@silvana-one/mina-curves 0.3.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +3 -0
- package/dist/node/curve/constants.d.ts +34 -0
- package/dist/node/curve/constants.js +323 -0
- package/dist/node/curve/constants.js.map +1 -0
- package/dist/node/curve/curve.d.ts +50 -0
- package/dist/node/curve/curve.js +307 -0
- package/dist/node/curve/curve.js.map +1 -0
- package/dist/node/curve/hash.d.ts +6 -0
- package/dist/node/curve/hash.js +89 -0
- package/dist/node/curve/hash.js.map +1 -0
- package/dist/node/curve/index.d.ts +4 -0
- package/dist/node/curve/index.js +5 -0
- package/dist/node/curve/index.js.map +1 -0
- package/dist/node/curve/verify.d.ts +4 -0
- package/dist/node/curve/verify.js +19 -0
- package/dist/node/curve/verify.js.map +1 -0
- package/dist/node/index.cjs +711 -0
- package/dist/node/index.d.ts +2 -0
- package/dist/node/index.js +3 -0
- package/dist/node/index.js.map +1 -0
- package/dist/node/poseidon.d.ts +1 -0
- package/dist/node/poseidon.js +5 -0
- package/dist/node/poseidon.js.map +1 -0
- package/dist/node/signature.d.ts +6 -0
- package/dist/node/signature.js +6 -0
- package/dist/node/signature.js.map +1 -0
- package/dist/tsconfig.node.tsbuildinfo +1 -0
- package/dist/tsconfig.web.tsbuildinfo +1 -0
- package/dist/web/curve/constants.d.ts +34 -0
- package/dist/web/curve/constants.js +323 -0
- package/dist/web/curve/constants.js.map +1 -0
- package/dist/web/curve/curve.d.ts +50 -0
- package/dist/web/curve/curve.js +307 -0
- package/dist/web/curve/curve.js.map +1 -0
- package/dist/web/curve/hash.d.ts +6 -0
- package/dist/web/curve/hash.js +89 -0
- package/dist/web/curve/hash.js.map +1 -0
- package/dist/web/curve/index.d.ts +4 -0
- package/dist/web/curve/index.js +5 -0
- package/dist/web/curve/index.js.map +1 -0
- package/dist/web/curve/verify.d.ts +4 -0
- package/dist/web/curve/verify.js +19 -0
- package/dist/web/curve/verify.js.map +1 -0
- package/dist/web/index.d.ts +2 -0
- package/dist/web/index.js +3 -0
- package/dist/web/index.js.map +1 -0
- package/dist/web/poseidon.d.ts +1 -0
- package/dist/web/poseidon.js +5 -0
- package/dist/web/poseidon.js.map +1 -0
- package/dist/web/signature.d.ts +6 -0
- package/dist/web/signature.js +6 -0
- package/dist/web/signature.js.map +1 -0
- package/package.json +59 -0
- package/src/curve/constants.ts +328 -0
- package/src/curve/curve.ts +370 -0
- package/src/curve/hash.ts +108 -0
- package/src/curve/index.ts +4 -0
- package/src/curve/verify.ts +31 -0
- package/src/index.ts +2 -0
- package/src/poseidon.ts +5 -0
- package/src/signature.ts +11 -0
|
@@ -0,0 +1,307 @@
|
|
|
1
|
+
import { PallasConstants } from "./constants.js";
|
|
2
|
+
export { Group, publicKeyToGroup, scale, sub, isEven, equal, power, add, mul, sqrt, dot, };
|
|
3
|
+
const projectiveZero = { x: 1n, y: 1n, z: 0n };
|
|
4
|
+
/**
|
|
5
|
+
* A non-zero point on the Pallas curve in affine form { x, y }
|
|
6
|
+
*/
|
|
7
|
+
const Group = {
|
|
8
|
+
toProjective({ x, y }) {
|
|
9
|
+
return projectiveFromAffine({ x, y, infinity: false });
|
|
10
|
+
},
|
|
11
|
+
/**
|
|
12
|
+
* Convert a projective point to a non-zero affine point.
|
|
13
|
+
* Throws an error if the point is zero / infinity, i.e. if z === 0
|
|
14
|
+
*/
|
|
15
|
+
fromProjective(point) {
|
|
16
|
+
let { x, y, infinity } = projectiveToAffine(point);
|
|
17
|
+
if (infinity)
|
|
18
|
+
throw Error("Group.fromProjective: point is infinity");
|
|
19
|
+
return { x, y };
|
|
20
|
+
},
|
|
21
|
+
};
|
|
22
|
+
const { p, a, b, twoadicRoot, twoadicity, oddFactor } = PallasConstants;
|
|
23
|
+
function mod(x, p) {
|
|
24
|
+
x = x % p;
|
|
25
|
+
if (x < 0)
|
|
26
|
+
return x + p;
|
|
27
|
+
return x;
|
|
28
|
+
}
|
|
29
|
+
function projectiveDoubleA0(g, p) {
|
|
30
|
+
if (g.z === 0n)
|
|
31
|
+
return g;
|
|
32
|
+
let X1 = g.x, Y1 = g.y, Z1 = g.z;
|
|
33
|
+
if (Y1 === 0n)
|
|
34
|
+
throw Error("projectiveDouble: unhandled case");
|
|
35
|
+
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
|
|
36
|
+
// A = X1^2
|
|
37
|
+
let A = mod(X1 * X1, p);
|
|
38
|
+
// B = Y1^2
|
|
39
|
+
let B = mod(Y1 * Y1, p);
|
|
40
|
+
// C = B^2
|
|
41
|
+
let C = mod(B * B, p);
|
|
42
|
+
// D = 2*((X1+B)^2-A-C)
|
|
43
|
+
let D = mod(2n * ((X1 + B) * (X1 + B) - A - C), p);
|
|
44
|
+
// E = 3*A
|
|
45
|
+
let E = 3n * A;
|
|
46
|
+
// F = E^2
|
|
47
|
+
let F = mod(E * E, p);
|
|
48
|
+
// X3 = F-2*D
|
|
49
|
+
let X3 = mod(F - 2n * D, p);
|
|
50
|
+
// Y3 = E*(D-X3)-8*C
|
|
51
|
+
let Y3 = mod(E * (D - X3) - 8n * C, p);
|
|
52
|
+
// Z3 = 2*Y1*Z1
|
|
53
|
+
let Z3 = mod(2n * Y1 * Z1, p);
|
|
54
|
+
return { x: X3, y: Y3, z: Z3 };
|
|
55
|
+
}
|
|
56
|
+
function projectiveDoubleAminus3(g, p) {
|
|
57
|
+
if (g.z === 0n)
|
|
58
|
+
return g;
|
|
59
|
+
let X1 = g.x, Y1 = g.y, Z1 = g.z;
|
|
60
|
+
if (Y1 === 0n)
|
|
61
|
+
throw Error("projectiveDouble: unhandled case");
|
|
62
|
+
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
|
|
63
|
+
// delta = Z1^2
|
|
64
|
+
let delta = mod(Z1 * Z1, p);
|
|
65
|
+
// gamma = Y1^2
|
|
66
|
+
let gamma = mod(Y1 * Y1, p);
|
|
67
|
+
// beta = X1*gamma
|
|
68
|
+
let beta = mod(X1 * gamma, p);
|
|
69
|
+
// alpha = 3*(X1-delta)*(X1+delta)
|
|
70
|
+
let alpha = mod((X1 - delta) * (X1 + delta), p);
|
|
71
|
+
alpha = alpha + alpha + alpha;
|
|
72
|
+
// X3 = alpha^2-8*beta
|
|
73
|
+
let X3 = mod(alpha * alpha - 8n * beta, p);
|
|
74
|
+
// Z3 = (Y1+Z1)^2-gamma-delta
|
|
75
|
+
let Z3 = mod((Y1 + Z1) * (Y1 + Z1) - gamma - delta, p);
|
|
76
|
+
// Y3 = alpha*(4*beta-X3)-8*gamma^2
|
|
77
|
+
let Y3 = mod(alpha * (4n * beta - X3) - 8n * gamma * gamma, p);
|
|
78
|
+
return { x: X3, y: Y3, z: Z3 };
|
|
79
|
+
}
|
|
80
|
+
function projectiveDouble(g, p, a) {
|
|
81
|
+
if (a === 0n)
|
|
82
|
+
return projectiveDoubleA0(g, p);
|
|
83
|
+
if (a + 3n === p)
|
|
84
|
+
return projectiveDoubleAminus3(g, p);
|
|
85
|
+
throw Error("Projective doubling is not implemented for general curve parameter a, only a = 0 and a = -3");
|
|
86
|
+
}
|
|
87
|
+
function projectiveNeg({ x, y, z }, p) {
|
|
88
|
+
return { x, y: y === 0n ? 0n : p - y, z };
|
|
89
|
+
}
|
|
90
|
+
function projectiveAdd(g, h, p, a) {
|
|
91
|
+
if (g.z === 0n)
|
|
92
|
+
return h;
|
|
93
|
+
if (h.z === 0n)
|
|
94
|
+
return g;
|
|
95
|
+
let X1 = g.x, Y1 = g.y, Z1 = g.z, X2 = h.x, Y2 = h.y, Z2 = h.z;
|
|
96
|
+
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
|
|
97
|
+
// Z1Z1 = Z1^2
|
|
98
|
+
let Z1Z1 = mod(Z1 * Z1, p);
|
|
99
|
+
// Z2Z2 = Z2^2
|
|
100
|
+
let Z2Z2 = mod(Z2 * Z2, p);
|
|
101
|
+
// U1 = X1*Z2Z2
|
|
102
|
+
let U1 = mod(X1 * Z2Z2, p);
|
|
103
|
+
// U2 = X2*Z1Z1
|
|
104
|
+
let U2 = mod(X2 * Z1Z1, p);
|
|
105
|
+
// S1 = Y1*Z2*Z2Z2
|
|
106
|
+
let S1 = mod(Y1 * Z2 * Z2Z2, p);
|
|
107
|
+
// S2 = Y2*Z1*Z1Z1
|
|
108
|
+
let S2 = mod(Y2 * Z1 * Z1Z1, p);
|
|
109
|
+
// H = U2-U1
|
|
110
|
+
let H = mod(U2 - U1, p);
|
|
111
|
+
// H = 0 <==> x1 = X1/Z1^2 = X2/Z2^2 = x2 <==> degenerate case (Z3 would become 0)
|
|
112
|
+
if (H === 0n) {
|
|
113
|
+
// if S1 = S2 <==> y1 = y2, the points are equal, so we double instead
|
|
114
|
+
if (S1 === S2)
|
|
115
|
+
return projectiveDouble(g, p, a);
|
|
116
|
+
// if S1 = -S2, the points are inverse, so return zero
|
|
117
|
+
if (mod(S1 + S2, p) === 0n)
|
|
118
|
+
return projectiveZero;
|
|
119
|
+
throw Error("projectiveAdd: invalid point");
|
|
120
|
+
}
|
|
121
|
+
// I = (2*H)^2
|
|
122
|
+
let I = mod((H * H) << 2n, p);
|
|
123
|
+
// J = H*I
|
|
124
|
+
let J = mod(H * I, p);
|
|
125
|
+
// r = 2*(S2-S1)
|
|
126
|
+
let r = 2n * (S2 - S1);
|
|
127
|
+
// V = U1*I
|
|
128
|
+
let V = mod(U1 * I, p);
|
|
129
|
+
// X3 = r^2-J-2*V
|
|
130
|
+
let X3 = mod(r * r - J - 2n * V, p);
|
|
131
|
+
// Y3 = r*(V-X3)-2*S1*J
|
|
132
|
+
let Y3 = mod(r * (V - X3) - 2n * S1 * J, p);
|
|
133
|
+
// Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H
|
|
134
|
+
let Z3 = mod(((Z1 + Z2) * (Z1 + Z2) - Z1Z1 - Z2Z2) * H, p);
|
|
135
|
+
return { x: X3, y: Y3, z: Z3 };
|
|
136
|
+
}
|
|
137
|
+
function projectiveSub(g, h, p, a) {
|
|
138
|
+
return projectiveAdd(g, projectiveNeg(h, p), p, a);
|
|
139
|
+
}
|
|
140
|
+
function getProjectiveDouble(p, a) {
|
|
141
|
+
if (a === 0n)
|
|
142
|
+
return projectiveDoubleA0;
|
|
143
|
+
if (a + 3n === p)
|
|
144
|
+
return projectiveDoubleAminus3;
|
|
145
|
+
throw Error("Projective doubling is not implemented for general curve parameter a, only a = 0 and a = -3");
|
|
146
|
+
}
|
|
147
|
+
function bigIntToBits(x) {
|
|
148
|
+
if (x < 0n) {
|
|
149
|
+
throw Error(`bigIntToBits: negative numbers are not supported, got ${x}`);
|
|
150
|
+
}
|
|
151
|
+
let bits = [];
|
|
152
|
+
for (; x > 0n; x >>= 1n) {
|
|
153
|
+
let bit = !!(x & 1n);
|
|
154
|
+
bits.push(bit);
|
|
155
|
+
}
|
|
156
|
+
return bits;
|
|
157
|
+
}
|
|
158
|
+
function projectiveScale(g, x, p, a) {
|
|
159
|
+
let double = getProjectiveDouble(p, a);
|
|
160
|
+
let bits = typeof x === "bigint" ? bigIntToBits(x) : x;
|
|
161
|
+
let h = projectiveZero;
|
|
162
|
+
for (let bit of bits) {
|
|
163
|
+
if (bit)
|
|
164
|
+
h = projectiveAdd(h, g, p, a);
|
|
165
|
+
g = double(g, p);
|
|
166
|
+
}
|
|
167
|
+
return h;
|
|
168
|
+
}
|
|
169
|
+
function sub(g, h) {
|
|
170
|
+
return projectiveSub(g, h, p, PallasConstants.a);
|
|
171
|
+
}
|
|
172
|
+
function scale(g, s) {
|
|
173
|
+
return projectiveScale(g, s, p, PallasConstants.a);
|
|
174
|
+
}
|
|
175
|
+
function projectiveFromAffine({ x, y, infinity, }) {
|
|
176
|
+
if (infinity)
|
|
177
|
+
return projectiveZero;
|
|
178
|
+
return { x, y, z: 1n };
|
|
179
|
+
}
|
|
180
|
+
function projectiveToAffine(g) {
|
|
181
|
+
let z = g.z;
|
|
182
|
+
if (z === 0n) {
|
|
183
|
+
// infinity
|
|
184
|
+
return { x: 0n, y: 0n, infinity: true };
|
|
185
|
+
}
|
|
186
|
+
else if (z === 1n) {
|
|
187
|
+
// already normalized affine form
|
|
188
|
+
return { x: g.x, y: g.y, infinity: false };
|
|
189
|
+
}
|
|
190
|
+
else {
|
|
191
|
+
let zinv = inverse(z, p); // we checked for z === 0, so inverse exists
|
|
192
|
+
let zinv_squared = mod(zinv * zinv, p);
|
|
193
|
+
// x/z^2
|
|
194
|
+
let x = mod(g.x * zinv_squared, p);
|
|
195
|
+
// y/z^3
|
|
196
|
+
let y = mod(g.y * zinv * zinv_squared, p);
|
|
197
|
+
return { x: x, y: y, infinity: false };
|
|
198
|
+
}
|
|
199
|
+
}
|
|
200
|
+
// inverting with EGCD, 1/a in Z_p
|
|
201
|
+
function inverse(a, p) {
|
|
202
|
+
a = mod(a, p);
|
|
203
|
+
if (a === 0n)
|
|
204
|
+
return undefined;
|
|
205
|
+
let b = p;
|
|
206
|
+
let x = 0n;
|
|
207
|
+
let y = 1n;
|
|
208
|
+
let u = 1n;
|
|
209
|
+
let v = 0n;
|
|
210
|
+
while (a !== 0n) {
|
|
211
|
+
let q = b / a;
|
|
212
|
+
let r = mod(b, a);
|
|
213
|
+
let m = x - u * q;
|
|
214
|
+
let n = y - v * q;
|
|
215
|
+
b = a;
|
|
216
|
+
a = r;
|
|
217
|
+
x = u;
|
|
218
|
+
y = v;
|
|
219
|
+
u = m;
|
|
220
|
+
v = n;
|
|
221
|
+
}
|
|
222
|
+
if (b !== 1n)
|
|
223
|
+
return undefined;
|
|
224
|
+
return mod(x, p);
|
|
225
|
+
}
|
|
226
|
+
function isEven(x) {
|
|
227
|
+
return !(mod(x, p) & 1n);
|
|
228
|
+
}
|
|
229
|
+
function equal(x, y) {
|
|
230
|
+
// We check if x and y are both in the range [0, p). If they are, can do a simple comparison. Otherwise, we need to reduce them to the proper canonical field range.
|
|
231
|
+
let x_ = x >= 0n && x < p ? x : mod(x, p);
|
|
232
|
+
let y_ = y >= 0n && y < p ? y : mod(y, p);
|
|
233
|
+
return x_ === y_;
|
|
234
|
+
}
|
|
235
|
+
// modular exponentiation, a^n % p
|
|
236
|
+
function power(a, n) {
|
|
237
|
+
a = mod(a, p);
|
|
238
|
+
let x = 1n;
|
|
239
|
+
for (; n > 0n; n >>= 1n) {
|
|
240
|
+
if (n & 1n)
|
|
241
|
+
x = mod(x * a, p);
|
|
242
|
+
a = mod(a * a, p);
|
|
243
|
+
}
|
|
244
|
+
return x;
|
|
245
|
+
}
|
|
246
|
+
function add(x, y) {
|
|
247
|
+
return mod(x + y, p);
|
|
248
|
+
}
|
|
249
|
+
function mul(x, y) {
|
|
250
|
+
return mod(x * y, p);
|
|
251
|
+
}
|
|
252
|
+
function dot(x, y) {
|
|
253
|
+
let z = 0n;
|
|
254
|
+
let n = x.length;
|
|
255
|
+
for (let i = 0; i < n; i++) {
|
|
256
|
+
z += x[i] * y[i];
|
|
257
|
+
}
|
|
258
|
+
return mod(z, p);
|
|
259
|
+
}
|
|
260
|
+
function sqrt(n_, p, Q, c, M) {
|
|
261
|
+
// https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm#The_algorithm
|
|
262
|
+
// variable naming is the same as in that link ^
|
|
263
|
+
// Q is what we call `t` elsewhere - the odd factor in p - 1
|
|
264
|
+
// c is a known primitive root of unity
|
|
265
|
+
// M is the twoadicity = exponent of 2 in factorization of p - 1
|
|
266
|
+
const n = mod(n_, p);
|
|
267
|
+
if (n === 0n)
|
|
268
|
+
return 0n;
|
|
269
|
+
let t = power(n, (Q - 1n) >> 1n); // n^(Q - 1)/2
|
|
270
|
+
let R = mod(t * n, p); // n^((Q - 1)/2 + 1) = n^((Q + 1)/2)
|
|
271
|
+
t = mod(t * R, p); // n^((Q - 1)/2 + (Q + 1)/2) = n^Q
|
|
272
|
+
while (true) {
|
|
273
|
+
if (t === 1n)
|
|
274
|
+
return R;
|
|
275
|
+
// use repeated squaring to find the least i, 0 < i < M, such that t^(2^i) = 1
|
|
276
|
+
let i = 0n;
|
|
277
|
+
let s = t;
|
|
278
|
+
while (s !== 1n) {
|
|
279
|
+
s = mod(s * s, p);
|
|
280
|
+
i = i + 1n;
|
|
281
|
+
}
|
|
282
|
+
if (i === M)
|
|
283
|
+
return undefined; // no solution
|
|
284
|
+
let b = power(c, 1n << (M - i - 1n)); // c^(2^(M-i-1))
|
|
285
|
+
M = i;
|
|
286
|
+
c = mod(b * b, p);
|
|
287
|
+
t = mod(t * c, p);
|
|
288
|
+
R = mod(R * b, p);
|
|
289
|
+
}
|
|
290
|
+
}
|
|
291
|
+
function sqrt_internal(x) {
|
|
292
|
+
return sqrt(x, p, oddFactor, twoadicRoot, twoadicity);
|
|
293
|
+
}
|
|
294
|
+
function negate(x) {
|
|
295
|
+
return x === 0n ? 0n : mod(-x, p);
|
|
296
|
+
}
|
|
297
|
+
function publicKeyToGroup({ x, isOdd }) {
|
|
298
|
+
const ySquared = add(mul(x, mul(x, x)), b);
|
|
299
|
+
let y = sqrt_internal(ySquared);
|
|
300
|
+
if (y === undefined) {
|
|
301
|
+
throw Error("PublicKey.toGroup: not a valid group element");
|
|
302
|
+
}
|
|
303
|
+
if (isOdd !== !!(y & 1n))
|
|
304
|
+
y = negate(y);
|
|
305
|
+
return { x, y };
|
|
306
|
+
}
|
|
307
|
+
//# sourceMappingURL=curve.js.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"curve.js","sourceRoot":"","sources":["../../../src/curve/curve.ts"],"names":[],"mappings":"AAAA,OAAO,EAAE,eAAe,EAAE,MAAM,gBAAgB,CAAC;AAEjD,OAAO,EAML,KAAK,EACL,gBAAgB,EAChB,KAAK,EACL,GAAG,EACH,MAAM,EACN,KAAK,EACL,KAAK,EACL,GAAG,EACH,GAAG,EACH,IAAI,EACJ,GAAG,GACJ,CAAC;AAQF,MAAM,cAAc,GAAG,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC;AAO/C;;GAEG;AACH,MAAM,KAAK,GAAG;IACZ,YAAY,CAAC,EAAE,CAAC,EAAE,CAAC,EAAS;QAC1B,OAAO,oBAAoB,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,EAAE,KAAK,EAAE,CAAC,CAAC;IACzD,CAAC;IACD;;;OAGG;IACH,cAAc,CAAC,KAAsB;QACnC,IAAI,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,EAAE,GAAG,kBAAkB,CAAC,KAAK,CAAC,CAAC;QACnD,IAAI,QAAQ;YAAE,MAAM,KAAK,CAAC,yCAAyC,CAAC,CAAC;QACrE,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC;IAClB,CAAC;CACF,CAAC;AAEF,MAAM,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,WAAW,EAAE,UAAU,EAAE,SAAS,EAAE,GAAG,eAAe,CAAC;AAExE,SAAS,GAAG,CAAC,CAAS,EAAE,CAAS;IAC/B,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;IACV,IAAI,CAAC,GAAG,CAAC;QAAE,OAAO,CAAC,GAAG,CAAC,CAAC;IACxB,OAAO,CAAC,CAAC;AACX,CAAC;AAED,SAAS,kBAAkB,CAAC,CAAkB,EAAE,CAAS;IACvD,IAAI,CAAC,CAAC,CAAC,KAAK,EAAE;QAAE,OAAO,CAAC,CAAC;IACzB,IAAI,EAAE,GAAG,CAAC,CAAC,CAAC,EACV,EAAE,GAAG,CAAC,CAAC,CAAC,EACR,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC;IACX,IAAI,EAAE,KAAK,EAAE;QAAE,MAAM,KAAK,CAAC,kCAAkC,CAAC,CAAC;IAC/D,uFAAuF;IACvF,WAAW;IACX,IAAI,CAAC,GAAG,GAAG,CAAC,EAAE,GAAG,EAAE,EAAE,CAAC,CAAC,CAAC;IACxB,WAAW;IACX,IAAI,CAAC,GAAG,GAAG,CAAC,EAAE,GAAG,EAAE,EAAE,CAAC,CAAC,CAAC;IACxB,UAAU;IACV,IAAI,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;IACtB,uBAAuB;IACvB,IAAI,CAAC,GAAG,GAAG,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,EAAE,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IACnD,UAAU;IACV,IAAI,CAAC,GAAG,EAAE,GAAG,CAAC,CAAC;IACf,UAAU;IACV,IAAI,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;IACtB,aAAa;IACb,IAAI,EAAE,GAAG,GAAG,CAAC,CAAC,GAAG,EAAE,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;IAC5B,oBAAoB;IACpB,IAAI,EAAE,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC,GAAG,EAAE,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;IACvC,eAAe;IACf,IAAI,EAAE,GAAG,GAAG,CAAC,EAAE,GAAG,EAAE,GAAG,EAAE,EAAE,CAAC,CAAC,CAAC;IAC9B,OAAO,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC;AACjC,CAAC;AAED,SAAS,uBAAuB,CAAC,CAAkB,EAAE,CAAS;IAC5D,IAAI,CAAC,CAAC,CAAC,KAAK,EAAE;QAAE,OAAO,CAAC,CAAC;IACzB,IAAI,EAAE,GAAG,CAAC,CAAC,CAAC,EACV,EAAE,GAAG,CAAC,CAAC,CAAC,EACR,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC;IACX,IAAI,EAAE,KAAK,EAAE;QAAE,MAAM,KAAK,CAAC,kCAAkC,CAAC,CAAC;IAE/D,uFAAuF;IACvF,eAAe;IACf,IAAI,KAAK,GAAG,GAAG,CAAC,EAAE,GAAG,EAAE,EAAE,CAAC,CAAC,CAAC;IAC5B,eAAe;IACf,IAAI,KAAK,GAAG,GAAG,CAAC,EAAE,GAAG,EAAE,EAAE,CAAC,CAAC,CAAC;IAC5B,kBAAkB;IAClB,IAAI,IAAI,GAAG,GAAG,CAAC,EAAE,GAAG,KAAK,EAAE,CAAC,CAAC,CAAC;IAC9B,kCAAkC;IAClC,IAAI,KAAK,GAAG,GAAG,CAAC,CAAC,EAAE,GAAG,KAAK,CAAC,GAAG,CAAC,EAAE,GAAG,KAAK,CAAC,EAAE,CAAC,CAAC,CAAC;IAChD,KAAK,GAAG,KAAK,GAAG,KAAK,GAAG,KAAK,CAAC;IAC9B,sBAAsB;IACtB,IAAI,EAAE,GAAG,GAAG,CAAC,KAAK,GAAG,KAAK,GAAG,EAAE,GAAG,IAAI,EAAE,CAAC,CAAC,CAAC;IAC3C,6BAA6B;IAC7B,IAAI,EAAE,GAAG,GAAG,CAAC,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,KAAK,GAAG,KAAK,EAAE,CAAC,CAAC,CAAC;IACvD,mCAAmC;IACnC,IAAI,EAAE,GAAG,GAAG,CAAC,KAAK,GAAG,CAAC,EAAE,GAAG,IAAI,GAAG,EAAE,CAAC,GAAG,EAAE,GAAG,KAAK,GAAG,KAAK,EAAE,CAAC,CAAC,CAAC;IAC/D,OAAO,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC;AACjC,CAAC;AAED,SAAS,gBAAgB,CAAC,CAAkB,EAAE,CAAS,EAAE,CAAS;IAChE,IAAI,CAAC,KAAK,EAAE;QAAE,OAAO,kBAAkB,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IAC9C,IAAI,CAAC,GAAG,EAAE,KAAK,CAAC;QAAE,OAAO,uBAAuB,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IACvD,MAAM,KAAK,CACT,6FAA6F,CAC9F,CAAC;AACJ,CAAC;AAED,SAAS,aAAa,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAmB,EAAE,CAAS;IAC5D,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,CAAC;AAC5C,CAAC;AAED,SAAS,aAAa,CACpB,CAAkB,EAClB,CAAkB,EAClB,CAAS,EACT,CAAS;IAET,IAAI,CAAC,CAAC,CAAC,KAAK,EAAE;QAAE,OAAO,CAAC,CAAC;IACzB,IAAI,CAAC,CAAC,CAAC,KAAK,EAAE;QAAE,OAAO,CAAC,CAAC;IACzB,IAAI,EAAE,GAAG,CAAC,CAAC,CAAC,EACV,EAAE,GAAG,CAAC,CAAC,CAAC,EACR,EAAE,GAAG,CAAC,CAAC,CAAC,EACR,EAAE,GAAG,CAAC,CAAC,CAAC,EACR,EAAE,GAAG,CAAC,CAAC,CAAC,EACR,EAAE,GAAG,CAAC,CAAC,CAAC,CAAC;IACX,wFAAwF;IACxF,cAAc;IACd,IAAI,IAAI,GAAG,GAAG,CAAC,EAAE,GAAG,EAAE,EAAE,CAAC,CAAC,CAAC;IAC3B,cAAc;IACd,IAAI,IAAI,GAAG,GAAG,CAAC,EAAE,GAAG,EAAE,EAAE,CAAC,CAAC,CAAC;IAC3B,eAAe;IACf,IAAI,EAAE,GAAG,GAAG,CAAC,EAAE,GAAG,IAAI,EAAE,CAAC,CAAC,CAAC;IAC3B,eAAe;IACf,IAAI,EAAE,GAAG,GAAG,CAAC,EAAE,GAAG,IAAI,EAAE,CAAC,CAAC,CAAC;IAC3B,kBAAkB;IAClB,IAAI,EAAE,GAAG,GAAG,CAAC,EAAE,GAAG,EAAE,GAAG,IAAI,EAAE,CAAC,CAAC,CAAC;IAChC,kBAAkB;IAClB,IAAI,EAAE,GAAG,GAAG,CAAC,EAAE,GAAG,EAAE,GAAG,IAAI,EAAE,CAAC,CAAC,CAAC;IAChC,YAAY;IACZ,IAAI,CAAC,GAAG,GAAG,CAAC,EAAE,GAAG,EAAE,EAAE,CAAC,CAAC,CAAC;IACxB,kFAAkF;IAClF,IAAI,CAAC,KAAK,EAAE,EAAE,CAAC;QACb,sEAAsE;QACtE,IAAI,EAAE,KAAK,EAAE;YAAE,OAAO,gBAAgB,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;QAChD,sDAAsD;QACtD,IAAI,GAAG,CAAC,EAAE,GAAG,EAAE,EAAE,CAAC,CAAC,KAAK,EAAE;YAAE,OAAO,cAAc,CAAC;QAClD,MAAM,KAAK,CAAC,8BAA8B,CAAC,CAAC;IAC9C,CAAC;IACD,cAAc;IACd,IAAI,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,IAAI,EAAE,EAAE,CAAC,CAAC,CAAC;IAC9B,UAAU;IACV,IAAI,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;IACtB,gBAAgB;IAChB,IAAI,CAAC,GAAG,EAAE,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,CAAC;IACvB,WAAW;IACX,IAAI,CAAC,GAAG,GAAG,CAAC,EAAE,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;IACvB,iBAAiB;IACjB,IAAI,EAAE,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,EAAE,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;IACpC,uBAAuB;IACvB,IAAI,EAAE,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,CAAC,GAAG,EAAE,CAAC,GAAG,EAAE,GAAG,EAAE,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;IAC5C,+BAA+B;IAC/B,IAAI,EAAE,GAAG,GAAG,CAAC,CAAC,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,CAAC,EAAE,GAAG,EAAE,CAAC,GAAG,IAAI,GAAG,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;IAC3D,OAAO,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC;AACjC,CAAC;AAED,SAAS,aAAa,CACpB,CAAkB,EAClB,CAAkB,EAClB,CAAS,EACT,CAAS;IAET,OAAO,aAAa,CAAC,CAAC,EAAE,aAAa,CAAC,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;AACrD,CAAC;AAED,SAAS,mBAAmB,CAAC,CAAS,EAAE,CAAS;IAC/C,IAAI,CAAC,KAAK,EAAE;QAAE,OAAO,kBAAkB,CAAC;IACxC,IAAI,CAAC,GAAG,EAAE,KAAK,CAAC;QAAE,OAAO,uBAAuB,CAAC;IACjD,MAAM,KAAK,CACT,6FAA6F,CAC9F,CAAC;AACJ,CAAC;AAED,SAAS,YAAY,CAAC,CAAS;IAC7B,IAAI,CAAC,GAAG,EAAE,EAAE,CAAC;QACX,MAAM,KAAK,CAAC,yDAAyD,CAAC,EAAE,CAAC,CAAC;IAC5E,CAAC;IACD,IAAI,IAAI,GAAc,EAAE,CAAC;IACzB,OAAO,CAAC,GAAG,EAAE,EAAE,CAAC,KAAK,EAAE,EAAE,CAAC;QACxB,IAAI,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC;QACrB,IAAI,CAAC,IAAI,CAAC,GAAG,CAAC,CAAC;IACjB,CAAC;IACD,OAAO,IAAI,CAAC;AACd,CAAC;AAED,SAAS,eAAe,CACtB,CAAkB,EAClB,CAAqB,EACrB,CAAS,EACT,CAAS;IAET,IAAI,MAAM,GAAG,mBAAmB,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IACvC,IAAI,IAAI,GAAG,OAAO,CAAC,KAAK,QAAQ,CAAC,CAAC,CAAC,YAAY,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;IACvD,IAAI,CAAC,GAAG,cAAc,CAAC;IACvB,KAAK,IAAI,GAAG,IAAI,IAAI,EAAE,CAAC;QACrB,IAAI,GAAG;YAAE,CAAC,GAAG,aAAa,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC;QACvC,CAAC,GAAG,MAAM,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IACnB,CAAC;IACD,OAAO,CAAC,CAAC;AACX,CAAC;AAED,SAAS,GAAG,CAAC,CAAkB,EAAE,CAAkB;IACjD,OAAO,aAAa,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,eAAe,CAAC,CAAC,CAAC,CAAC;AACnD,CAAC;AACD,SAAS,KAAK,CAAC,CAAkB,EAAE,CAAS;IAC1C,OAAO,eAAe,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,eAAe,CAAC,CAAC,CAAC,CAAC;AACrD,CAAC;AAED,SAAS,oBAAoB,CAAC,EAC5B,CAAC,EACD,CAAC,EACD,QAAQ,GACI;IACZ,IAAI,QAAQ;QAAE,OAAO,cAAc,CAAC;IACpC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC;AACzB,CAAC;AAED,SAAS,kBAAkB,CAAC,CAAkB;IAC5C,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC;IACZ,IAAI,CAAC,KAAK,EAAE,EAAE,CAAC;QACb,WAAW;QACX,OAAO,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,QAAQ,EAAE,IAAI,EAAE,CAAC;IAC1C,CAAC;SAAM,IAAI,CAAC,KAAK,EAAE,EAAE,CAAC;QACpB,iCAAiC;QACjC,OAAO,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,QAAQ,EAAE,KAAK,EAAE,CAAC;IAC7C,CAAC;SAAM,CAAC;QACN,IAAI,IAAI,GAAG,OAAO,CAAC,CAAC,EAAE,CAAC,CAAE,CAAC,CAAC,4CAA4C;QACvE,IAAI,YAAY,GAAG,GAAG,CAAC,IAAI,GAAG,IAAI,EAAE,CAAC,CAAC,CAAC;QACvC,QAAQ;QACR,IAAI,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,YAAY,EAAE,CAAC,CAAC,CAAC;QACnC,QAAQ;QACR,IAAI,CAAC,GAAG,GAAG,CAAC,CAAC,CAAC,CAAC,GAAG,IAAI,GAAG,YAAY,EAAE,CAAC,CAAC,CAAC;QAC1C,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC,EAAE,QAAQ,EAAE,KAAK,EAAE,CAAC;IACzC,CAAC;AACH,CAAC;AAED,kCAAkC;AAClC,SAAS,OAAO,CAAC,CAAS,EAAE,CAAS;IACnC,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IACd,IAAI,CAAC,KAAK,EAAE;QAAE,OAAO,SAAS,CAAC;IAC/B,IAAI,CAAC,GAAG,CAAC,CAAC;IACV,IAAI,CAAC,GAAG,EAAE,CAAC;IACX,IAAI,CAAC,GAAG,EAAE,CAAC;IACX,IAAI,CAAC,GAAG,EAAE,CAAC;IACX,IAAI,CAAC,GAAG,EAAE,CAAC;IACX,OAAO,CAAC,KAAK,EAAE,EAAE,CAAC;QAChB,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;QACd,IAAI,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;QAClB,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;QAClB,IAAI,CAAC,GAAG,CAAC,GAAG,CAAC,GAAG,CAAC,CAAC;QAClB,CAAC,GAAG,CAAC,CAAC;QACN,CAAC,GAAG,CAAC,CAAC;QACN,CAAC,GAAG,CAAC,CAAC;QACN,CAAC,GAAG,CAAC,CAAC;QACN,CAAC,GAAG,CAAC,CAAC;QACN,CAAC,GAAG,CAAC,CAAC;IACR,CAAC;IACD,IAAI,CAAC,KAAK,EAAE;QAAE,OAAO,SAAS,CAAC;IAC/B,OAAO,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;AACnB,CAAC;AAED,SAAS,MAAM,CAAC,CAAS;IACvB,OAAO,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,EAAE,CAAC,CAAC;AAC3B,CAAC;AAED,SAAS,KAAK,CAAC,CAAS,EAAE,CAAS;IACjC,oKAAoK;IACpK,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IAC1C,IAAI,EAAE,GAAG,CAAC,IAAI,EAAE,IAAI,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IAC1C,OAAO,EAAE,KAAK,EAAE,CAAC;AACnB,CAAC;AAED,kCAAkC;AAClC,SAAS,KAAK,CAAC,CAAS,EAAE,CAAS;IACjC,CAAC,GAAG,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IACd,IAAI,CAAC,GAAG,EAAE,CAAC;IACX,OAAO,CAAC,GAAG,EAAE,EAAE,CAAC,KAAK,EAAE,EAAE,CAAC;QACxB,IAAI,CAAC,GAAG,EAAE;YAAE,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;QAC9B,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;IACpB,CAAC;IACD,OAAO,CAAC,CAAC;AACX,CAAC;AAED,SAAS,GAAG,CAAC,CAAS,EAAE,CAAS;IAC/B,OAAO,GAAG,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;AACvB,CAAC;AAED,SAAS,GAAG,CAAC,CAAS,EAAE,CAAS;IAC/B,OAAO,GAAG,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;AACvB,CAAC;AAED,SAAS,GAAG,CAAC,CAAW,EAAE,CAAW;IACnC,IAAI,CAAC,GAAG,EAAE,CAAC;IACX,IAAI,CAAC,GAAG,CAAC,CAAC,MAAM,CAAC;IACjB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,CAAC,EAAE,CAAC,EAAE,EAAE,CAAC;QAC3B,CAAC,IAAI,CAAC,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,CAAC,CAAC;IACnB,CAAC;IACD,OAAO,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;AACnB,CAAC;AAED,SAAS,IAAI,CAAC,EAAU,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS,EAAE,CAAS;IAClE,uEAAuE;IACvE,gDAAgD;IAChD,4DAA4D;IAC5D,uCAAuC;IACvC,gEAAgE;IAChE,MAAM,CAAC,GAAG,GAAG,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC;IACrB,IAAI,CAAC,KAAK,EAAE;QAAE,OAAO,EAAE,CAAC;IACxB,IAAI,CAAC,GAAG,KAAK,CAAC,CAAC,EAAE,CAAC,CAAC,GAAG,EAAE,CAAC,IAAI,EAAE,CAAC,CAAC,CAAC,cAAc;IAChD,IAAI,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,oCAAoC;IAC3D,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC,kCAAkC;IACrD,OAAO,IAAI,EAAE,CAAC;QACZ,IAAI,CAAC,KAAK,EAAE;YAAE,OAAO,CAAC,CAAC;QACvB,8EAA8E;QAC9E,IAAI,CAAC,GAAG,EAAE,CAAC;QACX,IAAI,CAAC,GAAG,CAAC,CAAC;QACV,OAAO,CAAC,KAAK,EAAE,EAAE,CAAC;YAChB,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;YAClB,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC;QACb,CAAC;QACD,IAAI,CAAC,KAAK,CAAC;YAAE,OAAO,SAAS,CAAC,CAAC,cAAc;QAC7C,IAAI,CAAC,GAAG,KAAK,CAAC,CAAC,EAAE,EAAE,IAAI,CAAC,CAAC,GAAG,CAAC,GAAG,EAAE,CAAC,CAAC,CAAC,CAAC,gBAAgB;QACtD,CAAC,GAAG,CAAC,CAAC;QACN,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;QAClB,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;QAClB,CAAC,GAAG,GAAG,CAAC,CAAC,GAAG,CAAC,EAAE,CAAC,CAAC,CAAC;IACpB,CAAC;AACH,CAAC;AAED,SAAS,aAAa,CAAC,CAAS;IAC9B,OAAO,IAAI,CAAC,CAAC,EAAE,CAAC,EAAE,SAAS,EAAE,WAAW,EAAE,UAAU,CAAC,CAAC;AACxD,CAAC;AAED,SAAS,MAAM,CAAC,CAAS;IACvB,OAAO,CAAC,KAAK,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;AACpC,CAAC;AAED,SAAS,gBAAgB,CAAC,EAAE,CAAC,EAAE,KAAK,EAAa;IAC/C,MAAM,QAAQ,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC,EAAE,GAAG,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC,EAAE,CAAC,CAAC,CAAC;IAC3C,IAAI,CAAC,GAAG,aAAa,CAAC,QAAQ,CAAC,CAAC;IAChC,IAAI,CAAC,KAAK,SAAS,EAAE,CAAC;QACpB,MAAM,KAAK,CAAC,8CAA8C,CAAC,CAAC;IAC9D,CAAC;IACD,IAAI,KAAK,KAAK,CAAC,CAAC,CAAC,CAAC,GAAG,EAAE,CAAC;QAAE,CAAC,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC;IACxC,OAAO,EAAE,CAAC,EAAE,CAAC,EAAE,CAAC;AAClB,CAAC"}
|
|
@@ -0,0 +1,6 @@
|
|
|
1
|
+
import { Field, Scalar, Group } from "./curve.js";
|
|
2
|
+
export declare function poseidonInitialState(): bigint[];
|
|
3
|
+
export declare function poseidonUpdate([...state]: bigint[], input: bigint[]): bigint[];
|
|
4
|
+
export declare function hashMessage(message: {
|
|
5
|
+
fields: bigint[];
|
|
6
|
+
}, publicKey: Group, r: Field): Scalar;
|
|
@@ -0,0 +1,89 @@
|
|
|
1
|
+
import { add, power, dot } from "./curve.js";
|
|
2
|
+
import { PoseidonConstants } from "./constants.js";
|
|
3
|
+
export function poseidonInitialState() {
|
|
4
|
+
return Array(PoseidonConstants.stateSize).fill(0n);
|
|
5
|
+
}
|
|
6
|
+
export function poseidonUpdate([...state], input) {
|
|
7
|
+
// special case for empty input
|
|
8
|
+
const { rate } = PoseidonConstants;
|
|
9
|
+
if (input.length === 0) {
|
|
10
|
+
permutation(state);
|
|
11
|
+
return state;
|
|
12
|
+
}
|
|
13
|
+
// pad input with zeros so its length is a multiple of the rate
|
|
14
|
+
const n = Math.ceil(input.length / rate) * rate;
|
|
15
|
+
input = input.concat(Array(n - input.length).fill(0n));
|
|
16
|
+
// for every block of length `rate`, add block to the first `rate` elements of the state, and apply the permutation
|
|
17
|
+
for (let blockIndex = 0; blockIndex < n; blockIndex += rate) {
|
|
18
|
+
for (let i = 0; i < rate; i++) {
|
|
19
|
+
state[i] = add(state[i], input[blockIndex + i]);
|
|
20
|
+
}
|
|
21
|
+
permutation(state);
|
|
22
|
+
}
|
|
23
|
+
return state;
|
|
24
|
+
}
|
|
25
|
+
export function hashMessage(message, publicKey, r) {
|
|
26
|
+
let { x, y } = publicKey;
|
|
27
|
+
let input = append(message, { fields: [x, y, r] });
|
|
28
|
+
return hashWithPrefix(packToFields(input));
|
|
29
|
+
}
|
|
30
|
+
function append(input1, input2) {
|
|
31
|
+
return {
|
|
32
|
+
fields: (input1.fields ?? []).concat(input2.fields ?? []),
|
|
33
|
+
packed: (input1.packed ?? []).concat(input2.packed ?? []),
|
|
34
|
+
};
|
|
35
|
+
}
|
|
36
|
+
function packToFields({ fields = [], packed = [] }) {
|
|
37
|
+
if (packed.length === 0)
|
|
38
|
+
return fields;
|
|
39
|
+
const packedBits = [];
|
|
40
|
+
let currentPackedField = 0n;
|
|
41
|
+
let currentSize = 0;
|
|
42
|
+
for (let [field, size] of packed) {
|
|
43
|
+
currentSize += size;
|
|
44
|
+
if (currentSize < 255) {
|
|
45
|
+
currentPackedField = currentPackedField * (1n << BigInt(size)) + field;
|
|
46
|
+
}
|
|
47
|
+
else {
|
|
48
|
+
packedBits.push(currentPackedField);
|
|
49
|
+
currentSize = size;
|
|
50
|
+
currentPackedField = field;
|
|
51
|
+
}
|
|
52
|
+
}
|
|
53
|
+
packedBits.push(currentPackedField);
|
|
54
|
+
return fields.concat(packedBits);
|
|
55
|
+
}
|
|
56
|
+
//const signaturePrefix = "CodaSignature*******";
|
|
57
|
+
const prefix = 240717916736854602989207148466022993262069182275n;
|
|
58
|
+
function salt() {
|
|
59
|
+
return poseidonUpdate(poseidonInitialState(), [prefix]);
|
|
60
|
+
}
|
|
61
|
+
function hashWithPrefix(input) {
|
|
62
|
+
let init = salt();
|
|
63
|
+
return poseidonUpdate(init, input)[0];
|
|
64
|
+
}
|
|
65
|
+
function permutation(state) {
|
|
66
|
+
// special case: initial round constant
|
|
67
|
+
const { hasInitialRoundConstant, stateSize, roundConstants, fullRounds, power: power_, mds, } = PoseidonConstants;
|
|
68
|
+
let offset = 0;
|
|
69
|
+
if (hasInitialRoundConstant) {
|
|
70
|
+
for (let i = 0; i < stateSize; i++) {
|
|
71
|
+
state[i] = add(state[i], roundConstants[0][i]);
|
|
72
|
+
}
|
|
73
|
+
offset = 1;
|
|
74
|
+
}
|
|
75
|
+
for (let round = 0; round < fullRounds; round++) {
|
|
76
|
+
// raise to a power
|
|
77
|
+
for (let i = 0; i < stateSize; i++) {
|
|
78
|
+
state[i] = power(state[i], power_);
|
|
79
|
+
}
|
|
80
|
+
let oldState = [...state];
|
|
81
|
+
for (let i = 0; i < stateSize; i++) {
|
|
82
|
+
// multiply by mds matrix
|
|
83
|
+
state[i] = dot(mds[i], oldState);
|
|
84
|
+
// add round constants
|
|
85
|
+
state[i] = add(state[i], roundConstants[round + offset][i]);
|
|
86
|
+
}
|
|
87
|
+
}
|
|
88
|
+
}
|
|
89
|
+
//# sourceMappingURL=hash.js.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"hash.js","sourceRoot":"","sources":["../../../src/curve/hash.ts"],"names":[],"mappings":"AAAA,OAAO,EAAwB,GAAG,EAAE,KAAK,EAAE,GAAG,EAAE,MAAM,YAAY,CAAC;AACnE,OAAO,EAAE,iBAAiB,EAAE,MAAM,gBAAgB,CAAC;AAEnD,MAAM,UAAU,oBAAoB;IAClC,OAAO,KAAK,CAAC,iBAAiB,CAAC,SAAS,CAAC,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC;AACrD,CAAC;AAED,MAAM,UAAU,cAAc,CAAC,CAAC,GAAG,KAAK,CAAW,EAAE,KAAe;IAClE,+BAA+B;IAC/B,MAAM,EAAE,IAAI,EAAE,GAAG,iBAAiB,CAAC;IACnC,IAAI,KAAK,CAAC,MAAM,KAAK,CAAC,EAAE,CAAC;QACvB,WAAW,CAAC,KAAK,CAAC,CAAC;QACnB,OAAO,KAAK,CAAC;IACf,CAAC;IACD,+DAA+D;IAC/D,MAAM,CAAC,GAAG,IAAI,CAAC,IAAI,CAAC,KAAK,CAAC,MAAM,GAAG,IAAI,CAAC,GAAG,IAAI,CAAC;IAChD,KAAK,GAAG,KAAK,CAAC,MAAM,CAAC,KAAK,CAAC,CAAC,GAAG,KAAK,CAAC,MAAM,CAAC,CAAC,IAAI,CAAC,EAAE,CAAC,CAAC,CAAC;IACvD,mHAAmH;IACnH,KAAK,IAAI,UAAU,GAAG,CAAC,EAAE,UAAU,GAAG,CAAC,EAAE,UAAU,IAAI,IAAI,EAAE,CAAC;QAC5D,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,IAAI,EAAE,CAAC,EAAE,EAAE,CAAC;YAC9B,KAAK,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,KAAK,CAAC,UAAU,GAAG,CAAC,CAAC,CAAC,CAAC;QAClD,CAAC;QACD,WAAW,CAAC,KAAK,CAAC,CAAC;IACrB,CAAC;IACD,OAAO,KAAK,CAAC;AACf,CAAC;AAED,MAAM,UAAU,WAAW,CACzB,OAA6B,EAC7B,SAAgB,EAChB,CAAQ;IAER,IAAI,EAAE,CAAC,EAAE,CAAC,EAAE,GAAG,SAAS,CAAC;IAEzB,IAAI,KAAK,GAAG,MAAM,CAAC,OAAO,EAAE,EAAE,MAAM,EAAE,CAAC,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,EAAE,CAAC,CAAC;IACnD,OAAO,cAAc,CAAC,YAAY,CAAC,KAAK,CAAC,CAAC,CAAC;AAC7C,CAAC;AAID,SAAS,MAAM,CAAC,MAAiB,EAAE,MAAiB;IAClD,OAAO;QACL,MAAM,EAAE,CAAC,MAAM,CAAC,MAAM,IAAI,EAAE,CAAC,CAAC,MAAM,CAAC,MAAM,CAAC,MAAM,IAAI,EAAE,CAAC;QACzD,MAAM,EAAE,CAAC,MAAM,CAAC,MAAM,IAAI,EAAE,CAAC,CAAC,MAAM,CAAC,MAAM,CAAC,MAAM,IAAI,EAAE,CAAC;KAC1D,CAAC;AACJ,CAAC;AAED,SAAS,YAAY,CAAC,EAAE,MAAM,GAAG,EAAE,EAAE,MAAM,GAAG,EAAE,EAAa;IAC3D,IAAI,MAAM,CAAC,MAAM,KAAK,CAAC;QAAE,OAAO,MAAM,CAAC;IACvC,MAAM,UAAU,GAAG,EAAE,CAAC;IACtB,IAAI,kBAAkB,GAAG,EAAE,CAAC;IAC5B,IAAI,WAAW,GAAG,CAAC,CAAC;IACpB,KAAK,IAAI,CAAC,KAAK,EAAE,IAAI,CAAC,IAAI,MAAM,EAAE,CAAC;QACjC,WAAW,IAAI,IAAI,CAAC;QACpB,IAAI,WAAW,GAAG,GAAG,EAAE,CAAC;YACtB,kBAAkB,GAAG,kBAAkB,GAAG,CAAC,EAAE,IAAI,MAAM,CAAC,IAAI,CAAC,CAAC,GAAG,KAAK,CAAC;QACzE,CAAC;aAAM,CAAC;YACN,UAAU,CAAC,IAAI,CAAC,kBAAkB,CAAC,CAAC;YACpC,WAAW,GAAG,IAAI,CAAC;YACnB,kBAAkB,GAAG,KAAK,CAAC;QAC7B,CAAC;IACH,CAAC;IACD,UAAU,CAAC,IAAI,CAAC,kBAAkB,CAAC,CAAC;IACpC,OAAO,MAAM,CAAC,MAAM,CAAC,UAAU,CAAC,CAAC;AACnC,CAAC;AAED,iDAAiD;AACjD,MAAM,MAAM,GAAG,iDAAiD,CAAC;AACjE,SAAS,IAAI;IACX,OAAO,cAAc,CAAC,oBAAoB,EAAE,EAAE,CAAC,MAAM,CAAC,CAAC,CAAC;AAC1D,CAAC;AAED,SAAS,cAAc,CAAC,KAAc;IACpC,IAAI,IAAI,GAAG,IAAI,EAAE,CAAC;IAClB,OAAO,cAAc,CAAC,IAAI,EAAE,KAAK,CAAC,CAAC,CAAC,CAAC,CAAC;AACxC,CAAC;AAED,SAAS,WAAW,CAAC,KAAe;IAClC,uCAAuC;IACvC,MAAM,EACJ,uBAAuB,EACvB,SAAS,EACT,cAAc,EACd,UAAU,EACV,KAAK,EAAE,MAAM,EACb,GAAG,GACJ,GAAG,iBAAiB,CAAC;IACtB,IAAI,MAAM,GAAG,CAAC,CAAC;IACf,IAAI,uBAAuB,EAAE,CAAC;QAC5B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,SAAS,EAAE,CAAC,EAAE,EAAE,CAAC;YACnC,KAAK,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,cAAc,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QACjD,CAAC;QACD,MAAM,GAAG,CAAC,CAAC;IACb,CAAC;IACD,KAAK,IAAI,KAAK,GAAG,CAAC,EAAE,KAAK,GAAG,UAAU,EAAE,KAAK,EAAE,EAAE,CAAC;QAChD,mBAAmB;QACnB,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,SAAS,EAAE,CAAC,EAAE,EAAE,CAAC;YACnC,KAAK,CAAC,CAAC,CAAC,GAAG,KAAK,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,MAAM,CAAC,CAAC;QACrC,CAAC;QACD,IAAI,QAAQ,GAAG,CAAC,GAAG,KAAK,CAAC,CAAC;QAC1B,KAAK,IAAI,CAAC,GAAG,CAAC,EAAE,CAAC,GAAG,SAAS,EAAE,CAAC,EAAE,EAAE,CAAC;YACnC,yBAAyB;YACzB,KAAK,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC,GAAG,CAAC,CAAC,CAAC,EAAE,QAAQ,CAAC,CAAC;YACjC,sBAAsB;YACtB,KAAK,CAAC,CAAC,CAAC,GAAG,GAAG,CAAC,KAAK,CAAC,CAAC,CAAC,EAAE,cAAc,CAAC,KAAK,GAAG,MAAM,CAAC,CAAC,CAAC,CAAC,CAAC,CAAC;QAC9D,CAAC;IACH,CAAC;AACH,CAAC"}
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"index.js","sourceRoot":"","sources":["../../../src/curve/index.ts"],"names":[],"mappings":"AAAA,cAAc,gBAAgB,CAAC;AAC/B,cAAc,aAAa,CAAC;AAC5B,cAAc,YAAY,CAAC;AAC3B,cAAc,WAAW,CAAC"}
|
|
@@ -0,0 +1,19 @@
|
|
|
1
|
+
import { Group, publicKeyToGroup, sub, scale, isEven, equal, } from "./curve.js";
|
|
2
|
+
import { hashMessage } from "./hash.js";
|
|
3
|
+
import { PallasConstants } from "./constants.js";
|
|
4
|
+
export function verify(signature, message, publicKey) {
|
|
5
|
+
const { r, s } = signature;
|
|
6
|
+
const pk = publicKeyToGroup(publicKey);
|
|
7
|
+
const e = hashMessage(message, pk, r);
|
|
8
|
+
const { one } = PallasConstants;
|
|
9
|
+
const R = sub(scale(one, s), scale(Group.toProjective(pk), e));
|
|
10
|
+
try {
|
|
11
|
+
// if `R` is infinity, Group.fromProjective throws an error, so `verify` returns false
|
|
12
|
+
const { x: rx, y: ry } = Group.fromProjective(R);
|
|
13
|
+
return isEven(ry) && equal(rx, r);
|
|
14
|
+
}
|
|
15
|
+
catch {
|
|
16
|
+
return false;
|
|
17
|
+
}
|
|
18
|
+
}
|
|
19
|
+
//# sourceMappingURL=verify.js.map
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
{"version":3,"file":"verify.js","sourceRoot":"","sources":["../../../src/curve/verify.ts"],"names":[],"mappings":"AAAA,OAAO,EAGL,KAAK,EACL,gBAAgB,EAChB,GAAG,EACH,KAAK,EACL,MAAM,EACN,KAAK,GACN,MAAM,YAAY,CAAC;AACpB,OAAO,EAAE,WAAW,EAAE,MAAM,WAAW,CAAC;AACxC,OAAO,EAAE,eAAe,EAAE,MAAM,gBAAgB,CAAC;AAEjD,MAAM,UAAU,MAAM,CACpB,SAAoB,EACpB,OAA6B,EAC7B,SAAoB;IAEpB,MAAM,EAAE,CAAC,EAAE,CAAC,EAAE,GAAG,SAAS,CAAC;IAC3B,MAAM,EAAE,GAAG,gBAAgB,CAAC,SAAS,CAAC,CAAC;IACvC,MAAM,CAAC,GAAG,WAAW,CAAC,OAAO,EAAE,EAAE,EAAE,CAAC,CAAC,CAAC;IACtC,MAAM,EAAE,GAAG,EAAE,GAAG,eAAe,CAAC;IAChC,MAAM,CAAC,GAAG,GAAG,CAAC,KAAK,CAAC,GAAG,EAAE,CAAC,CAAC,EAAE,KAAK,CAAC,KAAK,CAAC,YAAY,CAAC,EAAE,CAAC,EAAE,CAAC,CAAC,CAAC,CAAC;IAC/D,IAAI,CAAC;QACH,sFAAsF;QACtF,MAAM,EAAE,CAAC,EAAE,EAAE,EAAE,CAAC,EAAE,EAAE,EAAE,GAAG,KAAK,CAAC,cAAc,CAAC,CAAC,CAAC,CAAC;QACjD,OAAO,MAAM,CAAC,EAAE,CAAC,IAAI,KAAK,CAAC,EAAE,EAAE,CAAC,CAAC,CAAC;IACpC,CAAC;IAAC,MAAM,CAAC;QACP,OAAO,KAAK,CAAC;IACf,CAAC;AACH,CAAC"}
|