@soulcraft/brainy 0.45.0 → 0.47.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,292 +1,144 @@
1
1
  /**
2
- * Embedding functions for converting data to vectors
2
+ * Embedding functions for converting data to vectors using Transformers.js
3
+ * Complete rewrite to eliminate TensorFlow.js and use ONNX-based models
3
4
  */
4
- import { executeInThread } from './workerUtils.js';
5
5
  import { isBrowser } from './environment.js';
6
- import { createRobustModelLoader, getUniversalSentenceEncoderFallbacks } from './robustModelLoader.js';
7
- export class UniversalSentenceEncoder {
6
+ import { pipeline, env } from '@huggingface/transformers';
7
+ export class TransformerEmbedding {
8
8
  /**
9
- * Create a new UniversalSentenceEncoder instance
10
- * @param options Configuration options including reliability settings
9
+ * Create a new TransformerEmbedding instance
11
10
  */
12
11
  constructor(options = {}) {
13
- this.model = null;
12
+ this.extractor = null;
14
13
  this.initialized = false;
15
- this.tf = null;
16
- this.use = null;
17
- this.backend = 'cpu'; // Default to CPU
18
- this.verbose = true; // Whether to log non-essential messages
14
+ this.verbose = true;
19
15
  this.verbose = options.verbose !== undefined ? options.verbose : true;
20
- // Create robust model loader with enhanced reliability features
21
- this.robustLoader = createRobustModelLoader({
22
- maxRetries: options.maxRetries ?? 3,
23
- initialRetryDelay: options.initialRetryDelay ?? 1000,
24
- maxRetryDelay: options.maxRetryDelay ?? 30000,
25
- timeout: options.timeout ?? 60000,
26
- useExponentialBackoff: options.useExponentialBackoff ?? true,
27
- fallbackUrls: options.fallbackUrls ?? getUniversalSentenceEncoderFallbacks(),
16
+ this.options = {
17
+ model: options.model || 'Xenova/all-MiniLM-L6-v2',
28
18
  verbose: this.verbose,
29
- preferLocalModel: options.preferLocalModel ?? true
30
- });
19
+ cacheDir: options.cacheDir || this.getDefaultCacheDir(),
20
+ localFilesOnly: options.localFilesOnly !== undefined ? options.localFilesOnly : !isBrowser(),
21
+ dtype: options.dtype || 'fp32'
22
+ };
23
+ // Configure transformers.js environment
24
+ if (!isBrowser()) {
25
+ // Set cache directory for Node.js
26
+ env.cacheDir = this.options.cacheDir;
27
+ // Prioritize local models for offline operation
28
+ env.allowRemoteModels = !this.options.localFilesOnly;
29
+ env.allowLocalModels = true;
30
+ }
31
+ else {
32
+ // Browser configuration
33
+ // Allow both local and remote models, but prefer local if available
34
+ env.allowLocalModels = true;
35
+ env.allowRemoteModels = true;
36
+ // Force the configuration to ensure it's applied
37
+ if (this.verbose) {
38
+ this.logger('log', `Browser env config - allowLocalModels: ${env.allowLocalModels}, allowRemoteModels: ${env.allowRemoteModels}, localFilesOnly: ${this.options.localFilesOnly}`);
39
+ }
40
+ }
31
41
  }
32
42
  /**
33
- * Add polyfills and patches for TensorFlow.js compatibility
34
- * This addresses issues with TensorFlow.js across all server environments
35
- * (Node.js, serverless, and other server environments)
36
- *
37
- * Note: The main TensorFlow.js patching is now centralized in textEncoding.ts
38
- * and applied through setup.ts. This method only adds additional utility functions
39
- * that might be needed by TensorFlow.js.
43
+ * Get the default cache directory for models
40
44
  */
41
- addServerCompatibilityPolyfills() {
42
- // Apply in all non-browser environments (Node.js, serverless, server environments)
45
+ getDefaultCacheDir() {
43
46
  if (isBrowser()) {
44
- return; // Browser environments don't need these polyfills
47
+ return './models'; // Browser default
45
48
  }
46
- // Get the appropriate global object for the current environment
47
- const globalObj = (() => {
48
- if (typeof globalThis !== 'undefined')
49
- return globalThis;
50
- if (typeof global !== 'undefined')
51
- return global;
52
- if (typeof self !== 'undefined')
53
- return self;
54
- return {}; // Fallback for unknown environments
55
- })();
56
- // Add polyfill for utility functions across all server environments
57
- // This fixes issues like "Cannot read properties of undefined (reading 'isFloat32Array')"
58
- try {
59
- // Ensure the util object exists
60
- if (!globalObj.util) {
61
- globalObj.util = {};
62
- }
63
- // Add isFloat32Array method if it doesn't exist
64
- if (!globalObj.util.isFloat32Array) {
65
- globalObj.util.isFloat32Array = (obj) => {
66
- return !!(obj instanceof Float32Array ||
67
- (obj &&
68
- Object.prototype.toString.call(obj) === '[object Float32Array]'));
69
- };
49
+ // Check for bundled models in the package
50
+ const possiblePaths = [
51
+ // In the installed package
52
+ './node_modules/@soulcraft/brainy/models',
53
+ // In development/source
54
+ './models',
55
+ './dist/../models',
56
+ // Alternative locations
57
+ '../models',
58
+ '../../models'
59
+ ];
60
+ // Check if we're in Node.js and try to find the bundled models
61
+ if (typeof process !== 'undefined' && process.versions?.node) {
62
+ try {
63
+ const path = require('path');
64
+ const fs = require('fs');
65
+ // Try to resolve the package location
66
+ try {
67
+ const brainyPackagePath = require.resolve('@soulcraft/brainy/package.json');
68
+ const brainyPackageDir = path.dirname(brainyPackagePath);
69
+ const bundledModelsPath = path.join(brainyPackageDir, 'models');
70
+ if (fs.existsSync(bundledModelsPath)) {
71
+ this.logger('log', `Using bundled models from package: ${bundledModelsPath}`);
72
+ return bundledModelsPath;
73
+ }
74
+ }
75
+ catch (e) {
76
+ // Not installed as package, continue
77
+ }
78
+ // Try relative paths from current location
79
+ for (const relativePath of possiblePaths) {
80
+ const fullPath = path.resolve(relativePath);
81
+ if (fs.existsSync(fullPath)) {
82
+ this.logger('log', `Using bundled models from: ${fullPath}`);
83
+ return fullPath;
84
+ }
85
+ }
70
86
  }
71
- // Add isTypedArray method if it doesn't exist
72
- if (!globalObj.util.isTypedArray) {
73
- globalObj.util.isTypedArray = (obj) => {
74
- return !!(ArrayBuffer.isView(obj) && !(obj instanceof DataView));
75
- };
87
+ catch (error) {
88
+ this.logger('warn', 'Could not auto-detect bundled models directory:', error);
76
89
  }
77
90
  }
78
- catch (error) {
79
- console.warn('Failed to add utility polyfills:', error);
80
- }
91
+ // Fallback to default cache directory
92
+ return './models';
81
93
  }
82
94
  /**
83
95
  * Check if we're running in a test environment
84
96
  */
85
97
  isTestEnvironment() {
86
- // Safely check for Node.js environment first
87
- if (typeof process === 'undefined') {
88
- return false;
89
- }
90
- return (process.env.NODE_ENV === 'test' ||
91
- process.env.VITEST === 'true' ||
92
- (typeof global !== 'undefined' && global.__vitest__) ||
93
- process.argv.some((arg) => arg.includes('vitest')));
98
+ // Always use real implementation - no more mocking
99
+ return false;
94
100
  }
95
101
  /**
96
- * Log message only if verbose mode is enabled or if it's an error
97
- * This helps suppress non-essential log messages
102
+ * Log message only if verbose mode is enabled
98
103
  */
99
104
  logger(level, message, ...args) {
100
- // Always log errors, but only log other messages if verbose mode is enabled
101
105
  if (level === 'error' || this.verbose) {
102
- console[level](message, ...args);
103
- }
104
- }
105
- /**
106
- * Load the Universal Sentence Encoder model with robust retry and fallback mechanisms
107
- * @param loadFunction The function to load the model from TensorFlow Hub
108
- */
109
- async loadModelFromLocal(loadFunction) {
110
- this.logger('log', 'Loading Universal Sentence Encoder model with robust loader...');
111
- try {
112
- // Use the robust model loader to handle all retry logic, timeouts, and fallbacks
113
- const model = await this.robustLoader.loadModel(loadFunction, 'universal-sentence-encoder');
114
- this.logger('log', 'Successfully loaded Universal Sentence Encoder model');
115
- return model;
116
- }
117
- catch (error) {
118
- const errorMessage = error instanceof Error ? error.message : String(error);
119
- this.logger('error', `Failed to load Universal Sentence Encoder model: ${errorMessage}`);
120
- // Log loading statistics for debugging
121
- const stats = this.robustLoader.getLoadingStats();
122
- if (Object.keys(stats).length > 0) {
123
- this.logger('log', 'Loading attempt statistics:', stats);
124
- }
125
- throw error;
106
+ console[level](`[TransformerEmbedding] ${message}`, ...args);
126
107
  }
127
108
  }
128
109
  /**
129
110
  * Initialize the embedding model
130
111
  */
131
112
  async init() {
132
- // Use a mock implementation in test environments
133
- if (this.isTestEnvironment()) {
134
- this.logger('log', 'Using mock Universal Sentence Encoder for tests');
135
- // Create a mock model that returns fixed embeddings
136
- this.model = {
137
- embed: async (sentences) => {
138
- // Create a tensor-like object with a mock array method
139
- return {
140
- array: async () => {
141
- // Return fixed embeddings for each input sentence
142
- const inputArray = Array.isArray(sentences)
143
- ? sentences
144
- : [sentences];
145
- return inputArray.map(() => new Array(512).fill(0).map((_, i) => (i % 2 === 0 ? 0.1 : -0.1)));
146
- },
147
- dispose: () => { }
148
- };
149
- }
150
- };
151
- this.initialized = true;
113
+ if (this.initialized) {
152
114
  return;
153
115
  }
116
+ // Always use real implementation - no mocking
154
117
  try {
155
- // Save original console.warn
156
- const originalWarn = console.warn;
157
- // Override console.warn to suppress TensorFlow.js Node.js backend message
158
- console.warn = function (message, ...optionalParams) {
159
- if (message &&
160
- typeof message === 'string' &&
161
- message.includes('Hi, looks like you are running TensorFlow.js in Node.js')) {
162
- return; // Suppress the specific warning
163
- }
164
- originalWarn(message, ...optionalParams);
118
+ this.logger('log', `Loading Transformer model: ${this.options.model}`);
119
+ const startTime = Date.now();
120
+ // Load the feature extraction pipeline
121
+ // In browsers, never use local_files_only to avoid conflicts
122
+ const pipelineOptions = {
123
+ cache_dir: this.options.cacheDir,
124
+ local_files_only: isBrowser() ? false : this.options.localFilesOnly,
125
+ dtype: this.options.dtype
165
126
  };
166
- // Add polyfills for TensorFlow.js compatibility
167
- this.addServerCompatibilityPolyfills();
168
- // CRITICAL: Ensure TextEncoder/TextDecoder are available before TensorFlow.js loads
169
- try {
170
- // Get the appropriate global object for the current environment
171
- const globalObj = (() => {
172
- if (typeof globalThis !== 'undefined')
173
- return globalThis;
174
- if (typeof global !== 'undefined')
175
- return global;
176
- if (typeof self !== 'undefined')
177
- return self;
178
- return null;
179
- })();
180
- // Ensure TextEncoder/TextDecoder are globally available in server environments
181
- if (globalObj) {
182
- // Try to use Node.js util module if available (Node.js environments)
183
- try {
184
- if (typeof process !== 'undefined' &&
185
- process.versions &&
186
- process.versions.node) {
187
- const util = await import('util');
188
- if (!globalObj.TextEncoder) {
189
- globalObj.TextEncoder = util.TextEncoder;
190
- }
191
- if (!globalObj.TextDecoder) {
192
- globalObj.TextDecoder =
193
- util.TextDecoder;
194
- }
195
- }
196
- }
197
- catch (utilError) {
198
- // Fallback to standard TextEncoder/TextDecoder for non-Node.js server environments
199
- if (!globalObj.TextEncoder) {
200
- globalObj.TextEncoder = TextEncoder;
201
- }
202
- if (!globalObj.TextDecoder) {
203
- globalObj.TextDecoder = TextDecoder;
204
- }
205
- }
206
- }
207
- // Apply the TensorFlow.js patch
208
- const { applyTensorFlowPatch } = await import('./textEncoding.js');
209
- await applyTensorFlowPatch();
210
- // Now load TensorFlow.js core module using dynamic imports
211
- this.tf = await import('@tensorflow/tfjs-core');
212
- // Import CPU backend (always needed as fallback)
213
- await import('@tensorflow/tfjs-backend-cpu');
214
- // Try to import WebGL backend for GPU acceleration in browser environments
215
- try {
216
- if (isBrowser()) {
217
- await import('@tensorflow/tfjs-backend-webgl');
218
- // Check if WebGL is available
219
- try {
220
- if (this.tf.setBackend) {
221
- await this.tf.setBackend('webgl');
222
- this.backend = 'webgl';
223
- console.log('Using WebGL backend for TensorFlow.js');
224
- }
225
- else {
226
- console.warn('tf.setBackend is not available, falling back to CPU');
227
- }
228
- }
229
- catch (e) {
230
- console.warn('WebGL backend not available, falling back to CPU:', e);
231
- this.backend = 'cpu';
232
- }
233
- }
234
- }
235
- catch (error) {
236
- console.warn('WebGL backend not available, falling back to CPU:', error);
237
- this.backend = 'cpu';
238
- }
239
- // Note: @tensorflow-models/universal-sentence-encoder is no longer used
240
- // Model loading is handled entirely by robustLoader
241
- }
242
- catch (error) {
243
- this.logger('error', 'Failed to initialize TensorFlow.js:', error);
244
- // No fallback allowed - throw error
245
- throw new Error(`Universal Sentence Encoder initialization failed: ${error}`);
246
- }
247
- // Set the backend
248
- if (this.tf && this.tf.setBackend) {
249
- await this.tf.setBackend(this.backend);
250
- }
251
- // Load model using robustLoader which handles all loading strategies:
252
- // 1. @soulcraft/brainy-models package if available (offline mode)
253
- // 2. Direct TensorFlow.js URL loading as fallback
254
- try {
255
- this.model = await this.robustLoader.loadModelWithFallbacks();
256
- this.initialized = true;
257
- // If the model doesn't have an embed method but has embedToArrays, wrap it
258
- if (!this.model.embed && this.model.embedToArrays) {
259
- const originalModel = this.model;
260
- this.model = {
261
- embed: async (sentences) => {
262
- const input = Array.isArray(sentences) ? sentences : [sentences];
263
- const embeddings = await originalModel.embedToArrays(input);
264
- // Return TensorFlow tensor-like object
265
- return {
266
- array: async () => embeddings,
267
- arraySync: () => embeddings
268
- };
269
- },
270
- dispose: () => originalModel.dispose ? originalModel.dispose() : undefined
271
- };
272
- }
127
+ if (this.verbose) {
128
+ this.logger('log', `Pipeline options: ${JSON.stringify(pipelineOptions)}`);
273
129
  }
274
- catch (modelError) {
275
- this.logger('error', 'Failed to load Universal Sentence Encoder model:', modelError);
276
- throw new Error(`Universal Sentence Encoder model loading failed: ${modelError}`);
277
- }
278
- // Restore original console.warn
279
- console.warn = originalWarn;
130
+ this.extractor = await pipeline('feature-extraction', this.options.model, pipelineOptions);
131
+ const loadTime = Date.now() - startTime;
132
+ this.logger('log', `✅ Model loaded successfully in ${loadTime}ms`);
133
+ this.initialized = true;
280
134
  }
281
135
  catch (error) {
282
- this.logger('error', 'Failed to initialize Universal Sentence Encoder:', error);
283
- // No fallback allowed - throw error
284
- throw new Error(`Universal Sentence Encoder initialization failed: ${error}`);
136
+ this.logger('error', 'Failed to initialize Transformer embedding model:', error);
137
+ throw new Error(`Transformer embedding initialization failed: ${error}`);
285
138
  }
286
139
  }
287
140
  /**
288
- * Embed text into a vector using Universal Sentence Encoder
289
- * @param data Text to embed
141
+ * Generate embeddings for text data
290
142
  */
291
143
  async embed(data) {
292
144
  if (!this.initialized) {
@@ -298,405 +150,137 @@ export class UniversalSentenceEncoder {
298
150
  if (typeof data === 'string') {
299
151
  // Handle empty string case
300
152
  if (data.trim() === '') {
301
- // Return a zero vector of 512 dimensions (standard for Universal Sentence Encoder)
302
- return new Array(512).fill(0);
153
+ // Return a zero vector of 384 dimensions (all-MiniLM-L6-v2 standard)
154
+ return new Array(384).fill(0);
303
155
  }
304
156
  textToEmbed = [data];
305
157
  }
306
- else if (Array.isArray(data) &&
307
- data.every((item) => typeof item === 'string')) {
158
+ else if (Array.isArray(data) && data.every((item) => typeof item === 'string')) {
308
159
  // Handle empty array or array with empty strings
309
160
  if (data.length === 0 || data.every((item) => item.trim() === '')) {
310
- return new Array(512).fill(0);
161
+ return new Array(384).fill(0);
311
162
  }
312
163
  // Filter out empty strings
313
164
  textToEmbed = data.filter((item) => item.trim() !== '');
314
165
  if (textToEmbed.length === 0) {
315
- return new Array(512).fill(0);
166
+ return new Array(384).fill(0);
316
167
  }
317
168
  }
318
169
  else {
319
- throw new Error('UniversalSentenceEncoder only supports string or string[] data');
170
+ throw new Error('TransformerEmbedding only supports string or string[] data');
320
171
  }
321
- // Ensure the model is available
322
- if (!this.model) {
323
- throw new Error('Universal Sentence Encoder model is not available');
324
- }
325
- // Get embeddings
326
- const embeddings = await this.model.embed(textToEmbed);
327
- // Convert to array and return the first embedding
328
- const embeddingArray = await embeddings.array();
329
- // Dispose of the tensor to free memory
330
- embeddings.dispose();
331
- // Get the first embedding
332
- let embedding = embeddingArray[0];
333
- // Always ensure the embedding is exactly 512 dimensions
334
- if (embedding.length !== 512) {
335
- this.logger('warn', `Embedding dimension mismatch: expected 512, got ${embedding.length}. Standardizing to 512 dimensions.`);
336
- // If the embedding is too short, pad with zeros
337
- if (embedding.length < 512) {
338
- const paddedEmbedding = new Array(512).fill(0);
339
- for (let i = 0; i < embedding.length; i++) {
340
- paddedEmbedding[i] = embedding[i];
341
- }
342
- embedding = paddedEmbedding;
343
- }
344
- // If the embedding is too long, truncate
345
- else if (embedding.length > 512) {
346
- embedding = embedding.slice(0, 512);
347
- }
172
+ // Ensure the extractor is available
173
+ if (!this.extractor) {
174
+ throw new Error('Transformer embedding model is not available');
348
175
  }
349
- return embedding;
350
- }
351
- catch (error) {
352
- this.logger('error', 'Failed to embed text with Universal Sentence Encoder:', error);
353
- throw new Error(`Universal Sentence Encoder embedding failed: ${error}`);
354
- }
355
- }
356
- /**
357
- * Embed multiple texts into vectors using Universal Sentence Encoder
358
- * This is more efficient than calling embed() multiple times
359
- * @param dataArray Array of texts to embed
360
- * @returns Array of embedding vectors
361
- */
362
- async embedBatch(dataArray) {
363
- if (!this.initialized) {
364
- await this.init();
365
- }
366
- try {
367
- // Handle empty array case
368
- if (dataArray.length === 0) {
369
- return [];
370
- }
371
- // Filter out empty strings and handle edge cases
372
- const textToEmbed = dataArray.filter((text) => typeof text === 'string' && text.trim() !== '');
373
- // If all strings were empty, return appropriate zero vectors
374
- if (textToEmbed.length === 0) {
375
- return dataArray.map(() => new Array(512).fill(0));
176
+ // Generate embeddings with mean pooling and normalization
177
+ const result = await this.extractor(textToEmbed, {
178
+ pooling: 'mean',
179
+ normalize: true
180
+ });
181
+ // Extract the embedding data
182
+ let embedding;
183
+ if (textToEmbed.length === 1) {
184
+ // Single text input - return first embedding
185
+ embedding = Array.from(result.data.slice(0, 384));
376
186
  }
377
- // Ensure the model is available
378
- if (!this.model) {
379
- throw new Error('Universal Sentence Encoder model is not available');
187
+ else {
188
+ // Multiple texts - return first embedding (maintain compatibility)
189
+ embedding = Array.from(result.data.slice(0, 384));
380
190
  }
381
- // Get embeddings for all texts in a single batch operation
382
- const embeddings = await this.model.embed(textToEmbed);
383
- // Convert to array
384
- const embeddingArray = await embeddings.array();
385
- // Dispose of the tensor to free memory
386
- embeddings.dispose();
387
- // Standardize embeddings to ensure they're all 512 dimensions
388
- const standardizedEmbeddings = embeddingArray.map((embedding) => {
389
- if (embedding.length !== 512) {
390
- this.logger('warn', `Batch embedding dimension mismatch: expected 512, got ${embedding.length}. Standardizing to 512 dimensions.`);
391
- // If the embedding is too short, pad with zeros
392
- if (embedding.length < 512) {
393
- const paddedEmbedding = new Array(512).fill(0);
394
- for (let i = 0; i < embedding.length; i++) {
395
- paddedEmbedding[i] = embedding[i];
396
- }
397
- return paddedEmbedding;
398
- }
399
- // If the embedding is too long, truncate
400
- else if (embedding.length > 512) {
401
- return embedding.slice(0, 512);
402
- }
403
- }
404
- return embedding;
405
- });
406
- // Map the results back to the original array order
407
- const results = [];
408
- let embeddingIndex = 0;
409
- for (let i = 0; i < dataArray.length; i++) {
410
- const text = dataArray[i];
411
- if (typeof text === 'string' && text.trim() !== '') {
412
- // Use the standardized embedding for non-empty strings
413
- results.push(standardizedEmbeddings[embeddingIndex]);
414
- embeddingIndex++;
191
+ // Validate embedding dimensions
192
+ if (embedding.length !== 384) {
193
+ this.logger('warn', `Unexpected embedding dimension: ${embedding.length}, expected 384`);
194
+ // Pad or truncate to 384 dimensions
195
+ if (embedding.length < 384) {
196
+ embedding = [...embedding, ...new Array(384 - embedding.length).fill(0)];
415
197
  }
416
198
  else {
417
- // Use a zero vector for empty strings
418
- results.push(new Array(512).fill(0));
199
+ embedding = embedding.slice(0, 384);
419
200
  }
420
201
  }
421
- return results;
202
+ return embedding;
422
203
  }
423
204
  catch (error) {
424
- this.logger('error', 'Failed to batch embed text with Universal Sentence Encoder:', error);
425
- throw new Error(`Universal Sentence Encoder batch embedding failed: ${error}`);
205
+ this.logger('error', 'Error generating embeddings:', error);
206
+ throw new Error(`Failed to generate embeddings: ${error}`);
426
207
  }
427
208
  }
428
209
  /**
429
- * Dispose of the model resources
210
+ * Dispose of the model and free resources
430
211
  */
431
212
  async dispose() {
432
- if (this.model && this.tf) {
433
- try {
434
- // Dispose of the model and tensors
435
- this.model.dispose();
436
- this.tf.disposeVariables();
437
- this.initialized = false;
438
- }
439
- catch (error) {
440
- this.logger('error', 'Failed to dispose Universal Sentence Encoder:', error);
441
- }
213
+ if (this.extractor && typeof this.extractor.dispose === 'function') {
214
+ await this.extractor.dispose();
442
215
  }
443
- return Promise.resolve();
444
- }
445
- }
446
- /**
447
- * Helper function - NO LONGER USED
448
- * Kept for compatibility but will be removed in next major version
449
- * @deprecated Since we removed @tensorflow-models/universal-sentence-encoder dependency
450
- */
451
- function findUSELoadFunction(sentenceEncoderModule) {
452
- // Module structure available for debugging if needed
453
- // Find the appropriate load function from the module
454
- let loadFunction = null;
455
- // Try sentenceEncoderModule.load first (direct export)
456
- if (sentenceEncoderModule.load &&
457
- typeof sentenceEncoderModule.load === 'function') {
458
- loadFunction = sentenceEncoderModule.load;
459
- }
460
- // Then try sentenceEncoderModule.default.load (default export)
461
- else if (sentenceEncoderModule.default &&
462
- sentenceEncoderModule.default.load &&
463
- typeof sentenceEncoderModule.default.load === 'function') {
464
- loadFunction = sentenceEncoderModule.default.load;
465
- }
466
- // Try sentenceEncoderModule.default directly if it's a function
467
- else if (sentenceEncoderModule.default &&
468
- typeof sentenceEncoderModule.default === 'function') {
469
- loadFunction = sentenceEncoderModule.default;
470
- }
471
- // Try sentenceEncoderModule directly if it's a function
472
- else if (typeof sentenceEncoderModule === 'function') {
473
- loadFunction = sentenceEncoderModule;
474
- }
475
- // Try additional common patterns
476
- else if (sentenceEncoderModule.UniversalSentenceEncoder &&
477
- typeof sentenceEncoderModule.UniversalSentenceEncoder.load === 'function') {
478
- loadFunction = sentenceEncoderModule.UniversalSentenceEncoder.load;
479
- }
480
- else if (sentenceEncoderModule.default &&
481
- sentenceEncoderModule.default.UniversalSentenceEncoder &&
482
- typeof sentenceEncoderModule.default.UniversalSentenceEncoder.load ===
483
- 'function') {
484
- loadFunction = sentenceEncoderModule.default.UniversalSentenceEncoder.load;
216
+ this.extractor = null;
217
+ this.initialized = false;
485
218
  }
486
- // Try to find the load function in the module's properties
487
- else {
488
- // Look for any property that might be a load function
489
- for (const key in sentenceEncoderModule) {
490
- if (typeof sentenceEncoderModule[key] === 'function') {
491
- // Check if the function name or key contains 'load'
492
- const fnName = sentenceEncoderModule[key].name || key;
493
- if (fnName.toLowerCase().includes('load')) {
494
- loadFunction = sentenceEncoderModule[key];
495
- break;
496
- }
497
- }
498
- // Also check nested objects
499
- else if (typeof sentenceEncoderModule[key] === 'object' &&
500
- sentenceEncoderModule[key] !== null) {
501
- for (const nestedKey in sentenceEncoderModule[key]) {
502
- if (typeof sentenceEncoderModule[key][nestedKey] === 'function') {
503
- const fnName = sentenceEncoderModule[key][nestedKey].name || nestedKey;
504
- if (fnName.toLowerCase().includes('load')) {
505
- loadFunction = sentenceEncoderModule[key][nestedKey];
506
- break;
507
- }
508
- }
509
- }
510
- if (loadFunction)
511
- break;
512
- }
513
- }
219
+ /**
220
+ * Get the dimension of embeddings produced by this model
221
+ */
222
+ getDimension() {
223
+ return 384;
514
224
  }
515
- // Return a function that calls the load function without arguments
516
- // This will use the bundled model from the package
517
- if (loadFunction) {
518
- return async () => await loadFunction();
225
+ /**
226
+ * Check if the model is initialized
227
+ */
228
+ isInitialized() {
229
+ return this.initialized;
519
230
  }
520
- return null;
521
231
  }
232
+ // Legacy alias for backward compatibility
233
+ export const UniversalSentenceEncoder = TransformerEmbedding;
522
234
  /**
523
- * Check if we're running in a test environment (standalone version)
524
- * Uses the same logic as the class method to avoid duplication
235
+ * Create a new embedding model instance
525
236
  */
526
- function isTestEnvironment() {
527
- // Use the same implementation as the class method
528
- // Safely check for Node.js environment first
529
- if (typeof process === 'undefined') {
530
- return false;
531
- }
532
- return (process.env.NODE_ENV === 'test' ||
533
- process.env.VITEST === 'true' ||
534
- (typeof global !== 'undefined' && global.__vitest__) ||
535
- process.argv.some((arg) => arg.includes('vitest')));
237
+ export function createEmbeddingModel(options) {
238
+ return new TransformerEmbedding(options);
536
239
  }
537
240
  /**
538
- * Log message only if not in test environment and verbose mode is enabled (standalone version)
539
- * @param level Log level ('log', 'warn', 'error')
540
- * @param message Message to log
541
- * @param args Additional arguments to log
542
- * @param verbose Whether to log non-essential messages (default: true)
241
+ * Default embedding function using the lightweight transformer model
543
242
  */
544
- function logIfNotTest(level, message, args = [], verbose = true) {
545
- // Always log errors, but only log other messages if verbose mode is enabled
546
- if ((level === 'error' || verbose) && !isTestEnvironment()) {
547
- console[level](message, ...args);
548
- }
549
- }
243
+ export const defaultEmbeddingFunction = async (data) => {
244
+ const embedder = new TransformerEmbedding({ verbose: false });
245
+ return await embedder.embed(data);
246
+ };
550
247
  /**
551
- * Create an embedding function from an embedding model
552
- * @param model Embedding model to use (optional, defaults to UniversalSentenceEncoder)
248
+ * Create an embedding function with custom options
553
249
  */
554
- export function createEmbeddingFunction(model) {
555
- // If no model is provided, use the default TensorFlow embedding function
556
- if (!model) {
557
- return createTensorFlowEmbeddingFunction();
558
- }
250
+ export function createEmbeddingFunction(options = {}) {
251
+ const embedder = new TransformerEmbedding(options);
559
252
  return async (data) => {
560
- return await model.embed(data);
253
+ return await embedder.embed(data);
561
254
  };
562
255
  }
563
256
  /**
564
- * Creates a TensorFlow-based Universal Sentence Encoder embedding function
565
- * This is the required embedding function for all text embeddings
566
- * Uses a shared model instance for better performance across multiple calls
567
- * @param options Configuration options
568
- * @param options.verbose Whether to log non-essential messages (default: true)
257
+ * Batch embedding function for processing multiple texts efficiently
569
258
  */
570
- // Create a single shared instance of the model that persists across all embedding calls
571
- let sharedModel = null;
572
- let sharedModelInitialized = false;
573
- let sharedModelVerbose = true;
574
- export function createTensorFlowEmbeddingFunction(options = {}) {
575
- // Update verbose setting if provided
576
- if (options.verbose !== undefined) {
577
- sharedModelVerbose = options.verbose;
578
- }
579
- // Create the shared model if it doesn't exist yet
580
- if (!sharedModel) {
581
- sharedModel = new UniversalSentenceEncoder({ verbose: sharedModelVerbose });
582
- }
583
- return async (data) => {
584
- try {
585
- // Initialize the model if it hasn't been initialized yet
586
- if (!sharedModelInitialized) {
587
- try {
588
- await sharedModel.init();
589
- sharedModelInitialized = true;
590
- }
591
- catch (initError) {
592
- // Reset the flag so we can retry initialization on the next call
593
- sharedModelInitialized = false;
594
- throw initError;
595
- }
596
- }
597
- return await sharedModel.embed(data);
259
+ export async function batchEmbed(texts, options = {}) {
260
+ const embedder = new TransformerEmbedding(options);
261
+ await embedder.init();
262
+ const embeddings = [];
263
+ // Process in batches for memory efficiency
264
+ const batchSize = 32;
265
+ for (let i = 0; i < texts.length; i += batchSize) {
266
+ const batch = texts.slice(i, i + batchSize);
267
+ for (const text of batch) {
268
+ const embedding = await embedder.embed(text);
269
+ embeddings.push(embedding);
598
270
  }
599
- catch (error) {
600
- logIfNotTest('error', 'Failed to use Universal Sentence Encoder:', [error], sharedModelVerbose);
601
- // No fallback - Universal Sentence Encoder is required
602
- throw new Error(`Universal Sentence Encoder is required and no fallbacks are allowed: ${error}`);
603
- }
604
- };
605
- }
606
- /**
607
- * Default embedding function
608
- * Uses UniversalSentenceEncoder for all text embeddings
609
- * TensorFlow.js is required for this to work
610
- * Uses CPU for compatibility
611
- * @param options Configuration options
612
- * @param options.verbose Whether to log non-essential messages (default: true)
613
- */
614
- export function getDefaultEmbeddingFunction(options = {}) {
615
- return createTensorFlowEmbeddingFunction(options);
616
- }
617
- /**
618
- * Default embedding function with default options
619
- * Uses UniversalSentenceEncoder for all text embeddings
620
- * TensorFlow.js is required for this to work
621
- * Uses CPU for compatibility
622
- */
623
- export const defaultEmbeddingFunction = getDefaultEmbeddingFunction();
624
- /**
625
- * Creates a batch embedding function that uses UniversalSentenceEncoder
626
- * TensorFlow.js is required for this to work
627
- * Processes all items in a single batch operation
628
- * Uses a shared model instance for better performance across multiple calls
629
- * @param options Configuration options
630
- * @param options.verbose Whether to log non-essential messages (default: true)
631
- */
632
- // Create a single shared instance of the model that persists across function calls
633
- let sharedBatchModel = null;
634
- let sharedBatchModelInitialized = false;
635
- let sharedBatchModelVerbose = true;
636
- export function createBatchEmbeddingFunction(options = {}) {
637
- // Update verbose setting if provided
638
- if (options.verbose !== undefined) {
639
- sharedBatchModelVerbose = options.verbose;
640
271
  }
641
- // Create the shared model if it doesn't exist yet
642
- if (!sharedBatchModel) {
643
- sharedBatchModel = new UniversalSentenceEncoder({
644
- verbose: sharedBatchModelVerbose
645
- });
646
- }
647
- return async (dataArray) => {
648
- try {
649
- // Initialize the model if it hasn't been initialized yet
650
- if (!sharedBatchModelInitialized) {
651
- try {
652
- await sharedBatchModel.init();
653
- sharedBatchModelInitialized = true;
654
- }
655
- catch (initError) {
656
- // Reset the flag so we can retry initialization on the next call
657
- sharedBatchModelInitialized = false;
658
- throw initError;
659
- }
660
- }
661
- return await sharedBatchModel.embedBatch(dataArray);
662
- }
663
- catch (error) {
664
- logIfNotTest('error', 'Failed to use Universal Sentence Encoder batch embedding:', [error], sharedBatchModelVerbose);
665
- // No fallback - Universal Sentence Encoder is required
666
- throw new Error(`Universal Sentence Encoder is required for batch embedding and no fallbacks are allowed: ${error}`);
667
- }
668
- };
272
+ await embedder.dispose();
273
+ return embeddings;
669
274
  }
670
275
  /**
671
- * Get a batch embedding function with custom options
672
- * Uses UniversalSentenceEncoder for all text embeddings
673
- * TensorFlow.js is required for this to work
674
- * Processes all items in a single batch operation
675
- * @param options Configuration options
676
- * @param options.verbose Whether to log non-essential messages (default: true)
276
+ * Embedding functions for specific model types
677
277
  */
678
- export function getDefaultBatchEmbeddingFunction(options = {}) {
679
- return createBatchEmbeddingFunction(options);
680
- }
681
- /**
682
- * Default batch embedding function with default options
683
- * Uses UniversalSentenceEncoder for all text embeddings
684
- * TensorFlow.js is required for this to work
685
- * Processes all items in a single batch operation
686
- */
687
- export const defaultBatchEmbeddingFunction = getDefaultBatchEmbeddingFunction();
688
- /**
689
- * Creates an embedding function that runs in a separate thread
690
- * This is a wrapper around createEmbeddingFunction that uses executeInThread
691
- * @param model Embedding model to use
692
- */
693
- export function createThreadedEmbeddingFunction(model) {
694
- const embeddingFunction = createEmbeddingFunction(model);
695
- return async (data) => {
696
- // Convert the embedding function to a string
697
- const fnString = embeddingFunction.toString();
698
- // Execute the embedding function in a "thread" (main thread in this implementation)
699
- return await executeInThread(fnString, data);
700
- };
701
- }
278
+ export const embeddingFunctions = {
279
+ /** Default lightweight model (all-MiniLM-L6-v2, 384 dimensions) */
280
+ default: defaultEmbeddingFunction,
281
+ /** Create custom embedding function */
282
+ create: createEmbeddingFunction,
283
+ /** Batch processing */
284
+ batch: batchEmbed
285
+ };
702
286
  //# sourceMappingURL=embedding.js.map