@srsergio/taptapp-ar 1.0.74 → 1.0.76
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/compiler/controller.js +3 -3
- package/dist/compiler/detector/crop-detector.d.ts +0 -3
- package/dist/compiler/detector/crop-detector.js +9 -10
- package/dist/compiler/simple-ar.js +1 -1
- package/dist/compiler/tracker/tracker.js +43 -6
- package/package.json +1 -1
- package/src/compiler/controller.ts +3 -3
- package/src/compiler/detector/crop-detector.js +9 -13
- package/src/compiler/simple-ar.ts +1 -1
- package/src/compiler/tracker/tracker.js +42 -11
|
@@ -18,10 +18,10 @@ const getControllerWorker = async () => {
|
|
|
18
18
|
}
|
|
19
19
|
};
|
|
20
20
|
ControllerWorker = await getControllerWorker();
|
|
21
|
-
const DEFAULT_FILTER_CUTOFF =
|
|
21
|
+
const DEFAULT_FILTER_CUTOFF = 0.5;
|
|
22
22
|
const DEFAULT_FILTER_BETA = 0.1;
|
|
23
|
-
const DEFAULT_WARMUP_TOLERANCE =
|
|
24
|
-
const DEFAULT_MISS_TOLERANCE =
|
|
23
|
+
const DEFAULT_WARMUP_TOLERANCE = 2; // Instant detection
|
|
24
|
+
const DEFAULT_MISS_TOLERANCE = 5; // More grace when partially hidden
|
|
25
25
|
class Controller {
|
|
26
26
|
inputWidth;
|
|
27
27
|
inputHeight;
|
|
@@ -24,16 +24,16 @@ class CropDetector {
|
|
|
24
24
|
}
|
|
25
25
|
detectMoving(input) {
|
|
26
26
|
const imageData = input;
|
|
27
|
-
// 🚀 MOONSHOT:
|
|
28
|
-
//
|
|
29
|
-
|
|
30
|
-
if (this.lastRandomIndex % 3 === 0) {
|
|
27
|
+
// 🚀 MOONSHOT: High Frequency Global Scan
|
|
28
|
+
// Scan full screen every 2 frames when searching to guarantee instant recovery
|
|
29
|
+
if (this.lastRandomIndex % 2 === 0) {
|
|
31
30
|
this.lastRandomIndex = (this.lastRandomIndex + 1) % 25;
|
|
32
31
|
return this._detectGlobal(imageData);
|
|
33
32
|
}
|
|
34
|
-
//
|
|
33
|
+
// Local crops (25 grid)
|
|
35
34
|
const gridSize = 5;
|
|
36
35
|
const idx = (this.lastRandomIndex - 1) % (gridSize * gridSize);
|
|
36
|
+
// ... rest of logic remains but we hit it less often because global scan is more successful
|
|
37
37
|
const dx = idx % gridSize;
|
|
38
38
|
const dy = Math.floor(idx / gridSize);
|
|
39
39
|
const stepX = this.cropSize / 3;
|
|
@@ -45,19 +45,18 @@ class CropDetector {
|
|
|
45
45
|
this.lastRandomIndex = (this.lastRandomIndex + 1) % 25;
|
|
46
46
|
return this._detect(imageData, startX, startY);
|
|
47
47
|
}
|
|
48
|
-
/**
|
|
49
|
-
* Scans the ENTIRE frame by downsampling it to cropSize
|
|
50
|
-
*/
|
|
51
48
|
_detectGlobal(imageData) {
|
|
52
49
|
const croppedData = new Float32Array(this.cropSize * this.cropSize);
|
|
53
50
|
const scaleX = this.width / this.cropSize;
|
|
54
51
|
const scaleY = this.height / this.cropSize;
|
|
55
|
-
//
|
|
52
|
+
// Better sampling: avoid missing edges by jumping too much
|
|
56
53
|
for (let y = 0; y < this.cropSize; y++) {
|
|
57
54
|
const srcY = Math.floor(y * scaleY) * this.width;
|
|
58
55
|
const dstY = y * this.cropSize;
|
|
59
56
|
for (let x = 0; x < this.cropSize; x++) {
|
|
60
|
-
|
|
57
|
+
// Average slightly to preserve gradients
|
|
58
|
+
const sx = Math.floor(x * scaleX);
|
|
59
|
+
croppedData[dstY + x] = (imageData[srcY + sx] + imageData[srcY + sx + 1]) * 0.5;
|
|
61
60
|
}
|
|
62
61
|
}
|
|
63
62
|
const { featurePoints } = this.detector.detect(croppedData);
|
|
@@ -123,7 +123,7 @@ class SimpleAR {
|
|
|
123
123
|
}
|
|
124
124
|
this.lastMatrix = worldMatrix;
|
|
125
125
|
if (!this.filters[targetIndex]) {
|
|
126
|
-
this.filters[targetIndex] = new OneEuroFilter({ minCutOff:
|
|
126
|
+
this.filters[targetIndex] = new OneEuroFilter({ minCutOff: 0.8, beta: 0.2 });
|
|
127
127
|
}
|
|
128
128
|
const flatMVT = [
|
|
129
129
|
modelViewTransform[0][0], modelViewTransform[0][1], modelViewTransform[0][2], modelViewTransform[0][3],
|
|
@@ -165,18 +165,18 @@ class Tracker {
|
|
|
165
165
|
matchingPoints.push([bestX, bestY]);
|
|
166
166
|
continue;
|
|
167
167
|
}
|
|
168
|
-
// Search
|
|
169
|
-
|
|
168
|
+
// 🚀 MOONSHOT: Coarse-to-Fine Search for MAXIMUM FPS
|
|
169
|
+
// Step 1: Coarse search (Gap 4)
|
|
170
|
+
const coarseGap = 4;
|
|
171
|
+
for (let sy = -searchOneSize; sy <= searchOneSize; sy += coarseGap) {
|
|
170
172
|
const cy = sCenterY + sy;
|
|
171
173
|
if (cy < templateOneSize || cy >= markerHeight - templateOneSize)
|
|
172
174
|
continue;
|
|
173
|
-
for (let sx = -searchOneSize; sx <= searchOneSize; sx +=
|
|
175
|
+
for (let sx = -searchOneSize; sx <= searchOneSize; sx += coarseGap) {
|
|
174
176
|
const cx = sCenterX + sx;
|
|
175
177
|
if (cx < templateOneSize || cx >= markerWidth - templateOneSize)
|
|
176
178
|
continue;
|
|
177
|
-
let sumI = 0;
|
|
178
|
-
let sumI2 = 0;
|
|
179
|
-
let sumIT = 0;
|
|
179
|
+
let sumI = 0, sumI2 = 0, sumIT = 0;
|
|
180
180
|
for (let ty = -templateOneSize; ty <= templateOneSize; ty++) {
|
|
181
181
|
const rowOffset = (cy + ty) * markerWidth;
|
|
182
182
|
const tRowOffset = (ty + templateOneSize) * templateSize;
|
|
@@ -199,6 +199,43 @@ class Tracker {
|
|
|
199
199
|
}
|
|
200
200
|
}
|
|
201
201
|
}
|
|
202
|
+
// Step 2: Fine refinement (Gap 1) only around the best coarse match
|
|
203
|
+
if (bestSim > AR2_SIM_THRESH) {
|
|
204
|
+
const fineCenterX = (bestX * scale) | 0;
|
|
205
|
+
const fineCenterY = (bestY * scale) | 0;
|
|
206
|
+
const fineSearch = coarseGap;
|
|
207
|
+
for (let sy = -fineSearch; sy <= fineSearch; sy++) {
|
|
208
|
+
const cy = fineCenterY + sy;
|
|
209
|
+
if (cy < templateOneSize || cy >= markerHeight - templateOneSize)
|
|
210
|
+
continue;
|
|
211
|
+
for (let sx = -fineSearch; sx <= fineSearch; sx++) {
|
|
212
|
+
const cx = fineCenterX + sx;
|
|
213
|
+
if (cx < templateOneSize || cx >= markerWidth - templateOneSize)
|
|
214
|
+
continue;
|
|
215
|
+
let sumI = 0, sumI2 = 0, sumIT = 0;
|
|
216
|
+
for (let ty = -templateOneSize; ty <= templateOneSize; ty++) {
|
|
217
|
+
const rowOffset = (cy + ty) * markerWidth;
|
|
218
|
+
const tRowOffset = (ty + templateOneSize) * templateSize;
|
|
219
|
+
for (let tx = -templateOneSize; tx <= templateOneSize; tx++) {
|
|
220
|
+
const valI = projectedImage[rowOffset + (cx + tx)];
|
|
221
|
+
const valT = templateData[tRowOffset + (tx + templateOneSize)];
|
|
222
|
+
sumI += valI;
|
|
223
|
+
sumI2 += valI * valI;
|
|
224
|
+
sumIT += valI * valT;
|
|
225
|
+
}
|
|
226
|
+
}
|
|
227
|
+
const varI = Math.sqrt(Math.max(0, sumI2 - (sumI * sumI) * oneOverNPixels));
|
|
228
|
+
if (varI < 0.0001)
|
|
229
|
+
continue;
|
|
230
|
+
const sim = (sumIT - (sumI * sumT) * oneOverNPixels) / (varI * varT);
|
|
231
|
+
if (sim > bestSim) {
|
|
232
|
+
bestSim = sim;
|
|
233
|
+
bestX = cx / scale;
|
|
234
|
+
bestY = cy / scale;
|
|
235
|
+
}
|
|
236
|
+
}
|
|
237
|
+
}
|
|
238
|
+
}
|
|
202
239
|
sims[f] = bestSim;
|
|
203
240
|
matchingPoints.push([bestX, bestY]);
|
|
204
241
|
}
|
package/package.json
CHANGED
|
@@ -19,10 +19,10 @@ const getControllerWorker = async () => {
|
|
|
19
19
|
};
|
|
20
20
|
ControllerWorker = await getControllerWorker();
|
|
21
21
|
|
|
22
|
-
const DEFAULT_FILTER_CUTOFF =
|
|
22
|
+
const DEFAULT_FILTER_CUTOFF = 0.5;
|
|
23
23
|
const DEFAULT_FILTER_BETA = 0.1;
|
|
24
|
-
const DEFAULT_WARMUP_TOLERANCE =
|
|
25
|
-
const DEFAULT_MISS_TOLERANCE =
|
|
24
|
+
const DEFAULT_WARMUP_TOLERANCE = 2; // Instant detection
|
|
25
|
+
const DEFAULT_MISS_TOLERANCE = 5; // More grace when partially hidden
|
|
26
26
|
|
|
27
27
|
export interface ControllerOptions {
|
|
28
28
|
inputWidth: number;
|
|
@@ -33,20 +33,19 @@ class CropDetector {
|
|
|
33
33
|
detectMoving(input) {
|
|
34
34
|
const imageData = input;
|
|
35
35
|
|
|
36
|
-
// 🚀 MOONSHOT:
|
|
37
|
-
//
|
|
38
|
-
|
|
39
|
-
if (this.lastRandomIndex % 3 === 0) {
|
|
36
|
+
// 🚀 MOONSHOT: High Frequency Global Scan
|
|
37
|
+
// Scan full screen every 2 frames when searching to guarantee instant recovery
|
|
38
|
+
if (this.lastRandomIndex % 2 === 0) {
|
|
40
39
|
this.lastRandomIndex = (this.lastRandomIndex + 1) % 25;
|
|
41
40
|
return this._detectGlobal(imageData);
|
|
42
41
|
}
|
|
43
42
|
|
|
44
|
-
//
|
|
43
|
+
// Local crops (25 grid)
|
|
45
44
|
const gridSize = 5;
|
|
46
45
|
const idx = (this.lastRandomIndex - 1) % (gridSize * gridSize);
|
|
46
|
+
// ... rest of logic remains but we hit it less often because global scan is more successful
|
|
47
47
|
const dx = idx % gridSize;
|
|
48
48
|
const dy = Math.floor(idx / gridSize);
|
|
49
|
-
|
|
50
49
|
const stepX = this.cropSize / 3;
|
|
51
50
|
const stepY = this.cropSize / 3;
|
|
52
51
|
|
|
@@ -57,29 +56,26 @@ class CropDetector {
|
|
|
57
56
|
startY = Math.max(0, Math.min(this.height - this.cropSize - 1, startY));
|
|
58
57
|
|
|
59
58
|
this.lastRandomIndex = (this.lastRandomIndex + 1) % 25;
|
|
60
|
-
|
|
61
59
|
return this._detect(imageData, startX, startY);
|
|
62
60
|
}
|
|
63
61
|
|
|
64
|
-
/**
|
|
65
|
-
* Scans the ENTIRE frame by downsampling it to cropSize
|
|
66
|
-
*/
|
|
67
62
|
_detectGlobal(imageData) {
|
|
68
63
|
const croppedData = new Float32Array(this.cropSize * this.cropSize);
|
|
69
64
|
const scaleX = this.width / this.cropSize;
|
|
70
65
|
const scaleY = this.height / this.cropSize;
|
|
71
66
|
|
|
72
|
-
//
|
|
67
|
+
// Better sampling: avoid missing edges by jumping too much
|
|
73
68
|
for (let y = 0; y < this.cropSize; y++) {
|
|
74
69
|
const srcY = Math.floor(y * scaleY) * this.width;
|
|
75
70
|
const dstY = y * this.cropSize;
|
|
76
71
|
for (let x = 0; x < this.cropSize; x++) {
|
|
77
|
-
|
|
72
|
+
// Average slightly to preserve gradients
|
|
73
|
+
const sx = Math.floor(x * scaleX);
|
|
74
|
+
croppedData[dstY + x] = (imageData[srcY + sx] + imageData[srcY + sx + 1]) * 0.5;
|
|
78
75
|
}
|
|
79
76
|
}
|
|
80
77
|
|
|
81
78
|
const { featurePoints } = this.detector.detect(croppedData);
|
|
82
|
-
|
|
83
79
|
featurePoints.forEach((p) => {
|
|
84
80
|
p.x *= scaleX;
|
|
85
81
|
p.y *= scaleY;
|
|
@@ -163,7 +163,7 @@ class SimpleAR {
|
|
|
163
163
|
this.lastMatrix = worldMatrix;
|
|
164
164
|
|
|
165
165
|
if (!this.filters[targetIndex]) {
|
|
166
|
-
this.filters[targetIndex] = new OneEuroFilter({ minCutOff:
|
|
166
|
+
this.filters[targetIndex] = new OneEuroFilter({ minCutOff: 0.8, beta: 0.2 });
|
|
167
167
|
}
|
|
168
168
|
|
|
169
169
|
const flatMVT = [
|
|
@@ -214,29 +214,25 @@ class Tracker {
|
|
|
214
214
|
continue;
|
|
215
215
|
}
|
|
216
216
|
|
|
217
|
-
// Search
|
|
218
|
-
|
|
217
|
+
// 🚀 MOONSHOT: Coarse-to-Fine Search for MAXIMUM FPS
|
|
218
|
+
// Step 1: Coarse search (Gap 4)
|
|
219
|
+
const coarseGap = 4;
|
|
220
|
+
for (let sy = -searchOneSize; sy <= searchOneSize; sy += coarseGap) {
|
|
219
221
|
const cy = sCenterY + sy;
|
|
220
222
|
if (cy < templateOneSize || cy >= markerHeight - templateOneSize) continue;
|
|
221
223
|
|
|
222
|
-
for (let sx = -searchOneSize; sx <= searchOneSize; sx +=
|
|
224
|
+
for (let sx = -searchOneSize; sx <= searchOneSize; sx += coarseGap) {
|
|
223
225
|
const cx = sCenterX + sx;
|
|
224
226
|
if (cx < templateOneSize || cx >= markerWidth - templateOneSize) continue;
|
|
225
227
|
|
|
226
|
-
let sumI = 0;
|
|
227
|
-
let sumI2 = 0;
|
|
228
|
-
let sumIT = 0;
|
|
229
|
-
|
|
228
|
+
let sumI = 0, sumI2 = 0, sumIT = 0;
|
|
230
229
|
for (let ty = -templateOneSize; ty <= templateOneSize; ty++) {
|
|
231
230
|
const rowOffset = (cy + ty) * markerWidth;
|
|
232
231
|
const tRowOffset = (ty + templateOneSize) * templateSize;
|
|
233
232
|
for (let tx = -templateOneSize; tx <= templateOneSize; tx++) {
|
|
234
233
|
const valI = projectedImage[rowOffset + (cx + tx)];
|
|
235
234
|
const valT = templateData[tRowOffset + (tx + templateOneSize)];
|
|
236
|
-
|
|
237
|
-
sumI += valI;
|
|
238
|
-
sumI2 += valI * valI;
|
|
239
|
-
sumIT += valI * valT;
|
|
235
|
+
sumI += valI; sumI2 += valI * valI; sumIT += valI * valT;
|
|
240
236
|
}
|
|
241
237
|
}
|
|
242
238
|
|
|
@@ -252,6 +248,41 @@ class Tracker {
|
|
|
252
248
|
}
|
|
253
249
|
}
|
|
254
250
|
|
|
251
|
+
// Step 2: Fine refinement (Gap 1) only around the best coarse match
|
|
252
|
+
if (bestSim > AR2_SIM_THRESH) {
|
|
253
|
+
const fineCenterX = (bestX * scale) | 0;
|
|
254
|
+
const fineCenterY = (bestY * scale) | 0;
|
|
255
|
+
const fineSearch = coarseGap;
|
|
256
|
+
|
|
257
|
+
for (let sy = -fineSearch; sy <= fineSearch; sy++) {
|
|
258
|
+
const cy = fineCenterY + sy;
|
|
259
|
+
if (cy < templateOneSize || cy >= markerHeight - templateOneSize) continue;
|
|
260
|
+
for (let sx = -fineSearch; sx <= fineSearch; sx++) {
|
|
261
|
+
const cx = fineCenterX + sx;
|
|
262
|
+
if (cx < templateOneSize || cx >= markerWidth - templateOneSize) continue;
|
|
263
|
+
|
|
264
|
+
let sumI = 0, sumI2 = 0, sumIT = 0;
|
|
265
|
+
for (let ty = -templateOneSize; ty <= templateOneSize; ty++) {
|
|
266
|
+
const rowOffset = (cy + ty) * markerWidth;
|
|
267
|
+
const tRowOffset = (ty + templateOneSize) * templateSize;
|
|
268
|
+
for (let tx = -templateOneSize; tx <= templateOneSize; tx++) {
|
|
269
|
+
const valI = projectedImage[rowOffset + (cx + tx)];
|
|
270
|
+
const valT = templateData[tRowOffset + (tx + templateOneSize)];
|
|
271
|
+
sumI += valI; sumI2 += valI * valI; sumIT += valI * valT;
|
|
272
|
+
}
|
|
273
|
+
}
|
|
274
|
+
const varI = Math.sqrt(Math.max(0, sumI2 - (sumI * sumI) * oneOverNPixels));
|
|
275
|
+
if (varI < 0.0001) continue;
|
|
276
|
+
const sim = (sumIT - (sumI * sumT) * oneOverNPixels) / (varI * varT);
|
|
277
|
+
if (sim > bestSim) {
|
|
278
|
+
bestSim = sim;
|
|
279
|
+
bestX = cx / scale;
|
|
280
|
+
bestY = cy / scale;
|
|
281
|
+
}
|
|
282
|
+
}
|
|
283
|
+
}
|
|
284
|
+
}
|
|
285
|
+
|
|
255
286
|
sims[f] = bestSim;
|
|
256
287
|
matchingPoints.push([bestX, bestY]);
|
|
257
288
|
}
|