@stdlib/math-base-special-exp 0.0.6 → 0.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/src/main.c ADDED
@@ -0,0 +1,253 @@
1
+ /**
2
+ * @license Apache-2.0
3
+ *
4
+ * Copyright (c) 2022 The Stdlib Authors.
5
+ *
6
+ * Licensed under the Apache License, Version 2.0 (the "License");
7
+ * you may not use this file except in compliance with the License.
8
+ * You may obtain a copy of the License at
9
+ *
10
+ * http://www.apache.org/licenses/LICENSE-2.0
11
+ *
12
+ * Unless required by applicable law or agreed to in writing, software
13
+ * distributed under the License is distributed on an "AS IS" BASIS,
14
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ * See the License for the specific language governing permissions and
16
+ * limitations under the License.
17
+ *
18
+ *
19
+ * ## Notice
20
+ *
21
+ * * The following copyrights, licenses, and long comment were part of the original implementation available as part of [Go]{@link https://github.com/golang/go/blob/cb07765045aed5104a3df31507564ac99e6ddce8/src/math/exp.go}, which in turn was based on an implementation available as part of [FreeBSD]{@link https://svnweb.freebsd.org/base/release/9.3.0/lib/msun/src/e_exp.c}. The implementation follows the original, but has been modified according to project conventions.
22
+ *
23
+ * ```text
24
+ * Copyright (c) 2009 The Go Authors. All rights reserved.
25
+ *
26
+ * Redistribution and use in source and binary forms, with or without
27
+ * modification, are permitted provided that the following conditions are
28
+ * met:
29
+ *
30
+ * * Redistributions of source code must retain the above copyright
31
+ * notice, this list of conditions and the following disclaimer.
32
+ * * Redistributions in binary form must reproduce the above
33
+ * copyright notice, this list of conditions and the following disclaimer
34
+ * in the documentation and/or other materials provided with the
35
+ * distribution.
36
+ * * Neither the name of Google Inc. nor the names of its
37
+ * contributors may be used to endorse or promote products derived from
38
+ * this software without specific prior written permission.
39
+ *
40
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
41
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
42
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
43
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
44
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
45
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
46
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
47
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
48
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
49
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
50
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
51
+ * ```
52
+ *
53
+ * ```text
54
+ * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
55
+ *
56
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
57
+ * Permission to use, copy, modify, and distribute this
58
+ * software is freely granted, provided that this notice
59
+ * is preserved.
60
+ * ```
61
+ */
62
+
63
+ #include "stdlib/math/base/special/exp.h"
64
+ #include "stdlib/math/base/assert/is_nan.h"
65
+ #include "stdlib/math/base/special/trunc.h"
66
+ #include "stdlib/constants/float64/ninf.h"
67
+ #include "stdlib/constants/float64/pinf.h"
68
+ #include "stdlib/math/base/special/ldexp.h"
69
+ #include <stdint.h>
70
+
71
+ static const double LN2_HI = 6.93147180369123816490e-01;
72
+ static const double LN2_LO = 1.90821492927058770002e-10;
73
+ static const double LOG2_E = 1.44269504088896338700e+00;
74
+ static const double EXP_OVERFLOW = 7.09782712893383973096e+02;
75
+ static const double EXP_UNDERFLOW = -7.45133219101941108420e+02;
76
+ static const double NEARZERO = 1.0 / (1 << 28); // 2^-28
77
+ static const double NEG_NEARZERO = -NEARZERO;
78
+
79
+ /* Begin auto-generated functions. The following functions are auto-generated. Do not edit directly. */
80
+
81
+ // BEGIN: polyval_p
82
+
83
+ /**
84
+ * Evaluates a polynomial.
85
+ *
86
+ * ## Notes
87
+ *
88
+ * - The implementation uses [Horner's rule][horners-method] for efficient computation.
89
+ *
90
+ * [horners-method]: https://en.wikipedia.org/wiki/Horner%27s_method
91
+ *
92
+ * @param x value at which to evaluate the polynomial
93
+ * @return evaluated polynomial
94
+ */
95
+ static double polyval_p( const double x ) {
96
+ return 0.16666666666666602 + (x * (-0.0027777777777015593 + (x * (0.00006613756321437934 + (x * (-0.0000016533902205465252 + (x * 4.1381367970572385e-8)))))));
97
+ }
98
+
99
+ // END: polyval_p
100
+
101
+ /* End auto-generated functions. */
102
+
103
+ /**
104
+ * Computes \\(e^{r} 2^k\\) where \\(r = \mathrm{hi} - \mathrm{lo}\\) and \\(|r| \leq \ln(2)/2\\).
105
+ *
106
+ * @param hi upper bound
107
+ * @param lo lower bound
108
+ * @param k power of 2
109
+ * @return function value
110
+ */
111
+ static double expmulti( const double hi, const double lo, const int32_t k ) {
112
+ double r;
113
+ double t;
114
+ double c;
115
+ double y;
116
+
117
+ r = hi - lo;
118
+ t = r * r;
119
+ c = r - (t * polyval_p( t ));
120
+ y = 1.0 - ( lo - ( ( r * c ) / ( 2.0 - c ) ) - hi);
121
+
122
+ return stdlib_base_ldexp( y, k );
123
+ }
124
+
125
+ /**
126
+ * Evaluates the natural exponential function.
127
+ *
128
+ * ## Method
129
+ *
130
+ * 1. We reduce \\( x \\) to an \\( r \\) so that \\( |r| \leq 0.5 \cdot \ln(2) \approx 0.34658 \\). Given \\( x \\), we find an \\( r \\) and integer \\( k \\) such that
131
+ *
132
+ * ```tex
133
+ * \begin{align*}
134
+ * x &= k \cdot \ln(2) + r \\
135
+ * |r| &\leq 0.5 \cdot \ln(2)
136
+ * \end{align*}
137
+ * ```
138
+ *
139
+ * <!-- <note> -->
140
+ *
141
+ * \\( r \\) can be represented as \\( r = \mathrm{hi} - \mathrm{lo} \\) for better accuracy.
142
+ *
143
+ * <!-- </note> -->
144
+ *
145
+ * 2. We approximate of \\( e^{r} \\) by a special rational function on the interval \\(\[0,0.34658]\\):
146
+ *
147
+ * ```tex
148
+ * \begin{align*}
149
+ * R\left(r^2\right) &= r \cdot \frac{ e^{r}+1 }{ e^{r}-1 } \\
150
+ * &= 2 + \frac{r^2}{6} - \frac{r^4}{360} + \ldots
151
+ * \end{align*}
152
+ * ```
153
+ *
154
+ * We use a special Remes algorithm on \\(\[0,0.34658]\\) to generate a polynomial of degree \\(5\\) to approximate \\(R\\). The maximum error of this polynomial approximation is bounded by \\(2^{-59}\\). In other words,
155
+ *
156
+ * ```tex
157
+ * R(z) \sim 2 + P_1 z + P_2 z^2 + P_3 z^3 + P_4 z^4 + P_5 z^5
158
+ * ```
159
+ *
160
+ * where \\( z = r^2 \\) and
161
+ *
162
+ * ```tex
163
+ * \left| 2 + P_1 z + \ldots + P_5 z^5 - R(z) \right| \leq 2^{-59}
164
+ * ```
165
+ *
166
+ * <!-- <note> -->
167
+ *
168
+ * The values of \\( P_1 \\) to \\( P_5 \\) are listed in the source code.
169
+ *
170
+ * <!-- </note> -->
171
+ *
172
+ * The computation of \\( e^{r} \\) thus becomes
173
+ *
174
+ * ```tex
175
+ * \begin{align*}
176
+ * e^{r} &= 1 + \frac{2r}{R-r} \\
177
+ * &= 1 + r + \frac{r \cdot R_1(r)}{2 - R_1(r)}\ \text{for better accuracy}
178
+ * \end{align*}
179
+ * ```
180
+ *
181
+ * where
182
+ *
183
+ * ```tex
184
+ * R_1(r) = r - P_1\ r^2 + P_2\ r^4 + \ldots + P_5\ r^{10}
185
+ * ```
186
+ *
187
+ * 3. We scale back to obtain \\( e^{x} \\). From step 1, we have
188
+ *
189
+ * ```tex
190
+ * e^{x} = 2^k e^{r}
191
+ * ```
192
+ *
193
+ *
194
+ * ## Special Cases
195
+ *
196
+ * ```tex
197
+ * \begin{align*}
198
+ * e^\infty &= \infty \\
199
+ * e^{-\infty} &= 0 \\
200
+ * e^{\mathrm{NaN}} &= \mathrm{NaN} \\
201
+ * e^0 &= 1\ \mathrm{is\ exact\ for\ finite\ argument\ only}
202
+ * \end{align*}
203
+ * ```
204
+ *
205
+ * ## Notes
206
+ *
207
+ * - According to an error analysis, the error is always less than \\(1\\) ulp (unit in the last place).
208
+ *
209
+ * - For an IEEE double,
210
+ *
211
+ * - if \\(x > 7.09782712893383973096\mbox{e+}02\\), then \\(e^{x}\\) overflows
212
+ * - if \\(x < -7.45133219101941108420\mbox{e+}02\\), then \\(e^{x}\\) underflows
213
+ *
214
+ * - The hexadecimal values included in the source code are the intended ones for the used constants. Decimal values may be used, provided that the compiler will convert from decimal to binary accurately enough to produce the intended hexadecimal values.
215
+ *
216
+ * @param x input value
217
+ * @return output value
218
+ *
219
+ * @example
220
+ * double out = stdlib_base_exp( 0.0 );
221
+ * // returns 1.0
222
+ */
223
+ double stdlib_base_exp( const double x ) {
224
+ double hi;
225
+ double lo;
226
+ int32_t k;
227
+
228
+ if ( stdlib_base_is_nan( x ) || x == STDLIB_CONSTANT_FLOAT64_PINF ) {
229
+ return x;
230
+ }
231
+ if ( x == STDLIB_CONSTANT_FLOAT64_NINF ) {
232
+ return 0.0;
233
+ }
234
+ if ( x > EXP_OVERFLOW ) {
235
+ return STDLIB_CONSTANT_FLOAT64_PINF;
236
+ }
237
+ if ( x < EXP_UNDERFLOW ) {
238
+ return 0.0;
239
+ }
240
+ if ( x > NEG_NEARZERO && x < NEARZERO ) {
241
+ return 1.0 + x;
242
+ }
243
+ // Reduce and compute `r = hi - lo` for extra precision...
244
+ if ( x < 0.0 ) {
245
+ k = stdlib_base_trunc( ( LOG2_E * x ) - 0.5 );
246
+ } else {
247
+ k = stdlib_base_trunc( ( LOG2_E * x ) + 0.5 );
248
+ }
249
+ hi = x - ( k * LN2_HI );
250
+ lo = k * LN2_LO;
251
+
252
+ return expmulti( hi, lo, k );
253
+ }
package/docs/repl.txt DELETED
@@ -1,28 +0,0 @@
1
-
2
- {{alias}}( x )
3
- Evaluates the natural exponential function.
4
-
5
- Parameters
6
- ----------
7
- x: number
8
- Input value.
9
-
10
- Returns
11
- -------
12
- y: number
13
- Function value.
14
-
15
- Examples
16
- --------
17
- > var y = {{alias}}( 4.0 )
18
- ~54.5982
19
- > y = {{alias}}( -9.0 )
20
- ~1.234e-4
21
- > y = {{alias}}( 0.0 )
22
- 1.0
23
- > y = {{alias}}( NaN )
24
- NaN
25
-
26
- See Also
27
- --------
28
-
@@ -1,44 +0,0 @@
1
- /*
2
- * @license Apache-2.0
3
- *
4
- * Copyright (c) 2019 The Stdlib Authors.
5
- *
6
- * Licensed under the Apache License, Version 2.0 (the "License");
7
- * you may not use this file except in compliance with the License.
8
- * You may obtain a copy of the License at
9
- *
10
- * http://www.apache.org/licenses/LICENSE-2.0
11
- *
12
- * Unless required by applicable law or agreed to in writing, software
13
- * distributed under the License is distributed on an "AS IS" BASIS,
14
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
- * See the License for the specific language governing permissions and
16
- * limitations under the License.
17
- */
18
-
19
- import exp = require( './index' );
20
-
21
-
22
- // TESTS //
23
-
24
- // The function returns a number...
25
- {
26
- exp( 0.5 ); // $ExpectType number
27
- }
28
-
29
- // The function does not compile if provided a value other than a number...
30
- {
31
- exp( true ); // $ExpectError
32
- exp( false ); // $ExpectError
33
- exp( null ); // $ExpectError
34
- exp( undefined ); // $ExpectError
35
- exp( '5' ); // $ExpectError
36
- exp( [] ); // $ExpectError
37
- exp( {} ); // $ExpectError
38
- exp( ( x: number ): number => x ); // $ExpectError
39
- }
40
-
41
- // The function does not compile if provided insufficient arguments...
42
- {
43
- exp(); // $ExpectError
44
- }