@sjcrh/proteinpaint-rust 2.11.1 → 2.25.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/Cargo.toml +8 -0
- package/package.json +1 -1
- package/src/cluster.rs +102 -413
- package/src/test_examples.rs +642 -0
- package/src/wilcoxon.rs +427 -0
package/src/wilcoxon.rs
ADDED
|
@@ -0,0 +1,427 @@
|
|
|
1
|
+
/*
|
|
2
|
+
##########################
|
|
3
|
+
# Wilcoxon rank sum test #
|
|
4
|
+
##########################
|
|
5
|
+
|
|
6
|
+
##########################
|
|
7
|
+
# Documentation
|
|
8
|
+
##########################
|
|
9
|
+
|
|
10
|
+
This wilcoxon test implementation aims to copy the methodology used in R's wilcox_test() function
|
|
11
|
+
|
|
12
|
+
#########
|
|
13
|
+
# Usage #
|
|
14
|
+
#########
|
|
15
|
+
|
|
16
|
+
# Usage: cd .. && cargo build --release && time echo '[{"group1_id":"European Ancestry","group1_values":[3.7,2.5,5.9,13.1,1,10.6,3.2,3,6.5,15.5,2.6,16.5,2.6,4,8.6,8.3,1.9,7.9,7.9,6.1,17.6,3.1,3,1.5,8.1,18.2,-1.8,3.6,6,1.9,8.9,3.2,0.3,-1,11.2,6.2,16.2,7.5,9,9.4,18.9,0.1,11.5,10.1,12.5,14.6,1.5,17.3,15.4,7.6,2.4,13.5,3.8,17],"group2_id":"African Ancestry","group2_values":[11.5,5.1,21.1,4.4,-0.04]},{"group1_id":"European Ancestry","group1_values":[3.7,2.5,5.9,13.1,1,10.6,3.2,3,6.5,15.5,2.6,16.5,2.6,4,8.6,8.3,1.9,7.9,7.9,6.1,17.6,3.1,3,1.5,8.1,18.2,-1.8,3.6,6,1.9,8.9,3.2,0.3,-1,11.2,6.2,16.2,7.5,9,9.4,18.9,0.1,11.5,10.1,12.5,14.6,1.5,17.3,15.4,7.6,2.4,13.5,3.8,17],"group2_id":"Asian Ancestry","group2_values":[1.7]},{"group1_id":"African Ancestry","group1_values":[11.5,5.1,21.1,4.4,-0.04],"group2_id":"Asian Ancestry","group2_values":[]}]' | target/release/wilcoxon
|
|
17
|
+
|
|
18
|
+
# Several examples are present in test_examples.rs. This can be tested using the command: cd .. && cargo build --release && time cargo test
|
|
19
|
+
|
|
20
|
+
# Input data is in JSON format and is read in from <in.json> file.
|
|
21
|
+
# Results are written in JSON format to stdout.
|
|
22
|
+
|
|
23
|
+
# Input JSON specifications:
|
|
24
|
+
# [{
|
|
25
|
+
# group1_id: group1 id,
|
|
26
|
+
# group1_values: [] group1 data values,
|
|
27
|
+
# group2_id: group2 id,
|
|
28
|
+
# group2_values: [] group2 data values
|
|
29
|
+
# }]
|
|
30
|
+
#
|
|
31
|
+
# Output JSON specifications:
|
|
32
|
+
# [{
|
|
33
|
+
# group1_id: group1 id,
|
|
34
|
+
# group1_values: [] group1 data values,
|
|
35
|
+
# group2_id: group2 id,
|
|
36
|
+
# group2_values: [] group2 data values,
|
|
37
|
+
# pvalue: p-value of test
|
|
38
|
+
# }]
|
|
39
|
+
|
|
40
|
+
|
|
41
|
+
########
|
|
42
|
+
# Code #
|
|
43
|
+
########
|
|
44
|
+
*/
|
|
45
|
+
|
|
46
|
+
use json;
|
|
47
|
+
use r_stats;
|
|
48
|
+
use serde::{Deserialize, Serialize};
|
|
49
|
+
use std::io;
|
|
50
|
+
|
|
51
|
+
mod test_examples; // Contains examples to test the wilcoxon rank sum test
|
|
52
|
+
|
|
53
|
+
#[derive(Debug, Serialize, Deserialize)]
|
|
54
|
+
struct OutputJson {
|
|
55
|
+
// Output JSON data structure
|
|
56
|
+
group1_id: String,
|
|
57
|
+
group2_id: String,
|
|
58
|
+
group1_values: Vec<f64>,
|
|
59
|
+
group2_values: Vec<f64>,
|
|
60
|
+
pvalue: Option<f64>,
|
|
61
|
+
}
|
|
62
|
+
|
|
63
|
+
//#[derive(Debug)]
|
|
64
|
+
//struct RankFreq {
|
|
65
|
+
// rank: f64,
|
|
66
|
+
// freq: usize,
|
|
67
|
+
//}
|
|
68
|
+
|
|
69
|
+
fn main() {
|
|
70
|
+
let mut input = String::new();
|
|
71
|
+
match io::stdin().read_line(&mut input) {
|
|
72
|
+
// Accepting the piped input from nodejs (or command line from testing)
|
|
73
|
+
Ok(_n) => {
|
|
74
|
+
//println!("{} bytes read", n);
|
|
75
|
+
//println!("input:{}", input);
|
|
76
|
+
const THRESHOLD: usize = 50; // Decrease this number so as to invoke the normal approximation for lower sample sizes. This would speed up the test at the cost of sacrificing accuracy.
|
|
77
|
+
let input_json = json::parse(&input);
|
|
78
|
+
match input_json {
|
|
79
|
+
Ok(json_string) => {
|
|
80
|
+
//println!("{} bytes read", n);
|
|
81
|
+
//println!("json_string:{}", json_string);
|
|
82
|
+
|
|
83
|
+
let mut output_string = "[".to_string();
|
|
84
|
+
for i in 0..json_string.len() {
|
|
85
|
+
//println!("group1_id:{}", json_string[i]["group1_id"]);
|
|
86
|
+
//println!("group2_id:{}", json_string[i]["group2_id"]);
|
|
87
|
+
//println!("group1_values:{}", json_string[i]["group1_values"]);
|
|
88
|
+
//println!("group2_values:{}", json_string[i]["group2_values"]);
|
|
89
|
+
let mut vec1 = Vec::<f64>::new();
|
|
90
|
+
let mut vec2 = Vec::<f64>::new();
|
|
91
|
+
|
|
92
|
+
for arr_iter in 0..json_string[i]["group1_values"].len() {
|
|
93
|
+
vec1.push(json_string[i]["group1_values"][arr_iter].as_f64().unwrap());
|
|
94
|
+
}
|
|
95
|
+
for arr_iter in 0..json_string[i]["group2_values"].len() {
|
|
96
|
+
vec2.push(json_string[i]["group2_values"][arr_iter].as_f64().unwrap());
|
|
97
|
+
}
|
|
98
|
+
//println!("vec1:{:?}", vec1);
|
|
99
|
+
//println!("vec2:{:?}", vec2);
|
|
100
|
+
|
|
101
|
+
if vec1.len() == 0 || vec2.len() == 0 {
|
|
102
|
+
// If one of the vectors has a length of zero, wilcoxon test is not performed and a pvalue of NULL is given.
|
|
103
|
+
output_string += &serde_json::to_string(&OutputJson {
|
|
104
|
+
group1_id: json_string[i]["group1_id"]
|
|
105
|
+
.as_str()
|
|
106
|
+
.unwrap()
|
|
107
|
+
.to_string(),
|
|
108
|
+
group2_id: json_string[i]["group2_id"]
|
|
109
|
+
.as_str()
|
|
110
|
+
.unwrap()
|
|
111
|
+
.to_string(),
|
|
112
|
+
group1_values: vec1,
|
|
113
|
+
group2_values: vec2,
|
|
114
|
+
pvalue: None,
|
|
115
|
+
})
|
|
116
|
+
.unwrap();
|
|
117
|
+
output_string += &",".to_string();
|
|
118
|
+
} else {
|
|
119
|
+
let pvalue: f64 = wilcoxon_rank_sum_test(
|
|
120
|
+
vec1.clone(),
|
|
121
|
+
vec2.clone(),
|
|
122
|
+
THRESHOLD,
|
|
123
|
+
't', // two-sided test
|
|
124
|
+
true,
|
|
125
|
+
);
|
|
126
|
+
|
|
127
|
+
//if pvalue > 0.01 {
|
|
128
|
+
// pvalue = format!("{:.4}", pvalue).parse().unwrap();
|
|
129
|
+
//}
|
|
130
|
+
//println!("pvalue:{}", pvalue);
|
|
131
|
+
output_string += &serde_json::to_string(&OutputJson {
|
|
132
|
+
group1_id: json_string[i]["group1_id"]
|
|
133
|
+
.as_str()
|
|
134
|
+
.unwrap()
|
|
135
|
+
.to_string(),
|
|
136
|
+
group2_id: json_string[i]["group2_id"]
|
|
137
|
+
.as_str()
|
|
138
|
+
.unwrap()
|
|
139
|
+
.to_string(),
|
|
140
|
+
group1_values: vec1,
|
|
141
|
+
group2_values: vec2,
|
|
142
|
+
pvalue: Some(pvalue),
|
|
143
|
+
})
|
|
144
|
+
.unwrap();
|
|
145
|
+
output_string += &",".to_string();
|
|
146
|
+
}
|
|
147
|
+
}
|
|
148
|
+
output_string.pop();
|
|
149
|
+
output_string += &"]".to_string();
|
|
150
|
+
println!("{}", output_string);
|
|
151
|
+
}
|
|
152
|
+
Err(error) => println!("Incorrect json: {}", error),
|
|
153
|
+
}
|
|
154
|
+
}
|
|
155
|
+
Err(error) => println!("Piping error: {}", error),
|
|
156
|
+
}
|
|
157
|
+
}
|
|
158
|
+
|
|
159
|
+
fn wilcoxon_rank_sum_test(
|
|
160
|
+
mut group1: Vec<f64>,
|
|
161
|
+
mut group2: Vec<f64>,
|
|
162
|
+
threshold: usize,
|
|
163
|
+
alternative: char,
|
|
164
|
+
correct: bool,
|
|
165
|
+
) -> f64 {
|
|
166
|
+
// Check if there are any ties between the two groups
|
|
167
|
+
|
|
168
|
+
let mut combined = group1.clone();
|
|
169
|
+
combined.extend(group2.iter().cloned());
|
|
170
|
+
combined.sort_by(|a, b| a.partial_cmp(b).unwrap());
|
|
171
|
+
//println!("combined:{:?}", combined);
|
|
172
|
+
|
|
173
|
+
group1.sort_by(|a, b| a.partial_cmp(b).unwrap());
|
|
174
|
+
group2.sort_by(|a, b| a.partial_cmp(b).unwrap());
|
|
175
|
+
//println!("group1:{:?}", group1);
|
|
176
|
+
//println!("group2:{:?}", group2);
|
|
177
|
+
|
|
178
|
+
let mut group1_iter = 0;
|
|
179
|
+
let mut group2_iter = 0;
|
|
180
|
+
let mut xy = Vec::<char>::new(); // Stores X-Y classification
|
|
181
|
+
let mut ranks = Vec::<f64>::new(); // Stores the rank of each element
|
|
182
|
+
let mut is_repeat = false;
|
|
183
|
+
let mut repeat_present = false;
|
|
184
|
+
let mut frac_rank: f64 = 0.0;
|
|
185
|
+
let mut num_repeats: f64 = 1.0;
|
|
186
|
+
let mut repeat_iter: f64 = 1.0;
|
|
187
|
+
#[allow(unused_variables)]
|
|
188
|
+
let mut weight_x: f64 = 0.0;
|
|
189
|
+
let mut weight_y: f64 = 0.0;
|
|
190
|
+
let mut group_char: char = 'X';
|
|
191
|
+
let mut rank_frequencies = Vec::<f64>::new();
|
|
192
|
+
for i in 0..combined.len() {
|
|
193
|
+
//println!("group1_iter:{}", group1_iter);
|
|
194
|
+
//println!("group2_iter:{}", group2_iter);
|
|
195
|
+
//println!("item1:{}", combined[i]);
|
|
196
|
+
//println!("is_repeat:{}", is_repeat);
|
|
197
|
+
if group1_iter < group1.len() && combined[i] == group1[group1_iter] {
|
|
198
|
+
xy.push('X');
|
|
199
|
+
group1_iter += 1;
|
|
200
|
+
group_char = 'X';
|
|
201
|
+
} else if group2_iter < group2.len() && combined[i] == group2[group2_iter] {
|
|
202
|
+
xy.push('Y');
|
|
203
|
+
group2_iter += 1;
|
|
204
|
+
group_char = 'Y';
|
|
205
|
+
}
|
|
206
|
+
|
|
207
|
+
// Computing ranks
|
|
208
|
+
if is_repeat == false {
|
|
209
|
+
// Check if current element has other occurences
|
|
210
|
+
num_repeats = 1.0;
|
|
211
|
+
for j in i + 1..combined.len() {
|
|
212
|
+
if combined[i] == combined[j] {
|
|
213
|
+
is_repeat = true;
|
|
214
|
+
repeat_present = true;
|
|
215
|
+
repeat_iter = 1.0;
|
|
216
|
+
num_repeats += 1.0;
|
|
217
|
+
} else {
|
|
218
|
+
break;
|
|
219
|
+
}
|
|
220
|
+
}
|
|
221
|
+
//println!("num_repeats:{}", num_repeats);
|
|
222
|
+
if is_repeat == false {
|
|
223
|
+
ranks.push(i as f64 + 1.0);
|
|
224
|
+
if group_char == 'X' {
|
|
225
|
+
weight_x += i as f64 + 1.0;
|
|
226
|
+
} else if group_char == 'Y' {
|
|
227
|
+
weight_y += i as f64 + 1.0;
|
|
228
|
+
}
|
|
229
|
+
//rank_frequencies.push(RankFreq {
|
|
230
|
+
// rank: i as f64 + 1.0,
|
|
231
|
+
// freq: 1,
|
|
232
|
+
//});
|
|
233
|
+
rank_frequencies.push(1.0);
|
|
234
|
+
} else {
|
|
235
|
+
frac_rank = calculate_frac_rank(i as f64 + 1.0, num_repeats);
|
|
236
|
+
ranks.push(frac_rank);
|
|
237
|
+
if group_char == 'X' {
|
|
238
|
+
weight_x += frac_rank;
|
|
239
|
+
} else if group_char == 'Y' {
|
|
240
|
+
weight_y += frac_rank
|
|
241
|
+
}
|
|
242
|
+
//rank_frequencies.push(RankFreq {
|
|
243
|
+
// rank: frac_rank,
|
|
244
|
+
// freq: num_repeats as usize,
|
|
245
|
+
//});
|
|
246
|
+
rank_frequencies.push(num_repeats);
|
|
247
|
+
}
|
|
248
|
+
} else if repeat_iter < num_repeats {
|
|
249
|
+
// Repeat case
|
|
250
|
+
ranks.push(frac_rank);
|
|
251
|
+
repeat_iter += 1.0;
|
|
252
|
+
if group_char == 'X' {
|
|
253
|
+
weight_x += frac_rank;
|
|
254
|
+
} else if group_char == 'Y' {
|
|
255
|
+
weight_y += frac_rank
|
|
256
|
+
}
|
|
257
|
+
if repeat_iter == num_repeats {
|
|
258
|
+
is_repeat = false;
|
|
259
|
+
}
|
|
260
|
+
} else {
|
|
261
|
+
//println!("i:{}", i);
|
|
262
|
+
ranks.push(i as f64 + 1.0);
|
|
263
|
+
repeat_iter = 1.0;
|
|
264
|
+
num_repeats = 1.0;
|
|
265
|
+
if group_char == 'X' {
|
|
266
|
+
weight_x += i as f64 + 1.0;
|
|
267
|
+
} else if group_char == 'Y' {
|
|
268
|
+
weight_y += i as f64 + 1.0;
|
|
269
|
+
}
|
|
270
|
+
}
|
|
271
|
+
}
|
|
272
|
+
//println!("rank_frequencies:{:?}", rank_frequencies);
|
|
273
|
+
//println!("xy:{:?}", xy);
|
|
274
|
+
//println!("ranks:{:?}", ranks);
|
|
275
|
+
//println!("weight_x:{}", weight_x);
|
|
276
|
+
//println!("weight_y:{}", weight_y);
|
|
277
|
+
|
|
278
|
+
//u_dash (calculated below) calculates the "W Statistic" in wilcox.test function in R
|
|
279
|
+
|
|
280
|
+
let u_y = weight_y - (group2.len() as f64 * (group2.len() as f64 + 1.0) / 2.0) as f64;
|
|
281
|
+
let u_dash_y = (u_y - (group1.len() * group2.len()) as f64).abs();
|
|
282
|
+
//println!("u_dash_y:{}", u_dash_y);
|
|
283
|
+
|
|
284
|
+
let u_x = weight_x - (group1.len() as f64 * (group1.len() as f64 + 1.0) / 2.0) as f64;
|
|
285
|
+
let _u_dash_x = (u_x - (group1.len() * group2.len()) as f64).abs();
|
|
286
|
+
//println!("u_dash_x:{}", u_dash_x);
|
|
287
|
+
|
|
288
|
+
// Calculate test_statistic
|
|
289
|
+
|
|
290
|
+
//let t1 = weight_x - ((group1.len() as f64) * (group1.len() as f64 + 1.0)) / 2.0;
|
|
291
|
+
//let t2 = weight_y - ((group2.len() as f64) * (group2.len() as f64 + 1.0)) / 2.0;
|
|
292
|
+
//
|
|
293
|
+
//let mut test_statistic = t1;
|
|
294
|
+
//if t2 < t1 {
|
|
295
|
+
// test_statistic = t2;
|
|
296
|
+
//}
|
|
297
|
+
|
|
298
|
+
//println!("test_statistic:{}", test_statistic);
|
|
299
|
+
|
|
300
|
+
if group1.len() < threshold && group2.len() < threshold && repeat_present == false {
|
|
301
|
+
// Compute exact p-values
|
|
302
|
+
|
|
303
|
+
// Calculate conditional probability for weight_y
|
|
304
|
+
|
|
305
|
+
if alternative == 'g' {
|
|
306
|
+
// Alternative "greater"
|
|
307
|
+
//if group1.len() <= low_cutoff && group2.len() <= low_cutoff {
|
|
308
|
+
// iterate_exact_p_values(ranks, weight_y, group2.len())
|
|
309
|
+
//} else {
|
|
310
|
+
calculate_exact_probability(u_dash_y, group1.len(), group2.len(), alternative)
|
|
311
|
+
//}
|
|
312
|
+
} else if alternative == 'l' {
|
|
313
|
+
// Alternative "lesser"
|
|
314
|
+
//if group1.len() <= low_cutoff && group2.len() <= low_cutoff {
|
|
315
|
+
// iterate_exact_p_values(ranks, weight_x, group1.len())
|
|
316
|
+
//} else {
|
|
317
|
+
calculate_exact_probability(u_dash_y, group1.len(), group2.len(), alternative)
|
|
318
|
+
//}
|
|
319
|
+
} else {
|
|
320
|
+
// Two-sided distribution
|
|
321
|
+
calculate_exact_probability(u_dash_y, group1.len(), group2.len(), alternative)
|
|
322
|
+
}
|
|
323
|
+
} else {
|
|
324
|
+
// Compute p-values from a normal distribution
|
|
325
|
+
//println!("group1 length:{}", group1.len());
|
|
326
|
+
//println!("group2 length:{}", group2.len());
|
|
327
|
+
|
|
328
|
+
let mut z = u_dash_y - ((group1.len() * group2.len()) as f64) / 2.0;
|
|
329
|
+
//println!("z_original:{}", z);
|
|
330
|
+
let mut nties_sum: f64 = 0.0;
|
|
331
|
+
for i in 0..rank_frequencies.len() {
|
|
332
|
+
nties_sum += rank_frequencies[i] * rank_frequencies[i] * rank_frequencies[i]
|
|
333
|
+
- rank_frequencies[i];
|
|
334
|
+
}
|
|
335
|
+
|
|
336
|
+
let sigma = (((group1.len() * group2.len()) as f64) / 12.0
|
|
337
|
+
* ((group1.len() + group2.len() + 1) as f64
|
|
338
|
+
- nties_sum
|
|
339
|
+
/ (((group1.len() + group2.len()) as f64)
|
|
340
|
+
* ((group1.len() + group2.len() - 1) as f64))))
|
|
341
|
+
.sqrt();
|
|
342
|
+
//println!("sigma:{}", sigma);
|
|
343
|
+
let mut correction: f64 = 0.0;
|
|
344
|
+
if correct == true {
|
|
345
|
+
if alternative == 'g' {
|
|
346
|
+
// Alternative "greater"
|
|
347
|
+
correction = 0.5;
|
|
348
|
+
} else if alternative == 'g' {
|
|
349
|
+
// Alternative "lesser"
|
|
350
|
+
correction = -0.5;
|
|
351
|
+
} else {
|
|
352
|
+
// Alternative "two-sided"
|
|
353
|
+
if z > 0.0 {
|
|
354
|
+
correction = 0.5;
|
|
355
|
+
} else if z < 0.0 {
|
|
356
|
+
correction = -0.5;
|
|
357
|
+
} else {
|
|
358
|
+
// z=0
|
|
359
|
+
correction = 0.0;
|
|
360
|
+
}
|
|
361
|
+
}
|
|
362
|
+
}
|
|
363
|
+
z = (z - correction) / sigma;
|
|
364
|
+
//println!("z:{}", z);
|
|
365
|
+
if alternative == 'g' {
|
|
366
|
+
// Alternative "greater"
|
|
367
|
+
//println!("greater:{}", n.cdf(weight_y));
|
|
368
|
+
//1.0 - n.cdf(z) // Applying continuity correction
|
|
369
|
+
r_stats::normal_cdf(z, 0.0, 1.0, false, false)
|
|
370
|
+
} else if alternative == 'l' {
|
|
371
|
+
// Alternative "lesser"
|
|
372
|
+
//println!("lesser:{}", n.cdf(weight_x));
|
|
373
|
+
//n.cdf(z) // Applying continuity coorection
|
|
374
|
+
r_stats::normal_cdf(z, 0.0, 1.0, true, false)
|
|
375
|
+
} else {
|
|
376
|
+
// Alternative "two-sided"
|
|
377
|
+
let p_g = r_stats::normal_cdf(z, 0.0, 1.0, false, false); // Applying continuity correction
|
|
378
|
+
let p_l = r_stats::normal_cdf(z, 0.0, 1.0, true, false); // Applying continuity correction
|
|
379
|
+
let mut p_value;
|
|
380
|
+
if p_g < p_l {
|
|
381
|
+
p_value = 2.0 * p_g;
|
|
382
|
+
} else {
|
|
383
|
+
p_value = 2.0 * p_l;
|
|
384
|
+
}
|
|
385
|
+
//println!("p_value:{}", p_value);
|
|
386
|
+
if p_value > 1.0 {
|
|
387
|
+
p_value = 1.0;
|
|
388
|
+
}
|
|
389
|
+
p_value
|
|
390
|
+
}
|
|
391
|
+
}
|
|
392
|
+
}
|
|
393
|
+
|
|
394
|
+
// To be used only when there are no ties in the input data
|
|
395
|
+
fn calculate_exact_probability(weight: f64, x: usize, y: usize, alternative: char) -> f64 {
|
|
396
|
+
//println!("Using Wilcoxon CDF");
|
|
397
|
+
let mut p_value;
|
|
398
|
+
if alternative == 't' {
|
|
399
|
+
if weight > ((x * y) as f64) / 2.0 {
|
|
400
|
+
p_value = 2.0 * r_stats::wilcox_cdf(weight - 1.0, x as f64, y as f64, false, false);
|
|
401
|
+
} else {
|
|
402
|
+
p_value = 2.0 * r_stats::wilcox_cdf(weight, x as f64, y as f64, true, false);
|
|
403
|
+
}
|
|
404
|
+
if p_value > 1.0 {
|
|
405
|
+
p_value = 1.0;
|
|
406
|
+
}
|
|
407
|
+
} else if alternative == 'g' {
|
|
408
|
+
p_value = r_stats::wilcox_cdf(weight - 1.0, x as f64, y as f64, false, false);
|
|
409
|
+
} else if alternative == 'l' {
|
|
410
|
+
p_value = r_stats::wilcox_cdf(weight, x as f64, y as f64, true, false);
|
|
411
|
+
} else {
|
|
412
|
+
// Should not happen
|
|
413
|
+
panic!("Unknown alternative option given, please check!");
|
|
414
|
+
}
|
|
415
|
+
//println!("p_value:{}", p_value);
|
|
416
|
+
p_value
|
|
417
|
+
}
|
|
418
|
+
|
|
419
|
+
fn calculate_frac_rank(current_rank: f64, num_repeats: f64) -> f64 {
|
|
420
|
+
let mut sum = 0.0;
|
|
421
|
+
for i in 0..num_repeats as usize {
|
|
422
|
+
let rank = current_rank + i as f64;
|
|
423
|
+
sum += rank;
|
|
424
|
+
}
|
|
425
|
+
|
|
426
|
+
sum / num_repeats
|
|
427
|
+
}
|