@sjcrh/proteinpaint-rust 2.31.0 → 2.34.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/Cargo.toml +4 -0
- package/index.js +31 -2
- package/package.json +1 -1
- package/src/gdcmaf.rs +14 -33
- package/src/gene_variance.rs +354 -0
package/Cargo.toml
CHANGED
package/index.js
CHANGED
|
@@ -1,8 +1,9 @@
|
|
|
1
1
|
const path = require('path'),
|
|
2
2
|
spawn = require('child_process').spawn,
|
|
3
|
-
Readable = require('stream').Readable
|
|
3
|
+
Readable = require('stream').Readable,
|
|
4
|
+
Transform = require('stream').Transform
|
|
4
5
|
|
|
5
|
-
exports.run_rust = function(binfile, input_data) {
|
|
6
|
+
exports.run_rust = function (binfile, input_data) {
|
|
6
7
|
return new Promise((resolve, reject) => {
|
|
7
8
|
const binpath = path.join(__dirname, '/target/release/', binfile)
|
|
8
9
|
const ps = spawn(binpath)
|
|
@@ -41,3 +42,31 @@ exports.run_rust = function(binfile, input_data) {
|
|
|
41
42
|
})
|
|
42
43
|
})
|
|
43
44
|
}
|
|
45
|
+
|
|
46
|
+
exports.run_rust_stream = function (binfile, input_data) {
|
|
47
|
+
const binpath = path.join(__dirname, '/target/release/', binfile)
|
|
48
|
+
const ps = spawn(binpath)
|
|
49
|
+
try {
|
|
50
|
+
Readable.from(input_data).pipe(ps.stdin)
|
|
51
|
+
} catch (error) {
|
|
52
|
+
ps.kill()
|
|
53
|
+
let errmsg = error
|
|
54
|
+
if (stderr.length) errmsg += `killed run_rust('${binfile}'), stderr: ${stderr.join('').trim()}`
|
|
55
|
+
reject(errmsg)
|
|
56
|
+
}
|
|
57
|
+
|
|
58
|
+
const childStream = new Transform({
|
|
59
|
+
transform(chunk, encoding, callback) {
|
|
60
|
+
this.push(chunk)
|
|
61
|
+
callback()
|
|
62
|
+
}
|
|
63
|
+
})
|
|
64
|
+
ps.stdout.pipe(childStream)
|
|
65
|
+
childStream.on('error', err => {
|
|
66
|
+
reject(err)
|
|
67
|
+
})
|
|
68
|
+
childStream.on('close', code => {
|
|
69
|
+
childStream.end()
|
|
70
|
+
})
|
|
71
|
+
return childStream
|
|
72
|
+
}
|
package/package.json
CHANGED
package/src/gdcmaf.rs
CHANGED
|
@@ -4,8 +4,7 @@ use flate2::Compression;
|
|
|
4
4
|
use serde_json::Value;
|
|
5
5
|
use std::path::Path;
|
|
6
6
|
use futures::StreamExt;
|
|
7
|
-
use std::io;
|
|
8
|
-
use std::io::{Read,Write};
|
|
7
|
+
use std::io::{self,Read,Write};
|
|
9
8
|
use std::sync::mpsc;
|
|
10
9
|
|
|
11
10
|
|
|
@@ -45,8 +44,7 @@ fn gen_vec(d:String) -> (Vec<String>,Vec<Vec<u8>>) {
|
|
|
45
44
|
}
|
|
46
45
|
};
|
|
47
46
|
maf_out_lst.push("\n".to_string());
|
|
48
|
-
|
|
49
|
-
maf_bit.push(maf_compress_data);
|
|
47
|
+
maf_bit.push(maf_out_lst.join("\t").as_bytes().to_vec());
|
|
50
48
|
lst_chrom_pos.push(chrom+"\t"+&pos);
|
|
51
49
|
}
|
|
52
50
|
};
|
|
@@ -62,14 +60,6 @@ fn get_sorted_indices(lst: &Vec<String>) -> Vec<usize>{
|
|
|
62
60
|
indices
|
|
63
61
|
}
|
|
64
62
|
|
|
65
|
-
// convert vector (maf row) to GZIP encoded format
|
|
66
|
-
fn gen_gzip_vec(s:Vec<String>) -> Vec<u8> {
|
|
67
|
-
let mut encoder = GzEncoder::new(Vec::new(), Compression::default());
|
|
68
|
-
let _ = encoder.write_all(s.join("\t").as_bytes());
|
|
69
|
-
let compress_data = encoder.finish().unwrap();
|
|
70
|
-
compress_data
|
|
71
|
-
}
|
|
72
|
-
|
|
73
63
|
// GDC MAF columns (96)
|
|
74
64
|
const MAF_COL: [&str;96] = ["Hugo_Symbol", "Entrez_Gene_Id", "Center", "NCBI_Build", "Chromosome",
|
|
75
65
|
"Start_Position", "End_Position", "Strand", "Variant_Classification",
|
|
@@ -112,18 +102,15 @@ async fn main() -> Result<(),Box<dyn std::error::Error>> {
|
|
|
112
102
|
url.into_iter().map(|url|{
|
|
113
103
|
let txt = tx.clone();
|
|
114
104
|
async move {
|
|
115
|
-
|
|
116
|
-
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
txt.send((lst_chrom_pos,maf_bit)).unwrap();
|
|
124
|
-
}
|
|
105
|
+
if let Ok(resp) = reqwest::get(&url).await {
|
|
106
|
+
let content = resp.bytes().await.unwrap();
|
|
107
|
+
let mut decoder = GzDecoder::new(&content[..]);
|
|
108
|
+
let mut decompressed_content = Vec::new();
|
|
109
|
+
if let Ok(_) = decoder.read_to_end(&mut decompressed_content) {
|
|
110
|
+
let text = String::from_utf8_lossy(&decompressed_content);
|
|
111
|
+
let (lst_chrom_pos,maf_bit) = gen_vec(text.to_string());
|
|
112
|
+
txt.send((lst_chrom_pos,maf_bit)).unwrap();
|
|
125
113
|
}
|
|
126
|
-
Err(_) => println!("ERROR downloading {}", url),
|
|
127
114
|
}
|
|
128
115
|
}
|
|
129
116
|
})
|
|
@@ -145,17 +132,11 @@ async fn main() -> Result<(),Box<dyn std::error::Error>> {
|
|
|
145
132
|
// output
|
|
146
133
|
// maf_out_bit: A vector of GZIPPED maf
|
|
147
134
|
// compress_header: output header
|
|
148
|
-
let mut
|
|
149
|
-
let
|
|
150
|
-
|
|
151
|
-
let compress_header_line_break = gen_gzip_vec(["\n".to_string()].to_vec());
|
|
152
|
-
maf_out_bit.extend(compress_header_line_break);
|
|
135
|
+
let mut encoder = GzEncoder::new(io::stdout(), Compression::default());
|
|
136
|
+
let _ = encoder.write_all(&MAF_COL.join("\t").as_bytes().to_vec()).expect("Failed to write header");
|
|
137
|
+
let _ = encoder.write_all(b"\n").expect("Failed to write newline");
|
|
153
138
|
for i in idx_sorted.iter() {
|
|
154
|
-
|
|
139
|
+
let _ = encoder.write_all(&maf_bit[*i]).expect("Failed to write file");
|
|
155
140
|
};
|
|
156
|
-
|
|
157
|
-
// standard output
|
|
158
|
-
println!("{:?}",maf_out_bit);
|
|
159
|
-
std::io::stdout().flush().expect("Failed to flush stdout");
|
|
160
141
|
Ok(())
|
|
161
142
|
}
|
|
@@ -0,0 +1,354 @@
|
|
|
1
|
+
/*
|
|
2
|
+
This script selects the top most variant genes by calculating the variance/interquartile region for each gene.
|
|
3
|
+
|
|
4
|
+
Various JSON parameters:
|
|
5
|
+
samples: Enter the sample ID(s) separated by comma
|
|
6
|
+
input_file: Path to input file
|
|
7
|
+
filter_extreme_values: boolean (true/false). When true, this filter according to logic filterbyExpr in edgeR. This basically removes genes that have very low gene counts.
|
|
8
|
+
num_genes: The top num_genes (for e.g 10) that need to be reported in the output.
|
|
9
|
+
param: var/iqr . This parameter decides whether to sort genes using variance or interquartile region. There is an article which states that its better to use interquartile region than variance for selecting genes for clustering https://www.frontiersin.org/articles/10.3389/fgene.2021.632620/full
|
|
10
|
+
|
|
11
|
+
Example syntax: cd .. && cargo build --release && json='{"samples":"sample1,sample2,sample3","input_file":"/path/to/input/file","filter_extreme_values":true,"num_genes":100, "param":"var"}' && time echo $json | target/release/gene_variance
|
|
12
|
+
*/
|
|
13
|
+
#![allow(non_snake_case)]
|
|
14
|
+
use json;
|
|
15
|
+
use nalgebra::base::dimension::Dyn;
|
|
16
|
+
use nalgebra::base::Matrix;
|
|
17
|
+
use nalgebra::base::VecStorage;
|
|
18
|
+
use nalgebra::DMatrix;
|
|
19
|
+
use serde::{Deserialize, Serialize};
|
|
20
|
+
use serde_json;
|
|
21
|
+
use statrs::statistics::Data;
|
|
22
|
+
use statrs::statistics::Median;
|
|
23
|
+
use statrs::statistics::OrderStatistics;
|
|
24
|
+
use statrs::statistics::Statistics;
|
|
25
|
+
use std::cmp::Ordering;
|
|
26
|
+
use std::io;
|
|
27
|
+
use std::path::Path;
|
|
28
|
+
use std::str::FromStr;
|
|
29
|
+
use std::time::Instant;
|
|
30
|
+
|
|
31
|
+
fn input_data(
|
|
32
|
+
filename: &String,
|
|
33
|
+
sample_list: &Vec<&str>,
|
|
34
|
+
) -> (
|
|
35
|
+
Matrix<f64, Dyn, Dyn, VecStorage<f64, Dyn, Dyn>>,
|
|
36
|
+
Vec<String>,
|
|
37
|
+
Vec<String>,
|
|
38
|
+
) {
|
|
39
|
+
// Build the CSV reader and iterate over each record.
|
|
40
|
+
let path = Path::new(filename);
|
|
41
|
+
let mut rdr = csv::Reader::from_path(path).unwrap();
|
|
42
|
+
let mut num_lines: usize = 0;
|
|
43
|
+
let mut input_vector: Vec<f64> = Vec::with_capacity(500 * 65000);
|
|
44
|
+
let mut gene_names: Vec<String> = Vec::with_capacity(65000);
|
|
45
|
+
let mut gene_symbols: Vec<String> = Vec::with_capacity(65000);
|
|
46
|
+
let mut num_columns: usize = 0;
|
|
47
|
+
|
|
48
|
+
// Check headers for samples
|
|
49
|
+
let header_line = rdr.headers().unwrap();
|
|
50
|
+
let mut headers: Vec<&str> = Vec::with_capacity(1500);
|
|
51
|
+
for field in header_line.iter() {
|
|
52
|
+
headers = field.split('\t').collect::<Vec<&str>>();
|
|
53
|
+
}
|
|
54
|
+
//println!("headers:{:?}", headers);
|
|
55
|
+
let mut sample_indexes_original: Vec<usize> = Vec::with_capacity(sample_list.len());
|
|
56
|
+
let gene_name_index = headers.iter().position(|r| r == &"geneID");
|
|
57
|
+
let gene_symbol_index = headers.iter().position(|r| r == &"geneSymbol");
|
|
58
|
+
//let mut case_samples_not_found: Vec<&str> = Vec::with_capacity(sample_list.len());
|
|
59
|
+
//let mut control_samples_not_found: Vec<&str> = Vec::with_capacity(control_list.len());
|
|
60
|
+
|
|
61
|
+
for item in sample_list {
|
|
62
|
+
//println!("item:{}", item);
|
|
63
|
+
let index = headers.iter().position(|r| r == item);
|
|
64
|
+
match index {
|
|
65
|
+
Some(n) => sample_indexes_original.push(n),
|
|
66
|
+
None => {
|
|
67
|
+
//panic!("Case sample not found:{}", item);
|
|
68
|
+
//case_samples_not_found.push(item);
|
|
69
|
+
}
|
|
70
|
+
}
|
|
71
|
+
}
|
|
72
|
+
|
|
73
|
+
//println!("case_indexes_original:{:?}", case_indexes_original);
|
|
74
|
+
|
|
75
|
+
let mut samples_indexes: Vec<usize> = Vec::with_capacity(sample_list.len());
|
|
76
|
+
for result in rdr.records() {
|
|
77
|
+
// The iterator yields Result<StringRecord, Error>, so we check the
|
|
78
|
+
// error here.
|
|
79
|
+
let record = result.unwrap();
|
|
80
|
+
//println!("record:{:?}", record);
|
|
81
|
+
let mut index = 0;
|
|
82
|
+
for field in record[0].split('\t').collect::<Vec<&str>>() {
|
|
83
|
+
if index == gene_name_index.unwrap() {
|
|
84
|
+
gene_names.push(field.to_string());
|
|
85
|
+
} else if index == gene_symbol_index.unwrap() {
|
|
86
|
+
gene_symbols.push(field.to_string());
|
|
87
|
+
} else if sample_indexes_original.contains(&index) {
|
|
88
|
+
let num = FromStr::from_str(field);
|
|
89
|
+
match num {
|
|
90
|
+
Ok(n) => {
|
|
91
|
+
//println!("n:{}", n);
|
|
92
|
+
input_vector.push(n);
|
|
93
|
+
if num_lines == 0 {
|
|
94
|
+
samples_indexes.push(num_columns);
|
|
95
|
+
num_columns += 1;
|
|
96
|
+
}
|
|
97
|
+
}
|
|
98
|
+
Err(_n) => {
|
|
99
|
+
panic!(
|
|
100
|
+
"Number {} in line {} and column {} is not a decimal number",
|
|
101
|
+
field,
|
|
102
|
+
num_lines + 1,
|
|
103
|
+
index + 1
|
|
104
|
+
);
|
|
105
|
+
}
|
|
106
|
+
}
|
|
107
|
+
}
|
|
108
|
+
index += 1;
|
|
109
|
+
}
|
|
110
|
+
num_lines += 1;
|
|
111
|
+
}
|
|
112
|
+
//println!("case_indexes:{:?}", case_indexes);
|
|
113
|
+
//println!("control_indexes:{:?}", control_indexes);
|
|
114
|
+
|
|
115
|
+
let dm = DMatrix::from_row_slice(num_lines, num_columns, &input_vector);
|
|
116
|
+
//println!("dm:{:?}", dm);
|
|
117
|
+
(dm, gene_names, gene_symbols)
|
|
118
|
+
}
|
|
119
|
+
|
|
120
|
+
#[allow(dead_code)]
|
|
121
|
+
#[derive(Debug, Serialize, Deserialize)]
|
|
122
|
+
struct GeneInfo {
|
|
123
|
+
gene_name: String,
|
|
124
|
+
gene_symbol: String,
|
|
125
|
+
param: f64,
|
|
126
|
+
}
|
|
127
|
+
|
|
128
|
+
fn calculate_variance(
|
|
129
|
+
input_matrix: Matrix<f64, Dyn, Dyn, VecStorage<f64, Dyn, Dyn>>,
|
|
130
|
+
gene_names: Vec<String>,
|
|
131
|
+
gene_symbols: Vec<String>,
|
|
132
|
+
mut min_sample_size: f64,
|
|
133
|
+
filter_extreme_values: bool,
|
|
134
|
+
param: String,
|
|
135
|
+
) -> Vec<GeneInfo> {
|
|
136
|
+
const MIN_COUNT: f64 = 10.0; // Value of constant from R implementation
|
|
137
|
+
const MIN_TOTAL_COUNT: f64 = 15.0; // Value of constant from R implementation
|
|
138
|
+
const LARGE_N: f64 = 10.0; // Value of constant from R implementation
|
|
139
|
+
const MIN_PROP: f64 = 0.7; // Value of constant from R implementation
|
|
140
|
+
|
|
141
|
+
if min_sample_size == 0.0 {
|
|
142
|
+
panic!("Only one condition present in groups");
|
|
143
|
+
}
|
|
144
|
+
|
|
145
|
+
if min_sample_size > LARGE_N {
|
|
146
|
+
min_sample_size = LARGE_N + (min_sample_size - LARGE_N) * MIN_PROP;
|
|
147
|
+
}
|
|
148
|
+
|
|
149
|
+
let mut lib_sizes = Vec::<f64>::new();
|
|
150
|
+
let lib_sizes_vector = input_matrix.row_sum();
|
|
151
|
+
//println!("lib_sizes_vector:{:?}", lib_sizes_vector);
|
|
152
|
+
for i in 0..lib_sizes_vector.ncols() {
|
|
153
|
+
lib_sizes.push(lib_sizes_vector[(0, i)].into());
|
|
154
|
+
}
|
|
155
|
+
//println!("lib_sizes:{:?}", lib_sizes);
|
|
156
|
+
//println!("min_sample_size:{}", min_sample_size);
|
|
157
|
+
let median_lib_size = Data::new(lib_sizes.clone()).median();
|
|
158
|
+
let cpm_cutoff = (MIN_COUNT / median_lib_size) * 1000000.0;
|
|
159
|
+
//println!("cpm_cutoff:{}", cpm_cutoff);
|
|
160
|
+
let cpm_matrix = cpm(&input_matrix);
|
|
161
|
+
const TOL: f64 = 1e-14; // Value of constant from R implementation
|
|
162
|
+
|
|
163
|
+
let mut gene_infos = Vec::<GeneInfo>::new();
|
|
164
|
+
let row_sums = input_matrix.column_sum();
|
|
165
|
+
for row in 0..input_matrix.nrows() {
|
|
166
|
+
let mut trues = 0.0;
|
|
167
|
+
for col in 0..cpm_matrix.ncols() {
|
|
168
|
+
if cpm_matrix[(row, col)] >= cpm_cutoff {
|
|
169
|
+
trues += 1.0;
|
|
170
|
+
}
|
|
171
|
+
}
|
|
172
|
+
let mut keep_cpm_bool = false;
|
|
173
|
+
if trues >= min_sample_size - TOL {
|
|
174
|
+
keep_cpm_bool = true;
|
|
175
|
+
//keep_cpm.push(keep_cpm_bool);
|
|
176
|
+
//positive_cpm += 1;
|
|
177
|
+
}
|
|
178
|
+
|
|
179
|
+
let mut keep_total_bool = false;
|
|
180
|
+
if row_sums[(row, 0)] as f64 >= MIN_TOTAL_COUNT - TOL {
|
|
181
|
+
keep_total_bool = true;
|
|
182
|
+
//keep_total.push(keep_total_bool);
|
|
183
|
+
//positive_total += 1;
|
|
184
|
+
}
|
|
185
|
+
|
|
186
|
+
let mut gene_counts: Vec<f64> = Vec::with_capacity(input_matrix.ncols());
|
|
187
|
+
for col in 0..input_matrix.ncols() {
|
|
188
|
+
gene_counts.push(input_matrix[(row, col)]);
|
|
189
|
+
}
|
|
190
|
+
if param == "var" {
|
|
191
|
+
// Calculating variance
|
|
192
|
+
if gene_counts.clone().variance().is_nan() == true {
|
|
193
|
+
} else if filter_extreme_values == true
|
|
194
|
+
&& keep_cpm_bool == true
|
|
195
|
+
&& keep_total_bool == true
|
|
196
|
+
{
|
|
197
|
+
gene_infos.push(GeneInfo {
|
|
198
|
+
param: gene_counts.variance(),
|
|
199
|
+
gene_name: gene_names[row].clone(),
|
|
200
|
+
gene_symbol: gene_symbols[row].clone(),
|
|
201
|
+
});
|
|
202
|
+
} else if filter_extreme_values == false {
|
|
203
|
+
gene_infos.push(GeneInfo {
|
|
204
|
+
param: gene_counts.variance(),
|
|
205
|
+
gene_name: gene_names[row].clone(),
|
|
206
|
+
gene_symbol: gene_symbols[row].clone(),
|
|
207
|
+
});
|
|
208
|
+
}
|
|
209
|
+
} else {
|
|
210
|
+
// Calculating interquartile region
|
|
211
|
+
let mut gene_counts_data = Data::new(gene_counts);
|
|
212
|
+
if gene_counts_data.clone().interquartile_range().is_nan() == true {
|
|
213
|
+
} else if filter_extreme_values == true
|
|
214
|
+
&& keep_cpm_bool == true
|
|
215
|
+
&& keep_total_bool == true
|
|
216
|
+
{
|
|
217
|
+
gene_infos.push(GeneInfo {
|
|
218
|
+
param: gene_counts_data.interquartile_range(),
|
|
219
|
+
gene_name: gene_names[row].clone(),
|
|
220
|
+
gene_symbol: gene_symbols[row].clone(),
|
|
221
|
+
});
|
|
222
|
+
} else if filter_extreme_values == false {
|
|
223
|
+
gene_infos.push(GeneInfo {
|
|
224
|
+
param: gene_counts_data.interquartile_range(),
|
|
225
|
+
gene_name: gene_names[row].clone(),
|
|
226
|
+
gene_symbol: gene_symbols[row].clone(),
|
|
227
|
+
});
|
|
228
|
+
}
|
|
229
|
+
}
|
|
230
|
+
}
|
|
231
|
+
gene_infos
|
|
232
|
+
.as_mut_slice()
|
|
233
|
+
.sort_by(|a, b| (a.param).partial_cmp(&b.param).unwrap_or(Ordering::Equal));
|
|
234
|
+
gene_infos
|
|
235
|
+
}
|
|
236
|
+
|
|
237
|
+
fn cpm(
|
|
238
|
+
input_matrix: &Matrix<f64, Dyn, Dyn, VecStorage<f64, Dyn, Dyn>>,
|
|
239
|
+
) -> Matrix<f64, Dyn, Dyn, VecStorage<f64, Dyn, Dyn>> {
|
|
240
|
+
//let mut blank = Vec::<f64>::new();
|
|
241
|
+
let mut blank = Vec::with_capacity(input_matrix.nrows() * input_matrix.ncols());
|
|
242
|
+
for _i in 0..input_matrix.nrows() * input_matrix.ncols() {
|
|
243
|
+
blank.push(0.0);
|
|
244
|
+
}
|
|
245
|
+
let mut output_matrix = DMatrix::from_vec(input_matrix.nrows(), input_matrix.ncols(), blank);
|
|
246
|
+
let column_sums = input_matrix.row_sum();
|
|
247
|
+
for col in 0..input_matrix.ncols() {
|
|
248
|
+
let norm_factor = column_sums[(0, col)];
|
|
249
|
+
for row in 0..input_matrix.nrows() {
|
|
250
|
+
output_matrix[(row, col)] =
|
|
251
|
+
(input_matrix[(row, col)] as f64 * 1000000.0) / norm_factor as f64;
|
|
252
|
+
}
|
|
253
|
+
}
|
|
254
|
+
//println!("output_matrix:{:?}", output_matrix);
|
|
255
|
+
output_matrix
|
|
256
|
+
}
|
|
257
|
+
|
|
258
|
+
fn main() {
|
|
259
|
+
let mut input = String::new();
|
|
260
|
+
match io::stdin().read_line(&mut input) {
|
|
261
|
+
// Accepting the piped input from nodejs (or command line from testing)
|
|
262
|
+
Ok(_bytes_read) => {
|
|
263
|
+
//println!("{} bytes read", bytes_read);
|
|
264
|
+
//println!("{}", input);
|
|
265
|
+
let input_json = json::parse(&input);
|
|
266
|
+
match input_json {
|
|
267
|
+
Ok(json_string) => {
|
|
268
|
+
let now = Instant::now();
|
|
269
|
+
let samples_string_result = &json_string["samples"].to_owned();
|
|
270
|
+
let samples_string;
|
|
271
|
+
match samples_string_result.as_str() {
|
|
272
|
+
Some(x) => {
|
|
273
|
+
samples_string = x.to_string();
|
|
274
|
+
}
|
|
275
|
+
None => {
|
|
276
|
+
panic!("Samples not provided");
|
|
277
|
+
}
|
|
278
|
+
}
|
|
279
|
+
|
|
280
|
+
let file_name_result = &json_string["input_file"];
|
|
281
|
+
let file_name;
|
|
282
|
+
match file_name_result.as_str() {
|
|
283
|
+
Some(x) => {
|
|
284
|
+
file_name = x.to_string();
|
|
285
|
+
}
|
|
286
|
+
None => {
|
|
287
|
+
panic!("File name is missing");
|
|
288
|
+
}
|
|
289
|
+
}
|
|
290
|
+
|
|
291
|
+
let param = &json_string["param"] // Value provide must be either "var" or "iqr"
|
|
292
|
+
.to_owned()
|
|
293
|
+
.as_str()
|
|
294
|
+
.unwrap()
|
|
295
|
+
.to_string();
|
|
296
|
+
if param != "var" && param != "iqr" {
|
|
297
|
+
// Check if any unknown method has been provided
|
|
298
|
+
panic!("Unknown method:{}", param);
|
|
299
|
+
}
|
|
300
|
+
let filter_extreme_values_result = &json_string["filter_extreme_values"];
|
|
301
|
+
|
|
302
|
+
let filter_extreme_values;
|
|
303
|
+
match filter_extreme_values_result.as_bool() {
|
|
304
|
+
Some(x) => {
|
|
305
|
+
filter_extreme_values = x;
|
|
306
|
+
}
|
|
307
|
+
None => {
|
|
308
|
+
filter_extreme_values = true; // If filter_extreme_values field is missing, set it to true by default
|
|
309
|
+
}
|
|
310
|
+
}
|
|
311
|
+
|
|
312
|
+
let num_genes_result = &json_string["num_genes"];
|
|
313
|
+
let num_genes;
|
|
314
|
+
match num_genes_result.as_usize() {
|
|
315
|
+
Some(x) => {
|
|
316
|
+
num_genes = x;
|
|
317
|
+
}
|
|
318
|
+
None => {
|
|
319
|
+
panic!("Number of genes to be given is missing")
|
|
320
|
+
}
|
|
321
|
+
}
|
|
322
|
+
|
|
323
|
+
let samples_list: Vec<&str> = samples_string.split(",").collect();
|
|
324
|
+
let (input_matrix, gene_names, gene_symbols) =
|
|
325
|
+
input_data(&file_name, &samples_list);
|
|
326
|
+
let gene_infos = calculate_variance(
|
|
327
|
+
input_matrix,
|
|
328
|
+
gene_names,
|
|
329
|
+
gene_symbols,
|
|
330
|
+
samples_list.len() as f64,
|
|
331
|
+
filter_extreme_values,
|
|
332
|
+
param.to_string(),
|
|
333
|
+
);
|
|
334
|
+
//println!("gene_infos:{:?}", gene_infos);
|
|
335
|
+
|
|
336
|
+
// Printing the top "num_genes" genes to JSON
|
|
337
|
+
let mut output_string = "[".to_string();
|
|
338
|
+
for j in 0..num_genes {
|
|
339
|
+
let i = gene_infos.len() - j - 1;
|
|
340
|
+
output_string += &serde_json::to_string(&gene_infos[i]).unwrap();
|
|
341
|
+
if i > gene_infos.len() - num_genes {
|
|
342
|
+
output_string += &",".to_string();
|
|
343
|
+
}
|
|
344
|
+
}
|
|
345
|
+
output_string += &"]".to_string();
|
|
346
|
+
println!("{}", output_string);
|
|
347
|
+
println!("Time for calculating variances:{:?}", now.elapsed());
|
|
348
|
+
}
|
|
349
|
+
Err(error) => println!("Incorrect json: {}", error),
|
|
350
|
+
}
|
|
351
|
+
}
|
|
352
|
+
Err(error) => println!("Piping error: {}", error),
|
|
353
|
+
}
|
|
354
|
+
}
|