, i#, j# where # corresponds to the loop number, with `0` being the innermost loop...
207
+
208
+ N = arrays.length;
209
+ x = arrays[ 0 ];
210
+
211
+ // Resolve the loop interchange order:
212
+ o = loopOrder( shape, stridesX );
213
+ sh = o.sh;
214
+ sv = [ o.sx ];
215
+ for ( k = 1; k < N; k++ ) {
216
+ sv.push( takeIndexed( arrays[k].strides, o.idx ) );
217
+ }
218
+ // Determine the block size:
219
+ bsize = blockSize( x.dtype );
220
+
221
+ // Resolve a list of pointers to the first indexed elements in the respective ndarrays:
222
+ ov = offsets( arrays );
223
+
224
+ // Cache offset increments for the innermost loop...
225
+ dv0 = [];
226
+ for ( k = 0; k < N; k++ ) {
227
+ dv0.push( sv[k][0] );
228
+ }
229
+ // Initialize loop variables...
230
+ ov1 = zeros( N );
231
+ ov2 = zeros( N );
232
+ ov3 = zeros( N );
233
+ ov4 = zeros( N );
234
+ ov5 = zeros( N );
235
+ ov6 = zeros( N );
236
+ ov7 = zeros( N );
237
+ ov8 = zeros( N );
238
+ ov9 = zeros( N );
239
+ dv1 = zeros( N );
240
+ dv2 = zeros( N );
241
+ dv3 = zeros( N );
242
+ dv4 = zeros( N );
243
+ dv5 = zeros( N );
244
+ dv6 = zeros( N );
245
+ dv7 = zeros( N );
246
+ dv8 = zeros( N );
247
+ dv9 = zeros( N );
248
+ iv = zeros( N );
249
+
250
+ // Shallow copy the list of views to an internal array so that we can update with reshaped views without impacting the original list of views:
251
+ v = copyIndexed( views );
252
+
253
+ // Iterate over blocks...
254
+ for ( j9 = sh[9]; j9 > 0; ) {
255
+ if ( j9 < bsize ) {
256
+ s9 = j9;
257
+ j9 = 0;
258
+ } else {
259
+ s9 = bsize;
260
+ j9 -= bsize;
261
+ }
262
+ for ( k = 0; k < N; k++ ) {
263
+ ov9[ k ] = ov[k] + ( j9*sv[k][9] );
264
+ }
265
+ for ( j8 = sh[8]; j8 > 0; ) {
266
+ if ( j8 < bsize ) {
267
+ s8 = j8;
268
+ j8 = 0;
269
+ } else {
270
+ s8 = bsize;
271
+ j8 -= bsize;
272
+ }
273
+ for ( k = 0; k < N; k++ ) {
274
+ dv9 = sv[k][9] - ( s8*sv[k][8] );
275
+ ov8[ k ] = ov9[k] + ( j8*sv[k][8] );
276
+ }
277
+ for ( j7 = sh[7]; j7 > 0; ) {
278
+ if ( j7 < bsize ) {
279
+ s7 = j7;
280
+ j7 = 0;
281
+ } else {
282
+ s7 = bsize;
283
+ j7 -= bsize;
284
+ }
285
+ for ( k = 0; k < N; k++ ) {
286
+ dv8 = sv[k][8] - ( s7*sv[k][7] );
287
+ ov7[ k ] = ov8[k] + ( j7*sv[k][7] );
288
+ }
289
+ for ( j6 = sh[6]; j6 > 0; ) {
290
+ if ( j6 < bsize ) {
291
+ s6 = j6;
292
+ j6 = 0;
293
+ } else {
294
+ s6 = bsize;
295
+ j6 -= bsize;
296
+ }
297
+ for ( k = 0; k < N; k++ ) {
298
+ dv7 = sv[k][7] - ( s6*sv[k][6] );
299
+ ov6[ k ] = ov7[k] + ( j6*sv[k][6] );
300
+ }
301
+ for ( j5 = sh[5]; j5 > 0; ) {
302
+ if ( j5 < bsize ) {
303
+ s5 = j5;
304
+ j5 = 0;
305
+ } else {
306
+ s5 = bsize;
307
+ j5 -= bsize;
308
+ }
309
+ for ( k = 0; k < N; k++ ) {
310
+ dv6 = sv[k][6] - ( s5*sv[k][5] );
311
+ ov5[ k ] = ov6[k] + ( j5*sv[k][5] );
312
+ }
313
+ for ( j4 = sh[4]; j4 > 0; ) {
314
+ if ( j4 < bsize ) {
315
+ s4 = j4;
316
+ j4 = 0;
317
+ } else {
318
+ s4 = bsize;
319
+ j4 -= bsize;
320
+ }
321
+ for ( k = 0; k < N; k++ ) {
322
+ dv5 = sv[k][5] - ( s4*sv[k][4] );
323
+ ov4[ k ] = ov5[k] + ( j4*sv[k][4] );
324
+ }
325
+ for ( j3 = sh[3]; j3 > 0; ) {
326
+ if ( j3 < bsize ) {
327
+ s3 = j3;
328
+ j3 = 0;
329
+ } else {
330
+ s3 = bsize;
331
+ j3 -= bsize;
332
+ }
333
+ for ( k = 0; k < N; k++ ) {
334
+ dv4[ k ] = sv[k][4] - ( s3*sv[k][3] );
335
+ ov3[ k ] = ov4[k] + ( j3*sv[k][3] );
336
+ }
337
+ for ( j2 = sh[2]; j2 > 0; ) {
338
+ if ( j2 < bsize ) {
339
+ s2 = j2;
340
+ j2 = 0;
341
+ } else {
342
+ s2 = bsize;
343
+ j2 -= bsize;
344
+ }
345
+ for ( k = 0; k < N; k++ ) {
346
+ dv3[ k ] = sv[k][3] - ( s2*sv[k][2] );
347
+ ov2[ k ] = ov3[k] + ( j2*sv[k][2] );
348
+ }
349
+ for ( j1 = sh[1]; j1 > 0; ) {
350
+ if ( j1 < bsize ) {
351
+ s1 = j1;
352
+ j1 = 0;
353
+ } else {
354
+ s1 = bsize;
355
+ j1 -= bsize;
356
+ }
357
+ for ( k = 0; k < N; k++ ) {
358
+ dv2[ k ] = sv[k][2] - ( s1*sv[k][1] );
359
+ ov1[ k ] = ov2[k] + ( j1*sv[k][1] );
360
+ }
361
+ for ( j0 = sh[0]; j0 > 0; ) {
362
+ if ( j0 < bsize ) {
363
+ s0 = j0;
364
+ j0 = 0;
365
+ } else {
366
+ s0 = bsize;
367
+ j0 -= bsize;
368
+ }
369
+ // Compute index offsets and loop offset increments for the first ndarray elements in the current block...
370
+ for ( k = 0; k < N; k++ ) {
371
+ iv[ k ] = ov1[k] + ( j0*sv[k][0] );
372
+ dv1[ k ] = sv[k][1] - ( s0*sv[k][0] );
373
+ }
374
+ // Iterate over the loop dimensions...
375
+ for ( i9 = 0; i9 < s9; i9++ ) {
376
+ for ( i8 = 0; i8 < s8; i8++ ) {
377
+ for ( i7 = 0; i7 < s7; i7++ ) {
378
+ for ( i6 = 0; i6 < s6; i6++ ) {
379
+ for ( i5 = 0; i5 < s5; i5++ ) {
380
+ for ( i4 = 0; i4 < s4; i4++ ) {
381
+ for ( i3 = 0; i3 < s3; i3++ ) {
382
+ for ( i2 = 0; i2 < s2; i2++ ) {
383
+ for ( i1 = 0; i1 < s1; i1++ ) {
384
+ for ( i0 = 0; i0 < s0; i0++ ) {
385
+ setViewOffsets( views, iv );
386
+ v[ 0 ] = strategyX.input( views[ 0 ] );
387
+ fcn( v, opts );
388
+ strategyX.output( views[ 0 ] );
389
+ incrementOffsets( iv, dv0 );
390
+ }
391
+ incrementOffsets( iv, dv1 );
392
+ }
393
+ incrementOffsets( iv, dv2 );
394
+ }
395
+ incrementOffsets( iv, dv3 );
396
+ }
397
+ incrementOffsets( iv, dv4 );
398
+ }
399
+ incrementOffsets( iv, dv5 );
400
+ }
401
+ incrementOffsets( iv, dv6 );
402
+ }
403
+ incrementOffsets( iv, dv7 );
404
+ }
405
+ incrementOffsets( iv, dv8 );
406
+ }
407
+ incrementOffsets( iv, dv9 );
408
+ }
409
+ }
410
+ }
411
+ }
412
+ }
413
+ }
414
+ }
415
+ }
416
+ }
417
+ }
418
+ }
419
+ }
420
+
421
+
422
+ // EXPORTS //
423
+
424
+ module.exports = blockednullary10d;
package/lib/1d.js ADDED
@@ -0,0 +1,176 @@
1
+ /**
2
+ * @license Apache-2.0
3
+ *
4
+ * Copyright (c) 2025 The Stdlib Authors.
5
+ *
6
+ * Licensed under the Apache License, Version 2.0 (the "License");
7
+ * you may not use this file except in compliance with the License.
8
+ * You may obtain a copy of the License at
9
+ *
10
+ * http://www.apache.org/licenses/LICENSE-2.0
11
+ *
12
+ * Unless required by applicable law or agreed to in writing, software
13
+ * distributed under the License is distributed on an "AS IS" BASIS,
14
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ * See the License for the specific language governing permissions and
16
+ * limitations under the License.
17
+ */
18
+
19
+ 'use strict';
20
+
21
+ // MODULES //
22
+
23
+ var copyIndexed = require( '@stdlib/array-base-copy-indexed' );
24
+ var incrementOffsets = require( './increment_offsets.js' );
25
+ var setViewOffsets = require( './set_view_offsets.js' );
26
+ var offsets = require( './offsets.js' );
27
+
28
+
29
+ // MAIN //
30
+
31
+ /**
32
+ * Applies a one-dimensional strided array function to a list of specified dimensions in an ndarray.
33
+ *
34
+ * @private
35
+ * @param {Function} fcn - wrapper for a one-dimensional strided array function
36
+ * @param {Array<Object>} arrays - ndarrays
37
+ * @param {Array<Object>} views - initialized ndarray-like objects representing sub-array views
38
+ * @param {NonNegativeIntegerArray} shape - loop dimensions
39
+ * @param {IntegerArray} stridesX - loop dimension strides for the ndarray
40
+ * @param {Object} strategyX - strategy for marshaling data to and from an ndarray view
41
+ * @param {Options} opts - function options
42
+ * @returns {void}
43
+ *
44
+ * @example
45
+ * var ndarray2array = require( '@stdlib/ndarray-base-to-array' );
46
+ * var getStride = require( '@stdlib/ndarray-base-stride' );
47
+ * var getOffset = require( '@stdlib/ndarray-base-offset' );
48
+ * var getData = require( '@stdlib/ndarray-base-data-buffer' );
49
+ * var numelDimension = require( '@stdlib/ndarray-base-numel-dimension' );
50
+ * var ndarraylike2scalar = require( '@stdlib/ndarray-base-ndarraylike2scalar' );
51
+ * var gsorthp = require( '@stdlib/blas-ext-base-gsorthp' ).ndarray;
52
+ *
53
+ * function wrapper( arrays ) {
54
+ * var x = arrays[ 0 ];
55
+ * var o = arrays[ 1 ];
56
+ * return gsorthp( numelDimension( x, 0 ), ndarraylike2scalar( o ), getData( x ), getStride( x, 0 ), getOffset( x ) );
57
+ * }
58
+ *
59
+ * // Create a data buffer:
60
+ * var xbuf = [ 12.0, 11.0, 10.0, 9.0, 8.0, 7.0, 6.0, 5.0, 4.0, 3.0, 2.0, 1.0 ];
61
+ *
62
+ * // Define an array shape:
63
+ * var xsh = [ 3, 2, 2 ];
64
+ *
65
+ * // Define the array strides:
66
+ * var sx = [ 4, 2, 1 ];
67
+ *
68
+ * // Define the index offset:
69
+ * var ox = 0;
70
+ *
71
+ * // Create an ndarray-like object:
72
+ * var x = {
73
+ * 'dtype': 'generic',
74
+ * 'data': xbuf,
75
+ * 'shape': xsh,
76
+ * 'strides': sx,
77
+ * 'offset': ox,
78
+ * 'order': 'row-major'
79
+ * };
80
+ *
81
+ * // Create an ndarray-like object for the sort order:
82
+ * var sortOrder = {
83
+ * 'dtype': 'generic',
84
+ * 'data': [ 1.0 ],
85
+ * 'shape': [ 3 ],
86
+ * 'strides': [ 0 ],
87
+ * 'offset': 0,
88
+ * 'order': 'row-major'
89
+ * };
90
+ *
91
+ * // Initialize ndarray-like objects representing sub-array views:
92
+ * var views = [
93
+ * {
94
+ * 'dtype': x.dtype,
95
+ * 'data': x.data,
96
+ * 'shape': [ 2, 2 ],
97
+ * 'strides': [ 2, 1 ],
98
+ * 'offset': x.offset,
99
+ * 'order': x.order
100
+ * },
101
+ * {
102
+ * 'dtype': sortOrder.dtype,
103
+ * 'data': sortOrder.data,
104
+ * 'shape': [],
105
+ * 'strides': [ 0 ],
106
+ * 'offset': sortOrder.offset,
107
+ * 'order': sortOrder.order
108
+ * }
109
+ * ];
110
+ *
111
+ * // Define an input strategy:
112
+ * function inputStrategy( x ) {
113
+ * return {
114
+ * 'dtype': x.dtype,
115
+ * 'data': x.data,
116
+ * 'shape': [ 4 ],
117
+ * 'strides': [ 1 ],
118
+ * 'offset': x.offset,
119
+ * 'order': x.order
120
+ * };
121
+ * }
122
+ *
123
+ * // Define an output strategy:
124
+ * function outputStrategy( x ) {
125
+ * return x;
126
+ * }
127
+ *
128
+ * var strategy = {
129
+ * 'input': inputStrategy,
130
+ * 'output': outputStrategy
131
+ * }
132
+ *
133
+ * // Apply strided function:
134
+ * nullary1d( wrapper, [ x, sortOrder ], views, [ 3 ], [ 4 ], strategy, {} );
135
+ *
136
+ * var arr = ndarray2array( x.data, x.shape, x.strides, x.offset, x.order );
137
+ * // returns [ [ [ 9.0, 10.0 ], [ 11.0, 12.0 ] ], [ [ 5.0, 6.0 ], [ 7.0, 8.0 ] ], [ [ 1.0, 2.0 ], [ 3.0, 4.0 ] ] ]
138
+ */
139
+ function nullary1d( fcn, arrays, views, shape, stridesX, strategyX, opts ) {
140
+ var dv0;
141
+ var S0;
142
+ var iv;
143
+ var i0;
144
+ var v;
145
+ var i;
146
+
147
+ // Note on variable naming convention: S#, dv#, i# where # corresponds to the loop number, with `0` being the innermost loop...
148
+
149
+ // Extract loop variables for purposes of loop interchange: dimensions and loop offset (pointer) increments...
150
+ S0 = shape[ 0 ];
151
+ dv0 = [
152
+ stridesX[0]
153
+ ];
154
+ for ( i = 1; i < arrays.length; i++ ) {
155
+ dv0.push( arrays[i].strides[0] );
156
+ }
157
+ // Resolve a list of pointers to the first indexed elements in the respective ndarrays:
158
+ iv = offsets( arrays );
159
+
160
+ // Shallow copy the list of views to an internal array so that we can update with reshaped views without impacting the original list of views:
161
+ v = copyIndexed( views );
162
+
163
+ // Iterate over the loop dimensions...
164
+ for ( i0 = 0; i0 < S0; i0++ ) {
165
+ setViewOffsets( views, iv );
166
+ v[ 0 ] = strategyX.input( views[ 0 ] );
167
+ fcn( v, opts );
168
+ strategyX.output( views[ 0 ] );
169
+ incrementOffsets( iv, dv0 );
170
+ }
171
+ }
172
+
173
+
174
+ // EXPORTS //
175
+
176
+ module.exports = nullary1d;