@stdlib/blas-ext-base-dsnansumpw 0.2.2 → 0.3.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/NOTICE CHANGED
@@ -1 +1 @@
1
- Copyright (c) 2016-2024 The Stdlib Authors.
1
+ Copyright (c) 2016-2026 The Stdlib Authors.
package/README.md CHANGED
@@ -59,7 +59,7 @@ npm install @stdlib/blas-ext-base-dsnansumpw
59
59
  var dsnansumpw = require( '@stdlib/blas-ext-base-dsnansumpw' );
60
60
  ```
61
61
 
62
- #### dsnansumpw( N, x, stride )
62
+ #### dsnansumpw( N, x, strideX )
63
63
 
64
64
  Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using pairwise summation with extended accumulation, and returning an extended precision result.
65
65
 
@@ -67,9 +67,8 @@ Computes the sum of single-precision floating-point strided array elements, igno
67
67
  var Float32Array = require( '@stdlib/array-float32' );
68
68
 
69
69
  var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
70
- var N = x.length;
71
70
 
72
- var v = dsnansumpw( N, x, 1 );
71
+ var v = dsnansumpw( x.length, x, 1 );
73
72
  // returns 1.0
74
73
  ```
75
74
 
@@ -77,18 +76,16 @@ The function has the following parameters:
77
76
 
78
77
  - **N**: number of indexed elements.
79
78
  - **x**: input [`Float32Array`][@stdlib/array/float32].
80
- - **stride**: index increment for `x`.
79
+ - **stride**: stride length for `x`.
81
80
 
82
- The `N` and `stride` parameters determine which elements in `x` are accessed at runtime. For example, to compute the sum of every other element in `x`,
81
+ The `N` and stride parameters determine which elements in the strided array are accessed at runtime. For example, to compute the sum of every other element:
83
82
 
84
83
  ```javascript
85
84
  var Float32Array = require( '@stdlib/array-float32' );
86
- var floor = require( '@stdlib/math-base-special-floor' );
87
85
 
88
86
  var x = new Float32Array( [ 1.0, 2.0, NaN, -7.0, NaN, 3.0, 4.0, 2.0 ] );
89
- var N = floor( x.length / 2 );
90
87
 
91
- var v = dsnansumpw( N, x, 2 );
88
+ var v = dsnansumpw( 4, x, 2 );
92
89
  // returns 5.0
93
90
  ```
94
91
 
@@ -98,45 +95,39 @@ Note that indexing is relative to the first index. To introduce an offset, use [
98
95
 
99
96
  ```javascript
100
97
  var Float32Array = require( '@stdlib/array-float32' );
101
- var floor = require( '@stdlib/math-base-special-floor' );
102
98
 
103
99
  var x0 = new Float32Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
104
100
  var x1 = new Float32Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element
105
101
 
106
- var N = floor( x0.length / 2 );
107
-
108
- var v = dsnansumpw( N, x1, 2 );
102
+ var v = dsnansumpw( 4, x1, 2 );
109
103
  // returns 5.0
110
104
  ```
111
105
 
112
- #### dsnansumpw.ndarray( N, x, stride, offset )
106
+ #### dsnansumpw.ndarray( N, x, strideX, offsetX )
113
107
 
114
- Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using pairwise summation with extended accumulation and alternative indexing semantics.
108
+ Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using pairwise summation with extended accumulation and alternative indexing semantics, and returning an extended precision result.
115
109
 
116
110
  ```javascript
117
111
  var Float32Array = require( '@stdlib/array-float32' );
118
112
 
119
113
  var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
120
- var N = x.length;
121
114
 
122
- var v = dsnansumpw.ndarray( N, x, 1, 0 );
115
+ var v = dsnansumpw.ndarray( x.length, x, 1, 0 );
123
116
  // returns 1.0
124
117
  ```
125
118
 
126
119
  The function has the following additional parameters:
127
120
 
128
- - **offset**: starting index for `x`.
121
+ - **offsetX**: starting index for `x`.
129
122
 
130
- While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the `offset` parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other value in `x` starting from the second value
123
+ While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying `buffer`, the offset parameter supports indexing semantics based on a starting index. For example, to calculate the sum of every other element starting from the second element:
131
124
 
132
125
  ```javascript
133
126
  var Float32Array = require( '@stdlib/array-float32' );
134
- var floor = require( '@stdlib/math-base-special-floor' );
135
127
 
136
128
  var x = new Float32Array( [ 2.0, 1.0, NaN, -2.0, -2.0, 2.0, 3.0, 4.0 ] );
137
- var N = floor( x.length / 2 );
138
129
 
139
- var v = dsnansumpw.ndarray( N, x, 2, 1 );
130
+ var v = dsnansumpw.ndarray( 4, x, 2, 1 );
140
131
  // returns 5.0
141
132
  ```
142
133
 
@@ -162,22 +153,19 @@ var v = dsnansumpw.ndarray( N, x, 2, 1 );
162
153
  <!-- eslint no-undef: "error" -->
163
154
 
164
155
  ```javascript
165
- var randu = require( '@stdlib/random-base-randu' );
166
- var round = require( '@stdlib/math-base-special-round' );
167
- var Float32Array = require( '@stdlib/array-float32' );
156
+ var discreteUniform = require( '@stdlib/random-base-discrete-uniform' );
157
+ var bernoulli = require( '@stdlib/random-base-bernoulli' );
158
+ var filledarrayBy = require( '@stdlib/array-filled-by' );
168
159
  var dsnansumpw = require( '@stdlib/blas-ext-base-dsnansumpw' );
169
160
 
170
- var x;
171
- var i;
172
-
173
- x = new Float32Array( 10 );
174
- for ( i = 0; i < x.length; i++ ) {
175
- if ( randu() < 0.2 ) {
176
- x[ i ] = NaN;
177
- } else {
178
- x[ i ] = round( randu()*100.0 );
161
+ function rand() {
162
+ if ( bernoulli( 0.8 ) > 0 ) {
163
+ return NaN;
179
164
  }
165
+ return discreteUniform( 0, 100 );
180
166
  }
167
+
168
+ var x = filledarrayBy( 10, 'float32', rand );
181
169
  console.log( x );
182
170
 
183
171
  var v = dsnansumpw( x.length, x, 1 );
@@ -188,8 +176,123 @@ console.log( v );
188
176
 
189
177
  <!-- /.examples -->
190
178
 
179
+ <!-- C interface documentation. -->
180
+
191
181
  * * *
192
182
 
183
+ <section class="c">
184
+
185
+ ## C APIs
186
+
187
+ <!-- Section to include introductory text. Make sure to keep an empty line after the intro `section` element and another before the `/section` close. -->
188
+
189
+ <section class="intro">
190
+
191
+ </section>
192
+
193
+ <!-- /.intro -->
194
+
195
+ <!-- C usage documentation. -->
196
+
197
+ <section class="usage">
198
+
199
+ ### Usage
200
+
201
+ ```c
202
+ #include "stdlib/blas/ext/base/dsnansumpw.h"
203
+ ```
204
+
205
+ #### stdlib_strided_dsnansumpw( N, \*X, strideX )
206
+
207
+ Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using pairwise summation with extended accumulation, and returning an extended precision result.
208
+
209
+ ```c
210
+ const float x[] = { 1.0f, -2.0f, 0.0f/0.0f, 2.0f };
211
+
212
+ double v = stdlib_strided_dsnansumpw( 4, x, 1 );
213
+ // returns 1.0
214
+ ```
215
+
216
+ The function accepts the following arguments:
217
+
218
+ - **N**: `[in] CBLAS_INT` number of indexed elements.
219
+ - **X**: `[in] float*` input array.
220
+ - **strideX**: `[in] CBLAS_INT` stride length for `X`.
221
+
222
+ ```c
223
+ double stdlib_strided_dsnansumpw( const CBLAS_INT N, const float *X, const CBLAS_INT strideX );
224
+ ```
225
+
226
+ #### stdlib_strided_dsnansumpw_ndarray( N, \*X, strideX, offsetX )
227
+
228
+ Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using pairwise summation with extended accumulation and alternative indexing semantics, and returning an extended precision result.
229
+
230
+ ```c
231
+ const float x[] = { 1.0f, -2.0f, 0.0f/0.0f, 2.0f };
232
+
233
+ double v = stdlib_strided_dsnansumpw_ndarray( 4, x, 1, 0 );
234
+ // returns 1.0
235
+ ```
236
+
237
+ The function accepts the following arguments:
238
+
239
+ - **N**: `[in] CBLAS_INT` number of indexed elements.
240
+ - **X**: `[in] float*` input array.
241
+ - **strideX**: `[in] CBLAS_INT` stride length for `X`.
242
+ - **offsetX**: `[in] CBLAS_INT` starting index for `X`.
243
+
244
+ ```c
245
+ double stdlib_strided_dsnansumpw_ndarray( const CBLAS_INT N, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
246
+ ```
247
+
248
+ </section>
249
+
250
+ <!-- /.usage -->
251
+
252
+ <!-- C API usage notes. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->
253
+
254
+ <section class="notes">
255
+
256
+ </section>
257
+
258
+ <!-- /.notes -->
259
+
260
+ <!-- C API usage examples. -->
261
+
262
+ <section class="examples">
263
+
264
+ ### Examples
265
+
266
+ ```c
267
+ #include "stdlib/blas/ext/base/dsnansumpw.h"
268
+ #include <stdio.h>
269
+
270
+ int main( void ) {
271
+ // Create a strided array:
272
+ const float x[] = { 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f, 0.0f/0.0f, 0.0f/0.0f };
273
+
274
+ // Specify the number of elements:
275
+ const int N = 5;
276
+
277
+ // Specify the stride length:
278
+ const int strideX = 2;
279
+
280
+ // Compute the sum:
281
+ double v = stdlib_strided_dsnansumpw( N, x, strideX );
282
+
283
+ // Print the result:
284
+ printf( "sum: %lf\n", v );
285
+ }
286
+ ```
287
+
288
+ </section>
289
+
290
+ <!-- /.examples -->
291
+
292
+ </section>
293
+
294
+ <!-- /.c -->
295
+
193
296
  <section class="references">
194
297
 
195
298
  ## References
@@ -243,7 +346,7 @@ See [LICENSE][stdlib-license].
243
346
 
244
347
  ## Copyright
245
348
 
246
- Copyright &copy; 2016-2024. The Stdlib [Authors][stdlib-authors].
349
+ Copyright &copy; 2016-2026. The Stdlib [Authors][stdlib-authors].
247
350
 
248
351
  </section>
249
352
 
@@ -256,8 +359,8 @@ Copyright &copy; 2016-2024. The Stdlib [Authors][stdlib-authors].
256
359
  [npm-image]: http://img.shields.io/npm/v/@stdlib/blas-ext-base-dsnansumpw.svg
257
360
  [npm-url]: https://npmjs.org/package/@stdlib/blas-ext-base-dsnansumpw
258
361
 
259
- [test-image]: https://github.com/stdlib-js/blas-ext-base-dsnansumpw/actions/workflows/test.yml/badge.svg?branch=v0.2.2
260
- [test-url]: https://github.com/stdlib-js/blas-ext-base-dsnansumpw/actions/workflows/test.yml?query=branch:v0.2.2
362
+ [test-image]: https://github.com/stdlib-js/blas-ext-base-dsnansumpw/actions/workflows/test.yml/badge.svg?branch=v0.3.0
363
+ [test-url]: https://github.com/stdlib-js/blas-ext-base-dsnansumpw/actions/workflows/test.yml?query=branch:v0.3.0
261
364
 
262
365
  [coverage-image]: https://img.shields.io/codecov/c/github/stdlib-js/blas-ext-base-dsnansumpw/main.svg
263
366
  [coverage-url]: https://codecov.io/github/stdlib-js/blas-ext-base-dsnansumpw?branch=main
@@ -269,8 +372,8 @@ Copyright &copy; 2016-2024. The Stdlib [Authors][stdlib-authors].
269
372
 
270
373
  -->
271
374
 
272
- [chat-image]: https://img.shields.io/gitter/room/stdlib-js/stdlib.svg
273
- [chat-url]: https://app.gitter.im/#/room/#stdlib-js_stdlib:gitter.im
375
+ [chat-image]: https://img.shields.io/badge/zulip-join_chat-brightgreen.svg
376
+ [chat-url]: https://stdlib.zulipchat.com
274
377
 
275
378
  [stdlib]: https://github.com/stdlib-js/stdlib
276
379
 
package/dist/index.js CHANGED
@@ -1,9 +1,9 @@
1
- "use strict";var j=function(u,a){return function(){return a||u((a={exports:{}}).exports,a),a.exports}};var E=j(function(J,_){
2
- var v=require('@stdlib/math-base-assert-is-nanf/dist'),Z=require('@stdlib/math-base-special-floor/dist'),b=128;function t(u,a,n,e){var r,i,q,p,m,l,c,w,y,R,s,o,f;if(u<=0)return 0;if(u===1||n===0)return v(a[e])?0:a[e];if(r=e,u<8){for(s=0,f=0;f<u;f++)v(a[r])===!1&&(s+=a[r]),r+=n;return s}if(u<=b){for(i=v(a[r])?0:a[r],r+=n,q=v(a[r])?0:a[r],r+=n,p=v(a[r])?0:a[r],r+=n,m=v(a[r])?0:a[r],r+=n,l=v(a[r])?0:a[r],r+=n,c=v(a[r])?0:a[r],r+=n,w=v(a[r])?0:a[r],r+=n,y=v(a[r])?0:a[r],r+=n,R=u%8,f=8;f<u-R;f+=8)i+=v(a[r])?0:a[r],r+=n,q+=v(a[r])?0:a[r],r+=n,p+=v(a[r])?0:a[r],r+=n,m+=v(a[r])?0:a[r],r+=n,l+=v(a[r])?0:a[r],r+=n,c+=v(a[r])?0:a[r],r+=n,w+=v(a[r])?0:a[r],r+=n,y+=v(a[r])?0:a[r],r+=n;for(s=i+q+(p+m)+(l+c+(w+y)),f;f<u;f++)v(a[r])===!1&&(s+=a[r]),r+=n;return s}return o=Z(u/2),o-=o%8,t(o,a,n,r)+t(u-o,a,n,r+o*n)}_.exports=t
3
- });var I=j(function(P,C){
4
- var B=require('@stdlib/math-base-assert-is-nanf/dist'),g=E();function h(u,a,n){var e,r,i;if(u<=0)return 0;if(u===1||n===0)return B(a[0])?0:a[0];if(n<0?e=(1-u)*n:e=0,u<8){for(r=0,i=0;i<u;i++)B(a[e])===!1&&(r+=a[e]),e+=n;return r}return g(u,a,n,e)}C.exports=h
5
- });var M=j(function(Q,L){
6
- var k=require('@stdlib/utils-define-nonenumerable-read-only-property/dist'),K=I(),z=E();k(K,"ndarray",z);L.exports=K
7
- });var A=require("path").join,D=require('@stdlib/utils-try-require/dist'),F=require('@stdlib/assert-is-error/dist'),G=M(),O,S=D(A(__dirname,"./native.js"));F(S)?O=G:O=S;module.exports=O;
1
+ "use strict";var y=function(v,a){return function(){return a||v((a={exports:{}}).exports,a),a.exports}};var j=y(function(J,R){
2
+ var u=require('@stdlib/math-base-assert-is-nanf/dist'),S=require('@stdlib/math-base-special-floor/dist'),Z=128;function w(v,a,n,M){var r,o,i,q,p,m,c,l,t,O,f,s,e;if(v<=0)return 0;if(r=M,n===0)return u(a[r])?0:v*a[r];if(v<8){for(f=0,e=0;e<v;e++)u(a[r])===!1&&(f+=a[r]),r+=n;return f}if(v<=Z){for(o=u(a[r])?0:a[r],r+=n,i=u(a[r])?0:a[r],r+=n,q=u(a[r])?0:a[r],r+=n,p=u(a[r])?0:a[r],r+=n,m=u(a[r])?0:a[r],r+=n,c=u(a[r])?0:a[r],r+=n,l=u(a[r])?0:a[r],r+=n,t=u(a[r])?0:a[r],r+=n,O=v%8,e=8;e<v-O;e+=8)o+=u(a[r])?0:a[r],r+=n,i+=u(a[r])?0:a[r],r+=n,q+=u(a[r])?0:a[r],r+=n,p+=u(a[r])?0:a[r],r+=n,m+=u(a[r])?0:a[r],r+=n,c+=u(a[r])?0:a[r],r+=n,l+=u(a[r])?0:a[r],r+=n,t+=u(a[r])?0:a[r],r+=n;for(f=o+i+(q+p)+(m+c+(l+t)),e;e<v;e++)u(a[r])===!1&&(f+=a[r]),r+=n;return f}return s=S(v/2),s-=s%8,w(s,a,n,r)+w(v-s,a,n,r+s*n)}R.exports=w
3
+ });var B=y(function(P,_){
4
+ var b=require('@stdlib/strided-base-stride2offset/dist'),g=j();function h(v,a,n){return g(v,a,n,b(v,n))}_.exports=h
5
+ });var K=y(function(Q,I){
6
+ var k=require('@stdlib/utils-define-nonenumerable-read-only-property/dist'),C=B(),z=j();k(C,"ndarray",z);I.exports=C
7
+ });var A=require("path").join,D=require('@stdlib/utils-try-require/dist'),F=require('@stdlib/assert-is-error/dist'),G=K(),E,L=D(A(__dirname,"./native.js"));F(L)?E=G:E=L;module.exports=E;
8
8
  /** @license Apache-2.0 */
9
9
  //# sourceMappingURL=index.js.map
package/dist/index.js.map CHANGED
@@ -1,7 +1,7 @@
1
1
  {
2
2
  "version": 3,
3
3
  "sources": ["../lib/ndarray.js", "../lib/dsnansumpw.js", "../lib/main.js", "../lib/index.js"],
4
- "sourcesContent": ["/**\n* @license Apache-2.0\n*\n* Copyright (c) 2020 The Stdlib Authors.\n*\n* Licensed under the Apache License, Version 2.0 (the \"License\");\n* you may not use this file except in compliance with the License.\n* You may obtain a copy of the License at\n*\n* http://www.apache.org/licenses/LICENSE-2.0\n*\n* Unless required by applicable law or agreed to in writing, software\n* distributed under the License is distributed on an \"AS IS\" BASIS,\n* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n* See the License for the specific language governing permissions and\n* limitations under the License.\n*/\n\n'use strict';\n\n// MODULES //\n\nvar isnanf = require( '@stdlib/math-base-assert-is-nanf' );\nvar floor = require( '@stdlib/math-base-special-floor' );\n\n\n// VARIABLES //\n\n// Blocksize for pairwise summation (NOTE: decreasing the blocksize decreases rounding error as more pairs are summed, but also decreases performance. Because the inner loop is unrolled eight times, the blocksize is effectively `16`.):\nvar BLOCKSIZE = 128;\n\n\n// MAIN //\n\n/**\n* Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using pairwise summation with extended accumulation, and returning an extended precision result.\n*\n* ## Method\n*\n* - This implementation uses pairwise summation, which accrues rounding error `O(log2 N)` instead of `O(N)`. The recursion depth is also `O(log2 N)`.\n*\n* ## References\n*\n* - Higham, Nicholas J. 1993. \"The Accuracy of Floating Point Summation.\" _SIAM Journal on Scientific Computing_ 14 (4): 783\u201399. doi:[10.1137/0914050](https://doi.org/10.1137/0914050).\n*\n* @param {PositiveInteger} N - number of indexed elements\n* @param {Float32Array} x - input array\n* @param {integer} stride - stride length\n* @param {NonNegativeInteger} offset - starting index\n* @returns {number} sum\n*\n* @example\n* var Float32Array = require( '@stdlib/array-float32' );\n* var floor = require( '@stdlib/math-base-special-floor' );\n*\n* var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );\n* var N = floor( x.length / 2 );\n*\n* var v = dsnansumpw( N, x, 2, 1 );\n* // returns 5.0\n*/\nfunction dsnansumpw( N, x, stride, offset ) {\n\tvar ix;\n\tvar s0;\n\tvar s1;\n\tvar s2;\n\tvar s3;\n\tvar s4;\n\tvar s5;\n\tvar s6;\n\tvar s7;\n\tvar M;\n\tvar s;\n\tvar n;\n\tvar i;\n\n\tif ( N <= 0 ) {\n\t\treturn 0.0;\n\t}\n\tif ( N === 1 || stride === 0 ) {\n\t\tif ( isnanf( x[ offset ] ) ) {\n\t\t\treturn 0.0;\n\t\t}\n\t\treturn x[ offset ];\n\t}\n\tix = offset;\n\tif ( N < 8 ) {\n\t\t// Use simple summation...\n\t\ts = 0.0;\n\t\tfor ( i = 0; i < N; i++ ) {\n\t\t\tif ( isnanf( x[ ix ] ) === false ) {\n\t\t\t\ts += x[ ix ];\n\t\t\t}\n\t\t\tix += stride;\n\t\t}\n\t\treturn s;\n\t}\n\tif ( N <= BLOCKSIZE ) {\n\t\t// Sum a block with 8 accumulators (by loop unrolling, we lower the effective blocksize to 16)...\n\t\ts0 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\tix += stride;\n\t\ts1 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\tix += stride;\n\t\ts2 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\tix += stride;\n\t\ts3 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\tix += stride;\n\t\ts4 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\tix += stride;\n\t\ts5 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\tix += stride;\n\t\ts6 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\tix += stride;\n\t\ts7 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\tix += stride;\n\n\t\tM = N % 8;\n\t\tfor ( i = 8; i < N-M; i += 8 ) {\n\t\t\ts0 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\t\tix += stride;\n\t\t\ts1 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\t\tix += stride;\n\t\t\ts2 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\t\tix += stride;\n\t\t\ts3 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\t\tix += stride;\n\t\t\ts4 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\t\tix += stride;\n\t\t\ts5 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\t\tix += stride;\n\t\t\ts6 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\t\tix += stride;\n\t\t\ts7 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\t\tix += stride;\n\t\t}\n\t\t// Pairwise sum the accumulators:\n\t\ts = ((s0+s1) + (s2+s3)) + ((s4+s5) + (s6+s7));\n\n\t\t// Clean-up loop...\n\t\tfor ( i; i < N; i++ ) {\n\t\t\tif ( isnanf( x[ ix ] ) === false ) {\n\t\t\t\ts += x[ ix ];\n\t\t\t}\n\t\t\tix += stride;\n\t\t}\n\t\treturn s;\n\t}\n\t// Recurse by dividing by two, but avoiding non-multiples of unroll factor...\n\tn = floor( N/2 );\n\tn -= n % 8;\n\treturn dsnansumpw( n, x, stride, ix ) + dsnansumpw( N-n, x, stride, ix+(n*stride) ); // eslint-disable-line max-len\n}\n\n\n// EXPORTS //\n\nmodule.exports = dsnansumpw;\n", "/**\n* @license Apache-2.0\n*\n* Copyright (c) 2020 The Stdlib Authors.\n*\n* Licensed under the Apache License, Version 2.0 (the \"License\");\n* you may not use this file except in compliance with the License.\n* You may obtain a copy of the License at\n*\n* http://www.apache.org/licenses/LICENSE-2.0\n*\n* Unless required by applicable law or agreed to in writing, software\n* distributed under the License is distributed on an \"AS IS\" BASIS,\n* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n* See the License for the specific language governing permissions and\n* limitations under the License.\n*/\n\n'use strict';\n\n// MODULES //\n\nvar isnanf = require( '@stdlib/math-base-assert-is-nanf' );\nvar sum = require( './ndarray.js' );\n\n\n// MAIN //\n\n/**\n* Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using pairwise summation with extended accumulation, and returning an extended precision result.\n*\n* ## Method\n*\n* - This implementation uses pairwise summation, which accrues rounding error `O(log2 N)` instead of `O(N)`. The recursion depth is also `O(log2 N)`.\n*\n* ## References\n*\n* - Higham, Nicholas J. 1993. \"The Accuracy of Floating Point Summation.\" _SIAM Journal on Scientific Computing_ 14 (4): 783\u201399. doi:[10.1137/0914050](https://doi.org/10.1137/0914050).\n*\n* @param {PositiveInteger} N - number of indexed elements\n* @param {Float32Array} x - input array\n* @param {integer} stride - stride length\n* @returns {number} sum\n*\n* @example\n* var Float32Array = require( '@stdlib/array-float32' );\n*\n* var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );\n* var N = x.length;\n*\n* var v = dsnansumpw( N, x, 1 );\n* // returns 1.0\n*/\nfunction dsnansumpw( N, x, stride ) {\n\tvar ix;\n\tvar s;\n\tvar i;\n\n\tif ( N <= 0 ) {\n\t\treturn 0.0;\n\t}\n\tif ( N === 1 || stride === 0 ) {\n\t\tif ( isnanf( x[ 0 ] ) ) {\n\t\t\treturn 0.0;\n\t\t}\n\t\treturn x[ 0 ];\n\t}\n\tif ( stride < 0 ) {\n\t\tix = (1-N) * stride;\n\t} else {\n\t\tix = 0;\n\t}\n\tif ( N < 8 ) {\n\t\t// Use simple summation...\n\t\ts = 0.0;\n\t\tfor ( i = 0; i < N; i++ ) {\n\t\t\tif ( isnanf( x[ ix ] ) === false ) {\n\t\t\t\ts += x[ ix ];\n\t\t\t}\n\t\t\tix += stride;\n\t\t}\n\t\treturn s;\n\t}\n\treturn sum( N, x, stride, ix );\n}\n\n\n// EXPORTS //\n\nmodule.exports = dsnansumpw;\n", "/**\n* @license Apache-2.0\n*\n* Copyright (c) 2020 The Stdlib Authors.\n*\n* Licensed under the Apache License, Version 2.0 (the \"License\");\n* you may not use this file except in compliance with the License.\n* You may obtain a copy of the License at\n*\n* http://www.apache.org/licenses/LICENSE-2.0\n*\n* Unless required by applicable law or agreed to in writing, software\n* distributed under the License is distributed on an \"AS IS\" BASIS,\n* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n* See the License for the specific language governing permissions and\n* limitations under the License.\n*/\n\n'use strict';\n\n// MODULES //\n\nvar setReadOnly = require( '@stdlib/utils-define-nonenumerable-read-only-property' );\nvar dsnansumpw = require( './dsnansumpw.js' );\nvar ndarray = require( './ndarray.js' );\n\n\n// MAIN //\n\nsetReadOnly( dsnansumpw, 'ndarray', ndarray );\n\n\n// EXPORTS //\n\nmodule.exports = dsnansumpw;\n", "/**\n* @license Apache-2.0\n*\n* Copyright (c) 2020 The Stdlib Authors.\n*\n* Licensed under the Apache License, Version 2.0 (the \"License\");\n* you may not use this file except in compliance with the License.\n* You may obtain a copy of the License at\n*\n* http://www.apache.org/licenses/LICENSE-2.0\n*\n* Unless required by applicable law or agreed to in writing, software\n* distributed under the License is distributed on an \"AS IS\" BASIS,\n* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n* See the License for the specific language governing permissions and\n* limitations under the License.\n*/\n\n'use strict';\n\n/**\n* Compute the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using pairwise summation with extended accumulation, and returning an extended precision result.\n*\n* @module @stdlib/blas-ext-base-dsnansumpw\n*\n* @example\n* var Float32Array = require( '@stdlib/array-float32' );\n* var dsnansumpw = require( '@stdlib/blas-ext-base-dsnansumpw' );\n*\n* var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );\n* var N = x.length;\n*\n* var v = dsnansumpw( N, x, 1 );\n* // returns 1.0\n*\n* @example\n* var Float32Array = require( '@stdlib/array-float32' );\n* var floor = require( '@stdlib/math-base-special-floor' );\n* var dsnansumpw = require( '@stdlib/blas-ext-base-dsnansumpw' );\n*\n* var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );\n* var N = floor( x.length / 2 );\n*\n* var v = dsnansumpw.ndarray( N, x, 2, 1 );\n* // returns 5.0\n*/\n\n// MODULES //\n\nvar join = require( 'path' ).join;\nvar tryRequire = require( '@stdlib/utils-try-require' );\nvar isError = require( '@stdlib/assert-is-error' );\nvar main = require( './main.js' );\n\n\n// MAIN //\n\nvar dsnansumpw;\nvar tmp = tryRequire( join( __dirname, './native.js' ) );\nif ( isError( tmp ) ) {\n\tdsnansumpw = main;\n} else {\n\tdsnansumpw = tmp;\n}\n\n\n// EXPORTS //\n\nmodule.exports = dsnansumpw;\n\n// exports: { \"ndarray\": \"dsnansumpw.ndarray\" }\n"],
5
- "mappings": "uGAAA,IAAAA,EAAAC,EAAA,SAAAC,EAAAC,EAAA,cAsBA,IAAIC,EAAS,QAAS,kCAAmC,EACrDC,EAAQ,QAAS,iCAAkC,EAMnDC,EAAY,IAgChB,SAASC,EAAYC,EAAGC,EAAGC,EAAQC,EAAS,CAC3C,IAAIC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACA,EACAC,EACAC,EAEJ,GAAKf,GAAK,EACT,MAAO,GAER,GAAKA,IAAM,GAAKE,IAAW,EAC1B,OAAKN,EAAQK,EAAGE,CAAO,CAAE,EACjB,EAEDF,EAAGE,CAAO,EAGlB,GADAC,EAAKD,EACAH,EAAI,EAAI,CAGZ,IADA,EAAI,EACEe,EAAI,EAAGA,EAAIf,EAAGe,IACdnB,EAAQK,EAAGG,CAAG,CAAE,IAAM,KAC1B,GAAKH,EAAGG,CAAG,GAEZA,GAAMF,EAEP,OAAO,CACR,CACA,GAAKF,GAAKF,EAAY,CAoBrB,IAlBAO,EAAOT,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EACzCA,GAAMF,EACNI,EAAOV,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EACzCA,GAAMF,EACNK,EAAOX,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EACzCA,GAAMF,EACNM,EAAOZ,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EACzCA,GAAMF,EACNO,EAAOb,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EACzCA,GAAMF,EACNQ,EAAOd,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EACzCA,GAAMF,EACNS,EAAOf,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EACzCA,GAAMF,EACNU,EAAOhB,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EACzCA,GAAMF,EAENW,EAAIb,EAAI,EACFe,EAAI,EAAGA,EAAIf,EAAEa,EAAGE,GAAK,EAC1BV,GAAQT,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EAC1CA,GAAMF,EACNI,GAAQV,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EAC1CA,GAAMF,EACNK,GAAQX,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EAC1CA,GAAMF,EACNM,GAAQZ,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EAC1CA,GAAMF,EACNO,GAAQb,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EAC1CA,GAAMF,EACNQ,GAAQd,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EAC1CA,GAAMF,EACNS,GAAQf,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EAC1CA,GAAMF,EACNU,GAAQhB,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EAC1CA,GAAMF,EAMP,IAHA,EAAMG,EAAGC,GAAOC,EAAGC,IAASC,EAAGC,GAAOC,EAAGC,IAGnCG,EAAGA,EAAIf,EAAGe,IACVnB,EAAQK,EAAGG,CAAG,CAAE,IAAM,KAC1B,GAAKH,EAAGG,CAAG,GAEZA,GAAMF,EAEP,OAAO,CACR,CAEA,OAAAY,EAAIjB,EAAOG,EAAE,CAAE,EACfc,GAAKA,EAAI,EACFf,EAAYe,EAAGb,EAAGC,EAAQE,CAAG,EAAIL,EAAYC,EAAEc,EAAGb,EAAGC,EAAQE,EAAIU,EAAEZ,CAAQ,CACnF,CAKAP,EAAO,QAAUI,IC5JjB,IAAAiB,EAAAC,EAAA,SAAAC,EAAAC,EAAA,cAsBA,IAAIC,EAAS,QAAS,kCAAmC,EACrDC,EAAM,IA8BV,SAASC,EAAYC,EAAGC,EAAGC,EAAS,CACnC,IAAIC,EACAC,EACA,EAEJ,GAAKJ,GAAK,EACT,MAAO,GAER,GAAKA,IAAM,GAAKE,IAAW,EAC1B,OAAKL,EAAQI,EAAG,CAAE,CAAE,EACZ,EAEDA,EAAG,CAAE,EAOb,GALKC,EAAS,EACbC,GAAM,EAAEH,GAAKE,EAEbC,EAAK,EAEDH,EAAI,EAAI,CAGZ,IADAI,EAAI,EACE,EAAI,EAAG,EAAIJ,EAAG,IACdH,EAAQI,EAAGE,CAAG,CAAE,IAAM,KAC1BC,GAAKH,EAAGE,CAAG,GAEZA,GAAMD,EAEP,OAAOE,CACR,CACA,OAAON,EAAKE,EAAGC,EAAGC,EAAQC,CAAG,CAC9B,CAKAP,EAAO,QAAUG,ICzFjB,IAAAM,EAAAC,EAAA,SAAAC,EAAAC,EAAA,cAsBA,IAAIC,EAAc,QAAS,uDAAwD,EAC/EC,EAAa,IACbC,EAAU,IAKdF,EAAaC,EAAY,UAAWC,CAAQ,EAK5CH,EAAO,QAAUE,ICejB,IAAIE,EAAO,QAAS,MAAO,EAAE,KACzBC,EAAa,QAAS,2BAA4B,EAClDC,EAAU,QAAS,yBAA0B,EAC7CC,EAAO,IAKPC,EACAC,EAAMJ,EAAYD,EAAM,UAAW,aAAc,CAAE,EAClDE,EAASG,CAAI,EACjBD,EAAaD,EAEbC,EAAaC,EAMd,OAAO,QAAUD",
6
- "names": ["require_ndarray", "__commonJSMin", "exports", "module", "isnanf", "floor", "BLOCKSIZE", "dsnansumpw", "N", "x", "stride", "offset", "ix", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "M", "n", "i", "require_dsnansumpw", "__commonJSMin", "exports", "module", "isnanf", "sum", "dsnansumpw", "N", "x", "stride", "ix", "s", "require_main", "__commonJSMin", "exports", "module", "setReadOnly", "dsnansumpw", "ndarray", "join", "tryRequire", "isError", "main", "dsnansumpw", "tmp"]
4
+ "sourcesContent": ["/**\n* @license Apache-2.0\n*\n* Copyright (c) 2020 The Stdlib Authors.\n*\n* Licensed under the Apache License, Version 2.0 (the \"License\");\n* you may not use this file except in compliance with the License.\n* You may obtain a copy of the License at\n*\n* http://www.apache.org/licenses/LICENSE-2.0\n*\n* Unless required by applicable law or agreed to in writing, software\n* distributed under the License is distributed on an \"AS IS\" BASIS,\n* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n* See the License for the specific language governing permissions and\n* limitations under the License.\n*/\n\n'use strict';\n\n// MODULES //\n\nvar isnanf = require( '@stdlib/math-base-assert-is-nanf' );\nvar floor = require( '@stdlib/math-base-special-floor' );\n\n\n// VARIABLES //\n\n// Blocksize for pairwise summation (NOTE: decreasing the blocksize decreases rounding error as more pairs are summed, but also decreases performance. Because the inner loop is unrolled eight times, the blocksize is effectively `16`.):\nvar BLOCKSIZE = 128;\n\n\n// MAIN //\n\n/**\n* Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using pairwise summation with extended accumulation, and returning an extended precision result.\n*\n* ## Method\n*\n* - This implementation uses pairwise summation, which accrues rounding error `O(log2 N)` instead of `O(N)`. The recursion depth is also `O(log2 N)`.\n*\n* ## References\n*\n* - Higham, Nicholas J. 1993. \"The Accuracy of Floating Point Summation.\" _SIAM Journal on Scientific Computing_ 14 (4): 783\u201399. doi:[10.1137/0914050](https://doi.org/10.1137/0914050).\n*\n* @param {PositiveInteger} N - number of indexed elements\n* @param {Float32Array} x - input array\n* @param {integer} strideX - stride length\n* @param {NonNegativeInteger} offsetX - starting index\n* @returns {number} sum\n*\n* @example\n* var Float32Array = require( '@stdlib/array-float32' );\n*\n* var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );\n*\n* var v = dsnansumpw( 5, x, 2, 1 );\n* // returns 5.0\n*/\nfunction dsnansumpw( N, x, strideX, offsetX ) {\n\tvar ix;\n\tvar s0;\n\tvar s1;\n\tvar s2;\n\tvar s3;\n\tvar s4;\n\tvar s5;\n\tvar s6;\n\tvar s7;\n\tvar M;\n\tvar s;\n\tvar n;\n\tvar i;\n\n\tif ( N <= 0 ) {\n\t\treturn 0.0;\n\t}\n\tix = offsetX;\n\tif ( strideX === 0 ) {\n\t\tif ( isnanf( x[ ix ] ) ) {\n\t\t\treturn 0.0;\n\t\t}\n\t\treturn N * x[ ix ];\n\t}\n\tif ( N < 8 ) {\n\t\t// Use simple summation...\n\t\ts = 0.0;\n\t\tfor ( i = 0; i < N; i++ ) {\n\t\t\tif ( isnanf( x[ ix ] ) === false ) {\n\t\t\t\ts += x[ ix ];\n\t\t\t}\n\t\t\tix += strideX;\n\t\t}\n\t\treturn s;\n\t}\n\tif ( N <= BLOCKSIZE ) {\n\t\t// Sum a block with 8 accumulators (by loop unrolling, we lower the effective blocksize to 16)...\n\t\ts0 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\tix += strideX;\n\t\ts1 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\tix += strideX;\n\t\ts2 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\tix += strideX;\n\t\ts3 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\tix += strideX;\n\t\ts4 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\tix += strideX;\n\t\ts5 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\tix += strideX;\n\t\ts6 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\tix += strideX;\n\t\ts7 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\tix += strideX;\n\n\t\tM = N % 8;\n\t\tfor ( i = 8; i < N-M; i += 8 ) {\n\t\t\ts0 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\t\tix += strideX;\n\t\t\ts1 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\t\tix += strideX;\n\t\t\ts2 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\t\tix += strideX;\n\t\t\ts3 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\t\tix += strideX;\n\t\t\ts4 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\t\tix += strideX;\n\t\t\ts5 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\t\tix += strideX;\n\t\t\ts6 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\t\tix += strideX;\n\t\t\ts7 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];\n\t\t\tix += strideX;\n\t\t}\n\t\t// Pairwise sum the accumulators:\n\t\ts = ( (s0+s1) + (s2+s3)) + ((s4+s5) + (s6+s7) );\n\n\t\t// Clean-up loop...\n\t\tfor ( i; i < N; i++ ) {\n\t\t\tif ( isnanf( x[ ix ] ) === false ) {\n\t\t\t\ts += x[ ix ];\n\t\t\t}\n\t\t\tix += strideX;\n\t\t}\n\t\treturn s;\n\t}\n\t// Recurse by dividing by two, but avoiding non-multiples of unroll factor...\n\tn = floor( N/2 );\n\tn -= n % 8;\n\treturn dsnansumpw( n, x, strideX, ix ) + dsnansumpw( N-n, x, strideX, ix+(n*strideX) ); // eslint-disable-line max-len\n}\n\n\n// EXPORTS //\n\nmodule.exports = dsnansumpw;\n", "/**\n* @license Apache-2.0\n*\n* Copyright (c) 2020 The Stdlib Authors.\n*\n* Licensed under the Apache License, Version 2.0 (the \"License\");\n* you may not use this file except in compliance with the License.\n* You may obtain a copy of the License at\n*\n* http://www.apache.org/licenses/LICENSE-2.0\n*\n* Unless required by applicable law or agreed to in writing, software\n* distributed under the License is distributed on an \"AS IS\" BASIS,\n* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n* See the License for the specific language governing permissions and\n* limitations under the License.\n*/\n\n'use strict';\n\n// MODULES //\n\nvar stride2offset = require( '@stdlib/strided-base-stride2offset' );\nvar ndarray = require( './ndarray.js' );\n\n\n// MAIN //\n\n/**\n* Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using pairwise summation with extended accumulation, and returning an extended precision result.\n*\n* ## Method\n*\n* - This implementation uses pairwise summation, which accrues rounding error `O(log2 N)` instead of `O(N)`. The recursion depth is also `O(log2 N)`.\n*\n* ## References\n*\n* - Higham, Nicholas J. 1993. \"The Accuracy of Floating Point Summation.\" _SIAM Journal on Scientific Computing_ 14 (4): 783\u201399. doi:[10.1137/0914050](https://doi.org/10.1137/0914050).\n*\n* @param {PositiveInteger} N - number of indexed elements\n* @param {Float32Array} x - input array\n* @param {integer} strideX - stride length\n* @returns {number} sum\n*\n* @example\n* var Float32Array = require( '@stdlib/array-float32' );\n*\n* var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );\n*\n* var v = dsnansumpw( x.length, x, 1 );\n* // returns 1.0\n*/\nfunction dsnansumpw( N, x, strideX ) {\n\treturn ndarray( N, x, strideX, stride2offset( N, strideX ) );\n}\n\n\n// EXPORTS //\n\nmodule.exports = dsnansumpw;\n", "/**\n* @license Apache-2.0\n*\n* Copyright (c) 2020 The Stdlib Authors.\n*\n* Licensed under the Apache License, Version 2.0 (the \"License\");\n* you may not use this file except in compliance with the License.\n* You may obtain a copy of the License at\n*\n* http://www.apache.org/licenses/LICENSE-2.0\n*\n* Unless required by applicable law or agreed to in writing, software\n* distributed under the License is distributed on an \"AS IS\" BASIS,\n* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n* See the License for the specific language governing permissions and\n* limitations under the License.\n*/\n\n'use strict';\n\n// MODULES //\n\nvar setReadOnly = require( '@stdlib/utils-define-nonenumerable-read-only-property' );\nvar dsnansumpw = require( './dsnansumpw.js' );\nvar ndarray = require( './ndarray.js' );\n\n\n// MAIN //\n\nsetReadOnly( dsnansumpw, 'ndarray', ndarray );\n\n\n// EXPORTS //\n\nmodule.exports = dsnansumpw;\n", "/**\n* @license Apache-2.0\n*\n* Copyright (c) 2020 The Stdlib Authors.\n*\n* Licensed under the Apache License, Version 2.0 (the \"License\");\n* you may not use this file except in compliance with the License.\n* You may obtain a copy of the License at\n*\n* http://www.apache.org/licenses/LICENSE-2.0\n*\n* Unless required by applicable law or agreed to in writing, software\n* distributed under the License is distributed on an \"AS IS\" BASIS,\n* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n* See the License for the specific language governing permissions and\n* limitations under the License.\n*/\n\n'use strict';\n\n/**\n* Compute the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using pairwise summation with extended accumulation, and returning an extended precision result.\n*\n* @module @stdlib/blas-ext-base-dsnansumpw\n*\n* @example\n* var Float32Array = require( '@stdlib/array-float32' );\n* var dsnansumpw = require( '@stdlib/blas-ext-base-dsnansumpw' );\n*\n* var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );\n*\n* var v = dsnansumpw( x.length, x, 1 );\n* // returns 1.0\n*\n* @example\n* var Float32Array = require( '@stdlib/array-float32' );\n* var dsnansumpw = require( '@stdlib/blas-ext-base-dsnansumpw' );\n*\n* var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );\n*\n* var v = dsnansumpw.ndarray( 5, x, 2, 1 );\n* // returns 5.0\n*/\n\n// MODULES //\n\nvar join = require( 'path' ).join;\nvar tryRequire = require( '@stdlib/utils-try-require' );\nvar isError = require( '@stdlib/assert-is-error' );\nvar main = require( './main.js' );\n\n\n// MAIN //\n\nvar dsnansumpw;\nvar tmp = tryRequire( join( __dirname, './native.js' ) );\nif ( isError( tmp ) ) {\n\tdsnansumpw = main;\n} else {\n\tdsnansumpw = tmp;\n}\n\n\n// EXPORTS //\n\nmodule.exports = dsnansumpw;\n\n// exports: { \"ndarray\": \"dsnansumpw.ndarray\" }\n"],
5
+ "mappings": "uGAAA,IAAAA,EAAAC,EAAA,SAAAC,EAAAC,EAAA,cAsBA,IAAIC,EAAS,QAAS,kCAAmC,EACrDC,EAAQ,QAAS,iCAAkC,EAMnDC,EAAY,IA8BhB,SAASC,EAAYC,EAAGC,EAAGC,EAASC,EAAU,CAC7C,IAAIC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EACAC,EAEJ,GAAKhB,GAAK,EACT,MAAO,GAGR,GADAI,EAAKD,EACAD,IAAY,EAChB,OAAKN,EAAQK,EAAGG,CAAG,CAAE,EACb,EAEDJ,EAAIC,EAAGG,CAAG,EAElB,GAAKJ,EAAI,EAAI,CAGZ,IADAc,EAAI,EACEE,EAAI,EAAGA,EAAIhB,EAAGgB,IACdpB,EAAQK,EAAGG,CAAG,CAAE,IAAM,KAC1BU,GAAKb,EAAGG,CAAG,GAEZA,GAAMF,EAEP,OAAOY,CACR,CACA,GAAKd,GAAKF,EAAY,CAoBrB,IAlBAO,EAAOT,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EACzCA,GAAMF,EACNI,EAAOV,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EACzCA,GAAMF,EACNK,EAAOX,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EACzCA,GAAMF,EACNM,EAAOZ,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EACzCA,GAAMF,EACNO,EAAOb,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EACzCA,GAAMF,EACNQ,EAAOd,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EACzCA,GAAMF,EACNS,EAAOf,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EACzCA,GAAMF,EACNU,EAAOhB,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EACzCA,GAAMF,EAENW,EAAIb,EAAI,EACFgB,EAAI,EAAGA,EAAIhB,EAAEa,EAAGG,GAAK,EAC1BX,GAAQT,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EAC1CA,GAAMF,EACNI,GAAQV,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EAC1CA,GAAMF,EACNK,GAAQX,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EAC1CA,GAAMF,EACNM,GAAQZ,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EAC1CA,GAAMF,EACNO,GAAQb,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EAC1CA,GAAMF,EACNQ,GAAQd,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EAC1CA,GAAMF,EACNS,GAAQf,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EAC1CA,GAAMF,EACNU,GAAQhB,EAAQK,EAAGG,CAAG,CAAE,EAAM,EAAMH,EAAGG,CAAG,EAC1CA,GAAMF,EAMP,IAHAY,EAAOT,EAAGC,GAAOC,EAAGC,IAASC,EAAGC,GAAOC,EAAGC,IAGpCI,EAAGA,EAAIhB,EAAGgB,IACVpB,EAAQK,EAAGG,CAAG,CAAE,IAAM,KAC1BU,GAAKb,EAAGG,CAAG,GAEZA,GAAMF,EAEP,OAAOY,CACR,CAEA,OAAAC,EAAIlB,EAAOG,EAAE,CAAE,EACfe,GAAKA,EAAI,EACFhB,EAAYgB,EAAGd,EAAGC,EAASE,CAAG,EAAIL,EAAYC,EAAEe,EAAGd,EAAGC,EAASE,EAAIW,EAAEb,CAAS,CACtF,CAKAP,EAAO,QAAUI,IC1JjB,IAAAkB,EAAAC,EAAA,SAAAC,EAAAC,EAAA,cAsBA,IAAIC,EAAgB,QAAS,oCAAqC,EAC9DC,EAAU,IA6Bd,SAASC,EAAYC,EAAGC,EAAGC,EAAU,CACpC,OAAOJ,EAASE,EAAGC,EAAGC,EAASL,EAAeG,EAAGE,CAAQ,CAAE,CAC5D,CAKAN,EAAO,QAAUG,IC3DjB,IAAAI,EAAAC,EAAA,SAAAC,EAAAC,EAAA,cAsBA,IAAIC,EAAc,QAAS,uDAAwD,EAC/EC,EAAa,IACbC,EAAU,IAKdF,EAAaC,EAAY,UAAWC,CAAQ,EAK5CH,EAAO,QAAUE,ICYjB,IAAIE,EAAO,QAAS,MAAO,EAAE,KACzBC,EAAa,QAAS,2BAA4B,EAClDC,EAAU,QAAS,yBAA0B,EAC7CC,EAAO,IAKPC,EACAC,EAAMJ,EAAYD,EAAM,UAAW,aAAc,CAAE,EAClDE,EAASG,CAAI,EACjBD,EAAaD,EAEbC,EAAaC,EAMd,OAAO,QAAUD",
6
+ "names": ["require_ndarray", "__commonJSMin", "exports", "module", "isnanf", "floor", "BLOCKSIZE", "dsnansumpw", "N", "x", "strideX", "offsetX", "ix", "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7", "M", "s", "n", "i", "require_dsnansumpw", "__commonJSMin", "exports", "module", "stride2offset", "ndarray", "dsnansumpw", "N", "x", "strideX", "require_main", "__commonJSMin", "exports", "module", "setReadOnly", "dsnansumpw", "ndarray", "join", "tryRequire", "isError", "main", "dsnansumpw", "tmp"]
7
7
  }
@@ -27,7 +27,7 @@ interface Routine {
27
27
  *
28
28
  * @param N - number of indexed elements
29
29
  * @param x - input array
30
- * @param stride - stride length
30
+ * @param strideX - stride length
31
31
  * @returns sum
32
32
  *
33
33
  * @example
@@ -38,15 +38,15 @@ interface Routine {
38
38
  * var v = dsnansumpw( x.length, x, 1 );
39
39
  * // returns 1.0
40
40
  */
41
- ( N: number, x: Float32Array, stride: number ): number;
41
+ ( N: number, x: Float32Array, strideX: number ): number;
42
42
 
43
43
  /**
44
- * Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values and using extended accumulation and alternative indexing semantics.
44
+ * Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using pairwise summation with extended accumulation and alternative indexing semantics, and returning an extended precision result.
45
45
  *
46
46
  * @param N - number of indexed elements
47
47
  * @param x - input array
48
- * @param stride - stride length
49
- * @param offset - starting index
48
+ * @param strideX - stride length
49
+ * @param offsetX - starting index
50
50
  * @returns sum
51
51
  *
52
52
  * @example
@@ -57,7 +57,7 @@ interface Routine {
57
57
  * var v = dsnansumpw.ndarray( x.length, x, 1, 0 );
58
58
  * // returns 1.0
59
59
  */
60
- ndarray( N: number, x: Float32Array, stride: number, offset: number ): number;
60
+ ndarray( N: number, x: Float32Array, strideX: number, offsetX: number ): number;
61
61
  }
62
62
 
63
63
  /**
@@ -65,7 +65,7 @@ interface Routine {
65
65
  *
66
66
  * @param N - number of indexed elements
67
67
  * @param x - input array
68
- * @param stride - stride length
68
+ * @param strideX - stride length
69
69
  * @returns sum
70
70
  *
71
71
  * @example
@@ -16,13 +16,10 @@
16
16
  * limitations under the License.
17
17
  */
18
18
 
19
- /**
20
- * Header file containing function declarations.
21
- */
22
19
  #ifndef STDLIB_BLAS_EXT_BASE_DSNANSUMPW_H
23
20
  #define STDLIB_BLAS_EXT_BASE_DSNANSUMPW_H
24
21
 
25
- #include <stdint.h>
22
+ #include "stdlib/blas/base/shared.h"
26
23
 
27
24
  /*
28
25
  * If C++, prevent name mangling so that the compiler emits a binary file having undecorated names, thus mirroring the behavior of a C compiler.
@@ -32,9 +29,14 @@ extern "C" {
32
29
  #endif
33
30
 
34
31
  /**
35
- * Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using pairwise summation with extended summation, and returning an extended precision result.
32
+ * Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using pairwise summation with extended accumulation, and returning an extended precision result.
33
+ */
34
+ double API_SUFFIX(stdlib_strided_dsnansumpw)( const CBLAS_INT N, const float *X, const CBLAS_INT strideX );
35
+
36
+ /**
37
+ * Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using pairwise summation with extended accumulation and alternative indexing semantics, and returning an extended precision result.
36
38
  */
37
- double stdlib_strided_dsnansumpw( const int64_t N, const float *X, const int64_t stride );
39
+ double API_SUFFIX(stdlib_strided_dsnansumpw_ndarray)( const CBLAS_INT N, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX );
38
40
 
39
41
  #ifdef __cplusplus
40
42
  }
package/lib/dsnansumpw.js CHANGED
@@ -20,8 +20,8 @@
20
20
 
21
21
  // MODULES //
22
22
 
23
- var isnanf = require( '@stdlib/math-base-assert-is-nanf' );
24
- var sum = require( './ndarray.js' );
23
+ var stride2offset = require( '@stdlib/strided-base-stride2offset' );
24
+ var ndarray = require( './ndarray.js' );
25
25
 
26
26
 
27
27
  // MAIN //
@@ -39,49 +39,19 @@ var sum = require( './ndarray.js' );
39
39
  *
40
40
  * @param {PositiveInteger} N - number of indexed elements
41
41
  * @param {Float32Array} x - input array
42
- * @param {integer} stride - stride length
42
+ * @param {integer} strideX - stride length
43
43
  * @returns {number} sum
44
44
  *
45
45
  * @example
46
46
  * var Float32Array = require( '@stdlib/array-float32' );
47
47
  *
48
48
  * var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
49
- * var N = x.length;
50
49
  *
51
- * var v = dsnansumpw( N, x, 1 );
50
+ * var v = dsnansumpw( x.length, x, 1 );
52
51
  * // returns 1.0
53
52
  */
54
- function dsnansumpw( N, x, stride ) {
55
- var ix;
56
- var s;
57
- var i;
58
-
59
- if ( N <= 0 ) {
60
- return 0.0;
61
- }
62
- if ( N === 1 || stride === 0 ) {
63
- if ( isnanf( x[ 0 ] ) ) {
64
- return 0.0;
65
- }
66
- return x[ 0 ];
67
- }
68
- if ( stride < 0 ) {
69
- ix = (1-N) * stride;
70
- } else {
71
- ix = 0;
72
- }
73
- if ( N < 8 ) {
74
- // Use simple summation...
75
- s = 0.0;
76
- for ( i = 0; i < N; i++ ) {
77
- if ( isnanf( x[ ix ] ) === false ) {
78
- s += x[ ix ];
79
- }
80
- ix += stride;
81
- }
82
- return s;
83
- }
84
- return sum( N, x, stride, ix );
53
+ function dsnansumpw( N, x, strideX ) {
54
+ return ndarray( N, x, strideX, stride2offset( N, strideX ) );
85
55
  }
86
56
 
87
57
 
@@ -30,20 +30,19 @@ var addon = require( './../src/addon.node' );
30
30
  *
31
31
  * @param {PositiveInteger} N - number of indexed elements
32
32
  * @param {Float32Array} x - input array
33
- * @param {integer} stride - stride length
33
+ * @param {integer} strideX - stride length
34
34
  * @returns {number} sum
35
35
  *
36
36
  * @example
37
37
  * var Float32Array = require( '@stdlib/array-float32' );
38
38
  *
39
39
  * var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
40
- * var N = x.length;
41
40
  *
42
- * var v = dsnansumpw( N, x, 1 );
41
+ * var v = dsnansumpw( x.length, x, 1 );
43
42
  * // returns 1.0
44
43
  */
45
- function dsnansumpw( N, x, stride ) {
46
- return addon( N, x, stride );
44
+ function dsnansumpw( N, x, strideX ) {
45
+ return addon( N, x, strideX );
47
46
  }
48
47
 
49
48
 
package/lib/index.js CHANGED
@@ -28,20 +28,17 @@
28
28
  * var dsnansumpw = require( '@stdlib/blas-ext-base-dsnansumpw' );
29
29
  *
30
30
  * var x = new Float32Array( [ 1.0, -2.0, NaN, 2.0 ] );
31
- * var N = x.length;
32
31
  *
33
- * var v = dsnansumpw( N, x, 1 );
32
+ * var v = dsnansumpw( x.length, x, 1 );
34
33
  * // returns 1.0
35
34
  *
36
35
  * @example
37
36
  * var Float32Array = require( '@stdlib/array-float32' );
38
- * var floor = require( '@stdlib/math-base-special-floor' );
39
37
  * var dsnansumpw = require( '@stdlib/blas-ext-base-dsnansumpw' );
40
38
  *
41
39
  * var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
42
- * var N = floor( x.length / 2 );
43
40
  *
44
- * var v = dsnansumpw.ndarray( N, x, 2, 1 );
41
+ * var v = dsnansumpw.ndarray( 5, x, 2, 1 );
45
42
  * // returns 5.0
46
43
  */
47
44
 
package/lib/ndarray.js CHANGED
@@ -45,21 +45,19 @@ var BLOCKSIZE = 128;
45
45
  *
46
46
  * @param {PositiveInteger} N - number of indexed elements
47
47
  * @param {Float32Array} x - input array
48
- * @param {integer} stride - stride length
49
- * @param {NonNegativeInteger} offset - starting index
48
+ * @param {integer} strideX - stride length
49
+ * @param {NonNegativeInteger} offsetX - starting index
50
50
  * @returns {number} sum
51
51
  *
52
52
  * @example
53
53
  * var Float32Array = require( '@stdlib/array-float32' );
54
- * var floor = require( '@stdlib/math-base-special-floor' );
55
54
  *
56
55
  * var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
57
- * var N = floor( x.length / 2 );
58
56
  *
59
- * var v = dsnansumpw( N, x, 2, 1 );
57
+ * var v = dsnansumpw( 5, x, 2, 1 );
60
58
  * // returns 5.0
61
59
  */
62
- function dsnansumpw( N, x, stride, offset ) {
60
+ function dsnansumpw( N, x, strideX, offsetX ) {
63
61
  var ix;
64
62
  var s0;
65
63
  var s1;
@@ -77,13 +75,13 @@ function dsnansumpw( N, x, stride, offset ) {
77
75
  if ( N <= 0 ) {
78
76
  return 0.0;
79
77
  }
80
- if ( N === 1 || stride === 0 ) {
81
- if ( isnanf( x[ offset ] ) ) {
78
+ ix = offsetX;
79
+ if ( strideX === 0 ) {
80
+ if ( isnanf( x[ ix ] ) ) {
82
81
  return 0.0;
83
82
  }
84
- return x[ offset ];
83
+ return N * x[ ix ];
85
84
  }
86
- ix = offset;
87
85
  if ( N < 8 ) {
88
86
  // Use simple summation...
89
87
  s = 0.0;
@@ -91,64 +89,64 @@ function dsnansumpw( N, x, stride, offset ) {
91
89
  if ( isnanf( x[ ix ] ) === false ) {
92
90
  s += x[ ix ];
93
91
  }
94
- ix += stride;
92
+ ix += strideX;
95
93
  }
96
94
  return s;
97
95
  }
98
96
  if ( N <= BLOCKSIZE ) {
99
97
  // Sum a block with 8 accumulators (by loop unrolling, we lower the effective blocksize to 16)...
100
98
  s0 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
101
- ix += stride;
99
+ ix += strideX;
102
100
  s1 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
103
- ix += stride;
101
+ ix += strideX;
104
102
  s2 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
105
- ix += stride;
103
+ ix += strideX;
106
104
  s3 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
107
- ix += stride;
105
+ ix += strideX;
108
106
  s4 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
109
- ix += stride;
107
+ ix += strideX;
110
108
  s5 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
111
- ix += stride;
109
+ ix += strideX;
112
110
  s6 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
113
- ix += stride;
111
+ ix += strideX;
114
112
  s7 = ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
115
- ix += stride;
113
+ ix += strideX;
116
114
 
117
115
  M = N % 8;
118
116
  for ( i = 8; i < N-M; i += 8 ) {
119
117
  s0 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
120
- ix += stride;
118
+ ix += strideX;
121
119
  s1 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
122
- ix += stride;
120
+ ix += strideX;
123
121
  s2 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
124
- ix += stride;
122
+ ix += strideX;
125
123
  s3 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
126
- ix += stride;
124
+ ix += strideX;
127
125
  s4 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
128
- ix += stride;
126
+ ix += strideX;
129
127
  s5 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
130
- ix += stride;
128
+ ix += strideX;
131
129
  s6 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
132
- ix += stride;
130
+ ix += strideX;
133
131
  s7 += ( isnanf( x[ ix ] ) ) ? 0.0 : x[ ix ];
134
- ix += stride;
132
+ ix += strideX;
135
133
  }
136
134
  // Pairwise sum the accumulators:
137
- s = ((s0+s1) + (s2+s3)) + ((s4+s5) + (s6+s7));
135
+ s = ( (s0+s1) + (s2+s3)) + ((s4+s5) + (s6+s7) );
138
136
 
139
137
  // Clean-up loop...
140
138
  for ( i; i < N; i++ ) {
141
139
  if ( isnanf( x[ ix ] ) === false ) {
142
140
  s += x[ ix ];
143
141
  }
144
- ix += stride;
142
+ ix += strideX;
145
143
  }
146
144
  return s;
147
145
  }
148
146
  // Recurse by dividing by two, but avoiding non-multiples of unroll factor...
149
147
  n = floor( N/2 );
150
148
  n -= n % 8;
151
- return dsnansumpw( n, x, stride, ix ) + dsnansumpw( N-n, x, stride, ix+(n*stride) ); // eslint-disable-line max-len
149
+ return dsnansumpw( n, x, strideX, ix ) + dsnansumpw( N-n, x, strideX, ix+(n*strideX) ); // eslint-disable-line max-len
152
150
  }
153
151
 
154
152
 
@@ -20,8 +20,7 @@
20
20
 
21
21
  // MODULES //
22
22
 
23
- var Float32Array = require( '@stdlib/array-float32' );
24
- var addon = require( './dsnansumpw.native.js' );
23
+ var addon = require( './../src/addon.node' );
25
24
 
26
25
 
27
26
  // MAIN //
@@ -31,8 +30,8 @@ var addon = require( './dsnansumpw.native.js' );
31
30
  *
32
31
  * @param {PositiveInteger} N - number of indexed elements
33
32
  * @param {Float32Array} x - input array
34
- * @param {integer} stride - stride length
35
- * @param {NonNegativeInteger} offset - starting index
33
+ * @param {integer} strideX - stride length
34
+ * @param {NonNegativeInteger} offsetX - starting index
36
35
  * @returns {number} sum
37
36
  *
38
37
  * @example
@@ -40,18 +39,12 @@ var addon = require( './dsnansumpw.native.js' );
40
39
  * var floor = require( '@stdlib/math-base-special-floor' );
41
40
  *
42
41
  * var x = new Float32Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0, NaN, NaN ] );
43
- * var N = floor( x.length / 2 );
44
42
  *
45
- * var v = dsnansumpw( N, x, 2, 1 );
43
+ * var v = dsnansumpw( 5, x, 2, 1 );
46
44
  * // returns 5.0
47
45
  */
48
- function dsnansumpw( N, x, stride, offset ) {
49
- var view;
50
- if ( stride < 0 ) {
51
- offset += (N-1) * stride;
52
- }
53
- view = new Float32Array( x.buffer, x.byteOffset+(x.BYTES_PER_ELEMENT*offset), x.length-offset ); // eslint-disable-line max-len
54
- return addon( N, view, stride );
46
+ function dsnansumpw( N, x, strideX, offsetX ) {
47
+ return addon.ndarray( N, x, strideX, offsetX );
55
48
  }
56
49
 
57
50
 
package/manifest.json CHANGED
@@ -1,42 +1,82 @@
1
1
  {
2
- "options": {},
3
- "fields": [
4
- {
5
- "field": "src",
6
- "resolve": true,
7
- "relative": true
8
- },
9
- {
10
- "field": "include",
11
- "resolve": true,
12
- "relative": true
13
- },
14
- {
15
- "field": "libraries",
16
- "resolve": false,
17
- "relative": false
18
- },
19
- {
20
- "field": "libpath",
21
- "resolve": true,
22
- "relative": false
23
- }
24
- ],
25
- "confs": [
26
- {
27
- "src": [
28
- "./src/dsnansumpw.c"
29
- ],
30
- "include": [
31
- "./include"
32
- ],
33
- "libraries": [
34
- "-lm"
35
- ],
36
- "libpath": [],
37
- "dependencies": [
38
- "@stdlib/math-base-assert-is-nanf"
39
- ]
40
- }
41
- ]
2
+ "options": {
3
+ "task": "build"
4
+ },
5
+ "fields": [
6
+ {
7
+ "field": "src",
8
+ "resolve": true,
9
+ "relative": true
10
+ },
11
+ {
12
+ "field": "include",
13
+ "resolve": true,
14
+ "relative": true
15
+ },
16
+ {
17
+ "field": "libraries",
18
+ "resolve": false,
19
+ "relative": false
20
+ },
21
+ {
22
+ "field": "libpath",
23
+ "resolve": true,
24
+ "relative": false
25
+ }
26
+ ],
27
+ "confs": [
28
+ {
29
+ "task": "build",
30
+ "src": [
31
+ "./src/main.c"
32
+ ],
33
+ "include": [
34
+ "./include"
35
+ ],
36
+ "libraries": [],
37
+ "libpath": [],
38
+ "dependencies": [
39
+ "@stdlib/napi-export",
40
+ "@stdlib/napi-argv",
41
+ "@stdlib/napi-argv-int64",
42
+ "@stdlib/napi-argv-strided-float32array",
43
+ "@stdlib/math-base-assert-is-nanf",
44
+ "@stdlib/napi-create-double",
45
+ "@stdlib/strided-base-stride2offset",
46
+ "@stdlib/blas-base-shared"
47
+ ]
48
+ },
49
+ {
50
+ "task": "benchmark",
51
+ "src": [
52
+ "./src/main.c"
53
+ ],
54
+ "include": [
55
+ "./include"
56
+ ],
57
+ "libraries": [],
58
+ "libpath": [],
59
+ "dependencies": [
60
+ "@stdlib/math-base-assert-is-nanf",
61
+ "@stdlib/strided-base-stride2offset",
62
+ "@stdlib/blas-base-shared"
63
+ ]
64
+ },
65
+ {
66
+ "task": "examples",
67
+ "src": [
68
+ "./src/main.c"
69
+ ],
70
+ "include": [
71
+ "./include"
72
+ ],
73
+ "libraries": [],
74
+ "libpath": [],
75
+ "dependencies": [
76
+ "@stdlib/math-base-assert-is-nanf",
77
+ "@stdlib/strided-base-stride2offset",
78
+ "@stdlib/blas-base-shared"
79
+ ]
80
+ }
81
+ ]
42
82
  }
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@stdlib/blas-ext-base-dsnansumpw",
3
- "version": "0.2.2",
3
+ "version": "0.3.0",
4
4
  "description": "Calculate the sum of single-precision floating-point strided array elements, ignoring NaN values, using pairwise summation with extended accumulation, and returning an extended precision result.",
5
5
  "license": "Apache-2.0",
6
6
  "author": {
@@ -35,10 +35,17 @@
35
35
  },
36
36
  "dependencies": {
37
37
  "@stdlib/assert-is-error": "^0.2.2",
38
+ "@stdlib/blas-base-shared": "^0.1.0",
38
39
  "@stdlib/math-base-assert-is-nanf": "^0.2.2",
39
40
  "@stdlib/math-base-special-floor": "^0.2.3",
41
+ "@stdlib/napi-argv": "^0.2.2",
42
+ "@stdlib/napi-argv-int64": "^0.2.2",
43
+ "@stdlib/napi-argv-strided-float32array": "^0.2.2",
44
+ "@stdlib/napi-create-double": "^0.0.2",
45
+ "@stdlib/napi-export": "^0.3.0",
46
+ "@stdlib/strided-base-stride2offset": "^0.1.0",
40
47
  "@stdlib/utils-define-nonenumerable-read-only-property": "^0.2.2",
41
- "@stdlib/utils-library-manifest": "^0.2.2",
48
+ "@stdlib/utils-library-manifest": "^0.2.3",
42
49
  "@stdlib/utils-try-require": "^0.2.2"
43
50
  },
44
51
  "devDependencies": {},
@@ -80,7 +87,6 @@
80
87
  "float",
81
88
  "float32array"
82
89
  ],
83
- "__stdlib__": {},
84
90
  "funding": {
85
91
  "type": "opencollective",
86
92
  "url": "https://opencollective.com/stdlib"
package/src/addon.c ADDED
@@ -0,0 +1,62 @@
1
+ /**
2
+ * @license Apache-2.0
3
+ *
4
+ * Copyright (c) 2024 The Stdlib Authors.
5
+ *
6
+ * Licensed under the Apache License, Version 2.0 (the "License");
7
+ * you may not use this file except in compliance with the License.
8
+ * You may obtain a copy of the License at
9
+ *
10
+ * http://www.apache.org/licenses/LICENSE-2.0
11
+ *
12
+ * Unless required by applicable law or agreed to in writing, software
13
+ * distributed under the License is distributed on an "AS IS" BASIS,
14
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
+ * See the License for the specific language governing permissions and
16
+ * limitations under the License.
17
+ */
18
+
19
+ #include "stdlib/blas/ext/base/dsnansumpw.h"
20
+ #include "stdlib/blas/base/shared.h"
21
+ #include "stdlib/napi/export.h"
22
+ #include "stdlib/napi/argv.h"
23
+ #include "stdlib/napi/argv_int64.h"
24
+ #include "stdlib/napi/argv_strided_float32array.h"
25
+ #include "stdlib/strided/base/stride2offset.h"
26
+ #include "stdlib/napi/create_double.h"
27
+ #include <node_api.h>
28
+
29
+ /**
30
+ * Receives JavaScript callback invocation data.
31
+ *
32
+ * @param env environment under which the function is invoked
33
+ * @param info callback data
34
+ * @return Node-API value
35
+ */
36
+ static napi_value addon( napi_env env, napi_callback_info info ) {
37
+ STDLIB_NAPI_ARGV( env, info, argv, argc, 3 );
38
+ STDLIB_NAPI_ARGV_INT64( env, N, argv, 0 );
39
+ STDLIB_NAPI_ARGV_INT64( env, strideX, argv, 2 );
40
+ STDLIB_NAPI_ARGV_STRIDED_FLOAT32ARRAY( env, X, N, strideX, argv, 1 );
41
+ STDLIB_NAPI_CREATE_DOUBLE( env, API_SUFFIX(stdlib_strided_dsnansumpw)( N, X, strideX ), v );
42
+ return v;
43
+ }
44
+
45
+ /**
46
+ * Receives JavaScript callback invocation data.
47
+ *
48
+ * @param env environment under which the function is invoked
49
+ * @param info callback data
50
+ * @return Node-API value
51
+ */
52
+ static napi_value addon_method( napi_env env, napi_callback_info info ) {
53
+ STDLIB_NAPI_ARGV( env, info, argv, argc, 4 );
54
+ STDLIB_NAPI_ARGV_INT64( env, N, argv, 0 );
55
+ STDLIB_NAPI_ARGV_INT64( env, strideX, argv, 2 );
56
+ STDLIB_NAPI_ARGV_INT64( env, offsetX, argv, 3 );
57
+ STDLIB_NAPI_ARGV_STRIDED_FLOAT32ARRAY( env, X, N, strideX, argv, 1 );
58
+ STDLIB_NAPI_CREATE_DOUBLE( env, API_SUFFIX(stdlib_strided_dsnansumpw_ndarray)( N, X, strideX, offsetX ), v );
59
+ return v;
60
+ }
61
+
62
+ STDLIB_NAPI_MODULE_EXPORT_FCN_WITH_METHOD( addon, "ndarray", addon_method );
@@ -1,7 +1,7 @@
1
1
  /**
2
2
  * @license Apache-2.0
3
3
  *
4
- * Copyright (c) 2020 The Stdlib Authors.
4
+ * Copyright (c) 2024 The Stdlib Authors.
5
5
  *
6
6
  * Licensed under the Apache License, Version 2.0 (the "License");
7
7
  * you may not use this file except in compliance with the License.
@@ -18,7 +18,8 @@
18
18
 
19
19
  #include "stdlib/blas/ext/base/dsnansumpw.h"
20
20
  #include "stdlib/math/base/assert/is_nanf.h"
21
- #include <stdint.h>
21
+ #include "stdlib/strided/base/stride2offset.h"
22
+ #include "stdlib/blas/base/shared.h"
22
23
 
23
24
  /**
24
25
  * Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using pairwise summation with extended accumulation, and returning an extended precision result.
@@ -31,19 +32,39 @@
31
32
  *
32
33
  * - Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." _SIAM Journal on Scientific Computing_ 14 (4): 783–99. doi:[10.1137/0914050](https://doi.org/10.1137/0914050).
33
34
  *
34
- * @param N number of indexed elements
35
- * @param X input array
36
- * @param stride stride length
37
- * @return output value
35
+ * @param N number of indexed elements
36
+ * @param X input array
37
+ * @param strideX stride length
38
+ * @return output value
38
39
  */
39
- double stdlib_strided_dsnansumpw( const int64_t N, const float *X, const int64_t stride ) {
40
- float *xp1;
41
- float *xp2;
40
+ double API_SUFFIX(stdlib_strided_dsnansumpw)( const CBLAS_INT N, const float *X, const CBLAS_INT strideX ) {
41
+ CBLAS_INT ox = stdlib_strided_stride2offset( N, strideX );
42
+ return API_SUFFIX( stdlib_strided_dsnansumpw_ndarray )( N, X, strideX, ox );
43
+ }
44
+
45
+ /**
46
+ * Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using pairwise summation with extended accumulation and alternative indexing semantics, and returning an extended precision result.
47
+ *
48
+ * ## Method
49
+ *
50
+ * - This implementation uses pairwise summation, which accrues rounding error `O(log2 N)` instead of `O(N)`. The recursion depth is also `O(log2 N)`.
51
+ *
52
+ * ## References
53
+ *
54
+ * - Higham, Nicholas J. 1993. "The Accuracy of Floating Point Summation." _SIAM Journal on Scientific Computing_ 14 (4): 783–99. doi:[10.1137/0914050](https://doi.org/10.1137/0914050).
55
+ *
56
+ * @param N number of indexed elements
57
+ * @param X input array
58
+ * @param strideX stride length
59
+ * @param offsetX starting index
60
+ * @return output value
61
+ */
62
+ double API_SUFFIX(stdlib_strided_dsnansumpw_ndarray)( const CBLAS_INT N, const float *X, const CBLAS_INT strideX, const CBLAS_INT offsetX ) {
63
+ CBLAS_INT ix;
64
+ CBLAS_INT M;
65
+ CBLAS_INT n;
66
+ CBLAS_INT i;
42
67
  double sum;
43
- int64_t ix;
44
- int64_t M;
45
- int64_t n;
46
- int64_t i;
47
68
  double s0;
48
69
  double s1;
49
70
  double s2;
@@ -56,16 +77,12 @@ double stdlib_strided_dsnansumpw( const int64_t N, const float *X, const int64_t
56
77
  if ( N <= 0 ) {
57
78
  return 0.0;
58
79
  }
59
- if ( N == 1 || stride == 0 ) {
60
- if ( stdlib_base_is_nanf( X[ 0 ] ) ) {
80
+ ix = offsetX;
81
+ if ( strideX == 0 ) {
82
+ if ( stdlib_base_is_nanf( X[ ix ] ) ) {
61
83
  return 0.0;
62
84
  }
63
- return X[ 0 ];
64
- }
65
- if ( stride < 0 ) {
66
- ix = (1-N) * stride;
67
- } else {
68
- ix = 0;
85
+ return N * X[ ix ];
69
86
  }
70
87
  if ( N < 8 ) {
71
88
  // Use simple summation...
@@ -74,7 +91,7 @@ double stdlib_strided_dsnansumpw( const int64_t N, const float *X, const int64_t
74
91
  if ( !stdlib_base_is_nanf( X[ ix ] ) ) {
75
92
  sum += (double)X[ ix ];
76
93
  }
77
- ix += stride;
94
+ ix += strideX;
78
95
  }
79
96
  return sum;
80
97
  }
@@ -82,62 +99,55 @@ double stdlib_strided_dsnansumpw( const int64_t N, const float *X, const int64_t
82
99
  if ( N <= 128 ) {
83
100
  // Sum a block with 8 accumulators (by loop unrolling, we lower the effective blocksize to 16)...
84
101
  s0 = ( stdlib_base_is_nanf( X[ ix ] ) ) ? 0.0 : (double)X[ ix ];
85
- ix += stride;
102
+ ix += strideX;
86
103
  s1 = ( stdlib_base_is_nanf( X[ ix ] ) ) ? 0.0 : (double)X[ ix ];
87
- ix += stride;
104
+ ix += strideX;
88
105
  s2 = ( stdlib_base_is_nanf( X[ ix ] ) ) ? 0.0 : (double)X[ ix ];
89
- ix += stride;
106
+ ix += strideX;
90
107
  s3 = ( stdlib_base_is_nanf( X[ ix ] ) ) ? 0.0 : (double)X[ ix ];
91
- ix += stride;
108
+ ix += strideX;
92
109
  s4 = ( stdlib_base_is_nanf( X[ ix ] ) ) ? 0.0 : (double)X[ ix ];
93
- ix += stride;
110
+ ix += strideX;
94
111
  s5 = ( stdlib_base_is_nanf( X[ ix ] ) ) ? 0.0 : (double)X[ ix ];
95
- ix += stride;
112
+ ix += strideX;
96
113
  s6 = ( stdlib_base_is_nanf( X[ ix ] ) ) ? 0.0 : (double)X[ ix ];
97
- ix += stride;
114
+ ix += strideX;
98
115
  s7 = ( stdlib_base_is_nanf( X[ ix ] ) ) ? 0.0 : (double)X[ ix ];
99
- ix += stride;
116
+ ix += strideX;
100
117
 
101
118
  M = N % 8;
102
119
  for ( i = 8; i < N-M; i += 8 ) {
103
120
  s0 += ( stdlib_base_is_nanf( X[ ix ] ) ) ? 0.0 : (double)X[ ix ];
104
- ix += stride;
121
+ ix += strideX;
105
122
  s1 += ( stdlib_base_is_nanf( X[ ix ] ) ) ? 0.0 : (double)X[ ix ];
106
- ix += stride;
123
+ ix += strideX;
107
124
  s2 += ( stdlib_base_is_nanf( X[ ix ] ) ) ? 0.0 : (double)X[ ix ];
108
- ix += stride;
125
+ ix += strideX;
109
126
  s3 += ( stdlib_base_is_nanf( X[ ix ] ) ) ? 0.0 : (double)X[ ix ];
110
- ix += stride;
127
+ ix += strideX;
111
128
  s4 += ( stdlib_base_is_nanf( X[ ix ] ) ) ? 0.0 : (double)X[ ix ];
112
- ix += stride;
129
+ ix += strideX;
113
130
  s5 += ( stdlib_base_is_nanf( X[ ix ] ) ) ? 0.0 : (double)X[ ix ];
114
- ix += stride;
131
+ ix += strideX;
115
132
  s6 += ( stdlib_base_is_nanf( X[ ix ] ) ) ? 0.0 : (double)X[ ix ];
116
- ix += stride;
133
+ ix += strideX;
117
134
  s7 += ( stdlib_base_is_nanf( X[ ix ] ) ) ? 0.0 : (double)X[ ix ];
118
- ix += stride;
135
+ ix += strideX;
119
136
  }
120
137
  // Pairwise sum the accumulators:
121
- sum = ((s0+s1) + (s2+s3)) + ((s4+s5) + (s6+s7));
138
+ sum = ( (s0+s1) + (s2+s3) ) + ( (s4+s5) + (s6+s7) );
122
139
 
123
140
  // Clean-up loop...
124
141
  for (; i < N; i++ ) {
125
142
  if ( !stdlib_base_is_nanf( X[ ix ] ) ) {
126
143
  sum += (double)X[ ix ];
127
144
  }
128
- ix += stride;
145
+ ix += strideX;
129
146
  }
130
147
  return sum;
131
148
  }
132
149
  // Recurse by dividing by two, but avoiding non-multiples of unroll factor...
133
150
  n = N / 2;
134
151
  n -= n % 8;
135
- if ( stride < 0 ) {
136
- xp1 = (float *)X + ( (n-N)*stride );
137
- xp2 = (float *)X;
138
- } else {
139
- xp1 = (float *)X;
140
- xp2 = (float *)X + ( n*stride );
141
- }
142
- return stdlib_strided_dsnansumpw( n, xp1, stride ) + stdlib_strided_dsnansumpw( N-n, xp2, stride );
152
+ return API_SUFFIX(stdlib_strided_dsnansumpw_ndarray)( n, X, strideX, ix ) + API_SUFFIX(stdlib_strided_dsnansumpw_ndarray)( N-n, X, strideX, ix+(n*strideX) );
143
153
  }
package/src/addon.cpp DELETED
@@ -1,117 +0,0 @@
1
- /**
2
- * @license Apache-2.0
3
- *
4
- * Copyright (c) 2020 The Stdlib Authors.
5
- *
6
- * Licensed under the Apache License, Version 2.0 (the "License");
7
- * you may not use this file except in compliance with the License.
8
- * You may obtain a copy of the License at
9
- *
10
- * http://www.apache.org/licenses/LICENSE-2.0
11
- *
12
- * Unless required by applicable law or agreed to in writing, software
13
- * distributed under the License is distributed on an "AS IS" BASIS,
14
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15
- * See the License for the specific language governing permissions and
16
- * limitations under the License.
17
- */
18
-
19
- #include "stdlib/blas/ext/base/dsnansumpw.h"
20
- #include <node_api.h>
21
- #include <stdint.h>
22
- #include <stdlib.h>
23
- #include <stdbool.h>
24
- #include <assert.h>
25
-
26
- /**
27
- * Add-on namespace.
28
- */
29
- namespace stdlib_blas_ext_base_dsnansumpw {
30
-
31
- /**
32
- * Computes the sum of single-precision floating-point strided array elements, ignoring `NaN` values, using pairwise summation with extended accumulation, and returning an extended precision result.
33
- *
34
- * ## Notes
35
- *
36
- * - When called from JavaScript, the function expects three arguments:
37
- *
38
- * - `N`: number of indexed elements
39
- * - `X`: input array
40
- * - `stride`: stride length
41
- */
42
- napi_value node_dsnansumpw( napi_env env, napi_callback_info info ) {
43
- napi_status status;
44
-
45
- size_t argc = 3;
46
- napi_value argv[ 3 ];
47
- status = napi_get_cb_info( env, info, &argc, argv, nullptr, nullptr );
48
- assert( status == napi_ok );
49
-
50
- if ( argc < 3 ) {
51
- napi_throw_error( env, nullptr, "invalid invocation. Must provide 3 arguments." );
52
- return nullptr;
53
- }
54
-
55
- napi_valuetype vtype0;
56
- status = napi_typeof( env, argv[ 0 ], &vtype0 );
57
- assert( status == napi_ok );
58
- if ( vtype0 != napi_number ) {
59
- napi_throw_type_error( env, nullptr, "invalid argument. First argument must be a number." );
60
- return nullptr;
61
- }
62
-
63
- bool res;
64
- status = napi_is_typedarray( env, argv[ 1 ], &res );
65
- assert( status == napi_ok );
66
- if ( res == false ) {
67
- napi_throw_type_error( env, nullptr, "invalid argument. Second argument must be a Float32Array." );
68
- return nullptr;
69
- }
70
-
71
- napi_valuetype vtype2;
72
- status = napi_typeof( env, argv[ 2 ], &vtype2 );
73
- assert( status == napi_ok );
74
- if ( vtype2 != napi_number ) {
75
- napi_throw_type_error( env, nullptr, "invalid argument. Third argument must be a number." );
76
- return nullptr;
77
- }
78
-
79
- int64_t N;
80
- status = napi_get_value_int64( env, argv[ 0 ], &N );
81
- assert( status == napi_ok );
82
-
83
- int64_t stride;
84
- status = napi_get_value_int64( env, argv[ 2 ], &stride );
85
- assert( status == napi_ok );
86
-
87
- napi_typedarray_type vtype1;
88
- size_t xlen;
89
- void *X;
90
- status = napi_get_typedarray_info( env, argv[ 1 ], &vtype1, &xlen, &X, nullptr, nullptr );
91
- assert( status == napi_ok );
92
- if ( vtype1 != napi_float32_array ) {
93
- napi_throw_type_error( env, nullptr, "invalid argument. Second argument must be a Float32Array." );
94
- return nullptr;
95
- }
96
- if ( (N-1)*llabs(stride) >= (int64_t)xlen ) {
97
- napi_throw_range_error( env, nullptr, "invalid argument. Second argument has insufficient elements based on the associated stride and the number of indexed elements." );
98
- return nullptr;
99
- }
100
-
101
- napi_value v;
102
- status = napi_create_double( env, stdlib_strided_dsnansumpw( N, (float *)X, stride ), &v );
103
- assert( status == napi_ok );
104
-
105
- return v;
106
- }
107
-
108
- napi_value Init( napi_env env, napi_value exports ) {
109
- napi_status status;
110
- napi_value fcn;
111
- status = napi_create_function( env, "exports", NAPI_AUTO_LENGTH, node_dsnansumpw, NULL, &fcn );
112
- assert( status == napi_ok );
113
- return fcn;
114
- }
115
-
116
- NAPI_MODULE( NODE_GYP_MODULE_NAME, Init )
117
- } // end namespace stdlib_blas_ext_base_dsnansumpw