@shielded-x402/client 0.2.1 → 0.2.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (58) hide show
  1. package/dist/circuits/spend_change.json +156 -156
  2. package/package.json +3 -3
  3. package/dist/packages/shared-types/src/crypto-spec.d.ts +0 -16
  4. package/dist/packages/shared-types/src/crypto-spec.d.ts.map +0 -1
  5. package/dist/packages/shared-types/src/crypto-spec.js +0 -15
  6. package/dist/packages/shared-types/src/crypto-spec.js.map +0 -1
  7. package/dist/packages/shared-types/src/index.d.ts +0 -4
  8. package/dist/packages/shared-types/src/index.d.ts.map +0 -1
  9. package/dist/packages/shared-types/src/index.js +0 -4
  10. package/dist/packages/shared-types/src/index.js.map +0 -1
  11. package/dist/packages/shared-types/src/types.d.ts +0 -115
  12. package/dist/packages/shared-types/src/types.d.ts.map +0 -1
  13. package/dist/packages/shared-types/src/types.js +0 -2
  14. package/dist/packages/shared-types/src/types.js.map +0 -1
  15. package/dist/packages/shared-types/src/x402.d.ts +0 -20
  16. package/dist/packages/shared-types/src/x402.d.ts.map +0 -1
  17. package/dist/packages/shared-types/src/x402.js +0 -96
  18. package/dist/packages/shared-types/src/x402.js.map +0 -1
  19. package/dist/sdk/client/src/client.d.ts +0 -26
  20. package/dist/sdk/client/src/client.d.ts.map +0 -1
  21. package/dist/sdk/client/src/client.js +0 -174
  22. package/dist/sdk/client/src/client.js.map +0 -1
  23. package/dist/sdk/client/src/crypto.d.ts +0 -5
  24. package/dist/sdk/client/src/crypto.d.ts.map +0 -1
  25. package/dist/sdk/client/src/crypto.js +0 -15
  26. package/dist/sdk/client/src/crypto.js.map +0 -1
  27. package/dist/sdk/client/src/index.d.ts +0 -10
  28. package/dist/sdk/client/src/index.d.ts.map +0 -1
  29. package/dist/sdk/client/src/index.js +0 -10
  30. package/dist/sdk/client/src/index.js.map +0 -1
  31. package/dist/sdk/client/src/indexer.d.ts +0 -22
  32. package/dist/sdk/client/src/indexer.d.ts.map +0 -1
  33. package/dist/sdk/client/src/indexer.js +0 -20
  34. package/dist/sdk/client/src/indexer.js.map +0 -1
  35. package/dist/sdk/client/src/merkle.d.ts +0 -11
  36. package/dist/sdk/client/src/merkle.d.ts.map +0 -1
  37. package/dist/sdk/client/src/merkle.js +0 -63
  38. package/dist/sdk/client/src/merkle.js.map +0 -1
  39. package/dist/sdk/client/src/notes.d.ts +0 -19
  40. package/dist/sdk/client/src/notes.d.ts.map +0 -1
  41. package/dist/sdk/client/src/notes.js +0 -105
  42. package/dist/sdk/client/src/notes.js.map +0 -1
  43. package/dist/sdk/client/src/proofProvider.d.ts +0 -33
  44. package/dist/sdk/client/src/proofProvider.d.ts.map +0 -1
  45. package/dist/sdk/client/src/proofProvider.js +0 -207
  46. package/dist/sdk/client/src/proofProvider.js.map +0 -1
  47. package/dist/sdk/client/src/relayerFetch.d.ts +0 -36
  48. package/dist/sdk/client/src/relayerFetch.d.ts.map +0 -1
  49. package/dist/sdk/client/src/relayerFetch.js +0 -195
  50. package/dist/sdk/client/src/relayerFetch.js.map +0 -1
  51. package/dist/sdk/client/src/shieldedFetch.d.ts +0 -39
  52. package/dist/sdk/client/src/shieldedFetch.d.ts.map +0 -1
  53. package/dist/sdk/client/src/shieldedFetch.js +0 -88
  54. package/dist/sdk/client/src/shieldedFetch.js.map +0 -1
  55. package/dist/sdk/client/src/types.d.ts +0 -57
  56. package/dist/sdk/client/src/types.d.ts.map +0 -1
  57. package/dist/sdk/client/src/types.js +0 -2
  58. package/dist/sdk/client/src/types.js.map +0 -1
@@ -1,162 +1,162 @@
1
1
  {
2
- "noir_version": "1.0.0-beta.18+99bb8b5cf33d7669adbdef096b12d80f30b4c0c9",
3
- "hash": "10252091495937422632",
4
- "abi": {
5
- "parameters": [
6
- {
7
- "name": "note_amount",
8
- "type": { "kind": "integer", "sign": "unsigned", "width": 128 },
9
- "visibility": "private"
10
- },
11
- {
12
- "name": "note_rho",
13
- "type": { "kind": "field" },
14
- "visibility": "private"
15
- },
16
- {
17
- "name": "note_pk_hash",
18
- "type": { "kind": "field" },
19
- "visibility": "private"
20
- },
21
- {
22
- "name": "nullifier_secret",
23
- "type": { "kind": "field" },
24
- "visibility": "private"
25
- },
26
- {
27
- "name": "merkle_path",
28
- "type": {
29
- "kind": "array",
30
- "length": 32,
31
- "type": {
32
- "kind": "array",
33
- "length": 32,
34
- "type": { "kind": "integer", "sign": "unsigned", "width": 8 }
35
- }
36
- },
37
- "visibility": "private"
38
- },
39
- {
40
- "name": "index_bits",
41
- "type": {
42
- "kind": "array",
43
- "length": 32,
44
- "type": { "kind": "integer", "sign": "unsigned", "width": 8 }
45
- },
46
- "visibility": "private"
47
- },
48
- {
49
- "name": "merchant_pk_hash",
50
- "type": { "kind": "field" },
51
- "visibility": "private"
52
- },
53
- {
54
- "name": "merchant_rho",
55
- "type": { "kind": "field" },
56
- "visibility": "private"
57
- },
58
- {
59
- "name": "change_pk_hash",
60
- "type": { "kind": "field" },
61
- "visibility": "private"
62
- },
63
- {
64
- "name": "change_rho",
65
- "type": { "kind": "field" },
66
- "visibility": "private"
67
- },
68
- {
69
- "name": "pay_amount",
70
- "type": { "kind": "integer", "sign": "unsigned", "width": 128 },
71
- "visibility": "private"
72
- },
73
- {
74
- "name": "challenge_nonce",
75
- "type": {
76
- "kind": "array",
77
- "length": 32,
78
- "type": { "kind": "integer", "sign": "unsigned", "width": 8 }
79
- },
80
- "visibility": "private"
81
- },
82
- {
83
- "name": "merchant_address_word",
84
- "type": {
85
- "kind": "array",
86
- "length": 32,
87
- "type": { "kind": "integer", "sign": "unsigned", "width": 8 }
88
- },
89
- "visibility": "private"
90
- }
91
- ],
92
- "return_type": {
93
- "abi_type": {
94
- "kind": "tuple",
95
- "fields": [
96
- {
97
- "kind": "array",
98
- "length": 32,
99
- "type": { "kind": "integer", "sign": "unsigned", "width": 8 }
100
- },
101
- {
102
- "kind": "array",
103
- "length": 32,
104
- "type": { "kind": "integer", "sign": "unsigned", "width": 8 }
105
- },
106
- {
107
- "kind": "array",
108
- "length": 32,
109
- "type": { "kind": "integer", "sign": "unsigned", "width": 8 }
110
- },
111
- {
112
- "kind": "array",
113
- "length": 32,
114
- "type": { "kind": "integer", "sign": "unsigned", "width": 8 }
115
- },
116
- {
117
- "kind": "array",
118
- "length": 32,
119
- "type": { "kind": "integer", "sign": "unsigned", "width": 8 }
120
- },
121
- { "kind": "field" }
122
- ]
123
- },
124
- "visibility": "public"
2
+ "noir_version": "1.0.0-beta.18+99bb8b5cf33d7669adbdef096b12d80f30b4c0c9",
3
+ "hash": "3611980196179374128",
4
+ "abi": {
5
+ "parameters": [
6
+ {
7
+ "name": "note_amount",
8
+ "type": { "kind": "integer", "sign": "unsigned", "width": 128 },
9
+ "visibility": "private"
10
+ },
11
+ {
12
+ "name": "note_rho",
13
+ "type": { "kind": "field" },
14
+ "visibility": "private"
15
+ },
16
+ {
17
+ "name": "note_pk_hash",
18
+ "type": { "kind": "field" },
19
+ "visibility": "private"
20
+ },
21
+ {
22
+ "name": "nullifier_secret",
23
+ "type": { "kind": "field" },
24
+ "visibility": "private"
25
+ },
26
+ {
27
+ "name": "merkle_path",
28
+ "type": {
29
+ "kind": "array",
30
+ "length": 24,
31
+ "type": {
32
+ "kind": "array",
33
+ "length": 32,
34
+ "type": { "kind": "integer", "sign": "unsigned", "width": 8 }
35
+ }
125
36
  },
126
- "error_types": {
127
- "819864067177566446": {
128
- "error_kind": "string",
129
- "string": "Field failed to decompose into specified 8 limbs"
130
- },
131
- "1998584279744703196": {
132
- "error_kind": "string",
133
- "string": "attempt to subtract with overflow"
134
- },
135
- "12469291177396340830": {
136
- "error_kind": "string",
137
- "string": "call to assert_max_bit_size"
138
- },
139
- "15835548349546956319": {
140
- "error_kind": "string",
141
- "string": "Field failed to decompose into specified 32 limbs"
142
- }
143
- }
144
- },
145
- "bytecode": "H4sIAAAAAAAA/+x9B5gURdd1l8DuknNOQw4iyQSSc0ZAckZyBnMmieQcVTAAkkSyAoqYMSMgChgx56yYQP4qmHnpGe/Sde5O3fl5Pvt57sf3Hmu2TvXtc+pedrpQ3pkrffjPkf2GjnqwqeddWefM/1Y60oX/NNf4GMx8LiUGy0BgSQSWTGApBJaRwDIRWGYCy0JgWQksG4FlJ7AcBJaTwHIRWG4Cy0NgeQksH4HlJ7ACBFaQwAoRWGECK0JgRQmsGIEVJ7AQgZUgsJIEVorAShNYGQIrS2DlCKw8gVUgsIoEdiGBVSKwiwisMoFVIbCqBFaNwKoT2MUEdgmBXUpglxHY5QRWg8BqEtgVBFaLwGoTWB0Cq0tg9QisPoE1ILCGBNaIwBoTWBMCa0pgzQisOYG1ILCWBNaKwFoTWBsCa0tgVxJYOwJrT2AdCOwqAutIYJ0IrDOBdSGwrgTWjcC6E1gPAutJYL0IrDeB9SGwvgTWj8CuJrD+BDaAwAYS2CACG0xgQwhsKIENI7DhBDaCwEYS2CgCG01gYwhsLIFdQ2DXEth1BHY9gd1AYDcS2E0EdjOB3UJgtxLYbQR2O4HdQWDjCGw8gU0gsIkENonA7iSwyQR2F4FNIbCpBDaNwKYT2AwCm0lgswhsNoHNIbC5BDaPwOYT2AICW0hgiwhsMYEtIbClBHY3gd1DYPcS2DICW05g9xHY/QT2AIE9SGArCGwlga0isIcIbDWBrSGwtQS2jsDWE9jDBLaBwB4hsI0EtonANhPYFgLbSmDbCGw7gT1KYI8R2A4C20lguwjscQJ7gsB2E9iTBLaHwJ4isKcJ7BkCe5bAniOw5wnsBQLbS2AvEthLBPYygb1CYK8S2GsE9jqB7SOwNwhsP4EdILCDBPYmgR0isLcI7G0CO0xgRwjsKIG9Q2DvEth7BPY+gX1AYB8S2DEC+4jAPiawTwjsUwL7jMA+J7AvCOxLAvuKwL4msG8I7FsC+47AviewHwjsRwL7icB+JrBfCOxXAvuNwI4T2O8E9geB/UlgfxHY3wR2gsBOEtg/BHaKwMz/icUUgV1AYOkILD2BZSCwJAJLJrAUAstIYJkILDOBZSGwrASWjcCyE1gOAstJYLkILDeB5SGwvASWj8DyE1gBAitIYIUIrDCBFSGwogRWjMCKE1iIwEoQWEkCK0VgpQmsDIGVJbByBFaewCoQWEUCu5DAKhHYRQRWmcCqEFhVAqtGYNUJ7GICu4TALiWwywjscgKrQWA1CewKAqtFYLUJrA6B1SWwegRWn8AaEFhDAmtEYI0JrAmBNSWwZgTWnMBaEFhLAmtFYK0JrA2BtSWwKwmsHYG1J7AOBHYVgXUksE4E1pnAuhBYVwLrRmDdCawHgfUksF4E1pvA+hBYXwLrR2BXE1h/AhtAYAMJbBCBDSawIQQ2lMCGEdhwAhtBYCMJbBSBjSawMQQ2lsCuIbBrCew6AruewG4gsBsJ7CYCu5nAbiGwWwnsNgK7ncDuILBxBDaewCYQ2EQCm0RgdxLYZAK7i8CmENhUAptGYNMJbAaBzSSwWQQ2m8DmENhcAptHYPMJbAGBLSSwRQS2mMCWENhSArubwO4hsHsJbBmBLSew+wjsfgJ7gMAeJLAVBLaSwFYR2EMEtprA1hDYWgJbR2DrCexhAttAYI8Q2EYC20RgmwlsC4FtJbBtBLadwB4lsMcIbAeB7SSwXQT2OIE9QWC7CexJAttDYE8R2NME9gyBPUtgzxHY8wT2AoHtJbAXCewlAnuZwF4hsFcJ7DUCe53A9hHYGwS2n8AOENhBAnuTwA4R2FsE9jaBHSawIwR2lMDeIbB3Cew9AnufwD4gsA8J7BiBfURgHxPYJwT2KYF9RmCfE9gXBPYlgX1FYF8T2DcE9i2BfUdg3xPYDwT2I4H9RGA/E9gvBPYrgf1GYMcJ7HcC+4PA/iSwvwjsbwI7QWAnCewfAjtFYN4F/8YUgV1AYOkILD2BZSCwJAJLJrAUAstIYJkILDOBZSGwrASWjcCyE1gOAstJYLkILDeB5SGwvASWj8DyE1gBAitIYIUIrDCBFSGwogRWjMCKE1iIwEoQWEkCK0VgpQmsDIGVJbByBFaewCoQWEUCu5DAKhHYRQRWmcCqEFhVAqtGYNUJ7GICu4TALiWwywjscgKrQWA1CewKAqtFYLUJrA6B1SWwegRWn8AaEFhDAmtEYI0JrAmBNSWwZgTWnMBaEFhLAmtFYK0JrA2BtSWwKwmsHYG1J7AOBHYVgXUksE4E1pnAuhBYVwLrRmDdCawHgfUksF4E1pvA+hBYXwLrR2BXE1h/AhtAYAMJbBCBDSawIQQ2lMCGEdhwAhtBYCMJbBSBjSawMQQ2lsCuIbBrCew6AruewG4gsBsJ7CYCu5nAbiGwWwnsNgK7ncDuILBxBDaewCYQ2EQCm0RgdxLYZAK7i8CmENhUAptGYNMJbAaBzSSwWQQ2m8DmENhcAptHYPMJbAGBLSSwRQS2mMCWENhSArubwO4hsHsJbBmBLSew+wjsfgJ7gMAeJLAVBLaSwFYR2EMEtprA1hDYWgJbR2DrCexhAttAYI8Q2EYC20RgmwlsC4FtJbBtBLadwB4lsMcIbAeB7SSwXQT2OIE9QWC7CexJAttDYE8R2NME9gyBPUtgzxHY8wT2AoHtJbAXCewlAnuZwF4hsFcJ7DUCe53A9hHYGwS2n8AOENhBAnuTwA4R2FsE9jaBHSawIwR2lMDeIbB3Cew9AnufwD4gsA8J7BiBfURgHxPYJwT2KYF9RmCfE9gXBPYlgX1FYF8T2DcE9i2BfUdg3xPYDwT2I4H9RGA/E9gvBPYrgf1GYMcJ7HcC+4PA/iSwvwjsbwI7QWAnCewfAjtFYOb/icUUgV1AYOkILD2BZSCwJAJLJrAUAstIYJkILDOBZSGwrASWjcCyE1gOAstJYLkILDeB5SGwvASWj8DyE1gBAitIYIUIrDCBFSGwogRWjMCKE1iIwEoQWEkCK0VgpQmsDIGVJbByBFaewCoQWEUCu5DAKhHYRQRWmcCqEFhVAqtGYNUJ7GICu4TALiWwywjscgKrQWA1CewKAqtFYLUJrA6B1SWwegRWn8AaEFhDAmtEYI0JrAmBNSWwZgTWnMBaEFhLAmtFYK0JrA2BtSWwKwmsHYG1J7AOBHYVgXUksE4E1pnAuhBYVwLrRmDdCawHgfUksF4E1pvA+hBYXwLrR2BXE1h/AhtAYAMJbBCBDSawIQQ2lMCGEdhwAhtBYCMJbBSBjSawMQQ2lsCuIbBrCew6AruewG4gsBsJ7CYCu5nAbiGwWwnsNgK7ncDuILBxBDaewCYQ2EQCm0RgdxLYZAK7i8CmENhUAptGYNMJbAaBzSSwWQQ2m8DmENhcAptHYPMJbAGBLSSwRQS2mMCWENhSArubwO4hsHsJbBmBLSew+wjsfgJ7gMAeJLAVBLaSwFYR2EMEtprA1hDYWgJbR2DrCexhAttAYI8Q2EYC20RgmwlsC4FtJbBtBLadwB4lsMcIbAeB7SSwXQT2OIE9QWC7CexJAttDYE8R2NME9gyBPUtgzxHY8wT2AoHtJbAXCewlAnuZwF4hsFcJ7DUCe53A9hHYGwS2n8AOENhBAnuTwA4R2FsE9jaBHSawIwR2lMDeIbB3Cew9AnufwD4gsA8J7BiBfURgHxPYJwT2KYF9RmCfE9gXBPYlgX1FYF8T2DcE9i2BfUdg3xPYDwT2I4H9RGA/E9gvBPYrgf1GYMcJ7HcC+4PA/iSwvwjsbwI7QWAnCewfAjtFYObAvlhMEdgFBJaOwNITWAYCSyKwZAJLIbCMBJaJwDITWBYCy0pg2QgsO4HlILCcBJaLwHITWB4Cy0tg+QgsP4EVILCCBFaIwAoTWBECK0pgxQisOIGFCKwEgZUksFIEVj79v8+krECMq0hgFxJYJQK7iMAqE1gVAqtKYNUIrDqBXUxglxDYpQR2GYFdTmA1CKwmgV1BYLUIrDaB1SGwugRWj8DqE1gDAmtIYI0IrDGBNSGwpgTWjMCaE1gLAmtJYK0IrDWBtSGwtgR2JYG1I7D2BNaBwK4isI4E1onAOhNYFwLrSmDdCKw7gfUgsJ4E1ovAehNYHwLrS2D9COxqAutPYAMIbCCBDSKwwQQ2JIzpP05fF3j/viJYyLO6lH9s1QFtr/mo2gMVdrZr8tiECV17lb/4y+Y37xozr9FHvy0wZ7EY/w2d4+cEXSHLz/rXlSnDmT8zZ/Cib4YBxqfywVD4z6AFmZ9hOzZLhtRv6qmYy88zC8EzfQzPgIudpJixPWPGqkwZePeK4ndO8gD/TBns70t67+wzETRv0M8CxpJXKA3DQp7Npf63JuX7TFZ9v7LpyK4jh46cOnLpyK0jj468OvLpyK+jgI6COgrpKKyjiI6iOorpKG7uu44SOkrqKKWjtI4yOsrqKKejvI4KOirquFBHpVhRGjL/qrYJLDuB5SCwnASWi8ByE1geAstLYPkILD+BFSCwggRWiMAKE1gRAitKYMUIrDiBhQisBIGVJLBSBFaawMoQWFkCK0dg5QmsAoFVJLALCaxSGPNfJcJ/hjyrCzLWrJZm+YP2/2zWYz2V3Xas5pvDbux8Y+45rcb+enojyGUz9tiZTSO3xdiG4Q0mT/DYuZHNKG/g2NH/27jyBY3deXaTyx8w9ibfhljg3GOb+TfPgucc+0XURlvoXGOrR2/Khc8xtlzMBl4kg/1mXzTVsV1in3VVLLWx4/+lC1U8lbHj/60hFaLHPkroTZUgxzamtKlKUmOvJHWsShFjd9CaV6X/PbZ8Kv6gyvxr7P2peYkqGzu2aqq+o8rFjD2Wukep8tFjx57Dz1SFqLFtzuV9qqJ/bP9z+qS60De2yrk9VVWyL/ZOF82mwFfEf0OLvUr2Xn7AP99FGdIwofkw0qGYyS+yv0GqsuWifkzDGswcSEVv1lAZTLK5qNY2LUkOuPZTYMizmiaKa5XwA1I1tjKuEr5xfqwqUcGkgyaHnmRVBXhAqoI3D02OeSiqgA+T4VUlQY5xof19Xu6frxrXMcyE1XDHWF4NcIzqjh3DrKE67hjLqyfIMS60n3cZBYY8q2miuF4cfkAuiXWMiwnHuCQOjgE8yepi4AG5hHnz0L+0QzhdCojhf/8H4FI5/ICjf+uKbNWXAWKg1hA03NyjyxhOfFmCnLii/fO7zT/f5VwnNhNejjvxtsuBh6+GYyc2a6iBO/G2Gml8+GwEdJljAdUE1xC5UGNCcngF8GzEc4eraD/vVgoMeVbTRHGtFRZe7dgdrhaxw9WOww4HOISqBSStNvPmoQ8SwqlOGne4oM8Y8VzB2B3qOt61zLrrCvCKXGgO6wI5rOc4h6mZrI05246tDxpavKqBCvZan+OfrwG3GjATNsCrgTkNgBvU0HE1YNbQEK8G5jR0XA0YIdTP4FZsjUCxRS6UE5LDxgmqBirYzzubAkOe1TRRXJuEhdc0thpoQlQDTeNQDQAOoZoASWvKvHnog4RwauZ4JzHiaczYdZs7rgbMupsL8IpcaA6bAzls4TiHqZls0OcQk22ZoL8bKG+v9ZB/vlbcasBM2AqvBkKtgCS3dlwNmDW0xquBUGvH1YARQssMbsXWRqgaQHLYNkHVQHn7eYtTYMizmiaK65Vh4bWLrQauJKqBdnGoBgCHUFcCSWvHvHnog4Rwau94JzHiacvYdTs4rgbMujsI8IpcaA47ADm8ynEOUzPZoM8hJtsxQdVAOXut7/fP14lbDZgJO+HVwP5OQJI7O64GzBo649XA/s6OqwEjhI4Z3Iqti1A1gOSwa4KqgXL2875BgSHPapoort3CwuseWw10I6qB7nGoBgCHUN2ApHVn3jz0QUI49XC8kxjxdGXsuj0dVwNm3T0FeEUuNIc9gRz2cpzD1Ew26HOIyfZOUDVQ1l7r/fzz9eFWA2bCPng10K8PkOS+jqsBs4a+eDXQr6/jasAIoXcGt2LrJ1QNIDm8OkHVQFn7eftSYMizmiaKa/+w8AbEVgP9iWpgQByqAcAhVH8gaQOYNw99kBBOAx3vJEY8VzN23UGOqwGz7kECvCIXmsNBQA4HO85haiYb9DnEZIckqBooY6/1I/75hnKrATPhULwaODIUSPIwx9WAWcMwvBo4MsxxNWCEMCSDW7ENF6oGkByOSFA1UMZ+3sMUGPKsponiOjIsvFGx1cBIohoYFYdqAHAINRJI2ijmzUMfJITTaMc7iRHPCMauO8ZxNWDWPUaAV+RCczgGyOFYxzlMzWSDPoeY7DUJqgZK22u9hX++a7nVgJnwWrwaaHEtkOTrHFcDZg3X4dVAi+scVwNGCNdkcCu264WqASSHNySoGihtP29zCgx5VtNEcb0xLLybYquBG4lq4KY4VAOAQ6gbgaTdxLx56IOEcLrZ8U5ixHMDY9e9xXE1YNZ9iwCvyIXm8BYgh7c6zmFqJhv0OcRkb0tQNVDKXutb/PPdzq0GzIS349XAltuBJN/huBowa7gDrwa23OG4GjBCuC2DW7GNE6oGkByOT1A1UMp+3s0UGPKsponiOiEsvImx1cAEohqYGIdqAHAINQFI2kTmzUMfJITTJMc7iRHPeMaue6fjasCs+04BXpELzeGdQA4nO85haiYb9DnEZO9KUDVQ0l7ru/3zTeFWA2bCKXg1sHsKkOSpjqsBs4apeDWwe6rjasAI4a4MbsU2TagaQHI4PUHVQEn7eZ+gwJBnNU0U1xlh4c2MrQZmENXAzDhUA4BDqBlA0mYybx76ICGcZjneSYx4pjN23dmOqwGz7tkCvCIXmsPZQA7nOM5haiYb9DnEZOcmqBooYa/1Vv755nGrATPhPLwaaDUPSPJ8x9WAWcN8vBpoNd9xNWCEMDeDW7EtEKoGkBwuTFA1UMJ+3pYUGPKsponiuigsvMWx1cAiohpYHIdqAHAItQhI2mLmzUMfJITTEsc7iRHPQsauu9RxNWDWvVSAV+RCc7gUyOHdjnOYmskGfQ4x2XsSVA2E7LU+3j/fvdxqwEx4L14NjL8XSPIyx9WAWcMyvBoYv8xxNWCEcE8Gt2JbLlQNIDm8L0HVQMh+3nEUGPKsponien9YeA/EVgP3E9XAA3GoBgCHUPcDSXuAefPQBwnh9KDjncSI5z7GrrvCcTVg1r1CgFfkQnO4AsjhSsc5TM1kgz6HmOyqBFUDxZnVwEPcasBM+BCjGngISPJqx9WAWcNqRjWw2nE1YISwKoNbsa0RqgaQHK5NUDVQPAHVwLqw8NbHVgPriGpgfRyqAcAh1DogaeuFqgGE08OOdxIjnrWMXXeD42rArHuDAK/IheZwA5DDRxznMDWTDfocYrIbE1QNFLPX+jr/fJu41YCZcBNeDazbBCR5s+NqwKxhM14NrNvsuBowQtiYwa3YtghVA0gOtyaoGihmP+9aCgx5VtNEcd0WFt722GpgG1ENbI9DNQA4hNoGJG078+ahDxLC6VHHO4kRz1bGrvuY42rArPsxAV6RC83hY0AOdzjOYWomG/Q5xGR3JqgaKGqv9VX++XZxqwEz4S68Gli1C0jy446rAbOGx/FqYNXjjqsBI4SdGdyK7QmhagDJ4e4EVQNF7eddSYEhz2qaKK5PhoW3J7YaeJKoBvbEoRoAHEI9CSRtD/PmoQ8SwukpxzuJEc9uxq77tONqwKz7aQFekQvN4dNADp9xnMPUTDboc4jJPpugaqCIvdaP+ud7jlsNmAmfw6uBo88BSX7ecTVg1vA8Xg0cfd5xNWCE8GwGt2J7QagaQHK4N0HVQBH7eY9QYMizmiaK64th4b0UWw28SFQDL8WhGgAcQr0IJO0l5s1DHySE08uOdxIjnr2MXfcVx9WAWfcrArwiF5rDV4Acvuo4h6mZbNDnEJN9LUHVQGF7re/zz/c6txowE76OVwP7XgeSvM9xNWDWsA+vBvbtc1wNGCG8lsGt2N4QqgaQHO5PUDVQ2H7e1ykw5FlNE8X1QFh4B2OrgQNENXAwDtUA4BDqAJC0g8ybhz5ICKc3He8kRjz7GbvuIcfVgFn3IQFekQvN4SEgh285zmFqJhv0OcRk305QNVDIXusF/fMd5lYDZsLDeDVQ8DCQ5COOqwGzhiN4NVDwiONqwAjh7QxuxXZUqBpAcvhOgqqBQvbzFqDAkGc1TRTXd8PCey+2GniXqAbei0M1ADiEehdI2nvMm4c+SAin9x3vJEY87zB23Q8cVwNm3R8I8IpcaA4/AHL4oeMcpmayQZ9DTPZYgqqBgvZa3+Wf7yNuNWAm/AivBnZ9BCT5Y8fVgFnDx3g1sOtjx9WAEcKxDG7F9olQNYDk8NMEVQMF7efdSYEhz2qaKK6fhYX3eWw18BlRDXweh2oAcAj1GZC0z5k3D32QEE5fON5JjHg+Zey6XzquBsy6vxTgFbnQHH4J5PArxzlMzWSDPoeY7NcJqgYK2Gt9qn++b7jVgJnwG7wamPoNkORvHVcDZg3f4tXA1G8dVwNGCF9ncCu274SqASSH3yeoGihgP+8UCgx5VtNEcf0hLLwfY6uBH4hq4Mc4VAOAQ6gfgKT9yLx56IOEcPrJ8U5ixPM9Y9f92XE1YNb9swCvyIXm8Gcgh784zmFqJhv0OcRkf01QNZDfXuvN/fP9xq0GzIS/4dVA89+AJB93XA2YNRzHq4Hmxx1XA0YIv2ZwK7bfhaoBJId/JKgayG8/bzMKDHlW00Rx/TMsvL9iq4E/iWrgrzhUA4BDqD+BpP3FvHnog4Rw+tvxTmLE8wdj1z3huBow6z4hwCtyoTk8AeTwpOMcpmayQZ9DTPafBFUD+ey1Ps8/3yluNWAmPIVXA/NOIUlOclsNmDWYOcBqYJ6fl91C7H9+RAj/ZHArNpWEiS1yoZyQHF4AcIpnNZDP/pmcS4Ehz2qaKK7pks78mT7Ji9750yX9uxowg9JaDQAOodIBSUufxLt56IOEcMoAPtzoA2PEc0ESLuykNBpH0HCz7iQBXpELzWESkMNkxzlMzWSDPoeYbApwX+NZDeS11/oY/3wZk9IwofkwWA2MyQgkOZPjasCsIRNeDYzJ5LgaMEJISXIrtsxC1QCSwywJqgby2lcDoykw5FlNE8U1a1h42WKrgaxENZAtDtUA4BAqK5C0bEm8m4c+SAin7I53EiOeLIxdN4fjasCsO4cAr8iF5jAHkMOcjnOYmskGfQ4x2VwJqgby2Gt9j3++3NxqwEyYG68G9uQGkpzHcTVg1pAHrwb25HFcDRgh5EpyK7a8QtUAksN8CaoG8thXA09SYMizmiaKa/6w8ArEVgP5iWqgQByqAcAhVH4gaQWSeDcPfZAQTgUd7yRGPPkYu24hx9WAWXchAV6RC81hISCHhR3nMDWTDfocYrJFElQN5LbXesg/X1FuNWAmLIpXA6GiQJKLOa4GzBqK4dVAqJjjasAIoUiSW7EVF6oGkByGElQN5LavBopTYMizmiaKa4mw8ErGVgMliGqgZByqAcAhVAkgaSWTeDcPfZAQTqUc7ySnxcPYdUs7rgbMuksL8IpcaA5LAzks4ziHqZls0OcQky2boGogl73Ws/jnK8etBsyE5fBqIEs5IMnlHVcDZg3l8WogS3nH1YARQtkkt2KrIFQNIDmsmKBqIJd9NZCZAkOe1TRRXC8MC69SbDVwIVENVIpDNQA4hLoQSFqlJN7NQx8khNNFjncSI56KjF23suNqwKy7sgCvyIXmsDKQwyqOc5iayQZ9DjHZqgmqBnLaa32Uf75q3GrATFgNrwZGVQOSXN1xNWDWUB2vBkZVd1wNGCFUTXIrtouFqgEkh5ckqBrIaV8NjKTAkGc1TRTXS8PCuyy2GriUqAYui0M1ADiEuhRI2mVJvJuHPkgIp8sd7yRGPJcwdt0ajqsBs+4aArwiF5rDGkAOazrOYWomG/Q5xGSvSFA1kMNe6zn989XiVgNmwlp4NZCzFpDk2o6rAbOG2ng1kLO242rACOGKJLdiqyNUDSA5rJugaiCHfTWQgwJDntU0UVzrhYVXP7YaqEdUA/XjUA0ADqHqAUmrn8S7eeiDhHBq4HgnMeKpy9h1GzquBsy6GwrwilxoDhsCOWzkOIepmWzQ5xCTbZygaiA78Gajf74m3GrATNgkCf9cU8c7vOHVNOksEPLsL1RE5oFtnORWFM2Edm0kL83TKFSbNTdn5DCegsrGFFQLrqDMhC0YgmrpWFCGV8s4CSpouEl8yyTeAxOymyOuD0lW5JVe3wdbcR8SM2ErhuO0AhTb2vEDZdbQmpHk1o57MPMQtWaUB82A+9XGcTlo7m0bplgjF/pstQHW39ZxiZfajhz0OWRHvtJxDs09upKxESB5SO+dbTfTyld5vOfMw+YJWYP/utT/1uTn2k7fr/Y6Oui4SkdHHZ10dNbRRUdXHd10dNfRQ0dPHb109NbRR0dfHf10XK2jv44BOgbqGKRjsI4hOobqGKZjuI4ROkbqGKVjdOzfAbQL9/t+rD2BdSCwqwisI4F1IrDOBNaFwLoSWDcC605gPQisJ4H1IrDeBNaHwPoSWD8Cu5rA+hPYAAIbSGCDCGwwgQ0hsKEENozAhhPYCAIbSWCjCGx00r//bqlE+M+QZ3VFiT7IbNpZGpP5e6j21mM91cF2rOZ7ld3Y+Zqv6mg19lezNtXJZuyx0/dBdbYY2/DMPVNdgsfODd9f1TVw7OhILlS3oLE7/5c31T1g7E1nc6x6nHtsM9/zoHqec+wX/mdH9TrX2OpRz5nqfY6x5aKfSdUn9bE9Y55f1TfVsV1in3XVL7Wx4/+lC3V1KmPH/1tDqj899lFCb2oAObYxpU01kBp7JaljNYgYu4PWvBr877HlU/EHNeRfY+9PzUvU0NixVVP1HTUsZuyx1D1KDY8eO/YcfqZGRI1tcy7vUyP9Y/uf0yfVKN/YKuf2VDU6QR3vaHsvP+Cfbwy34zUTjkmCf+t4YIz9DVJjLRfF7XjNGsaCHa9Zw1gwyeaKx2/HgIdrPwWGPKtporheE35Aro2tjK8J3zg/dm1S2n87BjzJ6hrgAbkWvHlocsxDcQ34MBle1yTIMUbZ3+fl/vmu4zqGmfA63DGWXwc4xvWOHcOs4XrcMZZfnyDHGGU/7zIKDHlW00RxvSH8gNwY6xg3EI5xYxwcA3iS1Q3AA3Ij8+ahf1GHcLoJEMP//g/AZWz4AUf/og7Zqm8GxECtIWi4uUc3M5z45gQ58Uj753ebf75buE5sJrwFd+JttwAP362Ondis4VbcibfdmsaHz0ZANzsW0G3gGiIXakxIDm8Hno147nAj7efdSoEhz2qaKK53hIU3LnaHu4PY4cbFYYcDHELdASRtHPPmoQ8Swml8Gne4oM8Y8dzO2B0mON61zLonCPCKXGgOJwA5nOg4h6mZrI05246dBBpavKqBEfZan+Of705uNWAmvBOvBubcCdygyY6rAbOGyXg1MGey42rACGFSklux3QWKLXKhnJAcTklQNTDCft7ZFBjyrKaJ4jo1LLxpsdXAVKIamBaHagBwCDUVSNo05s1DHySE03THO4kRzxTGrjvDcTVg1j1DgFfkQnM4A8jhTMc5TM1kgz6HmOysBP3dwHB7rYf8883mVgNmwtl4NRCaDSR5juNqwKxhDl4NhOY4rgaMEGYluRXbXKFqAMnhvARVA8Pt543buXPzw8JbEFsNzCeqgQVxqAYAh1DzgaQtYN489EFCOC10vJMY8cxj7LqLHFcDZt2LBHhFLjSHi4AcLnacw9RMNuhziMkuSVA1MMxe6/v98y3lVgNmwqV4NbB/KZDkux1XA2YNd+PVwP67HVcDRghLktyK7R6hagDJ4b0JqgaG2c/7BgWGPKtporguCwtveWw1sIyoBpbHoRoAHEItA5K2nHnz0AcJ4XSf453EiOdexq57v+NqwKz7fgFekQvN4f1ADh9wnMPUTDboc4jJPpigamCovdb7+edbwa0GzIQr8Gqg3wogySsdVwNmDSvxaqDfSsfVgBHCg0luxbZKqBpAcvhQgqqBofbz9qXAkGc1TRTX1WHhrYmtBlYT1cCaOFQDgEOo1UDS1jBvHvogIZzWOt5JjHgeYuy66xxXA2bd6wR4RS40h+uAHK53nMPUTDboc4jJPpygamCIvdaP+OfbwK0GzIQb8GrgyAYgyY84rgbMGh7Bq4EjjziuBowQHk5yK7aNQtUAksNNCaoGhtjPe5gCQ57VNFFcN4eFtyW2GthMVANb4lANAA6hNgNJ28K8eeiDhHDa6ngnMeLZxNh1tzmuBsy6twnwilxoDrcBOdzuOIepmWzQ5xCTfTRB1cBge6238M/3GLcaMBM+hlcDLR4DkrzDcTVg1rADrwZa7HBcDRghPJrkVmw7haoBJIe7ElQNDLaftzkFhjyraaK4Ph4W3hOx1cDjRDXwRByqAcAh1ONA0p5g3jz0QUI47Xa8kxjx7GLsuk86rgbMup8U4BW50Bw+CeRwj+McpmayQZ9DTPapBFUDg+y1vsU/39PcasBM+DReDWx5GkjyM46rAbOGZ/BqYMszjqsBI4SnktyK7VmhagDJ4XMJqgYG2c+7mQJDntU0UVyfDwvvhdhq4HmiGnghDtUA4BDqeSBpLzBvHvogIZz2Ot5JjHieY+y6LzquBsy6XxTgFbnQHL4I5PAlxzlMzWSDPoeY7MsJqgYG2mt9t3++V7jVgJnwFbwa2P0KkORXHVcDZg2v4tXA7lcdVwNGCC8nuRXba0LVAJLD1xNUDQy0n/cJCgx5VtNEcd0XFt4bsdXAPqIaeCMO1QDgEGofkLQ3mDcPfZAQTvsd7yRGPK8zdt0DjqsBs+4DArwiF5rDA0AODzrOYWomG/Q5xGTfTFA1MMBe66388x3iVgNmwkN4NdDqEJDktxxXA2YNb+HVQKu3HFcDRghvJrkV29tC1QCSw8MJqgYG2M/bkgJDntU0UVyPhIV3NLYaOEJUA0fjUA0ADqGOAEk7yrx56IOEcHrH8U5ixHOYseu+67gaMOt+V4BX5EJz+C6Qw/cc5zA1kw36HGKy7yeoGuhvr/Xx/vk+4FYDZsIP8Gpg/AdAkj90XA2YNXyIVwPjP3RcDRghvJ/kVmzHhKoBJIcfJaga6G8/7zgKDHlW00Rx/TgsvE9iq4GPiWrgkzhUA4BDqI+BpH3CvHnog4Rw+tTxTmLE8xFj1/3McTVg1v2ZAK/IhebwMyCHnzvOYWomG/Q5xGS/SFA1cDWzGviSWw2YCb9kVANfAkn+ynE1YNbwFaMa+MpxNWCE8EWSW7F9LVQNIDn8JkHVwNUJqAa+DQvvu9hq4FuiGvguDtUA4BDqWyBp3wlVAwin7x3vJEY83zB23R8cVwNm3T8I8IpcaA5/AHL4o+McpmayQZ9DTPanBFUD/ey1vs4/38/casBM+DNeDaz7GUjyL46rAbOGX/BqYN0vjqsBI4SfktyK7VehagDJ4W8Jqgb62c+7lgJDntU0UVyPh4X3e2w1cJyoBn6PQzUAOIQ6DiTtd+bNQx8khNMfjncSI57fGLvun46rAbPuPwV4RS40h38COfzLcQ5TM9mgzyEm+3eCqoG+9lpf5Z/vBLcaMBOewKuBVSeAJJ90XA2YNZzEq4FVJx1XA0YIfye5Fds/QtUAksNTCaoG+trPu5ICQ57VNNFck8Noshe985v/EFsNmEFprQYAh1CGg83YH8PcLDlE3Tz0QUI4XZCMPdzoA2PEc4qx66az53WWnGfPy6w7XbJ7XpELzWE6IIfpHecwNZMN+hxishmA+xrPaqCPvdaP+udLSk7DhObDYDVwNAlIcjLw8HDXkAyKx6whOY2ithFChmS3YksBxRa5UE5IDjMCnOJZDfSxrwaOUGDIs5omimumsPAyx1YDmYhqIHMcqgHAIVQmIGmZk3k3D32QEE5ZHO8kRjwZGbtuVsfVgFl3VgFekQvNYVYgh9kc5zA1kw36HGKy2RNUDfS21/o+/3w5uNWAmTAHXg3sywEkOafjasCsISdeDezL6bgaMELInuxWbLmEqgEkh7kTVA30tq8GXqfAkGc1TRTXPGHh5Y2tBvIQ1UDeOFQDgEOoPEDS8ibzbh76ICGc8jneSYx4cjN23fyOqwGz7vwCvCIXmsP8QA4LOM5haiYb9DnEZAsmqBroZa/1gv75CnGrATNhIbwaKFgISHJhx9WAWUNhvBooWNhxNWCEUDDZrdiKCFUDSA6LJqga6GVfDRSgwJBnNU0U12Jh4RWPrQaKEdVA8ThUA4BDqGJA0oon824e+iAhnEKOdxIjnqKMXbeE42rArLuEAK/IheawBJDDko5zmJrJBn0OMdlSCaoGetprfZd/vtLcasBMWBqvBnaVBpJcxnE1YNZQBq8GdpVxXA0YIZRKdiu2skLVAJLDcgmqBnraVwM7KTDkWU0TxbV8WHgVYquB8kQ1UCEO1QDgEKo8kLQKybybhz5ICKeKjncSI55yjF33QsfVgFn3hQK8IheawwuBHFZynMPUTDboc4jJXpSgaqCHvdan+uerzK0GzISV8WpgamUgyVUcVwNmDVXwamBqFcfVgBHCRcluxVZVqBpAclgtQdVAD/tqYAoFhjyraaK4Vg8L7+LYaqA6UQ1cHIdqAHAIVR1I2sXJvJuHPkgIp0sc7yRGPNUYu+6ljqsBs+5LBXhFLjSHlwI5vMxxDlMz2aDPISZ7eYKqge72Wm/un68GtxowE9bAq4HmNYAk13RcDZg11MSrgeY1HVcDRgiXJ7sV2xVC1QCSw1oJqga621cDzSgw5FlNE8W1dlh4dWKrgdpENVAnDtUA4BCqNpC0Osm8m4c+SAinuo53EiOeWoxdt57jasCsu54Ar8iF5rAekMP6jnOYmskGfQ4x2QYJqga62Wt9nn++htxqwEzYEK8G5jUEktzIcTVg1tAIrwbmNXJcDRghNEh2K7bGQtUAksMmCaoGutlXA3MpMORZTRPFtWlYeM1iq4GmRDXQLA7VAOAQqimQtGbJvJuHPkgIp+aOdxIjniaMXbeF42rArLuFAK/IheawBZDDlo5zmJrJBn0OMdlWCaoGutprfYx/vtbcasBM2BqvBsa0BpLcxnE1YNbQBq8GxrRxXA0YIbRKdiu2tkLVAJLDKxNUDXS1rwZGU2DIs5omimu7sPDax1YD7YhqoH0cqgHAIVQ7IGntk3k3D32QEE4dHO8kRjxXMnbdqxxXA2bdVwnwilxoDq8CctjRcQ5TM9mgzyEm2ylB1UAXe63v8c/XmVsNmAk749XAns5Akrs4rgbMGrrg1cCeLo6rASOETsluxdZVqBpActgtQdVAF/tq4EkKDHlW00Rx7R4WXo/YaqA7UQ30iEM1ADiE6g4krUcy7+ahDxLCqafjncSIpxtj1+3luBow6+4lwCtyoTnsBeSwt+McpmayQZ9DTLZPgqqBzvZaD/nn68utBsyEffFqINQXSHI/x9WAWUM/vBoI9XNcDRgh9El2K7arhaoBJIf9E1QNdLavBopTYMizmiaK64Cw8AbGVgMDiGpgYByqAcAh1AAgaQOTeTcPfZAQToMc7yRGPP0Zu+5gx9WAWfdgAV6RC83hYCCHQxznMDWTDfocYrJDE1QNdLLXehb/fMO41YCZcBheDWQZBiR5uONqwKxhOF4NZBnuuBowQhia7FZsI4SqASSHIxNUDXSyrwYyU2DIs5omiuuosPBGx1YDo4hqYHQcqgHAIdQoIGmjk3k3D32QEE5jHO8kRjwjGbvuWMfVgFn3WAFekQvN4Vggh9c4zmFqJhv0OcRkr01QNdDRXuuj/PNdx60GzITX4dXAqOuAJF/vuBowa7gerwZGXe+4GjBCuDbZrdhuEKoGkBzemKBqoKN9NTCSAkOe1TRRXG8KC+/m2GrgJqIauDkO1QDgEOomIGk3J/NuHvogIZxucbyTGPHcyNh1b3VcDZh13yrAK3KhObwVyOFtjnOYmskGfQ4x2dsTVA1cZa/1nP757uBWA2bCO/BqIOcdQJLHOa4GzBrG4dVAznGOqwEjhNuT3YptvFA1gORwQoKqgavsq4EcFBjyrKaJ4joxLLxJsdXARKIamBSHagBwCDURSNqkZN7NQx8khNOdjncSI54JjF13suNqwKx7sgCvyIXmcDKQw7sc5zA1kw36HGKyUxJUDXQA/lk9/3xTudWAmXBqMv65aY53eMNrWvJZIOTZX6iIzAM7JdmtKKYL7dpIXmakUag2a57ByGE8BdWeKaiZXEGZCWcyBDXLsaAMr1lxElTQcJP4Wcm8ByZkN0dcH5J2wL9n559vNvchMRPOZjjObECxcxw/UGYNcxhJnuO4BzMP0RxGeTAduF9zHZeD5t7OZYo1cqHP1lxg/fMcl3ip7chBn0N25PmOc2ju0XzGRoDkIb13tt1MK98LPN5z5mHzhKzBf13qf2tSvs8s0PdroY5FOhbrWKJjqY67ddyj414dy3Qs13Gfjvt1PKDjQR0rdKzUsUrHQzpW61ijY62OdTrW63hYxwYdj+jYqGOTjs06tujYGvt3AAvC/b4fW0hgiwhsMYEtIbClBHY3gd1DYPcS2DICW05g9xHY/QT2AIE9SGArCGwlga0isIcIbDWBrSGwtQS2jsDWE9jDBLaBwB4hsI0EtonANhPYFgLbmvzvv1sqEf4z5FldUaIPMpsFlsZk/h5qofVYTy2yHav5LrYbO1/zVUusxv5q1qaW2ow9dvo+qLstxjY8c8/UPcFj54bvr7o3cOzoSC7UsqCxO/+XN7U8YOxNZ3Os7jv32Ga+50Hdf86xX/ifHfXAucZWj3rO1IPnGFsu+plUK1If2zPm+VUrUx3bJfZZV6tSGzv+X7pQD6Uydvy/NaRW02MfJfSm1pBjG1PaVGupsVeSOlbriLE7aM2r9f8eWz4Vf1AP/2vs/al5idoQO7Zqqr6jHokZeyx1j1Ibo8eOPYefqU1RY9ucy/vUZv/Y/uf0SbXFN7bKuT1VbU1Qx7vV3ssP+Ofbxu14zYTbkuHfOh7YZn+D1HbLRXE7XrOG7WDHa9awHUyyueLx2zHg4dpPgSHPapooro+GH5DHYivjR8M3zo89lpz2344BT7J6FHhAHgNvHpoc81A8Cj5MhtejCXKMLfb3ebl/vh1cxzAT7sAdY/kOwDF2OnYMs4aduGMs35kgx9hiP+8yCgx5VtNEcd0VfkAej3WMXYRjPB4HxwCeZLULeEAeZ9489C/qEE5PAGL43/8BuGwPP+DoX9QhW/VuQAzUGoKGm3u0m+HEuxPkxJvtn99t/vme5DqxmfBJ3Im3PQk8fHscO7FZwx7cibftSePDZyOg3Y4F9BS4hsiFGhOSw6eBZyOeO9xm+3m3UmDIs5omiuszYeE9G7vDPUPscM/GYYcDHEI9AyTtWebNQx8khNNzadzhgj5jxPM0Y3d43vGuZdb9vACvyIXm8Hkghy84zmFqJmtjzrZj94KGFq9qYJO91uf453uRWw2YCV/Eq4E5LwI36CXH1YBZw0t4NTDnJcfVgBHC3mS3YnsZFFvkQjkhOXwlQdXAJvt5Z1NgyLOaJorrq2HhvRZbDbxKVAOvxaEaABxCvQok7TXmzUMfJITT6453EiOeVxi77j7H1YBZ9z4BXpELzeE+IIdvOM5haiYb9DnEZPcn6O8GNtprPeSf7wC3GjATHsCrgdABIMkHHVcDZg0H8WogdNBxNWCEsD/ZrdjeFKoGkBweSlA1sNF+3ridO/dWWHhvx1YDbxHVwNtxqAYAh1BvAUl7m3nz0AcJ4XTY8U5ixHOIsesecVwNmHUfEeAVudAcHgFyeNRxDlMz2aDPISb7ToKqgUfstb7fP9+73GrATPguXg3sfxdI8nuOqwGzhvfwamD/e46rASOEd5Ldiu19oWoAyeEHCaoGHrGf9w0KDHlW00Rx/TAsvGOx1cCHRDVwLA7VAOAQ6kMgaceYNw99kBBOHzneSYx4PmDsuh87rgbMuj8W4BW50Bx+DOTwE8c5TM1kgz6HmOynCaoGNthrvZ9/vs+41YCZ8DO8Guj3GZDkzx1XA2YNn+PVQL/PHVcDRgifJrsV2xdC1QCSwy8TVA1ssJ+3LwWGPKtporh+FRbe17HVwFdENfB1HKoBwCHUV0DSvmbePPRBQjh943gnMeL5krHrfuu4GjDr/laAV+RCc/gtkMPvHOcwNZMN+hxist8nqBp42F7rR/zz/cCtBsyEP+DVwJEfgCT/6LgaMGv4Ea8GjvzouBowQvg+2a3YfhKqBpAc/pygauBh+3kPU2DIs5omiusvYeH9GlsN/EJUA7/GoRoAHEL9AiTtV+bNQx8khNNvjncSI56fGbvuccfVgFn3cQFekQvN4XEgh787zmFqJhv0OcRk/0hQNbDeXust/PP9ya0GzIR/4tVAiz+BJP/luBowa/gLrwZa/OW4GjBC+CPZrdj+FqoGkByeSFA1sN5+3uYUGPKsponiejIsvH9iq4GTRDXwTxyqAcAh1Ekgaf8wbx76ICGcTjneSYx4TjB2XZPEkGd/obzMus0crnlFLjSH/nmCxqoUtzlMzWSDPoeY7AXAfY1nNbDOXutb/POlS0nDhObDYDWwJR2Q5PTAw8NdQ/oUuBrYkj6NorYRwgUpbsWWARRb5EI5ITlMQp6NGD4U4ZBn97PW2W8emykw5FlNE8U1OSy8lNgzwpJT/l0NmEFprQYAh1DJQNJSUng3D32QEE4ZHe8kRjxJjF03k+NqwKw7kwCvyIXmMBOQw8yOc5iayQbOBawhS4KqgbX2Wt/tny8rtxowE2bFq4HdWYEkZ3NcDZg1ZMOrgd3ZHFcDRghZUtyKLbtQNYDkMEeCqoG19tXAExQY8qymieKaMyy8XLHVQE6iGsgVh2oAcAiVE0harhTezUMfJIRTbsc7iRFPDsaum8dxNWDWnUeAV+RCc5gHyGFexzlMzWSDPoeYbL4EVQNr7LXeyj9ffm41YCbMj1cDrfIDSS7guBowayiAVwOtCjiuBowQ8qW4FVtBoWoAyWGhBFUDa+yrgZYUGPKsponiWjgsvCKx1UBhohooEodqAHAIVRhIWpEU3s1DHySEU1HHO4kRTyHGrlvMcTVg1l1MgFfkQnNYDMhhccc5TM1kgz6HmGwoQdXAanutj/fPV4JbDZgJS+DVwPgSQJJLOq4GzBpK4tXA+JKOq4HTQkhxK7ZSQtUAksPSCaoGVttXA+MoMORZTRPFtUxYeGVjq4EyRDVQNg7VAOAQqgyQtLIpvJuHPkgIp3KOdxIjntKMXbe842rArLu8AK/IheawPJDDCo5zmJrJBn0OMdmKCaoGHmJWAxdyqwEz4YWMauBCIMmVHFcDZg2VGNVAJcfVgBFCxRS3YrtIqBpAclg5QdXAQwmoBqqEhVc1thqoQlQDVeNQDQAOoaoASasqVA0gnKo53kmMeCozdt3qjqsBs+7qArwiF5rD6kAOL3acw9RMNuhziMlekqBqYJW91tf557uUWw2YCS/Fq4F1lwJJvsxxNWDWcBleDay7zHE1YIRwSYpbsV0uVA0gOayRoGpglX01sJYCQ57VNFFca4aFd0VsNVCTqAauiEM1ADiEqgkk7YoU3s1DHySEUy3HO4kRTw3GrlvbcTVg1l1bgFfkQnNYG8hhHcc5TM1kgz6HmGzdBFUDK+21vso/Xz1uNWAmrIdXA6vqAUmu77gaMGuoj1cDq+o7rgaMEOqmuBVbA6FqAMlhwwRVAyvtq4GVFBjyrKaJ4tooLLzGsdVAI6IaaByHagBwCNUISFrjFN7NQx8khFMTxzuJEU9Dxq7b1HE1YNbdVIBX5EJz2BTIYTPHOUzNZIM+h5hs8wRVAyvstX7UP18LbjVgJmyBVwNHWwBJbum4GjBraIlXA0dbOq4GjBCap7gVWyuhagDJYesEVQMr7KuBIxQY8qymieLaJiy8trHVQBuiGmgbh2oAcAjVBkha2xTezUMfJITTlY53EiOe1oxdt53jasCsu50Ar8iF5rAdkMP2jnOYmskGfQ4x2Q4JqgYetNf6Pv98V3GrATPhVXg1sO8qIMkdHVcDZg0d8WpgX0fH1YARQocUt2LrJFQNIDnsnKBq4EH7auB1Cgx5VtNEce0SFl7X2GqgC1ENdI1DNQA4hOoCJK1rCu/moQ8Swqmb453EiKczY9ft7rgaMOvuLsArcqE57A7ksIfjHKZmskGfQ0y2Z4KqgQfstV7QP18vbjVgJuyFVwMFewFJ7u24GjBr6I1XAwV7O64GjBB6prgVWx+hagDJYd8EVQMP2FcDBSgw5FlNE8W1X1h4V8dWA/2IauDqOFQDgEOofkDSrk7h3Tz0QUI49Xe8kxjx9GXsugMcVwNm3QMEeEUuNIcDgBwOdJzD1Ew26HOIyQ5KUDVwv73Wd/nnG8ytBsyEg/FqYNdgIMlDHFcDZg1D8Gpg1xDH1YARwqAUt2IbKlQNIDkclqBq4H77amAnBYY8q2miuA4PC29EbDUwnKgGRsShGgAcQg0HkjYihXfz0AcJ4TTS8U5ixDOMseuOclwNmHWPEuAVudAcjgJyONpxDlMz2aDPISY7JkHVwH32Wp/qn28stxowE47Fq4GpY4EkX+O4GjBruAavBqZe47gaMEIYk+JWbNcKVQNIDq9LUDVwn301MIUCQ57VNFFcrw8L74bYauB6ohq4IQ7VAOAQ6nogaTek8G4e+iAhnG50vJMY8VzH2HVvclwNmHXfJMArcqE5vAnI4c2Oc5iayQZ9DjHZWxJUDSy313pz/3y3cqsBM+GteDXQ/FYgybc5rgbMGm7Dq4HmtzmuBowQbklxK7bbhaoBJId3JKgaWG5fDTSjwJBnNU0U13Fh4Y2PrQbGEdXA+DhUA4BDqHFA0san8G4e+iAhnCY43kmMeO5g7LoTHVcDZt0TBXhFLjSHE4EcTnKcw9RMNuhziMnemaBqYJm91uf555vMrQbMhJPxamDeZCDJdzmuBswa7sKrgXl3Oa4GjBDuTHErtilC1QCSw6kJqgaW2VcDcykw5FlNE8V1Wlh402OrgWlENTA9DtUA4BBqGpC06Sm8m4c+SAinGY53EiOeqYxdd6bjasCse6YAr8iF5nAmkMNZjnOYmskGfQ4x2dkJqgbutdf6GP98c7jVgJlwDl4NjJkDJHmu42rArGEuXg2Mmeu4GjBCmJ3iVmzzhKoBJIfzE1QN3GtfDYymwJBnNU0U1wVh4S2MrQYWENXAwjhUA4BDqAVA0ham8G4e+iAhnBY53kmMeOYzdt3FjqsBs+7FArwiF5rDxUAOlzjOYWomG/Q5xGSXJqgauMde63v8893NrQbMhHfj1cCeu4Ek3+O4GjBruAevBvbc47gaMEJYmuJWbPcKVQNIDpclqBq4x74aeJICQ57VNFFcl4eFd19sNbCcqAbui0M1ADiEWg4k7b4U3s1DHySE0/2OdxIjnmWMXfcBx9WAWfcDArwiF5rDB4AcPug4h6mZbNDnEJNdkaBq4G57rYf8863kVgNmwpV4NRBaCSR5leNqwKxhFV4NhFY5rgaMEFakuBXbQ0LVAJLD1QmqBu62rwaKU2DIs5omiuuasPDWxlYDa4hqYG0cqgHAIdQaIGlrU3g3D32QEE7rHO8kRjyrGbvuesfVgFn3egFekQvN4Xoghw87zmFqJhv0OcRkNySoGlhqr/Us/vke4VYDZsJH8GogyyNAkjc6rgbMGjbi1UCWjY6rASOEDSluxbZJqBpAcrg5QdXAUvtqIDMFhjyraaK4bgkLb2tsNbCFqAa2xqEaABxCbQGStjWFd/PQBwnhtM3xTmLEs5mx6253XA2YdW8X4BW50BxuB3L4qOMcpmayQZ9DTPaxBFUDS+y1Pso/3w5uNWAm3IFXA6N2AEne6bgaMGvYiVcDo3Y6rgaMEB5LcSu2XULVAJLDxxNUDSyxrwZGUmDIs5omiusTYeHtjq0GniCqgd1xqAYAh1BPAEnbncK7eeiDhHB60vFOYsTzOGPX3eO4GjDr3iPAK3KhOdwD5PApxzlMzWSDPoeY7NMJqgYW22s9p3++Z7jVgJnwGbwayPkMkORnHVcDZg3P4tVAzmcdVwNGCE+nuBXbc0LVAJLD5xNUDSy2rwZyUGDIs5omiusLYeHtja0GXiCqgb1xqAYAh1AvAEnbm8K7eeiDhHB60fFOYsTzPGPXfclxNWDW/ZIAr8iF5vAlIIcvO85haiYb9DnEZF9JUDWwyN7QouZ7lVsNmAlfTcE/95rjHd7wes3nnCHP/kJFZB7YV1LciuJ1oV0bycu+NArVZs37GDmMp6AWMgX1BldQZsI3GILa71hQhtf+OAkqaLhJ/P4U3gMTspsjrg/JgmR7jv75DnAfEjPhAYbjHAAUe9DxA2XWcJCR5IOOezDzEB1klAevA/frTcfloLm3bzLFGrnQZ+tNYP2HHJd4qe3IQZ9DduS3HOfQ3KO3GBsBkgf/ldFyngifMhksOIUHl7UZGx5czmrsmcHl7caeHlzBcqwZXNF2rB58YQb73FTKYJ+bt4Hny6wv8lcG5nP1Y/47mtuiQG6LAbktDuQ2BOS2BJDbkkBuSwG5LQ3k9jAzt4fjkNu8QG7zAbnND+S2AJDbgkBuCwG5LQzktgiQ2yPM3B6JQ26zArnNBuQ2O5DbHEBucwK5zQXkNjeQ2zxAbo8yc3s0DrkdkmSf26FJ9rkdlmSf2+FJ9rkdkWSf25FJ9rkdlWSf29FJ9rl9h5nbd+KQ275AbvsBub0ayG1/ILcDgNwOBHI7CMjtYCC37zJz+24cctsVyG03ILfdgdz2AHLbE8htLyC3vYHc9gFy+x4zt+/FIbftgNy2B3LbAcjtVUBuOwK57QTktjOQ2y5Abt9n5vb9OOT24WT73G5Its/tI8n2ud2YbJ/bTcn2ud2cbJ/bLfZ/A662An8R+gEztx/EIbcrgdyuAnL7EJDb1UBu1wC5XQvkdh2Q2/VAbj9k5vbDOOT2XiC3y4DcLgdyex+Q2/uB3D4A5Bb4V7fVCiC3x5i5PRaH3C4AcrsQyO0iILeLgdwuAXK7FMgt8Iaz9bEhJrcfMXP7UTi35v/P5J39e0jz5+GUs3+/Yf48mnK2b4rU2JF6LLJ3R3w+4gmR5ycyl7lCnjVN6zUlcux4YCzyc/8bG319rJ+fT3R8quMzHZ/r+ELHlzq+0vG1jm90fKvjOx3f6/hBx486ftLxs45fdPyq4zcdx3X8ruMPHX/q+CvlzC+XI/qIvRTGV30M/p4p9grZDUvhf1b9b03K94P+1v/PCR0ndfyj45T5D9rwlY4LMnrRBvJ3+HuOfuwEgZ0ksH8I7BSBmcljMUVgF2T8992w3agi9+Fj4Jdwf1uONd/PPGE91lMnbcdqvv/YjZ2v+apTVmN/NWtT5sYFjj12+j4oZTG24Zl7pi7IaC+KeIrxk/NUjOn0/UqvI4OOJB3J5hnXkVFHplgxpiNEkZ7AMhBYEoElE1gKgWUksExxEOMngBjTZfQsBXZKpbce66kMtmM13yS7safFmGw19owYUwAxZgTEmClBYvz0PBVjZn2/sujIqiObjuw6cujIqSNXrBgzE6LIQmBZCSwbgWUnsBwElpPAcsVBjJ8CYswMiDELIMasgBizAWLMDogxByDGnIAYcyVIjJ+dp2LMre9XHh15deTTkV9HAR0FdRSKFWNuQhR5CCwvgeUjsPwEVoDAChJYoTiI8TNAjLkBMeYBxJgXEGM+QIz5ATEWAMRYEBBjIVCM8fpCcvr09vP65yucMQ0Tmg+jnyuS0f4B5PIqkvEsELL7nLNkIN8OL5qWZJgPo9/gLWr/tKpiAokrRjxQQXMVAxRH8Qr6+eZhKpYR/2ZxEYf3NnKh7v+39ZatvBO2Y9WZv6SxGWvu/T92Y0+n6ZTV2HBGbe53eKiyGBt5Ti4AclMceBb9O7v5XP2Y/47mNl1G+9ymz2if2wwZ7XOblNE+t8kZ7XObAuQ2I5DbTEBuQ8zchuKQ28xAbrMAuc0K5DYbkNvsQG5zALnNCeQ2F5DbEszclohDbnMDuc0D5DYvkNt8QG7zA7ktAOS2IJDbQkBuSzJzWzIOuU3v2ec2g2ef2yTPPrfJnn1uUzz73Gb07HObybPPbWbPPrelmLktFYfcZvHsc5vVs89tNs8+t9k9+9zm8Oxzm9Ozz20uzz63uT373JZm5rZ0HHKbx7PPbV7PPrf5PPvc5vfsc1vAs89tQc8+t4U8+9wW9uxzW4aZ2zJxyG0Rzz63RT373Bbz7HNb3LPPbcizz20Jzz63JT373Jby7HNblpnbshn//Y2i4hnP1tCReiuyN0d8PKL5yPMR+VmeZ/9MAGORn/t/fux4YCzyc/8bG32V0897eR0VdFTUcaGOSjou0lFZRxUdVXVU01Fdx8U6LtFxqY7LdFyuo4aOmjqu0FFLR20ddXTU1VEvY3x/dVQO/Du72CtkNyzuvzqqr3k30NFQRyMdjXU00dFUR7PYXx3VJ36F04DAGhJYIwJrTGBNCKwpgTXLmPZfHZUDmq761r8OOqUaAL86agj86qgR8KujxsCvjpoAvzpqCvzqqBkginiKsfx5KsbmmncLHS11tNLRWkcbHW11XBkrxuaEKFoQWEsCa0VgrQmsDYG1JbAr4yDG8oAYmwNibAGIsSUgxlaAGFsDYmwDiLEtIMYrEyTGCuepGNtp3u11dNBxlY6OOjrp6KyjS6wY2xGiaE9gHQjsKgLrSGCdCKwzgXWJgxgrAGJsB4ixPSDGDoAYrwLE2BEQYydAjJ0BMXZJkBgrnqdi7Kp5d9PRXUcPHT119NLRW0efWDF2JUTRjcC6E1gPAutJYL0IrDeB9YmDGCsCYuwKiLEbIMbugBh7AGLsCYixFyDG3oAY+wCiMDmN/F3Ouf6uxvx5rr/rMVfIs7oUMBb5uf/nx44HxiI/97+x0Vdf/bz303G1jv46BugYqGOQjsE6hugYqmOYjuE6RugYqWOUjtE6xugYq+MaHdfquE7H9Tpu0HGjjpsyxneT7HuebpI3a9636LhVx206btdxh45xOsbHbpI3E5vVLQR2K4HdRmC3E9gdBDaOwMbHYZPsC2ySNwOb5C3AJnkrsEneBmyStwOb5B3AJjkO2CTHJ6hi7XeeinGC5j1RxyQdd+qYrOMuHVN0TI0V4wRCFBMJbBKB3UlgkwnsLgKbQmBT4yDGfoAYJwBinAiIcRIgxjsBMU4GxHgXIMYpgBinJkiMV5+nYpymeU/XMUPHTB2zdMzWMUfH3FgxTiNEMZ3AZhDYTAKbRWCzCWwOgc2NgxivBsQ4DRDjdECMMwAxzgTEOAsQ42xAjHMAMc5NkBj7n6dinKd5z9exQMdCHYt0LNaxRMfSWDHOI0Qxn8AWENhCAltEYIsJbAmBLY2DGPsDYpwHiHE+IMYFgBgXAmJcBIhxMSDGJYAYl4KiQN8vMu+bIO/BmLHmV8fouza2B2oYTnc7XvMJxpobMNZ8AljzPY7XfJKx5oaMNZ8E1nyv4zX/w1hzI8aa/wHWvMzxmk8x1tyYseZTwJqXO16z2bTQNTdhrNnLaM/pPsdrVow1N2WsWQFrvt/xmi9grLkZY83I+4QPOF5zOsaamzPWnA5Y84OO15yeseYWjDWnB9a8wvGaMzDW3JKx5gzAmlc6XnMSY82tGGtOAta8yvGakxlrbs1YczKw5occrzmFseY2jDWnAGte7XjNGRlrbstYc0ZgzWscrzkTY81XMtaMvBO+1vGaMzPW3I6x5szAmtc5XnMWxprbM9acBVjzesdrzspYcwfGmrMCa37Y8ZqzMdZ8FWPN2YA1b3C85uyMNXdkrDk7sOZHHK85B2PNnRhrzgGseaPjNedkrLkzY805gTVvcrzmXIw1d2GsGTnXY7PjNedmrLkrY825gTVvcbzmPIw1d2OsOQ+w5q2O15yXsebujDXnBda8zfGa8zHW3IOx5nzAmrc7XnN+xpp7MtacH1jzo47XXICx5l6MNRcA1vyY4zUXZKy5N2PNBYE173C85kKMNfdhrBk5m2knsOZ4HtCZgXla6q6MaZjQfBj93OPAzeTyejzjWSBk9zlnyQj8xZTvg0+kJRlPZMQV9ASgnt0CidtNPFBBc+0GXQb9+eZh2s1wjccF723QZ4zz3cy4t6qSu3trvrVkeN3C4HWBU15ndopbGbzSueQV3sFuY/BK747X6W9+GV63M3hlcMbrzLfMDK87GLySXPEKf6PN8BrH4JXsiFfk23OG13gGr5Q08goabnjdzeCV0SkvddpX72HwyuSSlzrj9/cyeGV2yMuMNbyWMXhlccfr9FDDazmDV1ZnvM6MNLzuY/DK5opXeKDhdT+DV3ZHvCLjDK8HGLxygLwiV8GYeYJo3mxdEyrvFtux6kytYjPW3JfbMtrr4vaM9s/qHRntn59xGe1zOh6ojZ8Eam6gtlVAvamAGlABdZkCaiUF1C8KqCkUsM8rYO9VwH6ogD1KAfuGArxcAf6qAM9TiA8ZfUTeTDHPfX0fbq5Q+E+b3nACwzOLCPSGExm8igr0hpMYvIoJ9IZ3MngVF+gNJzN4hQR6w7sYvEoI9IZTGLxKCvSGUxm8Sgn0hg8yeJUW6A1XMHiVEegNVzJ4lRXoDVcxeJUT6A0fYvAqL9AbrmbwqiDQG65h8Koo0BuuZfC6UKg3nAD0hhOB3nAS0BveCfSGk4He8C6gN5wC9IZTgd5wD/KbYqBmB+pNBdSACqjLFFArKaB+UUBNoYB9XgF7rwL2QwXsUQrYNxTg5QrwVwV4nrqQ2RvuSWNvOI3hmZcL9IbTGbxqCPSGMxi8agr0hjMZvK4Q6A1nMXjVEugNZzN41RboDecweNUR6A3nMnjVFegN1zF41RPoDdczeNUX6A0fZvBqINAbbmDwaijQGz7C4NVIoDfcyODVWKA33MTg1USgN9zM4NVUqDecBvSG04HecAbQG84EesNZQG84G+gN5wC94VygN3wK6A2B2lYB9aYCakAF1GUKqJUUUL8ooKZQwD6vgL1XAfuhAvYoBewbCvByBfirAjxPNWX2hk+lsTecx/DMDgK94XwGr6sEesMFDF4dBXrDhQxenQR6w0UMXp0FesPFDF5dBHrDJQxeXQV6w6UMXt0EesMtDF7dBXrDrQxePQR6w20MXj0FesPtDF69BHrDRxm8egv0ho8xePUR6A13MHj1FegNdzJ49RPqDecBveF8oDdcAPSGC4HecBHQGy4GesMlQG+4FOgNnwZ6Q6C2VUC9qYAaUAF1mQJqJQXULwqoKRSwzytg71XAfqiAPUoB+4YCvFwB/qoAz1P9mL3h077eMHJlDP8Z8qwuVdp6rPLK2I7V5MpajjXrKGc39rQ1lLcae8ZFKtiMDRtORYuxEW+60LP3pmcy8nL7TBxyW8mzz+1Fnn1uK3v2ua3i2ee2qmef22qefW6re/a5vdizz+2zzNw+G4fcXuLZ5/ZSzz63l3n2ub3cs89tDc8+tzU9+9xe4dnntpZnn9vnmLl9Lg65re3Z57aOZ5/bup59but59rmt79nntoFnn9uGnn1uG3n2uX2emdvnw7k1/3/kXxh9Mtx37Ml49u9rzZ9PZzzr4+bPZzOefT4iP8vz7J8JYCzyc//Pjx0PjEV+7n9jo68X9PO+V8eLOl7S8bKOV3S8quM1Ha/r2KfjDR37dRzQcVDHmzoO6XhLx9s6Dus4ouOojnd0vKvjPR3vZ4zvP930QkbsPsReIbthcf+nmz7QvD/UcUzHRzo+1vGJjk91fJbRizY0Mzj2n1D6kMCOEdhHBPYxgX1CYJ8S2GcZ0/5PN70A/KXBB5ZjzS+sPrQe66ljtmM134/sxp7+ZcvHVmPP/ALkE5ux4V9KfGoxNvKLgs8AUcRTjHvPUzF+rnl/oeNLHV/p+FrHNzq+1fFdrBg/J0TxBYF9SWBfEdjXBPYNgX1LYN/FQYx7ATF+DojxC0CMXwJi/AoQ49eAGL8BxPgtIMbvEiTGF89TMX6vef+g40cdP+n4WccvOn7V8VusGL8nRPEDgf1IYD8R2M8E9guB/Upgv8VBjC8CYvweEOMPgBh/BMT4EyDGnwEx/gKI8VdAjL8lSIwvnadiPK55/67jDx1/6vhLx986Tug4GSvG44QofiewPwjsTwL7i8D+JrATBHYyDmJ8CRDjcUCMvwNi/AMQ45+AGP8CxPg3IMYTgBhPMkWBns2JHJT6jz0n5f8f6WM4BX32ZoDTKYATchZPRubv1dG13gKs1fyF3f/GXvx16VHtRk2bveS3Ma+cOpz+1czb+1artyO09b7c9/XMEX2WUNDYTEJrvRVYq/KvdUCxbPP37PmjQNlZg2q98va7b7z9dJ55Y44ffrPdli1/jcgRdRZS0NjMQmu9DVjrBVFrbdvwtk8uan7X5sL/VKv14Lur350RanKgfP7pYwe0y5ZpRM70lezHZhFa6+3AWtP51npR74wzJj5++fZadz9YrV+Bk6FDVdoPevmrn+o9+vXAdSOLZRrpP4sqaGxWobXeAaw1vW+thY//nnfiwZpV1uXcsvbknt6P3/fVyW3pNw1cuG7z+qHL6hTL7D9LK2hsNqG1jgPWmsG31srDj2dOTm43oWjWT4d2+H7KDx8XWNIq+6TyoXse+HHzP63rFPefBRY0NrvQWpHz35J8a6342MKvLvjlobyVCt9b4UCZ5dX2X75jzz+Zx+V/vXHNFx/7vnVd/1lmQWNzCK11ArDW5Ez2Pxc5z6C00FonAmtNAfbXosD+WkZorZOAtWYE9tdiwP5aVmitdwJrzQTsr8WB/bWc0FonA2vNDOyvIWB/LS+01ruAtWYB9tcSwP5aQWitU4C1ZgX215LA/lpRaK3IGTrZgP21FLC/Xii01mnAWrMD+yvyTmg9obVOB9aaA9hfawD7a32htc4A1poT2F9rAvtrA6G1zgTWmgvYX68A9teGQmudBaw1N7C/1gL210ZCa50NrDUPsL/WBvbXxkJrnQOsNS+wv9YB9tcmQmtFziHIB+yvdYH9tanQWucBa80P7K/IezXdhdY6H1hrAWB/vQrYX3sIrXUBsNaCwP7aEdhfewqtdSGw1kLA/toJ2F97Ca11EbDWwsD+2hnYX3sLrXUxsNYiwP7aBdhf+witdQmw1qLA/toV2F/7Cq0VeZezGLC/dgP2V/RdXwWu0fwu2HylNPZzQeud7PisAsPrQwavuxyfVWB4HWPwmuL4rALD6yMGr6mOzyowvD5m8Jrm+KwCw+sTBq/pjs8qMLw+ZfCa4fisAsPrMwavmY79y3w/5RSD1yzH/mV4me9uoLxmO/Yvw0sxeM1x7F+G1wUMXnMd+5fhlY7Ba55j/zK80jN4zXfsX4ZXBgavBY79y/BKYvBayKw1c4LzFAf+zgKovRRQDymgRlFA3aCAvVwB+6sC9jwF7EMK2BsU4NcK8FAF+JoCvEYB+leAJhWiE6PByPeSzXNf34ebK2T1U870Lp8z9v5lAr3LFwxeywV6ly8ZvO4T6F2+YvC6X6B3+ZrB6wGB3uUbBq8HBXqXbxm8Vgj0Lt8xeK0U6F2SGTXJKoHeJYXB6yGB3iUjg9dqgd4lE4PXGoHeJTOD11qB3iULg9c6gd4lK4PXeoHeJRuD18NCvUsI6F2A2ksB9ZACahQF1A0K2MsVsL8qYM9TwD6kgL1BAX6tAA9VgK8pwGsUoH8FaFI9zOxdQmnsXb5n1CTbBHqXHxi8tgv0Lj8yeD0q0Lv8xOD1mEDv8jOD1w6B3uUXBq+dAr3LrwxeuwR6l98YvB4X6F2yM2qSJwR6lxwMXrsFepecDF5PCvQuuRi89gj0LrkZvJ4S6F3yMHg9LdC75GXwekagd8nH4PWsUO9SAuhdgNpLAfWQAmoUBdQNCtjLFbC/KmDPU8A+pIC9QQF+rQAPVYCvKcBrFKB/BWhSPcvsXUqksXc5zqhJXhHoXX5n8HpVoHf5g8HrNYHe5U8Gr9cFepe/GLz2CfQufzN4vSHQu5xg8Nov0LucZPA6INC75GfUJAcFepcCDF5vCvQuBRm8Dgn0LoUYvN4S6F0KM3i9LdC7FGHwOizQuxRl8Doi0LsUY/A6KtS7lAR6F6D2UkA9pIAaRQF1gwL2cgXsrwrY8xSwDylgb1CAXyvAQxXgawrwGgXoXwGaVEeZvUvJTP/+9yzO9e9VmD+Lh3UcynS2/4n8LHOFPGsakLb/G2s3djwwFvm5/42Nvkrp5720jjI6yuoop6O8jgo6Kuq4UEclHRfpqKyjio6qOqrpqK7jYh2X6LhUx2U6LtdRQ0dNHVfoqJUpvgcFl8qE3YfYK2Q3LO4HBdfWvOvoqKujnvErHQ10NNTRKGJaEUMzg2MP7K1DYHUJrB6B1SewBgTWkMAaZUr7QcGlMtkXMbUtx5qDgutYj/VUXduxmm89u7GnDwqubzX2zEHBDWzGhg8KbmgxNnJQcCNAFPEUY+nzVIyNNe8mOprqaKajuY4WOlrqaBUrxsaEKJoQWFMCa0ZgzQmsBYG1JLBWcRBjaUCMjQExNgHE2BQQYzNAjM0BMbYAxNgSEGOrBImxzHkqxtaadxsdbXVcqaOdjvY6Oui4KlaMrQlRtCGwtgR2JYG1I7D2BNaBwK6KgxjLAGJsDYixDSDGtoAYrwTE2A4QY3tAjB0AMV6VIDGWPU/F2FHz7qSjs44uOrrq6Kaju44esWLsSIiiE4F1JrAuBNaVwLoRWHcC6xEHMZYFxNgREGMnQIydATF2AcTYFRBjN0CM3QEx9mCKIiLIkGVuetrPA707O6uSDP9e/nsacC6X/33eoLGzhfj3jnomzn3Wlv8d46Cxc4T494l+ps95ftbUSvZj5wrx7+vjH3Qmlv9d7KCx84T49/PxDzrnyv9+eNDY+UL8r/bxDzq7yv/OetDYBUL8+/v4B51H5X+PPmjsQiH+AwD/R94/WiXEfyDg/8sB/39IiP8gwP/vA/x/tRD/wYD/3w/4/xoh/kMA/38A8P+1QvyHAv7/IOD/64T4DwP8fwXg/+uF+A8H/H8l4P8PC/EfAfg/8h3uJ4T4jwT8fzvg/7uF+I8C/P9RwP+fFOI/GvD/xwD/3yPEfwzg/zsA/39KiP9YwP93Av7/tBD/awD/3wX4/zNC/K8F/P9xwP+fFeJ/HeD/yPfgDgrxvx7w/1cB/39TiP8NgP+/Bvj/ISH+NwL+/zrg/28J8b8J8P99gP+/LcT/ZsD/3wD8/7AQ/1sA/98P+P8RIf63Av5/APB/5Pud5pdx5t+xVsR/UzHrCbhUUnr7ef3z3ZYpDROaD6Ofux34BRSX1+2ZzgIhu885S0bQGv3z3ZGWZJgPo/8q+h1AFTFOIHHjiAcqaK5x4G/c0J9vHqZxxL0Nmub2/4/urXkrrSfj3n4n8PZqLwav7wXeXu3N4PWDwNurfRi8fhR4e7Uvg9dPAm+v9mPw+lng7dWrGbx+EXh7tT+D169OfeLM26u1Gbx+E3h7tQ6D13GBt1frMnj9LvD2aj0Grz8E3l6tz+D1p8Dbqw0YvP4SeHu1IYPX3wJvrzZi8Doh9PbqeKAmBGovBdRDCqhRFFA3KGAvV8D+qoA9TwH7kAL2BgX4tQI8VAG+pgCvUYD+FaBJhejEaDDyzVXz3Nf34eYKWf2UM73LAIam01/kdu83vAYyeGVwySvcuwxi8EpyyCvSuwxm8Ep2x+t/vcsQBq8UZ7zO9i5DGbwyuuLl612GMXhlcsTL37sMZ/DK7NQnzvQujRm8sjj2L8OrCYNXVsf+ZXg1ZfDK5ti/DK9mDF7ZHfuX4dWcwSuHY/8yvFoweOV07F+GV0sGr1yO/cvwasXglRvkFbnQ3mUC0LsAtZcC6iEF1CgKqBsUsJcrYH9VwJ6ngH1IAXuDAvxaAR6qAF9TgNcoQP8K0KRCdOLvXSaksXcZwdB0YYHeZSSDVxGB3mUUg1dRgd5lNINXMYHeZQyDV3GB3mUsg1dIoHe5hsGrhEDvci2DV0mB3qU1g1cpgd6lDYNXaYHepS2DVxmB3uVKBq+yAr1LOwavcgK9S3sGr/ICvUsHBq8KAr3LVQxeFYV6l4lA7wLUXgqohxRQoyigblDAXq6A/VUBe54C9iEF7A0K8GsFeKgCfE0BXqMA/StAk6ois3eZmMbe5TqGpqsL9C7XM3hdLNC73MDgdYlA73Ijg9elAr3LTQxelwn0LjczeF0u0LvcwuBVQ6B3uZXBq6ZA79KRwesKgd6lE4NXLYHepTODV22B3qULg1cdgd6lK4NXXYHepRuDVz2B3qU7g1d9gd6lB4NXA6HeZRLQuwC1lwLqIQXUKAqoGxSwlytgf1XAnqeAfUgBe4MC/FoBHqoAX1OA1yhA/wrQpGrA7F0m+XqXyIWedtjYeqzymtiO1eSaWo4162hmN/a0/TS3GnvGqVrYjA2bWkuLsRH/a+XZe9OdmXi5vTMOuW3t2ee2jWef27aefW6v9Oxz286zz217zz63HTz73F7l2ed2MjO3k+OQ246efW47efa57ezZ57aLZ5/brp59brt59rnt7tnntodnn9u7mLm9Kw657enZ57aXZ5/b3p59bvt49rnt69nntp9nn9urPfvc9vfsczuFmdspmf79LwyND9fFEzKd/fvEyN4c8fGI5iPPR+RneZ79MwGMRX7u//mx44GxyM/9b2z0NVU/79N0TNcxQ8dMHbN0zNYxR8dcHfN0zNexQMdCHYt0LNaxRMdSHXfruEfHvTqW6Viu4z4d9+t4IFN8j26fmgm7D7FXyG5Y3I9uf1DzXqFjpY5VOh7SsVrHGh1rI6YVMTQzOPYI9RUEtpLAVhHYQwS2msDWENjaTGk/ut2ftKBN4EHLsebo9hXWYz210nas5rvKbuzpo9sfshp75uj21TZjw0e3r7EYGzm6fS0giniKcdp5KsZ1mvd6HQ/r2KDjER0bdWzSsTlWjOsIUawnsIcJbAOBPUJgGwlsE4FtjoMYpwFiXAeIcT0gxocBMW4AxPgIIMaNgBg3AWLcnCAxTj9PxbhF896qY5uO7Toe1fGYjh06dsaKcQshiq0Eto3AthPYowT2GIHtILCdcRDjdECMWwAxbgXEuA0Q43ZAjI8CYnwMEOMOQIw7EyTGGeepGHdp3o/reELHbh1P6tij4ykdT8eKcRchiscJ7AkC201gTxLYHgJ7isCejoMYZwBi3AWI8XFAjE8AYtwNiPFJQIx7ADE+BYjxaaYo0LPhkIP6nrHnpPz/Az218Vlgnu/cnAURdaH8n/Pf04CTbL8HTr09LsT/+ahn4twn2f4AnHr7uxD/F6Kf6XOeZPsjcOrtH0L89/r4B51k+xNw6u2fQvxf9PEPOsn2Z+DU27+E+L/k4x90ku0vwKm3fwvxf9nHP+gk21+BU29PCPF/BfB/5B3kLBfJ8H8V8H//e9FBY7MK8X8N8H//u9pBY7MJ8X8d8P/ki+zHZhfivw/wf/877UFjcwjxfwPwf/979kFjcwrx3w/4v//d/6CxuYT4HwD8338eQdDY3EL8DwL+j7zHVUqI/5uA/xcB/L+0EP9DgP8XBfy/jBD/twD/Lwb4f1kh/m8D/l8c8P9yQvwPA/4fAvy/vBD/I4D/lwD8v4IQ/6OA/5cE/L+iEP93AP9Hvgt/hRD/dwH/vxjw/1pC/N8D/P8SwP9rC/F/H/D/SwH/ryPE/wPA/y8D/L+uEP8PAf+/HPD/ekL8jwH+XwPw//pC/D8C/L8m4P/ou1AqhnfQcPO7CPOVJgWut5/jdzkNrxUMXlc7fpfT8FrJ4NXf8buchtcqBq8Bjt/lNLweYvAa6PhdTsNrNYPXIMfvchpeaxi8Bjt+l9PwWsvgNcSxf5nfjz7L4DXUsX8ZXs8xeA1z7F+G1/MMXsMd+5fh9QKD1wjH/mV47WXwGunYvwyvFxm8Rjn2L8PrJQav0Y79y/B6mcFrjNC76B8D/TdQeymgHlJAjaKAukEBe7kC9lcF7HkK2IcUsDcowK8V4KEK8DUFeI0C9K8ATSpEJ0aDke/Fmee+vg83V8jqp5zpXdYxNH2TQO+ynsHrZoHe5WEGr1sEepcNDF63CvQujzB43SbQu2xk8LpdoHfZxOB1h0DvspnBa5xA7/IKg9d4gd7lVQavCQK9y2sMXhMFepfXGbwmCfQu+xi87hToXd5g8Jos0LvsZ/C6S6B3OcDgNUWod/kE6F2A2ksB9ZACahQF1A0K2MsVsL8qYM9TwD6kgL1BAX6tAA9VgK8pwGsUoH8FaFJNYfYun6Sxd9nC0PQcgd5lK4PXXIHeZRuD1zyB3mU7g9d8gd7lUQavBQK9y2MMXgsFepcdDF6LBHqXnQxeiwV6l4MMXksEepc3GbyWCvQuhxi87hboXd5i8LpHoHd5m8HrXoHe5TCD1zKB3uUIg9dygd7lKIPXfUK9y6dA7wLUXgqohxRQoyigblDAXq6A/VUBe54C9iEF7A0K8GsFeKgCfE0BXqMA/StAk+o+Zu/yaRp7l10MTa8W6F0eZ/BaI9C7PMHgtVagd9nN4LVOoHd5ksFrvUDvsofB62GB3uUpBq8NAr3L0wxejwj0Lu8weG0U6F3eZfDaJNC7vMfgtVmgd3mfwWuLQO/yAYPXVoHe5UMGr20CvcsxBq/tAr3LRwxejwr1Lp8BvQtQeymgHlJAjaKAukEBe7kC9lcF7HkK2IcUsDcowK8V4KEK8DUFeI0C9K8ATapHmb3LZ5n+fZ76uc5LN39+HP7zk0xn+5/IzzJXyLOmAWn7v7F2Y8cDY5Gf+9/Y6Otz/bx/oeNLHV/p+FrHNzq+1fGdju91/KDjRx0/6fhZxy86ftXxm47jOn7X8YeOP3X8peNvHSd0nNTxT6b4HlT5eSbsPsReIbthcT+o8pTxlcwa03GBjnQ60uvIoCMpsxdtaGZw7IGR5sOxmCKwCwgsHYGlJ7AMBJaUOe0HVfqTFlTEnLIcaw6qNPfEbqynlO1YzfcCu7GnD6pMZzX2zEGV6W3Ghg+qzGAxNnJQZVJme1HEU4xfnKdiTDbPtI6MOjLpyKwji46sOrLFijGZEEUKgWUksEwElpnAshBYVgLLFgcxfgGIMdlaYKdUCiDGjIAYMwFizAyIMQsgxqyAGLMlSIxfnqdizK7vVw4dOXXk0pFbRx4deXXkixVjdkIUOQgsJ4HlIrDcBJaHwPISWL44iPFLQIzZATHmAMSYExBjLkCMuQEx5gHEmBcQY74EifGr81SM+fX9KqCjoI5COgrrKKKjqI5isWLMT4iiAIEVJLBCBFaYwIoQWFECKxYHMX4FiDE/IMYCgBgLAmIsBIixMCDGIoAYiwJiLAaI0X+hZ68Ut58Hend26EUy/EP+expwHpX/fd6gscOE+JeIeibOfR6V/x3joLHDhfiXjH6mz3ke1YCL7MeOEOJfysc/6Dwq/7vYQWNHCvEv7eMfdB6V//3woLGjhPiX8fEPOo/K/8560NjRQvzL+vgHnUflf48+aOwYIf7lAP9H3j8aL8S/POD/NwP+P0GIfwXA/28B/H+iEP+KgP/fCvj/JCH+FwL+fxvg/3cK8a8E+P/tgP9PFuJ/EeD/dwD+f5cQ/8qA/48D/H+KEP8qgP8j3+FeIsS/KuD/cwH/XyrEvxrg//MA/79biH91wP/nA/5/jxD/iwH/XwD4/71C/C8B/H8h4P/LhPhfCvj/IsD/lwvxvwzw/8WA/98nxP9ywP+R78FtFOJfA/D/NYD/bxLiXxPw/7WA/28W4n8F4P/rAP/fIsS/FuD/6wH/3yrEvzbg/w8D/r9NiH8dwP83AP6/XYh/XcD/HwH8H/l+p/llnPl3VBXx31TMegIulZzefl7/fPUyp2FC82H0c/Uz2yeJy6t+5rNAyO5zzpIRtEb/fA3SkgzzYfRf5W0AVBENBRLXkHigguZqCP7GDf355mFqSNzboGnq/390b81bacUZ9/ZlgbdXQwxerwi8vVqCwetVgbdXSzJ4vSbw9mopBq/XBd5eLc3gtU/g7dUyDF5vCLy9WpbBa79Tnzjz9uopxltpBwTeXvUY9+ugwNurisHrTYG3Vy9g8Dok8PZqOgavtwTeXk3P4PW2wNurGRi8Dgu8vZrE4HVE6O3VRkBNCNReCqiHFFCjKKBuUMBeroD9VQF7ngL2IQXsDQrwawV4qAJ8TQFeowD9K0CTCtGJ0WDkm6vmua/vw80VsvopZ3qXcgxNHxPoXcozeH0k0LtUYPD6WKB3qcjg9YlA73Ihg9enAr1LJQavzwR6l4sYvD4X6F0qM3h9IdC7JDN4fSnQu6QweH0l0LtkZPD6WqB3ycTg9Y1A75KZwetbgd4lC4PXdwK9S1YGr+8FepdsDF4/CPUujYHeBai9FFAPKaBGUUDdoIC9XAH7qwL2PAXsQwrYGxTg1wrwUAX4mgK8RgH6V4Am1Q/M3qVxGnuXKgxN/y7Qu1Rl8PpDoHepxuD1p0DvUp3B6y+B3uViBq+/BXqXSxi8Tgj0LpcyeJ0U6F0uY/D6R6B3yc7gdUqgd8nB4OVVdt+75GTwUg55RXqXXAxeF7jj9b/eJTeDVzpnvM72LnkYvNK74uXrXfIyeGVwxMvfu+Rj8EoCeUUutHdpAvQuQO2lgHpIATWKAuoGBezlCthfFbDnKWAfUsDeoAC/VoCHKsDXFOA1CtC/AjSpEJ34e5cmaexdLmdoOpvLPTbcu9Rg8MrueO83vGoyeOVwvPcbXlcweOV0vPcbXrUYvHI53vsNr9oMXrkd7/2GVx0GrzyO937Dqy6DV16nPnGmd8nP4JXPsX8ZXgUYvPIL9C4FGbwKCPQuhRi8Cgr0LoUZvAoJ9C5FGLwKC/QuRRm8igj0LsUYvIoK9S5Ngd4FqL0UUA8poEZRQN2ggL1cAfurAvY8BexDCtgbFODXCvBQBfiaArxGAfpXgCZVUWbv0tTXu0Qu9LTDAdZjlTfQdqwmN8hyrFnHYLuxp+1niNXYM0411GZs2NSGWYyN+N9wz96bmmXm5bZZHHI7wrPP7UjPPrejPPvcjvbsczvGs8/tWM8+t9d49rm91rPPbXNmbpvHIbfXefa5vd6zz+0Nnn1ub/Tsc3uTZ5/bmz373N7i2ef2Vs8+ty2YuW0Rh9ze5tnn9nbPPrd3ePa5HefZ53a8Z5/bCZ59bid69rmd5NnntiUzty0z//tfGGoUrosbZz7794mRvTni4xHNR56PyM/yPPtnAhiL/Nz/82PHA2ORn/vf2OirlX7eW+too6Otjit1tNPRXkcHHVfp6Kijk47OOrro6Kqjm47uOnro6Kmjl47eOvro6Kujn46rdfTPHN+j21tlxu5D7BWyGxb3o9sHaN4DdQzSMVjHEB1DdQzTMTyzF21oZnDsEeoDCWwQgQ0msCEENpTAhhHY8MxpP7rdn7SgTWCA5VhzdPtA67GeGmQ7VvMdbDf29NHtQ6zGnjm6fajN2PDR7cMsxkaObh8OiCKeYmx9nopxhOY9UscoHaN1jNExVsc1Oq6NFeMIQhQjCWwUgY0msDEENpbAriGwa+MgxtaAGEcAYhwJiHEUIMbRgBjHAGIcC4jxGkCM1yZIjG3OUzFep3lfr+MGHTfquEnHzTpu0XFrrBivI0RxPYHdQGA3EthNBHYzgd1CYLfGQYxtADFeB4jxekCMNwBivBEQ402AGG8GxHgLIMZbEyTGtuepGG/TvG/XcYeOcTrG65igY6KOSbFivI0Qxe0EdgeBjSOw8QQ2gcAmEtikOIixLSDG2wAx3g6I8Q5AjOMAMY4HxDgBEONEQIyTmKJAz4ZDDuq7056T8v8P9NTGycA8yPkZ6DlBkQvlf5f/ngacZPsKcOrtQSH+U6KeiXOfZPsqcOrtm0L8p0Y/0+c8yfY14NTbQ0L8p/n4B51k+zpw6u1bQvyn+/gHnWS7Dzj19m0h/jN8/INOsn0DOPX2sBD/mT7+QSfZ7gdOvT0ixH8W4P/IO8hfCvGfDfj/R4D/fyXEfw7g/x8D/v+1EP+5gP9/Avj/N0L85wH+/yng/98K8Z8P+P9ngP9/J8R/AeD/nwP+/70Q/4WA/38B+P8PQvwXAf6PvMd1Soj/YsD//wD836ssw38J4P9/Av6vhPgvBfz/L8D/LxDifzfg/38D/p9OiP89gP+fAPw/vRD/ewH/Pwn4fwYh/ssA//8H8P8kIf7LAf/P5uZ73VEXyv8+wP/9388PGptfiP/9gP/73xkIGltAiP8DgP/nrGw/tqAQ/wcB//e/WxE0tpAQ/xWA//vf9wgaW1iI/0rA//3voASNLSLEfxXg//73YoLGou9CqRjeQcPN7yLMV5oUuN46jt/lNLwGMnjVdfwup+E1iMGrnuN3OQ2vwQxe9R2/y2l4DWHwauD4XU7DayiDV0PH73IaXsMYvBo5fpfT8BrO4NXYsX+Z349OZvBq4ti/DK+7GLyaOvYvw2sKg1czx/5leE1l8Gru2L8Mr2kMXi0c+5fhNZ3Bq6Vj/zK8ZjB4tXLsX4bXTAav1kLvoj8E9N9A7aWAekgBNYoC6gYF7OUK2F8VsOcpYB9SwN6gAL9WgIcqwNcU4DUK0L8CNKkQnRgNRr4XZ577+j7cXCGrn3KmdxnB0HRHgd5lJINXJ4HeZRSDV2eB3mU0g1cXgd5lDINXV4HeZSyDVzeB3uUaBq/uAr3LtQxePQR6l1kMXj0FepfZDF69BHqXOQxevQV6l7kMXn0Eepd5DF59BXqX+Qxe/QR6lwUMXlcL9C4LGbz6C/Uuq4HeBai9FFAPKaBGUUDdoIC9XAH7qwL2PAXsQwrYGxTg1wrwUAX4mgK8RgH6V4AmVX9m77I6jb3LdQxNDxfoXa5n8Boh0LvcwOA1UqB3uZHBa5RA73ITg9dogd7lZgavMQK9yy0MXmMFepdbGbyuEehdFjF4XSvQuyxm8LpOoHdZwuB1vUDvspTB6waB3uVuBq8bBXqXexi8bhLoXe5l8LpZoHdZxuB1i1DvsgboXYDaSwH1kAJqFAXUDQrYyxWwvypgz1PAPqSAvUEBfq0AD1WArynAaxSgfwVoUt3C7F3WpLF3uY2h6YkCvcvtDF6TBHqXOxi87hToXcYxeE0W6F3GM3jdJdC7TGDwmiLQu0xk8Joq0LtMYvCaJtC7LGfwmi7Qu9zH4DVDoHe5n8FrpkDv8gCD1yyB3uVBBq/ZAr3LCgavOQK9y0oGr7kCvcsqBq95Qr3LWqB3AWovBdRDCqhRFFA3KGAvV8D+qoA9TwH7kAL2BgX4tQI8VAG+pgCvUYD+FaBJNY/Zu6zN/O/z1M91Xrr586Hwn6szn+1/Ij/LXCHPmgak7f/G2o0dD4xFfu5/Y6Ovdfp5X6/jYR0bdDyiY6OOTTo269iiY6uObTq263hUx2M6dujYqWOXjsd1PKFjt44ndezR8ZSOp3U8kzm+B1Wuy4zdh9grZDcs7gdVPqt5P6fjeR0v6Nir40UdL+l4ObMXbWhmcOyBkc8R2PME9gKB7SWwFwnsJQJ7OXPaD6r0Jy2oiHnWcqw5qPI567Geet52rOb7gt3Y0wdV7rUae+agyhdtxoYPqnzJYmzkoMqXAVHEU4zrz1MxvqJ5v6rjNR2v69in4w0d+3UciBXjK4QoXiWw1wjsdQLbR2BvENh+AjsQBzGuB8T4CiDGVwExvgaI8XVAjPsAMb4BiHE/IMYDCRLjw+epGA9q3m/qOKTjLR1v6zis44iOo7FiPEiI4k0CO0RgbxHY2wR2mMCOENjROIjxYUCMBwExvgmI8RAgxrcAMb4NiPEwIMYjgBiPJkiMG85TMb6jeb+r4z0d7+v4QMeHOo7p+ChWjO8QoniXwN4jsPcJ7AMC+5DAjhHYR3EQ4wZAjO8AYnwXEON7gBjfB8T4ASDGDwExHgPE+BFTFOjZKx/bzwO9O9uksgz/T/z3NOA8Kv/7vEFjmwrx/zTqmTj3eVT+d4yDxjYT4v9Z9DN9zvOo6le2H9tciP/nPv5B51H538UOGttCiP8XPv5B51H53w8PGttSiP+XPv5B51H531kPGttKiP9XPv5B51H536MPGttaiP/XgP8j7x/1FOL/DeD/nQD/7yXE/1vA/zsD/t9biP93gP93Afy/jxD/7wH/7wr4f18h/j8A/t8N8P9+Qvx/BPy/O+D/Vwvx/wnw/x6A//cX4v8z4P/Id7ivFeL/C+D/IwD/v06I/6+A/48E/P96If6/Af4/CvD/G4T4Hwf8fzTg/zcK8f8d8P8xgP/fJMT/D8D/xwL+f7MQ/z8B/78G8P9bhPj/Bfg/8j246UL8/wb8fxLg/zOE+J8A/P9OwP9nCvE/Cfj/ZMD/Zwnx/wfw/7sA/58txP8U4P9TAP+fI8Tfy2Lv6VMB/58rxF9lsff0aYD/I9/vNL+MM/+OqiL+m4pZT8ClUtLbz+uf74IsaZjQfBj9XLoswEPG5JUuy1kgZPc5Z8kIfBD9HNKSDPNh9F/lTZ/Ffo4MAonLQDxQQXNlsF8DySvo55uHKQNxb4OmSff/0b01b6WZ3xiia39I4O3VTxi8Vgu8vfopg9cagbdXP2PwWivw9urnDF7rBN5e/YLBa73A26tfMng9LPD26lcMXhuc+sSZt1efZfB6RODt1ecYvDYKvL36PIPXJoG3V19g8Nos8PbqXgavLQJvr77I4LVV4O3Vlxi8tgm8vfoyg9d2obdXk4CaEKi9FFAPKaBGUUDdoIC9XAH7qwL2PAXsQwrYGxTg1wrwUAX4mgK8RgH6V4AmFaITo8HIN1fNc1/fh5srZPVTzvQuXzM0vVugd/mGwetJgd7lWwavPQK9y3cMXk8J9C7fM3g9LdC7/MDg9YxA7/Ijg9ezAr3LTwxezwn0Lq8weD0v0Lu8yuD1gkDv8hqD116B3uV1Bq8XBXqXfQxeLwn0Lm8weL0s0LvsZ/B6RaB3OcDg9apQ75IM9C5A7aWAekgBNYoC6gYF7OUK2F8VsOcpYB9SwN6gAL9WgIcqwNcU4DUK0L8CNKleZfYuyWnsXX5maPpNgd7lFwavQwK9y68MXm8J9C6/MXi9LdC7HGfwOizQu/zO4HVEoHf5g8HrqEDv8ieD1zsCvctBBq93BXqXNxm83hPoXQ4xeL0v0Lu8xeD1gUDv8jaD14cCvcthBq9jAr3LEQavjwR6l6MMXh8L9S4pQO8C1F4KqIcUUKMooG5QwF6ugP1VAXueAvYhBewNCvBrBXioAnxNAV6jAP0rQJPqY2bvkpLG3uUvhqa/Fuhd/mbw+kagdznB4PWtQO9yksHrO4He5R8Gr+8FepdTDF4/CPQuHuP7sT8K9C6Kwesngd7lHUYefxboXd5l8PpFoHd5j8HrV4He5X0Gr98EepcPGLyOC/QuHzJ4/S7Quxxj8PpDoHf5iMHrT6HeJSPQuwC1lwLqIQXUKAqoGxSwlytgf1XAnqeAfUgBe4MC/FoBHqoAX1OA1yhA/wrQpPqT2btk9PUukQs97fBO67HKm2w7VpO7y3KsWccUu7Gn7Weq1dgzTjXNZmzY1KZbjI343wzP3psyZeHlNlMccjvTs8/tLM8+t7M9+9zO8exzO9ezz+08zz638z373C7w7HObmZnbzHHI7ULPPreLPPvcLvbsc7vEs8/tUs8+t3d79rm9x7PP7b2efW6zMHObJQ65XebZ53a5Z5/b+zz73N7v2ef2Ac8+tw969rld4dnndqVnn9uszNxmzfLvf2EoKdzXJ2c5+/eJkb054uMRzUeej8jP8jz7ZwIYi/zc//NjxwNjkZ/739joK5t+3rPryKEjp45cOnLryKMjr458OvLrKKCjoI5COgrrKKKjqI5iOoob3eoooaOkjlI6Susoo6Nslvge3Z4NfGc+9grZDYv70e3lNO/yOiroqKjjQh2VdFyko3IWL9rQzODYI9TLE1gFAqtIYBcSWCUCu4jAKmdJ+9Ht2YBDAspZjjVHt5e3HuupCrZjNd+KdmNPH91+odXYM0e3V7IZGz66/SKLsZGj2ysDooinGLOfp2KsonlX1VFNR3UdF+u4RMelOi6LFWMVQhRVCawagVUnsIsJ7BICu5TALouDGLMDYqwCiLEqIMZqgBirA2K8GBDjJYAYLwXEeFmCxJjjPBXj5Zp3DR01dVyho5aO2jrq6KgbK8bLCVHUILCaBHYFgdUisNoEVofA6sZBjDkAMV4OiLEGIMaagBivAMRYCxBjbUCMdQAx1k2QGHOep2KsZ1ppHQ10NNTRSEdjHU10NI0VYz1CFPUJrAGBNSSwRgTWmMCaEFjTOIgxJyDGeoAY6wNibACIsSEgxkaAGBsDYmwCiLEpUxTo2XDIQX3N7Dkp//9AT21sDsyDnJ/xCPN3uSj/Fv57GnCSrf9Mj6CxG4X4t4x6Js59kq3/nJGgsZuE+LeKfqbPeZLt2sr2YzcL8W/t4x90kq3/PJagsVuE+Lfx8Q86ydZ/RkzQ2K1C/Nv6+AedZOs/tyZo7DYh/lf6+AedZOs/Sydo7HYh/u0A/0feQX5eiH97wP+fBPz/BSH+HQD/3wP4/14h/lcB/v8U4P8vCvHvCPj/04D/vyTEvxPg/88A/v+yEP/OgP8/C/j/K0L8uwD+/xzg/68K8e8K+D/yHte7Qvy7Af5/CPD/94T4dwf8/y3A/98X4t8D8P+3Af//QIh/T8D/DwP+/6EQ/16A/x8B/P+YEP/egP8fBfz/IyH+fQD/fwfw/4+F+PcF/B/5LvzPQvz7Af7/DeD/vwjxvxrw/28B//9ViH9/wP+/A/z/NyH+AwD//x7w/+NC/AcC/v8D4P+/C/EfBPj/j4D//yHEfzDg/z8B/o++C6VieAcNN7+LMF9pUuB6C1ZxyUud/h1JeQavQi55qTO/u6nA4FXYIS8z1vCqyOBVxB2v00MNrwsZvIo643VmpOFVicGrmCte4YGG10UMXsUd8YqMM7wqM3iFnPqEp8zvR5szeJVw7F+GVwsGr5KO/cvwasngVcqxfxlerRi8Sjv2L8OrNYNXGcf+ZXi1YfAq69i/DK+2DF7lHPuX4XUlg1d5kFfkQt9FHwL030DtpYB6SAE1igLqBgXs5QrYXxWw5ylgH1LA3qAAv1aAhyrA1xTgNQrQvwI0qRCdnK5Xw3+a576+DzdXyOqnnOldqjA0XVWgd6nK4FVNoHepxuBVXaB3qc7gdbFA73Ixg9clAr3LJQxelwr0LpcyeF0m0LtcxuB1uUDv0o7Bq4ZA79KewaumQO/SgcHrCoHe5SoGr1oCvUtHBq/aAr1LJwavOgK9S2cGr7oCvUsXBq96Qr3LUKB3AWovBdRDCqhRFFA3KGAvV8D+qoA9TwH7kAL2BgX4tQI8VAG+pgCvUYD+FaBJVY/ZuwxNY+9yOUPTzQR6lxoMXs0FepeaDF4tBHqXKxi8Wgr0LrUYvFoJ9C61GbxaC/QudRi82gj0LnUZvNoK9C5dGbyuFOhdujF4tRPoXbozeLUX6F16MHh1EOhdejJ4XSXQu/Ri8Ooo0Lv0ZvDqJNC79GHw6izUuwwDeheg9lJAPaSAGkUBdYMC9nIF7K8K2PMUsA8pYG9QgF8rwEMV4GsK8BoF6F8BmlSdmb3LsDT2LvUYmu4t0LvUZ/DqI9C7NGDw6ivQuzRk8Oon0Ls0YvC6WqB3aczg1V+gd2nC4DVAoHdpyuA1UKB36cvgNUigd+nH4DVYoHe5msFriEDv0p/Ba6hA7zKAwWuYQO8ykMFruEDvMojBa4RA7zKYwWukUO8yHOhdgNpLAfWQAmoUBdQNCtjLFbC/KmDPU8A+pIC9QQF+rQAPVYCvKcBrFKB/BWhSjWT2LsOz/Ps89XOdl27+HBL+c2iWs/1P5GeZK+RZ04C0/d9Yu7HjgbHIz/1vbPQ1Qj/vI3WM0jFaxxgdY3Vco+NaHdfpuF7HDTpu1HGTjpt13KLjVh236bhdxx06xukYr2OCjok6Jum4M0t8D6ockQW7D7FXyG5Y3A+qnKx536Vjio6pOqbpmK5jho6ZWbxoQzODYw+MvIvAphDYVAKbRmDTCWwGgc3MkvaDKv1JCypiJluONQdV3mU91lNTbMdqvlPtxp4+qHKa1dgzB1VOtxkbPqhyhsXYyEGVMwFRxFOMI89TMc7SvGfrmKNjro55OubrWKBjYawYZxGimE1gcwhsLoHNI7D5BLaAwBbGQYwjATHOAsQ4GxDjHECMcwExzgPEOB8Q4wJAjAsTJMZR56kYF2nei3Us0bFUx9067tFxr45lsWJcRIhiMYEtIbClBHY3gd1DYPcS2LI4iHEUIMZFgBgXA2JcAohxKSDGuwEx3gOI8V5AjMsSJMbR56kYl2ve9+m4X8cDOh7UsULHSh2rYsW4nBDFfQR2P4E9QGAPEtgKAltJYKviIMbRgBiXA2K8DxDj/YAYHwDE+CAgxhWAGFcCYlzFFAV69spD9vNA786WqCLDf7X/ngacR+V/nzdobEkh/muinolzn0flf8c4aGwpIf5ro5/pc55HVaSK/djSQvzX+fgHnUflfxc7aGwZIf7rffyDzqPyvx8eNLasEP+HffyDzqPyv7MeNLacEP8NPv5B51H536MPGlteiP8jgP8j7x/VEOK/EfD/aoD/1xTivwnw/+qA/18hxH8z4P8XA/5fS4j/FsD/LwH8v7YQ/62A/18K+H8dIf7bAP+/DPD/ukL8twP+fzng//WE+D8K+D/yHe4rhfg/Bvh/c8D/2wnx3wH4fwvA/9sL8d8J+H9LwP87CPHfBfh/K8D/rxLi/zjg/60B/+8oxP8JwP/bAP7fSYj/bsD/2wL+31mI/5OA/yPfgxskxH8P4P99AP8fLMT/KcD/+wL+P0SI/9OA//cD/H+oEP9nAP+/GvD/YUL8nwX8vz/g/8OF+D8H+P8AwP9HCPF/HvD/gYD/I9/vNL+MM/+OqiL+m4pZT8ClMqa3n9c/3wtZ0jCh+TD6ub3AL6C4vPZmOQuE7D7nLBlBa/TP92JakmE+jP6rvC8CVcRLAol7iXigguZ6CfyNG/rzzcP0EnFvg6bZ+//RvTVvpT3EuLcTHL/9ZXitZvCaKPD26hoGr0kCb6+uZfC6U+Dt1XUMXpMF3l5dz+B1l8Dbqw8zeE0ReHt1A4PXVKc+cebt1ckMXtME3l69i8FrusDbq1MYvGYIvL06lcFrpsDbq9MYvGYJvL06ncFrtsDbqzMYvOYIvL06k8FrrtDbqy8DNSFQeymgHlJAjaKAukEBe7kC9lcF7HkK2IcUsDcowK8V4KEK8DUFeI0C9K8ATSpEJ6fr1fCf5rmv78PNFbL6KWd6l0cYml4q0LtsZPC6W6B32cTgdY9A77KZwetegd5lC4PXMoHeZSuD13KB3mUbg9d9Ar3Ldgav+wV6l1kMXg8I9C6zGbweFOhd5jB4rRDoXeYyeK0U6F3mMXitEuhd5jN4PSTQuyxg8Fot0LssZPBaI9S7vAL0LkDtpYB6SAE1igLqBgXs5QrYXxWw5ylgH1LA3qAAv1aAhyrA1xTgNQrQvwI0qdYwe5dX0ti7PMrQ9CaB3uUxBq/NAr3LDgavLQK9y04Gr60CvcsuBq9tAr3L4wxe2wV6lycYvB4V6F12M3g9JtC7LGLw2iHQuyxm8Nop0LssYfDaJdC7LGXwelygd7mbwesJgd7lHgav3QK9y70MXk8K9C7LGLz2CPUurwK9C1B7KaAeUkCNooC6QQF7uQL2VwXseQrYhxSwNyjArxXgoQrwNQV4jQL0rwBNqj3M3uXVNPYuTzI0vVegd9nD4PWiQO/yFOf7iwK9y9MMXi8L9C7PMHi9ItC7PMvg9apA7/Icg9drAr3L8wxerwv0LssZvPYJ9C73MXi9IdC73M/gtV+gd3mAweuAQO/yIIPXQYHeZQWD15sCvctKBq9DAr3LKgavt4R6l9eA3gWovRRQDymgRlFA3aCAvVwB+6sC9jwF7EMK2BsU4NcK8FAF+JoCvEYB+leAJtVbzN7lNV/vErnQ0w5XWY9V3kO2YzW51ZZjzTrW2I09bT9rrcaecap1NmPDprbeYmzE/x72gBouCy+3r8chtxs8+9w+4tnndqNnn9tNnn1uN3v2ud3i2ed2q2ef220eUAczc7svDrnd7tnn9lHPPrePefa53eHZ53anZ5/bXZ59bh/37HP7hAf0EszcvhGH3O727HP7pGef2z2efW6f8uxz+7Rnn9tnPPvcPuvZ5/Y5D+jHmLndn+Xf/8LQy+G6+JUsZ/8+MbI3R3w8ovnI8xH5WZ5n/0wAY5Gf+39+7HhgLPJz/xsbfR3Qz/tBHW/qOKTjLR1v6zis44iOozre0fGujvd0vK/jAx0f6jim4yMdH+v4RMenOj7T8bmOL3R8qeOrLPE9uv1AFuw+xF4hu2FxP7r9a837Gx3f6vhOx/c6ftDxo46fsnjRhmYGxx6h/g2BfUtg3xHY9wT2A4H9SGA/ZUn70e3+pAVtAl9bjjVHt39jPdZT39qO1Xy/sxt7+uj2763Gnjm6/QebseGj23+0GBs5uv0nQBTxFOPB81SMP2vev+j4VcdvOo7r+F3HHzr+jBXjz4QofiGwXwnsNwI7TmC/E9gfBPZnHMR4EBDjz4AYfwHE+Csgxt8AMR4HxPg7IMY/ADH+mSAxvnmeivEvzftvHSd0nNTxj45TRoRZ9bisXrQA/iJE8TeBnSCwkwT2D4GdIjBDJhZTWdMuxjcBMf4FiPFvQIwnADGeBMT4DyDGU4AYTS6CxkbEqLImRoyHzlMxXqDvVzod6XVk0JGkI9k85zoyxorxAkIU6QgsPYFlILAkAksmsBQCyxgHMR4CxHhBVs9SYKdUOuuxnkpvO1bzzWA39rQYk6zGnhFjss3YsBhTADFmBMTov9Cz4ZCD+jLZc1L+/4Ge2pgZmAc5P2Ma83e5KP8s/jwHnGTrP9MjaOx0If5Zo57Tc59k6z9nJGjsDCH+2aJ1ds6TbO+sYj92phD/7D7+QSfZ+s9jCRo7S4h/Dh//oJNs/WfEBI2dLcQ/p49/0Em2/nNrgsbOEeKfy8c/6CRb/1k6QWPnCvHPDfg/8g7yA0L88wD+fzfg/w8K8c8L+P89gP+vEOKfD/D/ewH/XynEPz/g/8sA/18lxL8A4P/LAf9/SIh/QcD/7wP8f7UQ/0KA/98P+P8aIf6FAf9H3uPaIcS/COD/mwH/3ynEvyjg/1sA/98lxL8Y4P9bAf9/XIh/ccD/twH+/4QQ/xDg/9sB/98txL8E4P+PAv7/pBD/koD/Pwb4/x4h/qUA/0e+C79PiH9pwP9fBPz/DSH+ZQD/fwnw//1C/MsC/v8y4P8HhPiXA/z/FcD/DwrxLw/4/6uA/78pxL8C4P+vAf5/SIh/RcD/Xwf8H30XSsXwDhpufhfxdZZ/fy5ovb85fpdzb/j7aCiv447f5dwb/o4cyut3x+9y7g1/bw/l9Yfjdzn3hr9LiPL60/G7nHvD329Eef3l+F3OveHvXKK8/nb8Lufe8PdAUV4nHPuX+f2o+d0lyuukY/8yvLIweP3j2L8Mr6wMXqcc+5fhlY3By6vq1r8Mr+wMXsoZrzMjDa8cDF4XuOIVHmh45WTwSueIV2Sc4ZWLwSs9yCtyoe+iXwj030DtpYB6SAE1igLqBgXs5QrYXxWw5ylgH1LA3qAAv1aAhyrA1xTgNQrQvwI0qRCdGA1Gvhdnnvv6PtxcIaufcqZ3+ZlRk2Rxt2d4kd7lFwavrC55hXuXXxm8sjnkFeldfmPwyu54798bfvUC5ZXD8d6/N/w6CMorp+O9f2/4FRWUVy7He//e8GszKK/cTn3iTO+Sm1GT5HHsX4ZXHgavvI79y/DKy+CVz7F/GV75GLzyC/Qu+Rm8Cgj0LgUYvAoK9C4FGbwKCfQuhRi8Cgv1LpWA3gWovRRQDymgRlFA3aCAvVwB+6sC9jwF7EMK2BsU4NcK8FAF+JoCvEYB+leAJhWiE3/vUimNvctfjJqklEDv8jeDV2mB3uUEg1cZgd7lJINXWYHe5R8Gr3ICvcspBq/yAr2Lx9hjKwj0LorBq6JA71KYwetCgd6lCINXJYHepSiD10UCvUsxBq/KAr1LcQavKgK9S4jBq6pA71KCwauaQO9SksGrulDvchHQuwC1lwLqIQXUKAqoGxSwlytgf1XAnqeAfUgBe4MC/FoBHqoAX1OA1yhA/wrQpEJ04u9dLkpj73IBQ9NXCPQu6Ri8agn0LukZvGoL9C4ZGLzqCPQuSQxedQV6l2QGr3oCvUsKg1d9gd4lI4NXA4HepRSDV0OB3qU0g1cjgd6lDINXY4HepSyDVxOB3qUcg1dTgd6lPINXM4HepQKDV3OB3qUig1cLod6lMtC7ALWXAuohBdQoCqgbFLCXK2B/VcCep4B9SAF7gwL8WgEeqgBfU4DXKED/CtCkQnTi710qZ/33eernOi/d/HlhWMeVsp7tfyI/y1whz5oGpO3/xtqNHQ+MRX7uf2Ojryr6ea+qo5qO6jou1nGJjkt1XKbjch01dNTUcYWOWjpq66ijo66OekZ7OhroaKijkY7GOproaKqjWdb4HlRZJSt2H2KvkN2wuB9U2VzzbqGjpY5WOlrraKOjrY4rs3rRhmYGxx4Y2YLAWhJYKwJrTWBtCKwtgV2ZNe0HVfqTFljEWY41B1W2sB7rqZa2YzXfVnZjTx9U2dpq7JmDKtvYjA0fVNnWYmzkoMorAVHEU4xVz1MxttO82+vooOMqHR11dNLRWUeXWDG2I0TRnsA6ENhVBNaRwDoRWGcC6xIHMVYFxNgOEGN7QIwdADFeBYixIyDGToAYOwNi7JIgMVY7T8XYVfPupqO7jh46europaO3jj6xYuxKiKIbgXUnsB4E1pPAehFYbwLrEwcxVgPE2BUQYzdAjN0BMfYAxNgTEGMvQIy9ATH2SZAYq5+nYuyreffTcbWO/joG6BioY5COwbFi7EuIoh+BXU1g/QlsAIENJLBBBDY4DmKsDoixLyDGfoAYrwbE2B8Q4wBAjAMBMQ4CxDiYKQr07JUh9vNA786eFDo7Zqj/ngacR3UcOLvqHyH+w6KeiXOfR/U7cHbVKSH+w6Of6XOeR/UHcHYVejYBl/8IH/+g86j+BM6uUkL8R/r4B51H9RdwdtUFQvxH+fgHnUf1N3B2VToh/qN9/IPOozoBnF2VXoj/GMD/kfeP8gjxHwv4v/+dqKCxeYX4XwP4v/89raCx+YT4Xwv4f/aq9mPzC/G/DvB///tsQWMLCPG/HvB//zt2QWMLCvG/AfB//3t/QWMLCfG/EfB//7uIQWMLC/G/CfB/5DvcFwrxvxnw/9KA/1cS4n8L4P9lAP+/SIj/rYD/lwX8v7IQ/9sA/y8H+H8VIf63A/5fHvD/qkL87wD8vwLg/9WE+I8D/L8i4P/VhfiPB/wf+R5cQyH+EwD/rwX4fyMh/hMB/68N+H9jIf6TAP+vA/h/EyH+dwL+Xxfw/6ZC/CcD/l8P8P9mQvzvAvy/PuD/zYX4TwH8vwHg/8j3O80v48y/o6qI/6Zi1hNwqUzp7ef1zzc1axomNB9GPzcN+AUUl9e0rGeBkN3nnCUjaI3++aanJRnmw+i/yjsdqCJmCCRuBvFABc01A/yNG/rzzcM0g7i3QdNM+//o3pq30oYw7m2vqmm7t0GjDa+hDF69XfJSZ97iG8bg1cchLzPW8BrO4NXXHa/TQw2vEQxe/ZzxOjPS8BrJ4HW1K17hgYbXKAav/o54RcYZXqMZvAY49Ykzb682Z/Aa6Ni/DK8WDF6DHPuX4dWSwWuwY/8yvFoxeA1x7F+GV2sGr6GO/cvwasPgNcyxfxlebRm8hjv2L8PrSgavEcyuE317dSZQEwK1lwLqIQXUKAqoGxSwlytgf1XAnqeAfUgBe4MC/FoBHqoAX1OA1yhA/wrQpEJ0YjQY+eaqee7r+3Bzhax+ypneZQxD09cJ9C5jGbyuF+hdrmHwukGgd7mWwetGgd7lOgavmwR6l+sZvG4W6F1uYPC6RaB3uZHB61aB3qUdg9dtAr1Lewav2wV6lw4MXncI9C5XMXiNE+hdOjJ4jRfoXToxeE0Q6F06M3hNFOhdujB4TRLqXWYBvQtQeymgHlJAjaKAukEBe7kC9lcF7HkK2IcUsDcowK8V4KEK8DUFeI0C9K8ATSpEJ/7eZVYae5ebOL/TEuhdbmbwminQu9zC4DVLoHe5lcFrtkDvchuD1xyB3uV2Bq+5Ar3LHQxe8wR6l3EMXvMFepeuDF4LBHqXbgxeCwV6l+4MXosEepceDF6LBXqXngxeSwR6l14MXksFepfeDF53C/QufRi87hHqXWYj38UBakqgHlJAjaKAukEBe7kC9lcF7HkK2IcUsDcowK8V4KEK8DUFeI0C9K8ATSpEJ/7eZXYae5fxDE2vEOhdJjB4rRToXSYyeK0S6F0mMXg9JNC73MngtVqgd5nM4LVGoHe5i8FrrUDvMoXBa51A79KXwWu9QO/Sj8HrYYHe5WoGrw0CvUt/Bq9HBHqXAQxeGwV6l4EMXpsEepdBDF6bBXqXwQxeW4R6lzlA7wLUXgqohxRQoyigblDAXq6A/VUBe54C9iEF7A0K8GsFeKgCfE0BXqMA/StAkwrRib93mePrXSIXetrh89ZjlfeC7VhT61uONet40W7saft5yWrsGad62WZs2NResRgb8b9XPXtvmpuVl9u5ccjta559bl/37HO7z7PP7RuefW73e/a5PeDZ5/agZ5/bNz373M5j5nZeHHJ7yLPP7VuefW7f9uxze9izz+0Rzz63Rz373L7j2ef2Xc8+t/OZuZ0fh9y+59nn9n3PPrcfePa5/dCzz+0xzz63H3n2uf3Ys8/tJ559bhcwc7sg67//haGZ4bp4Vtazf58Y2ZsjPh7RfOT5iPwsz7N/JoCxyM/9Pz92PDAW+bn/jY2+FurnfZGOxTqW6Fiq424d9+i4V8cyHct13Kfjfh0P6HhQxwodK3Ws0vGQjtU61uhYq2OdjvU6HtaxIWt8j25fmBW7D7FXyG5Y3I9uf0Tz3qhjk47NOrbo2Kpjm47tWb1oQzODY49Q30hgmwhsM4FtIbCtBLaNwLZnTfvR7f6kBf7ll+VYc3T7Ruuxukm0HWuaRLuxp49u32I19szR7VttxoaPbt9mMTZydPt2QBTxFOOi81SMj2rej+nYoWOnjl06HtfxhI7dsWJ8lBDFYwS2g8B2EtguAnucwJ4gsN1xEOMiQIyPAmJ8DBDjDkCMOwEx7gLE+DggxicAMe5OkBgXn6difFLz3qPjKR1P63hGx7M6ntPxfKwYnyREsYfAniKwpwnsGQJ7lsCeI7Dn4yDGxYAYnwTEuAcQ41OAGJ8GxPgMIMZnATE+B4jx+QSJccl5KsYXNO+9Ol7U8ZKOl3W8ouNVHa/FivEFQhR7CexFAnuJwF4msFcI7FUCey0OYlwCiPEFQIx7ATG+CIjxJUCMLwNifAUQ46uAGF9jigI9Gw45qO91e07K/z/QUxv3AfMg52eg5wRFLpT/G/57GnCSrf9Mj6Cxg4T47496Js59kq3/nJGgsYOF+B+IfqbPeZJt36r2Y4cI8T/o4x90kq3/PJagsUOF+L/p4x90kq3/jJigscOE+B/y8Q86ydZ/bk3Q2OFC/N/y8Q86ydZ/lk7Q2BFC/N8G/B95B/k2If6HAf+/HvD/24X4HwH8/wbA/+8Q4n8U8P8bAf8fJ8T/HcD/bwL8f7wQ/3cB/78Z8P8JQvzfA/z/FsD/Jwrxfx/w/1sB/58kxP8DwP+R97gWCPH/EPD/mYD/LxTifwzw/1mA/y8S4v8R4P+zAf9fLMT/Y8D/5wD+v0SI/yeA/88F/H+pEP9PAf+fB/j/3UL8PwP8fz7g//cI8f8c8H/ku/Drhfh/Afj/SsD/Hxbi/yXg/6sA/98gxP8rwP8fAvz/ESH+XwP+vxrw/41C/L8B/H8N4P+bhPh/C/j/WsD/Nwvx/w7w/3WA/6PvQqkY3kHDze8izFeaFLjeA055qdO/I9nI4HXQJS915nc3mxi83nTIy4w1vDYzeB1yx+v0UMNrC4PXW854nRlpeG1l8HrbFa/wQMNrG4PXYUe8IuMMr+0MXkcc+5f5/eg+Bq+jjv3L8HqDwesdx/5leO1n8HrXsX8ZXgcYvN5z7F+G10EGr/cd+5fh9SaD1weO/cvwOsTg9aFj/zK83mLwOsasH9F30b8H+m+g9lJAPaSAGkUBdYMC9nIF7K8K2PMUsA8pYG9QgF8rwEMV4GsK8BoF6F8BmlSITowGI9+LM899fR9urpDVTznTuzzK0PSXAr3LYwxeXwn0LjsYvL4W6F12Mnh9I9C77GLw+lagd3mcwes7gd7lCQav7wV6l90MXj8I9C5vM3j9KNC7HGbw+kmgdznC4PWzQO9ylMHrF4He5R0Gr18Fepd3Gbx+E+hd3mPwOi7Qu7zP4PW7UO/yA9C7ALWXAuohBdQoCqgbFLCXK2B/VcCep4B9SAF7gwL8WgEeqgBfU4DXKED/CtCkQnTi711+SGPv8iRD06cEepc9DF5eNfe9y1MMXsohr0jv8jSD1wXueP2vd3mGwSudM15ne5dnGbzSu+Ll612eY/DK4IiXv3d5nsEryaUew73LBwxeyU55neldPmTwSnHsX4bXMQavjI79y/D6iMErk2P/Mrw+ZvDK7Ni/DK9PGLyyOPYvw+tTBq+sjv3L8PqMwSsbyCtyob3Lj0DvAtReCqiHFFCjKKBuUMBeroD9VQF7ngL2IQXsDQrwawV4qAJ8TQFeowD9K0CTCtGJv3f5MY29ywsMTedzvPcbXnsZvPIL9C4vMngVEOhdXmLwKijQu7zM4FVIoHd5hcGrsEDv8iqDVxGB3uU1Bq+iAr3L5wxexQR6ly8YvIoL9C5fMniFBHqXrxi8Sgj0Ll8zeJUU6F2+YfAqJdC7fMvgVVqgd/mOwauMUO/yE9C7ALWXAuohBdQoCqgbFLCXK2B/VcCep4B9SAF7gwL8WgEeqgBfU4DXKED/CtCkKsPsXX7K+u/z1M91Xrr58/vwnz9kPdv/RH6WuUKeNQ1I2/+NtRs7HhiL/Nz/xkZfP+vn/Rcdv+r4TcdxHb/r+EPHnzr+0vG3jhM6Tur4R8cpo5Fs5i8b9O+tdKTTkV5HBh1JOpJ1pOjIqCNTtvgeVPlzVuw+xF4hu2FxP6gys74PWXRk1ZFNR3YdOXTk1JErmxdtaGZw7IGRWQgsK4FlI7DsBJaDwHISWK5saT+o0p+0wL+wz2Y31hxUmcV6rP5LNNux5rm2G3v6oMrsVmPPHFSZw2Zs+KDKnBZjIwdV5spmL4p4ivGX81SMufX9yqMjr458OvLrKKCjoI5CsWLMTYgiD4HlJbB8BJafwAoQWEECKxQHMf4CiDE3IMY8gBjzAmLMB4gxPyDGAoAYCwJiLJQgMf56noqxsL5fRXQU1VFMR3Fz/3SU0FEyVoyFCVEUIbCiBFaMwIoTWIjAShBYyTiI8VdAjIUBMRYBxFgUEGMxQIzFATGGADGWAMRYMkFi/O08FWMpfb9K6yijo6yOcjrK66igo2KsGEsRoihNYGUIrCyBlSOw8gRWgcAqxkGMvwFiLAWIsTQgxjKAGMsCYiwHiLE8IMYKgBgrAmL0X+jZKxfazwO9O4ueERC5UP6V/Pc04Dwq//u8QWPfEeJ/UdQzce7zqPzvGAeNfVeIf+XoZ/qc51Edqmo/9j0h/lV8/IPOo/K/ix009n0h/lV9/IPOo/K/Hx409gMh/tV8/IPOo/K/sx409kMh/tV9/IPOo/K/Rx809pgQ/4sB/0feP/pRiP8lgP9/Bfj/T0L8LwX8/2vA/38W4n8Z4P/fAP7/ixD/ywH//xbw/1+F+NcA/P87wP9/E+JfE/D/7wH/Py7E/wrA/38A/P93If61AP9HvsOdXE2Gf23A//3fKw8amyLEvw7g//7vugeNzSjEvy7g/xdUsx+bSYh/PcD//e8EBI3NLMS/PuD//vcUgsZmEeLfAPB//7sTQWOzCvFvCPi//32OoLHZhPg3Avw/n5vvdEVdKP/GgP/nB/y/uBD/JoD/FwD8PyTEvyng/wUB/y8hxL8Z4P+FAP8vKcS/OeD/hQH/LyXEvwXg/0UA/y8txL8l4P9FAf9Hvt9pfhln/h1VRfw3FbOegEtlTm8/r3++VtnSMKH5MPq51tnsk8Tl1TrbWSBk9zlnyQg8rMP3wTZpSYb5MPqv8rYBqoi2AolrSzxQQXO1BX/jhv588zC1Je5t0DSt/z+6t+attAsZ97amwNurlRi8rhB4e/UiBq9aAm+vVmbwqi3w9moVBq86Am+vVmXwqivw9mo1Bq96Am+vVmfwqu/UJ868vZqZwauBwNurWRi8Ggq8vZqVwauRwNur2Ri8Ggu8vZqdwauJwNurORi8mgq8vZqTwauZwNuruRi8mgu9vXolUBMCtZcC6iEF1CgKqBsUsJcrYH9VwJ6ngH1IAXuDAvxaAR6qAF9TgNcoQP8K0KRCdGI0GPnmqnnu6/twc4WsfsqZ3uVihqbbCfQulzB4tRfoXS5l8Oog0LtcxuB1lUDvcjmDV0eB3qUGg1cngd6lJoNXZ4He5QoGry4CvUtuBq+uAr1LHgavbgK9S14Gr+4CvUs+Bq8eAr1LfgavngK9SwEGr14CvUtBBq/eAr1LIQavPkK9SzugdwFqLwXUQwqoURRQNyhgL1fA/qqAPU8B+5AC9gYF+LUCPFQBvqYAr1GA/hWgSdWH2bu0S2PvUouh6cECvUttBq8hAr1LHQavoQK9S10Gr2ECvUs9Bq/hAr1LfQavEQK9SwMGr5ECvUtDBq9RAr1LYQav0QK9SxEGrzECvUtRBq+xAr1LMQavawR6l+IMXtcK9C4hBq/rBHqXEgxe1wv0LiUZvG4Q6l3aA70LUHspoB5SQI2igLpBAXu5AvZXBex5CtiHFLA3KMCvFeChCvA1BXiNAvSvAE2qG5i9S/s09i6NGJq+Q6B3aczgNU6gd2nC4DVeoHdpyuA1QaB3acbgNVGgd2nO4DVJoHdpweB1p0Dv0pLBa7JA71KKwesugd6lNIPXFIHepQyD11SB3qUsg9c0gd6lHIPXdIHepTyD1wyB3qUCg9dMgd6lIoPXLKHepQPQuwC1lwLqIQXUKAqoGxSwlytgf1XAnqeAfUgBe4MC/FoBHqoAX1OA1yhA/wrQpJrF7F06+HqXyIWedvip9VjlfWY7VpP73HKsWccXdmNP28+XVmPPONVXNmPDpva1xdiI/33j2XvTVdl4ub0qDrn91rPP7XeefW6/9+xz+4Nnn9sfPfvc/uTZ5/Znzz63v3j2ue3IzG3HOOT2V88+t7959rk97tnn9nfPPrd/ePa5/dOzz+1fnn1u//bsc9uJmdtOccjtCc8+tyc9+9z+49nn9pRnn1vzf4PHhocq+9xeoOxzm07Z57YzM7eds/37Xxi6MlwXt8t29u8TI3tzxMcjmo88H5GfZa6QZ03DmvN/Y+3HjgfGIj/3v7HRVxf9vHfV0U1Hdx09dPTU0UtHbx19dPTV0U/H1Tr66xigY6COQToG6xiiY6iOYTqG6xihY6SOUTpGZ4vv0e1dsmH3IfYK2Q2L+9HtYzTvsTqu0XGtjut0XK/jBh03ZvOiDc0Mjj1CfSyBXUNg1xLYdQR2PYHdQGA3Zkv70e3+pAV+0cFyrDm6faz1WP2LM9uxmu+1dmNPH91+ndXYM0e3X28zNnx0+w0WYyNHt98IiCKeYux6norxJs37Zh236LhVx206btdxh45xsWK8iRDFzQR2C4HdSmC3EdjtBHYHgY2Lgxi7AmK8CRDjzYAYbwHEeCsgxtsAMd4OiPEOQIzjEiTGbuepGMdr3hN0TNQxScedOibruEvHlFgxjidEMYHAJhLYJAK7k8AmE9hdBDYlDmLsBohxPCDGCYAYJwJinASI8U5AjJMBMd4FiHFKgsTY/TwV41TNe5qO6Tpm6JipY5aO2TrmxIpxKiGKaQQ2ncBmENhMAptFYLMJbE4cxNgdEONUQIzTADFOB8Q4AxDjTECMswAxzgbEOIcpCvRsOOSgvrn2nJT/f6CnNs4D5kHOz2jA/F0uyn++/54GnGTrP9MjaGxDIf4Lop6Jc59k6z9nJGhsIyH+C6Of6XOeZFu7mv3YxkL8F/n4B51k6z+PJWhsEyH+i338g06y9Z8REzS2qRD/JT7+QSfZ+s+tCRrbTIj/Uh//oJNs/WfpBI1tLsT/bsD/kXeQuwrxvwfw//aA/3cT4n8v4P8dAP/vLsR/GeD/VwH+30OI/3LA/zsC/t9TiP99gP93Avy/lxD/+wH/7wz4f28h/g8A/t8F8P8+QvwfBPwfeY9rtBD/FYD/DwH8f4wQ/5WA/w8F/H+sEP9VgP8PA/z/GiH+DwH+Pxzw/2uF+K8G/H8E4P/XCfFfA/j/SMD/rxfivxbw/1GA/98gxH8d4P/Id+HvEuK/HvD/cYD/TxHi/zDg/+MB/58qxH8D4P8TAP+fJsT/EcD/JwL+P12I/0bA/ycB/j9DiP8mwP/vBPx/phD/zYD/Twb8H30XSsXwDhpufhdhvtKkwPU+4vhdTsNrLIPXRsfvchpe1zB4bXL8LqfhdS2D12bH73IaXtcxeG1x/C6n4XU9g9dWx+9yGl43MHhtc/wup+F1I4PXdsf+ZX4/Oo/B61HH/mV4zWfwesyxfxleCxi8djj2L8NrIYPXTsf+ZXgtYvDa5di/DK/FDF6PO/Yvw2sJg9cTjv3L8FrK4LVb6F30LUD/DdReCqiHFFCjKKBuUMBeroD9VQF7ngL2IQXsDQrwawV4qAJ8TQFeowD9K0CTCtGJ0WDke3Hmua/vw80VsvopZ3qXmxiafl6gd7mZwesFgd7lFgavvQK9y60MXi8K9C63MXi9JNC73M7g9bJA73IHg9crAr3LOAavVwV6l7sZvF4T6F3uYfB6XaB3uZfBa59A77KMwesNgd5lOYPXfoHe5T4GrwMCvcv9DF4HBXqXBxi83hTqXbYCvQtQeymgHlJAjaKAukEBe7kC9lcF7HkK2IcUsDcowK8V4KEK8DUFeI0C9K8ATao3mb3L1jT2LuMZmn5XoHeZwOD1nkDvMpHB632B3mUSg9cHAr3LnQxeHwr0LpMZvI4J9C53MXh9JNC7TGHw+ligd3mQwesTgd5lBYPXpwK9y0oGr88EepdVDF6fC/QuDzF4fSHQu6xm8PpSoHdZw+D1lUDvspbB62uh3mUb0LsAtZcC6iEF1CgKqBsUsJcrYH9VwJ6ngH1IAXuDAvxaAR6qAF9TgNcoQP8K0KT6mtm7bEtj7zKVoemfBXqXaQxevwj0LtMZvH4V6F1mMHj9JtC7zGTwOi7Qu8xi8PpdoHeZzeD1h0DvMofB60+B3mUdg9dfAr3LegavvwV6l4cZvE4I9C4bGLxOCvQujzB4/SPQu2xk8Dol0LtsYvDyqrvvXTYzeCmQV+RCe5ftQO8C1F4KqIcUUKMooG5QwF6ugP1VAXueAvYhBewNCvBrBXioAnxNAV6jAP0rQJMK0Ym/d9me7d/nqZ/rvHTz55bwn1uzne1/Ij/LXCHPmgak7f/G2o0dD4xFfu5/Y6OvR/Xz/piOHTp26til43EdT+jYreNJHXt0PKXjaR3P6HhWx3M6ntfxgo69Ol7U8ZKOl3W8ouNVHa/peD1bfA+qfDQbdh9ir5DdsLgfVLlP835Dx34dB3Qc1PGmjkM63srmRRuaGRx7YOQbBLafwA4Q2EECe5PADhHYW9nSflClP2mBX86yHGsOqnzDeqyn9tuO1XwP2I09fVDlQauxZw6qfNNmbPigykMWYyMHVb4FiCKeYnzsPBXj25r3YR1HdBzV8Y6Od3W8p+P9WDG+TYjiMIEdIbCjBPYOgb1LYO8R2PtxEONjgBjfBsR4GBDjEUCMRwExvgOI8V1AjO8BYnw/QWLccZ6K8QPN+0Mdx3R8pONjHZ/o+FTHZ7Fi/IAQxYcEdozAPiKwjwnsEwL7lMA+i4MYdwBi/AAQ44eAGI8BYvwIEOPHgBg/AcT4KSDGzxIkxp3nqRg/17y/0PGljq90fK3jGx3f6vguVoyfE6L4gsC+JLCvCOxrAvuGwL4lsO/iIMadgBg/B8T4BSDGLwExfgWI8WtAjN8AYvwWEON3TFGgZ698bz8P9O4sekZA5EL5/+C/pwHnUfnf5w0a+5gQ/x+jnolzn0flf8c4aOwOIf4/RT/T5zyPanM1+7E7hfj/7OMfdB6V/13soLG7hPj/4uMfdB6V//3woLGPC/H/1cc/6Dwq/zvrQWOfEOL/m49/0HlU/vfog8buFuJ/HPB/5P2j14T4/w74/wuA/78uxP8PwP/3Av6/T4j/n4D/vwj4/xtC/P8C/P8lwP/3C/H/G/D/lwH/PyDE/wTg/68A/n9QiP9JwP9fBfz/TSH+/wD+j3yH+xMh/qcA/38P8P9Phfh72e09/X3A/z8T4q+y23v6B4D/fy7E/4Ls9p7+IeD/XwjxT5fd3tOPAf7/pRD/9NntPf0jwP+/EuKfIbu9p38M+P/XQvyTstt7OvI9uL+E+Cdnt/f0XwD//1uIfwrg/78C/n9CiH9GwP9/A/z/pBD/TID/Hwf8/x8h/pkB//8d8P9TQvyzAP7/B+D/XnUZ/lkB//8T8H/k+53ml3Hm31FVxH9TMesJuFSW9Pbz+ufLlj0NE5oPo5/Lnh0ospm8smc/C4TsPucsGYGFuO+DOdKSDPNh9F/lzQFUETkFEpeTeKCC5sppvwaSV9DPNw9TTuLeBk2T/f+je2veSjO/MUTXntfR2yaR0YbXDwxe+VzyUmfe4vuRwSu/Q15mrOH1E4NXAXe8Tg81vH5m8CrojNeZkYbXLwxehVzxCg80vH5l8Crs+O0vw+s3Bq8iTn3izNur+xi8ijr2L8PrDQavYo79y/Daz+BV3LF/GV4HGLxCjv3L8DrI4FXCsX8ZXm8yeJV07F+G1yEGr1ICb6++xeBVWujt1VxATQjUXgqohxRQoyigblDAXq6A/VUBe54C9iEF7A0K8GsFeKgCfE0BXqMA/StAkwrRidFg5Jur5rmv78PNFbL6KWd6l+MMTVcS6F1+Z/C6SKB3+YPBq7JA7/Ing1cVgd7lLwavqgK9y98MXtUEepcTDF7VBXqXkwxeFwv0Lm8zeF0i0LscZvC6VKB3OcLgdZlA73KUwetygd7lHQavGgK9y7sMXjUFepf3GLyuEOhd3mfwqiXUu+QGeheg9lJAPaSAGkUBdYMC9nIF7K8K2PMUsA8pYG9QgF8rwEMV4GsK8BoF6F8BmlS1mL1L7jT2Lv8wNN1IoHc5xeDVWKB38Ri/A2wi0LsoBq+mAr3LBQxezQR6l3QMXs0Fepf0DF4tBHqXDAxeLQV6lw8YPtFKoHf5kMGrtUDvcozBq41A7/IRg1dbgd7lYwavKwV6l08YvNoJ9C6fMni1F+hdPmPw6iDUu+QBeheg9lJAPaSAGkUBdYMC9nIF7K8K2PMUsA8pYG9QgF8rwEMV4GsK8BoF6F8BmlQdmL1LnjT2LkmMmqS7QO+SzODVQ6B3SWHw6inQu2Rk8Ool0LtkYvDqLdC7ZGbw6iPQu2Rh8Oor0LtkZfDqJ9C7fM6oSa4W6F2+YPDqL9C7fMngNUCgd/mKwWugQO/yNYPXIIHe5RsGr8ECvcu3DF5DBHqX7xi8hgr1LnmB3gWovRRQDymgRlFA3aCAvVwB+6sC9jwF7EMK2BsU4NcK8FAF+JoCvEYB+leAJtVQZu+S19e7RC70tMP0yn5fzmA7Vo9Lshxr1pFsN/a0/aRYjT3jVBltxoZNLZPF2Ij/ZVb23pQvOy+3+eKQ2yxAbrMCuc0G5DY7kNscQG5zArnNBeQ2N5Db/Mzc5o9DbvMAuc0L5DYfkNv8QG4LALktCOS2EJDbwkBuCzBzWyAOuS0C5LYokNtiQG6LA7kNAbktAeS2JJDbUkBuCzJzWzD7v/+FoVzhvj539rN/nxjZmyM+HtF85PmI/CxzhTxrGtac/xtrP3Y8MBb5uf+Njb4K6ee9sI4iOorqKKajuNGhjhI6SuoopaO0jjI6yuoop6O8jgo6Kuq4UEclHRfpqKyjio6qOqrpqJ49vke3FwLfmY+9QnbD4n50+8Wa9yU6LtVxmY7LddTQUVPHFdm9aEMzg2OPUL+EwC4lsMsI7HICq0FgNQnsiuxpP7q9EHBIwMWWY83R7ZdYj/XUpbZjNd/L7MaePrr9cquxZ45ur2EzNnx0e02LsZGj268ARBFPMRY+T8VYS/OuraOOjro66pkCQkcDHQ1jxViLEEVtAqtDYHUJrB6B1SewBgTWMA5iLAyIsRYgxtqAGOsAYqwLiLEeIMb6gBgbAGJsmCAxFjlPxdhI826so4mOpjqa6Wiuo4WOlrFibESIojGBNSGwpgTWjMCaE1gLAmsZBzEWAcTYCBBjY0CMTQAxNgXE2AwQY3NAjC0AMbZMkBiLnqdibKV5t9bRRkdbHVfqaKejvY4OsWJsRYiiNYG1IbC2BHYlgbUjsPYE1iEOYiwKiLEVIMbWgBjbAGJsC4jxSkCM7QAxtgfE2IEpCvRsOOSgvqvsOSn//0BPbewIzIOcn1GU+btclH8n/z0NOMnWf6ZH0NhiQvw7Rz0T5z7J1n/OSNDY4kL8u0Q/0+c8ybZAdfuxISH+XX38g06y9Z/HEjS2hBD/bj7+QSfZ+s+ICRpbUoh/dx//oJNs/efWBI0tJcS/h49/0Em2/rN0gsaWFuLfE/B/5B3kS4T49wL8/yLA/y8V4t8b8P/KgP9fJsS/D+D/VQD/v1yIf1/A/6sC/l9DiH8/wP+rAf5fU4j/1YD/Vwf8/woh/v0B/78Y8P9aQvwHAP6PvMfVSoj/QMD/GwP+31qI/yDA/5sA/t9GiP9gwP+bAv7fVoj/EMD/mwH+f6UQ/6GA/zcH/L+dEP9hgP+3APy/vRD/4YD/twT8v4MQ/xGA/yPfhb9aiP9IwP97AP7fX4j/KMD/ewL+P0CI/2jA/3sB/j9QiP8YwP97A/4/SIj/WMD/+wD+P1iI/zWA//cF/H+IEP9rAf/vB/g/+i6UiuEdNNz8LsJ8pUmB653m+F1Ow+sSBq/pjt/lNLwuZfCa4fhdTsPrMgavmY7f5TS8LmfwmuX4XU7DqwaD12zH73IaXjUZvOY4fpfT8LqCwWuuY/8yvx/tyOA1z7F/GV6dGLzmO/Yvw6szg9cCx/5leHVh8Fro2L8Mr64MXosc+5fh1Y3Ba7Fj/zK8ujN4LXHsX4ZXDwavpULvol8H9N9A7aWAekgBNYoC6gYF7OUK2F8VsOcpYB9SwN6gAL9WgIcqwNcU4DUK0L8CNKkQnRgNRr4XZ577+j7cXCGrn3Kmd6nF0PQDAr1LbQavBwV6lzoMXisEepe6DF4rBXqXegxeqwR6l/oMXg8J9C4NGLxWC/QuDRm81gj0Lj0ZvNYK9C69GLzWCfQuvRm81gv0Ln0YvB4W6F36MnhtEOhd+jF4PSLQu1zN4LVRoHfpz+C1Sah3uR7oXYDaSwH1kAJqFAXUDQrYyxWwvypgz1PAPqSAvUEBfq0AD1WArynAaxSgfwVoUm1i9i7Xp7F3acTQ9A6B3qUxg9dOgd6lCYPXLoHepSmD1+MCvUszBq8nBHqX5gxeuwV6lxYMXk8K9C4tGbz2CPQuAxi8nhLoXQYyeD0t0LsMYvB6RqB3Gczg9axA7zKEwes5gd5lKIPX8wK9yzAGrxcEepfhDF57hXqXG4DeBai9FFAPKaBGUUDdoIC9XAH7qwL2PAXsQwrYGxTg1wrwUAX4mgK8RgH6V4Am1V5m73JDGnuXVgxN7xPoXVozeL0h0Lu0YfDaL9C7tGXwOiDQu1zJ4HVQoHdpx+D1pkDv0p7B65BA79KBwestgd5lBIPX2wK9y0gGr8MCvcsoBq8jAr3LaAavowK9yxgGr3cEepexDF7vCvQu1zB4vSfQu1zL4PW+UO9yI9C7ALWXAuohBdQoCqgbFLCXK2B/VcCep4B9SAF7gwL8WgEeqgBfU4DXKED/CtCkep/Zu9yY/d/nqZ/rvHTz53XhP6/Pfrb/ifwsc4U8axqQtv8bazd2PDAW+bn/jY2+btLP+806btFxq47bdNyu4w4d43SM1zFBx0Qdk3TcqWOyjrt0TNExVcc0HdN1zNAxU8csHbN1zNExN3t8D6q8KTt2H2KvkN2wuB9UOU/znq9jgY6FOhbpWKxjiY6l2b1oQzODYw+MnE9gCwhsIYEtIrDFBLaEwJZmT/tBlf6kBb6IYznWHFQ533qspxbYjtV8F9qNPX1Q5SKrsWcOqlxsMzZ8UOUSi7GRgyqXAqKIpxhvPk/FeLfmfY+Oe3Us07Fcx3067tfxQKwY7yZEcQ+B3UtgywhsOYHdR2D3E9gDcRDjzYAY7wbEeA8gxnsBMS4DxLgcEON9gBjvB8T4QILEeMt5KsYHNe8VOlbqWKXjIR2rdazRsTZWjA8SolhBYCsJbBWBPURgqwlsDYGtjYMYbwHE+CAgxhWAGFcCYlwFiPEhQIyrATGuAcS4NkFivPU8FeM6zXu9jod1bNDxiI6NOjbp2BwrxnWEKNYT2MMEtoHAHiGwjQS2icA2x0GMtwJiXAeIcT0gxocBMW4AxPgIIMaNgBg3AWLczBQFevbKFvt5oHdn51WX4b/Vf08DzqPyv88bNHa+EP9tUc/Euc+j8r9jHDR2gRD/7dHP9DnPo5pZ3X7sQiH+j/r4B51H5X8XO2jsIiH+j/n4B51H5X8/PGjsYiH+O3z8g86j8r+zHjR2iRD/nT7+QedR+d+jDxq7VIj/LsD/kfeP1grxfxzw/wcB/18nxP8JwP9XAP6/Xoj/bsD/VwL+/7AQ/ycB/18F+P8GIf57AP9/CPD/R4T4PwX4/2rA/zcK8X8a8P81gP9vEuL/DOD/yHe4nxLi/yzg/zsB/39aiP9zgP/vAvz/GSH+zwP+/zjg/88K8X8B8P8nAP9/Toj/XsD/dwP+/7wQ/xcB/38S8P8XhPi/BPj/HsD/9wrxfxnwf+R7cG8L8X8F8P83AP8/LMT/VcD/9wP+f0SI/2uA/x8A/P+oEP/XAf8/CPj/O0L89wH+/ybg/+8K8X8D8P9DgP+/J8R/P+D/bwH+j3y/0/wyzvw7qor4bypmPQGXyprefl7/fAeyp2FC82H0cweBX0BxeR3MfhYI2X3OWTKC1uif7820JMN8GP1Xed8EqohDAok7RDxQgW90gb9xQ3++eZgOEfc2aJqD/x/dW/NW2hbGvf1J4O3VrQxePwu8vbqNwesXgbdXtzN4/Srw9uqjDF6/Cby9+hiD13GBt1d3MHj9LvD26k4Grz+c+sSZt1fnMXj9KfD26nwGr78E3l5dwOD1t8DbqwsZvE4IvL26iMHrpMDbq4sZvP4ReHt1CYPXKYG3V5cyeHkXY7wiF/r26ltATQjUXgqohxRQoyigblDAXq6A/VUBe54C9iEF7A0K8GsFeKgCfE0BXqMA/StAkwrRidFg5Jur5rmv78PNFbL6KWd6l10MTadc7MZrIqMNr8cZvDK65BXuXZ5g8MrkkFekd9nN4JXZHa//9S5PMnhlccbrbO+yh8Erqytevt7lKQavbI54+XuXpxm8sjv1iTO9y90MXjkc+5fhdQ+DV07H/mV43cvglcuxfxleyxi8cjv2L8NrOYNXHsf+ZXjdx+CV17F/GV73M3jlc+xfhtcDDF75hXqXt4HeBai9FFAPKaBGUUDdoIC9XAH7qwL2PAXsQwrYGxTg1wrwUAX4mgK8RgH6V4AmVX5m7/J2GnuXZxiaLi7QuzzL4BUS6F2eY/AqIdC7PM/gVVKgd3mBwauUQO+yl8GrtEDv8iKDVxmB3uUlBq+yAr3Lgwxe5QR6lxUMXuUFepeVDF4VBHqXVQxeFQV6l4cYvC4U6F1WM3hVEuhd1jB4XSTQu6xl8Kos1LscBnoXoPZSQD2kgBpFAXWDAvZyBeyvCtjzFLAPKWBvUIBfK8BDFeBrCvAaBehfAZpUlZm9y+E09i4vMzR9mUDv8gqD1+UCvcurDF41BHqX1xi8agr0Lq8zeF0h0LvsY/CqJdC7vMHgVVugd9nP4FVHoHdZx+BVV6B3Wc/gVU+gd3mYwau+QO+ygcGrgUDv8giDV0OB3mUjg1cjgd5lE4NXY4HeZTODVxOh3uUI0LsAtZcC6iEF1CgKqBsUsJcrYH9VwJ6ngH1IAXuDAvxaAR6qAF9TgNcoQP8K0KRqwuxdjvh6l8iFnnZYWtnvy2Vsx+pxZS3HmnWUsxt72n7KW40941QVbMaGTa2ixdiI/12o7L3paHZebo/GIbeVgNxeBOS2MpDbKkBuqwK5rQbktjqQ24uB3L7DzO07ccjtJUBuLwVyexmQ28uB3NYAclsTyO0VQG5rAbl9l5nbd+OQ29pAbusAua0L5LYekNv6QG4bALltCOS2EZDb95i5fS/7v/+FobfCdfHb2c/+fWJkb474eETzkecj8rPMFfKsaVhz/m+s/djxwFjk5/43Nvp6Xz/vH+j4UMcxHR/p+FjHJzo+1fGZjs91fKHjSx1f6fhaxzc6vtXxnY7vdfyg40cdP+n4WccvOn7V8Vv2+B7d/n527D7EXiG7YXE/uv245v27jj90/KnjLx1/6zih42R2L9rQzODYI9R/J7A/COxPAvuLwP4msBMEdjJ72o9u9yct8AVmy7Hm6Pbfrcd66g/bsZrvn3ZjTx/d/pfV2DNHt/9tMzZ8dPsJi7GRo9tPAqKIpxg/OE/F+I/mfcqILofGdVygI52O9Doy5PCiBfAPIYpTBGZ+WCymCOwCAktHYOkJLEOOtIvxA0CM/wBiPAWI0dwrq7Gar7Ibe1qMF1iNPSPGdDZjw2JMbzE2IsYMORIjxg/PUzEm6fuVbJ5rHRl1ZNKRWUcWHVljxZhEiCKZwFIILCOBZSKwzASWhcCyxkGMHwJiTLIVjRZjsvVYT6UAYswIiDETIMbMgBizAGLMmiAxHjtPxZhN36/sOnLoyKkjl47cOvLoyBsrxmyEKLITWA4Cy0lguQgsN4HlIbC8cRDjMUCM2QAxZgfEmAMQY05AjLkAMeYGxJgHEGNeQIz+Cz0bDjmoL589J+X/H+ipjfmBeX5ycxZE1IXyL+DPc8BJtj8Dp97+JcS/YNRzeu6TbH8BTr39W4h/oWidnfMk21+BU29PCPEv7OMfdJLtb8CptyeF+Bfx8Q86yfY4cOrtP0L8i/r4B51k+ztw6u0pIf7FfPyDTrL9Azj1lnt+Esq/OOD/yDvIOYT4hwD/978XHTQ2pxD/EoD/+9/VDhqbS4h/ScD/M19sPza3EP9SgP/732kPGptHiH9pwP/979kHjc0rxL8M4P/+d/+DxuYT4l8W8H//eQRBY/ML8S8H+D/yHlc5If7lAf8PAf5fXoh/BcD/SwD+X0GIf0XA/0sC/l9RiP+FgP+XAvz/QiH+lQD/Lw34fyUh/hcB/l8G8P+LhPhXBvy/LOD/lYX4VwH8H/kufF0h/lUB/78c8P96QvyrAf5fA/D/+kL8qwP+XxPw/wZC/C8G/P8KwP8bCvG/BPD/WoD/NxLifyng/7UB/28sxP8ywP/rAP6PvgulYngHDTe/izjOeEdroON3OQ+Gv4+G8hrk+F3Og+HvyKG8Bjt+l/Ng+Ht7KK8hjt/lPBj+LiHKa6jjdzkPhr/fiPIa5vhdzoPh71yivIY7fpfzYPh7oCivEY79y/x+1PzuEuU10rF/GV4FGLxGOfYvw6sgg9dox/5leBVi8Brj2L8Mr8IMXmMd+5fhVYTB6xrH/mV4FWXwutaxfxlexRi8rhN6F/1yoP8Gai8F1EMKqFEUUDcoYC9XwP6qgD1PAfuQAvYGBfi1AjxUAb6mAK9RgP4VoEmF6MRoMPK9OPPc1/fh5gpZ/ZQzvcs/jJrkNoHe5RSD1+0CvYvH8MA7BHoXxeA1TqB3uYDBa7xA75KOwWuCQO+SnsFrokDvkoHBa5JA71KcwetOgd4lxOA1WaB3KcHgdZdA71KSwWuKQO9SisFrqkDvUprBa5pA71KGwWu6QO9SlsFrhlDvUgPoXYDaSwH1kAJqFAXUDQrYyxWwvypgz1PAPqSAvUEBfq0AD1WArynAaxSgfwVoUs1g9i410ti7JDE0vUCgd0lm8Foo0LukMHgtEuhdMjJ4LRboXTIxeC0R6F0yM3gtFehdsjB43S3Qu2Rl8LpHoHcpx+B1r0DvUp7Ba5lA71KBwWu5QO9SkcHrPoHe5UIGr/sFepdKDF4PCPQuFzF4PSjQu1Rm8Foh1LvUBHoXoPZSQD2kgBpFAXWDAvZyBeyvCtjzFLAPKWBvUIBfK8BDFeBrCvAaBehfAZpUK5i9S8009i7ZGJpeL9C7ZGfweligd8nB4LVBoHfJyeD1iEDvkovBa6NA75KbwWuTQO+Sh8Frs0DvkpfBa4tA71KFwWurQO9SlcFrm0DvUo3Ba7tA71KdwetRgd7lYgavxwR6l0sYvHYI9C6XMnjtFOhdLmPw2iXUu1wB9C5A7aWAekgBNYoC6gYF7OUK2F8VsOcpYB9SwN6gAL9WgIcqwNcU4DUK0L8CNKl2MXuXK3L8+zz1c52Xbv68PKzjGjnO9j+Rn2WukGdNA9L2f2Ptxo4HxiI/97+x0Vct/bzX1lFHR10d9YyWdDTQ0VBHIx2NdTTR0VRHMx3NdbTQ0VJHKx2tdbTR0VbHlTra6Wivo4OOq3LE96DKWjmw+xB7heyGxf2gyo6adycdnXV00dFVRzcd3XX0yOFFG5oZHHtgZCcC60xgXQisK4F1I7DuBNYjR9oPqvQnLaiI6Wg51hxU2cl6rKc6247VfLvYjT19UGVXq7FnDqrsZjM2fFBld4uxkYMqewCiiKcYa5+nYuypeffS0VtHHx19dfTTcbWO/rFi7EmIoheB9SawPgTWl8D6EdjVBNY/DmKsDYixJyDGXoAYewNi7AOIsS8gxn6AGK8GxNg/QWKsc56KcYDmPVDHIB2DdQzRMVTHMB3DY8U4gBDFQAIbRGCDCWwIgQ0lsGEENjwOYqwDiHEAIMaBgBgHAWIcDIhxCCDGoYAYhwFiHJ4gMdY9T8U4QvMeqWOUjtE6xugYq+MaHdfGinEEIYqRBDaKwEYT2BgCG0tg1xDYtXEQY11AjCMAMY4ExDgKEONoQIxjADGOBcR4DSDGa5miQM9euc5+Hujd2ZEXy/C/3n9PA86j8r/PGzR2lBD/G6KeiXOfR+V/xzho7Ggh/jdGP9PnPI9qyMX2Y8cI8b/Jxz/oPCr/u9hBY8cK8b/Zxz/oPCr/++FBY68R4n+Lj3/QeVT+d9aDxl4rxP9WH/+g86j879EHjb1OiP9tgP8j7x/dKcT/dsD/bwf8f7IQ/zsA/78D8P+7hPiPA/x/HOD/U4T4jwf8fzzg/1OF+E8A/H8C4P/ThPhPBPx/IuD/04X4TwL8fxLg/zOE+N8J+D/yHe57hfhP/n/snQWUVMfWheeg8eAug2sciCGNu8SBKO4uAQKEkODu7sHd3TUEd3cLIYRAcPvPZaZ/7nRqce8+0/fwZi16rbPyXuXM9DddvXfVznTVAP7fH/D/4Ur8HQH/HwD4/wgl/k6A/w8E/H+kEn9nwP8HAf4/Som/C+D/gwH/H63E3xXw/yGA/49R4u8G+P9QwP/HKvF3B/wf+RzcHCX+HoD/TwX8f64Sf0/A/6cB/j9Pib8X4P/TAf+fr8TfG/D/GYD/L1Di7wP4/0zA/xcq8fcF/H8W4P+LlPj7Af4/G/B/5POd1i/jrL+jSoZ/RwE/j8ODXonh/nntz9c/TiSe0Ppi9OsGAL+AknINiPN4INTd13k2GU4/o/35BkZmMqwvRv8q70BgFzFIYeIGGd5Qjrd3gL9xQ7+/9WYaZHhtnZ5mwP/Qa2udSmsqeG23KpxebSbg2qZwerW5gGu7wunV7wVcOxROr7YQcO1UOL3aUsC1S+H0aisB126F06s/CLj2eOoTYadXPxVw7VU4vfqZgGufwunVzwVc+xVOr34h4DqgcHq1vIDroMLp1QoCrkMKp1crCrgOK5xe/VLAdUTp9OpgYE8I7L0I2A8RsEchYN9AwFpOwPpKwJpHwDpEwNpAgF8T4KEE+BoBXkOA/gnQJCE6sTTo/+Sq9b732catR6ir7xKWXVoLNH1GIbu0EXCdVcgubQVc5xSyy48CrvMK2aWdgOuCQnb5ScD1h0J2aS/guqiQXX4WcP2pkF2+EnBdUsguXwu4/lLILt8IuC4rZJdvBVx/K2SX7wRcVxSySyUB1z8K2aWygOuqQnapIuC6ppRdhgDZBdh7EbAfImCPQsC+gYC1nID1lYA1j4B1iIC1gQC/JsBDCfA1AryGAP0ToEm6JswuQyKZXX4RaPquQnbpIOC6p5BdOgq47itkl04CrgcK2aWzgOuhQnbpIuAKyeF9dukq4CKPuOzZpZuAK5pXr1d4u7UnqSrgiu4pV1h2qSbgiuElV3h2qS7giukhlz+71BBwxfKO6/+zS00BV2zPuB5nl1oCruc89i+Lq7aA63mP/cviqiPgegHk8j/Q7DIUyC7A3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNEqITe3YZGsns0l2g6Xger/0WVw8BV3yP136Lq6eAK4HHa7/F1UvAldDjtd/i6i3gSuTx2m9x9RFwJVbILn0FXEkUsks/AVdShexSV8CVTCG71BNwJVfILvUFXCkUsksDAVdKhezSUMCVSiG7NBJwpVbILo0FXKEK2aWJgCuNUnYZBmQXYO9FwH6IgD0KAfsGAtZyAtZXAtY8AtYhAtYGAvyaAA8lwNcI8BoC9E+AJimNMLsMs2UX/wO97bAQuV+XC7vt5b4iLnutn6Oou95H9lPMVW+YUxV30xtuaiVc9Pr9ryS596bhcWRzOzwIc1sKmNvSwNyWAea2LDC35YC5/QiY24+Buf0EmNsRwrkdEYS5/RSY28+Auf0cmNsvgLktD8xtBWBuKwJz+yUwtyOFczsyCHP7FTC3XwNz+w0wt98Cc/sdMLeVgLmtDMxtFWBuRwnndlSc//6FocHh++IhcR7/90T/2uz3cb/m/e8P//eyHqEhrjFcMz/rdd/bDuhFvu+z3oiP0fx+H8M1lmsc169c47kmcE3kmsQ1mWsK11SuaVzTuWZwzeSaxTWbaw7XXK55XPO5FnAt5FoUJ7hXt4+Og70OgY9Qd21Bv7p9MXMv4VrKtYxrOdcKrpVcq+KERDQ0qznwCvUlhrGlhrFlhrHlhrEVhrGVhrFVcSJ/dbt90pwWgcUue62r25e47g2hpW57mXeZu95HV7cvd9UbdnX7Cje94Ve3r3TR67+6fRUgimCKcUwUFeNq5l7DtZZrHdd6rg1cG7k2BYpxtUEUawxjaw1j6wxj6w1jGwxjGw1jm4IgxjGAGFcDYlwDiHEtIMZ1gBjXA2LcAIhxIyDGTU9JjGOjqBh/Y+7NXL9zbeHayrWNazvXjkAx/mYQxWbD2O+GsS2Gsa2GsW2Gse2GsR1BEONYQIy/AWLcDIjxd0CMWwAxbgXEuA0Q43ZAjDuekhjHRVEx7mTuXVy7ufZw7eXax7Wf60CgGHcaRLHLMLbbMLbHMLbXMLbPMLbfMHYgCGIcB4hxJyDGXYAYdwNi3AOIcS8gxn2AGPcDYjwgFAV6NxxyUd9B90xk/z/orY2HgOdB7s/YKzxDh/Iftr+mDjfZbgNuvd2nxH8kwnviyTfZbgduvd2vxH804nv6iTfZ7gBuvT2gxH/Mxu90k+1O4Nbbg0r8x238TjfZ7gJuvT2kxH/Cxu90k+1u4Nbbw0r8J238TjfZ7gFuvT2ixH8K8H/kDPIlJf7TgP+fBfz/LyX+M4D/nwP8/7IS/1nA/88D/v+3Ev85wP8vAP5/RYn/POD/fwD+/48S/wXA/y8C/n9Vif8PwP//BPz/mhL/RcD/kXNc0XPo8P8J+P89wP9jKPFfAvz/PuD/MZX4/wL8/wHg/7GU+C8D/v8Q8P/YSvx/A/5vP6vo1PucEv8VwP/t5yedep9X4v8H8H/7mU6n3heU+K8C/h/Pm891R3ig/NcA/7d/Pt+pN7kS/7+A/9vPDDj1plDivw74f8Ic7ntTKvHfAPzffrbCqTeVEv9NwP8TA/6fWon/FuD/SQD/D1Xivw34f1LA/9GzUBTA7dRu/S7C+kgTgT9vfo/PclpcSwRcBTw+y2lxLRVwFfT4LKfFtUzAVcjjs5wW13IBV2GPz3JaXCsEXEU8Pstpca0UcBX1+CynxbVKwFXMY/+yfj96SMBV3GP/srgOC7hKeOxfFtcRAVdJj/3L4joq4CrlsX9ZXMcEXKU99i+L67iAq4zH/mVxnRBwlfXYvyyukwKuckpn0e8A+RvYexGwHyJgj0LAvoGAtZyA9ZWANY+AdYiAtYEAvybAQwnwNQK8hgD9E6BJQnRiadD/uTjrfe+zjVuPUFffJSy7rBZourxCdlkj4KqgkF3WCrgqKmSXdQKuLxWyy3oB11cK2WWDgOtrheyyUcD1jUJ22STg+lYhu5wScH2nkF1OC7gqKWSXMwKuygrZ5ayAq4pCdjkn4KqqkF3OC7iqKWSXCwKu6grZ5Q8BVw2l7HIXyC7A3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNUg1hdrkbyezym0DTDRSyy2YBV0OF7PK7gKuRQnbZIuBqrJBdtgq4mihkl20CrqYK2WW7gKuZQnbZIeBqrpBdLgq4vlfILn8KuFooZJdLAq6WCtnlLwFXK4XsclnA9YNCdvlbwNVaIbtcEXC1Ucgu/wi42ipll3tAdgH2XgTshwjYoxCwbyBgLSdgfSVgzSNgHSJgbSDArwnwUAJ8jQCvIUD/BGiS2gqzy71IZpedAk13VMguuwRcnRSyy24BV2eF7LJHwNVFIbvsFXB1Vcgu+wRc3RSyy34BV3eF7HJAwNVDIbtcFXD1VMgu1wRcvRSyy78Crt4K2eW6gKuPQna5IeDqq5Bdbgq4+ilkl1sCrv4K2eW2gGuAUna5D2QXYO9FwH6IgD0KAfsGAtZyAtZXAtY8AtYhAtYGAvyaAA8lwNcI8BoC9E+AJmmAMLvcj/Pf+9SfdF+69c874f+8G+dx/vF/L+sRGuIaA9L2s153ve2AXuT7PuuN+HjA7/eH1nueFxviisYVnSsGV0yuWFyxuZ7jep7rBa4XuV7iepnrFa5XueJwxeWKxxWfKwFXQq5EcYN7UeWDONjrEPgIddcW9IsqE/PrkIQrKVcyruRcKbhScqWKGxLR0KzmwAsjkxjGkhrGkhnGkhvGUhjGUhrGUsWN/EWV9klz2sRYP7ubXuuiyiSue0Moqdte5k3mrvfRRZXJXfWGXVSZwk1v+EWVKV30+i+qTBXXvSiCKcaHUVSMqa3XiysNV1qudFzpuTJwZQwUY2qDKEINY2kMY2kNY+kMY+kNYxkMYxmDIMaHgBhTA2IMBcSYBhBjWkCM6QAxpgfEmAEQY8anJMYQ4HlNj1B3bUEXYybmzsyVhSsrVzau7Fyvcb0eKMZMBlFkNoxlMYxlNYxlM4xlN4y9Zhh7PQhiDHEphCvhP7ubXkuMmQExZgHEmBUQYzZAjNkBMb4GiPH1pyRGiqJifIO53+R6i+ttrne4cnDl5MoVKMY3DKJ40zD2lmHsbcPYO4axHIaxnIaxXEEQIwFifAMQ45uAGN8CxPg2IMZ3ADHmAMSYExBjLqEo0LtX3nX/PNDZ2eI5dPjfs7+mDvdR2c/zOvWWUOJ/P8J74sn3UdnPGDv1llTi/yDie/qJ91EVyuG+t5QS/4c2fqf7qOxnsZ16Syvx57bxO91HZT8f7tRbRok/j43f6T4q+5l1p96ySvx5bfxO91HZz9E79ZZT4s8H+D9y/ug7JX4f4P8VAP+vpMSfH/D/ioD/V1biLwD4/5eA/1dR4i8I+P9XgP9XVeIvBPj/14D/V1PiLwz4/zeA/1dX4i8C+P+3gP/XUOIvCvg/8hnu75X4iwH+3xDw/xZK/MUB/28E+H9LJf4SgP83Bvy/lRJ/ScD/mwD+/4MSfynA/5sC/t9aib804P/NAP9vo8RfBvD/5oD/t1XiLwv4P/I5uJ5K/OUA/+8E+H8vJf6PAP/vDPh/byX+jwH/7wL4fx8l/k8A/+8K+H9fJf5PAf/vBvh/PyX+zwD/7w74f38l/s8B/+8B+D/y+U7rl3HW31Elw7+jgJ/H4UGvxnD/vPbn+yJuJJ7Q+mL068oDv4CScpWP+3gg1N3XeTYZTj+j/fkqRGYyrC9G/ypvBWAXUVFh4ioa3lCONzWCv3FDv7/1ZqpoeG2dnqb8/9Bra51Ke1fw2k5WOL36noBrisLp1fcFXFMVTq9+IOCapnB69UMB13SF06u5BVwzFE6v5hFwzVQ4vZpXwDXLU58IO72aWMA1W+H0ahIB1xyF06tJBVxzFU6vJhNwzVM4vZpcwDVf4fRqCgHXAoXTqykFXAsVTq+mEnAtUjq9+iWwJwT2XgTshwjYoxCwbyBgLSdgfSVgzSNgHSJgbSDArwnwUAJ8jQCvIUD/BGiSEJ1YGvR/ctV63/ts49Yj1NV3Ccsu+QSaXqWQXXwCrtUK2SW/gGuNQnYpIOBaq5BdCgq41ilkl0ICrvUK2aWwgGuDQnYpIuDaqJBdUgu4Nilkl1AB128K2SWNgGuzQnZJK+D6XSG7pBNwbVHILukFXFsVsksGAdc2heySUcC1XSm7fAVkF2DvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCZpuzC7fBXJ7FJUoOn9CtmlmIDrgEJ2KS7gOqiQXUoIuA4pZJeSAq7DCtmllIDriEJ2KS3gOqqQXcoIuI4pZJdMAq7jCtkls4DrhEJ2ySLgOqmQXbIKuE4pZJdsAq7TCtklu4DrjEJ2eU3AdVYhu7wu4DqnlF2+BrILsPciYD9EwB6FgH0DAWs5AesrAWseAesQAWsDAX5NgIcS4GsEeA0B+idAk3ROmF2+jmR2KSvQ9GWF7FJOwPW3Qnb5SMB1RSG7fCzg+kchu3wi4LqqkF0+FXBdU8gunwm4/lXILp8LuK4rZJc3BFw3FLLLmwKumwrZ5S0B1y2F7PK2gOu2QnZ5R8B1RyG75BBw3VXILjkFXPcUsksuAdd9pezyDZBdgL0XAfshAvYoBOwbCFjLCVhfCVjzCFiHCFgbCPBrAjyUAF8jwGsI0D8BmqT7wuzyjS27+B/obYdVyf26XM1tL/dVd9lr/Rw13PU+sp+arnrDnKqWm95wU6vtotfvf3XIvTd9G1c2t98GYW7rAnNbD5jb+sDcNgDmtiEwt42AuW0MzG0TYG6/E87td0GY26bA3DYD5rY5MLffA3PbApjblsDctgLm9gdgbisJ57ZSEOa2NTC3bYC5bQvM7Y/A3LYD5vYnYG7bA3P7MzC3lYVzWznuf//C0Jfh++Kv4j7+74n+tdnv437N+98f/u9lPUJDXGO4Zn7W6763HdCLfN9nvREfVfj9XpWrGld1rhpcNblqcdXmqsNVl6seV32uBlwNuRpxNeZqwtWUqxlXc67vuVpwteRqxfVD3OBe3V4lLvY6BD5C3bUF/er21szdhqst149c7bh+4mrP9XPckIiGZjUHXqHexjDW1jD2o2GsnWHsJ8NYe8PYz3Ejf3W7fdKcFoHWLnutq9vbuO4NobZue5n3R3e9j65ub+eqN+zq9p/c9IZf3d7eRa//6vafAVEEU4xVo6gYf2HuDlwduTpxdebqwtWVq1ugGH8xiKKDYayjYayTYayzYayLYayrYaxbEMRYFRDjL4AYOwBi7AiIsRMgxs6AGLsAYuwKiLHbUxJjtSgqxu7M3YOrJ1cvrt5cfbj6cvULFGN3gyh6GMZ6GsZ6GcZ6G8b6GMb6Gsb6BUGM1QAxdgfE2AMQY09AjL0AMfYGxNgHEGNfQIz9npIYq0dRMfZn7gFcA7kGcQ3mGsI1lGtYoBj7G0QxwDA20DA2yDA22DA2xDA21DA2LAhirA6IsT8gxgGAGAcCYhwEiHEwIMYhgBiHAmIcJhQFejccclHfcPdMZP8/6K2NI4DnQe7PmC38XS7KP9L+mjrcZGu/08Opd44S/6gI74kn32Rrv2fEqXeuEv/oiO/pJ95kOy2H+955SvxjbPxON9na72Nx6p2vxD/Wxu90k639jhin3gVK/ONs/E432drvrXHqXajE/6uN3+kmW/tdOk69i5T4xwP+j5xB3qTEPwHw/9WA//+mxD8R8P81gP9vVuKfBPj/WsD/f1finwz4/zrA/7co8U8B/H894P9blfinAv6/AfD/bUr80wD/3wj4/3Yl/umA/yPnuI4r8c8A/P8A4P8nlPhnAv5/EPD/k0r8swD/PwT4/ykl/tmA/x8G/P+0Ev8cwP+PAP5/Rol/LuD/RwH/P6vEPw/w/2OA/59T4p8P+D/yWfgbSvwLAP//G/D/m0r8CwH/vwL4/y0l/kWA//8D+P9tJf7FgP9fBfz/jhL/EsD/rwH+f1eJfyng//8C/n9PiX8Z4P/XAf9Hz0JRALdTu/W7COsjTQT+vClzeslFj35H0kbAlcpLLgr73U1bAVdqD7msXovrRwFXqHdcj1otrnYCrjSecYV1Wlw/CbjSesUV3mhxtRdwpfOIy99ncf0s4ErvqU+EkPX70RECrgwe+5fFNVLAldFj/7K4Rgm4MnnsXxbXaAFXZo/9y+IaI+DK4rF/WVxjBVxZPfYvi2ucgCubx/5lcf0q4MoOcvkfccHnWQ7kb2DvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCYJ0YmlQf/n4qz3vc82bj1CXX2XsOzyi0DTORSySwcBV06F7NJRwJVLIbt0EnC9q5BdOgu43lPILl0EXO8rZJeuAq4PFLJLNwHXhwrZZbyAK7dCdpkg4MqjkF0mCrjyKmSXSQKufArZZbKAy6eQXaYIuPIrZJepAq4CCtllmoCroFJ2WQFkF2DvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCapoDC7rIhkduku0HRJhezSQ8BVSiG79BRwlVbILr0EXGUUsktvAVdZhezSR8BVTiG79BVwfaSQXfoJuD5WyC7TBVyfKGSXGQKuTxWyy0wB12cK2WWWgOtzhewyW8D1hUJ2mSPgKq+QXeYKuCooZJd5Aq6KStllJZBdgL0XAfshAvYoBOwbCFjLCVhfCVjzCFiHCFgbCPBrAjyUAF8jwGsI0D8BmqSKwuyyMpLZpb9A05UVsssAAVcVhewyUMBVVSG7DBJwVVPILoMFXNUVsssQAVcNhewyVMBVUyG7DBNw1VLILvMFXLUVsssCAVcdheyyUMBVVyG7LBJw1VPILosFXPUVsssSAVcDheyyVMDVUCG7LBNwNVLKLquA7ALsvQjYDxGwRyFg30DAWk7A+krAmkfAOkTA2kCAXxPgoQT4GgFeQ4D+CdAkNRJml1Vx/3uf+pPuS7f+uTz8nyviPs4//u9lPUJDXGNA2n7W6663HdCLfN9nvREfq/n9voZrLdc6rvVcG7g2cm3i+o1rM9fvXFu4tnJt49rOtYNrJ9curt1ce7j2cu3j2s91gOtg3OBeVLk6LvY6BD5C3bUF/aLKQ8x9mOsI11GuY1zHuU5wnYwbEtHQrObACyMPG8aOGMaOGsaOGcaOG8ZOGMZOxo38RZX2SXPaxBxy2WtdVHnYdW8IHXHby7xH3fU+uqjymKvesIsqj7vpDb+o8oSLXv9FlScBUQRTjGuiqBhPMfdprjNcZ7nOcZ3nusD1R6AYTxlEcdowdsYwdtYwds4wdt4wdsEw9kcQxLgGEOMpQIynATGeAcR4FhDjOUCM5wExXgDE+MdTEuPaKCrGi8z9J9clrr+4LnP9zXWF659AMV40iOJPw9glw9hfhrHLhrG/DWNXDGP/BEGMawExXgTE+CcgxkuAGP8CxHgZEOPfgBivAGL85ymJcV0UFeNV5r7G9S/Xda4bXDe5bnHdDhTjVYMorhnG/jWMXTeM3TCM3TSM3TKM3Q6CGNcBYrwKiPEaIMZ/ATFeB8R4AxDjTUCMtwAx3haKAr175Y7754HOzmbIqcN/1/6aOtxHZT/P69SbUYn/XoT3xJPvo7KfMXbqzaTEfz/ie/qJ91GF5nTfm1mJ/4GN3+k+KvtZbKfeLEr8D238TvdR2c+HO/VmVeIPife41+k+KvuZdafebEr8ZON3uo/Kfo7eqTe7En+0eO49HTl/lFuJP3o8956eE/D/PEr8MeK59/RcgP/nVeKPGc+9p78L+H8+Jf5Y8dx7+nuA//uU+GPHc+/p7wP+n1+J/znA/z8A/L+AEv/zgP9/CPh/QSX+FwD/Rz7D/YkS/4uA/5cC/P9TJf6XAP8vDfj/Z0r8LwP+Xwbw/8+V+F8B/L8s4P9fKPG/Cvh/OcD/yyvxxwH8/yPA/yso8ccF/P9jwP8rKvHHA/wf+RxcbSX++ID/VwH8v44SfwLA/6sC/l9XiT8h4P/VAP+vp8SfCPD/6oD/11fiTwz4fw3A/xso8ScB/L8m4P8NlfiTAv5fC/B/5POd1i/jrL+jSoZ/RwE/j8OD4sRw/7z250sWLxJPaH0x+nXJ47mfJClX8niPB0LdfZ1nk+H4HyJtX5giMpNhfTH6V3lTALuIlAoTl9LwhnJ6rpTufwYjl9P3t95MKQ2vrdPTJP8fem2tU2nWbwzRn72DwunVuwKujgqnV+8JuDopnF69L+DqrHB69YGAq4vC6dWHAq6uCqdXQwRe103h9CoJuLp76hNhp1cPCeaxh8Lp1cMCrp4Kp1ePCLh6KZxePSrg6q1wevWYgKuPwunV4wKuvgqnV08IuPopnF49KeDqr3R6NRWwJwT2XgTshwjYoxCwbyBgLSdgfSVgzSNgHSJgbSDArwnwUAJ8jQCvIUD/BGiSEJ1YGvR/ctV63/ts49Yj1NV3Ccsu0QR7kuEK2SW6gGuEQnaJIeAaqZBdYgq4Rilkl1gCrtEK2SW2gGuMQnZ5TsA1ViG7PC/gGqeQXU4J9iS/KmSX0wKu8QrZ5YyAa4JCdjkr4JqokF3OCbgmKWSX8wKuyQrZ5YKAa4pCdvlDwDVVKbukBrILsPciYD9EwB6FgH0DAWs5AesrAWseAesQAWsDAX5NgIcS4GsEeA0B+idAkzRVmF1SRzK7vCDYk8xVyC4vCrjmKWSXlwRc8xWyy8sCrgUK2eUVAddChezyqoBrkUJ2iSPgWqyQXeIKuJYoZJeLgj3JUoXs8qeAa5lCdrkk4FqukF3+EnCtUMgulwVcKxWyy98CrlUK2eWKgGu1Qnb5R8C1Rim7hALZBdh7EbAfImCPQsC+gYC1nID1lYA1j4B1iIC1gQC/JsBDCfA1AryGAP0ToElaI8wuoZHMLvEEe5LNCtklvoDrd4XskkDAtUUhuyQUcG1VyC6JBFzbFLJLYgHXdoXskkTAtUMhuyQVcO1UyC5XBXuSXQrZ5ZqAa7dCdvlXwLVHIbtcF3DtVcguNwRc+xSyy00B136F7HJLwHVAIbvcFnAdVMouaYDsAuy9CNgPEbBHIWDfQMBaTsD6SsCaR8A6RMDaQIBfE+ChBPgaAV5DgP4J0CQdFGaXNLbs4n+gtx3+Qu7X5Q5ue7mvo8te6+fo5K73kf10dtUb5lRd3PSGm1pXF71+/+tG7r0pbTzZ3KYNwtx2B+a2BzC3PYG57QXMbW9gbvsAc9sXmNt+wNymE85tuiDMbX9gbgcAczsQmNtBwNwOBuZ2CDC3Q4G5HQbMbXrh3KYPwtwOB+Z2BDC3I4G5HQXM7WhgbscAczsWmNtxwNxmEM5thnj//QtDqcJzfep4j/97on9t9vu4X/P+94f/e1mP0BDXGK6Zn/W6720H9CLf91lvxEdGfr9n4srMlYUrK1c2ruxcr3G9zvUG15tcb3G9zfUOVw6unFy5uN7leo/rfa4PuD7kys2VhytvvOBe3Z4RPDMf+Ah11xb0q9vzWR7FlZ+rAFdBrkJchbmKxAuJaGhWc+AV6j7DWH7DWAHDWEHDWCHDWGHDWJF4kb+6PSNwSUA+l73W1e0+170hlN9tL/MWcNf76Or2gq56w65uL+SmN/zq9sIuev1XtxcBRBFMMWaKomIsytzFuIpzleAqyVWKqzRXmUAxFjWIophhrLhhrIRhrKRhrJRhrLRhrEwQxJgJEGNRQIzFADEWB8RYAhBjSUCMpQAxlgbEWOYpiTFzFBVjWeYux/UR18dcn3B9yvUZ1+eBYixrEEU5w9hHhrGPDWOfGMY+NYx9Zhj7PAhizAyIsSwgxnKAGD8CxPgxIMZPADF+CojxM0CMnz8lMWaJomL8grnLc1Xgqsj1JddXXF9zfRMoxi8MoihvGKtgGKtoGPvSMPaVYexrw9g3QRBjFkCMXwBiLA+IsQIgxoqAGL8ExPgVIMavATF+IxQFejccclHft+6ZyP5/0FsbvwOeB7k/o4fwd7kofyX7a+pwk639Tg+n3p5K/JUjvCeefJOt/Z4Rp95eSvxVIr6nn3iTbeec7nt7K/FXtfE73WRrv4/FqbePEn81G7/TTbb2O2Kcevsq8Ve38TvdZGu/t8apt58Sfw0bv9NNtva7dJx6+yvx1wT8HzmD/KsSfy3A/0cA/j9eib824P8jAf+foMRfB/D/UYD/T1Tirwv4/2jA/ycp8dcD/H8M4P+TlfjrA/4/FvD/KUr8DQD/Hwf4/1Ql/oaA/yPnuJYq8TcC/H8e4P/LlPgbA/4/H/D/5Ur8TQD/XwD4/wol/qaA/y8E/H+lEn8zwP8XAf6/Som/OeD/iwH/X63E/z3g/0sA/1+jxN8C8H/ks/C7lPhbAv7/O+D/u5X4WwH+vwXw/z1K/D8A/r8V8P+9SvytAf/fBvj/PiX+NoD/bwf8f78Sf1vA/3cA/n9Aif9HwP93Av6PnoWiAG6ndut3EdZHmgj8eW97fJbT4vIJuO54fJbT4sov4Lrr8VlOi6uAgOuex2c5La6CAq77Hp/ltLgKCbgeeHyW0+IqLOB66PFZTouriIArJJe3/mX9fvQ7ARd5ykWPfm9bScAVzUsuCvt9cmUBV3QPuaxei6uKgCuGd1yPWi2uqgKumJ5xhXVaXNUEXLG84gpvtLiqC7hie8Tl77O4agi4ngO5/A/0LHo7IH8Dey8C9kME7FEI2DcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0SYhOLA36Pxdnve99tnHrEerqu4Rll6ICTcfxeO23uIoJuOJ6vPZbXMUFXPE8XvstrhICrvger/0WV0kBVwKP136Lq5SAK6HHa7/FVVrAlcjjtd/iKiPgSqyQXWoKuJIoZJdaAq6kCtmltoArmUJ2qSPgSq6QXeoKuFIoZJd6Aq6UCtmlvoArlUJ2aSDgSq2UXX4Csguw9yJgP0TAHoWAfQMBazkB6ysBax4B6xABawMBfk2AhxLgawR4DQH6J0CTlFqYXX6KZHYpK9B0JoXsUk7AlVkhu3wk4MqikF0+FnBlVcgunwi4silkl08FXNkVsstnAq7XFLLL5wKu1xWyS0MB1xsK2aWRgOtNhezSWMD1lkJ2aSLgelshuzQVcL2jkF2aCbhyKGSX5gKunArZ5XsBVy6l7NIeyC7A3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNUi5hdmkfyezyhUDTeRWyS3kBVz6F7FJBwOVTyC4VBVz5FbLLlwKuAgrZ5SsBV0GF7PK1gKuQQnb5RsBVWCG7tBBwFVHILi0FXEUVsksrAVcxhezyg4CruEJ2aS3gKqGQXdoIuEoqZJe2Aq5SCtnlRwFXaaXs8jOQXYC9FwH7IQL2KATsGwhYywlYXwlY8whYhwhYGwjwawI8lABfI8BrCNA/AZqk0sLs8nO8/96n/qT70q1/tgv/50/xHucf//eyHqEhrjEgbT/rddfbDuhFvu+z3oiPX/j93oGrI1cnrs5cXbi6cnXj6s7Vg6snVy+u3lx9uPpy9ePqzzWAayDXIK7BXEO4hnIN4xoeL7gXVf4SD3sdAh+h7tqCflHlCOYeyTWKazTXGK6xXOO4fo0XEtHQrObACyNHGsZGGcZGG8bGGMbGGsbGGcZ+jRf5iyrtk+a0iRnhste6qHKk694QGuW2l3lHu+t9dFHlGFe9YRdVjnXTG35R5TgXvf6LKn8FRBFMMXaIomIcz9wTuCZyTeKazDWFayrXtEAxjjeIYoJhbKJhbJJhbLJhbIphbKphbFoQxNgBEON4QIwTADFOBMQ4CRDjZECMUwAxTgXEOO0pibFjFBXjdOaewTWTaxbXbK45XHO55gWKcbpBFDMMYzMNY7MMY7MNY3MMY3MNY/OCIMaOgBinA2KcAYhxJiDGWYAYZwNinAOIcS4gxnlPSYydoqgY5zP3Aq6FXIu4FnMt4VrKtSxQjPMNolhgGFtoGFtkGFtsGFtiGFtqGFsWBDF2AsQ4HxDjAkCMCwExLgLEuBgQ4xJAjEsBMS4TigK9e2W5++eBzs5SLh3+FfbX1OE+qjvA3VXRlPhXRnhPPPk+qrvA3VXRlfhXRXxPP/E+qnvA3VUxlPhX2/id7qO6D9xdFVOJf42N3+k+qgfA3VWxlPjX2vid7qN6CNxdFVuJf52N3+k+Kvs5eqfe55T41wP+j5w/SqLEvwHwf/uZKKfepEr8GwH/t5/TcupNpsS/CfD/+Lnc9yZX4v8N8H/7eTan3hRK/JsB/7efsXPqTanE/zvg//Zzf069qZT4twD+nxjw/9RK/FsB/0c+w/2GEv82wP8zA/7/phL/dsD/swD+/5YS/w7A/7MC/v+2Ev9OwP+zAf7/jhL/LsD/swP+n0OJfzfg/68B/p9TiX8P4P+vA/6fS4l/L+D/yOfgiijx7wP8Px/g/0WV+PcD/u8D/L+YEv8BwP/zA/5fXIn/IOD/BQD/L6HEfwjw/4KA/5dU4j8M+H8hwP9LKfEfAfy/MOD/yOc7rV/GWX9HlQz/jgJ+HocHxY3h/nntz3c0XiSe0Ppi9OuOAb+AknIdi/d4INTd13k2GU4/o/35jkdmMqwvRv8q73FgF3FCYeJOGN5QTs91AvyNG/r9rTfTCcNr6/Q0x/6HXlvrVNpywWtbSeH06goBV2WF06srBVxVFE6vrhJwVVU4vbpawFVN4fTqGgFXdYXTq2sFXDUUTq+uE3DV9NQnwk6vjhBw1VI4vTpSwFVb4fTqKAFXHYXTq6MFXHUVTq+OEXDVUzi9OlbAVV/h9Oo4AVcDhdOrvwq4GiqdXj0J7AmBvRcB+yEC9igE7BsIWMsJWF8JWPMIWIcIWBsI8GsCPJQAXyPAawjQPwGaJEQnlgb9n1y13vc+27j1CHX1XcKyy3qBplsoZJcNAq6WCtllo4CrlUJ22STg+kEhu/wm4GqtkF02C7jaKGSX3wVcbRWyyxYB148K2WW8gKudQnaZIOD6SSG7TBRwtVfILpMEXD8rZJfJAq5fFLLLFAFXB4XsMlXA1VEhu0wTcHVSyi6ngOwC7L0I2A8RsEchYN9AwFpOwPpKwJpHwDpEwNpAgF8T4KEE+BoBXkOA/gnQJHUSZpdTkcwuWwWa7qWQXbYJuHorZJftAq4+Ctllh4Crr0J22Sng6qeQXXYJuPorZJfdAq4BCtllj4BroEJ2mS7gGqSQXWYIuAYrZJeZAq4hCtllloBrqEJ2mS3gGqaQXeYIuIYrZJe5Aq4RCtllnoBrpFJ2OQ1kF2DvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCZppDC7nI5kdtkr0PQEheyyT8A1USG77BdwTVLILgcEXJMVsstBAdcUhexySMA1VSG7HBZwTVPILkcEXNMVsst8AdcMheyyQMA1UyG7LBRwzVLILosEXLMVsstiAdccheyyRMA1VyG7LBVwzVPILssEXPOVsssZILsAey8C9kME7FEI2DcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0SfOF2eWMLbv4H+hth7+S+3V5vNte7pvgstf6OSa6631kP5Nc9YY51WQ3veGmNsVFr9//ppJ7bzobTza3Z4Mwt9OAuZ0OzO0MYG5nAnM7C5jb2cDczgHmdi4wt+eEc3suCHM7D5jb+cDcLgDmdiEwt4uAuV0MzO0SYG6XAnN7Xji354Mwt8uAuV0OzO0KYG5XAnO7Cpjb1cDcrgHmdi0wtxeEc3sh3n//wtDJ8H3xqXiP/3uif232+7hf8/73h/97WY/QENcYrpmf9brvbQf0It/3WW/Exx/8fr/I9SfXJa6/uC5z/c11hesfrqtc17j+5brOdYPrJtctrttcd7juct3jus/1gOuhpaP4LJD4wb26/Y942OsQ+Ah11xb0q9uj8esQ3XotuGJyxeKKzfUc1/PxQyIamtUceIV6dMNYDMNYTMNYLMNYbMPYc4ax5+NH/up2+6Q5LQLWz+6m17q6Pbrr3hCK4baXeWO66310dXssV71hV7fHdtMbfnX7cy56/Ve3Px/fvSiCKcaLUVSML/Dr9SLXS1wvc73C9SpXHK64gWJ8wSCKFw1jLxnGXjaMvWIYe9UwFscwFjcIYrwIiPEFQIwvAmJ8CRDjy4AYXwHE+CogxjiAGOM+JTH+GUXFGI9fr/hcCbgSciXiSsyVhCtpoBjjGUQR3zCWwDCW0DCWyDCW2DCWxDCWNAhi/BMQYzxAjPEBMSYAxJgQEGMiQIyJATEmAcSY9CmJ8VIUFWMyfr2Sc6XgSsmViiu19RpypQkUYzKDKJIbxlIYxlIaxlIZxlIbxkINY2mCIMZLgBiTAWJMDogxBSDGlIAYUwFiTA2IMRQQYxpAjPYHejccclFfWvdMZP8/6K2N6YDnQe7PqCX8XS7Kn94+zw432drv9HDqra3EnyHC+/TJN9na7xlx6q2jxJ8xos6eeJNt1Vzue+sq8Wey8TvdZGu/j8Wpt54Sf2Ybv9NNtvY7Ypx66yvxZ7HxO91ka7+3xqm3gRJ/Vhu/00229rt0nHobKvFnA/wfOYPcTok/O+D/LQH//0mJ/zXA/1sB/t9eif91wP9/APz/ZyX+NwD/bw34/y9K/G8C/t8G8P8OSvxvAf7fFvD/jkr8bwP+/yPg/52U+N8B/B85xzVIiT8H4P+9Af8frMSfE/D/PoD/D1HizwX4f1/A/4cq8b8L+H8/wP+HKfG/B/h/f8D/hyvxvw/4/wDA/0co8X8A+P9AwP9HKvF/CPg/8ln4GUr8uQH/nwj4/0wl/jyA/08C/H+WEn9ewP8nA/4/W4k/H+D/UwD/n6PE7wP8fyrg/3OV+PMD/j8N8P95SvwFAP+fDvg/ehaKArid2q3fRVgfaSLw593r8VlOiyu6gGufx2c5La4YAq79Hp/ltLhiCrgOeHyW0+KKJeA66PFZTosrtoDrkMdnOS2u5wRchz0+y2lxPS/gOuKxf1m/H00n4DrqsX9ZXOkFXMc89i+LK4OA67jH/mVxZRRwnfDYvyyuTAKukx77l8WVWcB1ymP/sriyCLhOe+xfFldWAdcZpbPoBYH8Dey9CNgPEbBHIWDfQMBaTsD6SsCaR8A6RMDaQIBfE+ChBPgaAV5DgP4J0CQhOrE06P9cnPW+99nGrUeoq+8Sll1eEGj6kkJ2eVHA9ZdCdnlJwHVZIbu8LOD6WyG7vCLguqKQXV4VcP2jkF3iCLiuKmSXuAKuawrZJZuA61+F7JJdwHVdIbu8JuC6oZBdXhdw3VTILm8IuG4pZJc3BVy3FbLLWwKuOwrZ5W0B112l7FIIyC7A3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBN0l1hdikUyewST6Dp6O96u/ZbXPEFXDG85ArPLgkEXDE95PJnl4QCrljecf1/dkkk4IrtGdfj7JJYwPWcV1y27JJEwPW8R1z27JJUwPWCpz4Rll3eEXC96LF/WVw5BFwveexfFldOAdfLHvuXxZVLwPWKx/5lcb0r4HrVY/+yuN4TcMXx2L8srvcFXHE99i+L6wMBVzyQy/9As0thILsAey8C9kME7FEI2DcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0SYhO7NmlcCSzSzKBppMpZJfkAq7kCtklhYArhUJ2SSngSqmQXVIJuFIpZJfUAq7UCtklVMAVqpBd0gi40ihklw8FXGkVsktuAVc6heySR8CVXiG75BVwZVDILvkEXBkVsotPwJVJIbvkF3BlVsguBQRcWZSySxEguwB7LwL2QwTsUQjYNxCwlhOwvhKw5hGwDhGwNhDg1wR4KAG+RoDXEKB/AjRJWYTZpUj8/96n/qT70q1/FgzXcaH4j/OP/3tZj9AQ1xiQtp/1uuttB/Qi3/dZb8RHUX6/F+MqzlWCqyRXKa7SXGW4ynKV4/qI62OuT7g+5fqM63OuL7jKc1Xgqsj1JddXXF9zfcP1bfzgXlRZND72OgQ+Qt21Bf2iyu+YuxJXZa4qXFW5qnFV56oRPySioVnNgRdGVjKMVTaMVTGMVTWMVTOMVTeM1Ygf+Ysq7ZPmtIn5zmWvdVFlJde9IVTZbS/zVnHX++iiyqquesMuqqzmpjf8osrqLnr9F1XWAEQRTDEWi6JirMnctbhqc9XhqstVj6s+V4NAMdY0iKKWYay2YayOYayuYayeYay+YaxBEMRYDBBjTUCMtQAx1gbEWAcQY11AjPUAMdYHxNjgKYmxeBQVY0PmbsTVmKsJV1OuZlzNub4PFGNDgygaGcYaG8aaGMaaGsaaGcaaG8a+D4IYiwNibAiIsREgxsaAGJsAYmwKiLEZIMbmgBi/f0piLBFFxdiCuVtyteL6gas1Vxuutlw/BoqxhUEULQ1jrQxjPxjGWhvG2hjG2hrGfgyCGEsAYmwBiLElIMZWgBh/AMTYGhBjG0CMbQEx/igUBXr3Sjv3zwOdnT2aS4f/J/tr6nAf1T7g7qpjSvztI7wnnnwf1X7g7qrjSvw/R3xPP/E+qgPA3VUnlPh/sfE73Ud1ELi76qQSfwcbv9N9VIeAu6tOKfF3tPE73Ud1GLi76rQSfycbv9N9VEeAu6vOKPF3Bvz/kjdnaSI8UP4ugP//Bfj/dSX+roD/Xwb8/4YSfzfA//8G/P+mEn93wP+vAP5/S4m/B+D//wD+f1uJvyfg/1cB/7+jxN8L8P9rgP/fVeLvDfg/8hnuF9/V4e8D+L/9c+VOvS8p8fcF/N/+WXen3peV+PsB/h/rXfe9ryjx9wf8334mwKn3VSX+AYD/288pOPXGUeIfCPi//eyEU29cJf5BgP/bz3M49cZT4h8M+H8ybz7TFeGB8g8B/D854P/plPiHAv6fAvD/9Er8wwD/Twn4fwYl/uGA/6cC/D+jEv8IwP9TA/6fSYl/JOD/oYD/Z1biHwX4fxrA/5HPd1q/jLP+jioZ/h0F/DwOD4oXw/3z2p9vdPxIPKH1xejXjQF+ASXlGhP/8UCou6/zbDKcfkb7842NzGRYX4z+Vd6xwC5inMLEjTO8oZyeaxz4Gzf0+1tvpnGG19bpacb8D7221qm0doLXNo/C6dWfBFx5FU6vthdw5VM4vfqzgMuncHr1FwFXfoXTqx0EXAUUTq92FHAVVDi92knAVchTnwg7vfqdgKuwwunVSgKuIgqnVysLuIoqnF6tIuAqpnB6taqAq7jC6dVqAq4SCqdXqwu4SiqcXq0h4CqldHr1V2BPCOy9CNgPEbBHIWDfQMBaTsD6SsCaR8A6RMDaQIBfE+ChBPgaAV5DgP4J0CQhOrE06P/kqvW+99nGrUeoq+8Sll06CzT9qUJ26SLg+kwhu3QVcH2ukF26Cbi+UMgu3QVc5RWySw8BVwWF7NJTwFVRIbv0EnB9qZBdagq4vlLILrUEXF8rZJfaAq5vFLJLHQHXtwrZpa6A6zuF7FJPwFVJIbvUF3BVVsguDQRcVZSyy3gguwB7LwL2QwTsUQjYNxCwlhOwvhKw5hGwDhGwNhDg1wR4KAG+RoDXEKB/AjRJVYTZZXwks0tvgabrKGSXPgKuugrZpa+Aq55Cdukn4KqvkF36C7gaKGSXAQKuhgrZZaCAq5FCdhkk4GqskF0aCriaKGSXRgKupgrZpbGAq5lCdmki4GqukF2aCri+V8guzQRcLRSyS3MBV0uF7PK9gKuVUnaZAGQXYO9FwH6IgD0KAfsGAtZyAtZXAtY8AtYhAtYGAvyaAA8lwNcI8BoC9E+AJqmVMLtMiGR2GSzQdHuF7DJEwPWzQnYZKuD6RSG7DBNwdVDILsMFXB0VsssIAVcnhewyUsDVWSG7jBJwdVHILi0EXF0VsktLAVc3hezSSsDVXSG7/CDg6qGQXVoLuHoqZJc2Aq5eCtmlrYCrt0J2+VHA1Ucpu0wEsguw9yJgP0TAHoWAfQMBazkB6ysBax4B6xABawMBfk2AhxLgawR4DQH6J0CT1EeYXSbasov/gd52uI7cr8vr3fZy3waXvdbPsdFd7yP72eSqN8ypfnPTG25qm130+v3vd3LvTZPiy+Z2UhDmdgswt1uBud0GzO12YG53AHO7E5jbXcDc7gbmdrJwbicHYW73AHO7F5jbfcDc7gfm9gAwtweBuT0EzO1hYG6nCOd2ShDm9ggwt0eBuT0GzO1xYG5PAHN7EpjbU8DcngbmdqpwbqfG/+9fGPo1fF88Pv7j/57oX5v9Pu7XvP/94f9e1iM0xDWGa+Znve572wG9yPd91hvxMY3f79O5ZnDN5JrFNZtrDtdcrnlc87kWcC3kWsS1mGsJ11KuZVzLuVZwreRaxbWaaw3XWq518YN7dfu0+NjrEPgIddcW9Kvb1zP3Bq6NXJu4fuPazPU715b4IRENzWoOvEJ9g2Fso2Fsk2HsN8PYZsPY74axLfEjf3W7fdKcFoH1Lnutq9s3uO4NoY1ue5l3k7veR1e3/+aqN+zq9s1uesOvbv/dRa//6vYtgCiCKcbpUVSMW5l7G9d2rh1cO7l2ce3m2hMoxq0GUWwzjG03jO0wjO00jO0yjO02jO0JghinA2LcCohxGyDG7YAYdwBi3AmIcRcgxt2AGPc8JTHOiKJi3Mvc+7j2cx3gOsh1iOsw15FAMe41iGKfYWy/YeyAYeygYeyQYeywYexIEMQ4AxDjXkCM+wAx7gfEeAAQ40FAjIcAMR4GxHjkKYlxZhQV41HmPsZ1nOsE10muU1ynuc4EivGoQRTHDGPHDWMnDGMnDWOnDGOnDWNngiDGmYAYjwJiPAaI8TggxhOAGE8CYjwFiPE0IMYzQlGgd8MhF/Wddc9E9v+D3tp4Dnge5P6MwsLf5aL85+2vqcNNtvY7PZx6iyjxX4jwnnjyTbb2e0aceosq8f8R8T39xJtsfe+67y2mxH/Rxu90k639Phan3uJK/H/a+J1usrXfEePUW0KJ/5KN3+kmW/u9NU69JZX4/7LxO91ka79Lx6m3lBL/ZcD/kTPIXynx/w34/2eA/3+txH8F8P/PAf//Ron/H8D/vwD8/1sl/quA/5cH/P87Jf5rgP9XAPy/khL/v4D/VwT8v7IS/3XA/78E/L+KEv8NwP+Rc1xNlPhvAv5fF/D/pkr8twD/rwf4fzMl/tuA/9cH/L+5Ev8dwP8bAP7/vRL/XcD/GwL+30KJ/x7g/40A/2+pxH8f8P/GgP+3UuJ/APg/8ln4rkr8DwH//xnw/25K/CEJ3Hv6L4D/d1fipwTuPb0D4P89lPijJXDv6R0B/++pxB89gXtP7wT4fy8l/hgJ3Ht6Z8D/eyvxx0zg3tO7AP6PnoWiAG6ndut3EdZHmgj8eWd7fJbT4tog4Jrj8VlOi2ujgGuux2c5La5NAq55Hp/ltLh+E3DN9/gsp8W1WcC1wOOznBbX7wKuhR6f5bS4tgi4FnnsX9bvR88JuBZ77F8W13kB1xKP/cviuiDgWuqxf1lcfwi4lnnsXxbXRQHXco/9y+L6U8C1wmP/srguCbhWeuxfFtdfAq5VSmfRYyVw73nA3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNEqITS4P+z8VZ73ufbdx6hLr6LmHZZatA05sUsss2AddvCtllu4Brs0J22SHg+l0hu+wUcG1RyC67BFxbFbLLbgHXNoXsskfAtV0hu1wWcO1QyC5/C7h2KmSXKwKuXQrZ5R8B126F7HJVwLVHIbtcE3DtVcgu/wq49ilkl+sCrv1K2SU2kF2AvRcB+yEC9igE7BsIWMsJWF8JWPMIWIcIWBsI8GsCPJQAXyPAawjQPwGapP3C7BI7ktllr0DTxxWyyz4B1wmF7LJfwHVSIbscEHCdUsguBwVcpxWyyyEB1xmF7HJYwHVWIbscEXCdU8guNwRc5xWyy00B1wWF7HJLwPWHQna5LeC6qJBd7gi4/lTILncFXJcUsss9AddfCtnlvoDrslJ2eQ7ILsDei4D9EAF7FAL2DQSs5QSsrwSseQSsQwSsDQT4NQEeSoCvEeA1BOifAE3SZWF2eS6S2eWoQNM3FLLLMQHXTYXsclzAdUshu5wQcN1WyC4nBVx3FLLLKQHXXYXsclrAdU8hu5wRcN1XyC4PBFwPFLLLQwHXQ4XsYp1PQLlC3vM+u5CAi7zj+v/sEk3AFc0zrsfZJbqAK7pXXLbsEkPAFcMjLnt2iSngigly+R9odnkeyC7A3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNEqITe3Z5PsF/71N/0n3p1j9jhes4doLH+cf/vaxHaIhrDEjbz3rd9bYDepHv+6w34uMFfr+/yPUS18tcr3C9yhWHKy5XPK74XAm4EnIl4krMlYQrKVcyruRcKbhScqXiSm2tQ1xpuNImCO5FlS8kwF6HwEeou7agX1SZjrnTc2XgysiViSszVxaurAlCIhqa1Rx4YWR6w1gGw1hGw1gmw1hmw1gWw1jWBJG/qPKFBO43Melc9loXVaZ33RtCGdz2Mm9Gd72PLqrM5Ko37KLKzG56wy+qzOKi139RZVZAFMEU44tRVIzZmDs712tcr3O9wfUm11tcbweKMZtBFNkNY68Zxl43jL1hGHvTMPaWYeztIIjxRUCM2QAxZgfE+BogxtcBMb4BiPFNQIxvAWJ8+ymJ8aUoKsZ3mDsHV06uXFzvcr3H9T7XB4FifMcgihyGsZyGsVyGsXcNY+8Zxt43jH0QBDG+BIjxHUCMOQAx5gTEmAsQ47uAGN8DxPg+IMYPnpIYX46iYvyQuXNz5eHKy5XPitZc+bkKBIrxQ4MochvG8hjG8hrG8hnGfIax/IaxAkEQ48uAGD8ExJgbEGMeQIx5ATHmA8ToA8SYHxBjAaEo0LtXCrp/HujsLHpHgP+B8heyv6YO91HZz/M69S5R4i8c4T3x5Puo7GeMnXqXKvEXifiefuJ9VPPedd+7TIm/qI3f6T4q+1lsp97lSvzFbPxO91HZz4c79a5Q4i9u43e6j8p+Zt2pd6USfwkbv9N9VPZz9E69q5T4SwL+j5w/2qHEXwrw/98A/9+pxF8a8P/NgP/vUuIvA/j/74D/71biLwv4/xbA//co8ZcD/H8r4P97lfg/Avx/G+D/+5T4Pwb8fzvg//uV+D8B/B/5DPd5Jf5PAf8/Afj/BSX+zwD/Pwn4/x9K/J8D/n8K8P+LSvxfAP5/GvD/P5X4ywP+fwbw/0tK/BUA/z8L+P9fSvwVAf8/B/j/ZSX+LwH/Rz4H90CJ/yvA/28C/v9Qif9rwP9vAf4f8p4O/zeA/98G/J+U+L8F/P8O4P/RlPi/A/z/LuD/0ZX4KwH+fw/w/xhK/JUB/78P+D/y+U7rl3HW31Elw7+jgJ/H4UHxY7h/XvvzVUkQiSe0vhj9uqrAL6CkXFUTPB4Idfd1nk2G48EM2xdWi8xkWF+M/lXeasAuorrCxFU3vKGcnqs6+Bs39Ptbb6bqhtfW6Wmq/g+9ttaptIKC1zaph6eZrG6Lq5CAK5mXXBR2iq+wgCu5x6e/LK4iAq4UHp/+sriKCrhSenz6y+IqJuBK5fHpL4uruIArtcenvyyuEgKuUE99Iuz0ajoBVxqP/cviSi/gSuuxf1lcGQRc6RROr2YUcKVXOL2aScCVQeH0amYBV0aF06tZBFyZFE6vZhVwZVY6vVoD2BMCey8C9kME7FEI2DcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0SYhOLA36P7lqve99tnHrEerqu4Rll5ICTb+pkF1KCbjeUsgupQVcbytklzICrncUsktZAVcOhexSTsCVUyG7fCTgyqWQXT4WcL2rkF2yCbjeU8gu2QVc7ytkl9cEXB8oZJfXBVwfKmSXNwRcuRWyy5sCrjwK2eUtAVdehezytoArn1J2qQlkF2DvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCYpnzC71IxkdvlEoOmiCtnlUwFXMYXs8pmAq7hCdvlcwFVCIbt8IeAqqZBdygu4SilklwoCrtIK2aWigKuMQnZ5R8BVViG75BBwlVPILjkFXB8pZJdcAq6PFbLLuwKuTxSyy3sCrk8Vssv7Aq7PFLLLBwKuz5WySy0guwB7LwL2QwTsUQjYNxCwlhOwvhKw5hGwDhGwNhDg1wR4KAG+RoDXEKB/AjRJnwuzS61IZpcvBZr+RiG7fCXg+lYhu3wt4PpOIbt8I+CqpJBdvhVwVVbILt8JuKooZJdKAq6qCtmlsoCrmkJ2+VDyeWKF7JJbwFVDIbvkEXDVVMgueQVctRSySz4BV22F7OITcNVRyC75BVx1FbJLAQFXPaXsUhvILsDei4D9EAF7FAL2DQSs5QSsrwSseQSsQwSsDQT4NQEeSoCvEeA1BOifAE1SPWF2qW3LLv4HetvhGQLWZbe93HfOZa/1c5x31/vIfi646g1zqj/c9Iab2kUXvX7/+5OANSOBbG7rBGFuLwFz+xcwt5eBuf0bmNsrwNz+A8ztVWBurwFzW1c4t3WDMLf/AnN7HZjbG8Dc3gTm9hYwt7eBub0DzO1dYG7rCee2XhDm9h4wt/eBuX0AzO1DYG6tg5/OvWGtFM393EaL5n5uo0dzP7f1hXNbP8F//8JQjfB9cc0Ej/97on9t9vu4X/P+94f/e1mP0BDXGK6Zn/W6720H9CLf91lvxEcDfr835GrE1ZirCVdTrmZczbm+52rB1ZKrFdcPXK252nC15fqRqx3XT1ztuX7m+oWrA1dHrk4Jgnt1ewPwzHzgI9RdW9Cvbu/M3F24unJ14+rO1YOrJ1evBCERDc1qDrxCvYthrKthrJthrLthrIdhrKdhrFeCyF/dbp80p0Wgs8te6+r2Lq57Q6ir217m7eau99HV7d1d9YZd3d7DTW/41e09XfT6r27vBYgimGJsGEXF2Ju5+3D15erH1Z9rANdArkGBYuxtEEUfw1hfw1g/w1h/w9gAw9hAw9igIIixISDG3oAY+wBi7AuIsR8gxv6AGAcAYhwIiHHQUxJjoygqxsHMPYRrKNcwruFcI7hGco0KFONggyiGGMaGGsaGGcaGG8ZGGMZGGsZGBUGMjQAxDgbEOAQQ41BAjMMAMQ4HxDgCEONIQIyjnpIYG0dRMY5m7jFcY7nGcf3KNZ5rAtfEQDGONohijGFsrGFsnGHsV8PYeMPYBMPYxCCIsTEgxtGAGMcAYhwLiHEcIMZfATGOB8Q4ARDjRKEo0LvhkIv6JrlnIvv/QW9tnAw8D3J/Rhrh73JR/in219ThJlv7nR5OvWmV+KdGeE88+SZb+z0jTr3plPinRXxPP/Em2xTvue9Nr8Q/3cbvdJOt/T4Wp94MSvwzbPxON9na74hx6s2oxD/Txu90k6393hqn3kxK/LNs/E432drv0nHqzazEPxvwf+QM8ntK/HMA/38L8P/3lfjnAv7/NuD/HyjxzwP8/x3A/z9U4p8P+H8OwP9zK/EvAPw/J+D/eZT4FwL+nwvw/7xK/IsA/38X8P98SvyLAf9HznGVVeJfAvh/McD/yynxLwX8vzjg/x8p8S8D/L8E4P8fK/EvB/y/JOD/nyjxrwD8vxTg/58q8a8E/L804P+fKfGvAvy/DOD/nyvxrwb8H/ksfHUl/jWA/38L+H8NJf61gP9/B/h/TSX+dYD/VwL8v5YS/3rA/ysD/l9biX8D4P9VAP+vo8S/EfD/qoD/11Xi3wT4fzXA/9GzUBTA7dRu/S7C+kgTgT9vD4/PclpcXQRcPT0+y2lxdRVw9fL4LKfF1U3A1dvjs5wWV3cBVx+Pz3JaXD0EXH09PstpcfUUcPXz+CynxdVLwNXfY/+yfj86WcA1wGP/srimCLgGeuxfFtdUAdcgj/3L4pom4BrssX9ZXNMFXEM89i+La4aAa6jH/mVxzRRwDfPYvyyuWQKu4Upn0X8D8jew9yJgP0TAHoWAfQMBazkB6ysBax4B6xABawMBfk2AhxLgawR4DQH6J0CThOjE0qD/c3HW+95nG7ceoa6+S1h26S3Q9K8K2aWPgGu8QnbpK+CaoJBd+gm4Jipkl/4CrkkK2WWAgGuyQnYZKOCaopBdBgm4pipkl9kCrmkK2WWOgGu6QnaZK+CaoZBd5gm4Zipkl/kCrlkK2WWBgGu2QnZZKOCao5BdFgm45ipll81AdgH2XgTshwjYoxCwbyBgLSdgfSVgzSNgHSJgbSDArwnwUAJ8jQCvIUD/BGiS5gqzy+ZIZpfBAk0vVcguQwRcyxSyy1AB13KF7DJMwLVCIbsMF3CtVMguIwRcqxSyy0gB12qF7DJKwLVGIbssFnCtVcguSwRc6xSyy1IB13qF7LJMwLVBIbssF3BtVMguKwRcmxSyy0oB128K2WWVgGuzUnb5HcguwN6LgP0QAXsUAvYNBKzlBKyvBKx5BKxDBKwNBPg1AR5KgK8R4DUE6J8ATdJmYXb5PZLZZbRA07sUsssYAdduhewyVsC1RyG7jBNw7VXILr8KuPYpZJfxAq79CtllgoDrgEJ2mSjgOqiQXVYLuA4pZJc1Aq7DCtllrYDriEJ2WSfgOqqQXdYLuI4pZJcNAq7jCtllo4DrhEJ22STgOqmUXbYA2QXYexGwHyJgj0LAvoGAtZyA9ZWANY+AdYiAtYEAvybAQwnwNQK8hgD9E6BJOinMLlsS/Pc+9Sfdl27987fwf25O8Dj/+L+X9QgNcY0BaftZr7vedkAv8n2f9UZ8bOX3+zau7Vw7uHZy7eLazbWHay/XPq79XAe4DnId4jrMdYTrKNcxruNcJ7hOcp3iOs11hutsguBeVLk1AfY6BD5C3bUF/aLKc8x9nusC1x9cF7n+5LrE9VeCkIiGZjUHXhh53jB2wTD2h2HsomHsT8PYJcPYXwkif1GlfdKcNjHnXPZaF1Wed90bQhfc9jLvH+56H11UedFVb9hFlX+66Q2/qPKSi17/RZV/AaIIphi3RVExXmbuv7mucP3DdZXrGte/XNcDxXjZIIq/DWNXDGP/GMauGsauGcb+NYxdD4IYtwFivAyI8W9AjFcAMf4DiPEqIMZrgBj/BcR4/SmJcXsUFeMN5r7JdYvrNtcdrrtc97juB4rxhkEUNw1jtwxjtw1jdwxjdw1j9wxj94Mgxu2AGG8AYrwJiPEWIMbbgBjvAGK8C4jxHiDG+09JjDuiqBgfMPdDS3QJeZwrGld0rhhcMROGRBTAA4MoHhrGrG8WOEaGsWiGseiGsRiGsZgJIy/GHYAYHwBifAiI0XqtXPUyL7nrfSTGaK56w8QY3U1vuBhjuOj1izFmQpko0LtXYrl/Hujs7ID3dPhj219Th/uo7Od5nXoHKvE/F+E98eT7qOxnjJ16BynxPx/xPf3E+6h6v+e+d7AS/ws2fqf7qOxnsZ16hyjxv2jjd7qPyn4+3Kl3qBL/SzZ+p/uo7GfWnXqHKfG/bON3uo/Kfo7eqXe4Ev8rgP8j54+mKfG/Cvj/eMD/pyvxxwH8fwLg/zOU+OMC/j8R8P+ZSvzxAP+fBPj/LCX++ID/Twb8f7YSfwLA/6cA/j9HiT8h4P9TAf+fq8SfCPB/5DPca5X4EwP+vwzw/3VK/EkA/18O+P96Jf6kgP+vAPx/gxJ/MsD/VwL+v1GJPzng/6sA/9+kxJ8C8P/VgP//psSfEvD/NYD/b1biTwX4P/I5uENK/KkB/98N+P9hJf5QwP/3AP5/RIk/DeD/ewH/P6rEnxbw/32A/x9T4k8H+P9+wP+PK/GnB/z/AOD/J5T4MwD+fxDwf+TzndYv46y/o0qGf0cBP4/DgxLEcP+89ufLmDAST2h9Mfp1mRK6nyQpV6aEjwdC3X2dZ5Ph9DPany9zZCbD+mL0r/JmBnYRWRQmLovhDeX0XFnA37ih3996M2UxvLZOT5Ppf+i1tU6lxRK8ttcVTq/GFnDdUDi9+pyA66bC6dXnBVy3FE6vviDguq1wevVFAdcdhdOrLwm47iqcXn1ZwHXPU58IO716LgHOdV/h9Op5AdcDhdOrFwRcDxVOr/4h4Ap531v/mhR+WgHlIs+4wjonhZ+gQLmiecUV3jgp/FQHyhXdIy5/36TwkyYoVwyQy/9AT69mBfaEwN6LgP0QAXsUAvYNBKzlBKyvBKx5BKxDBKwNBPg1AR5KgK8R4DUE6J8ATRKiE0uD/k+uWu97n23ceoS6+i5h2eUVwZ7kJe/WjBB/dnlVwPWyl1zh2SWOgOsVD7n82SWugOtVj9d+iyuegCuOx2u/xRVfwBXX47Xf4kog4Irn8dpvcSUUcMX31CfCsstlwZ4kgcf+NSn8gCDKldBj/5oUfmgR5UrksX9NCj9IiXIlVsguVwVcSRSyyzUBV1KF7PKvgCuZQna5LuBKrpRdsgHZBdh7EbAfImCPQsC+gYC1nID1lYA1j4B1iIC1gQC/JsBDCfA1AryGAP0ToElKLswu2SKZXRIJ9iTpFLJLYgFXeoXskkTAlUEhuyQVcGVUyC7JBFyZFLJLcgFXZoXskkLyO2aF7JJSwJVVIbvcEOxJsilkl5sCruwK2eWWgOs1hexyW8D1ukJ2uSPgekMhu9wVcL2pkF3uCbjeUsgu9wVcbytll+xAdgH2XgTshwjYoxCwbyBgLSdgfSVgzSNgHSJgbSDArwnwUAJ8jQCvIUD/BGiS3hZml+yRzC6pBHuSDxSyS2oB14cK2SVUwJVbIbukEXDlUcguaQVceRWySzoBVz6F7JJewOVTyC4ZBFz5FbLLA8GepIBCdnko4CqokF1CBPNYSCG7kICrsEJ2iSbgKqKQXaILuIoqZJcYAq5iCtklpoCruFJ2eQ3ILsDei4D9EAF7FAL2DQSs5QSsrwSseQSsQwSsDQT4NQEeSoCvEeA1BOifAE1ScWF2ec2WXfwP9LbDGNHcr8sx3fYyXCyXvdbPEdtd7yP7ec5Vb5hTPe+mN9zUXnDR6/e/F6O596bXE8rm9vUgzO1LwNy+DMztK8DcvgrMbRxgbuMCcxsPmNv4wNy+IZzbN4IwtwmAuU0IzG0iYG4TA3ObBJjbpMDcJgPmNjkwt28K5/bNIMxtCmBuUwJzmwqY29TA3IYCc5sGmNu0wNymA+b2LeHcvpXwv39hKGv4vjhbwsf/PdG/Nvt93K95//vD/72sR2iIawzXzM963fe2A3qR7/usN+LjbX6/v8OVgysnVy6ud7ne43qf6wOuD7lyc+XhysuVz9IbV36uAlwFuQpxFeYqwlWUqxhXca4SCYN7dfvb4Jn5wEeou7agX91ekrlLcZXmKsNVlqsc10dcHycMiWhoVnPgFeqlDGOlDWNlDGNlDWPlDGMfGcY+Thj5q9vfBi4JKOmy17q6vZTr3hAq7baXecu46310dXtZV71hV7eXc9MbfnX7Ry56/Ve3fwyIIphifCeKivET5v6U6zOuz7m+4CrPVYGrYqAYPzGI4lPD2GeGsc8NY18YxsobxioYxioGQYzvAGL8BBDjp4AYPwPE+Dkgxi8AMZYHxFgBEGPFpyTGHFFUjF8y91dcX3N9w/Ut13dclbgqB4rxS4MovjKMfW0Y+8Yw9q1h7DvDWCXDWOUgiDEHIMYvATF+BYjxa0CM3wBi/BYQ43eAGCsBYqz8lMSYM4qKsQpzV+WqxlWdqwZXTa5aXLUDxVjFIIqqhrFqhrHqhrEahrGahrFahrHaQRBjTkCMVQAxVgXEWA0QY3VAjDUAMdYExFgLEGNtoSjQu+GQi/rquGci+/9Bb22sCzzPdW/ugojwQPnr2V9Th5tsbwC33j5Q4q8f4T3x5JtsbwK33j5U4m8Q8T39xJtsbwG33oa8r8Pf0MbvdJPtbeDWW1Lib2Tjd7rJ9g5w6200Jf7GNn6nm2zvArfeRlfib2Ljd7rJ9h5w620MJf6mgP8jZ5ATKPE3A/zffi7aqTehEn9zwP/tZ7WdehMp8X8P+P+r77vvTazE3wLwf/uZdqfeJEr8LQH/t5+zd+pNqsTfCvB/+9l/p95kSvw/AP5vv4/AqTe5En9rwP+Rc1zZlPjbAP6fHvD/7Er8bQH/zwD4/2tK/D8C/p8R8P/XlfjbAf6fCfD/N5T4fwL8PzPg/28q8bcH/D8L4P9vKfH/DPh/VsD/31bi/wXwf+Sz8AWU+DsA/v8h4P8Flfg7Av6fG/D/Qkr8nQD/zwP4f2El/s6A/+cF/L+IEn8XwP/zAf5fVIm/K+D/PsD/iynxdwP8Pz/g/+hZKArgdmq3fhdhfaSJwJ+3lsdnOS2uUgKu2h6f5bS4Sgu46nh8ltPiKiPgquvxWU6Lq6yAq57HZzktrnICrvoen+W0uD4ScDXw+CynxfWxgKuhx/5l/X60roCrkcf+ZXHVE3A19ti/LK76Aq4mHvuXxdVAwNXUY/+yuBoKuJp57F8WVyMBV3OP/cviaizg+t5j/7K4mgi4WiidRe8O5G9g70XAfoiAPQoB+wYC1nIC1lcC1jwC1iEC1gYC/JoADyXA1wjwGgL0T4AmCdGJpUH/5+Ks973PNm49Ql19l7Ds8olA0+0UssunAq6fFLLLZwKu9grZ5XMB188K2eULAdcvCtmlvICrg0J2qSDg6qiQXSoKuDopZJemAq7OCtmlmYCri0J2aS7g6qqQXb4XcHVTyC4tBFzdFbJLSwFXD4Xs0krA1VMhu/wg4OqllF16ANkF2HsRsB8iYI9CwL6BgLWcgPWVgDWPgHWIgLWBAL8mwEMJ8DUCvIYA/ROgSeolzC49IpldvhRoepBCdvlKwDVYIbt8LeAaopBdvhFwDVXILt8KuIYpZJfvBFzDFbJLJQHXCIXsUlnANVIhu7QWcI1SyC5tBFyjFbJLWwHXGIXs8qOAa6xCdmkn4BqnkF1+EnD9qpBd2gu4xitkl58FXBOUsktPILsAey8C9kME7FEI2DcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0SROE2aVnJLNLFYGmZyhkl6oCrpkK2aWagGuWQnapLuCarZBdagi45ihkl5oCrrkK2aWWgGueQnapLeCar5BdfhFwLVDILh0EXAsVsktHAdcihezSScC1WCG7dBZwLVHILl0EXEsVsktXAdcyhezSTcC1XCm79AKyC7D3ImA/RMAehYB9AwFrOQHrKwFrHgHrEAFrAwF+TYCHEuBrBHgNAfonQJO0XJhdeiX8733qT7ov3fpn9/B/9kj4OP/4v5f1CA1xjQFp+1mvu952QC/yfZ/1Rnz05vd7H66+XP24+nMN4BrINYhrMNcQrqFcw7iGc43gGsk1ims01xiusVzjuH7lGs81gWsi16SEwb2osndC7HUIfIS6awv6RZWTmXsK11SuaVzTuWZwzeSalTAkoqFZzYEXRk4xjE01jE0zjE03jM0wjM00jM1KGPmLKu2T5rSJmeyy17qocorr3hCa6raXeae56310UeV0V71hF1XOcNMbflHlTBe9/osqZwGiCKYY+0RRMc5m7jlcc7nmcc3nWsC1kGtRoBhnG0QxxzA21zA2zzA23zC2wDC20DC2KAhi7AOIcTYgxjmAGOcCYpwHiHE+IMYFgBgXAmJc9JTE2DeKinExcy/hWsq1jGs51wqulVyrAsW42CCKJYaxpYaxZYax5YaxFYaxlYaxVUEQY19AjIsBMS4BxLgUEOMyQIzLATGuAMS4EhDjqqckxn5RVIyrmXsN11qudVzruTZwbeTaFCjG1QZRrDGMrTWMrTOMrTeMbTCMbTSMbQqCGPsBYlwNiHENIMa1gBjXAWJcD4hxAyDGjYAYNwlFgd698pv754HOzjZ6X4d/s/01dbiPyn6e16m3sRL/7xHeE0++j8p+xtipt4kS/5aI7+kn3kdV9333vU2V+Lfa+J3uo7KfxXbqbabEv83G73Qflf18uFNvcyX+7TZ+p/uo7GfWnXq/V+LfYeN3uo/Kfo7eqbeFEv9OwP+R80edlfh3Af7/E+D/XZT4dwP+3x7w/65K/HsA//8Z8P9uSvx7Af//BfD/7kr8+wD/7wD4fw8l/v2A/3cE/L+nEv8BwP87Af7fS4n/IOD/yGe4RynxHwL8fzDg/6OV+A8D/j8E8P8xSvxHAP8fCvj/WCX+o4D/DwP8f5wS/zHA/4cD/v+rEv9xwP9HAP4/Xon/BOD/IwH/n6DEfxLwf+RzcAuU+E8B/j8T8P+FSvynAf+fBfj/IiX+M4D/zwb8f7ES/1nA/+cA/r9Eif8c4P9zAf9fqsR/HvD/eYD/L1PivwD4/3zA/5HPd1q/jLP+jioZ/h0F/DwOD0oYw/3z2p/vj4SReELri9Gvuwj8AkrKdTHh44FQd1/n2WQ4/Yz25/szMpNhfTH6V3n/BHYRlxQm7pLhDeX0XJfA37ih3996M10yvLZOT3Pxf+i1tU6l/SZ4bXcqnF7dLODapXB69XcB126F06tbBFx7FE6vbhVw7VU4vbpNwLVP4fTqdgHXfoXTqzsEXAc89Ymw06uTBVwHFU6vThFwHVI4vTpVwHVY4fTqNAHXEYXTq9MFXEcVTq/OEHAdUzi9OlPAdVzh9OosAdcJpdOrfwF7QmDvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCYJ0YmlQf8nV633vc82bj1CXX2XsOyyU6DpCwrZZZeA6w+F7LJbwHVRIbvsEXD9qZBd9kr+u4NCdtkn4PpLIbvsF3BdVsguBwRcfytkl9kCrisK2WWOgOsfhewyV8B1VSG7zBNwXVPILvMFXP8qZJcFAq7rCtlloYDrhkJ2WSTguqmUXS4D2QXYexGwHyJgj0LAvoGAtZyA9ZWANY+AdYiAtYEAvybAQwnwNQK8hgD9E6BJuinMLpcjmV0OCjT9UCG7HBJwhXzgfXY5LOAiD7n82eWIgCuad1z/n12OCriie8b1OLscE3DF8IrLll2OC7hiesRlzy4nBFyxvNRjeHZZLOCK7SlXWHZZIuB6zmP/sriWCrie99i/LK5lAq4XPPYvi2u5gOtFj/3L4loh4HrJY/+yuFYKuF722L8srlUCrldALv8DzS5/A9kF2HsRsB8iYI9CwL6BgLWcgPWVgDWPgHWIgLWBAL8mwEMJ8DUCvIYA/ROgSUJ0Ys8uf0cyu5wUaDqRx2u/xXVKwJVYIbucFnAlUcguZwRcSRWyy1kBVzKF7HJOwJVcIbucF3ClUMguFwRcKRWyy2oBVyqF7LJGwJVaIbusFXCFKmSXdQKuNArZZb2AK61Cdtkg4EqnkF02CrjSK2SXTQKuDErZ5QqQXYC9FwH7IQL2KATsGwhYywlYXwlY8whYhwhYGwjwawI8lABfI8BrCNA/AZqkDMLscsWWXfwP9LbD9NHcr8sZ3PYyXEaXvY/23+56H9lPZle9YU6VxU1vuKllddHr979s0dx70z8JZXP7TxDmNjswt68Bc/s6MLdvAHP7JjC3bwFz+zYwt+8Ac3tVOLdXgzC3OYC5zQnMbS5gbt8F5vY9YG7fB+b2A2BuPwTm9ppwbq8FYW5zA3ObB5jbvMDc5gPm1gfMbX5gbgsAc1sQmNt/hXP7b8L//oWhv8L3xZcTPv7vif612e/jfs373x/+72U9QkNcY7hmftbrvrcd0It832e9ER/X+f1+g+sm1y2u21x3uO5y3eO6z/WA66Gli0RWUAsJicYVnSsGV0yuWFyxuZ7jep7rBa4XuV7iejlRcK9uv54Qex0CH6Hu2oJ+dfsr/Dq8yhWHKy5XPK74XAm4EiYKiWhoVnPgFeqvGsbiGMbiGsbiGcbiG8YSGMYSJor81e32SXP8xWoid73W1e2vuu4NoThue5k3rrveR1e3x3PVG3Z1e3w3veFXtydw0eu/uj1hIveiCKYYb0RRMSbi1ysxVxKupFzJuJJzpeBKGSjGRAZRJDaMJTGMJTWMJTOMJTeMpTCMpQyCGG8AYkwEiDExIMYkgBiTAmJMBogxOSDGFIAYUz4lMd6MomJMxa9Xaus140rDlZYrHVd6rgyBYkxlEEVqw1ioYSyNYSytYSydYSy9YSxDEMR4ExBjKkCMqQExhgJiTAOIMS0gxnSAGNMDYszwlMR4K4qKMSO/Xpm4MnNl4crKlY0rO9drgWLMaBBFJsNYZsNYFsNYVsNYNsNYdsPYa0EQ4y1AjBkBMWYCxJgZEGMWQIxZATFmA8SYHRDja4AY7Q/0bjjkor7X3TOR/f+gtza+ATwPcn/GQeEZOpT/Tfs8O9xkuwu49faQEv9bEd6nT77Jdjdw6+1hJf63I+rsiTfZ7gFuvT2ixP+Ojd/pJtu9wK23R5X4c9j4nW6y3QfcentMiT+njd/pJtv9wK23x5X4c9n4nW6yPQDcentCif9dwP8veHOeNsID5X8P8P8/AP//R4n/fcD/LwL+f1WJ/wPA//8E/P+aEv+HgP9fAvz/XyX+3ID//wX4/3Ul/jyA/18G/P+GEn9ewP//Bvz/phJ/PsD/kXNcsT/Q4fcB/m8/W+bU+5wSf37A/+3n3Zx6n1fiLwD4f7QP3Pe+oMRfEPB/+7lAp94XlfgLAf5vP6vo1PuSEn9hwP/t5yedel9W4i8C+L/9TKdT7ytK/EUB/0/kzee6IzxQ/mKA/ycG/D+1En9xwP+TAP4fqsRfAvD/pID/p1HiLwn4fzLA/9Mq8ZcC/D854P/plPhLA/6fAvD/9Er8ZQD/Twn4P3oWigK4ndqt30VYH2ki8Oct7PFZTovrVQFXEY/PclpccQRcRT0+y2lxxRVwFfP4LKfFFU/AVdzjs5wWV3wBVwmPz3JaXAkEXCU9PstpcSUUcJXy2L+s34++IeAq7bF/WVxvCrjKeOxfFtdbAq6yHvuXxfW2gKucx/5lcb0j4PrIY/+yuHIIuD722L8srpwCrk889i+LK5eA61Ols+hlgfwN7L0I2A8RsEchYN9AwFpOwPpKwJpHwDpEwNpAgF8T4KEE+BoBXkOA/gnQJCE6sTTo/1yc9b732catR6ir7xKWXRIJNP2VQnZJLOD6WiG7JBFwfaOQXZIKuL5VyC7JBFzfKWSX5AKuSgrZJYWAq7JCdkkp4KqikF3eFXBVVcgu7wm4qilkl/cFXNUVsssHAq4aCtnlQwFXTYXsklvAVUshu+QRcNVWyC55BVx1lLJLOSC7AHsvAvZDBOxRCNg3ELCWE7C+ErDmEbAOEbA2EODXBHgoAb5GgNcQoH8CNEl1hNmlXCSzSyqBppsoZJfUAq6mCtklVMDVTCG7pBFwNVfILmkFXN8rZJd0Aq4WCtklvYCrpUJ2ySDgaqWQXfIJuH5QyC4+AVdrheySX8DVRiG7FBBwtVXILgUFXD8qZJdCAq52CtmlsIDrJ4XsUkTA1V4pu3wEZBdg70XAfoiAPQoB+wYC1nIC1lcC1jwC1iEC1gYC/JoADyXA1wjwGgL0T4Amqb0wu3wUyeySUaDprgrZJZOAq5tCdsks4OqukF2yCLh6KGSXrAKungrZJZuAq5dCdsku4OqtkF1eE3D1UcguRQVcfRWySzEBVz+F7FJcwNVfIbuUEHANUMguJQVcAxWySykB1yCF7FJawDVYIbuUEXANUcouHwPZBdh7EbAfImCPQsC+gYC1nID1lYA1j4B1iIC1gQC/JsBDCfA1AryGAP0ToEkaIswuHyf6733qT7ov3fpn2XAdl0v0OP/4v5f1CA1xjQFp+1mvu952QC/yfZ/1Rnx8wu/3T7k+4/qc6wuu8lwVuCpyfcn1FdfXXN9wfcv1HVclrspcVbiqclXjqs5Vg6smVy2u2lx1EgX3ospPEmGvQ+Aj1F1b0C+qrMvc9bjqczXgasjViKsxV5NEIRENzWoOvDCynmGsvmGsgWGsoWGskWGssWGsSaLIX1RpnzSnTUxdl73WRZX1XPeGUH23vczbwF3vo4sqG7rqDbuospGb3vCLKhu76PVfVNkEEEUwxfhpFBVjU+ZuxtWc63uuFlwtuVpx/RAoxqYGUTQzjDU3jH1vGGthGGtpGGtlGPshCGL8FBBjU0CMzQAxNgfE+D0gxhaAGFsCYmwFiPGHpyTGz6KoGFszdxuutlw/crXj+omrPdfPgWJsbRBFG8NYW8PYj4axdoaxnwxj7Q1jPwdBjJ8BYmwNiLENIMa2gBh/BMTYDhDjT4AY2wNi/PkpifHzKCrGX5i7A1dHrk5cnbm6cHXl6hYoxl8MouhgGOtoGOtkGOtsGOtiGOtqGOsWBDF+DojxF0CMHQAxdgTE2AkQY2dAjF0AMXYFxNhNKAr07pXu7p8HOjtb+gMd/h7219ThPir7eV6n3jJK/D0jvCeefB+V/YyxU29ZJf5eEd/TT7yPqtgH7nvLKfH3tvE73UdlP4vt1PuREn8fG7/TfVT28+FOvR8r8fe18TvdR2U/s+7U+4kSfz8bv9N9VPZz9E69nyrx9wf8Hzl/VFWJfwDg/18D/l9NiX8g4P/fAP5fXYl/EOD/3wL+X0OJfzDg/98B/l9TiX8I4P+VAP+vpcQ/FPD/yoD/11biHwb4fxXA/+so8Q8H/B/5DPcPSvwjAP9vCvh/ayX+kYD/NwP8v40S/yjA/5sD/t9WiX804P/fA/7/oxL/GMD/WwD+306Jfyzg/y0B//9JiX8c4P+tAP9vr8T/K+D/yOfg+irxjwf8vxvg//2U+CcA/t8d8P/+SvwTAf/vAfj/ACX+SYD/9wT8f6AS/2TA/3sB/j9IiX8K4P+9Af8frMQ/FfD/PoD/I5/vtH4ZZ/0dVTL8Owr4eRwelCiG++e1P9+0RJF4QuuL0a+bDvwCSso1PdHjgVB3X+fZZDj9jPbnmxGZybC+GP2rvDOAXcRMhYmbaXhDOT3XTPA3buj3t95MMw2vrdPTTP8fem2tU2ndBa/tdIXTqz0EXDMUTq/2lLwXFU6v9hJwzVI4vdpbwDVb4fRqHwHXHIXTq30FXHMVTq/2E3DN89Qnwk6v1hVwzVc4vVpPwLVA4fRqfQHXQoXTqw0EXIsUTq82FHAtVji92kjAtUTh9GpjAddShdOrTQRcy5ROr84C9oTA3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNEqITS4P+T65a73ufbdx6hLr6LmHZpb9A0+sUsssAAdd6hewyUMC1QSG7DBJwbVTILoMFXJsUsssQAddvCtllqIBrs0J2GSbg+l0huzQVcG1RyC7NBFxbFbJLcwHXNoXs8r2Aa7tCdmkh4NqhkF1aCrh2KmSXVgKuXQrZ5QcB126l7DIbyC7A3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBN0m5hdpkdyewyXKDpwwrZZYSA64hCdhkp4DqqkF1GCbiOKWSX0QKu4wrZZYyA64RCdhkr4DqpkF3GCbhOKWSX1gKu0wrZpY2A64xCdmkr4DqrkF1+FHCdU8gu7QRc5xWyy08CrgsK2aW9gOsPhezys4DrolJ2mQNkF2DvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCbpojC7zIlkdvlVoOmrCtllvIDrmkJ2mSDg+lchu0wUcF1XyC6TBFw3FLLLZAHXTYXsMkXAdUshu0wVcN1WyC6/CLjuKGSXDgKuuwrZpaOA655Cdukk4LqvkF06C7geKGSXLgKuhwrZpauAK+RD77NLNwEXgVz+B5pd5gLZBdh7EbAfImCPQsC+gYC1nID1lYA1j4B1iIC1gQC/JsBDCfA1AryGAP0ToElCdGLPLnNt2cX/QG87LBTN/bpc2G0vwxVx2Wv9HEXd9T6yn2KuesOcqrib3nBTK+Gi1+9/JaO596Z5iWRzOy8Ic1sKmNvSwNyWAea2LDC35YC5/QiY24+Buf0EmNv5wrmdH4S5/RSY28+Auf0cmNsvgLktD8xtBWBuKwJz+yUwtwuEc7sgCHP7FTC3XwNz+w0wt98Cc/sdMLeVgLmtDMxtFWBuFwrndmGi//6FoVnh++LZiR7/90T/2uz3cb/m/e8P//eyHqEhrjFcMz/rdd/bDuhFvu+z3oiPRfx+X8y1hGsp1zKu5VwruFZyreJazbWGay3XOq71XBu4NnJt4vqNazPX71xbuLZybePazrUjUXCvbl+UCHsdAh+h7tqCfnX7TubexbWbaw/XXq59XPu5DiQKiWhoVnPgFeq7DGO7DWN7DGN7DWP7DGP7DWMHEkX+6nb7pDl+iNZlr3V1+y7XvSG0220v8+5x1/vo6va9rnrDrm7f56Y3/Or2/S56/Ve3HwBEEUwxLo6iYjzI3Ie4DnMd4TrKdYzrONeJQDEeNIjikGHssGHsiGHsqGHsmGHsuGHsRBDEuBgQ40FAjIcAMR4GxHgEEONRQIzHADEeB8R44imJcUkUFeNJ5j7FdZrrDNdZrnNc57kuBIrxpEEUpwxjpw1jZwxjZw1j5wxj5w1jF4IgxiWAGE8CYjwFiPE0IMYzgBjPAmI8B4jxPCDGC09JjEujqBj/YO6LXH9yXeL6i+sy199cVwLF+IdBFBcNY38axi4Zxv4yjF02jP1tGLsSBDEuBcT4ByDGi4AY/wTEeAkQ41+AGC8DYvwbEOMVoSjQu+GQi/r+cc9E9v+D3tp4FXge5P4M9J4g/wPlv2Z/TR1usrXf6eHUu0CJ/98I74kn32Rrv2fEqXehEv/1iO/pJ95kO+sD972LlPhv2PidbrK138fi1LtYif+mjd/pJlv7HTFOvUuU+G/Z+J1usrXfW+PUu1SJ/7aN3+kmW/tdOk69y5T47wD+j5xB3qLEfxfw//WA/29V4r8H+P8GwP+3KfHfB/x/I+D/25X4HwD+vwnw/x1K/A8B//8N8P+dSvwhid17+mbA/3cp8VNi957+O+D/u5X4oyV27+nIOa7TSvzRE7v39COA/59R4o+R2L2nHwX8/6wSf8zE7j39GOD/55T4YyV27+nHAf8/r8QfO7F7Tz8B+P8FJf7nAP8/Cfj/H0r8zwP+fwrw/4tK/C8A/o98Fv6OEv+LgP9fA/z/rhL/S4D//wv4/z0l/pcB/78O+P99Jf5XAP+/Afj/AyX+VwH/vwn4/0Ml/jiA/98C/D/kQx3+uID/3wb8nzw6o+Vvt34XYX2kicCfN42nXPTodyS7BFxpveSisN/d7BZwpfOQy+qdHv65PZQrvXdcj1qnh3+WEOXK4BlXWOf08M83olwZveIKb5we/plLlCuTx2c5p4d/DhTlyuyxf1m/H70q4MrisX9ZXNcEXFk99i+L618BVzaP/cviui7gyu6xf1lcNwRcr3nsXxbXTQHX6x77l8V1S8D1hsf+ZXHdFnC9qXQWPR6Qv4G9FwH7IQL2KATsGwhYywlYXwlY8whYhwhYGwjwawI8lABfI8BrCNA/AZokRCeWBv2fi7Pe9z7buPUIdfVdwrLLQYGm31PILocEXO8rZJfDAq4PFLLLEQHXhwrZ5aiAK7dCdjkm4MqjkF2OC7jyKmSXEwKufArZ5Y6Ay6eQXe4KuPIrZJd7Aq4CCtnlvoCroEJ2eSDgKqSQXR4KuAorZBfrcygoVxGF7EICrqJK2SU+kF2AvRcB+yEC9igE7BsIWMsJWF8JWPMIWIcIWBsI8GsCPJQAXyPAawjQPwGapKLC7BI/ktnlpMADyypkl1MCrnIK2eW0gOsjhexyRsD1sUJ2OSvg+kQhu5wTcH2qkF3OC7g+U8guFwRcnytkl2iCPckXCtkluoCrvEJ2iSHgqqCQXWIKuCoqZJdYAq4vFbJLbAHXVwrZ5TkB19cK2eV5Adc3StklAZBdgL0XAfshAvYoBOwbCFjLCVhfCVjzCFiHCFgbCPBrAjyUAF8jwGsI0D8BmqRvhNklQSSzyx+CPUl1hexyUcBVQyG7/CngqqmQXS4JuGopZJe/BFy1FbLLZQFXHYXs8reAq65Cdrki4KqnkF1eEOxJ6itklxcFXA0UsstLAq6GCtnlZQFXI4Xs8oqAq7FCdnlVwNVEIbvEEXA1VcgucQVczZSyS0IguwB7LwL2QwTsUQjYNxCwlhOwvhKw5hGwDhGwNhDg1wR4KAG+RoDXEKB/AjRJzYTZJWHi/96n/qT70q1/xgvXcfzEj/OP/3tZj9AQ1xiQtp/1uuttB/Qi3/dZb8RHIn6/J+ZKwpWUKxlXcq4UXCm5UnGlttYVrjRcabnScaXnysCVkSsTV2auLFxZubJxZed6jev1xMG9qDJRYux1CHyEumsL+kWVbzD3m1xvcb3N9Q5XDq6cXLkSh0Q0NKs58MLINw1jbxnG3jaMvWMYy2EYy2kYy5U48hdVJkrsfhPzhste66LKN133htBbbnuZ9213vY8uqnzHVW/YRZU53PSGX1SZ00Wv/6LKXIAoginGxFFUjO8y93tc73N9wPUhV26uPFx5A8X4rkEU7xnG3jeMfWAY+9AwltswlscwljcIYkwMiPFdQIzvAWJ8HxDjB4AYPwTEmBsQYx5AjHmfkhiTRFEx5rN271z5uQpwFeQqxFWYq0igGPMZROEzjOU3jBUwjBU0jBUyjBU2jBUJghiTAGLMB4jRB4gxPyDGAoAYCwJiLASIsTAgxiJPSYxJo6gYizJ3Ma7iXCW4SnKV4irNVSZQjEUNoihmGCtuGCthGCtpGCtlGCttGCsTBDEmBcRYFBBjMUCMxQExlgDEWBIQYylAjKUBMZYRigK9e6Ws++eBzs5m+VCHv5z9NXW4j8p+ntepN6sS/0cR3hNPvo/KfsbYqTebEv/HEd/TT7yPKv2H7nuzK/F/YuN3uo/Kfhbbqfc1Jf5PbfxO91HZz4c79b6uxP+Zjd/pPir7mXWn3jeU+D+38TvdR2U/R+/U+6YS/xeA/yPnj3xK/OUB/38f8P/8SvwVAP//APD/Akr8FQH//xDw/4JK/F8C/p8b8P9CSvxfAf6fB/D/wkr8XwP+nxfw/yJK/N8A/p8P8P+iSvzfAv6PfIb7CyX+7wD/Lwf4f3kl/kqA/38E+H8FJf7KgP9/DPh/RSX+KoD/fwL4/5dK/FUB//8U8P+vlPirAf7/GeD/XyvxVwf8/3PA/79R4q8B+D/yObj6Svw1Af+vAfh/AyX+WoD/1wT8v6ESf23A/2sB/t9Iib8O4P+1Af9vrMRfF/D/OoD/N1Hirwf4f13A/5sq8dcH/L8e4P/I5zutX8ZZf0eVDP+OAn4ehwcljuH+ee3P1yBxJJ7Q+mL06xoCv4CScjVM/Hgg1N3XeTYZTj+j/fkaRWYyrC9G/ypvI2AX0Vhh4hob3lCOJ0jA37ih3996MzU2vLZOT9Pwf+i1tU6llRW8tl0UTq+WE3B1VTi9+pGAq5vC6dWPBVzdFU6vfiLg6qFwevVTAVdPhdOrnwm4eimcXv1cwNXbU58IO736hoCrj8Lp1TcFXH0VTq++JeDqp3B69W0BV3+F06vvCLgGKJxezSHgGqhwejWngGuQwunVXAKuwUqnV5sAe0Jg70XAfoiAPQoB+wYC1nIC1lcC1jwC1iEC1gYC/JoADyXA1wjwGgL0T4AmCdGJpUH/J1et973PNm49Ql19l7Ds8oVA06MVskt5AdcYhexSQcA1ViG7VBRwjVPILl8KuH5VyC5fCbjGK2SXrwVcExSyyzcCrokK2eVdAdckhezynoBrskJ2eV/ANUUhu3wg4JqqkF0+FHBNU8guuQVc0xWySx4B1wyF7JJXwDVTKbs0BbILsPciYD9EwB6FgH0DAWs5AesrAWseAesQAWsDAX5NgIcS4GsEeA0B+idAkzRTmF2aRjK7fCvQ9EKF7PKdgGuRQnapJOBarJBdKgu4lihklyoCrqUK2aWqgGuZQnapJuBarpBdqgu4Vihkl3wCrpUK2cUn4FqlkF3yC7hWK2SXAgKuNQrZpaCAa61Cdikk4FqnkF0KC7jWK2SXIgKuDUrZpRmQXYC9FwH7IQL2KATsGwhYywlYXwlY8whYhwhYGwjwawI8lABfI8BrCNA/AZqkDcLs0iyS2aWGQNPbFLJLTQHXdoXsUkvAtUMhu9QWcO1UyC51BFy7FLJLXQHXboXsUk/AtUchu9QXcO1VyC5FBVz7FLJLMQHXfoXsUlzAdUAhu5QQcB1UyC4lBVyHFLJLKQHXYYXsUlrAdUQhu5QRcB1Vyi7NgewC7L0I2A8RsEchYN9AwFpOwPpKwJpHwDpEwNpAgF8T4KEE+BoBXkOA/gnQJB0VZpfmtuzif6C3HVaN5n5drua2l+Gqu+y1fo4a7nof2U9NV71hTlXLTW+4qdV20ev3vzrR3HvT94llc/t9EOa2LjC39YC5rQ/MbQNgbhsCc9sImNvGwNw2Aea2hXBuWwRhbpsCc9sMmNvmwNx+D8xtC2BuWwJz2wqY2x+AuW0pnNuWQZjb1sDctgHmti0wtz8Cc9sOmNufgLltD8ztz8DcthLObavE//0LQ03C98VNEz/+74n+tdnv437N+98f/u9lPUJDXGO4Zn7W6763HdCLfN9nvREfP/D7vTVXG662XD9yteP6ias9189cv3B14OrI1YmrM1cXrq5c3bi6c/Xg6snVi6s3Vx+uvlz9Egf36vYfwDPzgY9Qd21Bv7q9P3MP4BrINYhrMNcQrqFcwxKHRDQ0qznwCvUBhrGBhrFBhrHBhrEhhrGhhrFhiSN/dbt90hwPTLrsta5uH+C6N4QGuu1l3kHueh9d3T7YVW/Y1e1D3PSGX90+1EWv/+r2YYAoginG1lFUjMOZewTXSK5RXKO5xnCN5RoXKMbhBlGMMIyNNIyNMoyNNoyNMYyNNYyNC4IYWwNiHA6IcQQgxpGAGEcBYhwNiHEMIMaxgBjHPSUxtomiYvyVucdzTeCayDWJazLXFK6pgWL81SCK8YaxCYaxiYaxSYaxyYaxKYaxqUEQYxtAjL8CYhwPiHECIMaJgBgnAWKcDIhxCiDGqU9JjG2jqBinMfd0rhlcM7lmcc3mmsM1N1CM0wyimG4Ym2EYm2kYm2UYm20Ym2MYmxsEMbYFxDgNEON0QIwzADHOBMQ4CxDjbECMcwAxzhWKAr0bDrmob557JrL/H/TWxvnA8yD3Z/QR/i4X5V9gf00dbrK13+nh1NtXiX9hhPfEk2+ytd8z4tTbT4l/UcT39BNvsu3+ofve/kr8i238TjfZ2u9jceodoMS/xMbvdJOt/Y4Yp96BSvxLbfxON9na761x6h2kxL/Mxu90k639Lh2n3sFK/MsB/0fOIE9S4l8B+P8YwP8nK/GvBPx/LOD/U5T4VwH+Pw7w/6lK/KsB//8V8P9pSvxrAP8fD/j/dCX+tYD/TwD8f4YS/zrA/ycC/j9TiX894P/IOa6VSvwbAP9fBPj/KiX+jYD/Lwb8f7US/ybA/5cA/r9Gif83wP+XAv6/Vol/M+D/ywD/X6fE/zvg/8sB/1+vxL8F8P8VgP9vUOLfCvg/8ln4fUr82wD/3w74/34l/u2A/+8A/P+AEv8OwP93Av5/UIl/J+D/uwD/P6TEvwvw/92A/x9W4t8N+P8ewP+PKPHvAfx/L+D/6FkoCuB2ard+F2F9pInAn/e+x2c5La4BAq4HHp/ltLgGCrgeenyW0+IaJOAKye0Z16NWi2uwgIs84wrrtLiGCLiiecUV3mhxDRVwRfeIy99ncQ0TcMXw7v31qN36/eh8AVdMT7no0e9tFwi4YnnJRWG/T14o4IrtIZfVa3EtEnA957F/WVyLBVzPe+xfFtcSAdcLHvuXxbVUwPWix/5lcS0TcL0Ecvkf6Fn0vUD+BvZeBOyHCNijELBvIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJIQnVga9H8uznrf+2zj1iPU1XcJyy7DBZpO4PHab3GNEHAl9Hjtt7hGCrgSebz2W1yjBFyJFbLLaAFXEoXsMkbAlVQhu4wVcCVTyC7jBFzJFbLLcgFXCoXsskLAlVIhu6wUcKVSyC6rBFypFbLLagFXqEJ2WSPgSqOQXdYKuNIqZJd1Aq50StllH5BdgL0XAfshAvYoBOwbCFjLCVhfCVjzCFiHCFgbCPBrAjyUAF8jwGsI0D8BmqR0wuyyL5LZ5VeBprMpZJfxAq7sCtllgoDrNYXsMlHA9bpCdpkk4HpDIbtMFnC9qZBdpgi43lLILlMFXG8rZJf1Aq53FLLLBgFXDoXsslHAlVMhu2wScOVSyC6/CbjeVcgumwVc7ylkl98FXO8rZJctAq4PlLLLfiC7AHsvAvZDBOxRCNg3ELCWE7C+ErDmEbAOEbA2EODXBHgoAb5GgNcQoH8CNEkfCLPL/khml2kCTRdQyC7TBVwFFbLLDAFXIYXsMlPAVVghu8wScBVRyC6zBVxFFbLLHAFXMYXsMlfAVVwhu2wVcJVQyC7bBFwlFbLLdgFXKYXsskPAVVohu+wUcJVRyC67BFxlFbLLbgFXOYXsskfA9ZFSdjkAZBdg70XAfoiAPQoB+wYC1nIC1lcC1jwC1iEC1gYC/JoADyXA1wjwGgL0T4Am6SNhdjmQ+L/3qT/pvnTrn3vD/7kv8eP84/9e1iM0xDUGpO1nve562wG9yPd91hvxcZDf74e4DnMd4TrKdYzrONcJrpNcp7hOc53hOst1jus81wWuP7gucv3JdYnrL67LXH9zXeH6J3FwL6o8mBh7HQIfoe7agn5R5VXmvsb1L9d1rhtcN7lucd1OHBLR0KzmwAsjrxnG/jWMXTeM3TCM3TSM3TKM3U4c+Ysq7ZPmtIm56rLXuqjymuveEPrXbS/zXnfX++iiyhuuesMuqrzppjf8ospbLnr9F1XeBkQRTDEeiqJivMPcd7nucd3nesD10BJhEu5LEhJRAHcMorhrGLtnGLtvGHtgGHtoGLNgAscoSeTFeAgQ4x1AjHcBMd4DxHgfEOMDQIwPATFac+HU6xcjJXk6YjwcRcUYjV+v6FwxuGJyxeKKbb3PuZ4PFGM0gyiiG8ZiGMZiGsZiGcZiG8aeM4w9HwQxHgbEGC1JiEuBPaTorntDKIbbXuaN6a73kRhjueoNE2NsN73hYnwOEOPzT0mMR6KoGF/g1+tFrpe4XuZ6hetVrjhccQPF+IJBFC8axl4yjL1sGHvFMPaqYSyOYSxuEMR4BBDjC4AYXwTE+BIgxpcBMb4CiPFVQIxxADHGBcRof6B3r8Rz/zzQ2dmYuXX449tfU4f7qB4Ad1fFUuJPEOE98eT7qB4Cd1fFVuJPGPE9/cT7qOznnp16n1PiT2Tjd7qPyn4W26n3eSX+xDZ+p/uo7OfDnXpfUOJPYuN3uo/KfmbdqfdFJf6kNn6n+6js5+idel9S4k8G+D9y/iiFEn9ywP/tZ6KcelMq8acA/D9Rbve9qZT4UwL+nxjw/9RK/KkA/08C+H+oEn9qwP+TAv6fRok/FPD/ZID/p1XiTwP4f3LA/9Mp8acF/B/5DPc7SvzpAP/PDvh/DiX+9ID/vwb4f04l/gyA/78O+H8uJf6MgP+/Afj/u0r8mQD/fxPw//eU+DMD/v8W4P/vK/FnAfz/bcD/P1Dizwr4P/I5uBJK/NkA/y8I+H9JJf7sgP8XAvy/lBL/a4D/Fwb8v7QS/+uA/xcB/L+MEv8bgP8XBfy/rBL/m4D/FwP8v5wS/1uA/xcH/B/5fKf1yzjr76iS4d9RwM/j8KAkMdw/r/353k4SiSe0vhj9uneSuJ8kKdc7SR4PhLr7Os8mw+lntD9fjshMhvXF6F/lzQHsInIqTFxOwxvK8bYA8Ddu6Pe33kw5Da+t09O88z/02lqn0uIJXttqCqdX4wu4qiucXk0g4KqhcHo1oYCrpsLp1UQCrloKp1cTC7hqK5xeTSLgqqNwejWpgKuupz4Rdnr1quBUWj2F06vXBFz1FU6v/ivgaqBwevW6gKuhwunVGwKuRgqnV28KuBornF69JeBqonB69baAq6nS6dVcwJ4Q2HsRsB8iYI9CwL6BgLWcgPWVgDWPgHWIgLWBAL8mwEMJ8DUCvIYA/ROgSUJ0YmnQ/8lV633vs41bj1BX3yUsuyQT7ElaK2SX5AKuNgrZJYWAq61Cdkkp4PpRIbukEnC1U8guqQVcPylkl1ABV3uF7JJGwPWzQna5I9iT/KKQXe4KuDooZJd7Aq6OCtnlvoCrk0J2eSDg6qyQXR4KuLooZJcQgU90VcguJODqppRd3gWyC7D3ImA/RMAehYB9AwFrOQHrKwFrHgHrEAFrAwF+TYCHEuBrBHgNAfonQJPUTZhd3o1kdkkr0HQ/heySTsDVXyG7pBdwDVDILhkEXAMVsktGAdcgheySScA1WCG7ZBZwDVHILlkEXEMVsks0AdcwhewSXcA1XCG7xBBwjVDILjEFXCMVskssAdcohewSW8A1WiG7PCfgGqOQXZ4XcI1Vyi7vAdkF2HsRsB8iYI9CwL6BgLWcgPWVgDWPgHWIgLWBAL8mwEMJ8DUCvIYA/ROgSRorzC7vRTK7ZBVoeopCdskm4JqqkF2yC7imKWSX1wRc0xWyy+sCrhkK2eUNAddMhezypoBrlkJ2eUvANVshu7wg4JqjkF1eFHDNVcguLwm45ilkl5cFXPMVsssrAq4FCtnlVQHXQoXsEkfAtUghu8QVcC1Wyi7vA9kF2HsRsB8iYI9CwL6BgLWcgPWVgDWPgHWIgLWBAL8mwEMJ8DUCvIYA/ROgSVoszC7v27KL/4HedvhLNPfrcge3vQzX0WWv9XN0ctf7yH46u+oNc6oubnrDTa2ri16//3WL5t6bPkgim9sPgjC33YG57QHMbU9gbnsBc9sbmNs+wNz2Bea2HzC3Hwrn9sMgzG1/YG4HAHM7EJjbQcDcDgbmdggwt0OBuR0GzG1u4dzmDsLcDgfmdgQwtyOBuR0FzO1oYG7HAHM7FpjbccDc5hHObZ4k//0LQ7nC98XvJnn83xP9a7Pfx/2a978//N/LeoSGuMZwzfys131vO6AX+b7PeiM+8vL7PZ+lH678XAW4CnIV4irMVYSrKFcxruJcJbhKcpXiKs1VhqssVzmuj7g+5vqE61Ouz7g+TxLcq9vzgmfmAx+h7tqCfnX7F8xdnqsCV0WuL7m+4vqa65skIRENzWoOvEK9vGGsgmGsomHsS8PYV4axrw1j3ySJ/NXteYFLAr5w2Wtd3V7edW8IVXDby7wV3fU+urr9S1e9YVe3f+WmN/zq9q9d9Pqvbv8GEEUwxZgviorxW+b+jqsSV2WuKlxVuapxVQ8U47cGUXxnGKtkGKtsGKtiGKtqGKtmGKseBDHmA8T4LSDG7wAxVgLEWBkQYxVAjFUBMVYDxFj9KYnRF0XFWIO5a3LV4qrNVYerLlc9rvqBYqxhEEVNw1gtw1htw1gdw1hdw1g9w1j9IIjRB4ixBiDGmoAYawFirA2IsQ4gxrqAGOsBYqz/lMSYP4qKsQFzN+RqxNWYqwlXU65mXM0DxdjAIIqGhrFGhrHGhrEmhrGmhrFmhrHmQRBjfkCMDQAxNgTE2AgQY2NAjE0AMTYFxNgMEGNzoSjQu+GQi/q+d89E9v+D3trYAnge5P6MesLf5aL8Le2vqcNNtvY7PZx66yvxt4rwnnjyTbb2e0acehso8f8Q8T39xJtsa+Z239tQib+1jd/pJlv7fSxOvY2U+NvY+J1usrXfEePU21iJv62N3+kmW/u9NU69TZT4f7TxO91ka79Lx6m3qRJ/O8D/kTPIvyjx/wT4fxvA/zso8bcH/L8t4P8dlfh/Bvz/R8D/Oynx/wL4fzvA/zsr8XcA/P8nwP+7KPF3BPy/PeD/XZX4OwH+/zPg/92U+DsD/o+c4xqmxN8F8P/+gP8PV+LvCvj/AMD/RyjxdwP8fyDg/yOV+LsD/j8I8P9RSvw9AP8fDPj/aCX+noD/DwH8f4wSfy/A/4cC/j9Wib834P/IZ+HnKPH3Afx/KuD/c5X4+wL+Pw3w/3lK/P0A/58O+P98Jf7+gP/PAPx/gRL/AMD/ZwL+v1CJfyDg/7MA/1+kxD8I8P/ZgP+jZ6EogNup3fpdhPWRJgJ/3oMen+W0uMoLuA55fJbT4qog4Drs8VlOi6uigOuIx2c5La4vBVxHPT7LaXF9JeA65vFZTovrawHXcY/Pclpc3wi4TnjsX9bvR1sIuE567F8WV0sB1ymP/cviaiXgOu2xf1lcPwi4znjsXxZXawHXWY/9y+JqI+A657F/WVxtBVznPfYvi+tHAdcFpbPog4H8Dey9CNgPEbBHIWDfQMBaTsD6SsCaR8A6RMDaQIBfE+ChBPgaAV5DgP4J0CQhOrE06P9cnPW+99nGrUeoq+8Sll2+FWj6ikJ2+U7A9Y9Cdqkk4LqqkF0qC7iuKWSXKgKufxWyS1UB13WF7FJNwHVDIbtUF3DdVMgu7QRctxSyy08CrtsK2aW9gOuOQnb5WcB1VyG7/CLguqeQXToIuO4rZJeOAq4HCtmlk4DroVJ2GQJkF2DvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCbpoTC7DIlkdqkh0HTsPN6u/RZXTQHXc15yhWeXWgKu5z3k8meX2gKuF7zj+v/sUkfA9aJnXI+zS10B10tecdmySz0B18secdmzS30B1yue+kRYduks4HrVY/+yuLoIuOJ47F8WV1cBV1yP/cvi6ibgiuexf1lc3QVc8T32L4urh4Argcf+ZXH1FHAl9Ni/LK5eAq5EIJf/gWaXoUB2AfZeBOyHCNijELBvIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJIQndizy9BIZpcGAk2nUsguDQVcqRWySyMBV6hCdmks4EqjkF2aCLjSKmSXpgKudArZpZmAK71Cdmku4MqgkF16C7gyKmSXPgKuTArZpa+AK7NCdukn4MqikF36C7iyKmSXAQKubArZZaCAK7tCdhkk4HpNKbsMA7ILsPciYD9EwB6FgH0DAWs5AesrAWseAesQAWsDAX5NgIcS4GsEeA0B+idAk/SaMLsMS/Lf+9SfdF+69c/B4f8ckuRx/vF/L+sRGuIaA9L2s153ve2AXuT7PuuN+BjO7/cRXCO5RnGN5hrDNZZrHNevXOO5JnBN5JrENZlrCtdUrmlc07lmcM3kmsU1m2sO11yueUmCe1Hl8CTY6xD4CHXXFvSLKucz9wKuhVyLuBZzLeFayrUsSUhEQ7OaAy+MXGAYW2gYW2QYW2wYW2IYW2oYW5Yk8hdV2ifNaRMz32WvdVHlAte9IbTQbS/zLnLX++iiysWuesMuqlzipjf8osqlLnr9F1UuA0QRTDGOiKJiXM7cK7hWcq3iWs21hmst17pAMS43iGKFYWylYWyVYWy1YWyNYWytYWxdEMQ4AhDjckCMKwAxrgTEuAoQ42pAjGsAMa4FxLjuKYlxZBQV43rm3sC1kWsT129cm7l+59oSKMb1BlFsMIxtNIxtMoz9ZhjbbBj73TC2JQhiHAmIcT0gxg2AGDcCYtwEiPE3QIybATH+Dohxy1MS46goKsatzL2NazvXDq6dXLu4dnPtCRTjVoMothnGthvGdhjGdhrGdhnGdhvG9gRBjKMAMW4FxLgNEON2QIw7ADHuBMS4CxDjbkCMe4SiQO9e2ev+eaCzsydz6/Dvs7+mDvdRHQLurjqlxL8/wnviyfdRHQburjqtxH8g4nv6ifdRHQHurjqjxH/Qxu90H9VR4O6qs0r8h2z8TvdRHQPurjqnxH/Yxu90H9Vx4O6q80r8R2z8TvdRnQDurrqgxH8U8P8r3pylifBA+Y8B/v8P4P+3lfiPA/5/FfD/O0r8JwD/vwb4/10l/pOA//8L+P89Jf5TgP9fB/z/vhL/acD/bwD+/0CJ/wzg/zcB/3+oxH8W8H/kM9yv5tHhPwf4v/1z5U69cZT4zwP+b/+su1NvXCX+C4D/v5DHfW88Jf4/AP+3nwlw6o2vxH8R8H/7OQWn3gRK/H8C/m8/O+HUm1CJ/xLg//bzHE69iZT4/wL8P5U3n+mK8ED5LwP+nxrw/0xK/H8D/h8K+H9mJf4rgP+nAfw/ixL/P4D/pwX8P6sS/1XA/9MB/p9Nif8a4P/pAf/PrsT/L+D/GQD/Rz7faf0yzvo7qmT4dxTw8zg8KGkM989rf77rSSLxhNYXo193A/gFlJTrRpLHA6Huvs6zyXD6Ge3PdzMyk2F9MfpXeW8Cu4hbChN3y/CGcrwZDvyNG/r9rTfTLcNr6/Q0N/6HXlvrVNpewWubX+H06j4BVwGF06v7BVwFFU6vHhBwFVI4vXpQwFVY4fTqIQFXEYXTq4cFXEUVTq8eEXAV89Qnwk6vzhdwFVc4vbpAwFVC4fTqQgFXSYXTq4sEXKUUTq8uFnCVVji9ukTAVUbh9OpSAVdZhdOrywRc5ZROr94G9oTA3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNEqITS4P+T65a73ufbdx6hLr6LmHZ5ahA0+UVsssxAVcFhexyXMBVUSG7nBBwfamQXU4KuL5SyC6nBFxfK2SX0wKubxSyyxkB17cK2WW5gOs7heyyQsBVSSG7rBRwVVbILqsEXFUUsstqAVdVheyyRsBVTSG7rBVwVVfILusEXDWUsssdILsAey8C9kME7FEI2DcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0STWE2eVOJLPLWYGmGyhkl3MCroYK2eW8gKuRQna5IOBqrJBd/hBwNVHILhcFXE0VssufAq5mCtnlkoCruUJ2WS/g+l4hu2wQcLVQyC4bBVwtFbLLJgFXK4Xs8puA6weF7LJZwNVaIbv8LuBqo5Bdtgi42ipll7tAdgH2XgTshwjYoxCwbyBgLSdgfSVgzSNgHSJgbSDArwnwUAJ8jQCvIUD/BGiS2gqzy91IZpe/BJruqJBdLgu4Oilkl78FXJ0VsssVAVcXhezyj4Crq0J2uSrg6qaQXa4JuLorZJd/BVw9FLLLVgFXT4Xssk3A1Ushu2wXcPVWyC47BFx9FLLLTgFXX4XsskvA1U8hu+wWcPVXyC57BFwDlLLLPSC7AHsvAvZDBOxRCNg3ELCWE7C+ErDmEbAOEbA2EODXBHgoAb5GgNcQoH8CNEkDhNnlni27+B/obYe/RnO/Lo9328twE1z2Wj/HRHe9j+xnkqveMKea7KY33NSmuOj1+9/UaO696X4S2dzeD8LcTgPmdjowtzOAuZ0JzO0sYG5nA3M7B5jbucDcPhDO7YMgzO08YG7nA3O7AJjbhcDcLgLmdjEwt0uAuV0KzO1D4dw+DMLcLgPmdjkwtyuAuV0JzO0qYG5XA3O7BpjbtcDchiSVza31db7w/+3/C0O3w/fFd5I8/u+J/rXZ7+N+zfvfH/7vZT1CQ1xjuGZ+1uu+tx3Qi3zfZ70RH8Tv92hc0blicMXkisUVm+s5rue5XuB6keslrpe5XuF6lSsOV1yueFzxuRJwJeRKxJWYKwlX0qTBvbqdkmKvQ+Aj1F1b0K9uT8bcyblScKXkSsWV2vpZuNIkDYloaFZz4BXqyQ1jKQxjKQ1jqQxjqQ1joYaxNEkjf3W7fdKcFoFkLnutq9uTu+4NoRRue5k3pbveR1e3p3LVG3Z1e2o3veFXt4e66PVf3Z4GEEUwxRgtiooxLXOn40rPlYErI1cmrsxcWQLFmNYginSGsfSGsQyGsYyGsUyGscyGsSxBEGM0QIxpATGmA8SYHhBjBkCMGQExZgLEmBkQY5anJMboUVSMWZk7G1d2rte4Xud6g+tNrrcCxZjVIIpshrHshrHXDGOvG8beMIy9aRh7KwhijA6IMSsgxmyAGLMDYnwNEOPrgBjfAMT4JiDGt56SGGNEUTG+zdzvcOXgysmVi+tdrve43g8U49sGUbxjGMthGMtpGMtlGHvXMPaeYez9IIgxBiDGtwExvgOIMQcgxpyAGHMBYnwXEON7gBjfF4oCvRsOuajvA/dMZP8/6K2NHwLPg9yfUVz4u1yUP7d9nh1usrXf6eHUW0KJP0+E9+mTb7K13zPi1FtSiT9vRJ098SbbQnnc95ZS4s9n43e6ydZ+H4tTb2klfp+N3+kmW/sdMU69ZZT489v4nW6ytd9b49RbVom/gI3f6SZb+106Tr3llPgLAv6PnEH+Tom/EOD/FQD/r6TEXxjw/4qA/1dW4i8C+P+XgP9XUeIvCvj/V4D/V1XiLwb4/9eA/1dT4i8O+P83gP9XV+IvAfj/t4D/11DiLwn4P3KO63sl/lKA/zcE/L+FEn9pwP8bAf7fUom/DOD/jQH/b6XEXxbw/yaA//+gxF8O8P+mgP+3VuL/CPD/ZoD/t1Hi/xjw/+aA/7dV4v8E8H/ks/A9lfg/Bfy/E+D/vZT4PwP8vzPg/72V+D8H/L8L4P99lPi/APy/K+D/fZX4ywP+3w3w/35K/BUA/+8O+H9/Jf6KgP/3APwfPQtFAdxO7dbvIqyPNBH48873+CynxZVcwLXA47OcFlcKAddCj89yWlwpBVyLPD7LaXGlEnAt9vgsp8WVWsC1xOOznI9+NyjgWurxWU6LK42Aa5nH/mX9fvRDAddyj/3L4sot4FrhsX9ZXHkEXCs99i+LK6+Aa5XH/mVx5RNwrfbYvywun4Brjcf+ZXHlF3Ct9di/LK4CAq51SmfRvwTyN7D3ImA/RMAehYB9AwFrOQHrKwFrHgHrEAFrAwF+TYCHEuBrBHgNAfonQJOE6MTSoP9zcdb73mcbtx6hrr5LWHZJK9D0FoXskk7AtVUhu6QXcG1TyC4ZBFzbFbJLRgHXDoXskknAtVMhu2QWcO1SyC5ZBFy7FbJLQQHXHoXsUkjAtVchuxQWcO1TyC5FBFz7FbJLUQHXAYXsUkzAdVAhuxQXcB1SyC4lBFyHlbLLV0B2AfZeBOyHCNijELBvIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJIOC7PLV5HMLlkFmj6tkF2yCbjOKGSX7AKuswrZ5TUB1zmF7PK6gOu8QnZ5Q8B1QSG7vCng+kMhu7wl4LqokF1KCrj+VMgupQRclxSyS2kB118K2aWMgOuyQnYpK+D6WyG7lBNwXVHILh8JuP5RyC4fC7iuKmWXr4HsAuy9CNgPEbBHIWDfQMBaTsD6SsCaR8A6RMDaQIBfE+ChBPgaAV5DgP4J0CRdFWaXryOZXd4WaPqOQnZ5R8B1VyG75BBw3VPILjkFXPcVsksuAdcDhezyroDroUJ2eU/AFZLX++zyvoCLPOLyt1t7kk8EXNE85QrLLp8KuKJ7yRWeXT4TcMXwkMufXT4XcMX0juv/s8sXAq5YnnE9zi7lBVyxveKyZZcKAq7nPPYvi6uigOt5kMv/QLPLN0B2AfZeBOyHCNijELBvIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJIQndizyzdJ/3uf+pPuS7f++WX4P79K+jj/+L+X9QgNcY0BaftZr7vedkAv8n2f9UZ8fMvv9++4KnFV5qrCVZWrGld1rhpcNblqcdXmqsNVl6seV32uBlwNuRpxNeZqwtWUqxlXc67vkwb3ospvk2KvQ+Aj1F1b0C+qbMHcLblacf3A1ZqrDVdbrh+ThkQ0NKs58MLIloaxVoaxHwxjrQ1jbQxjbQ1jPyaN/EWV9klz2sS0cNlrXVTZ0nVvCLVy28u8P7jrfXRRZWtXvWEXVbZx0xt+UWVbF73+iyp/BEQRTDF+F0XF2I65f+Jqz/Uz1y9cHbg6cnUKFGM7gyh+Moy1N4z9bBj7xTDWwTDW0TDWKQhi/A4QYztAjD8BYmwPiPFnQIy/AGLsAIixIyDGTk9JjJWiqBg7M3cXrq5c3bi6c/Xg6snVK1CMnQ2i6GIY62oY62YY624Y62EY62kY6xUEMVYCxNgZEGMXQIxdATF2A8TYHRBjD0CMPQEx9npKYqwcRcXYm7n7cPXl6sfVn2sA10CuQYFi7G0QRR/DWF/DWD/DWH/D2ADD2EDD2KAgiLEyIMbegBj7AGLsC4ixHyDG/oAYBwBiHAiIcZBQFOjdK4PdPw90dnZ5Hh3+IfbX1OE+qgXA3VUrlPiHRnhPPPk+qoXA3VUrlfiHRXxPP/E+qkXA3VWrlPiH2/id7qNaDNxdtVqJf4SN3+k+qiXA3VVrlPhH2vid7qNaCtxdtVaJf5SN3+k+qmXA3VXrlPhHA/6PnD/ao8Q/BvD/rYD/71XiHwv4/zbA//cp8Y8D/H874P/7lfh/Bfx/B+D/B5T4xwP+vxPw/4NK/BMA/98F+P8hJf6JgP/vBvz/sBL/JMD/kc9w/6nEPxnw/zOA/19S4p8C+P9ZwP//UuKfCvj/OcD/LyvxTwP8/zzg/38r8U8H/P8C4P9XlPhnAP7/B+D//yjxzwT8/yLg/1eV+GcB/o98Di5aXh3+2YD/3wX8P7oS/xzA/+8B/h9DiX8u4P/3Af+PqcQ/D/D/B4D/x1Linw/4/0PA/2Mr8S8A/N/++VOn3ueU+BcC/m//TKxTL/L5TuuXcdbfUSXDv6OAn8fhQcliuH9e+/MtShqJJ7S+GP26xcAvoKRci5M+Hgh193WeTYbjwR/bFy6JzGRYX4z+Vd4lwC5iqcLELTW8oZyeayn4Gzf0+1tvpqWG19bpaRb/D7221qm0wYLXNqXHp78sriECrlQen/6yuIYKuFJ7fPrL4hom4Ar1+PSXxTVcwJXG49NfFtcIAVdaj09/WVwjBVzpFE6vjhJwpVc4vdpCwJVB4fRqSwFXRoXTq60EXJkUTq/+IODKrHB6tbWAK4vC6dU2Aq6sCqdX2wq4simcXv1RwJVd6fTqMmBPCOy9CNgPEbBHIWDfQMBaTsD6SsCaR8A6RMDaQIBfE+ChBPgaAV5DgP4J0CQhOrE06P/kqvW+99nGrUeoq+8Sll1GCzSdQyG7jBFw5VTILmMFXLkUsss4Ade7CtnlVwHXewrZZbyA632F7DJBwPWBQnaZKOD6UCG7tBNw5VbILj8JuPIoZJf2Aq68CtnlZwFXPoXs8ouAy6eQXToIuPIrZJeOAq4CCtmlk4CroFJ2WQ5kF2DvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCapoDC7LI9kdpkk0HRJhewyWcBVSiG7TBFwlVbILlMFXGUUsss0AVdZhewyXcBVTiG7zBBwfaSQXWYKuD5WyC6dBVyfKGSXLgKuTxWyS1cB12cK2aWbgOtzhezSXcD1hUJ26SHgKq+QXXoKuCooZJdeAq6KStllBZBdgL0XAfshAvYoBOwbCFjLCVhfCVjzCFiHCFgbCPBrAjyUAF8jwGsI0D8BmqSKwuyyIpLZZZZA05UVsstsAVcVhewyR8BVVSG7zBVwVVPILvMEXNUVsst8AVcNheyyQMBVUyG7LBRw1VLILr0FXLUVsksfAVcdhezSV8BVVyG79BNw1VPILv0FXPUVsssAAVcDhewyUMDVUCG7DBJwNVLKLiuB7ALsvQjYDxGwRyFg30DAWk7A+krAmkfAOkTA2kCAXxPgoQT4GgFeQ4D+CdAkNRJml5W27OJ/oLcdrovmfl1e77aX4Ta47LV+jo3ueh/ZzyZXvWFO9Zub3nBT2+yi1+9/v0dz702rksrmdlUQ5nYLMLdbgbndBsztdmBudwBzuxOY213A3O4G5na1cG5XB2Fu9wBzuxeY233A3O4H5vYAMLcHgbk9BMztYWBu1wjndk0Q5vYIMLdHgbk9BsztcWBuTwBzexKY21PA3J4G5natcG7XJv3vXxhaFr4vXp708X9P9K/Nfh/3a97//vB/L+sRGuIawzXzs173ve2AXuT7PuuN+FjH7/f1XBu4NnJt4vqNazPX71xbuLZybePazrWDayfXLq7dXHu49nLt49rPdYDrINchrsNcR5IG9+r2dUmx1yHwEequLehXtx9l7mNcx7lOcJ3kOsV1mutM0pCIhmY1B16hfswwdtwwdsIwdtIwdsowdtowdiZp5K9ut0+a0yJw1GWvdXX7Mde9IXTcbS/znnDX++jq9pOuesOubj/lpjf86vbTLnr9V7efAUQRTDGuj6JiPMvc57jOc13g+oPrItefXJcCxXjWIIpzhrHzhrELhrE/DGMXDWN/GsYuBUGM6wExngXEeA4Q43lAjBcAMf4BiPEiIMY/ATFeekpi3BBFxfgXc1/m+pvrCtc/XFe5rnH9GyjGvwyiuGwY+9swdsUw9o9h7Kph7Jph7N8giHEDIMa/ADFeBsT4NyDGK4AY/wHEeBUQ4zVAjP8+JTFujKJivM7cN7huct3ius11h+su171AMV43iOKGYeymYeyWYey2YeyOYeyuYexeEMS4ERDjdUCMNwAx3gTEeAsQ421AjHcAMd4FxHhPKAr0bjjkor777pnI/n/QWxsfAM+D3J+RQfi7XJT/of01dbjJ1n6nh1NvRiX+kGT23iffZGu/Z8SpN5MSP0Xgf/JNtqF53fdmVuKPZuN3usnWfh+LU28WJf7oNn6nm2ztd8Q49WZV4o9h43e6ydZ+b41TbzYl/pg2fqebbO136Tj1Zlfij5XMvacjZ5BzK/HHTube03MC/p9Hif85wP9zAf6fV4n/ecD/3wX8P58S/wuA/78H+L9Pif9FwP/fB/w/vxL/S4D/fwD4fwEl/pcB//8Q8P+CSvyvAP6PnOP6RIn/VcD/SwH+/6kSfxzA/0sD/v+ZEn9cwP/LAP7/uRJ/PMD/ywL+/4USf3zA/8sB/l9eiT8B4P8fAf5fQYk/IeD/HwP+X1GJPxHg/8hn4Wsr8ScG/L8K4P91lPiTAP5fFfD/ukr8SQH/rwb4fz0l/mSA/1cH/L++En9ywP9rAP7fQIk/BeD/NQH/b6jEnxLw/1qA/6NnoSiA26nd+l2E9ZEmAn/ePh6f5Vwc/nk0lKuvx2c5F4d/Rg7l6ufxWc7F4Z/bQ7n6e3yWc3H4ZwlRrgEen+VcHP75RpRroMdnOReHf+YS5Rrk8VnOxeGfA0W5BnvsX9bvRx8IuIZ47F8W10MB11CP/cvisn7XiHIN89i/LC4ScA332L8srmgCrhEe+5fFFV3ANdJj/7K4Ygi4RnnsXxZXTAHXaKWz6KmA/A3svQjYDxGwRyFg30DAWk7A+krAmkfAOkTA2kCAXxPgoQT4GgFeQ4D+CdAkITqxNOj/XJz1vvfZxq1HqKvvEpZdzgrW2EkK2eWcgGuyQnY5L+CaopBdLgi4pipklz8EXNMUsstFAdd0hezyp4BrhkJ2uSTgmqmQXWIJ9iSzFLJLbAHXbIXs8pyAa45CdnlewDVXIbu8IOCap5BdXhRwzVfILi8JuBYoZJeXBVwLlbJLaiC7AHsvAvZDBOxRCNg3ELCWE7C+ErDmEbAOEbA2EODXBHgoAb5GgNcQoH8CNEkLhdkldSSzy1+CPclKhexyWcC1SiG7/C3gWq2QXa4IuNYoZJd/BFxrFbLLVQHXOoXsck3AtV4hu/wr4NqgkF1eEexJNipkl1cFXJsUskscAddvCtklroBrs0J2iSfg+l0hu8QXcG1RyC4JBFxbFbJLQgHXNqXsEgpkF2DvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCZpmzC7hEYyu1wX7En2KWSXGwKu/QrZ5aaA64BCdrkl4DqokF1uC7gOKWSXOwKuwwrZ5a6A64hCdrkn4DqqkF0SCfYkxxSyS2IB13GF7JJEwHVCIbskFXCdVMguyQRcpxSyS3IB12mF7JJCwHVGIbukFHCdVcouaYDsAuy9CNgPEbBHIWDfQMBaTsD6SsCaR8A6RMDaQIBfE+ChBPgaAV5DgP4J0CSdFWaXNMn+e5/6k+5Lt/6ZKlzHqZM9zj/+72U9QkNcY0Daftbrrrcd0It832e9ER9p+f2ejis9VwaujFyZuDJzZeHKypWNKzvXa1yvc73B9SbXW1xvc73DlYMrJ1curne53uN6n+uDZMG9qDJtMux1CHyEumsL+kWVHzJ3bq48XHm58lmexZWfq0CykIiGZjUHXhiZ2zCWxzCW1zCWzzDmM4zlN4wVSBb5iyrTJnO/ifnQZa91UWVu170hlMdtL/Pmddf76KLKfK56wy6q9LnpDb+oMr+LXv9FlQUAUQRTjOmiqBgLMnchrsJcRbiKchXjKs5VIlCMBQ2iKGQYK2wYK2IYK2oYK2YYK24YKxEEMaYDxFgQEGMhQIyFATEWAcRYFBBjMUCMxQExlnhKYkwfRcVYkrlLcZXmKsNVlqsc10dcHweKsaRBFKUMY6UNY2UMY2UNY+UMYx8Zxj4OghjTA2IsCYixFCDG0oAYywBiLAuIsRwgxo8AMX78lMSYIYqK8RPm/pTrM67Pub7gKs9VgatioBg/MYjiU8PYZ4axzw1jXxjGyhvGKhjGKgZBjBkAMX4CiPFTQIyfAWL8HBDjF4AYywNirACIsaJQFOjdK1+6fx7o7OyQvDr8X9lfU4f7qOzneZ16hyrxfx3hPfHk+6jsZ4ydeocp8X8T8T39xPuo+ud13ztcif9bG7/TfVT2s9hOvSOU+L+z8TvdR2U/H+7UO1KJv5KN3+k+KvuZdafeUUr8lW38TvdR2c/RO/WOVuKvAvg/cv5olhJ/VcD/JwP+P1uJvxrg/1MA/5+jxF8d8P+pgP/PVeKvAfj/NMD/5ynx1wT8fzrg//OV+GsB/j8D8P8FSvy1Af+fCfj/QiX+OoD/I5/h3qjEXxfw/1WA/29S4q8H+P9qwP9/U+KvD/j/GsD/NyvxNwD8fy3g/78r8TcE/H8d4P9blPgbAf6/HvD/rUr8jQH/3wD4/zYl/iaA/yOfgzumxN8U8P/9gP8fV+JvBvj/AcD/TyjxNwf8/yDg/yeV+L8H/P8Q4P+nlPhbAP5/GPD/00r8LQH/PwL4/xkl/laA/x8F/B/5fKf1yzjr76iS4d9RwM/j8KDkMdw/r/35fkgWiSe0vhj9utbAL6CkXK2TPR4Idfd1nk2G089of742kZkM64vRv8rbBthFtFWYuLaGN5TTc7UFf+OGfn/rzdTW8No6PU3r/6HX1jqV9qXgtb2tcHr1KwHXHYXTq18LuO4qnF79RsB1T+H06rcCrvsKp1e/E3A9UDi9WknA9VDh9GplAVdIPi99Iuz06ocCLvKUK+z0am4BVzQvuSjsFF8eAVd0D7msXosrr4Arhndcj1otrnwCrpiecYV1Wlw+AVcsr7jCGy2u/AKu2B5x+fssrgICrudALv8DPb36I7AnBPZeBOyHCNijELBvIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJIQnVga9H9y1Xrf+2zj1iPU1XcJyy5VBJqO4/Hab3FVFXDF9Xjtt7iqCbjiebz2W1zVBVzxPV77La4aAq4EHq/9FldNAVdCj9d+i6uWgCuRx2u/xVVbwJVYIbsUFHAlUcguhQRcSRWyS2EBVzKF7FJEwJVcIbsUFXClUMguxQRcKRWyS3EBVyqF7FJCwJVaKbu0A7ILsPciYD9EwB6FgH0DAWs5AesrAWseAesQAWsDAX5NgIcS4GsEeA0B+idAk5RamF3aRTK71BFoOpNCdqkr4MqskF3qCbiyKGSX+gKurArZpYGAK5tCdmko4MqukF0aCbheU8gujQVcrytkl5ICrjcUskspAdebCtmltIDrLYXsUkbA9bZCdikr4HpHIbuUE3DlUMguHwm4cipkl48FXLmUsstPQHYB9l4E7IcI2KMQsG8gYC0nYH0lYM0jYB0iYG0gwK8J8FACfI0AryFA/wRoknIJs8tPkcwuTQSazquQXZoKuPIpZJdmAi6fQnZpLuDKr5BdvhdwFVDILi0EXAUVsktLAVchhezSSsBVWCG7fCLgKqKQXT4VcBVVyC6fCbiKKWSXzwVcxRWyyxcCrhIK2aW8gKukQnapIOAqpZBdKgq4Sitll/ZAdgH2XgTshwjYoxCwbyBgLSdgfSVgzSNgHSJgbSDArwnwUAJ8jQCvIUD/BGiSSguzS3tbdvE/0NsOz0Rzvy6fddvLcOdc9lo/x3l3vY/s54Kr3jCn+sNNb7ipXXTR6/e/P6O596afk8nm9ucgzO0lYG7/Aub2MjC3fwNzewWY23+Aub0KzO01YG5/Ec7tL0GY23+Bub0OzO0NYG5vAnN7C5jb28Dc3gHm9i4wtx2Ec9shCHN7D5jb+8DcPgDm9iEwt9YP79wb1krR3c9ttOju5zZ6dPdz21E4tx2T/fcvDP0Yvi9ul+zxf0/0r81+H/dr3v/+8H8v6xEa4hrDNfOzXve97YBe5Ps+64346MTv985cXbi6cnXj6s7Vg6snVy+u3lx9uPpy9ePqzzWAayDXIK7BXEO4hnIN4xrONYJrJNeoZMG9ur0TeGY+8BHqri3oV7ePZu4xXGO5xnH9yjWeawLXxGQhEQ3Nag68Qn2MYWysYWycYexXw9h4w9gEw9jEZJG/ut0+aU6LwGiXvdbV7WNc94bQWLe9zDvOXe+jq9t/ddUbdnX7eDe94Ve3T3DR67+6fSIgimCKsXMUFeMk5p7MNYVrKtc0rulcM7hmBopxkkEUkw1jUwxjUw1j0wxj0w1jMwxjM4Mgxs6AGCcBYpwMiHEKIMapgBinAWKcDohxBiDGmU9JjF2iqBhnMfdsrjlcc7nmcc3nWsC1MFCMswyimG0Ym2MYm2sYm2cYm28YW2AYWxgEMXYBxDgLEONsQIxzADHOBcQ4DxDjfECMCwAxLnxKYuwaRcW4iLkXcy3hWsq1jGs51wqulYFiXGQQxWLD2BLD2FLD2DLD2HLD2ArD2MogiLErIMZFgBgXA2JcAohxKSDGZYAYlwNiXAGIcaVQFOjdcMhFfavcM5H9/6C3Nq4Gnge5P4OEv8tF+dfYX1OHm2zvALfeRlPiXxvhPfHkm2zvArfeRlfiXxfxPf3Em2zvAbfexlDiX2/jd7rJ9j5w621MJf4NNn6nm2wfALfexlLi32jjd7rJ9iFw621sJf5NNn6nm2ztd+k49T6nxP8b4P/IGeQkSvybAf+3n4t26k2qxP874P/2s9pOvcmU+LcA/h8/n/ve5Er8WwH/t59pd+pNocS/DfB/+zl7p96USvzbAf+3n/136k2lxL8D8P/EgP+nVuLfCfg/co7rDSX+XYD/Zwb8/00l/t2A/2cB/P8tJf49gP9nBfz/bSX+vYD/ZwP8/x0l/n2A/2cH/D+HEv9+wP9fA/w/pxL/AcD/Xwf8P5cS/0HA/5HPwhdR4j8E+H8+wP+LKvEfBvzfB/h/MSX+I4D/5wf8v7gS/1HA/wsA/l9Cif8Y4P8FAf8vqcR/HPD/QoD/l1LiPwH4f2HA/9GzUBTA7dRu/S7C+kgTgT9vPY/PclpcYwRc9T0+y2lxjRVwNfD4LKfFNU7A1dDjs5wW168CrkYen+W0uMYLuBp7fJbT4pog4Gri8VlOi2uigKupx/5l/X50tYCrmcf+ZXGtEXA199i/LK61Aq7vPfYvi2udgKuFx/5lca0XcLX02L8srg0CrlYe+5fFtVHA9YPH/mVxbRJwtVY6i34SyN/A3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNEqITS4P+z8VZ73ufbdx6hLr6LmHZZZJA078oZJfJAq4OCtllioCro0J2mSrg6qSQXaYJuDorZJfpAq4uCtllhoCrq0J2mSng6qaQXX4TcHVXyC6bBVw9FLLL7wKungrZZYuAq5dCdtkq4OqtkF22Cbj6KGSX7QKuvgrZZYeAq59SdjkFZBdg70XAfoiAPQoB+wYC1nIC1lcC1jwC1iEC1gYC/JoADyXA1wjwGgL0T4AmqZ8wu5yKZHaZJdD0MIXsMlvANVwhu8wRcI1QyC5zBVwjFbLLPAHXKIXsMl/ANVohuywQcI1RyC4LBVxjFbLLTgHXOIXsskvA9atCdtkt4BqvkF32CLgmKGSXvQKuiQrZZZ+Aa5JCdtkv4JqskF0OCLimKGWX00B2AfZeBOyHCNijELBvIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJKmCLPL6Uhml0UCTc9RyC6LBVxzFbLLEgHXPIXsslTANV8huywTcC1QyC7LBVwLFbLLCgHXIoXsslLAtVghuxwUcC1RyC6HBFxLFbLLYQHXMoXsckTAtVwhuxwVcK1QyC7HBFwrFbLLcQHXKoXsckLAtVopu5wBsguw9yJgP0TAHoWAfQMBazkB6ysBax4B6xABawMBfk2AhxLgawR4DQH6J0CTtFqYXc4k++996k+6L93658nwf55K9jj/+L+X9QgNcY0BaftZr7vedkAv8n2f9UZ8nOX3+zmu81wXuP7gusj1J9clrr+4LnP9zXWF6x+uq1zXuP7lus51g+sm1y2u21x3uO5y3eO6nyy4F1WeTYa9DoGPUHdtQb+o8gFzP7S8JTmPc0Xjis4Vgytm8pCIhmY1B14Y+dAwZn2zwDEyjEUzjEU3jMUwjMVMHvmLKu2T5rSJeeCy17qo8qHrXv5RkrvsZV5y1/voospornrDLqqM7qY3/KLKGC56/RdVxkzuXhTBFOO5KCrGWPx6xbbe11zPc73A9SLXS1wvB4oxlkEUsQ1jzxnGnjeMvWAYe9Ew9pJh7OUgiPEcIMZYbkXDYoztujeEngPE+DwgxhcAMb4IiPElQIwvPyUxno+iYnyFX69XueJwxeWKxxWfKwFXwkAxvmIQxauGsTiGsbiGsXiGsfiGsQSGsYRBEON5QIyvAGJ8FRBjHECMcQExxgPEGB8QYwJAjAmfkhgvRFExJuLXKzFXEq6kXMm4knOl4EoZKMZEBlEkNowlMYwlNYwlM4wlN4ylMIylDIIYLwBiTASIMTEgxiSAGJMCYkwGiDE5IMYUgBhTAmK0P9C7V1K5fx7o7GyzfDr8qe2vqcN9VPbzvE69zZX4QyO8J558H5X9jLFT7/dK/GkivqefeB9Vw3zue1so8ae18TvdR2U/i+3U21KJP52N3+k+Kvv5cKfeVkr86W38TvdR2c+sO/X+oMSfwcbvdB+V/Ry9U29rJf6MgP8j54+6K/FnAvy/A+D/PZT4MwP+3xHw/55K/FkA/+8E+H8vJf6sgP93Bvy/txJ/NsD/uwD+30eJPzvg/10B/++rxP8a4P/dAP/vp8T/OuD/yGe4xynxvwH4/3DA/39V4n8T8P8RgP+PV+J/C/D/kYD/T1Difxvw/1GA/09U4n8H8P/RgP9PUuLPAfj/GMD/Jyvx5wT8fyzg/1OU+HMB/o98Dm6JEv+7gP/PBfx/qRL/e4D/zwP8f5kS//uA/88H/H+5Ev8HgP8vAPx/hRL/h4D/LwT8f6USf27A/xcB/r9KiT8P4P+LAf9HPt9p/TLO+juqZPh3FPDzODwoRQz3z2t/vrzJI/GE1hejX5cvuftJknLlS/54INTd13k2GU4/o/35fJGZDOuL0b/K6wN2EfkVJi6/4Q3l9Fz5wd+4od/fejPlN7y2Tk+T73/otbVOpaUSvLZ7FU6vphZw7VM4vRoq4NqvcHo1jYDrgMLp1bQCroMKp1fTCbgOKZxeTS/gOqxwejWDgOuIpz4Rdnr1geBU2lGF06sPBVzHFE6vhgjm8bjC6VUScJ1QOL0aTcB1UuH0anQB1ymF06sxBFynFU6vxhRwnVE6vVoA2BMCey8C9kME7FEI2DcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0SYhOLA36P7lqve99tnHrEerqu4Rll4wCTV9SyC6ZBFx/KWSXzAKuywrZJYuA62+F7JJVwHVFIbtkE3D9o5Bdsgu4ripkl9cEXNcUskssAde/CtkltoDrukJ2eU7AdUMhuzwv4LqpkF1eEHDdUsguLwq4bitkl5cEXHcUssvLAq67StmlIJBdgL0XAfshAvYoBOwbCFjLCVhfCVjzCFiHCFgbCPBrAjyUAF8jwGsI0D8BmqS7wuxSMJLZ5XWBpqP7vF37La43BFwxfN5nlzcFXDF93meXtwRcsXzeZ5e3BVyxfd5nl3cEXM/5vM8uOQRcz/u8zy45BVwv+Lz0ibDs8oqA60Wf99nlVQHXSz7vs0scAdfLPu+zS1wB1ys+77NLPAHXqz7vs0t8AVccn/fZJYGAK67P++ySUMAVz4dx+R9odikEZBdg70XAfoiAPQoB+wYC1nIC1lcC1jwC1iEC1gYC/JoADyXA1wjwGgL0T4AmCdGJPbsUimR2ySXQdDKft2u/xfWugCu5z/vs8p6AK4XP++zyvoArpc/77PKBgCuVz/vs8qGAK7XP++ySW8AV6vM+u+QRcKXxeekTYdklkYArrc/77JJYwJXO5312SSLgSu/zPrskFXBl8HmfXZIJuDL6vM8uyQVcmXzeZ5cUAq7MPu+zS0oBVxYfxuV/oNmlMJBdgL0XAfshAvYoBOwbCFjLCVhfCVjzCFiHKC3QC/g1AR5KgK8R4DUE6J8ATRKiE3t2KWzLLv4HetthjOju1+WYbnsZLpbLXuvniO2u95H9POeqN8ypnnfTG25qL7jo9fvfi9Hde1OR5LK5LRKEuX0JmNuXgbl9BZjbV4G5jQPMbVxgbuMBcxsfmNuiwrktGoS5TQDMbUJgbhMBc5sYmNskwNwmBeY2GTC3yYG5LSac22JBmNsUwNymBOY2FTC3qYG5DQXmNg0wt2mBuU0HzG1x4dwWT/7fvzBUIHxfXDD54/+e6F+b/T7u17z//eH/XtYjNMQ1hmvmZ73ue9sBvcj3fdYb8VGC3+8luUpxleYqw1WWqxzXR1wfc33C9SnXZ1yfc33BVZ6rAldFri+5vuL6musbrm+5vuOqxFU5eXCvbi8BnpkPfIS6awv61e1VmLsqVzWu6lw1uGpy1eKqnTwkoqFZzYFXqFc1jFUzjFU3jNUwjNU0jNUyjNVOHvmr20sAlwRUcdlrXd1e1XVvCFVz28u81d31Prq6vYar3rCr22u66Q2/ur2Wi17/1e21AVEEU4wlo6gY6zB3Xa56XPW5GnA15GrE1ThQjHUMoqhrGKtnGKtvGGtgGGtoGGtkGGscBDGWBMRYBxBjXUCM9QAx1gfE2AAQY0NAjI0AMTZ+SmIsFUXF2IS5m3I142rO9T1XC66WXK0CxdjEIIqmhrFmhrHmhrHvDWMtDGMtDWOtgiDGUoAYmwBibAqIsRkgxuaAGL8HxNgCEGNLQIytnpIYS0dRMf7A3K252nC15fqRqx3XT1ztA8X4g0EUrQ1jbQxjbQ1jPxrG2hnGfjKMtQ+CGEsDYvwBEGNrQIxtADG2BcT4IyDGdoAYfwLE2F4oCvRuOOSivp/dM5H9/6C3Nv4CPA9yf8ZR4Rk6lL+D/TV1uMl2H3Dr7TEl/o4R3hNPvsl2P3Dr7XEl/k4R39NPvMn2AHDr7Qkl/s42fqebbA8Ct96eVOLvYuN3usn2EHDr7Skl/q42fqebbA8Dt96eVuLvZuN3usn2CHDr7Rkl/u6A/1/y5jxthAfK3wPw/78A/7+uxN8T8P/LgP/fUOLvBfj/34D/31Ti7w34/xXA/28p8fcB/P8fwP9vK/H3Bfz/KuD/d5T4+wH+fw3w/7tK/P0B/4/uc9+Lnlf1P1D+AYD/28+WOfWi51ql/AMB/7efd3PqRc+/SvkHAf4fy+e+Fz0nK+UfDPi//VygUy96nlbKPwTwf/tZRade9NytlH8o4P/285NOvej5XCn/MMD/7Wc6nXql53hR/uGA/yOfhU/r0+EfAfi//fP5Tr3pfDr8IwH/t58ZcOpFzxBJ+UcB/p/S574XPWsk5R8N+L/9bIVTL3omSco/BvB/+3kPp1707JKUfyzg//YzKE696BknKf84wP/t52KcetGzUBTA7dRu/S7C+kgTgT9vcZ+XXPTodyRVBVwlfB5yUdjvbqoJuEr6vOOyei2u6gKuUj7PuB61Wlw1BFylfV5xhXVaXDUFXGV8HnGFN1pctQRcZX3ecPn7LK7aAq5yPm/9y/r96C8Cro983vqXxdVBwPWxz1v/srg6Crg+8XnrXxZXJwHXpz5v/cvi6izg+sznrX9ZXF0EXJ/7vPUvi6urgOsLn7f+ZXF1E3CV98n2j+hZ9F+B/A3svQjYDxGwRyFg30DAWk7A+krAmkfAOkTA2kCAXxPgoQT4GgFeQ4D+CdAkITqxNOj/XJz1vvfZxq1HqKvvEpZd6gg0/Z3P27Xf4qor4Krk8z671BNwVfZ5n13qC7iq+LzPLg0EXFV93meXhgKuaj7vs0sjAVd1n/fZpbGAq4bPS58Iyy7dBVw1fd5nlx4Crlo+77NLTwFXbZ/32aWXgKuOz/vs0lvAVdfnfXbpI+Cq5/M+u/QVcNX3eZ9d+gm4Gvh0sst4ILsAey8C9kNUGegF9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNEqITe3YZH8ns0kSg6e993q79FldTAVcLn/fZpZmAq6XP++zSXMDVyud9dvlewPWDz/vs0kLA1drnfXZpKeBq4/M+u7QScLX1eekTYdmlv4DrR5/32WWAgKudz/vsMlDA9ZPP++wySMDV3ud9dhks4PrZ5312GSLg+sXnfXYZKuDq4PM+uwwTcHX06WSXCUB2AfZeBOyHCNijELBvIGAtJ2B9JWDNI2AdImBtIMCvCfBQag/0Al5DgP4J0CQhOrFnlwmRzC4/CDTd0+ft2m9xtRZw9fJ5n13aCLh6+7zPLm0FXH183meXHwVcfX3eZ5d2Aq5+Pu+zy08Crv4+77NLewHXAJ+XPhGWXYYLuAb6vM8uIwRcg3zeZ5eRAq7BPu+zyygB1xCf99lltIBrqM/77DJGwDXM5312GSvgGu7zPruME3CN8Olkl4lAdgH2XgTshwjYoxCwbyBgLSdgfSVgzSNgHSJgbSDArwnwUAJ8jQCvIUD/BGiSEJ3Ys8vE5P+9T/1J96Vb//w1/J/jkz/OP/7vZT1CQ1xjQNp+1uuutx3Qi3zfZ70RH5P4/T6ZawrXVK5pXNO5ZnDN5JrFNZtrDtdcrnlc87kWcC3kWsS1mGsJ11KuZVzLuVZwreRalTy4F1VOSo69DoGPUHdtQb+ocjVzr+Fay7WOaz3XBq6NXJuSh0Q0NKs58MLINYaxtYaxdYax9YaxDYaxjYaxTckjf1GlfdKcNjGrXfZaF1Wucd0bQmvd9jLvOne9jy6qXO+qN+yiyg1uesMvqtzootd/UeUmQBTBFOPkKCrG35h7M9fvXFu4tnJt49rOtSNQjL8ZRLHZMPa7YWyLYWyrYWybYWy7YWxHEMQ4GRDjb4AYNwNi/B0Q4xZAjFsBMW4DxLgdEOOOpyTGKVFUjDuZexfXbq49XHu59nHt5zoQKMadBlHsMoztNoztMYztNYztM4ztN4wdCIIYpwBi3AmIcRcgxt2AGPcAYtwLiHEfIMb9gBgPPCUxTo2iYjzI3Ie4DnMd4TrKdYzrONeJQDEeNIjikGHssGHsiGHsqGHsmGHsuGHsRBDEOBUQ40FAjIcAMR4GxHgEEONRQIzHADEeB8R4QigK9O6Vk+6fBzo7i94R4H+g/Kfsr6nDfVT287xOvehdAlL+0xHeE0++j8p+xtipF71zQMp/JuJ7+on3UZXyue9F7yaQ8p+18TvdR2U/i+3Ui95hIOU/Z+N3uo/Kfj7cqRe960DKf97G73Qflf3MulMveieClP+Cjd/pPir7OXqn3v9j7zvApSiW77cAI6hgBglzMzkrRrwkSSJiApQoknOSYAAjmAgKigJiwIAZMYAEI2aSqCRJJpIJBAUD/Lu4O4/ZpZfpU3e798f3d76vHu/Vq719eqrP6dPcnUH67gQU/xZA/5Hnj9DnLP0Lxb8V0P/gM1FhtejzmFL82wD9vzbXvBZ9blOK/ydA/zvlmteiz3dK8f8M6H/webawWvQ5UCn+XwD9Dz5jF1aLPi8qxf8roP/B5/7CatHnSqX4fwP0P/gsYlit9PlTFP92QP+R73Cjz6r4F4p/B6D/we+Vh9Wiz7RI8f8O6P+wXPNa9NkXKf6dgP4PzzWvvTXXDf5dgP4HnwkIq70t1w3+PwD9Dz6nEFaLPnMjxf8noP/BZyfCatFnc6T4dwP6H3yeI6xW+gwPin8PoP/I9+DQ7/v6F4r/L0D/g9/NC6tFvxcsxf83oP/B7wuG1aLfH5bi/wfQ//G55rUP57rB/y+g/8HvVYbVot9HluLfC+h/8LueYbXo95al+PcB+h/8/mlYLfr9Zin+SElzTQ9+JzasFvl+J/8yjv8dVdL8fxQ3n5CLShUyHzc4HpXMx4D8YfRzBUoCTRLiKlDyQMIz+5y1ZoTNMThewfw0gz+M/qu8BUuaj1HIQeMKaRZU2FiFzOegxRX283kxFdLc27BhCvwfurf8VBr/xhCd+8zc/N3bsGrG9a0A16u5FnFR3lN83wlwzcq1h4trGdf3Alyv5VrDtb+Ucf0gwPV6ri1ceZWM60cBrjdyLeGKFjKuTQJcb+baweXXMa7NAlyzc23qRN7Tq+8KcM3JtatfjOs9Aa63cu3qF+N6X4Brbq5d/WJcHwhwzcu1q1+Ma6EA1/xcu/rFuD4U4FqQa1e/GNdHAlxv59rVL8b1sQDXO7kYLv9Cn149AvCEgPciwA8R4FEI8A0E7OUE7K8E7HkE7EME7A0E6DUBGkqArhGgNQTwnwBOEsIT5qD/zVVe97mBPF+e0U/JO7tsEXD641y7ez/j2irA9Umu/bPLNgGuT3Ptn11+EuD6LNf+2eVnAa7Pc+2fXX4R4FqUa//s8qsA1+Jc+2eX3wS4luTa1Im8s8snAlxLc+2fXT4V4FqWa//s8pkA1xe59s8unwtwLc+1f3ZZJMD1Za79s8tiAa6vcu2fXZYIcH2da//sslSAa0Wum7PLkcDZBfBeBPghAjwKAb6BgL2cgP2VgD2PgH2IgL2BAL0mQEMJ0DUCtIYA/hPASUJ4Ejy7HJnPs8t2AafX59rd+xnXDgGuDbn2zy6/C3BtzLV/dtkpwPVtrv2zyy4Bru9y7Z9d/hDg+j7X/tnlTwGuH3Ltn112C3D9mGtTJ/LOLssEuDbl2j+7fCHAtTnX/tlluQDXllz7Z5cvBbi25to/u3wlwLUt1/7Z5WsBrp9y7Z9dVghw/Zxr/+yyUoDrl1w3Z5ejgLML4L0I8EMEeBT6FqgF9nIC9lcC9jwC9iEC9gYC9JoADSVA1wjQGgL4TwAnCeFJ8OxyVD7PLnsEnP4j1+7ez7j+EuD6M9f+2eVvAa7dufbPLv8IcO3JtX92+VeA669c+2eXvQJcf+faP7vsE+D6J9f+2SUi+N7uv7k2dSLv7LJKcL/25to/u6wW4NqXa//sskaAK1LH/tnlGwEusofrf2eXtQJcBazhOnB2WSfAVdAWrsDZZb0AVyFLuIJnlw0CXEeAuPwLPbscDZxdAO9FgB8iwKMQ4BsI2MsJ2F8J2PMI2IcI2BsI0GsCNJQAXSNAawjgPwGcJIQnzEH/7HJ04OziX+jbDjMLmu/LWaa1Cly2YS3PI8esdr/8lDWqzVOqcia1UVErb1Dr61+FgubadExJWW+PSUJvKwK9rQT0tjLQ2ypAb6sCva0G9LY60NsaQG+PFfb22CT0tibQ2zOB3p4F9LYW0Nuzgd6eA/T2XKC35wG9LSzsbeEk9PZ8oLcXAL2tDfT2QqC3uUBv6wC9rQv0th7Q2yLC3hYpefC/MHRE9Fx/ZMkDf5/o782+jvuc99eH/7P48iLGMIwx/1drXjsSqEV+7n+1sddxar0fr+IEFUVVFFNxooqTVJys4hQVp6o4TcXpKoqrKKHiDBUlVZRSUVpFGeauijQV6SoyVGSqyCqZ3Fe3Hwc+Mx9/eWZlSX91e7bCnaOirIpyKsqrqKCioopKJSOxgsbF8a9Qz9Hkympy5TS58ppcBU2uoiZXqWT+X91+HPCSgGzDWn51e45xbYTKmtYqvOXMave/ur28UW3eq9srmNRGX91e0aDWf3V7JYAUySTj8YcpGSsr3FVUVFVRTUV1FTVU1FRxZjwZK2tIUUWTq6rJVdPkqmtyNTS5mprcmUkg4/EAGSsDZKwCkLEqQMZqABmrA2SsAZCxJkDGM1NExhMOUzKepXDXUnG2inNUnKviPBXnq7ggnoxnaUhRS5M7W5M7R5M7V5M7T5M7X5O7IAlkPAEg41kAGWsBZDwbIOM5ABnPBch4HkDG8wEyXpAiMhY9TMlYW+G+kI/TKuqoqKuinor6KhrEk7G2hhQXanK5mlwdTa6uJldPk6uvyTVIAhmLAmSsDZDxQoCMuQAZ6wBkrAuQsR5AxvoAGRsISYG+Gw55Ud9F5pgo+D/QtzY2BMZB3p+BvifIv1D8jYL3NORNtsF3eoTVou8TkuJvHLMmDv0m2+B7RsJq0fcOSfE3iV3Th3yT7Wu55rXo+4mk+JsG8Ie9yTb4PpawWvQ9RlL8Fwfwh73JNviOmLDaBblu8DcL4A97k23wvTVhteh7kaT4LwngD3uTbfBdOmG10vcnofibA/qPPIOMvmvBv1D8lwL6H3wuOqwWfSeDFH8LQP+Dz2qH1aLvbpDivwzQ/89yzWvRdzxI8V8O6H/wmfawWvRdEFL8VwD6H3zOPqwWfWeEFP+VgP4Hn/0Pq0XfLSHFfxWg/8H3EYTVSt9BgeJvCeg/8hwX+ryqf6H4WwH6H3y2LKwWfa5Vir81oP/B593CatHnX6X4rwb0/9tc81r0OVkp/msA/f8u17wWfZ5Wir8NoP/BZxXDatHnbqX42wL6H3x+MqwWfT5Xir8doP/BZzrDaqXP8aL42wP6j3wXfm+uG/wdAP0Pfj8/rBZ9NkiKvyOg/8FnBsJq0WeIpPivBfR/T655LTnC3wnQ/+CzFWG1BRzhvw7Q/+DzHmG1BR3h7wzof/AZlLDaQo7wdwH0P/hcTFgt+iwUxeEOK+ffRfBXmgicb5ZVXLT/dyQ5AlzZNnFR3u9uygpw5VjExbWMq5wAV1l7uPaXMq7yAlzlrOHKq2RcFQS4ytvCFS1kXBUFuCpYwuXXMa5KAlwVLesX/360oQBXJcv6xbgaCXBVtqxfjKuxAFcVy/rFuJoIcFW1rF+Mq6kAVzXL+sW4Lhbgqm5ZvxhXMwGuGpb1i3FdIsBVE8TlX+iz6F2B8zfgvQjwQwR4FAJ8AwF7OQH7KwF7HgH7EAF7AwF6TYCGEqBrBGgNAfwngJOE8IQ56H8vjtd9biDPl2f0U/LOLpUFnD7f5h4bPbtUEeC6wPLez7iqCnDVtrz3M65qAlwXWt77GVd1Aa5cy3s/46ohwFXH8t7PuGoKcNW1vPczrjMFuOpZ1Ym8s0tzAa76lvWLcV0qwNXAsn4xrhYCXBdZ1i/GdZkAV0PL+sW4LhfgamRZvxjXFQJcjS3rF+O6UoCriWX9YlxXCXA1BXH5F3p26QacXQDvRYAfIsCjEOAbCNjLCdhfCdjzCNiHCNgbCNBrAjSUAF0jQGsI4D8BnCSEJ8xB/+zSLZ9nl7MEnL7c5h4bPbvUEuC6wvLez7jOFuC60vLez7jOEeC6yvLez7jOFeBqaXnvZ1znCXC1srz3M67zBbhaW977GdcFAlxXW9WJvLNLSwGuayzrF+NqJcDVxrJ+Ma7WAlxtLesX47pagKudZf1iXNcIcLW3rF+Mq40AVwfL+sW42gpwdbSsX4yrnQDXtSAu/0LPLt2BswvgvQjwQwR4FAJ8AwF7OQH7KwF7HgH7EAF7AwF6TYCGEqBrBGgNAfwngJOE8IQ56J9duufz7FJbwOkeNvfY6NnlQgGunpb3fsaVK8DVy/Lez7jqCHD1trz3M666Alx9LO/9jKueAFdfy3s/46ovwNXP8t7PuBoIcPW3qhN5Z5f2AlwDLOsX4+ogwDXQsn4xro4CXIMs6xfjulaAa7Bl/WJcnQS4rresX4zrOgGuIZb1i3F1FuAaalm/GFcXAa5hIC7/Qs8uPYCzC+C9CPBDBHgUAnwDAXs5AfsrAXseAfsQAXsDAXpNgIYSoGsEaA0B/CeAk4TwhDnon116lDz4feqHel86/9k1+me3kgfOP/7P4suLGMOAuP1frVntSKAW+bn/1cZePdV676Wit4o+Kvqq6Keiv4oBKgaqGKRisIrrVQxRMVTFMBXDVdyg4kYVN6m4WcUIFSNV3KLiVhW3lUzuiyp7lsTuQ/zlmZUl/UWVtyvcd6i4U8UoFaNV3KXibhX3lIzEChoXx78w8g5N7k5NbpQmN1qTu0uTu1uTu6dk/l9UGWxamIm53bCWX1R5h3FthO40rVV4R5nV7n9R5Wij2rwXVd5lUht9UeXdBrX+iyrvAUiRTDL2OkzJeK/CfZ+KMSrGqhinYryK+1U8EE/GezWkuE+TG6PJjdXkxmly4zW5+zW5B5JAxl4AGe8FyHgfQMYxABnHAmQcB5BxPEDG+wEyPpAiMvY+TMk4QeGeqOJBFQ+pmKTiYRWPqJgcT8YJGlJM1OQe1OQe0uQmaXIPa3KPaHKTk0DG3gAZJwBknAiQ8UGAjA8BZJwEkPFhgIyPAGScnCIy9jlMyThF4Z6q4lEV01Q8puJxFU+oeDKejFM0pJiqyT2qyU3T5B7T5B7X5J7Q5J5MAhn7AGScApBxKkDGRwEyTgPI+BhAxscBMj4BkPFJISnQd69MNx8HenYWfUeAf6H4nwre05D3UQWf5w2rrewI/9Mxa+LQ76MKPmMcVlvFEf5nYtf0Id9HVbaOeW1VR/ifDeAPex9V8FnssNpqjvDPCOAPex9V8PnwsNrqjvA/F8Af9j6q4DPrYbU1HOF/PoA/7H1Uwefow2prOsL/AqD/yPNH9R3hfxHQ/wsA/W/gCP9LgP7XBvT/Ikf4Xwb0/0JA/xs6wv8KoP+5gP43coR/JqD/dQD9b+wI/6uA/tcF9L+JI/yzAP2vB+h/U0f4XwP0H/kO9zWO8L8O6P8VgP63cYT/DUD/rwT0v60j/G8C+n8VoP/tHOGfDeh/S0D/2zvCPwfQ/1aA/ndwhP8tQP9bA/rf0RH+uYD+Xw3o/7WO8M8D9B/5HtwAR/jnA/rfE9D/gY7wLwD0vxeg/4Mc4X8b0P/egP4PdoT/HUD/+wD6f70j/O8C+t8X0P8hjvC/B+h/P0D/hzrC/z6g//0B/Ue+38m/jON/R5U0/x/FzSfkotKFzMcNjvdByXwMyB9GP7cQ+AWUFNfCkgcSntnnrDUjbI7B8T7MTzP4w+i/yvsh4CI+ctC4jzQLKmysj8DfuKE/nxfTR5p7GzbMwv9D95afSpsuuLf31cnfvQ2rZlxPCXCNsYmL8p7ie1qAa6xFXFzLuJ4R4BpnD9f+Usb1rADXeGu48ioZ1wwBrvtt4YoWMq7nBLgesITLr2NczwtwTbCqE3lPr94uwDXRsn4xrjsEuB60rF+M604Brocs6xfjGiXANcmyfjGu0QJcD1vWL8Z1lwDXI5b1i3HdLcA12bJ+Ma57BLimgLj8C3169WPAEwLeiwA/RIBHIcA3ELCXE7C/ErDnEbAPEbA3EKDXBGgoAbpGgNYQwH8COEkIT5iD/jdXed3nBvJ8eUY/Je/s8oKA09Nt7rHRs8uLAlxPWd77GddLAlxPW977GdfLAlzPWN77GdcrAlzPWt77GddMAa4Zlvd+xvWqANdzlvd+xjVLgOt5qzqRd3a5V4DrBcv6xbjuE+B60bJ+Ma4xAlwvWdYvxjVWgOtly/rFuMYJcL1iWb8Y13gBrpmW9Ytx3S/A9apl/WJcDwhwzQJx+Rd6dvkEOLsA3osAP0SARyHANxCwlxOwvxKw5xGwDxGwNxCg1wRoKAG6RoDWEMB/AjhJCE+Yg/7Z5ZN8nl1eE3B6rs09Nnp2eV2Aa57lvZ9xvSHANd/y3s+43hTgWmB572dcswW43ra89zOuOQJc71je+xnXWwJc71re+xnXXAGu96zqRN7ZZYIA1/uW9YtxTRTg+sCyfjGuBwW4FlrWL8b1kADXh5b1i3FNknznw7J+Ma6HBbg+tqxfjOsRAa5PLOsX45oswPUpiMu/0LPLp8DZBfBeBPghAjwKAb6BgL2cgP2VgD2PgH2IgL2BAL0mQEMJ0DUCtIYA/hPASUJ4whz0zy6f5vPsMk/A6S9s7rHRs8t8Aa7llvd+xrVAgOtLy3s/43pbgOsry3s/43pHgOtry3s/43pXgGuF5b2fcb0nwLXS8t7PuN4X4FplVSfyzi5TBLhWW9YvxjVVgGuNZf1iXI8KcH1jWb8Y1zQBrrWW9YtxPSbAtc6yfjGuxwW41lvWL8b1hADXBsv6xbieFODaCOLyL/Ts8hlwdgG8FwF+iACPQoBvIGAvJ2B/JWDPI2AfImBvIECvCdBQAnSNAK0hgP8EcJIQnjAH/bPLZ4Gzi3+hbzusX9B8X25gWst7pWEtz6OhWe1++WlkVLu/NNLYpDavNNLEoDZaGmla0FybPi8p6+3nSejtxUBvmwG9vQTobXOgt5cCvW0B9PYyoLeXA71dJOztoiT09gqgt1cCvb0K6G1LoLetgN62Bnp7NdDba4DeLhb2dnESetsG6G1boLftgN62B3rbAehtR6C31wK97QT0domwt0tKHvwvDH0c9cWflDzw94n+3uzruM95f334P4svL2IMwxjzf7XmtSOBWuTn/lcbey1V632Zii9ULFfxpYqvVHytYoWKlSpWqVitYo2Kb1SsVbFOxXoVG1RsVPGtiu9UfK/iBxU/qtikYnPJ5L66fWlJ7D7EX55ZWdJf3b5F4d6qYpuKn1T8rOIXFb+q+K1kJFbQuDj+FepbNbltmtxPmtzPmtwvmtyvmtxvJfP/6vZg08I2gS2Gtfzq9q3GtRHaZlqr8P5kVrv/1e0/G9Xmvbr9F5Pa6KvbfzWo9V/d/htAimSScdlhSsbtCvcOFb+r2Klil4o/VPypYnc8GbdrSLFDk/tdk9upye3S5P7Q5P7U5HYngYzLADJuB8i4AyDj7wAZdwJk3AWQ8Q+AjH8CZNydIjJ+cZiScY/C/ZeKv1X8o+JfFXtV7GMilorEEmCPhhR/aXJ/a3L/aHL/anJ7Nbl9mhyDyy8ZvwDIuAcg418AGf8GyPgPQMZ/ATLuBci4DyAj98iLmF3JJOPyw5SMpO5XARUFVRRScYSKI1UcxWs9noxU6mBSFNDkCmpyhTS5IzS5IzW5ozS5o5NAxuUAGamUORkLGNdGqKBprYJQyKx2PxmPMKrNI+ORJrVRMh5lUOuT8WiAjMELfTcc8qK+Y8wxUfB/oG9tPBYYB3l/BvqeIP9C8RcO9jnkTbbBd3qE1T7oCH+RmHV66DfZBt8zElb7kCP8x8Xy7JBvsh1Xx7x2kiP8xwfwh73JNvg+lrDahx3hPyGAP+xNtsF3xITVPuIIf9EA/rA32QbfWxNWO9kR/mIB/GFvsg2+Syesdooj/CcC+o88g/yCI/wnAfr/FKD/LzrCfzKg/08D+v+SI/ynAPr/DKD/LzvCfyqg/88C+v+KI/ynAfo/A9D/mY7wnw7o/3OA/r/qCH9xQP+fB/R/liP8JQD9R57jet8R/jMA/Z8H6P8HjvCXBPR/PqD/Cx3hLwXo/wJA/z90hL80oP9vA/r/kSP8ZQD9fwfQ/48d4fcA/X8X0P9PHOFPA/T/PUD/P3WEPx3Qf+S78Ksd4c8A9H85oP9rHOHPBPT/S0D/v3GEPwvQ/68A/V/rCH82oP9fA/q/zhH+HED/VwD6v94R/rKA/q8E9H+DI/zlAP1fBeg/+iwUxeEOK+ffRWwpefDnQn+/VNcmLtr/O5KtAlwFbOKivN/dbBPgKmgRF9cujH5vD8VVyB6u/aULo98lRHEdYQ1XXuXC6PcbUVxH2sIVLVwY/c4liusoS7j8uoXR74GiuI62qhMR4t+P8u8uUVzHWNYvxlVYgOtYy/rFuIoIcBW2rF+M6zgBriKW9YtxHS/AdZxl/WJcJwhwHW9ZvxhXUQGuEyzrF+MqJsBVFMTlX+iz6OWB8zfgvQjwQwR4FAJ8AwF7OQH7KwF7HgH7EAF7AwF6TYCGEqBrBGgNAfwngJOE8IQ56H8vjtd9biDPl2f0U/LOLtsFnuR0B2eXHQJcxR2cXX4X4Crh4OyyU4DrDAdnl10CXCUdnF3+EOAq5eDs8qcAV2kHZ5fdAlxlHJxdThR4Es/B2eUkAa40B2eXkwW40h2cXU4R4MpwcHY5VYAr08HZ5TQBriwHZ5fTBbiyHZxdigtw5Tg6u1QAzi6A9yLADxHgUQjwDQTs5QTsrwTseQTsQwTsDQToNQEaSoCuEaA1BPCfAE5SjvDsUiGfZ5c9Ak9SxcHZ5S8BrqoOzi5/C3BVc3B2+UeAq7qDs8u/Alw1HJxd9gpw1XRwdtknwHWmg7NLRLD3n+Xg7FJCgKuWg7PLGQJcZzs4u5QU4DrHwdmllADXuQ7OLqUFuM5zcHYpI8B1voOziyfAdYGDs0uaAFdtR2eXisDZBfBeBPghAjwKAb6BgL2cgP2VgD2PgH2IgL2BAL0mQEMJ0DUCtIYA/hPASaotPLtUzOfZhQScvsjB2aWAAFdDB2eXggJcjRycXQoJcDV2cHY5QoCriYOzy5ECXE0dnF2OEuC62MHZ5WgBrmYOzi7pAlyXODi7ZAhwNXdwdskU4LrUwdklS4CrhYOzS7YA12UOzi45AlyXOzi7lBXgusLB2aWcANeVjs4ulYCzC+C9CPBDBHgUAnwDAXs5AfsrAXseAfsQAXsDAXpNgIYSoGsEaA0B/CeAk3Sl8OxSqdTB71M/1PvS+c/yUR5XKHXg/OP/LL68iDEMiNv/1ZrVjgRqkZ/7X23sVVmt9yoqqqqopqK6ihoqaqo4U8VZKmqpOFvFOSrOVXGeivNVXKCitooLmX8q6qioq6KeivoqGqi4qFRyX1RZuRR2H+Ivz6ws6S+qbKhwN1LRWEUTFU1VXKyimYpLSkViBY2L418Y2UiTa6zJNdHkmmpyF2tyzTS5S0rl/0WVwaaF/uWLYS2/qLKRca0yG6a1bDbMave/qLKpUW3eiyovNqmNvqiymUGt/6LKSwBSJJOMVQ5TMjZXuC9V0ULFZSouV3GFiitVXBVPxuYaUlyqybXQ5C7T5C7X5K7Q5K7U5K5KAhmrAGRsDpDxUoCMLQAyXgaQ8XKAjFcAZLwSIONVKSJj1cOUjC0V7lYqWqu4WsU1KtqoaKuiXTwZW2pI0UqTa63JXa3JXaPJtdHk2mpy7ZJAxqoAGVsCZGwFkLE1QMarATJeA5CxDUDGtgAZ26WIjNUOUzK2V7g7qOio4loVnVRcp6Kzii7xZGyvIUUHTa6jJnetJtdJk7tOk+usyXVJAhmrAWRsD5CxA0DGjgAZrwXI2Akg43UAGTsDZOwiJAX67pWu5uNAz84eU9cN/m7BexryPqrg87xhtcc6wt89Zk0c+n1UwWeMw2oLO8LfI3ZNH/J9VIXqmtcWcYS/ZwB/2Puogs9ih9Ue5wh/rwD+sPdRBZ8PD6s93hH+3gH8Ye+jCj6zHlZ7giP8fQL4w95HFXyOPqy2qCP8fQH9R54/8hzh7wfof3FA/9Mc4e8P6H8JQP/THeEfAOj/GYD+ZzjCPxDQ/5KA/mc6wj8I0P9SgP5nOcI/GND/0oD+ZzvCfz2g/2UA/c9xhH8IoP/Id7hrOcI/FND/qoD+n+0I/zBA/6sB+n+OI/zDAf2vDuj/uY7w3wDofw1A/89zhP9GQP9rAvp/viP8NwH6fyag/xc4wn8zoP9nAfpf2xH+EYD+I9+Du8QR/pGA/jcE9L+5I/y3APrfCND/Sx3hvxXQ/8aA/rdwhP82QP+bAPp/mSP8twP63xTQ/8sd4b8D0P+LAf2/whH+OwH9bwboP/L9Tv5lXIHIgV+8BS+Km0/IRWUKmY8bHG9UqXwMyB9GPzca+AWUFNfoUgcSntnnrDUjbI7B8e7KTzP4wwXiPhc2+F2Ai7jbQePu1iyosLHuBn/jhv58Xkx3a+5t2DCj/w/dW34qravg3na3/PQX4+omwNXDwdOr3QW4ejp4erWHAFcvB0+v9hTg6u3g6dVeAlx9HDy92luAq6+Dp1f7CHD1s6oTeU+vNhTg6u/g6dVGAlwDHDy92liAa6CDp1ebCHANcvD0alMBrsEOnl69WIDregdPrzYT4Bri4OnVSwS4hjp6evUewBMC3osAP0SARyHANxCwlxOwvxKw5xGwDxGwNxCg1wRoKAG6RoDWEMB/AjhJCE+Yg/43V3nd5wbyfHlGPyXv7NJXwOmRDs4u/QS4bnFwdukvwHWrg7PLAAGu2xycXQYKcN3u4OwySIDrDgdnl8ECXHc6OLtcL8A1ysHZpbkA12gHZ5dLBbjucnB2aSH5e0AHZ5fLBLjucXB2uVyA614HZ5crBLjuc3B2uVKAa4yDs8tVAlxjHZ1d7gXOLoD3IsAPEeBRCPANBOzlBOyvBOx5BOxDBOwNBOg1ARpKgK4RoDUE8J8ATtJY4dnl3nyeXYYIOP2Qg7PLUAGuSQ7OLsMEuB52cHYZLsD1iIOzyw0CXJMdnF1uFOCa4uDscpMA11QHZ5ebBbgedXB2aSnANc3B2aWVANdjDs4urQW4HndwdrlagOsJB2eXawS4nnRwdmkjwDXdwdmlrQDXUw7OLu0EuJ52dHa5Dzi7AN6LAD9EgEchwDcQsJcTsL8SsOcRsA8RsDcQoNcEaCgBukaA1hDAfwI4SU8Lzy735fPsMkLA6ZccnF1GCnC97ODscosA1ysOzi63CnDNdHB2uU2A61UHZ5fbBbhmOTi73CHA9ZqDs8udAlyvOzi7tBfgesPB2aWDANebDs4uHQW4Zjs4u1wrwDXHwdmlkwDXWw7OLtcJcM11cHbpLMA1z8HZpYsA13xHZ5cxwNkF8F4E+CECPAoBvoGAvZyA/ZWAPY+AfYiAvYEAvSZAQwnQNQK0hgD+E8BJmi88u4wJnF38C33b4XUFzfflzqa1ClwXw1qeR1ez2v3y082oNk+pupvURkWth0Gtr389C5pr09hSst6OTUJvewG97Q30tg/Q275Ab/sBve0P9HYA0NuBQG/HCXs7Lgm9HQT0djDQ2+uB3g4BejsU6O0woLfDgd7eAPR2vLC345PQ2xuB3t4E9PZmoLcjgN6OBHp7C9DbW4He3gb09n5hb+8vdfC/MHRP1BffW+rA3yf6e7Ov4z7n/fXh/yy+vIgxDGPM/9Wa144EapGf+19t7PWAWu8TVExU8aCKh1RMUvGwikdUTFYxRcVUFY+qmKbiMRWPq3hCxZMqpqt4SsXTKp5R8ayKGSqeU/F8qeS+uv2BUth9iL88s7Kkv7r9BYX7RRUvqXhZxSsqZqp4VcWsUpFYQePi+Feov6jJvaTJvazJvaLJzdTkXtXkZpXK/6vbg00L2wReMKzlV7e/aFyr/oLBtJb/gsGsdv+r218xqs17dftMk9roq9tfNaj1X90+CyBFMsk44TAl42sK9+sq3lDxporZKuaoeEvF3HgyvqYhxeua3Bua3Jua3GxNbo4m95YmNzcJZJwAkPE1gIyvA2R8AyDjmwAZZwNknAOQ8S2AjHNTRMaJhykZ5ync81UsUPG2indUvKviPRXvx5NxnoYU8zW5BZrc25rcO5rcu5rce5rc+0kg40SAjPMAMs4HyLgAIOPbABnfAcj4LkDG9wAyvp8iMj54mJLxA4V7oYoPVXyk4mMVn6j4VMVn8WT8QEOKhZrch5rcR5rcx5rcJ5rcp5rcZ0kg44MAGT8AyLgQIOOHABk/Asj4MUDGTwAyfgqQ8TMhKQpE//QMe4O8qO9zc0wU/B/oWxsXAeMg78/oL/xdLop/cfCehrzJNvhOj7DaAY7wL4lZE4d+k23wPSNhtQMd4V8au6YP+SbbXnXNawc5wr8sgD/sTbbB97GE1Q52hP+LAP6wN9kG3xETVnu9I/zLA/jD3mQbfG9NWO0QR/i/DOAPe5Nt8F06YbVDHeH/CtB/5Bnk0Y7wfw3o/y2A/t/lCP8KQP9vBfT/bkf4VwL6fxug//c4wr8K0P/bAf2/1xH+1YD+3wHo/32O8K8B9P9OQP/HOML/DaD/owD9H+sI/1pA/5HnuKY5wr8O0P9JgP4/5gj/ekD/Hwb0/3FH+DcA+v8IoP9POMK/EdD/yYD+P+kI/7eA/k8B9H+6I/zfAfo/FdD/pxzh/x7Q/0cB/X/aEf4fAP1Hvgv/hiP8PwL6/zKg/286wr8J0P9XAP2f7Qj/ZkD/ZwL6P8cR/i2A/r8K6P9bjvBvBfR/FqD/cx3h3wbo/2uA/s9zhP8nQP9fB/QffRaK4nCHlfPvIvgrTQTOd63lZzkZ14sCXOssP8vJuF4S4Fpv+VlOxvWyANcGy89yMq5XBLg2Wn6Wk3HNFOD61vKznIzrVQGu7yw/y8m4ZglwfW9Zv/j3o4sEuH6wrF+Ma7EA14+W9YtxLRHg2mRZvxjXUgGuzZb1i3EtE+DaYlm/GNcXAlxbLesX41ouwLXNsn4xri8FuH5y9Cz6z8D5G/BeBPghAjwKAb6BgL2cgP2VgD2PgH2IgL2BAL0mQEMJ0DUCtIYA/hPASUJ4whz0vxfH6z43kOfLM/opeWeX1wSc3ung7PK6ANcuB2eXNwS4/nBwdnlTgOtPB2eX2QJcux2cXeYIcO1xcHZ5S4DrLwdnl7kCXH87OLt8JcD1j4Ozy9cCXP86OLusEODa6+DsslKAa5+Ds8sqAa5IPftnl9UCXGQLV+DsskaAq4AlXMGzyzcCXAVBXP6Fnl1+Ac4ugPciwA8R4FEI8A0E7OUE7K8E7HkE7EME7A0E6DUBGkqArhGgNQTwnwBOEsKT4Nnll3yeXeYJOF3YmjbnVTOu+QJcRWziip5dFghwHWcRl392eVuA63h7uP53dnlHgOsEy3s/43pXgKuo5b2fcb0nwFXM8t7PuN4X4DrRqk7knV3WCnCdZFm/GNc6Aa6TLesX41ovwHWKZf1iXBsEuE61rF+Ma6MA12kOzi7fCnCd7uDs8p0AV3EHZ5fvBbhKODq7/AqcXQDvRYAfIsCjEOAbCNjLCdhfCdjzCNiHCNgbCNBrAjSUAF0jQGsI4D8BnKQSwrPLr/k8u3wg4HS6g7PLQgGuDAdnlw8FuDIdnF0+EuDKcnB2+ViAK9vB2eUTAa4cB2eXTwW4yjo4u3wmwFXOwdnlBwGu8g7OLj8KcFVwcHbZJMBV0cHZZbMAVyUHZ5ctAlyVHZxdtgpwVXFwdtkmwFXVwdnlJwGuao7OLr8BZxfAexHghwjwKAT4BgL2cgL2VwL2PAL2IQL2BgL0mgANJUDXCNAaAvhPACepmvDs8lupg9+nfqj3pfOfP0f//KXUgfOP/7P48iLGMCBu/1drVjsSqEV+7n+1sdd2td53qPhdxU4Vu1T8oeJPFbtV7FHxl4q/Vfyj4l8Ve1XsY56UVgRQUUBFQRWFVByh4kgVR6k4WsUxpZP7osrtpbD7EH95ZmVJf1Hlseo+FFZRRMVxKo5XcYKKoiqKlY7EChoXx78wsrAmV0STO06TO16TO0GTK6rJFSud/xdVBpsWZmJ47ia1/KLKwsa16i9gTWv5L2DNave/qPJ4o9q8F1WeYFIbfVFlUYNa/0WVxUqbkyKZZNxxmJLxRHW/TlJxsopTVJyq4jQVp6soHk/GEzWkOEmTO1mTO0WTO1WTO02TO12TK54EMu4AyHgiQMaTADKeDJDxFICMpwJkPA0g4+kAGYuniIy/H6ZkLKHu1xkqSqoopaK0ijJ8D1WkxZOxhIYUZ2hyJTW5UppcaU2ujCbnaXJpSSDj7wAZSwBkPAMgY0mAjKUAMpYGyFgGIKMHkDEtRWTceZiSMV3drwwVmSqyVGSryFFRVkW5eDKma0iRocllanJZmly2JpejyZXV5MolgYw7ATKmA2TMAMiYCZAxCyBjNkDGHICMZQEylgPIGLzQd6+UNx8HenYWfUeAf6H4KwTvacj7qNYB76760RH+ijFr4tDvo1oPvLtqkyP8lWLX9CHfR7UBeHfVZkf4Kwfwh72PaiPw7qotjvBXCeAPex/Vt8C7q7Y6wl81gD/sfVTfAe+u2uYIf7UA/rD3UX0PvLvqJ0f4qwP6v9POszQxF4q/BqD/uwD9/9cR/pqA/v8B6P9eR/jPBPT/T0D/9znCfxag/7sB/UefA5XirwXo/x5A/8kR/rMB/f8L0P8CjvCfA+j/34D+F3SE/1xA/5HvcJ/kCP95gP4Hv1ceVnuyI/znA/of/K57WO0pjvBfAOj/8fXMa091hL82oP/BZwLCak9zhP9CQP+DzymE1Z7uCH8uoP/BZyfCaos7wl8H0P/g8xxhtSUc4a8L6D/yPbjyjvDXA/Q/A9D/Co7w1wf0PxPQ/4qO8DcA9D8L0P9KjvBfBOh/NqD/lR3hbwjofw6g/1Uc4W8E6H9ZQP+rOsLfGND/coD+I9/v5F/GFYgc+MVb8KK4+YRc5BUyHzc4XpPS+RiQP4x+rmlp8yZJcTUtfSDhmX3OWjNCX/AU+ODF+WkGf7hA3OfCBr8YcBHNHDSumWZBhY3VDPyNG/rzeTE109zbsGGa/h+6t/xUWnnBvW1g6ymYaDXjqiDAdZFNXJT3FF9FAa6GFnFxLeOqJMDVyB6u/aWMq7IAV2NruPIqGVcVAa4mtnBFCxlXVQGuppZw+XWMq5oA18VWdSLv6dVjJXuDZf1iXIUFuC6xrF+Mq4gAV3PL+sW4jhPgutSyfjGu4wW4WljWL8Z1ggDXZZb1i3EVFeC63LJ+Ma5iAlxXCE+d6NOrlwCeEPBeBPghAjwKAb6BgL2cgP2VgD2PgH2IgL2BAL0mQEMJ0DUCtIYA/hPASUJ4whwsGP2T131uIM+XZ/RT8s4u1QWcbuPg7FJDgKutg7NLTQGudg7OLmcKcLV3cHY5S4Crg4OzSy0Bro4Ozi5nC3Bd6+Dsco4AVycHZ5cTBbiuc3B2OUmAq7ODs8vJAlxdHJxdThHg6urg7HKqAFc3B2eX0wS4ujs4u5wuwNXDwdmluABXT0dnl+bA2QXwXgT4IQI8CgG+gYC9nID9lYA9j4B9iIC9gQC9JkBDCdA1ArSGAP4TwEnqKTy7NM/n2eVcAacHOji7nCfANcjB2eV8Aa7BDs4uFwhwXe/g7FJbgGuIg7PLhQJcQx2cXXIFuIY5OLvUEeAa7uDsUkKA6wYHZ5czBLhudHB2KSnAdZODs0spAa6bHZxdSgtwjXBwdikjwDXSwdnFE+C6xcHZJU2A61ZHZ5dLgbML4L0I8EMEeBQCfAMBezkB+ysBex4B+xABewMBek2AhhKgawRoDQH8J4CTdKvw7HJpPs8udQWcvtvB2aWeANc9Ds4u9QW47nVwdmkgwHWfg7PLRQJcYxycXRoKcI11cHZpJMA1zsHZpbEA13gHZ5d0Aa77HZxdMgS4HnBwdskU4Jrg4OySJcA10cHZJVuA60EHZ5ccAa6HHJxdygpwTXJwdiknwPWwo7NLC+DsAngvAvwQAR6FAN9AwF5OwP5KwJ5HwD5EwN5AgF4ToKEE6BoBWkMA/wngJD0sPLu0CJxd/At92+HtBc335TtMaxW4Ow1reR6jzGr3y89oo9o8pbrLpDYqancb1Pr6d09Bc226rLSst5clobf3Ar29D+jtGKC3Y4HejgN6Ox7o7f1Abx8Aenu5sLeXJ6G3E4DeTgR6+yDQ24eA3k4Cevsw0NtHgN5OBnp7hbC3VySht1OA3k4Fevso0NtpQG8fA3r7ONDbJ4DePgn09kphb68sffC/MHRJ1Bc3L33g7xP9vdnXcZ/z/vrwfxZfXsQYhjHm/2rNa0cCtcjP/a829rpKrfeWKlqpaK3iahXXqGijoq2Kdiraq+igoqOKa1V0UnGdis4quqjoqqKbiu4qeqjoqaKXit4q+pRO7qvbrwKfmY+/PLOypL+6va/C3U9FfxUDVAxUMUjFYBXXl47EChoXx79CvZ8m11+TG6DJDdTkBmlygzW560vn/9XtwaaFbQJ9DWv51e39jGsj1N+0VuEdYFa7/9XtA41q817dPsikNvrq9sEGtf6r268HSJFMMrY8TMk4ROEeqmKYiuEqblBxo4qbVNwcT8YhGlIM1eSGaXLDNbkbNLkbNbmbNLmbk0DGlgAZhwBkHAqQcRhAxuEAGW8AyHgjQMabADLenCIytjpMyThC4R6p4hYVt6q4TcXtKu5QcWc8GUdoSDFSk7tFk7tVk7tNk7tdk7tDk7szCWRsBZBxBEDGkQAZbwHIeCtAxtsAMt4OkPEOgIx3poiMrQ9TMo5SuEeruEvF3SruUXGvivtUjIkn4ygNKUZrcndpcndrcvdocvdqcvdpcmOSQMbWABlHAWQcDZDxLoCMdwNkvAcg470AGe8DyDhGSAr03XDIi/rGmmOi4P8oCGIaB4yDvD8DfU+Qf6H4xwfvacibbIPv9AirvcQR/vtj1sSh32QbfM9IWG1zR/gfiF3Th3yTbaN65rWXOsI/IYA/7E22wfexhNW2cIR/YgB/2Jtsg++ICau9zBH+BwP4w95kG3xvTVjt5Y7wPxTAH/Ym2+C7dMJqr3CEfxKg/8gzyNc5wv8woP9tAf3v7Aj/I4D+twP0v4sj/JMB/W8P6H9XR/inAPrfAdD/bo7wTwX0vyOg/90d4X8U0P9rAf3v4Qj/NED/OwH639MR/scA/Uee47rBEf7HAf0fBOj/jY7wPwHo/2BA/29yhP9JQP+vB/T/Zkf4pwP6PwTQ/xGO8D8F6P9QQP9HOsL/NKD/wwD9v8UR/mcA/R8O6P+tjvA/C+g/8l34+x3hnwHo/z2A/j/gCP9zgP7fC+j/BEf4nwf0/z5A/yc6wv8CoP9jAP1/0BH+FwH9Hwvo/0OO8L8E6P84QP8nOcL/MqD/4wH9R5+FojjcYeX8uwj+ShOB851jFRft/x1JPwGut2ziorzf3fQX4JprERfXMq4BAlzz7OHaX8q4BgpwzbeGK6+ScQ0S4FpgC1e0kHENFuB62xIuv45xXS/A9Y5l/eLfj44T4HrXsn4xrvECXO9Z1i/Gdb8A1/uW9YtxPSDA9YFl/WJcEwS4FlrWL8Y1UYDrQ8v6xbgeFOD6yLJ+Ma6HBLg+FvpH9Fn0V4DzN+C9CPBDBHgUAnwDAXs5AfsrAXseAfsQAXsDAXpNgIYSoGsEaA0B/CeAk4TwhDlYMPonr/vcQJ4vz+in5J1dhgg4vdTB2WWoANcyB2eXYQJcXzg4uwwX4Fru4OxygwDXlw7OLjcKcH3l4OxykwDX1w7OLjcLcK1wcHaZJMC10sHZ5WEBrlUOzi6PCHCtdnB2mSzAtcbB2WWKANc3Ds4uUwW41jo4uzwqwLXOwdllmgDXekdnl5nA2QXwXgT4IQI8CgG+gYC9nID9lYA9j4B9iIC9gQC9JkBDCdA1ArSGAP4TwElaLzy7zMzn2WWEgNObHJxdRgpwbXZwdrlFgGuLg7PLrQJcWx2cXW4T4Nrm4OxyuwDXTw7OLncIcP3s4OxypwDXLw7OLo8JcP3q4OzyuADXbw7OLk8IcG13cHZ5UoBrh4Ozy3QBrt8dnF2eEuDa6eDs8rQA1y4HZ5dnBLj+cHR2eRU4uwDeiwA/RIBHIcA3ELCXE7C/ErDnEbAPEbA3EKDXBGgoAbpGgNYQwH8COEl/CM8ur+bz7DJKwOm9Ds4uowW49jk4u9wlwBWpb//scrcAF9nD9b+zyz0CXAWs4TpwdrlXgKugLVyBs8t9AlyFLOEKnl3GCHAdYXHdR6Jnl2cFuI60iivv7DJDgOsom7iiZ5fnBLiOtqxfjOt5Aa5jLOsX43pBgOtYy/rFuF4U4CpsWb8Y10sCXEUs6xfjelmA6zgQl3+hZ5dZwNkF8F4E+CECPAoBvoGAvZyA/ZWAPY+AfYiAvYEAvSZAQwnQNQK0hgD+E8BJQngSPLvMKn3w+9QP9b50/vOV6J8zSx84//g/iy8vYgwD4vZ/tWa1I4Fa5Of+Vxt7vabW++sq3lDxporZKuaoeEvFXBXzVMxXsUDF2yreUfGuivdUvK/iAxULVXyo4iMVH6v4RMWnKj5T8Xnp5L6o8rXS2H2IvzyzsqS/qHKRwr1YxRIVS1UsU/GFiuUqviwdiRU0Lo5/YeRiTW6JJrdUk1umyX2hyS3X5L4snf8XVQabFmZiFhnW8osqFxvXRmiJaa3Cu9Ssdv+LKpcZ1ea9qPILk9roiyqXG9T6L6r8EiBFMsn4+mFKxq8U7q9VrFCxUsUqFatVrFHxTTwZv9KQ4mtNboUmt1KTW6XJrdbk1mhy3ySBjK8DZPwKIOPXABlXAGRcCZBxFUDG1QAZ1wBk/CZFZHzjMCXjWoV7nYr1Kjao2KjiWxXfqfg+noxrNaRYp8mt1+Q2aHIbNblvNbnvNLnvk0DGNwAyrgXIuA4g43qAjBsAMm4EyPgtQMbvADJ+nyIyvnmYkvEHhftHFZtUbFaxRcVWFdtU/BRPxh80pPhRk9ukyW3W5LZocls1uW2a3E9JIOObABl/AMj4I0DGTQAZNwNk3AKQcStAxm0AGX8SksInpGfYm5/Nx4GenUXfEeBfKP5fgvc05H1Uwed5w2rfc4T/15g1cej3UQWfMQ6rfd8R/t9i1/Qh30c1r5557QeO8G8P4A97H1XwWeyw2oWO8O8I4A97H1Xw+fCw2g8d4f89gD/sfVTBZ9bDaj9yhH9nAH/Y+6iCz9GH1X7sCP8uQP+R549WOsL/B6D/ywD9X+UI/5+A/n8B6P9qR/h3A/q/HND/NY7w7wH0/0tA/79xhP8vQP+/AvR/rSP8fwP6/zWg/+sc4f8H0P8VgP6vd4T/X0D/ke9w/+oI/15A/zcD+v+bI/z7AP3fAuj/dkf4I2XMNX0roP87HOGnMuaavg3Q/98d4S9QxlzTfwL0f6cj/AXLmGv6z4D+73KEv1AZc03/BdD/PxzhP6KMuaYj34M7sr4b/EeWMdf0fYD+H+UI/1FlzDU9+H3BsNqjHeE/GtB/qm9ee4wj/McA+h/8XmVY7bGO8B8L6H/wu55htYUd4S8M6H/w+6dhtUUc4S8C6H/wO7Fhtcj3O/mXcfzvqJLm/6O4+YRclFbIfNzgeMeVyceA/GH0c8eXAUyqENfxZQ4kPLPPWWtGqJENfPCE/DSDP4z+q7wnAC6iqIPGFdUsqLCxiprPQYsr7OfzYiqqubdhwxz/f+je8lNp/BtDdO5plp/+Yly/CHClW376i3H9KsCV4eDp1d8EuDIdPL26XYAry8HTqzsEuLIdPL36uwBXjoOnV3cKcJW1qhN5T68uEuAq5+Dp1cUCXOUdPL26RICrgoOnV5cKcFV08PTqMgGuSg6eXv1CgKuyg6dXlwtwVXHw9OqXAlxVHT29WgzwhID3IsAPEeBRCPANBOzlBOyvBOx5BOxDBOwNBOg1ARpKgK4RoDUE8J8AThLCE+ag/81VXve5gTxfntFPyTu77BJw+mwHZ5c/BLjOcXB2+VOA61wHZ5fdAlznOTi77BHgOt/B2eUvAa4LHJxd/hbgqu3g7PKPANeFDs4uXwlw5To4u3wtwFXHwdllhQBXXQdnl5UCXPUcnF1WCXDVd3B2WS3A1cDB2WWNANdFDs4u3whwNXR0djkROLsA3osAP0SARyHANxCwlxOwvxKw5xGwDxGwNxCg1wRoKAG6RoDWEMB/AjhJDYVnlxPzeXb5V8Dp5g7OLnsFuC51cHbZJ8DVwsHZJSL43eRlDs4uJMB1uYOzSwEBriscnF0KCnBd6eDsUkiA6yoHZ5e1Aj62dHB2WSfA1crB2WW9AFdrB2eXDQJcVzs4u2wU4LrGwdnlWwGuNg7OLt8JcLV1cHb5XoCrnaOzy0nA2QXwXgT4IQI8CgG+gYC9nID9lYA9j4B9iIC9gQC9JkBDCdA1ArSGAP4TwElqJzy7nJTPs8sRAk/SxcHZ5UgBrq4Ozi5HCXB1c3B2OVqAq7uDs8sxAlw9HJxdjhXg6ung7FJYgKuXg7NLEQGu3g7OLj8IPEkfB2eXHwW4+jo4u2wS4Orn4OyyWYCrv4OzyxYBrgEOzi5bBbgGOji7bBPgGuTg7PKTANdgR2eXk4GzC+C9CPBDBHgUAnwDAXs5AfsrAXseAfsQAXsDAXpNgIYSoGsEaA0B/CeAkzRYeHY5OXB28S/0bYfTC5rvy0+Z1ipwTxvW8jyeMavdLz/PGtXmKdUMk9qoqD1nUOvr3/MFzbXplDKy3p6ShN6+APT2RaC3LwG9fRno7StAb2cCvX0V6O0soLenCnt7ahJ6+xrQ29eB3r4B9PZNoLezgd7OAXr7FtDbuUBvTxP29rQk9HYe0Nv5QG8XAL19G+jtO0Bv3wV6+x7Q2/eB3p4u7O3pZQ7+F4aKRc/1J5Y58PeJ/t7s67jPeX99+D+LLy9iDMMY83+15rUjgVrk5/5XG3sVV+u9hIozVJRUUUpFaRVlmIsq0lSkq8hQkakiS0W2ihwVZVWUU1FeRQUVFVVUUlFZRRUVVVVUK5PcV7cXB5+Zj788s7Kkv7q9usJdQ0VNFWeqOEtFLRVnqzinTCRW0Lg4/hXqNTS5mprcmZrcWZpcLU3ubE3unDL5f3V7ceAlAdUNa/nV7TWMayNU07RW4T3TrHb/q9vPMqrNe3V7LZPa6Kvbzzao9V/dfg5AimSSscRhSsZzFe7zVJyv4gIVtVVcyCZCRZ14Mp6rIcV5mtz5mtwFmlxtTe5CTS5Xk6uTBDKWAMh4LkDG8wAyng+Q8QKAjLUBMl4IkDEXIGOdFJHxjMOUjHUV7noq6qtooOIiFQ1VNFLROJ6MdTWkqKfJ1dfkGmhyF2lyDTW5Rppc4ySQ8QyAjHUBMtYDyFgfIGMDgIwXAWRsCJCxEUDGxikiY8nDlIxNFO6mKi5W0UzFJSqaq7hURYt4MjbRkKKpJnexJtdMk7tEk2uuyV2qybVIAhlLAmRsApCxKUDGiwEyNgPIeAlAxuYAGS8FyNhCSAr03XDIi/ouM8dEwf+BvrXxcmAc5P0Z5YS/y0XxXxG8pyFvsg2+0yOstrwj/FfGrIlDv8k2+J6RsNoKjvBfFbumD/km28z65rUVHeFvGcAf9ibb4PtYwmorOcLfKoA/7E22wXfEhNVWdoS/dQB/2Jtsg++tCaut4gj/1QH8YW+yDb5LJ6y2qiP81wD6jzyDnOsIfxtA/88B9L+OI/xtAf0/F9D/uo7wtwP0/zxA/+s5wt8e0P/zAf2v7wh/B0D/LwD0v4Ej/B0B/a8N6P9FjvBfC+j/hYD+N3SEvxOg/8hzXC0d4b8O0P9LAf1v5Qh/Z0D/WwD639oR/i6A/l8G6P/VjvB3BfT/ckD/r3GEvxug/1cA+t/GEf7ugP5fCeh/W0f4ewD6fxWg/+0c4e8J6D/yXfg+jvD3AvS/K6D/fR3h7w3ofzdA//s5wt8H0P/ugP73d4S/L6D/PQD9H+AIfz9A/3sC+j/QEf7+gP73AvR/kCP8AwD97w3oP/osFMXhDivn30XwV5oInO9Ey89yMq4aAlwPWn6Wk3HVFOB6yPKznIzrTAGuSZaf5WRcZwlwPWz5WU7GVUuA6xHLz3IyrrMFuCZbfpaTcZ0jwDXFsn7x70cvF+Caalm/GNcVAlyPWtYvxnWlANc0y/rFuK4S4HrMsn4xrpYCXI9b1i/G1UqA6wnL+sW4WgtwPWlZvxjX1QJc0x09iz4QOH8D3osAP0SARyHANxCwlxOwvxKw5xGwDxGwNxCg1wRoKAG6RoDWEMB/AjhJCE+Yg/734njd5wbyfHlGPyXv7HKugNMvODi7nCfA9aKDs8v5AlwvOTi7XCDA9bKDs0ttAa5XHJxdLhTgmung7JIrwPWqg7NLHQGuWQ7OLtcIcL3m4OzSRoDrdQdnl7YCXG84OLu0E+B608HZpb0A12wHZ5cOAlxzHJxdOgpwveXg7HKtANdcR2eXQcDZBfBeBPghAjwKAb6BgL2cgP2VgD2PgH2IgL2BAL0mQEMJ0DUCtIYA/hPASZorPLsMyufZpa6A0+87OLvUE+D6wMHZpb4A10IHZ5cGAlwfOji7XCTA9ZGDs0tDAa6PHZxdGglwfeLg7NJYgOtTB2eXTgJcnzk4u1wnwPW5g7NLZwGuRQ7OLl0EuBY7OLt0FeBa4uDs0k2Aa6mDs0t3Aa5lDs4uPQS4vnB0dhkMnF0A70WAHyLAoxDgGwjYywnYXwnY8wjYhwjYGwjQawI0lABdI0BrCOA/AZykL4Rnl8H5PLs0EXB6tYOzS1MBrjUOzi4XC3B94+Ds0kyAa62Ds8slAlzrHJxdmgtwrXdwdrlUgGuDg7NLCwGujQ7OLj0FuL51cHbpJcD1nYOzS28Bru8dnF36CHD94ODs0leA60cHZ5d+AlybHJxd+gtwbXZwdhkgwLXF0dnleuDsAngvAvwQAR6FAN9AwF5OwP5KwJ5HwD5EwN5AgF4ToKEE6BoBWkMA/wngJG0Rnl2uL3Pw+9QP9b50/nNg9M9BZQ6cf/yfxZcXMYYBcfu/WrPakUAt8nP/q429hqj1PlTFMBXDVdyg4kYVN6m4WcUIFSNV3KLiVhW3qbhdxR0q7lQxSsVoFXepuFvFPSruVXGfijEqxpZJ7osqh5TB7kP85ZmVJf1FleMU7vEq7lfxgIoJKiaqeFDFQ2UisYLGxfEvjByvyd2vyT2gyU3Q5CZqcg9qcg+Vyf+LKoNNCzMx4wxr+UWV441rI3S/aa3C+4BZ7f4XVU4wqs17UeVEk9roiyofNKj1X1T5EECKZJJx6GFKxkkK98MqHlExWcUUFVNVPKpiWjwZJ2lI8bAm94gmN1mTm6LJTdXkHtXkpiWBjEMBMk4CyPgwQMZHADJOBsg4BSDjVICMjwJknJYiMg47TMn4mML9uIonVDypYrqKp1Q8reKZeDI+piHF45rcE5rck5rcdE3uKU3uaU3umSSQcRhAxscAMj4OkPEJgIxPAmScDpDxKYCMTwNkfCZFZBx+mJLxWYV7hornVDyv4gUVL6p4ScXL8WR8VkOKGZrcc5rc85rcC5rci5rcS5rcy0kg43CAjM8CZJwBkPE5gIzPA2R8ASDjiwAZXwLI+LKQFOi7V14xHwd6dnZqfTf4Zwbvacj7qILP84bVPuoI/6sxa+LQ76MKPmMcVjvNEf5ZsWv6kO+jmlTfvPYxR/hfC+APex9V8FnssNrHHeF/PYA/7H1UwefDw2qfcIT/jQD+sPdRBZ9ZD6t90hH+NwP4w95HFXyOPqx2uiP8swH9R54/es0R/jmA/r8I6P/rjvC/Bej/S4D+v+EI/1xA/18G9P9NR/jnAfr/CqD/sx3hnw/o/0xA/+c4wr8A0P9XAf1/yxH+twH9nwXo/1xH+N8B9B/5DvdnjvC/C+j/B4D+f+4I/3uA/i8E9H+RI/zvA/r/IaD/ix3h/wDQ/48A/V/iCP9CQP8/BvR/qSP8HwL6/wmg/8sc4f8I0P9PAf3/whH+jwH9R74H960j/J8A+r8G0P/vHOH/FND/bwD9/94R/s8A/V8L6P8PjvB/Duj/OkD/f3SEfxGg/+sB/d/kCP9iQP83APq/2RH+JYD+bwT0H/l+Z6FI3r+jSpr/j+LmE3JReiHzcYPjLS2TjwH5w+jnlgG/gJLiWlbmQMIz+5y1ZoTNMTjeF/lpBn8Y/Vd5vwBcxHIHjVuuWVBhYy0Hf+OG/nxeTMs19zZsmGX/h+4tP5X2iuDe/mvzKatI3tOrMwW49jp4evVVAa59Dp5enSXAFWlgDdf+Usb1mgAXWcOVV8m4XhfgKmALV7SQcb0hwFXQEi6/jnG9KcBVyN762l/OT6WNE+A6wiquvKdXxwtwHWkTF+U9xXe/ANdRFnFxLeN6QIDraMv6xbgmCHAdY1m/GNdEAa5jLesX43pQgKuwZf1iXA8JcBUBcfkX+vTql4AnBLwXAX6IAI9CgG8gYC8nYH8lYM8jYB8iYG8gQK8J0FACdI0ArSGA/wRwkhCeMAf9b67yus8N5PnyjH5K3tlltoDTJ1ve+xnXHAGuUyzv/YzrLQGuUy3v/YxrrgDXaQ7OLvMEuE53cHaZL8BV3MHZZYEAVwkHZ5e3BbjOcHB2mSTAVdLB2eVhAa5SDs4ujwhwlXZwdpkswFXGwdlligCX5+DsMlWAK83B2eVRAa50B2eXaQJcGY7OLl8BZxfAexHghwjwKAT4BgL2cgL2VwL2PAL2IQL2BgL0mgANJUDXCNAaAvhPACcpQ3h2+SqfZ5d3BJyu4ODs8q4AV0UHZ5f3BLgqOTi7vC/AVdnB2eUDAa4qDs4uCwW4qjo4u3wowFXNwdnlIwGu6g7OLo8JcNVwcHZ5XICrpoOzyxMCXGc6OLs8KcB1loOzy3QBrloOzi5PCXCd7eDs8rQA1zkOzi7PCHCd6+js8jVwdgG8FwF+iACPQoBvIGAvJ2B/JWDPI2AfImBvIECvCdBQAnSNAK0hgP8EcJLOFZ5dvs7n2eVjAafrOji7fCLAVc/B2eVTAa76Ds4unwlwNXBwdvlcgOsiB2eXRQJcDR2cXRYLcDVycHZZIsDV2MHZ5VkBriYOzi4zBLiaOji7PCfAdbGDs8vzAlzNHJxdXhDgusTB2eVFAa7mDs4uLwlwXerg7PKyAFcLR2eXFcDZBfBeBPghAjwKAb6BgL2cgP2VgD2PgH2IgL2BAL0mQEMJ0DUCtIYA/hPASWohPLusCJxd/At92+EHBc335YWmtQrch4a1PI+PzGr3y8/HRrV5SvWJSW1U1D41qPX177OC5tq0soystyuT0NvPgd4uAnq7GOjtEqC3S4HeLgN6+wXQ2+VAb1cJe7sqCb39EujtV0BvvwZ6uwLo7Uqgt6uA3q4GersG6O1qYW9XJ6G33wC9XQv0dh3Q2/VAbzcAvd0I9PZboLffAb1dI+ztmjIH/wtDX0Z98VdlDvx9or83+zruc95fH/7P4suLGMMwxvxfrXntSKAW+bn/1cZe36j1vlbFOhXrVWxQsVHFtyq+U/G9ih9U/Khik4rNKrao2Kpim4qfVPys4hcVv6r4TcV2FTtU/K5iZ5nkvrr9mzLYfYi/PLOypL+6fZfC/YeKP1XsVrFHxV8q/lbxT5lIrKBxcfwr1P/Q5P7U5HZrcns0ub80ub81uX/K5P/V7cGmhW0Cuwxr+dXtfxjXRuhP01qFd7dZ7f5Xt+8xqs17dftfJrXRV7f/bVDrv7r9H4AUySTj2sOUjP8q3HtV7CuT94NIRQEVBVUU8iKxBPhXQ4q9mtw+TY5/eHyONLkCmlxBTa6Ql38yrgXI+C9Axr0AGfcBZORCg9r9ZCSj2jwyFjCpjZKxoEGtT8ZCXmrIuO4wJeMRXiRypIqjVByt4hgVx6oorKKIF4klABfHk+JITe4oTe5oTe4YTe5YTa6wJlfEyz8Z1wFk5Lmb1DIZjzSujdBRprUK79FmtfvJeIxRbR4ZjzWpjZKxsEGtT8YiXmrIuP4wJeNxnvq1uIoTVBRVUUzFiSpOUnGyF4klABfHk+J4Te4ETa6oJldMkztRkztJkzvZyz8Z1wNk5Lmb1DIZjzeujdAJprUKb1Gz2v1kLGZUm0fGE01qo2Q8yaDWJ+PJnowU6LvhkBf1nWKOiYL/A31r46nAOMj7M44Q/i4XxX+aF6gNeZPtXuCtt0c6wn96EH/Im2z3AW+9PcoR/uIx+A/9Jtvgu0/Cao92hL9EAH/Ym2yD72MJqz3GEf4zAvjD3mQbfEdMWO2xjvCXDOAPe5Nt8L01YbWFHeEvFcAf9ibb4Lt0wmqLOMJf2jPXdOQZ5JKO8JfxzDU9+Fx0WG0pR/g9z1zTT21gXlvaEf40z1zTTwP0v4wj/OmeuaafDui/5wh/hmeu6cUB/U9zhD/TM9f0EoD+pzvCn+WZa/oZgP5nOMKf7ZlrOvIcVw1H+HM8c02vCOh/TUf4y3rmml4J0P8zHeEv55lremVA/89yhL+8Z67pVQD9r+UIfwXPXNOrAvp/tiP8FT1zTa8G6P85jvBX8sw1vTqg/+c6wl/ZM9d05LvwTRzhr+KZa3o9QP+bOsJf1TPX9PqA/l/sCH81z1zTGwD638wR/uqeuaZfBOj/JY7w1/DMNb0hoP/NHeGv6ZlreiNA/y91hP9Mz1zTGwP6jz4LRXG4w8r5dxG7BM9o9bf8LOey6PfRUFwDLD/LuSz6HTkU10DLz3Iui35vD8U1yPKznMui3yVEcQ22/Cznsuj3G1Fc11t+lnNZ9DuXKK4hlp/lXBb9HiiKa6hl/eLfj/LvLlFcwyzrF+M6TYBruGX9YlynC3DdYFm/GFdxAa4bLesX4yohwHWTZf1iXGcIcN1sWb8YV0kBrhGW9YtxlRLgGunoWfSzPHPNA7wXAX6IAI9CgG8gYC8nYH8lYM8jYB8iYG8gQK8J0FACdI0ArSGA/wRwkhCeMAf978Xxus8N5PnyjH5K3tnlX4EnGe3g7LJXgOsuB2eXfQJcdzs4u3AxiuseB2cX8nBc9zo4uxQQ4LrPwdmloADXGAdnl0ICXGMdnF1KC3CNc3B2KSPANd7B2cUT4LrfwdklTYDrAQdnl3QBrgkOzi4ZAlwTHZxdMgW4HnRwdskS4HrI0dmllmeueYD3IsAPEeBRCPANBOzlBOyvBOx5BOxDBOwNBOg1ARpKgK4RoDUE8J8AThLCk+DZhdd9biDPl2f0U/LOLvzAHMrpaQ7OLkcKcD3m4OxylADX4w7OLkcLcD3h4OxyjADXkw7OLscKcE13cHYpLMD1lIOzSxEBrqcdnF2yBbiecXB2yRHgetbB2aWsANcMB2eXcgJczzk4u5QX4HrewdmlggDXCw7OLhUFuF50cHapJMD1kqOzy9meueYB3osAP0SARyHANxCwlxOwvxKw5xGwDxGwNxCg1wRoKAG6RoDWEMB/AjhJLwnPLrzucwN5vjyjn5J3duH3C6CcfsPB2eV4Aa43HZxdThDgmu3g7FJUgGuOg7NLMQGutxycXU4U4Jrr4OxykgDXPAdnl5MFuOY7OLtUFuBa4ODsUkWA620HZ5eqAlzvODi7VBPgetfB2aW6ANd7Ds4uNQS43ndwdqkpwPWBg7PLmQJcCx2dXc7xzDUP8F4E+CECPAoBvoGAvZyA/ZWAPY+AfYiAvYEAvSZAQwnQNQK0hgD+E8BJWig8u/C6z43+d/996od6Xzr/yd8z4z9reQfOP/7P4sszQpEnBYa1yM/9/752JFCL/Nz/amOvc1XheSrOV3GBitoqLlSRq6KOiroq6qmor6KBiotUNFTRSEVjFU1UNFVxsYpmKi5R0VzFpSpaqLjMS+6LKhmvYa328szKkv6iysu9SOQKFVequEpFSxWtVLRWcbUXiRU0Lo5/YeQVmtyVmtxVmlxLTa6VJtdak7vay/+LKoNNCzMxlxvW8osqrzCujdCVprUK71VmtftfVNnSqDbvRZWtTGqjL6psbVDrv6jyas+cFMkk43nAuLrLMytLOhmv8SKRNiraqminor2KDio6qrjWi8QSgIvjSdFGk2urybXT5Nprch00uY6a3LVe/skYbFoYGa8xrGUytjGujVBb01qFt51Z7X4ytjeqzSNjB5PaKBk7GtT6ZLzWSw0ZzwfG1V2eWVnSydjJi0SuU9FZRRcVXVV0U9FdRQ8vEksALo4nxXWaXGdNrosm11WT66bJddfkenj5J2OwaWFk7GRYy2S8zrg2Qp1NaxXeLma1+8nY1ag2j4zdTGqjZOxuUOuTsYeXGjJeAIyruzyzsqSTsacXifRS0VtFHxV9VfRT0V/FAC8SSwAujidFL02utybXR5Prq8n10+T6a3IDvPyTMdi0MDL2NKxlMvYyro1Qb9NahbePWe1+MvY1qs0jYz+T2igZ+xvU+mQc4MlIgb57ZaD5ONCzs8MauME/yAvUhryPKvg8b1jtcEf4Bwfxh7yPKviMcVjtDY7wXx+D/9DvoxrUwLz2Rkf4hwTwh72PKvgsdljtTY7wDw3gD3sfVfD58LDamx3hHxbAH/Y+quAz62G1IxzhHx7AH/Y+quBz9GG1Ix3hv8Ez13Tk+aNxjvDf6Jlr+l2A/o93hP8mz1zT7wb0/35H+G/2zDX9HkD/H3CEf4Rnrun3Avo/wRH+kZ65pt8H6P9ER/hv8cw1fQyg/w86wn+rZ67pYwH9f8gR/ts8c01HvsP9jCP8t3vmmv4YoP/POsJ/h2eu6Y8D+j/DEf47PXNNfwLQ/+cc4R/lmWv6k4D+P+8I/2jPXNOnA/r/giP8d3nmmv4UoP8vOsJ/t2eu6U8D+v+SI/z3eOaajnwPboEj/Pd65pr+JqD/bzvCf59nrumzAf1/xxH+MZ65ps8B9P9dR/jHeuaa/hag/+85wj/OM9f0uYD+v+8I/3jPXNPnAfr/gSP893vmmj4f0H/k+538yzj+d1RJ8/9R3HxCLsooZD5ucLwHvHwMyB9GPzfBM2+SFNeEQLHh56w1I2yOwfEmevkYkD+M/qu8/BnPcIwHPfuN4zEInEMQl9FA4M/nxcRjxN/bsGGCCz2s1va95afS+DeG6NxXOXh6dZAA12oHT68OFuBa4+Dp1esFuL5x8PTqEAGutQ6eXh0qwLXOwdOrwwS41jt4enW4ANcGqzqR9/Tq5QJcGx08vXqFANe3Dp5evVKA6zsHT69eJcD1vYOnV1sKcP3g4OlV/kI9iutHB0+vthbg2uTg6dWrBbg2O3p69SHPXPMA70WAHyLAoxDgGwjYywnYXwnY8wjYhwjYGwjQawI0lABdI0BrCOA/AZwkhCfMQf+bq7zucwN5vjyjn5J3duFvu6Cc/s3B2eVGAa7tDs4uNwlw7XBwdrlZgOt3B2eXEQJcOx2cXUZ6OK5dDs4ut3g4rj8cnF1uFeD608HZ5RoBrt0Ozi5tBLj2ODi7tBXg+svB2aWdANffDs4u7QW4/nFwdukgwPWvg7NLRwGuvQ7OLtcKcO1zdHaZ5JlrHuC9CPBDBHgUAnwDAXs5AfsrAXseAfsQAXsDAXpNgIYSoGsEaA0B/CeAk7RPeHbhdZ8byPPlGf2UvLMLf1MT5fRRF9nd+xnX7QJcR9vEFT273CHAdYxFXP7Z5U4BrmPt4frf2WWUAFdha7gOnF1GC3AVsYUrcHa5S4DrOEu4gmeXuwW4jreqE3lnl04CXCdY1i/GdZ0AV1HL+sW4OgtwFbOsX4yriwDXiZb1i3F1FeA6ybJ+Ma5uAlwnW9YvxtVdgOsUy/rFuHoIcJ0K4vIv9OzysGeueYD3IsAPEeBRCPANBOzlBOyvBOx5BOxDBOwNBOg1ARpKgK4RoDUE8J8AThLCk+DZhdd9biDPl2f0U/LOLvyUAcrp0g7OLvcKcJVxcHa5T4DLc3B2GSPAlebg7DJWgCvdwdllnABXhoOzy3gBrkwHZ5f7BbiyHJxdegpwZTs4u/QS4MpxcHbpLcBV1sHZpY8AVzkHZ5e+AlzlHZxd+glwVXBwdukvwFXRwdllgABXJUdnl0c8c80DvBcBfogAj0KAbyBgLydgfyVgzyNgHyJgbyBArwnQUAJ0jQCtIYD/BHCSKgnPLrzuc+P+f/Rth98XNN+XfzCtVeB+NKzleWwyq90vP5uNavOUaotJbVTUthrU+vq3raC5Nk32ZL3lz+XG/f9ob38Cevsz0NtfgN7+CvT2N6C324He7gB6+zvQ2ymerLf8udy4/x/t7U6gt7uA3v4B9PZPoLe7gd7uAXr7F9Dbv4HeTvVkveXP5cb9/2hv/wF6+y/Q271Ab/cBvY0UMu8tFTLvbYFC5r0tCDxQ/Kgn6y1/Ljf63/1/YYi/t81/TvIO/H2ivzf7Ou5z3l8f/s/iy4sYXQTUIj/3//vakUAt8nP/q429pqnCx1Q8ruIJFU+qmK7iKRVPq3hGxbMqZqh4TsXzKl5Q8aKKl1S8rOIVFTNVvKpilorXVLyu4g0Vb3rJfXU74zWs1V6eWVnSX90+24tE5qh4S8VcFfNUzFexQMXbXiRW0Lg4/hXqczS5tzS5uZrcPE1uvia3QJN728v/q9uDTQvbBGYb1vKr2+cY10boLdNahXeuWe3+V7fPM6rNe3X7fJPa6KvbFxjU+q9uf9szJ0UyyfgYMK7u8szKkk7Gd7xI5F0V76l4X8UHKhaq+FDFR14klgBcHE+KdzW59zS59zW5DzS5hZrch5rcR17+yRhsWhgZ3zGsZTK+a1wbofdMaxXe981q95PxA6PaPDIuNKmNkvFDg1qfjB95qSHj497hScaPvUjkExWfqvhMxecqFqlYrGKJF4klABfHk+ITTe5TTe4zTe5zTW6RJrdYk1vi5Z+Mj3vmZPzYsJbJ+IlxbYQ+Na1VeD8zq91Pxs+NavPIuMikNkrGxQa1PhmXeKkh4xPAuLrLMytLOhmXeurX4iq+ULFcxZcqvlLxtYoVXiSWAFwcT4plmtwXmtxyTe5LTe4rTe5rTW6Fl38yBpsWRsalhrVMxmXGtRH6wrRW4V1uVrufjF8a1eaR8SuT2igZvzao9cm4wpORAn03HPKivpWe+foI/g/0rY2rgHGQ92dsFD5Dh+Jf7QVqQ95kuxp46+23jvCvCeIPeZPtGuCtt985wv9NDP5Dv8n2G+Ctt987wr82gD/sTbZrgbfe/uAI/7oA/rA32a4D3nr7oyP86wP4w95kux546+0mR/g3BPCHvcl2A/DW282O8G/0zDX9NzvP08ZcKP5vPXNN3w7o/x5H+L/zzDV9B6D/fznC/71nrum/A/r/tyP8P3jmmr4T0P9/HOH/0TPX9F2A/v/rCP8mz1zT/wD0f68j/Js9c03/E9D/fY7wb/HMNR15juuEi9zg3+qZa3rw2bKw2qKO8G/zzDU9+LxbWG0xR/h/8sw1/diLzGtPdIT/Z89c04PPBYbVnuQI/y+euaYHn1UMqz3ZEf5fPXNNDz4/GVZ7iiP8v3nmmh58pjOs9lRH+Ld75ppe2s73umMuFP8Oz1zTywD6n+MI/++euaZ7gP6XdYR/p2eu6WmA/pdzhH+XZ67p6YD+l3eE/w/PXNMzAP2v4Aj/n565pmcC+l/REf7dnrmmZwH6jz4LRXG4w8r5dxH8lSYC59vM8rOcjGuOANcllp/lZFxvCXA1t/wsJ+OaK8B1qeVnORnXPAGuFpaf5WRc8wW4LrP8LCfjWiDAdbnlZzkZ19sCXFdY1i/+/egqAa4rLesX41otwHWVZf1iXGsEuFpa1i/G9Y0AVyvL+sW41gpwtbasX4xrnQDX1Zb1i3GtF+C6xrJ+Ma4NAlxtHD2Lvscz1zzAexHghwjwKAT4BgL2cgL2VwL2PAL2IQL2BgL0mgANJUDXCNAaAvhPACcJ4Qlz0P9eHK/73ECeL8/op+SdXd7xcE5f5+Ds8q4AV2cHZ5f3BLi6ODi7vC/A1dXB2eUDAa5uDs4uCwW4ujs4u3wowNXDwdnlIwGung7OLhsFuHo5OLt8K8DV28HZ5TsBrj4Ozi7fC3D1dXB2+UGAq5+Ds8uPAlz9HZxdNglwDXBwdtkswDXQ0dnlL89c8wDvRYAfIsCjEOAbCNjLCdhfCdjzCNiHCNgbCNBrAjSUAF0jQGsI4D8BnCSEJ8GzC6/73ECeL8/op+SdXfiBOZTTNzg4u3wiwHWjg7PLpwJcNzk4u3wmwHWzg7PL5wJcIxycXRYJcI10cHZZLMB1i4OzyxIBrlsdnF22CHDd5uDsslWA63YHZ5dtAlx3ODi7/CTAdaeDs8vPAlyjHJxdfhHgGu3g7PKrANddDs4uvwlw3e3o7PK3Z655gPciwA8R4FEI8A0E7OUE7K8E7HkE7EME7A0E6DUBGkqArhGgNQTwnwBO0t3Cswuv+9xAni/P6KfknV34/QIop+93cHZZJsD1gIOzyxcCXBMcnF2WC3BNdHB2+VKA60EHZ5evBLgecnB2+VqAa5KDs8sKAa6HHZxdtgtwPeLg7LJDgGuyg7PL7wJcUxycXXYKcE11cHbZJcD1qIOzyx8CXNMcnF3+FOB6zMHZZbcA1+OOzi7/eOaaB3gvAvwQAR6FAN9AwF5OwP5KwJ5HwD5EwN5AgF4ToKEE6BoBWkMA/wngJD0uPLvwus+N/nf/feqHel86/7kn+udf3oHzj/+z+PIiRhcBtcjP/f++diRQi/zc/2pjr39V4V4V+/gDaWpBqyigoqCKQiqOUHGkiqNUHK3iGBXHqiisooiK41Qcr+IEFUVVFFNxooqTVJys4pS05L6okvEa1movz6ws6S+qPFXdh9NUnK6iuIoSKs5QUVJFqbRIrKBxcfwLI0/T5E7X5IprciU0uTM0uZKaXKm0/L+oMti0MBPDczep5RdVnmZcG6HTTWsV3uJmtftfVFnCqDbvRZVnmNRGX1RZ0qDWf1FlqTRzUiSTjCwchrXayzMrSzoZS6v7VYbvmYo0FekqMlRkqsiKJ2NpDSnKaHKeJpemyaVrchmaXKYml5WWfzIGmxZGxtIAGcsAZPQAMqYBZEwHyJgBkDETIGNWisjIO7hhrfbyzMqSTsZsdb9yVJRVUU5FeRUVVFRUUSmejNkaUuRocmU1uXKaXHlNroImV1GTq5SWfzIGmxZGxmyAjDkAGcsCZCwHkLE8QMYKABkrAmSslCIyRoBxdZdnVpZ0MlZWuKuoqKqimorqKmqoqKnizHgyVtaQooomV1WTq6bJVdfkamhyNTW5M9PyT8aIIRF+i87dpJbJWAUgY1WAjNUAMlYHyFgDIGNNgIxnCkmBvnvlLPNxoGdnr7zIDf5awXsa8j6q4PO8YbVXOcJ/dsyaOPT7qILPGIfVtnSE/5zYNX3I91FdepF5bStH+M8N4A97H1XwWeyw2taO8J8XwB/2Pqrg8+FhtVc7wn9+AH/Y+6iCz6yH1V7jCP8FAfxh76MKPkcfVtvGEf7agP4jzx/1coT/QkD/OwP639sR/lxA/7sA+t/HEf46gP53BfS/ryP8dQH97wbofz9H+OsB+t8d0P/+jvDXB/S/B6D/AxzhbwDof09A/wc6wn8RoP/Id7hvc4S/IaD/NwL6f7sj/I0A/b8J0P87HOFvDOj/zYD+3+kIfxNA/0cA+j/KEf6mgP6PBPR/tCP8FwP6fwug/3c5wt8M0P9bAf2/2xH+SwD9R74H94gj/M0B/X8A0P/JjvBfCuj/BED/pzjC3wLQ/4mA/k91hP8yQP8fBPT/UUf4Lwf0/yFA/6c5wn8FoP+TAP1/zBH+KwH9fxjQf+T7ncn8ZVzBiOy+RbBxPOPkQVfsL+P8z1yl+tBSRSsVrVVcreIaFW1UtFXRTkV7FR1UdFRxrYpOKq5T0VlFFxVdVXRT0V1FDxU9VfRS0VtFHxV9VfRT0V/FABUDVQxSMTgtEvsLNgYT/0u3lppcK02utSZ3tSZ3jSbXRpNrq8m10+Taa3IdNLmOmty1mlwnTe46Ta6zJtdFk+uqyXXT5Lprcj00uZ6aXC9Nrrcm10eT66vJ9dPk+mtyAzS5gZrcIE1ucNrBv8xNi/7pRYyuGNKHCR6vbZNa/mVuS+PaCLUyrVV4W5vV7v9l7tVGtXm/zL3GpDb6y9w2BrX+L3PbhteOi95fahda29fvBbUPq539v75Rh5DaoQd6TB0PXdswsB7o2kPWbgquHep0qNrqMeuMrjtEbU7smqTOiWvbxK1f6pKwtmX8WqeuiWpHHsQL6pagduTBHKLu+trXNXyjHtra+jpuUk9dbXMtj6mXpvZNPeep98G1ZRPoA/U5qHZaIi2hvvG1VRPqDvWLq92QWKOof2xt/0PoGQ2IqW12KO2jgcHaTofUSRoUqK1yaE2lwWmY2SsQOWDsgpef8yJGV8y4IVq+LDje9Wn5GJA/XCDuc2GDX29+g2iI4aR+y8cceAwC5zAEbDJfBXQA4sY1wWtYu1SX9CJGw8RgHRpdIMPSIrFuZWj0xgVzwzQOJv4YFjY6sJJpKLBAhoE3D20OL4qh4GJiXENTpBiDzO/z1OB4w6WKwQMOxxVj6nBAMW6wrBg8hxtwxZh6Q4oUY5D5uFN0SS9iNEwM1hujC+SmeMW4UaMYNyVBMYCVTDcCC+Qm4c1DFvj+l4YCmG4GyPC//wCwDIku8Pg5hI2FbNUjADLo5hBWzvdohECJEVzJVOKB5ut3VnC8kWn5GHAkrsSzRgKL7xbLSsxzuAVX4lm35HPxmRBohGUC3QrOwb9QYUJ6eBuwNpK5ww00H/dVXdKLGA0Tg/X2KPHuiN/hbtfscHckYYcDFIJuB5p2h/DmoQsJwXRnPne4sM8weW4T7A6j8ikcYeU871EOcPkX2sNRQA9HW+5hIpE1EWfT2rtAQUuWGxhgzvWxwfHuTsvHgHfjbmDs3cANuge48dI53IO7gbH3WHYDTIS70uyS7V6QbP6FYkJ6eB9IniAeHWAvYvazBpiPO0aX9CJGw8RgHRMl3th4NzBG4wbGJsENAApBY4CmjRXePHQhIZjGWd5JmDz3peHEHp9P4Qgr53mPd4DLv9Aejgd6eL/lHiYS2bDPISL7AHBfk+kG+ptz3QuONyEtHwNOwN2ANwFo8kTgxkvnMBF3A95Ey26AifBAml2yPQiSzb9QTEgPH0qRG+hvPm4ZXdKLGA0Tg3VSlHgPx7uBSRo38HAS3ACgEDQJaNrDwpuHLiQE0yOWdxImz0NpOLEn51M4wsp53pMd4PIvtIeTgR5OsdzDRCIb9jlEZKemyA30M+f60uB4j6blY8BHcTew9FGgydOAGy+dwzTcDSydZtkNMBGmptkl22Mg2fwLxYT08PEUuYF+5uMu0SW9iNEwMVifiBLvyXg38ITGDTyZBDcAKAQ9ATTtSeHNQxcSgmm65Z2EyfN4Gk7sp/IpHGHlPO+nHODyL7SHTwE9fNpyDxOJbNjnEJF9JkVuoK851zsGx3s2LR8DPou7gY7PAk2eAdx46Rxm4G6g4wzLboCJ8EyaXbI9B5LNv1BMSA+fT5Eb6Gs+bgdd0osYDROD9YUo8V6MdwMvaNzAi0lwA4BC0AtA014U3jx0ISGYXrK8kzB5nk/Dif1yPoUjrJzn/bIDXP6F9vBloIevWO5hIpEN+xwisjNT5Ab6mHN9ZXC8V9PyMeCruBtY+SrQ5FnAjZfOYRbuBlbOsuwGmAgz0+yS7TWQbP6FYkJ6+HqK3EAf83FX6JJexGiYGKxvRIn3ZrwbeEPjBt5MghsAFILeAJr2pvDmoQsJwTTb8k7C5Hk9DSf2nHwKR1g5z3uOA1z+hfZwDtDDtyz3MJHIhn0OEdm5KXIDvc253jg43ry0fAw4D3cDjecBTZ4P3HjpHObjbqDxfMtugIkwN80u2RaAZPMvFBPSw7dT5AZ6m4/bSJf0IkbDxGB9J0q8d+PdwDsaN/BuEtwAoBD0DtC0d4U3D11ICKb3LO8kTJ6303Biv59P4Qgr53m/7wCXf6E9fB/o4QeWe5hIZMM+h4jswhS5gV7mXJ8ZHO/DtHwM+CHuBmZ+CDT5I+DGS+fwEe4GZn5k2Q0wERam2SXbxyDZ/AvFhPTwkxS5gV7m476iS3oRo2FisH4aJd5n8W7gU40b+CwJbgBQCPoUaNpnwpuHLiQE0+eWdxImzydpOLEX5VM4wsp53osc4PIvtIeLgB4uttzDRCIb9jlEZJekyA30NOf6vOB4S9PyMeBS3A3MWwo0eRlw46VzWIa7gXnLLLsBJsKSNLtk+wIkm3+hmJAeLk+RG+hpPu5cXdKLGA0Tg/XLKPG+incDX2rcwFdJcAOAQtCXQNO+Et48dCEhmL62vJMweZan4cRekU/hCCvnea9wgMu/0B6uAHq40nIPE4ls2OcQkV2VIjfQw5zrTYPjrU7Lx4CrcTfQdDXQ5DXAjZfOYQ3uBpqusewGmAir0uyS7RuQbP6FYkJ6uDZFbqCH+bhNdEkvYjRMDNZ1UeKtj3cD6zRuYH0S3ACgELQOaNp64c1DFxKCaYPlnYTJszYNJ/bGfApHWDnPe6MDXP6F9nAj0MNvLfcwkciGfQ4R2e9S5Aa6m3N9ZHC879PyMeD3uBsY+T3Q5B+AGy+dww+4Gxj5g2U3wET4Ls0u2X4EyeZfKCakh5tS5Aa6m487Qpf0IkbDxGDdHCXelng3sFnjBrYkwQ0ACkGbgaZtEd48dCEhmLZa3kmYPJvScGJvy6dwhJXzvLc5wOVfaA+3AT38yXIPE4ls2OcQkf05RW6gm9AN/JKWjwF/EbiBX4Am/wrceOkcfhW4gV8tuwEmws9pdsn2G0g2/0IxIT3cniI30E24oUWgcWLdwI4o8X6PdwM7NG7g9yS4AUAhaAfQtN8duQEE007LOwmTZ3saTuxd+RSOsHKe9y4HuPwL7eEuoId/WO5hIpEN+xwisn+myA10Nef6jOB4u9PyMeBu3A3M2A00eQ9w46Vz2IO7gRl7LLsBJsKfaXbJ9hdINv9CMSE9/DtFbqCr+bjP6pJexGiYGKz/RIn3b7wb+EfjBv5NghsAFIL+AZr2r/DmoQsJwbTX8k7C5Pk7DSf2vnwKR1g5z3ufA1z+hfZwHyLo6XZ7mEhkwz6HiCyZzyGpbqCLOdenB8crkJ6PAfnDoBuYXgBocsF0u26A58BjgG5gekGgyTpcJkSgdLtkKwSSzb9QTEgPjwAwJdMNdDEXwyd1SS9iNEwM1iOjxDsqPRK78x+ZfrAb4KL8ugFAIehIoGlHpctuHrqQEExHW95JmDxHpOPEPiafwhFWzvM+xgEu/0J7eAzQw2Mt9zCRyIZ9DhHZwilyA53Nub4qOF4RqRvgAYvgbmBVEaDJx1l2AzyH43A3sOo4y26AiVA43S7ZjnfkBpAenpAiNxAkT8i1Upf0IkbDxGAtGiVesXg3UFTjBoolwQ0ACkFFgaYVS5fdPHQhIZhOtLyTMHlOEOy6J1l2Azzvkxzg8i+0hycBPTzZcg8TiWzY5xCRPSVFbuA6c64vDo53qtQN8ICn4m5g8alAk0+z7AZ4DqfhbmDxaZbdABPhlHS7ZDvdkRtAelg8RW4gSJ6Qa5Eu6UWMhonBWiJKvDPi3UAJjRs4IwluAFAIKgE07Yx02c1DFxKCqaTlnYTJU1yw65ay7AZ43qUc4PIvtIelgB6WttzDRCIb9jlEZMukyA10Mud68eB4ntQN7B8QdwPFPaDJaZbdAM8hDXcDxdMsuwEmQpl0u2RLd+QGkB5mpMgNBMkTcp2uS3oRo2FisGZGiZcV7wYyNW4gKwluAFAIygSalpUuu3noQkIwZVveSZg8GYJdN8eyG+B55zjA5V9oD3OAHpa13MNEIhv2OURky6XIDVxrzvU5wfHKS90AD1gedwNzygNNrmDZDfAcKuBuYE4Fy26AiVAu3S7ZKjpyA0gPK6XIDQTJE3LN1iW9iNEwMVgrR4lXJd4NVNa4gSpJcAOAQlBloGlV0mU3D11ICKaqlncSJk8lwa5bzbIb4HlXc4DLv9AeVgN6WN1yDxOJbNjnEJGtkSI30NGc66OD49WUugEesCbuBkbXBJp8pmU3wHM4E3cDo8+07AaYCDXS7ZLtLEduAOlhrRS5gSB5Qq5RuqQXMRomBuvZUeKdE+8Gzta4gXOS4AYAhaCzgaadky67eehCQjCda3knYfLUEuy651l2Azzv8xzg8i+0h+cBPTzfcg8TiWzY5xCRvSBFbqCDOdcbBcerLXUDPGBt3A00qg00+ULLboDncCHuBhpdaNkNMBEuSLdLtlxHbgDpYZ0UuYEgeUKuhrqkFzEaJgZr3Sjx6sW7gboaN1AvCW4AUAiqCzStXrrs5qELCcFU3/JOwuSpI9h1G1h2AzzvBg5w+RfawwZADy+y3MNEIhv2OURkG6bIDbQ35/r44HiNpG6AB2yEu4HxjYAmN7bsBngOjXE3ML6xZTfARGiYbpdsTRy5AaSHTVPkBoLkCbnG6ZJexGiYGKwXR4nXLN4NXKxxA82S4AYAhaCLgaY1S5fdPHQhIZgusbyTMHmaCnbd5pbdAM+7uQNc/oX2sDnQw0st9zCRyIZ9DhHZFilyA+3Mud4vON5lUjfAA16Gu4F+lwFNvtyyG+A5XI67gX6XW3YDTIQW6XbJdoUjN4D08MoUuYEgeUKuvrqkFzEaJgbrVVHitYx3A1dp3EDLJLgBQCHoKqBpLdNlNw9dSAimVpZ3EibPlYJdt7VlN8Dzbu0Al3+hPWwN9PBqyz1MJLJhn0NE9poUuYG25lxfEByvjdQN8IBtcDewoA3Q5LaW3QDPoS3uBha0tewGmAjXpNslWztHbgDpYfsUuYEgeUKu+bqkFzEaJgZrhyjxOsa7gQ4aN9AxCW4AUAjqADStY7rs5qELCcF0reWdhMnTXrDrdrLsBnjenRzg8i+0h52AHl5nuYeJRDbsc4jIdk6RG2hjznUvOF4XqRvgAbvgbsDrAjS5q2U3wHPoirsBr6tlN8BE6Jxul2zdHLkBpIfdU+QGguQJucrokl7EaJgYrD2ixOsZ7wZ6aNxAzyS4AUAhqAfQtJ7pspuHLiQEUy/LOwmTp7tg1+1t2Q3wvHs7wOVfaA97Az3sY7mHiUQ27HOIyPZNkRu4xpzrRYLj9ZO6AR6wH+4GivQDmtzfshvgOfTH3UCR/pbdABOhb7pdsg1w5AaQHg5MkRsIkifkKqxLehGjYWKwDooSb3C8GxikcQODk+AGAIWgQUDTBqfLbh66kBBM11veSZg8AwW77hDLboDnPcQBLv9CezgE6OFQyz1MJLJhn0NEdliK3MDV5lzvExxvuNQN8IDDcTfQZzjQ5BssuwGeww24G+hzg2U3wEQYlm6XbDc6cgNID29KkRsIkifk6q1LehGjYWKw3hwl3oh4N3Czxg2MSIIbABSCbgaaNiJddvPQhYRgGml5J2Hy3CTYdW+x7AZ43rc4wOVfaA9vAXp4q+UeJhLZsM8hIntbitxAa3OuFwuOd7vUDfCAt+NuoNjtQJPvsOwGeA534G6g2B2W3QAT4bZ0u2S705EbQHo4KkVuIEiekKuoLulFjIaJwTo6Sry74t3AaI0buCsJbgBQCBoNNO2udNnNQxcSguluyzsJk2eUYNe9x7Ib4Hnf4wCXf6E9vAfo4b2We5hIZMM+h4jsfSlyA63MBS1mvDFSN8ADjknHPzfW8g7PuMamH0h4EfMLJREv2PvS7ZJinKNdG+nL+HwS1WTO4wU9TCahWgoJdb+UUDzg/QJCPWCZUIzrgSQRKqycG/9AumzBeGZjJHWRXJVmjjE43gTpIuEBJwgUZwLA2ImWFxTPYaKgyRMtn8F4EU0U2INxwP160LId5Hv7oJCs/oWurQeB+T9k2eIl2pHDPofsyJMs95Dv0STBRoD0IXgdYziOj6ePyc4YLe5rUhst7mdUm1fc36x2f/EAw1ouHmhaq4oHpZn3ZjCwUTwMrC+en/9XBvy53Lj/H+1tF6C3XYHedgN62x3obQ+gtz2B3vYCetsb6O0jwt4+koTetgN62x7obQegtx2B3l4L9LYT0FvgXyUz/qc+ubeThb2dnITeXgX0tiXQ21ZAb1sDvb0a6O01QG+Bb4AbP1bFvZ0i7O2UaG/5vx8bOaDTPqf9/vu1/GeZY/L+9KJ/pkX/TI8uCi9iDMMY83+15rUjgVrk5/5XG3tNVXx4VMU0FY+peFzFEyqeVDFdxVMqnlbxjIpnVcxQ8ZyK51W8oOJFFS+peFnFKypmqnhVxSwVr6l4PT3vLwN8vsZfhOGlqeC5IP7yzMqOln+W/jcnCvygNxTuN1XMVjFHxVsq5qqYp2J+eiRW0N6I/l4qmHtTk5utyc3R5N7S5OZqcvM0ufnpB98N043Tvw9TgUPTG4a1/Pu0N41rIzTbtFbhnWNWe7/CS28Z1e7kudFck9oN++8DzTOorZt3z2g++DdzySLjo4cpGRco3G+reEfFuyreU/G+ig9ULIwn4wINKd7W5N7R5N7V5N7T5N7X5D7Q5BYmgYyPAmRcAJDxbYCM7wBkfBcg43sAGd8HyPgBQMaFKSLjtMOUjB8q3B+p+FjFJyo+VfGZis9VLIon44caUnykyX2syX2iyX2qyX2myX2uyS1KAhmnAWT8ECDjRwAZPwbI+AlAxk8BMn4GkPFzgIyLUkTGxw5TMi5WuJeoWKpimYovVCxX8aWKr+LJuFhDiiWa3FJNbpkm94Umt1yT+1KT+yoJZHwMIONigIxLADIuBci4DCDjFwAZlwNk/BIg41cpImPZQk7I6BknD7piyeh/5mt1v1aoWKlilYrVKtao+EbFWhXrVKxXsUHFRhXfqvhOxfcqflDxo4pNKjar2KJiq4ptKn5S8bOKX1T8quI3FdtV7FDxu4qdKnbFk/1rDelWaHIrNblVmtxqTW6NJveNJrdWk1unya3X5DZochs1uW81ue80ue81uR80uR81uU2a3GZNbosmt1WT26bJ/aTJ/azJ/aLJ/arJ/abJbdfkdmhyv2tyOzW5XRoxT4v+6UWMrhjSh4n514CYrwDEfCUg5qsAMV8NiPkaQMy/AcR8bXjtuOj9pXWhtX39XtD6sNrZ/+sbbQipHXqgx7Tx0LUNA+uBvj1k7abg2qHvDlVbPWad0feHqM2JXZP0Q+LaNnHrl35MWNsyfq3TpkS1Iw/iBW1OUDvyYA7RFn3t6xq+0VZtbX0dN2mbrra5lsf0k6b2TT3n6eeDa8sm0Af65aDaaYm0hH6Nr62aUHfot7jaDYk1irbH1vY/hJ7RjpjaZofSPvo9WNvpkDpJOwO1VQ6tqbQLNHsFIgeMXfBCzd4ucy1fFhzvj/R8DMgfLhD3ubDB/zC/QfSn4aSk3xbkOfAYBM7hT7DJfBXQAYgb1wSvYe1SXdKLGA0Tg3V3dIHsiXfGu6M3Lpjbk57/J4uAlUy7gQWyB7x5aHN4UewGFxPj2p0ixdhpfp+nBsf7S6oYPOBfuGJM/QtQjL8tKwbP4W9cMab+nSLF2Gk+7hRd0osYDROD9Z/oAvk3XjH+0SjGv0lQDGAl0z/AAvlXePOQBc7jIJj2AmT4338AWP6MLvD4OYSNhWzV+wAy6OYQVs73aJ9AifelSIl/N1+/s2LGy8jHgPxhUIln8Wc8wzEow64S8xx4DFCJZ1FG/hafCYH2WSZQAXAO/oUKE9LDgsDaSOYO97s5aV/VJb2I0TAxWAtFiXdERiR2NyuUcfAOx0X53eEAhaBCQNOOyJDdPHQhIZiOBBbS//4jYv4ZJk/BDJzYR+VTOMLKed5HOcDlX2gPjwJ6eLTlHiYSWRNxNq09BhS0ZLmBHeZcHxsc71ipG+ABj8XdwNhjgRtU2LIb4DkUxt3A2MKW3QAT4ZgMu2QrApLNv1BMSA+PS5Eb2GHuBsbokl7EaJgYrMdHiXdCvBs4XuMGTkiCGwAUgo4HmnZChuzmoQsJwVTU8k7C5DlOsOsWs+wGeN7FHODyL7SHxYAenmi5h4lENuxziMieBNzXZLqB7eZc94LjnSx1Azzgybgb8E4GmnyKZTfAczgFdwPeKZbdABPhpAy7ZDvVkRtAenhaitzAdnM3kLR/s+f0KPGKx7uB0zVuoHgS3ACgEHQ60LTiGbKbhy4kBFMJyzsJk+c0wa57hmU3wPM+wwEu/0J7eAbQw5KWe5hIZMM+h4hsqRS5gd/Mub40OF5pqRvgAUvjbmBpaaDJZSy7AZ5DGdwNLC1j2Q0wEUpl2CWb58gNID1MS5Eb+M3cDSzRJb2I0TAxWNOjxMuIdwPpGjeQkQQ3ACgEpQNNy8iQ3Tx0ISGYMi3vJEyeNMGum2XZDfC8sxzg8i+0h1lAD7Mt9zCRyIZ9DhHZnBS5gV/Nud4xOF5ZqRvgAcvibqBjWaDJ5Sy7AZ5DOdwNdCxn2Q0wEXIy7JKtvCM3gPSwQorcwK/mbqCDLulFjIaJwVoxSrxK8W6gosYNVEqCGwAUgioCTauUIbt56EJCMFW2vJMweSoIdt0qlt0Az7uKA1z+hfawCtDDqpZ7mEhkwz6HiGy1FLmBX8y5vjI4XnWpG+ABq+NuYGV1oMk1LLsBnkMN3A2srGHZDTARqmXYJVtNR24A6eGZKXIDv5i7gRW6pBcxGiYG61lR4tWKdwNnadxArSS4AUAh6CygabUyZDcPXUgIprMt7yRMnjMFu+45lt0Az/scB7j8C+3hOUAPz7Xcw0QiG/Y5RGTPS5Eb+Nmc642D450vdQM84Pm4G2h8PtDkCyy7AZ7DBbgbaHyBZTfARDgvwy7ZajtyA0gPL0yRG/jZ3A000iW9iNEwMVhzo8SrE+8GcjVuoE4S3ACgEJQLNK1OhuzmoQsJwVTX8k7C5LlQsOvWs+wGeN71HODyL7SH9YAe1rfcw0QiG/Y5RGQbpMgN/GTO9ZnB8S6SugEe8CLcDcy8CGhyQ8tugOfQEHcDMxtadgNMhAYZdsnWyJEbQHrYOEVu4CdzN/CKLulFjIaJwdokSrym8W6gicYNNE2CGwAUgpoATWuaIbt56EJCMF1seSdh8jQW7LrNLLsBnnczB7j8C+1hM6CHl1juYSKRDfscIrLNU+QGtplzfV5wvEulboAHvBR3A/MuBZrcwrIb4Dm0wN3AvBaW3QAToXmGXbJd5sgNID28PEVuYJu5G5irS3oRo2FisF4RJd6V8W7gCo0buDIJbgBQCLoCaNqVGbKbhy4kBNNVlncSJs/lgl23pWU3wPNu6QCXf6E9bAn0sJXlHiYS2bDPISLbOkVuYKs515sGx7ta6gZ4wKtxN9D0aqDJ11h2AzyHa3A30PQay26AidA6wy7Z2jhyA0gP26bIDWw1dwNNdEkvYjRMDNZ2UeK1j3cD7TRuoH0S3ACgENQOaFr7DNnNQxcSgqmD5Z2EydNWsOt2tOwGeN4dHeDyL7SHHYEeXmu5h4lENuxziMh2SpEb2GLO9ZHB8a6TugEe8DrcDYy8DmhyZ8tugOfQGXcDIztbdgNMhE4ZdsnWxZEbQHrYNUVuYIu5GxihS3oRo2FisHaLEq97vBvopnED3ZPgBgCFoG5A07pnyG4eupAQTD0s7yRMnq6CXbenZTfA8+7pAJd/oT3sCfSwl+UeJhLZsM8hIts7RW5gs9AN9JG6AR6wj8AN9AGa3NeyG+A59BW4gb6W3QAToXeGXbL1c+QGkB72T5Eb2JwCNzAgSryB8W5ggMYNDEyCGwAUggYATRvoyA0gmAZZ3kmYPP0Fu+5gy26A5z3YAS7/Qns4GOjh9ZZ7mEhkwz6HiOyQFLmBTeZcnxEcb6jUDfCAQ3E3MGMo0ORhlt0Az2EY7gZmDLPsBpgIQzLskm24IzeA9PCGFLmBTeZu4Fld0osYDROD9cYo8W6KdwM3atzATUlwA4BC0I1A027KkN08dCEhmG62vJMweW4Q7LojLLsBnvcIB7j8C+3hCKCHIy33MJHIhn0OEdlbUuQGfjTn+vTgeLdK3QAPeCvuBqbfCjT5NstugOdwG+4Gpt9m2Q0wEW7JsEu22x25AaSHd6TIDfxo7gae1CW9iNEwMVjvjBJvVLwbuFPjBkYlwQ0ACkF3Ak0blSG7eehCQjCNtryTMHnuEOy6d1l2Azzvuxzg8i+0h3cBPbzbcg8TiWzY5xCRvSdFbuAHc66vCo53r9QN8ID34m5g1b1Ak++z7AZ4DvfhbmDVfZbdABPhngy7ZBvjyA0gPRybIjfwg7kbWKlLehGjYWKwjosSb3y8GxincQPjk+AGAIWgcUDTxmfIbh66kBBM91veSZg8YwW77gOW3QDP+wEHuPwL7eEDQA8nWO5hIpEN+xwishNT5Aa+N+f64uB4D0rdAA/4IO4GFj8INPkhy26A5/AQ7gYWP2TZDTARJmbYJdskR24A6eHDKXID35u7gUW6pBcxGiYG6yNR4k2OdwOPaNzA5CS4AUAh6BGgaZMzZDcPXUgIpimWdxImz8OCXXeqZTfA857qAJd/oT2cCvTwUcs9TCSyYZ9DRHZaitzAd+ZcLx4c7zGpG+ABH8PdQPHHgCY/btkN8Bwex91A8cctuwEmwrQMu2R7wpEbQHr4ZIrcwHfmbuB0XdKLGA0Tg3V6lHhPxbuB6Ro38FQS3ACgEDQdaNpTGbKbhy4kBNPTlncSJs+Tgl33GctugOf9jANc/oX28Bmgh89a7mEikQ37HCKyM1LkBr415/qc4HjPSd0AD/gc7gbmPAc0+XnLboDn8DzuBuY8b9kNMBFmZNgl2wuO3ADSwxdT5Aa+NXcDs3VJL2I0TAzWl6LEezneDbykcQMvJ8ENAApBLwFNezlDdvPQhYRgesXyTsLkeVGw68607AZ43jMd4PIvtIczgR6+armHiUQ27HOIyM5KkRvYaM710cHxXpO6AR7wNdwNjH4NaPLrlt0Az+F13A2Mft2yG2AizMqwS7Y3HLkBpIdvpsgNbDR3A6N0SS9iNEwM1tlR4s2JdwOzNW5gThLcAKAQNBto2pwM2c1DFxKC6S3LOwmT503BrjvXshvgec91gMu/0B7OBXo4z3IPE4ls2OcQkZ2fIjewwZzrjYLjLZC6AR5wAe4GGi0Amvy2ZTfAc3gbdwON3rbsBpgI8zPsku0dR24A6eG7KXIDG8zdQENd0osYDROD9b0o8d6PdwPvadzA+0lwA4BC0HtA097PkN08dCEhmD6wvJMwed4V7LoLLbsBnvdCB7j8C+3hQqCHH1ruYSKRDfscIrIfpcgNrDfn+vjgeB9L3QAP+DHuBsZ/DDT5E8tugOfwCe4Gxn9i2Q0wET7KsEu2Tx25AaSHn6XIDaw3dwPjdEkvYjRMDNbPo8RbFO8GPte4gUVJcAOAQtDnQNMWZchuHrqQEEyLLe8kTJ7PBLvuEstugOe9xAEu/0J7uATo4VLLPUwksmGfQ0R2WYrcwDpzrvcLjveF1A3wgF/gbqDfF0CTl1t2AzyH5bgb6LfcshtgIizLsEu2Lx25AaSHX6XIDawzdwN9dUkvYjRMDNavo8RbEe8Gvta4gRVJcAOAQtDXQNNWZMhuHrqQEEwrLe8kTJ6vBLvuKstugOe9ygEu/0J7uAro4WrLPUwksmGfQ0R2TYrcwFpzri8IjveN1A3wgN/gbmDBN0CT11p2AzyHtbgbWLDWshtgIqzJsEu2dY7cANLD9SlyA2vN3cB8XdKLGA0Tg3VDlHgb493ABo0b2JgENwAoBG0AmrYxQ3bz0IWEYPrW8k7C5Fkv2HW/s+wGeN7fOcDlX2gPvwN6+L3lHiYS2bDPISL7Q4rcwDfmXPeC4/0odQM84I+4G/B+BJq8ybIb4Dlswt2At8myG2Ai/JBhl2ybHbkBpIdbUuQGvjF3A2V0SS9iNEwM1q1R4m2LdwNbNW5gWxLcAKAQtBVo2rYM2c1DFxKC6SfLOwmTZ4tg1/3Zshvgef/sAJd/oT38GejhL5Z7mEhkwz6HiOyvKXIDa8y5XiQ43m9SN8AD/oa7gSK/AU3ebtkN8By2426gyHbLboCJ8GuGXbLtcOQGkB7+niI3sMbcDRTWJb2I0TAxWHdGibcr3g3s1LiBXUlwA4BC0E6gabsyZDcPXUgIpj8s7yRMnt8Fu+6flt0Az/tPB7j8C+3hn0APd1vuYSKRDfscIrJ7UuQGVptzvU9wvL+kboAH/At3A33+Apr8t2U3wHP4G3cDff627AaYCHsy7JLtH0duAOnhvylyA6vN3UBvXdKLGA0Tg3VvlHj74t3AXo0b2JcENwAoBO0FmrYvQ3bz0IWEYIpk2t1JmDz/CnZdMsd1AFwEmEtm3hi2cfkX2sPgOGG1BSz3MJHIhn0OEdmCwH1NphtYZc71YsHxCmXmY0D+MOgGihUCmnwEsHikczgCJA/P4Yh8ktqECAUz7ZLtSJBs/oViQnp4FIApmW5glbkbKKpLehGjYWKwHh0l3jGZkdid/+jMg90AF+XXDQAKQUcDTTsmU3bz0IWEYDrW8k7C5DlKsOsWtuwGeN6FHeDyL7SHhYEeFrHcw0QiG/Y5RGSPS5EbWGkuaDHjHS91Azzg8Zn4506wvMMzrhMyDyS8iPmFkogX7HGZdklR1NGujfSlWD6JajLnYoIeJpNQK4SEOlFKKB7wRAGhTrJMKMZ1UpIIFVbOjT8pU7ZgPLMxkrpIvk43xxgc72TpIuEBTxYozskAY0+xvKB4DqcImnyK5TMYL6JTBPagKHC/TrVsB/neniokq3+ha+tUYP6nWbZ4iXbksM8hO/LplnvI9+h0wUaA9KFQ5MBxM794swrJ1lkEG8czTh500f/mRIHPFFf3q4SKM1SUVFFKRWkVZfg+qkhTka4iQ0WmiiwV2SpyVJRVUU5FeRUVVFRUUUlFZRVVVFRVUU1FdRU1VNRUcaaKs1TUUnF2/N8BFI+e94O5EprcGZpcSU2ulCZXWpMro8l5mlyaJpeuyWVocpmaXJYml63J5WhyZTW5cppceU2ugiZXUZOrpMlV1uSqaHJVNblqmlx1Ta6GJldTkztTkztLk6ulyZ2defDfLaVF//QiRlcM6cPEprihMPHfQ5Uwro3QGaa1Cm9Js9r7FV4qZVS7k+dGpU1qN+y/D1TGoLZu3j0jL7x2XPT+UlpobV+/F5QeVjv7f32jjJDaoQd6TJmHrm0YWA+UdcjaTcG1Q9mHqq0es84o5xC1ObFrksomrm0Tt36pXMLalvFrnconqh15EC+oQoLakQdziCrqa1/X8I0qaWvr67hJlXW1zbU8piqa2jf1nKeqB9eWTaAPVO2g2mmJtISqx9dWTag7VCOudkNijaKasbX9D6FndGZMbbNDaR+dFaztdEidpFqB2iqH1lQ6GzChSqqTduI921zLlwXHO0d64uUBz8mEf+u47BzzG0TnGk5KeuLlOZwLnnh5DueCTeYrGb8dAxbXUl3SixgNE4P1vOgCOT/eGZ8XvXHB3PmZ+f/tGLCS6TxggZwP3jy0ObwozgMXE+M6L0WKUcv8Pk8NjneBVDF4wAtwxZh6AaAYtS0rBs+hNq4YU2unSDFqmY87RZf0IkbDxGC9MLpAcuMV40KNYuQmQTGAlUwXAgskV3jz0L+oQzDVAcjwv/8AsJwbXeDoX9QhW3VdgAy6OYSV8z2qK1DiuilS4rPM1++s4Hj1pErMA9bDlXhWPWDx1besxDyH+rgSz6qfz8VnQqC6lgnUAJyDf6HChPTwImBtJHOHO8t83Fd1SS9iNEwM1oZR4jWK3+Eaana4RknY4QCFoIZA0xoJbx66kBBMjfO5w4V9hslzkWB3aGJ51+J5N3GAy7/QHjYBetjUcg8TiayJOJvWXgwKWrLcwJnmXB8bHK+Z1A3wgM1wNzC2GXCDLrHsBngOl+BuYOwllt0AE+HiTLtkaw6Szb9QTEgPL02RGzjTfNwxuqQXMRomBmuLKPEui3cDLTRu4LIkuAFAIagF0LTLhDcPXUgIpsst7yRMnksFu+4Vlt0Az/sKB7j8C+3hFUAPr7Tcw0QiG/Y5RGSvStHfDdQ057oXHK+l1A3wgC1xN+C1BJrcyrIb4Dm0wt2A18qyG2AiXJVpl2ytHbkBpIdXp8gN1DQfN2nvnbsmSrw28W7gGo0baJMENwAoBF0DNK2N8OahCwnB1NbyTsLkuVqw67az7AZ43u0c4PIvtIftgB62t9zDRCIb9jlEZDukyA3UMOf60uB4HaVugAfsiLuBpR2BJl9r2Q3wHK7F3cDSay27ASZCh0y7ZOvkyA0gPbwuRW6ghvm4S3RJL2I0TAzWzlHidYl3A501bqBLEtwAoBDUGWhaF+HNQxcSgqmr5Z2EyXOdYNftZtkN8Ly7OcDlX2gPuwE97G65h4lENuxziMj2SJEbqG7O9Y7B8XpK3QAP2BN3Ax17Ak3uZdkN8Bx64W6gYy/LboCJ0CPTLtl6O3IDSA/7pMgNVDcft4Mu6UWMhonB2jdKvH7xbqCvxg30S4IbABSC+gJN6ye8eehCQjD1t7yTMHn6CHbdAZbdAM97gANc/oX2cADQw4GWe5hIZMM+h4jsoBS5gWrmXF8ZHG+w1A3wgINxN7ByMNDk6y27AZ7D9bgbWHm9ZTfARBiUaZdsQxy5AaSHQ1PkBqqZj7tCl/QiRsPEYB0WJd7weDcwTOMGhifBDQAKQcOApg0X3jx0ISGYbrC8kzB5hgp23RstuwGe940OcPkX2sMbgR7eZLmHiUQ27HOIyN6cIjdQ1ZzrjYPjjZC6AR5wBO4GGo8AmjzSshvgOYzE3UDjkZbdABPh5ky7ZLvFkRtAenhritxAVfNxG+mSXsRomBist0WJd3u8G7hN4wZuT4IbABSCbgOadrvw5qELCcF0h+WdhMlzq2DXvdOyG+B53+kAl3+hPbwT6OEoyz1MJLJhn0NEdnSK3EAVc67PDI53l9QN8IB34W5g5l1Ak++27AZ4DnfjbmDm3ZbdABNhdKZdst3jyA0gPbw3RW6givm4r+iSXsRomBis90WJNybeDdyncQNjkuAGAIWg+4CmjRHePHQhIZjGWt5JmDz3CnbdcZbdAM97nANc/oX2cBzQw/GWe5hIZMM+h4js/SlyA5XNuT4vON4DUjfAAz6Au4F5DwBNnmDZDfAcJuBuYN4Ey26AiXB/pl2yTXTkBpAePpgiN1DZfNy5uqQXMRomButDUeJNincDD2ncwKQkuAFAIeghoGmThDcPXUgIpoct7yRMngcFu+4jlt0Az/sRB7j8C+3hI0APJ1vuYSKRDfscIrJTUuQGKplzvWlwvKlSN8ADTsXdQNOpQJMftewGeA6P4m6g6aOW3QATYUqmXbJNc+QGkB4+liI3UMl83Ca6pBcxGiYG6+NR4j0R7wYe17iBJ5LgBgCFoMeBpj0hvHnoQkIwPWl5J2HyPCbYdadbdgM87+kOcPkX2sPpQA+fstzDRCIb9jlEZJ9OkRuoaM71kcHxnpG6AR7wGdwNjHwGaPKzlt0Az+FZ3A2MfNayG2AiPJ1pl2wzHLkBpIfPpcgNVDQfd4Qu6UWMhonB+nyUeC/Eu4HnNW7ghSS4AUAh6HmgaS8Ibx66kBBML1reSZg8zwl23ZcsuwGe90sOcPkX2sOXgB6+bLmHiUQ27HOIyL6SIjdQQegGZkrdAA84U+AGZgJNftWyG+A5vCpwA69adgNMhFcy7ZJtliM3gPTwtRS5gQopcAOvR4n3RrwbeF3jBt5IghsAFIJeB5r2hiM3gGB60/JOwuR5TbDrzrbsBnjesx3g8i+0h7OBHs6x3MNEIhv2OURk30qRGyhvzvUZwfHmSt0ADzgXdwMz5gJNnmfZDfAc5uFuYMY8y26AifBWpl2yzXfkBpAeLkiRGyhvPu6zuqQXMRomBuvbUeK9E+8G3ta4gXeS4AYAhaC3gaa9I7x56EJCML1reSdh8iwQ7LrvWXYDPO/3HODyL7SH7wE9fN9yDxOJbNjnEJH9IEVuoJw516cHx1sodQM84ELcDUxfCDT5Q8tugOfwIe4Gpn9o2Q0wET7ItEu2jxy5AaSHH6fIDZQzH/dJXdKLGA0Tg/WTKPE+jXcDn2jcwKdJcAOAQtAnQNM+Fd48dCEhmD6zvJMweT4W7LqfW3YDPO/PHeDyL7SHnwM9XGS5h4lENuxziMguTpEbKGvO9VXB8ZZI3QAPuAR3A6uWAE1eatkN8ByW4m5g1VLLboCJsDjTLtmWOXIDSA+/SJEbKGs+7kpd0osYDRODdXmUeF/Gu4HlGjfwZRLcAKAQtBxo2pfCm4cuJATTV5Z3EibPF4Jd92vLboDn/bUDXP6F9vBroIcrLPcwkciGfQ4R2ZUpcgM55lxfHBxvldQN8ICrcDeweBXQ5NWW3QDPYTXuBhavtuwGmAgrM+2SbY0jN4D08JsUuYEc83EX6ZJexGiYGKxro8RbF+8G1mrcwLokuAFAIWgt0LR1wpuHLiQE03rLOwmT5xvBrrvBshvgeW9wgMu/0B5uAHq40XIPE4ls2OcQkf02RW4g25zrxYPjfSd1Azzgd7gbKP4d0OTvLbsBnsP3uBso/r1lN8BE+DbTLtl+cOQGkB7+mCI3kG0+7um6pBcxGiYG66Yo8TbHu4FNGjewOQluAFAI2gQ0bbPw5qELCcG0xfJOwuT5UbDrbrXsBnjeWx3g8i+0h1uBHm6z3MNEIhv2OURkf0qRG8gy5/qc4Hg/S90AD/gz7gbm/Aw0+RfLboDn8AvuBub8YtkNMBF+yrRLtl8duQGkh7+lyA1kmY87W5f0IkbDxGDdHiXejng3sF3jBnYkwQ0ACkHbgabtEN48dCEhmH63vJMweX4T7Lo7LbsBnvdOB7j8C+3hTqCHuyz3MJHIhn0OEdk/UuQGMs25Pjo43p9SN8AD/om7gdF/Ak3ebdkN8Bx2425g9G7LboCJ8EemXbLtceQGkB7+lSI3kGk+7ihd0osYDROD9e8o8f6JdwN/a9zAP0lwA4BC0N9A0/4R3jx0ISGY/rW8kzB5/hLsunstuwGe914HuPwL7eFeoIf7LPcwkciGfQ4R2UhWatxAhjnXGwXHo6x8DMgfBt1AIzK/QVQgy64b4DnwGKAbaFQAaLIOlwkRIll2yVYQ6EPwf6CYkB4WAjAl0w1kmAtPQ13SixgNE4P1iCjxjsyKxO78R2Qd7Aa4KL9uAFAIOgJo2pFZspuHLiQE01Hg4kYXDJOnUBZO7KPzKRxh5Tzvox3g8i+0h0cDPTzGcg8TiWzY5xCRPTZFbiDdnOvjg+MVlroBHrAw7gbGFwaaXMSyG+A5FMHdwPgilt0AE+HYLLtkO86RG0B6eHyK3EC6uRsYp0t6EaNhYrCeECVe0Xg3cILGDRRNghsAFIJOAJpWNEt289CFhGAqZnknYfIcL9h1T7TsBnjeJzrA5V9oD08EeniS5R4mEtmwzyEie3KK3ECaOdf7Bcc7ReoGeMBTcDfQ7xSgyadadgM8h1NxN9DvVMtugIlwcpZdsp3myA0gPTw9RW4gzdwN9NUlvYjRMDFYi0eJVyLeDRTXuIESSXADgEJQcaBpJbJkNw9dSAimMyzvJEye0wW7bknLboDnXdIBLv9Ce1gS6GEpyz1MJLJhn0NEtnSK3IBnzvUFwfHKSN0AD1gGdwMLygBN9iy7gf03DXcDCzzLboCJUDrLLtnSHLkBpIfpKXIDnrkbmK9LehGjYWKwZkSJlxnvBjI0biAzCW4AUAjKAJqWmSW7eehCQjBlWd5JmDzpgl0327Ib4HlnO8DlX2gPs4Ee5ljuYSKRDfscIrJlU+QGyphz3QuOV07qBnjAcrgb8MoBTS5v2Q3wHMrjbsArb9kNMBHKZtklWwVHbgDpYcUUuYEy5m6gjC7pRYyGicFaKUq8yvFuoJLGDVROghsAFIIqAU2rnCW7eehCQjBVsbyTMHkqCnbdqpbdAM+7qgNc/oX2sCrQw2qWe5hIZMM+h4hs9RS5gdLmXC8SHK+G1A3wgDVwN1CkBtDkmpbdAM+hJu4GitS07AaYCNWz7JLtTEduAOnhWSlyA6XN3UBhXdKLGA0Tg7VWlHhnx7uBWho3cHYS3ACgEFQLaNrZWbKbhy4kBNM5lncSJs9Zgl33XMtugOd9rgNc/oX28Fygh+dZ7mEikQ37HCKy56fIDZQy53qf4HgXSN0AD3gB7gb6XAA0ubZlN8BzqI27gT61LbsBJsL5WXbJdqEjN4D0MDdFbqCUuRvorUt6EaNhYrDWiRKvbrwbqKNxA3WT4AYAhaA6QNPqZsluHrqQEEz1LO8kTJ5cwa5b37Ib4HnXd4DLv9Ae1gd62MByDxOJbNjnEJG9KEVuoKQ514sFx2sodQM8YEPcDRRrCDS5kWU3wHNohLuBYo0suwEmwkVZdsnW2JEbQHrYJEVuoKS5GyiqS3oRo2FisDaNEu/ieDfQVOMGLk6CGwAUgpoCTbs4S3bz0IWEYGpmeSdh8jQR7LqXWHYDPO9LHODyL7SHlwA9bG65h4lENuxziMhemiI3cAbw/ojgeC2kboAHbJGFf+4yyzs847os60DCi5hfKIl4wV6aZZcUlzvatZG+XJFPoprM+QpBD5NJqBJCQl0pJRQPeKWAUFdZJhTjuipJhAor58ZflSVbMJ7ZGEldJMWBZ8+D47WULhIesKVAcVoCjG1leUHxHFoJmtzK8hmMF1ErgT24HLhfrS3bQb63rYVk9S90bbUG5n+1ZYuXaEcO+xyyI19juYd8j64RbARIHwpFDhw384s3s5BsnUWwcTzj5EEX/W9OFPhMG3W/2qpop6K9ig4qOqq4VkUnFdep6Kyii4quKrqp6K6ih4qeKnqp6K2ij4q+Kvqp6K9igIqBKgapGKziehVDVAxVMUzFcBU3xP8dQJvoeT+Ya6vJtdPk2mtyHTS5jprctZpcJ03uOk2usybXRZPrqsl10+S6a3I9NLmemlwvTa63JtdHk+uryfXT5PprcgM0uYGa3CBNbrAmd70mN0STG6rJDdPkhmtyN2Qd/HdLadE/vYjRFUP6MLFpYyhM/PdQbY1rI9TOtFbhbW9We7/CSx2Manfy3KijSe2G/feBrjWorZt3z6hTeO246P2l60Jr+/q9oM5htbP/1zfqElI79ECPqeuhaxsG1gN1O2TtpuDaoe6Hqq0es86oxyFqc2LXJPVMXNsmbv1Sr4S1LePXOvVOVDvyIF5QnwS1Iw/mEPXV176u4Rv109bW13GT+utqm2t5TAM0tW/qOU8DD64tm0AfaNBBtdMSaQkNjq+tmlB36Pq42g2JNYqGxNb2P4Se0dCY2maH0j4aFqztdEidpOGB2iqH1lS6IUUn3hvMtXxZcLwbpSdeHvDGLPi3jstuNL9BdJPhpKQnXp7DTeCJl+dwE9hkvpLx2zFgcS3VJb2I0TAxWG+OLpAR8c745uiNC+ZGZOX/t2PASqabgQUyArx5aHN4UdwMLibGdXOKFGO4+X2eGhxvpFQxeMCRuGJMHQkoxi2WFYPncAuuGFNvSZFiDDcfd4ou6UWMhonBemt0gdwWrxi3ahTjtiQoBrCS6VZggdwmvHnoX9QhmG4HyPC//wCw3BRd4Ohf1CFb9R0AGXRzCCvne3SHQInvSJESDzNfv7OC490pVWIe8E5ciWfdCSy+UZaVmOcwClfiWaPyufhMCHSHZQKNBufgX6gwIT28C1gbydzhhpmP+6ou6UWMhonBeneUePfE73B3a3a4e5KwwwEKQXcDTbtHePPQhYRgujefO1zYZ5g8dwl2h/ss71o87/sc4PIvtIf3AT0cY7mHiUTWRJxNa8eCgpYsNzDUnOtjg+ONk7oBHnAc7gbGjgNu0HjLboDnMB53A2PHW3YDTISxWXbJdj9INv9CMSE9fCBFbmCo+bhjdEkvYjRMDNYJUeJNjHcDEzRuYGIS3ACgEDQBaNpE4c1DFxKC6UHLOwmT5wHBrvuQZTfA837IAS7/Qnv4ENDDSZZ7mEhkwz6HiOzDKfq7gSHmXPeC4z0idQM84CO4G/AeAZo82bIb4DlMxt2AN9myG2AiPJxll2xTHLkBpIdTU+QGhpiPm7T3zj0aJd60eDfwqMYNTEuCGwAUgh4FmjZNePPQhYRgeszyTsLkmSrYdR+37AZ43o87wOVfaA8fB3r4hOUeJhLZsM8hIvtkitzA9eZcXxocb7rUDfCA03E3sHQ60OSnLLsBnsNTuBtY+pRlN8BEeDLLLtmeduQGkB4+kyI3cL35uEt0SS9iNEwM1mejxJsR7wae1biBGUlwA4BC0LNA02YIbx66kBBMz1neSZg8zwh23ectuwGe9/MOcPkX2sPngR6+YLmHiUQ27HOIyL6YIjcw2JzrHYPjvSR1AzzgS7gb6PgS0OSXLbsBnsPLuBvo+LJlN8BEeDHLLtleceQGkB7OTJEbGGw+bgdd0osYDROD9dUo8WbFu4FXNW5gVhLcAKAQ9CrQtFnCm4cuJATTa5Z3EibPTMGu+7plN8Dzft0BLv9Ce/g60MM3LPcwkciGfQ4R2TdT5AYGmXN9ZXC82VI3wAPOxt3AytlAk+dYdgM8hzm4G1g5x7IbYCK8mWWXbG85cgNID+emyA0MMh93hS7pRYyGicE6L0q8+fFuYJ7GDcxPghsAFILmAU2bL7x56EJCMC2wvJMweeYKdt23LbsBnvfbDnD5F9rDt4EevmO5h4lENuxziMi+myI3MNCc642D470ndQM84Hu4G2j8HtDk9y27AZ7D+7gbaPy+ZTfARHg3yy7ZPnDkBpAeLkyRGxhoPm4jXdKLGA0Tg/XDKPE+incDH2rcwEdJcAOAQtCHQNM+Et48dCEhmD62vJMweRYKdt1PLLsBnvcnDnD5F9rDT4Aefmq5h4lENuxziMh+liI3MMCc6zOD430udQM84Oe4G5j5OdDkRZbdAM9hEe4GZi6y7AaYCJ9l2SXbYkduAOnhkhS5gQHm476iS3oRo2FisC6NEm9ZvBtYqnEDy5LgBgCFoKVA05YJbx66kBBMX1jeSZg8SwS77nLLboDnvdwBLv9Ce7gc6OGXlnuYSGTDPoeI7FcpcgP9zbk+Lzje11I3wAN+jbuBeV8DTV5h2Q3wHFbgbmDeCstugInwVZZdsq105AaQHq5KkRvobz7uXF3SixgNE4N1dZR4a+LdwGqNG1iTBDcAKAStBpq2Rnjz0IWEYPrG8k7C5Fkl2HXXWnYDPO+1DnD5F9rDtUAP11nuYSKRDfscIrLrU+QG+plzvWlwvA1SN8ADbsDdQNMNQJM3WnYDPIeNuBtoutGyG2AirM+yS7ZvHbkBpIffpcgN9DMft4ku6UWMhonB+n2UeD/Eu4HvNW7ghyS4AUAh6HugaT8Ibx66kBBMP1reSZg83wl23U2W3QDPe5MDXP6F9nAT0MPNlnuYSGTDPoeI7JYUuYG+5lwfGRxvq9QN8IBbcTcwcivQ5G2W3QDPYRvuBkZus+wGmAhbsuyS7SdHbgDp4c8pcgN9zccdoUt6EaNhYrD+EiXer/Fu4BeNG/g1CW4AUAj6BWjar8Kbhy4kBNNvlncSJs/Pgl13u2U3wPPe7gCXf6E93A70cIflHiYS2bDPISL7e4rcQB+hG9gpdQM84E6BG9gJNHmXZTfAc9glcAO7LLsBJsLvWXbJ9ocjN4D08M8UuYE+KXADu6PE2xPvBnZr3MCeJLgBQCFoN9C0PY7cAILpL8s7CZPnT8Gu+7dlN8Dz/tsBLv9Ce/g30MN/LPcwkciGfQ4R2X9T5AZ6m3N9RnC8vVI3wAPuxd3AjL1Ak/dZdgM8h324G5ixz7IbYCL8m2WXbJFsN24A6SEBmJLpBnqb9/NZXdKLGA0Tg7VAdt6fBbMjsTs//x/xboCL8usGAIWgAtnmTSuYLbt56EJCMBUCFze6YJg8lI0T+whzXNGBYn9+WDnP+wgHuPwL7eERQA+PtNzDRCIb9jlEZI8C7msy3UAvc65PD453dHY+BuQPg25g+tFAk48BFo90DseA5OE5HJNPUpsQ4ahsu2Q71pEbQHpYOEVuoJe5G3hSl/QiRsPEYC0SJd5x8W6giMYNHJcENwAoBBUBmnZctuzmoQsJwXS85Z2EyVNYsOueYNkN8LxPcIDLv9AengD0sKjlHiYS2bDPISJbLEVuoKc511cFxztR6gZ4wBNxN7DqRKDJJ1l2AzyHk3A3sOoky26AiVAs2y7ZTnbkBpAenpIiN9DT3A2s1CW9iNEwMVhPjRLvtHg3cKrGDZyWBDcAKASdCjTttGzZzUMXEoLpdMs7CZPnFMGuW9yyG+B5F3eAy7/QHhYHeljCcg8TiWzY5xCRPSNFbqCHOdcXB8crKXUDPGBJ3A0sLgk0uZRlN8BzKIW7gcWlLLsBJsIZ2XbJVtqRG0B6WCZFbqCHuRtYpEt6EaNhYrB6UeKlxbsBT+MG0pLgBgCFIA9oWlq27OahCwnBlG55J2HylBHsuhmW3QDPO8MBLv9Ce5gB9DDTcg8TiWzY5xCRzUqRG+huzvXiwfGypW6AB8zG3UDxbKDJOZbdAM8hB3cDxXMsuwEmQla2XbKVdeQGkB6WS5Eb6G7uBk7XJb2I0TAxWMtHiVch3g2U17iBCklwA4BCUHmgaRWyZTcPXUgIpoqWdxImTznBrlvJshvgeVdygMu/0B5WAnpY2XIPE4ls2OcQka2SIjfQzZzrc4LjVZW6AR6wKu4G5lQFmlzNshvgOVTD3cCcapbdABOhSrZdslV35AaQHtZIkRvoZu4GZuuSXsRomBisNaPEOzPeDdTUuIEzk+AGAIWgmkDTzsyW3Tx0ISGYzrK8kzB5agh23VqW3QDPu5YDXP6F9rAW0MOzLfcwkciGfQ4R2XNS5Aa6mnN9dHC8c6VugAc8F3cDo88FmnyeZTfAczgPdwOjz7PsBpgI52TbJdv5jtwA0sMLUuQGupq7gVG6pBcxGiYGa+0o8S6MdwO1NW7gwiS4AUAhqDbQtAuzZTcPXUgIplzLOwmT5wLBrlvHshvgeddxgMu/0B7WAXpY13IPE4ls2OcQka2XIjfQxZzrjYLj1Ze6AR6wPu4GGtUHmtzAshvgOTTA3UCjBpbdABOhXrZdsl3kyA0gPWyYIjfQxdwNNNQlvYjRMDFYG0WJ1zjeDTTSuIHGSXADgEJQI6BpjbNlNw9dSAimJpZ3EiZPQ8Gu29SyG+B5N3WAy7/QHjYFenix5R4mEtmwzyEi2yxFbqCzOdfHB8e7ROoGeMBLcDcw/hKgyc0tuwGeQ3PcDYxvbtkNMBGaZdsl26WO3ADSwxYpcgOdzd3AOF3SixgNE4P1sijxLo93A5dp3MDlSXADgELQZUDTLs+W3Tx0ISGYrrC8kzB5Wgh23SstuwGe95UOcPkX2sMrgR5eZbmHiUQ27HOIyLZMkRu4zpzr/YLjtZK6AR6wFe4G+rUCmtzashvgObTG3UC/1pbdABOhZbZdsl3tyA0gPbwmRW7gOnM30FeX9CJGw8RgbRMlXtt4N9BG4wbaJsENAApBbYCmtc2W3Tx0ISGY2lneSZg81wh23faW3QDPu70DXP6F9rA90MMOlnuYSGTDPoeIbMcUuYFO5lxfEBzvWqkb4AGvxd3AgmuBJney7AZ4Dp1wN7Cgk2U3wETomG2XbNc5cgNIDzunyA10MncD83VJL2I0TAzWLlHidY13A100bqBrEtwAoBDUBWha12zZzUMXEoKpm+WdhMnTWbDrdrfsBnje3R3g8i+0h92BHvaw3MNEIhv2OURke6bIDVxrznUvOF4vqRvgAXvhbsDrBTS5t2U3wHPojbsBr7dlN8BE6Jltl2x9HLkBpId9U+QGrjV3A2V0SS9iNEwM1n5R4vWPdwP9NG6gfxLcAKAQ1A9oWv9s2c1DFxKCaYDlnYTJ01ew6w607AZ43gMd4PIvtIcDgR4OstzDRCIb9jlEZAenyA10NOd6keB410vdAA94Pe4GilwPNHmIZTfAcxiCu4EiQyy7ASbC4Gy7ZBvqyA0gPRyWIjfQ0dwNFNYlvYjRMDFYh0eJd0O8GxiucQM3JMENAApBw4Gm3ZAtu3noQkIw3Wh5J2HyDBPsujdZdgM875sc4PIvtIc3AT282XIPE4ls2OcQkR2RIjfQwZzrfYLjjZS6AR5wJO4G+owEmnyLZTfAc7gFdwN9brHsBpgII7Ltku1WR24A6eFtKXIDHczdQG9d0osYDROD9fYo8e6IdwO3a9zAHUlwA4BC0O1A0+7Ilt08dCEhmO60vJMweW4T7LqjLLsBnvcoB7j8C+3hKKCHoy33MJHIhn0OEdm7UuQG2ptzvVhwvLulboAHvBt3A8XuBpp8j2U3wHO4B3cDxe6x7AaYCHdl2yXbvY7cANLD+1LkBtqbu4GiuqQXMRomBuuYKPHGxruBMRo3MDYJbgBQCBoDNG1stuzmoQsJwTTO8k7C5LlPsOuOt+wGeN7jHeDyL7SH44Ee3m+5h4lENuxziMg+kCI30A74R3aD402QugEecEI2/rmJlnd4xjUx+0DCi5hfKIl4wT6QbZcUDzratZG+PJRPoprM+SFBD5NJqLZCQk2SEooHnCQg1MOWCcW4Hk4SocLKufEPZ8sWjGc2RlIXSRvkn+sOfPAR6SLhAR8RKM4jAGMnW15QPIfJgiZPtnwG40U0WWAPHgTu1xTLdpDv7RQhWf0LXVtTgPlPtWzxEu3IYZ9DduRHLfeQ79Gjgo0A6UPwOsZwHB/PL+kGmKLFv5rURot/M6rNK95uVru/eIdhLRf/blqrinemm/dmV7p5b6YB64vn5/+VAX8uN+7/R3v7I9DbTUBvNwO93QL0divQ221Ab38Cevsz0NvHhL19LAm9XQf0dj3Q2w1AbzcCvf0W6O13QG+/B3r7A9Dbx4W9fTwJvf0a6O0KoLcrgd6uAnq7GujtGqC33wC9XQv09glhb59IQm+rZZr3tnqmeW9rZJr3tmameW/PzDTv7VmZ5r2tlWne27MzzXv7pLC3Tyaht+WA3pYHelsB6G1FoLeVgN5WBnpbBehtVaC304W9nZ6E3qYBvU0HepsB9DYT6G0W0NtsoLc5QG/LAr19Stjbp5LQ2+JAb0sAvT0D6G1JoLelgN6WBnpbBuitB/T2aWFvn05Cbwdlmfd2cJZ5b6/PMu/tkCzz3g7NMu/tsCzz3g43/xtwugH4i9BnhL19Jgm97QX0tjfQ2z5Ab/sCve0H9LY/0NsBQG8HAr19VtjbZ5PQ2+uA3nYGetsF6G1XoLfdgN52B3oL/Kvb1BPo7Qxhb2ckobdtgN62BXrbDuhte6C3HYDedgR6CzzhbPzaEO7tc8LePhftLf/3YyMH/h6S/3ws+8Dfb/CfT2QfODf5Htv3Y/7e7eu8rwn++vHH4suLGMM0nlMqa0cCtcjP/a829nperZ8XVLyo4iUVL6t4RcVMFa+qmKXiNRWvq3hDxZsqZquYo+ItFXNVzFMxX8UCFW+reEfFuyreU/F+dt4vl31+xF+E4aXnwd8zxV+eWdnR8s/S/+ZEgR/0gcK9UMWHKj5S8bGKT1R8quKz+O8+fhD9nmMwt1CT+1CT+0iT+1iT+0ST+1ST+yz74LthulH59+F54JdwHxjW8vczFxrXRuhD01qF9yOz2vsVXvrYqHYnz40+MandsP8+0KcGtXXz7hl9Bn7TI1lkfOEwJePnCvciFYtVLFGxVMUyFV+oWB5Pxs81pFikyS3W5JZocks1uWWa3Bea3PIkkPEFgIyfA2RcBJBxMUDGJQAZlwJkXAaQ8QuAjMtTRMYXD1Myfqlwf6XiaxUrVKxUsUrFahVr4sn4pYYUX2lyX2tyKzS5lZrcKk1utSa3JglkfBEg45cAGb8CyPg1QMYVABlXAmRcBZBxNUDGNSki40uHKRm/UbjXqlinYr2KDSo2qvhWxXfxZPxGQ4q1mtw6TW69JrdBk9uoyX2ryX2XBDK+BJDxG4CMawEyrgPIuB4g4waAjBsBMn4LkPE7ISnQR7yCtWF9LFvIvPZ7AH9wbfLnRkaSKzDfC+9lBBvHM04edMUKjP+ZHxTuH1VsUrFZxRYVW1VsU/GTip9V/KLiVxW/qdiuYoeK31XsVLFLxR8q/lSxW8UeFX+p+FvFPyr+VbFXxT4Wqxw1tooCKgqqKJQTiW3MDxoh+VGT26TJbdbktmhyWzW5bZrcT5rcz5rcL5rcr5rcb5rcdk1uhyb3uya3U5Pbpcn9ocn9qcnt1uT2aHJ/aXJ/a3L/aHL/anJ7Nbl9mhwvnvgcaXIFNLmCmlyhnIM3qLTon17E6IohfZhY/QBsUD8CG9QmYIPaDGxQW4ANaiuwQW0DNqifwmvHRe8v/Rxa29fvBf0SVjv7f32jX0Nqhx7oMf126NqGgfVA2w9Zuym4dmjHoWqrx6wz+v0QtTmxa5J2Jq5tE7d+aVfC2pbxa53+SFQ78iBe0J8JakcezCHara99XcM32qOtra/jJv2lq22u5TH9ral9U895+ufg2rIJ9IH+Pah2WiItob3xtVUT6g7ti6vdkFijiDU2UNv/EHpGFFPb7FDaRwWCtZ0OqZNUMFBb5dCaSoVyzE1XMp+oK5RjrOXLguMdkZOPAfnD4FtNlh1hfoPoSMNJSZ+o4znwGATO4UiwyXwV0AGIG9cEr2HtUl3SixgNE4P1qOgCOTreGR8VvXHB3NE5+X/7BrCS6ShggRwN3jy0ObwojgIXE+M6KkWKUdD8Pk8NjneMVDF4wGNwxZh6DKAYx1pWDJ7DsbhiTD02RYpR0HzcKbqkFzEaJgZr4egCKRKvGIU1ilEkCYoBrGQqDCyQIsKbhz4IjGA6DiDD//4DwHJkdIHHzyFsLGSrPh4gg24OYeV8j44XKPHxKVLiAubrd1ZwvBOkSswDnoAr8awTgMVX1LIS8xyK4ko8q2g+F58JgY63TKBi4Bz8CxUmpIcnAmsjmTtcAfNxX9UlvYjRMDFYT4oS7+T4He4kzQ53chJ2OEAh6CSgaScLbx66kBBMp+Rzhwv7DJPnRMHucKrlXYvnfaoDXP6F9vBUoIenWe5hIpE1EWfT2tNBQUuWGyBzro8Njldc6gZ4wOK4GxhbHLhBJSy7AZ5DCdwNjC1h2Q0wEU7PsUu2M0Cy+ReKCelhyRS5ATIfd4wu6UWMhonBWipKvNLxbqCUxg2UToIbABSCSgFNKy28eehCQjCVsbyTMHlKCnZdz7Ib2D9vB7j8C+2hB/QwzXIPE4ls2OcQkU1P0d8NRMy57gXHy5C6AR4wA3cDXgbQ5EzLboDnkIm7AS/TshtgIqTn2CVbliM3gPQwO0VuIGI+btL+XducKPHKxruBHI0bKJsENwAoBOUATSsrvHnoQkIwlbO8kzB5sgW7bnnLboDnXd4BLv9Ce1ge6GEFyz1MJLJhn0NEtmKK3MA+82/sLQ2OV0nqBnjASrgbWFoJaHJly26A51AZdwNLK1t2A0yEijl2yVbFkRtAelg1RW5gn/n34Zfokl7EaJgYrNWixKse7waqadxA9SS4AUAhqBrQtOo5spuHLiQEUw3LOwmTp6pg161p2Q3wvGs6wOVfaA9rAj0803IPE4ls2OcQkT0rRW5grznXOwbHqyV1AzxgLdwNdKwFNPlsy26A53A27gY6nm3ZDTARzsqxS7ZzHLkBpIfnpsgN7DV3Ax10SS9iNEwM1vOixDs/3g2cp3ED5yfBDQAKQecBTTs/R3bz0IWEYLrA8k7C5DlXsOvWtuwGeN61HeDyL7SHtYEeXmi5h4lENuxziMjmpsgN/GvO9ZXB8epI3QAPWAd3AyvrAE2ua9kN8Bzq4m5gZV3LboCJkJtjl2z1HLkBpIf1U+QG/jV3Ayt0SS9iNEwM1gZR4l0U7wYaaNzARUlwA4BCUAOgaRflyG4eupAQTA0t7yRMnvqCXbeRZTfA827kAJd/oT1sBPSwseUeJhLZsM8hItskRW7gH3OuNw6O11TqBnjAprgbaNwUaPLFlt0Az+Fi3A00vtiyG2AiNMmxS7ZmjtwA0sNLUuQG/jF3A410SS9iNEwM1uZR4l0a7waaa9zApUlwA4BCUHOgaZfmyG4eupAQTC0s7yRMnksEu+5llt0Az/syB7j8C+3hZUAPL7fcw0QiG/Y5RGSvSJEb+Nuc6zOD410pdQM84JW4G5h5JdDkqyy7AZ7DVbgbmHmVZTfARLgixy7ZWjpyA0gPW6XIDfxt7gZe0SW9iNEwMVhbR4l3dbwbaK1xA1cnwQ0ACkGtgaZdnSO7eehCQjBdY3knYfK0Euy6bSy7AZ53Gwe4/AvtYRugh20t9zCRyIZ9DhHZdilyA3+Zc31ecLz2UjfAA7bH3cC89kCTO1h2AzyHDrgbmNfBshtgIrTLsUu2jo7cANLDa1PkBv4ydwNzdUkvYjRMDNZOUeJdF+8GOmncwHVJcAOAQlAnoGnX5chuHrqQEEydLe8kTJ5rBbtuF8tugOfdxQEu/0J72AXoYVfLPUwksmGfQ0S2W4rcwB5zrjcNjtdd6gZ4wO64G2jaHWhyD8tugOfQA3cDTXtYdgNMhG45dsnW05EbQHrYK0VuYI+5G2iiS3oRo2FisPaOEq9PvBvorXEDfZLgBgCFoN5A0/rkyG4eupAQTH0t7yRMnl6CXbefZTfA8+7nAJd/oT3sB/Swv+UeJhLZsM8hIjsgRW5gtznXRwbHGyh1AzzgQNwNjBwINHmQZTfAcxiEu4GRgyy7ASbCgBy7ZBvsyA0gPbw+RW5gt7kbGKFLehGjYWKwDokSb2i8GxiicQNDk+AGAIWgIUDThubIbh66kBBMwyzvJEye6wW77nDLboDnPdwBLv9Cezgc6OENlnuYSGTDPoeI7I0pcgN/Ct3ATVI3wAPeJHADNwFNvtmyG+A53CxwAzdbdgNMhBtz7JJthCM3gPRwZIrcwJ8pcAO3RIl3a7wbuEXjBm5NghsAFIJuAZp2qyM3gGC6zfJOwuQZKdh1b7fsBnjetzvA5V9oD28HeniH5R4mEtmwzyEie2eK3MAf5lyfERxvlNQN8ICjcDcwYxTQ5NGW3QDPYTTuBmaMtuwGmAh35tgl212O3ADSw7tT5Ab+MHcDz+qSXsRomBis90SJd2+8G7hH4wbuTYIbABSC7gGadm+O7OahCwnBdJ/lnYTJc7dg1x1j2Q3wvMc4wOVfaA/HAD0ca7mHiUQ27HOIyI5LkRvYZc716cHxxkvdAA84HncD08cDTb7fshvgOdyPu4Hp91t2A0yEcTl2yfaAIzeA9HBCitzALnM38KQu6UWMhonBOjFKvAfj3cBEjRt4MAluAFAImgg07cEc2c1DFxKC6SHLOwmTZ4Jg151k2Q3wvCc5wOVfaA8nAT182HIPE4ls2OcQkX0kRW5gpznXVwXHmyx1AzzgZNwNrJoMNHmKZTfAc5iCu4FVUyy7ASbCIzl2yTbVkRtAevhoitzATnM3sFKX9CJGw8RgnRYl3mPxbmCaxg08lgQ3ACgETQOa9liO7OahCwnB9LjlnYTJ86hg133CshvgeT/hAJd/oT18Aujhk5Z7mEhkwz6HiOz0FLmB3825vjg43lNSN8ADPoW7gcVPAU1+2rIb4Dk8jbuBxU9bdgNMhOk5dsn2jCM3gPTw2RS5gd/N3cAiXdKLGA0Tg3VGlHjPxbuBGRo38FwS3ACgEDQDaNpzObKbhy4kBNPzlncSJs+zgl33BctugOf9ggNc/oX28AWghy9a7mEikQ37HCKyL6XIDeww53rx4HgvS90AD/gy7gaKvww0+RXLboDn8AruBoq/YtkNMBFeyrFLtpmO3ADSw1dT5AZ2mLuB03VJL2I0TAzWWVHivRbvBmZp3MBrSXADgELQLKBpr+XIbh66kBBMr1veSZg8rwp23TcsuwGe9xsOcPkX2sM3gB6+abmHiUQ27HOIyM5OkRvYbs71OcHx5kjdAA84B3cDc+YATX7LshvgObyFu4E5b1l2A0yE2Tl2yTbXkRtAejgvRW5gu7kbmK1LehGjYWKwzo8Sb0G8G5ivcQMLkuAGAIWg+UDTFuTIbh66kBBMb1veSZg88wS77juW3QDP+x0HuPwL7eE7QA/ftdzDRCIb9jlEZN9LkRv4zZzro4PjvS91Azzg+7gbGP0+0OQPLLsBnsMHuBsY/YFlN8BEeC/HLtkWOnIDSA8/TJEb+M3cDYzSJb2I0TAxWD+KEu/jeDfwkcYNfJwENwAoBH0ENO3jHNnNQxcSgukTyzsJk+dDwa77qWU3wPP+1AEu/0J7+CnQw88s9zCRyIZ9DhHZz1PkBn4153qj4HiLpG6AB1yEu4FGi4AmL7bsBngOi3E30GixZTfARPg8xy7ZljhyA0gPl6bIDfxq7gYa6pJexGiYGKzLosT7It4NLNO4gS+S4AYAhaBlQNO+yJHdPHQhIZiWW95JmDxLBbvul5bdAM/7Swe4/Avt4ZdAD7+y3MNEIhv2OURkv06RG/jFnOvjg+OtkLoBHnAF7gbGrwCavNKyG+A5rMTdwPiVlt0AE+HrHLtkW+XIDSA9XJ0iN/CLuRsYp0t6EaNhYrCuiRLvm3g3sEbjBr5JghsAFILWAE37Jkd289CFhGBaa3knYfKsFuy66yy7AZ73Oge4/Avt4Tqgh+st9zCRyIZ9DhHZDSlyAz+bc71fcLyNUjfAA27E3UC/jUCTv7XsBngO3+JuoN+3lt0AE2FDjl2yfefIDSA9/D5FbuBnczfQV5f0IkbDxGD9IUq8H+PdwA8aN/BjEtwAoBD0A9C0H3NkNw9dSAimTZZ3EibP94Jdd7NlN8Dz3uwAl3+hPdwM9HCL5R4mEtmwzyEiuzVFbuAnc64vCI63TeoGeMBtuBtYsA1o8k+W3QDP4SfcDSz4ybIbYCJszbFLtp8duQGkh7+kyA38ZO4G5uuSXsRomBisv0aJ91u8G/hV4wZ+S4IbABSCfgWa9luO7OahCwnBtN3yTsLk+UWw6+6w7AZ43jsc4PIvtIc7gB7+brmHiUQ27HOIyO5MkRvYZs51LzjeLqkb4AF34W7A2wU0+Q/LboDn8AfuBrw/LLsBJsLOHLtk+9ORG0B6uDtFbmCbuRsoo0t6EaNhYrDuiRLvr3g3sEfjBv5KghsAFIL2AE37K0d289CFhGD62/JOwuTZLdh1/7HsBnje/zjA5V9oD/8Beviv5R4mEtmwzyEiuzdFbmCrOdeLBMfbJ3UDPOA+3A0U2Yc0uaxdN8Bz4DFAN1AkiMtsIuY/3yfC3hy7ZKOyGNn8C8WE9LAAgCmZbmCruRsorEt6EaNhYrAWLJv3Z6Gykdidv2DZg90AF+XXDQAKQQWBphUqK7t56EJCMB0BLm50wTB5CpTFiX1kPoUjrJznfaQDXP6F9vBIoIdHWe5hIpEN+xwiskcD9zWZbmCLOdf7BMc7pmw+BuQPg26gzzFAk4+17AZ4DsfibqDPsZbdABPh6LJ2yVbYkRtAelgkRW5gi7kb6K1LehGjYWKwHhcl3vHxbuA4jRs4PgluAFAIOg5o2vFlZTcPXUgIphMs7yRMniKCXbeoZTfA8y7qAJd/oT0sCvSwmOUeJhLZsM8hIntiitzAZnOuFwuOd5LUDfCAJ+FuoNhJQJNPtuwGeA4n426g2MmW3QAT4cSydsl2iiM3gPTw1BS5gc3mbqCoLulFjIaJwXpalHinx7uB0zRu4PQkuAFAIeg0oGmnl5XdPHQhIZiKW95JmDynCnbdEpbdAM+7hANc/oX2sATQwzMs9zCRyIZ9DhHZkilyA5vMBS1mvFJSN8ADliqLf6605R2ecZUueyDhRcwvlES8YEuWtUuKMo52baQvXj6JajRnQQ+TSagfhYRKkxKKB0wTECrdMqEYV3qSCBVWzo1PLytcMGZjJHWR/JBtjjE4XoZ0kfCAGQLFyQAYm2l5QfEcMgVNzrR8BuNFlCmwB2WA+5Vl2Q7yvc0SktW/0LWVBcw/27LFS7Qjh30O2ZFzLPeQ71GOYCNA+lAocuC4mV+8OYVk6yyCjeMZJw+66H9zosBnyqr7VU5FeRUVVFRUUUlFZRVVVFRVUU1FdRU1VNRUcaaKs1TUUnG2inNUnKviPBXnq7hARW0VF6rIVVFHRV0V9VTUV9FAxUUqGsb/HUDZ6Hk/mCunyZXX5CpochU1uUqaXGVNroomV1WTq6bJVdfkamhyNTW5MzW5szS5Wprc2ZrcOZrcuZrceZrc+ZrcBZpcbU3uQk0uV5Oro8nV1eTqaXL1NbkGmtxFmlzDsgf/3VJa9E8vYnTFkD5MbMoaChP/PVQ549oIlTetVXgrmNXer/BSRaPanTw3qmRSu2H/faDKBrV18+4ZVQmvHRe9v1Q1tLav3wuqFlY7+399o+ohtUMP9JhqHLq2YWA9UM1D1m4Krh0681C11WPWGZ11iNqc2DVJtRLXtolbv3R2wtqW8WudzklUO/IgXtC5CWpHHswhOk9f+7qGb3S+tra+jpt0ga62uZbHVFtT+6ae83ThwbVlE+gD5R5UOy2RllCd+NqqCXWH6sbVbkisUVQvtrb/IfSM6sfUNjuU9lGDYG2nQ+okXRSorXJoTaWGZc1NVzJPvA3NtXxZcLxGZfMxIH8Y/K3jskbmN4gaG05KeuLlOfAYBM6hMdhkvpLx2zFgcS3VJb2I0TAxWJtEF0jTspFYt9IkeuOCuaZl8//bMWAlUxNggTQFbx7aHF4UTcDFxLiapEgxLjK/z1OD410sVQwe8GJcMaZeDChGM8uKwXNohivG1GYpUoyLzMedokt6EaNhYrBeEl0gzeMV4xKNYjRPgmIAK5kuARZIc+HNQ/+iDsF0KUCG//0HgKVxdIGjf1GHbNUtADLo5hBWzveohUCJW6RIiRuYr99ZwfEukyoxD3gZrsSzLgMW3+WWlZjncDmuxLMuz+fiMyFQC8sEugKcg3+hwoT08EpgbSRzh2tgPu6ruqQXMRomButVUeK1jN/hrtLscC2TsMMBCkFXAU1rKbx56EJCMLXK5w4X9hkmz5WC3aG15V2L593aAS7/QnvYGujh1ZZ7mEhkTcTZtPYaUNCS5Qbqm3N9bHC8NlI3wAO2wd3A2DbADWpr2Q3wHNribmBsW8tugIlwTVm7ZGsHks2/UExID9unyA3UNx93jC7pRYyGicHaIUq8jvFuoIPGDXRMghsAFII6AE3rKLx56EJCMF1reSdh8rQX7LqdLLsBnncnB7j8C+1hJ6CH11nuYSKRDfscIrKdU/R3A/XMue4Fx+sidQM8YBfcDXhdgCZ3tewGeA5dcTfgdbXsBpgIncvaJVs3R24A6WH3FLmBeubjJu29cz2ixOsZ7wZ6aNxAzyS4AUAhqAfQtJ7Cm4cuJARTL8s7CZOnu2DX7W3ZDfC8ezvA5V9oD3sDPexjuYeJRDbsc4jI9k2RG6hrzvWlwfH6Sd0AD9gPdwNL+wFN7m/ZDfAc+uNuYGl/y26AidC3rF2yDXDkBpAeDkyRG6hrPu4SXdKLGA0Tg3VQlHiD493AII0bGJwENwAoBA0CmjZYePPQhYRgut7yTsLkGSjYdYdYdgM87yEOcPkX2sMhQA+HWu5hIpEN+xwissNS5AbqmHO9Y3C84VI3wAMOx91Ax+FAk2+w7AZ4DjfgbqDjDZbdABNhWFm7ZLvRkRtAenhTitxAHfNxO+iSXsRomBisN0eJNyLeDdyscQMjkuAGAIWgm4GmjRDePHQhIZhGWt5JmDw3CXbdWyy7AZ73LQ5w+Rfaw1uAHt5quYeJRDbsc4jI3pYiN5BrzvWVwfFul7oBHvB23A2svB1o8h2W3QDP4Q7cDay8w7IbYCLcVtYu2e505AaQHo5KkRvINR93hS7pRYyGicE6Okq8u+LdwGiNG7grCW4AUAgaDTTtLuHNQxcSguluyzsJk2eUYNe9x7Ib4Hnf4wCXf6E9vAfo4b2We5hIZMM+h4jsfSlyAxeac71xcLwxUjfAA47B3UDjMUCTx1p2AzyHsbgbaDzWshtgItxX1i7ZxjlyA0gPx6fIDVxoPm4jXdKLGA0Tg/X+KPEeiHcD92vcwANJcAOAQtD9QNMeEN48dCEhmCZY3kmYPOMFu+5Ey26A5z3RAS7/Qns4Eejhg5Z7mEhkwz6HiOxDKXIDtc25PjM43iSpG+ABJ+FuYOYkoMkPW3YDPIeHcTcw82HLboCJ8FBZu2R7xJEbQHo4OUVuoLb5uK/okl7EaJgYrFOixJsa7wamaNzA1CS4AUAhaArQtKnCm4cuJATTo5Z3EibPZMGuO82yG+B5T3OAy7/QHk4DeviY5R4mEtmwzyEi+3iK3MAF5lyfFxzvCakb4AGfwN3AvCeAJj9p2Q3wHJ7E3cC8Jy27ASbC42Xtkm26IzeA9PCpFLmBC8zHnatLehGjYWKwPh0l3jPxbuBpjRt4JgluAFAIehpo2jPCm4cuJATTs5Z3EibPU4Jdd4ZlN8DznuEAl3+hPZwB9PA5yz1MJLJhn0NE9vkUuYHzzbneNDjeC1I3wAO+gLuBpi8ATX7RshvgObyIu4GmL1p2A0yE58vaJdtLjtzA/2vvPKCdqLo2nEiTXqTX0C43uXSk994VUMCOKIhKR5p06WABFDsqCipgAaRXAVFQpPfeey/Swf/dmmgSZ3bOHnJO1rfWP2s93/U77wxn79mzz7w3N5lIajg9Rm6gkvq8DawGPS6laUJineFvvJnhbmCGhRuYGQU3IFgh3DMERZvp8ORJLyRJTD9ovpNQ80x3cNedpdkNUN6zDMQV2KQ1nCWo4WzNNbRbZCMdJ1lk58TIDVRU7/VBwfPNdeoGaMK5cjcwaK6gyPM0uwHKYZ7cDQyap9kNUCPMidfbbPMNuQFJDRfEyA1UVJ93oNWgx6U0TUisC/2NtyjcDSy0cAOLouAGBCuEe6GgaIscnjzphSSJabHmOwk1zwIHd90lmt0A5b3EQFyBTVrDJYIaLtVcQ7tFNtJxkkX2xxi5gQoO3cAyp26AJlzmwA0sExR5uWY3QDksd+AGlmt2A9QIP8brbbYVhtyApIY/xcgNVIiBG1jpb7yfw93ASgs38HMU3IBghXCvFBTtZ0NuQBLTL5rvJNQ8Pzm4667S7AYo71UG4gps0hquEtRwteYa2i2ykY6TLLK/xsgNlFfv9anB8/3m1A3QhL/J3cDU3wRFXqPZDVAOa+RuYOoazW6AGuHXeL3N9rshNyCp4doYuYHy6vNOsRr0uJSmCYl1nb/x1oe7gXUWbmB9FNyAYIVwrxMUbb3Dkye9kCQxbdB8J6HmWevgrrtRsxugvDcaiCuwSWu4UVDDTZpraLfIRjpOsshujpEbKKfe65OD59vi1A3QhFvkbmDyFkGRt2p2A5TDVrkbmLxVsxugRtgcr7fZthlyA5Iabo+RGyinPu8kq0GPS2makFh3+BtvZ7gb2GHhBnZGwQ0IVgj3DkHRdjo8edILSRLTLs13Emqe7Q7uurs1uwHKe7eBuAKbtIa7BTXco7mGdotspOMki+zeGLmBsuq9vjN4vn1O3QBNuE/uBnbuExR5v2Y3QDnsl7uBnfs1uwFqhL3xepvtgCE3IKnhwRi5gbLq8+6wGvS4lKYJifWQv/EOh7uBQxZu4HAU3IBghXAfEhTtsMOTJ72QJDEd0XwnoeY56OCue1SzG6C8jxqIK7BJa3hUUMNjmmtot8hGOk6yyB6PkRsoo97r64LnO+HUDdCEJ+RuYN0JQZFPanYDlMNJuRtYd1KzG6BGOB6vt9lOGXIDkhqejpEbKKM+71qrQY9LaZqQWM/4G+9suBs4Y+EGzkbBDQhWCPcZQdHOOjx50gtJEtM5zXcSap7TDu665zW7Acr7vIG4Apu0hucFNbyguYZ2i2yk4ySL7MUYuYHS6r2eLXi+S07dAE14Se4Gsl0SFPmyZjdAOVyWu4FslzW7AWqEi/F6m+2KITcgqeEfMXIDpdXnzWo16HEpTRMS61V/410LdwNXLdzAtSi4AcEK4b4qKNo1hydPeiFJYrqu+U5CzfOHg7vuDc1ugPK+YSCuwCat4Q1BDW9qrqHdIhvpOMkieytGbuBB9V5fEDzfbadugCa8LXcDC24LinxHsxugHO7I3cCCO5rdADXCrXi9zXbXkBuQ1PDPGLmBB9XnnW816HEpTRMaq9c/6nWF3vlJCHcDtNO9ugHBCuGmGFT2veCPTTGGkJMnvZAkMd3nlV3c0guGmudPB3fdROpx/RucSz0uyjuRV39cgU1aw0SCGibWXEO7RTbScZJFNongvEbTDZRS7/WRwfMl9d7DhHSw0A2MTCoocjLBxeM0h2TC5qEckt1jU6s0QhKv3ma7X9hsgU0ak6SGyQUxRdMNlFJ3AyOsBj0upWlCYk3hb7yU4W4ghYUbSBkFNyBYIdwpBEVL6XV28qQXkiSmVJrvJNQ8yR3cdVNrdgOUd2oDcQU2aQ1TC2qYRnMN7RbZSMdJFtm0MXIDJdV7vV7wfOmcugGaMJ3cDdRLJyhyes1ugHJIL3cD9dJrdgPUCGm9epstgyE3IKnhAzFyAyXV3UBdq0GPS2makFgz+hsvU7gbyGjhBjJFwQ0IVgh3RkHRMnmdnTzphSSJKbPmOwk1zwMO7rpZNLsByjuLgbgCm7SGWQQ1zKq5hnaLbKTjJItsthi5gRLqvT4ueL7sTt0ATZhd7gbGZRcUOYdmN0A55JC7gXE5NLsBaoRsXr3NltOQG5DUMFeM3EAJdTcw1mrQ41KaJiTW3P7GyxPuBnJbuIE8UXADghXCnVtQtDxeZydPeiFJYvJovpNQ8+RycNfNq9kNUN55DcQV2KQ1zCuoYT7NNbRbZCMdJ1lk88fIDRRX7/UuwfMVcOoGaMICcjfQpYCgyAU1uwHKoaDcDXQpqNkNUCPk9+pttjhDbkBSw0IxcgPF1d1AZ6tBj0tpmpBY4/2N5w13A/EWbsAbBTcgWCHc8YKieb3OTp70QpLE5NN8J6HmKeTgrpug2Q1Q3gkG4gps0homCGpYWHMN7RbZSMdJFtkiMXIDxdR7fWnwfEWdugGasKjcDSwtKihyMc1ugHIoJncDS4tpdgPUCEW8eputuCE3IKlhiRi5gWLqbmCJ1aDHpTRNSKwl/Y1XKtwNlLRwA6Wi4AYEK4S7pKBopbzOTp70QpLE9KDmOwk1TwkHd93Smt0A5V3aQFyBTVrD0oIaltFcQ7tFNtJxkkW2bIzcQFH1XvcEz1fOqRugCcvJ3YCnnKDI5TW7AcqhvNwNeMprdgPUCGW9eputgiE3IKlhxRi5gaLqbiCP1aDHpTRNSKyV/I1XOdwNVLJwA5Wj4AYEK4S7kqBolb3OTp70QpLEVEXznYSap6KDu25VzW6A8q5qIK7AJq1hVUENq2muod0iG+k4ySJbPUZuoIh6r6cKnq+GUzdAE9aQu4FUNQRFrqnZDVAONeVuIFVNzW6AGqG6V2+z1TLkBiQ1rB0jN1BE3Q2ktBr0uJSmCYm1jr/x6oa7gToWbqBuFNyAYIVw1xEUra7X2cmTXkiSmOppvpNQ89R2cNetr9kNUN71DcQV2KQ1rC+oYQPNNbRbZCMdJ1lkG8bIDRRW7/VOwfM1cuoGaMJGcjfQqZGgyI01uwHKobHcDXRqrNkNUCM09OpttocMuQFJDR+OkRsorO4GOloNelxK04TE2sTfeE3D3UATCzfQNApuQLBCuJsIitbU6+zkSS8kSUzNNN9JqHkednDXfUSzG6C8HzEQV2CT1vARQQ0f1VxDu0U20nGSRbZ5jNxAgnqvpw+er4VTN0ATtpC7gfQtBEVuqdkNUA4t5W4gfUvNboAaoblXb7M9ZsgNSGr4eIzcQIK6G0hnNehxKU0TEusT/sZ7MtwNPGHhBp6MghsQrBDuJwRFe9Lr7ORJLyRJTE9pvpNQ8zzu4K77tGY3QHk/bSCuwCat4dOCGj6juYZ2i2yk4ySLbKsYuQGf4PF4wfM969QN0ITPeuXHtdZ8h6e4Wnv/HfC41DdpE9EF28qrtymeM3TXltTl+XtsVJWcn3dQw2g2lNdhQ7Vx2lA0YRsHDdVWc0NRXG2j1FCRdqfCt/U6u2A8anNE9SKJFzyXLni+F5xeJDThCw5WnBcEHdtO8wVFObRzUOR2mn8Ho4uonQN78JzgfL2o2Q7SuX3RYbMGNum19aIg/5c0Wzy7O3Kk4yR35Jc115DO0csObgSSOiR2/fvr5r3GG5fY2XXmks3jUR78z+b+Jyd30DHtcb46gI6gE+gMuoCuoBt4BXQHPUBP0Av0Bq+CPqAv6Af6gwFgIBgEXgODwRAwFAwDw8EIMBKMAqPDXwNo7/99P3isg8VYR4uxThZjnS3GuliMdbUY62Yx9orFWHeLsR4WYz0txnpZjPW2GHvVYqyPxVhfi7F+FmP9LcYGWIwNtBgbZDH2msXYYIuxIRZjQy3GhlmMDbcYG2ExNtJibJTF2Gjvf19byuv/6XEpbSFNH2mxaa+4MNHrUB2U93W5O6rui3g7qe37NuJ1d1ba9wrl5u6isu+Bv86Du6vCvjX+PmfubpH3Hes/v+5XIu7bOVALd/dI+87/p27uHhH27f1vjd09+X3rBl0P7l7svseDrx13b27fkiHXmftVZt9Codeku4/9vk+FXb/uvrb7tgy/1t397PYd9J++cPe32XfQf3vIPcB63zkW/eYeaLlvLavedA+y2vdhyz52v2ax7zzrnncP/u++8Tbrg3vIf/b9zG4tcQ8N37e47brjHha27wH7Nco9PHTfrsx65h4Rsm9jbu1zjwze93l2nXSPCtq3GL+mukfH6Dfe0epr+cbg+V53+hsvTfi6V/xXx42vq58g9xuKSTn9jZdyeEP4Gy/l8IawyLRF469jgotrg9Wgx6U0TUisb/ovkLfCnfGb/hMXPPaW997/Oia4kt1vCi6Qt4QnT1ocuijeFF5MFNebMVoxRqmf50+C5xvjdMWgCcfIV4xPxghWjLGaVwzKYax8xfhkbIxWjFHq806wGvS4lKYJiXWc/wJ5O3zFGGexYrwdhRVDcCW7xwkukLcdnjzpC3WSmN4RNMM//yOI5Q3/BS59oU5yqx4vaAarHCLtTudovIOVeHyMVuKR6tfvrOD53nW6EtOE78pX4lnvCi6+9zSvxJTDe/KVeNZ793jxqTTQeM0N9L4wh8AmXZgkNfxAcG1E8w43Un3eH6wGPS6laUJi/dDfeB+F3+E+tLjDfRSFO5xghXB/KCjaRw5PnvRCksT08T3e4SIdQ83zgYO7wwTNdy3Ke4KBuAKbtIYTBDX8RHMN7RZZlcVZdd9PhQtatNzACPVeHxM832dO3QBN+JncDYz5THCCJmp2A5TDRLkbGDNRsxugRvjUq7fZPhc2W2CTxiSp4RcxcgMj1Od9y2rQ41KaJiTWSf7GmxzuBiZZuIHJUXADghXCPUlQtMkOT570QpLE9KXmOwk1zxcO7rpfaXYDlPdXBuIKbNIafiWo4deaa2i3yEY6TrLITonRawPD1XvdEzzfVKdugCacKncDnqmCIk/T7AYoh2lyN+CZptkNUCNM8epttm8MuQFJDb+NkRsYrj5v1J47952/8b4PdwPfWbiB76PgBgQrhPs7QdG+d3jypBeSJKbpmu8k1DzfOrjrztDsBijvGQbiCmzSGs4Q1HCm5hraLbKRjpMssj/EyA0MU+/1DcHzzXLqBmjCWXI3sGGWoMizNbsBymG23A1smK3ZDVAj/ODV22xzDLkBSQ3nxsgNDFOfd73VoMelNE1IrPP8jTc/3A3Ms3AD86PgBgQrhHueoGjzHZ486YUkiWmB5jsJNc9cB3fdhZrdAOW90EBcgU1aw4WCGi7SXEO7RTbScZJFdnGM3MBQ9V5vHTzfEqdugCZcIncDrZcIirxUsxugHJbK3UDrpZrdADXCYq/eZvvRkBuQ1HBZjNzAUPV5n7Ua9LiUpgmJdbm/8VaEu4HlFm5gRRTcgGCFcC8XFG2Fw5MnvZAkMf2k+U5CzbPMwV13pWY3QHmvNBBXYJPWcKWghj9rrqHdIhvpOMki+0uM3MAQ9V7fETzfKqdugCZcJXcDO1YJirxasxugHFbL3cCO1ZrdADXCL169zfarITcgqeFvMXIDQ9Tn3W416HEpTRMS6xp/4/0e7gbWWLiB36PgBgQrhHuNoGi/Ozx50gtJEtNazXcSap7fHNx112l2A5T3OgNxBTZpDdcJarhecw3tFtlIx0kW2Q0xcgOD1Xu9fvB8G526AZpwo9wN1N8oKPImzW6ActgkdwP1N2l2A9QIG7x6m22zITcgqeGWGLmBwerz1rMa9LiUpgmJdau/8baFu4GtFm5gWxTcgGCFcG8VFG2bw5MnvZAkMW3XfCeh5tni4K67Q7MboLx3GIgrsElruENQw52aa2i3yEY6TrLI7oqRG3hNvddnBs+326kboAl3y93AzN2CIu/R7AYohz1yNzBzj2Y3QI2wy6u32fYacgOSGu6LkRt4TX3eGVaDHpfSNCGx7vc33oFwN7Dfwg0ciIIbEKwQ7v2Coh1wePKkF5IkpoOa7yTUPPsc3HUPaXYDlPchA3EFNmkNDwlqeFhzDe0W2UjHSRbZIzFyA4PUe31x8HxHnboBmvCo3A0sPioo8jHNboByOCZ3A4uPaXYD1AhHvHqb7bghNyCp4YkYuYFB6vMushr0uJSmCYn1pL/xToW7gZMWbuBUFNyAYIVwnxQU7ZTDkye9kCQxndZ8J6HmOeHgrntGsxugvM8YiCuwSWt4RlDDs5praLfIRjpOssiei5EbGKje6w2D5zvv1A3QhOflbqDheUGRL2h2A5TDBbkbaHhBsxugRjjn1dtsFw25AUkNL8XIDQxUn7eB1aDHpTRNSKyX/Y13JdwNXLZwA1ei4AYEK4T7sqBoVxyePOmFJInpD813EmqeSw7uulc1uwHK+6qBuAKbtIZXBTW8prmGdotspOMki+z1GLmBAeq9Pih4vhtO3QBNeEPuBgbdEBT5pmY3QDnclLuBQTc1uwFqhOtevc12y5AbkNTwdozcwAD1eQdaDXpcStOExHrH33h3w93AHQs3cDcKbkCwQrjvCIp21+HJk15Ikpj+1Hwnoea57eCu6/LpdQOUN82hO67AJq1h8DyR9nX79NbQbpGNdJxkkb1PcF6j6Qb6O3QDiXz3MCEdLHUDiQRFTiy4eJzmkNgndwOJ77GpVRrhPp/eZksibLbAJo1JUsOkkmsjLB6rgD0utX+rfwzcQDJ/493vc4Xe+ZP5/usGaKd7dQOCFcKdTFC0+33OTp70QpLElFzznYSaJ6mDu24KzW6A8k5hIK7AJq1hCkENU2quod0iG3EuQQ6pYuQG+qn3+tTg+VI7dQM0YWq5G5iaWlDkNJrdAOWQRu4GpqbR7AaoEVL59DZbWkNuQFLDdDFyA/3U3cAUq0GPS2makFjT+xsvQ7gbSG/hBjJEwQ0IVgh3ekHRMvicnTzphSSJ6QHNdxJqnnQO7roZNbsByjujgbgCm7SGGQU1zKS5hnaLbKTjJIts5hi5gb7qvT45eL4sTt0ATZhF7gYmZxEUOatmN0A5ZJW7gclZNbsBaoTMPr3Nls2QG5DUMHuM3EBfdTcwyWrQ41KaJiTWHP7GyxnuBnJYuIGcUXADghXCnUNQtJw+ZydPeiFJYsql+U5CzZPdwV03t2Y3QHnnNhBXYJPWMLeghnk019BukY10nGSR9cTIDfRR7/WdwfPldeoGaMK8cjewM6+gyPk0uwHKIZ/cDezMp9kN/NUIPr3Nlt+QG5DUsECM3EAfdTeww2rQ41KaJiTWgv7Giwt3AwUt3EBcFNyAYIVwFxQULc7n7ORJLyRJTIU030moeQo4uOvGa3YDlHe8gbgCm7SG8YIaejXX0G6RjXScZJH1xcgNvKre6+uC50tw6gZowgS5G1iXIChyYc1ugHIoLHcD6wprdgPUCD6f3mYrYsgNSGpYNEZu4FV1N7DWatDjUpomJNZi/sYrHu4Gilm4geJRcAOCFcJdTFC04j5nJ096IUliKqH5TkLNU9TBXbekZjdAeZc0EFdgk9awpKCGpTTX0G6RjXScZJF9MEZuoLd6r2cLnq+0UzdAE5aWu4FspQVFLqPZDVAOZeRuIFsZzW6AGuFBn95mK2vIDUhqWC5GbqC3uhvIajXocSlNExJreX/jVQh3A+Ut3ECFKLgBwQrhLi8oWgWfs5MnvZAkMVXUfCeh5inn4K5bSbMboLwrGYgrsElrWElQw8qaa2i3yEY6TrLIVomRG+il3usLguer6tQN0IRV5W5gQVVBkatpdgOUQzW5G1hQTbMboEao4tPbbNUNuQFJDWvEyA30UncD860GPS6laUJirelvvFrhbqCmhRuoFQU3IFgh3DUFRavlc3bypBeSJKbamu8k1Dw1HNx162h2A5R3HQNxBTZpDesIalhXcw3tFtlIx0kW2XoxcgM91Xt9ZPB89Z26AZqwvtwNjKwvKHIDzW6AcmggdwMjG2h2A9QI9Xx6m62hITcgqWGjGLmBnupuYITVoMelNE1IrI39jfdQuBtobOEGHoqCGxCsEO7GgqI95HN28qQXkiSmhzXfSah5Gjm46zbR7AYo7yYG4gps0ho2EdSwqeYa2i2ykY6TLLLNYuQGeqj3er3g+R5x6gZowkfkbqDeI4IiP6rZDVAOj8rdQL1HNbsBaoRmPr3N1tyQG5DUsEWM3EAPdTdQ12rQ41KaJiTWlv7GeyzcDbS0cAOPRcENCFYId0tB0R7zOTt50gtJEtPjmu8k1DwtHNx1n9DsBijvJwzEFdikNXxCUMMnNdfQbpGNdJxkkX0qRm6gu3qvjwue72mnboAmfFruBsY9LSjyM5rdAOXwjNwNjHtGsxugRnjKp7fZWhlyA5IaPhsjN9Bd3Q2MtRr0uJSmCYm1tb/xngt3A60t3MBzUXADghXC3VpQtOd8zk6e9EKSxPS85jsJNc+zDu66bTS7Acq7jYG4Apu0hm0ENWyruYZ2i2yk4ySL7AsxcgOvqPd6l+D52jl1AzRhO7kb6NJOUOQXNbsByuFFuRvo8qJmN0CN8IJPb7O9ZMgNSGr4cozcwCvqbqCz1aDHpTRNSKzt/Y3XIdwNtLdwAx2i4AYEK4S7vaBoHXzOTp70QpLE1FHznYSa52UHd91Omt0A5d3JQFyBTVrDToIadtZcQ7tFNtJxkkW2S4zcQDf1Xl8aPF9Xp26AJuwqdwNLuwqK3E2zG6AcusndwNJumt0ANUIXn95me8WQG5DUsHuM3EA3dTewxGrQ41KaJiTWHv7G6xnuBnpYuIGeUXADghXC3UNQtJ4+ZydPeiFJYuql+U5CzdPdwV23t2Y3QHn3NhBXYJPWsLeghq9qrqHdIhvpOMki2ydGbqCreq97gufr69QN0IR95W7A01dQ5H6a3QDl0E/uBjz9NLsBaoQ+Pr3N1t+QG5DUcECM3EBXdTeQx2rQ41KaJiTWgf7GGxTuBgZauIFBUXADghXCPVBQtEE+ZydPeiFJYnpN852EmmeAg7vuYM1ugPIebCCuwCat4WBBDYdorqHdIhvpOMkiOzRGbqCLeq+nCp5vmFM3QBMOk7uBVMMERR6u2Q1QDsPlbiDVcM1ugBphqE9vs40w5AYkNRwZIzfQRd0NpLQa9LiUpgmJdZS/8UaHu4FRFm5gdBTcgGCFcI8SFG20z9nJk15Ikphe13wnoeYZ6eCu+4ZmN0B5v2EgrsAmreEbghq+qbmGdotspOMki+xbMXIDndV7vVPwfGOcugGacIzcDXQaIyjyWM1ugHIYK3cDncZqdgPUCG/59DbbOENuQFLDt2PkBjqru4GOVoMel9I0IbG+42+88eFu4B0LNzA+Cm5AsEK43xEUbbzP2cmTXkiSmN7VfCeh5nnbwV33Pc1ugPJ+z0BcgU1aw/cENXxfcw3tFtlIx0kW2Q9i5AY6qfd6+uD5PnTqBmjCD+VuIP2HgiJ/pNkNUA4fyd1A+o80uwFqhA98epvtY0NuQFLDCTFyA53U3UA6q0GPS2makFg/8Tfep+Fu4BMLN/BpFNyAYIVwfyIo2qc+ZydPeiFJYvpM852EmmeCg7vuRM1ugPKeaCCuwCat4URBDT/XXEO7RTbScZJF9osYuYGO6gtayHyTnLoBmnCST37cZM13eIprsu/fAY9LfZM2EV2wX/j0NsWXhu7akrp8dY+NqpLzVw5qGM2G6uCwob522lA04dcOGmqK5oaiuKZEqaEi7U6Fn+JzdsF41OaI6kXS3qseY/B8U51eJDThVAcrzlRBx07TfEFRDtMcFHma5t/B6CKa5sAefCk4X99otoN0br9x2KyBTXptfSPI/1vNFs/ujhzpOMkd+TvNNaRz9J2DG4GkDsFbcsV5AvHciVOIyb/zXZV9/Tv/qbSvf+dCauflr1+rFfelne9T3Rc7JyqkXpvEhdRr873g+qL8Ai8Z0HHVwnRpbf8Q1PaqoLbXBLW9Hqde2xtx6rW9Gade21tx6rW9Hade2+kOazs9CrU9K6jtOUFtzwtqe0FQ24uC2l4S1PayoLZXBLWd4bC2M6JQ26OC2h4T1Pa4oLYnBLU9KajtKUFtTwtqe0ZQ25kOazszCrWtFq9e2+rx6rWtEa9e25rx6rWtFa9e29rx6rWtE69e27rx6rX9wWFtf4hCbcsJalteUNsKgtpWFNS2kqC2lQW1rSKobVVBbWc5rO2sKNS2uKC2JQS1LSmobSlBbR8U1La0oLZlBLUtK6jtbIe1nR2F2sYLausV1NYnqG2CoLaFBbUtIqhtUUFtiwlqO8dhbedEobZDvOq1HepVr+0wr3pth3vVazvCq17bkV712o5SfwXcPVrwQuhch7WdG4Xa9hXUtp+gtv0FtR0gqO1AQW0HCWr7mqC2gwW1neewtvOiUNtXBLXtLqhtD0Ftewpq20tQ296C2gq+ddvdR1Db+Q5rOz8KtW0vqG0HQW07CmrbSVDbzoLadhHUVvAJZ+XHhlBtFzis7QJ/bem/U7j+fR2Sfk73/fv6Bv2c6fv396aAxw74scC9O7DOB9aEwPUTmIs2j0s5TOWcYrnvIMG+kn/3//cN3Rbi+lkEFoMlYCn4ESwDy8EK8BNYCX4Gv4BVYDX4FfwG1oDfwVqwDqwHG8BGsMn39x+XA/0Rvrll8boXCv/OFL551Ha73/mx7n9ycgf9Q5sR9xawFWwD28EOsBPs8rlCF5DN/vc5Bo9tsRjbajG2zWJsu8XYDouxnRZju3z/PRuqN6rAeVgo+CPcZsV96f2ZW5T3dbm3qu6LeLep7fs24nVvV9r3CuXm3qGy74G/zoN7p8K+Nf4+Z+5dwnd6RKsZF/2PNuNuxL0H7AX7wH5wABwEh8KbcbdFU+yxGNtrMbbPYmy/xdgBi7GDFmOHotCMiwTNuFvQjHsEzbhX0Iz7BM24X9CMBwTNeFDQjIdi1IyL/0eb8TDiPgKOgmPgODgBToJT4c142KIpjliMHbUYO2Yxdtxi7ITF2EmLsVNRaMbFgmY8LGjGI4JmPCpoxmOCZjwuaMYTgmY8KWjGUzFqxiX/o814GnGfAWfBOXAeXAAXwaXwZjxt0RRnLMbOWoydsxg7bzF2wWLsosXYpSg04xJBM54WNOMZQTOeFTTjOUEznhc04wVBM14UNOMlh00hraM3sXoT+FT3xUWWoLgvXY+F1fb9qweLKO37d7sWVdnX39nFFPYNLALFE6tf+5cFdQzuUTquWpgurW0JQW1LCmpbSlDbBwW1LS2obRlBbcsKaltOUNsrDmt7JQq1LS+obQVBbSsKaltJUNvKgtpWEdS2qqC21QS1/cNhbf+IQm2rC2pbQ1DbmoLa1hLUtragtnUEta0rqG09QW2vOqzt1SjUtr6gtg0EtW0oqG0jQW0bC2r7kKC2Dwtq20RQ22sOa3stCrVtKqhtM0FtHxHU9lFBbZsLattCUNuWgto+JqjtdYe1vR6F2j4uqO0Tgto+KajtU4LaPi2o7TOC2rYS1PZZQW1vOKztjSjUtrWgts8Javu8oLZtBLVtK6jtC4LathPU9kVBbW86rO1NX+h7A2jzRDj+nXSlc35ZoOhhlX2L7OnVNNGy8ptV9q1ZvUqLBfOXf6myb/Nle5I23372HYqbfo8LeP6APwx4Cfr5WdzfPyf6f37u//lF3L/3pcAaFrjeA+dGJZZBf/9wq+wbvP3/vrJ9b6Eet8EdcBf8SfVJwIkH94FEIDFIApKCZOB+kBykAClBKpAapAFpQTqQHmQADyRE90XXW/+jL7pmxHnIBDKDLCAryAaygxwJrtAFhHYOf/Ezk8VYZouxLBZjWS3GslmMZbcYy5Fw7y+63hK86Eq5q+xLL7pmUt7X5c6sui/izaK2718vumZV2vfvF12zqezrf9E1u8K+gRddcySoN0U0m/H2/2gz5sT5ygVygzx07kBekA/kD2/GnBZNkctiLLfFWB6LMY/FWF6LsXwWY/mj0Iy3Bc2YU9CMuQTNmFvQjHkEzegRNGNeQTPmEzRj/hg1453/0WYsgPNVEMSBQiAeeIEPJIQ3YwGLpihoMRZnMVbIYizeYsxrMeazGEuIQjPeETRjAUEzFhQ0Y5ygGQsJmjFe0IxeQTP6BM2YEKNmvPs/2oyFcb6KgKKgGCgOSoCSoFR4Mxa2aIoiFmNFLcaKWYwVtxgrYTFW0mKsVBSa8a6gGQsLmrGIoBmLCpqxmKAZiwuasYSgGUsKmrGUoBmDN+kzjV4SvMYzN5+ZmF4WxDTPUEztBTHNNxRTB0FMCwzF1FEQ00JDMXUSxLTIUEydBTEtNhRTF0FMSwzF1FUQ01JDMXUTxPSjoZheEcS0zFBM3QUxLTcUUw9BTCsMxdRTENNPhmLqJYhppaGYegti+tlQTK8KYvrFUEx9BDGtMhRTX0FMqw3F1E8Q06+GYuoviOk3QzENEMS0xlBMAwUx/W4opkGCmNYaiuk1QUzrDMU0WBDTekMxDRHEtMFQTEMFMW00FNMwQUybDMU0XBDTZkMxjRDEtMVQTCMFMW0VxiR9Hvh47Fgmr/r+O7Bj5rzyF5dHJdafR1lhHlkc5DHaQB7lhHlkdZDH6wbyKC/MI5uDPN4wkEcFYR7ZHeTxpoE8KgrzyOEgj7cM5FFJmEdOB3mMMZBHZWEeuRzkMdZAHlWEeeR2kMc4A3lUFeaRx0EebxvIo5owD4+DPN4xkEd1YR55HeQx3kAeNYR55HOQx7sG8qgpzCO/gzzeM5BHLWEeBRzk8b6BPGoL8yjoII8PDORRR5hHnIM8PjSQR11hHoUc5PGRgTzqCfOId5DHxwbyqC/Mw+sgjwkG8mggzMPnII9PDOTRUJhHgoM8PjWQRyNhHoUd5PGZgTwaC/Mo4iCPiQbyeEiYR1EHeXxuII+HhXkUc5DHFwbyaCLMo7iDPCYZyKOpMI8SDvKYbCCPZsI8SjrI40sDeTwizKOUgzy+MpDHo8I8HnSQx9cG8mguzKO0gzymCPOwyyfSPFMl77OJMxPTNMn7bAzF9I3kfTaGYvpW8j4bQzF9J3mfjaGYvpe8z8ZQTNMl77MxFNMMyftsDMU0U/I+G0Mx/SB5n42hmGZJ3mdjKKbZkvfZGIppjuR9NoZimit5n42hmOZJ3mdjKKb5kvfZGIppgeR9NoZiWih5n42hmBYJYtpmKKbFgpi2G4ppiSCmHYZiWiqIaaehmH4UxLTLUEzLBDHtNhTTckFMewzFtEIQ015DMf0kiGmfoZhWCmLabyimnwUxHTAU0y+CmA4aimmVIKZDhmJaLYjpsKGYfpV4Op+ZmH6TeDpDMa2ReDpDMf0u8XSGYlor8XSGYlon8XSGYlov8XSGYtog8XSGYtoo8XSGYtok8XSGYtos8XSGYtoi8XSGYtoq8XSGYtom8XSGYtou8XSGYtoh8XSGYtop8XSGYtoliOmIoZh2C2I6aiimPYKYjhmKaa8gpuOGYtoniOmEoZj2C2I6aSimA4KYThmK6aAgptOGYjokiOmMoZgOC2I6ayimI4KYzhmK6aggpvOGYjomiOmCoZiOC2K6aCimE4KYLhmK6aQgpoyGnol4ShBTJkMxnRbElNlQTGcEMWUxFNNZQUxZDcV0ThBTNkMxnRfElN1QTBcEMeUwFNNFQUw5DcV0SRBTLkMxXRbElNtQTFcEMeUxFNMfgpg8hmK6Kogpr6GYrgliymcopuuCmPIbiumGIKYChmK6KYipoKGYbgliijMU021BTIUMxXRHEFO8oZjuCmLyGorpT0FMPkMxuZKox5RgKCa3IKbChmK6TxBTEUMxJRLEVNRQTIkFMRUzFFMSQUzFDcWUVBBTCUMxJRPEVNJQTPcLYorW919EvIepf87PnTyJekz0vRr/HOiPi75/hYbxz7iSgmSuv7+Hhb57JQVICVKB1CANSAvSgfQgA3gAZASZQGaQBWQF2UB2kAPkBLlAbpDHfx7ygnwgPygACoI4UIjyB17g/ypLV2FQBBQFxUBxUAKUBKXAg6A0KAPKgnKgPKgAKoJKoDKoAqqCaqA6qAFqglqgNqgD6oJ6oD5oABqCRqAxeAg8DJqApqAZeAQ8CpqDFqAleAw8Dp4AT4KnwNPgGdAKPAtag+fA86ANaAteAO3Ai1Qr8DJoDzqAjqAT6Ay6gK6gG3gFdAc9QE/QC/QGr4I+oC/oB/qDAWCg6+/vZn0NDAZDwFAwDAwHI8BIMAqMBq+DN8Cb4C0wBowF48Db4B0wHrwL3gPvgw/Ah+Aj8DGYAD4Bn4LPwETwOfgCTAKTAX3B7VfgazAFTAXTwDfgW/Ad+B5MBzPATPADmAVmgzlgLpgH5oMFYCFYBBaDJWAp+BEsA8vBCvATWAl+Br+AVWA1+BX8BtaA38FasA6sBxvARrAJ0Jf4bgFbwTawHewAO8EusBvsAXvBPrAfHAAHwSFwGBwBR8ExcBycACfBKXAanAFnwTlwHvz1+jy4BC6DK+APcBVcA9fBDXAT3AK3wR1wF/wJqPnd4D6QCCQGSUBSkAzcD5KDFCAlSAVSgzQgLUgH0oMM4AGQEWQCmUEWkBVkA9lBDpAT5AK5QR7gAXlBPpAfFAAFQRwoBOKBF/hAAigMioCioBgoDkqAkqAUeBCUBmVAWVAOlAcVQEVQCVQGVUBVUA1UBzVATVAL1AZ1QF1QD9QHDUBD0Ag0Bg+Bh0ET0BQ0A4+AR0Fz0AK0BI+Bx8ET4EnwFHgaPANagWdBa/AceB60AW3BC6AdeBG8BF4G7UEH0BF0Ap1BF9AVdAOvgO6gB+gJeoHe4FXQB/QF/UB/MAAMBIPAa2AwGAKGgmFgOBgBRoJRYDR4HbwB3gRvgTFgLBgH3gb0ZdPjwbvgPfA++AB8CD4CH4MJ4BPwKfgMTASfgy/AJDAZfAm+Al+DKWAqmAa+Ad+C78D3YDqYAWaCH8AsMBvMAXPBPDAfLAALwSKwGCwBS8GPYBlYDlaAn8BK8DP4BawCq8Gv4DewBvwO1oJ1YD3YADaCTWAz2AK2gm1gO9gBdoJdYDfYA/aCfWA/OAAOgkPgMDgCjoJj4Dg4AU6CU+A0OAPOgnPgPLgALoJL4DK4Av4AV8E1cB3cADfBLXAb3AF3wZ+AbvxucB9IBBKDJCApSAbuB8lBCpASpAKpQRqQFqQD6UEG8ADICDKBzCALyAqygewgB8gJcoHcIA/wgLwgH8gPCoCCIA4UAvHAC3wgARQGRUBRUAwUByVASVAKPAhKgzKgLCgHyoMKoCKoBCqDKqAqqAaqgxqgJqgFaoM6oC6oB+qDBqAhaAQag4fAw6AJaAqagUfAo6A5aAFagsfA4+AJ8CR4CjwNngGtwLOgNXgOPA/agLbgBdAOvAheAi+D9qAD6Ag6gc6gC+gKuoFXQHfQA/QEvUBv8CroA/qCfqA/GAAGgkHgNTAYDAFDwTAwHIwAI8EoMBq8Dt4Ab4K3wBgwFowDb4N3wHjwLngPvA8+AB+Cj8DHYAL4BHwKPgMTwefgCzAJTAZfgq/A12AKmAqmgW/At+A78D2YDmaAmeAHMAvMBnPAXDAPzAcLwEKwCCwGS8BS8CNYBpaDFeAnsBL8DH4Bq8Bq8Cv4DawBv4O1YB1YDzaAjWAT2Ay2gK1gG9gOdoCdYBfYDfaAvWAf2A8OgIPgEDgMjoCj4Bg4Dk6Ak+AUOA3OgLPgHDgPLoCL4BK4DK6AP8BVcA1cBzfATXAL3AZ3wF3wJyDT7wb3gUQgMUgCkoJk4H6QHKQAKUEqkBqkAWlBOpAeZAAPgIwgE8gMsoCsIBvIDnKAnCAXyA3yAA/IC/KB/KAAKAjiQCEQD7zABxJAYVAEFAXFQHFQApQEpcCDoDQoA8qCcqA8qAAqgkqgMqgCqoJqoDqoAWqCWqA2qAPqgnqgPmgAGoJGoDF4CDwMmoCmoBl4BDwKmoMWoCV4DDwOngBPgqfA0+AZ0Ao8C1qD58DzoA1oC14A7cCL4CXwMmgPOoCOoBPoDLqArqAbeAV0Bz1AT9AL9Aavgj6gL+gH+oMBYCAYBF4Dg8EQMBQMA8PBCDASjAKjwevgDfAmeAuMAWPBOPA2eAeMB++C98D74APwIfgIfAwmgE/Ap+AzMBF8Dr4Ak8Bk8CX4CnwNpoCpYBr4BnwLvgPfg+lgBpgJfgCzwGwwB8wF88B8sAAsBIvAYrAELAU/gmVgOVgBfgIrwc/gF7AKrAa/gt/AGvA7WAvWgfVgA9gINoHNYAvYCraB7WAH2Al2gd1gD9gL9oH94AA4CA6Bw+AIOAqOgePgBDgJToHT4Aw4C86B8+ACuAgugcvgCvgDXAXXwHVwA9wEt8BtcAfcBX8C+oXfDe4DiUBikAQkBcnA/SA5SAFSglQgNUgD0oJ0ID3IAB4AGUEmkBlkAVlBNpAd5AA5QS6QG+Sh1zZAXpAP5AcFQEEQBwol/vv1Dy/wgQRQGBQBRUExUByUACVBKfAgKA3KgLKgHCgPKoCKoBKoDKqAqqAaqA5qgJqgFqgN6oC6oB6oDxqAhqARaAweAg+DJqApaAYeAY+C5qAFaAkeA4+DJ8CT4CnwNHgGtALPgtbgOfA8aAPaghdAO/BiYtc/2+f+n/TaDX0HKX3nJ33HJn2nJX2HJH1nI31HIn0nIX0HIH3nHn3HHX2nHH2HG31nGn1HGX0nGH0HF33nFX3HFH2nE32HEn1nEX1HEH0nD30HDn3nDH3HC32nCn2HCX1nCH1HB31nBX3fA31XAn3PAD2jn55vT8+Gp+eq0zPJ6Xne9Cxseo40PYOZnl9Mz/6l5+bSM2fpea30rFN6Tig9Y5OeT0nPdqTnItIzBel5fPQsO3oOHD1DjZ4/Rs/uoude0TOp6BlQ9MwlesYRPVOInuFDz8yhZ9TQM2HoGSz0zBN6xgg904OeoUHPrKBnRNAzGegZCPTMAfqMP32mnj7DTp8Zp89o02ei6TPI9Jlf+owtfaaVPkNKn9mkz0jSZxLpM4D0mTv6jBt9pow+w0WfmaLPKNFngugzOPSZF/qMCX2mgz5DQZ9ZoM8I0Hvy6T3w9J5zeo83vaea3sNM7xmm9+jSe2LpPaj0nk96jyW9p5HeQ0jv2aP3yNF70ug9YPSeK3qPE72niN7DQ++Zofeo0HtC6D0Y9J4Heo8B/U2f/oZOf7OmvxHT32Tpb6D0N0f6Gx/9TY3+hkV/M6IX/+hvIvQ3CHrNn15jp9e06TVkes2WXiOl1xnJCwU2uh5oy5O09rZmCT/tdgVt9ZPaa8nvt9em+r/w+Zn7P1tSY1PK74K1bxjtO0abzmgzGW0Wo81htHmMtoDRFjHaEkb7kdF+82vnNpTvnXTpsymDtS2Mto/RTjDaRSaWy4z2B6NdY7QbjHaL0e4w2p+MliKFfe4ZGS03o8UzWilGq8xodRmtKaONTmGf+wRG+57RljHaCkZbyWi/MNpqRtvM5L6X0Y4z2kVGK5DSPpYyjFaP0Z5gtLYp7WPpzGivMtoQRlvMxLKO0Q4w2iVGu8JoVxntOqPdZLQkqexzT8to2RgtP6O1SGUfy4uM1ofR3mC095lYPme0bxhtDqOdY2L56w+MNloGRivAaHGMFs9oPkYrzGhlU9vnXp3RGjJac0YbycTyEaN9y2hLGe1XJpbNjLaX0Y4zmieNfSwlGa0Wo7VgtMcY7QlGe4rRnmG0l9LY5/4Ko/VntBGMtpCJ5XdG28doFxjtFhNLkrT2WlpGy8ZozdLax9KG0Xoy2khGG81obzDaW4w2ltE+ZnL/ktGmM9oCRjvDxHKX0dKls9fyMVqRdPaxlGW06ozWkNGGMrG8x2hTGG0hoy1mtKWMtozRVjDaWib37Yx2kNFOM1ru9PaxFGe0Goz2KKO1Sm8fy0uM9gqj9We0uUwsqxltF6OdYbRzjHaB0S4x2hVG+5PJPXkGe+0BRsvFaE0y2MfyHKN1Z7ThjDaOieVjRvuS0aYz2gkmlpuMluoBey03o3kYLR+jFWC0OEYr8YB97hUZrTajPcxog5lYxjPaV4w2n9F+YmJZy2jbGe0go2XPaB9LYUarwmhNGK0Zoz3KaC0Y7TFGez6jfe4dGa0Xo73GaLOZWH5htB2MdorR/mBi+ZPRkmey1x5gtEaZ7GN5htG6MNpgRhvKaMMZbSSjjWa0d5ncP2O0qYw2i9GOMbFcZ7QUme21nIxWKLN9LCUYrSKj1Wa0AUwsYxntC0abzWhzGW0+oy1ktMWMtorJfSOj7Wa0o4yWNYt9LD5Gq8RoDzHa41nsY3me0ToyWi9Gm8HEsoLRtjDaMUY7wWinGO0Mo51jtBtM7omy2mupGS0LozXIah/LU4zWidEGMdrrTCzvMtpnjDaV0Q4xsVxhtKTZ7LWsjJad0XIyWm5G8zBaQjb73EszWlVGq89o/ZhY3mK0iYz2A6MtYWJZxWgbGW03o2XMbh9LHKOVY7QGjNaI0R5itCaM1ozRns5un3s7RuvKaH0Z7XsmlmWMtonRjjDaeSaWG4yWKIe9lprR6uSwj+UxRnuZ0fox2gBGG8RogxltKKONYXL/kNEmMdp3jHaAieUSoyXOaa9lZrS8Oe1jSWC00oxWldF6M7GMZrQJjPY9o81gtB8YbTajzWW05UzuaxhtK6PtZ7QMuexjKcBoZRitHqM9kss+lqcZrR2jdWW0aUwsixltHaMdYLRDjHaE0Y4x2glGu8zkfofRkuW219IzWq3c9rG0YLQXGa0Pow1jYhnDaB8y2iRG28PEco7R/voQtI2WgdEyMlpmRsvKaNkZrWAe+9yLMVp5RqvJaD2ZWEYy2keM9i2jzWNiWc5oaxhtK6Ol8djH4mG0koxWi9HqMFo9RmvAaI0YraVfs8q9NaO1Z7QejDaFiWUho/3OaPsY7SQTy2VGu8NoyfLaa9Xy2sfSjNHaMFpPRuvNaH0YrR+jDWC0UUzu7zDaJ4z2NaPtYmI5w2h3GS1dPnstRz77WAoyWjFGK89o3ZhYhjLae4w2hdGmMdq3jPY9o81gtEVM7j8z2npG28loqfLbx5Kb0YozWg1Ga5zfPpaWjNaa0doz2mQmlrmMtprRdjHaHkbbx2gHGO0Qo51lcr/GaO4C9lpKRqtSwD6WJoz2HKN1Z7SBTCyjGO0dRvuE0bYxsZxgtJuMlqqgvZaG0dIxWgZGy8hoeQra5+5ltFKMVpnRujCxDGa08Yz2FaPNZGJZxGg/M9p6Rrs/zj6W7IxWmNGqMFo1RqvBaLUYrQ6jNY2zz/1JRmvLaJ0Z7QsmltmM9guj7WC0w0wsZxntGqO5C9lrFQrZx9KI0Z5htC6M1o3RujNaT0brzWhDmNzfZLT3Ge1zRtvCxHKM0a4zWop4ey1TvH0seRjNy2ilGK0DE8sARhvLaF8w2mRG+4rRpjDaNEabw+T+I6P9ymibGS2p1z6WrIzmY7RKjFbXax9LU0Z7ktHaMtqnTCwzGG0Fo21htG2MtoPRdjHaHkY7zuR+kdFuMVoSn71WzmcfSwNGe4rROjHaq0wsQxjtTUZ7n9E2MLEcYrQrjJY0wV67n9FSMFoqRkvDaNkS7HPPz2hFGK0so73MxNKP0d5itImM9g0TyxxG+5HRfmW0+wrbx5KR0eIYrRyjVWC0SoxWhdGqMVrDwva5N2e0Voz2EqNNYGL5ntGWMdomRtvLxHKc0S4y2i1Ge7CIfSx1GO0xRnuZ0TowWidG68Jo3RitfxH73Ecw2jhG+5jR1jGxHGC0S4yWuKi9lraofSzZGC0/oxVhtBeYWHoz2mhGm8BonzLaREb7gtEmM9p0JvcFjPYTo61ltL8eJm0TSwZGK8BoZRitejH7WBoyWnNGa8Von/s1q2ftVC9hH2dNRqvNaHUZrVkJ+zifYrQXGK0Lo71dwj73ZqXstQyl7bUfytjnN5vR5jLafEZbyGiLGW0poy1jtBWMtpLRfmG01Yy22a9Z1W8vox1ntIuMdtmv7Tm1p+qGtotzBGuZyv7906ruW8vZa+9WsNdKV7LPvSyjlWe0ioxWmdGqMlp1RqvJaLUZrS6j1We0hozWwq9Z1fZZRnuZ0bozWk8mlt6M1ofR+jHaAEYbxGiDGW0oo41hcv+Q0SYx2nc2WiL/T//bgl1tXurW9vnuL/Vs2+qlTt3btmvbrVXXHp27v9S2U3f/A+JcgZ/+Byz99Y0V9K94XErbfYHjUzo73pXUYixF0H+nDJ/Q/zOxxXFum/9/X9hPbt/w8eCxVBZa4N/0f9A4JN4UYdq/1ejeuVW31m1e6u3/KPg/VUgSNKPkLAaOT+rseHfg+GTOjk9kVcVkQf8dyCtR0L/vCvvvwJyBWJI7iyWF22L+RGH/ZngMwftYXVn3hf3/xGHjiRT2tbqyAlpai/jCj0tuEWvwWKAGVldp+HkPvt6s/q1kYTGEXx/3WqMMFnMGYvM/+iJk7erZtlv35GFzZ3I29z/XekZnx1uuWJmC/jvw7wbmCb4ePC7ZFqhNEgstfCVMFDZv4KdbPr/bLg6razhQy4xBY4Hz8X+iidKBKdUjAA==",
146
- "debug_symbols": "tP3BriXNjpyJvkuNNQh3kk6yX+XiQqhWVzcKKJQaUulOhH73m5uMoJkayL0CufOMZDr1022F+3Ku+MJtR/7Pf/o//uV//x//13/+13//P//rf/+n/+3/8z//6X//b//6b//2r//Xf/63//pf/vk//vW//vuv//V//j//6Z+e/+9//o//9i//8ut/+if6v/+q+r//+b/9y7//xz/9b//+P/7t3/7TP/3//vnf/kf9R//9//7nf6//9z/++b/9+r9e/+mf/uXf/49f/++vAf/Pf/23f/lS/89/QvX1+9J9qd7V+zo5A9h6PcISeUZYJn80wjoYQX83gvx+hHhmIH/rr7+vtj31tvPMCCv+lxHs9yMc3/se4bjG70b47jOc7c9nOGI/HUHlj0bwmBHyj0Ywf75Nv+QfXUVcM0Jcv12Lb79NZ77RK6/ffR/W/tHXacmPv09Lf/yF+vZTvPtGvR7i91+p74d49Z36doh3X6pvh/j5t2pfz5ruLb/9Vu31o2/V3j/+Vm358bfq20/x7lv1eojff6u+H+LVt+rbId59q74d4uffqisT36rz21++b4ZYlz1rui66jv/3EN98MdfGELIXhrD/dYhvpuLXOj5revTs3w7x3ac4+qzpOnH90RC+nwVZfv5wiJUYYv3ZENePh8A3a4X+4YXMV+vXEH94IfHjISLmQnL/2YWEJ4b4w09xfjxE4q7iuv7sQtISQ/zhp9CfDvG/3PD/2Tbbl+BTxB9+iv3jIdbGfd6fbfZf4JEY4g8/xfXjIfZs9r31Dy+Efkf0Dy8kfjzEtjVDuP9uCDvf/KT6w5JnXb/7Qf32M8iayZTtf3IZsvL5EPLre/pHQ/z6MZ8hmGjfD6F2PT+Hauv8eIhtfzaE6Qzhv/1unm9uOiVmh0js395one9oaE/zPTv/6Huhls/ds54/69961kzn2fFnQ+iZIezPFvXMfaue+LOvll/P/Z762n82hMx0+p/1LHWb6fTzZ9PpMdPp+WfTGdMvNPb+8RCy/myIM9MZ/tsL8fPjbeb+j91mOZisuf7se5HTOzX1zxY1fb7gGX+0qHZN77RrxZ8NMXdadv3Zj8CvBj7Mf+UfTafh4aqtff5siOHDX79EfzadCxfyiwl+PET+0S+77T1zsfW3F/J1I/TDbZbXP3Sb2T64EP+zRZX5ETD5sx8BE5k9Ivpniyp4CiN/9mtmuuZ7oX+GmKbzs2z6Zz/L9uvXY4bIP5tOm/sLsz+7v/h1tzYXYn/YcniII382RM5cnOu3F7Ku/eN9ti75x260I7gU/bNlPQfPKv3PltXxoNHXny3rr7u0GcL+bJe4zzfj143XHw0Ra6bzD++2LOYxoYX92XTioZRF/nY6vz0NOALK/O1z2/XdmcTSacBLl/18jH394RjbZgyVP/0cC2Pon41h08d/Sf/Dz5GOMeL3Y3zzC59zKbl+fyX7u2/HbPjt+88+w56zom9W5LuziZdP078f493j9A9jvHqe/mGM6+djvHui/uFzvHqk/mGM+PkY7x6qfxjj1VP1D2Ocn4/x7rn6hzFePVj/MIb+eIyXj9Y/jPHq2fqHMfbPx3j3dP3DGK8er38Y4/r5GO8esH/4HK+esH8YI34+xrtn7Evthw/Zv/8U756yfzvGy8fs34/x7jn7t2O8fND+fozfP2n/MMarR+31LOan1GQ/p6YP1/Lqafv3Y7x73P5hjFfP2z+M8eqB+/djvHvi/mGMV4/cP4zx6pn7hzFePXT/fox3T93fjyHrD8d49dx9Hfv5njvnH7zn3j16/zDGq2fvH8Z49fD92zFePn3/MMarx+8fxnj1/P37Md49gP8wxqsn8B/GePUI/v0Y+We/+y8fwq+vhN9P95znP3bPvXwO//0Y7x7Efxjj1ZP4D2O8ehT//RjvnsV/GOPVw/gPY7x6Gv/9GO8ex38Y49Xz+Pdj/P6B/Icx3j2Rz/XzPZf7H7zn3j2S/zDGq2fy34/x7qH8hzFePZX/MMarx/Lfj/HuufyHMV49mP8wxqsn8x+eI9s8zzb/7bP5/d3p06vnr/u7s6eXdPv9GO/o9tsxXtLt+zF+T7cfxnhFt/v6+a/+vn7+q//hWl7R7fdjvKPbD2O8otsPY7yi2+/HeEe3H8Z4RbcfxnhFtx/GeEW334/xjm7fj/F7uv0wxiu63fvnv/p773/wnntHtx/GeEW3H8Z4RbffjvGSbj+M8YpuP4zxim6/H+Md3X4Y4xXdfhjjFd2+H+P3dPv9GO/odov+fM+J/WP33Eu6/X6Md3T7YYxXdPthjFd0+/0Y7+j2wxiv6PbDGK/o9vsx3tHthzFe0e37MX5Ptx/GeEW3W/3ne07jH7zn3tHthzFe0e33Y7yj2w9jvKLbD2O8otvvx3hHtx/GeEW3H8Z4RbffjvEy1/P9GO9yPR/GeJXr+TDG9fMx3uV6PnyOV7meD2PEz8d4l+v5MMarXM+HMc7Px3iX6/kwxqtcz4cx9MdjvMz1fBjjVa7nwxj752O8y/V8GONVrufDGNfPx3iX6/nwOV7lej6MET8f412up94B8vvfyhe5nu8/xbtcz3fZVzGfEXL99tlp/OxtTjt+/j6nHT9/o9P3n+Plu1Jej/HNy1Li5+91+n6Ml69LiX/su50E3Vyv376tbOePn+3nd78p796XsvO7P2l+98KU7z/Hy3vB/Av3gvkX7gXzL9wL5l+4F8y/cC+Yf+FeMP/CvWD+hXvB/Av3gvkX7gXzL9wL5l+4F8y/cC+Yf+FeMP/CvWD+hXvB/Av3gvkX7gXzL9wL5l+4F8y/cC+YP78XlBU/vRfMn98LfjvG21Pw/Aun4PkXTsFfj/HNKXj+/BRc9s/zprJ/njf9cC3vTsHzL5yC5184Bc+/cAqef+EUPP/CKXj+hVPw/Aun4PkXTsFfjyHrD8d4dQpeZ0w/3XOS/+A99/IUPP/CKXj+hVPw/Aun4PkXTsHzL5yC5184Bc+/cAqef+EU/PUY+We/+y9PwcV+njwR2//YPff2FDz/wil4/oVT8PwLp+D5F07B8y+cgudfOAXPv3AKnn/hFPz1GN+cgufPT8Hl/Dx5Isf+wXvu5Sl4/oVT8PwLp+D5F07B8y+cgudfOAXPv3AKnn/hFPz7MQ7G+P3Tj++eJOvM6Nb87dtXvh0BT6Q0f//u7u/euPfipEO++zuolycd8u3fQb076fj+c7w76Xg/xu9POj6M8eqk4/sx3p10fD/Gz0867Jrvp33zZvg4P/t2hf/82xXx82/Xt5/j5bfr9RjffLu+H+Pdt+vbMV5+u74d4y98uxTfrvjte6Mk7Wffrjw//3al//zb9e3nePntej3GN9+u78d49+36doyX365vx/j5t0t149v1296l1zd3oi//WQu97MfntHqdH5/Tfv853p3Tfj/Gu3PaD2O8Oqf9MMb18zHendN++Byvzmk/jBE/H+PdOe2HMV6d034Y4/x8jHfntB/GeHVO+2EM/fEYL89pP4zx6pz2wxj752O8O6f9MMarc9oPY1w/H+PdOe2Hz/HqnPbDGPHzMd6d06r8NLP3/ad4d0777Rgvz2m/H+PdOe23Y7w8p30/xu/PaT+M8eqctu4NfvgsTeXnf1Hy4VpendN+P8a7c9oPY7w6p/0wxqtz2u/HeHdO+2GMV+e0H8Z4dU77YYxX57Tfj/HunPb9GLL+cIxX57S/tvfP99x3505/Zc+9O6f9MMarc9oPY7w6p/12jJfntB/GeHVO+2GMV+e034/x7pz2wxivzmk/jPHqnPb9GPlnv/svz2n1L/z7TvoX/oGnD9fy6pz2+zHendN+GOPVOe2HMV6d034/xrtz2g9jvDqn/TDGq3Pa78d4d077YYxX57Tvx/j9Oe2HMV6d0+pf+Mee9C/8a0/fX8u7c9oPY7w6p/1+jHfntB/GeHVO+2GMV+e034/x7pz2wxivzmk/jPHqnPbDGD8+pz3rIdN9xP/knNbnH3TYvuVPRjgzE79G+O2/CaHf/aNPL05LNNePT0v027fvvTst+f5zvDsteT/G709LPozx6rTk+zHenZZ8P8bPT0tc8O06+/ffjvzRt8uu68ffLrvWj79d33+Od9+u92P8/tv1YYxX367vx3j37fp+jL/w7RoC/LXG+vtvR/zw25U//3at6y98u/IvfLvyL3y78i98u/IvfLvyH/rtOmf+2jvWb3MEtvzHJ7323V87vTzpte/+zaWXJ73ff453J73fj/HupPfDGK9Oej+Mcf18jHcnvR8+x6uT3g9jxM/HeHfS+2GMVye9H8Y4Px/j3UnvhzFenfR+GEN/PMbLk94PY7w66f0wxv75GO9Oej+M8eqk98MY18/HeHfS++FzvDrp/TBG/HyMdye9pvLDk97vP8W7k95vx3h50vv9GO9Oer8d4+VJ7/sxfn/S+2GMVye99hdOnewvnDp9uJZXJ73fj/HupPfDGK9Oej+M8eqk9/sx3p30fhjj1UnvhzFenfR+GOPVSe/3Y7w76X0/hqw/HOPVSa/9hVMn+wunTt9fy7uT3g9jvDrp/TDGq5Peb8d4edL7YYxXJ70fxnh10vv9GO9Oej+M8eqk98MYr05634+Rf/a7//Kk1/7CqZP9hVOnD9fy6qT3+zHenfR+GOPVSe+HMV6d9H4/xruT3g9jvDrp/TDGq5Pe78d4d9L7YYxXJ73vx/j9Se+HMV6d9Frkz/fcd2dPf2XPvTvp/TDGq5Pe78d4d9L7YYxXJ70fxnh10vv9GO9Oej+M8eqk98MYr056P4zx05NewXMLWfbbvxo6351BvTipONf+8dP9767imr7xhdq//xTf/e3T8vkXrFbq78f45uTd52G26/qjEeJ6HhTE5X92HXvujdfe31zHz5/sn+vnT/a//xzvnux/P8a7J/sfxnj1ZP/DGNfPx3j3ZP/D53j1ZP/DGPHzMd492f8wxqsn+x/GOD8f492T/Q9jvHqy/2EM/fEYL5/sfxjj1ZP9D2Psn4/x7sn+hzFePdn/MMb18zHePdn/8DlePdn/MEb8fIx3T/aP/PTJ/vef4t2T/W/HePlk//sx3j3Z/3aMl0/234/x+yf7H8Z49WT/6M+f7B/9+ZP9D9fy6sn+92O8e7L/YYxXT/Y/jPHqyf73Y7x7sv9hjFdP9j+M8erJ/ocxXj3Z/36Md0/2348h6w/HePVk/9jPn+wf03/wnnv3ZP/DGK+e7H8Y49WT/W/HePlk/8MYr57sfxjj1ZP978d492T/wxivnux/GOPVk/33Y+Sf/e6/fLJ/zs+f7Ffa7x+5514+2f9+jHdP9j+M8erJ/ocxXj3Z/36Md0/2P4zx6sn+hzFePdn/fox3T/Y/jPHqyf77MX7/ZP/DGK+e7B//+ZP9E9c/eM+9e7L/YYxXT/a/H+Pdk/0PY7x6sv9hjFdP9r8f492T/Q9jvHqy/2GMV0/2P4zx+yf7/99f/79//i//+t/+87/91//yz//xr//13//7V+H69bT313fwP30JeYQ+wh5xHuGPiF8fpUTeQq5HrEfsR8gj9BH2iPMIf8Qzsjwj6zOyPiPrM7I+I+szsj4j6zOyPiPrM7I+I9szsj0j2zOyPSPbM7I9I9szsj0j2zOyPSOfZ+TzjHx+jRwl5BH6iF8jZ4nzCH9EPCJv4ddd5esRz8guz3+jj3hG9mdkf0b2Z2R/Ro5n5HhGjmfkeD5zPJ85npHjGTmekeMZOZ6R83rEesR+xPOZ8xk57RHnEf6IeMQ98q/nlY9Yj9iPkEfoI+wR5xH+iHvkfeUt1vWI9Yj9iGfk9Yy8npHXM/J6Rl7xiOcz7+cz7+cz72fkLY/QR9gjziOekfcz8n5GlmdkeUaWZzbk+czyfGZ5PrM8I4s/4pkNeWZDn9nQZ2R9RtZnZH1G1mdkfWZDn8+sz2fW5zPbM7I982zPbNgzG/bMhj0j2zOyPSPbM7I9I59nNs7zmc/zmc/zmZ89uM8zz+eZjfPMxnlm49mD25+R/RnZn5GfPbifPbifPbifPbifPbj9GdmfeX724H724H724I5n5HhGfvbgfvbgfvbgfvbgfvbgfvbgfvbgzmfkfOb52YP72YP72YM7n5HzGfnZg/LsQXn2oDx7UJ49KM8elGcPynWPLJc/Ih5xz4Y8e1DWM/J6Rn72oDx7UJ49KM8elGcPyrMH5dmDsp+R93rEfoQ8Qh/xjLyfkZ89KM8elGcPyrMH5dmD8uxBefagyDOy2COe2Xj2oDx7UOQZWZ+Rnz0ozx6UZw/Kswfl2YPy7EF59qDoM7I+8/zsQXn2oDx7UOwZ2Z6Rnz0ozx6UZw/Kswfl2YPy7EF59qA8v4Py/A7Kswfl2YPy7EF5fgfl+R2UZw/Kswfl2YPy7EF59qA8e1CePSj+jOzPPD97UJ49KM8elHhGjmfkZw/Kswfl2YPy7EF59qA8e1CePSj5jJzPPD97UJ49KM8elHxGzmfkZw/Kswfl2YP67EF99qA+e1CfPajXPbJe9ojzCH9EPOIZeT0jP3tQnz2ozx7UZw/qswf12YP67EFdz8jrnmd99qA+e1CfPaj7GXk/Iz97UJ89qM8e1GcP6rMH9dmD+uxBlWdkkUc8s/HsQX32oMozsjwjP3tQnz2ozx7UZw/qswf12YP67EHVZ2R95vnZg/rsQX32oNozsj0jP3tQnz2ozx7UZw/qswf12YP67EE9z8jnmednD+qzB/XZg/rci+pzL6rPHtRnD+qzB/XZg/rsQX32oD57UP0Z2Z95fvagPntQnz2oz72oxjPyswf12YP67EF99qA+e1CfPajPHtR4Ro5nnp89qM8e1GcP6nMvqvmM/OxBffagPntQnz2ozx60Zw/aswftuke2Sx6hj7BHnEf4UxWPeEZ+9qA9e9CePWjPHrRnD9qzB209Iy9/RDzing179qA996K2n5GfPWjPHrRnD9qzB+3Zg/bsQXv2oMkzsqxHPLPx7EF79qA996Imz8jPHrRnD9qzB+3Zg/bsQXv2oD170PQZWZ95fvagPXvQnj1oz72o2TPyswft2YP27EF79qA9e9CePWjPHjR7RrZnnp89aM8etGcP2nMvas8etOd30J7fQXv2oD33onaekR8etGcP2rMH7dmD9vwO2tceXKvUF9JbKR8Vo/JRXxvxVmvUHiWjdJSNGo8YjxiPGI8cjxyPHI8cjxyPHI8cjxyPHI98PM51jVqj9igZpaNs1Bnlo2LUeHxt068/n/+l1qg96ssjSukoG3VG+aiY2nzUHo+vHdv/XT3CaTUeezz2eOzx2OOxx2OPh4yHzHXIXIeMh4yHjIeMh4zH1xa+VT7qaxPfaq5Dx+NrH99KR9moM2o8dDx0PGw8bDxs5srmOmyuw+Y6bDy+dvWtZq5s5urMXJ3xOONxxuOMxxmPM3N15jrOXMeZ6/Dx8FkPn7nymSufufLx8PHw8fDx8PGImauY64i5jpjriPGIWY+YuYqZq5i5ivHI8cjxyPHI8ciZq5zryLmOnOvI8chnPfy6Rq1Re9Tj4ZeOslFnlI+KUc91+LpGrVHjsWSUjrJRZ9R4rPFY47HHY/a5zz732ec++9xnn/sej+2jYtTM1exzl/GQ8Zh97rPPffa5zz732ec++9xnn7uOh856zD732ec++9x1PHQ8Zp/77HOffe6zz332uc8+99nnbuNhsx6zz332uc8+dxuPMx6zz332uc8+99nnPvvcZ5/77HM/43FmPWaf++xzn33uPh4+HrPPffa5zz732ec++9xnn/vsc4/xiFmP2ec++9xnn3uMR4zH7HOffe6zz332uc8+99nnPvvcczxy1mP2uc8+j9nncT0ece1RMkpH2agzykfFqOc6Yn7PY37PY/Z5zD6P2ecxv+cxv+cx+zxmn8fs85h9HrPPY/Z5zD6PPR7bRp1RPipGjYeMx+zzmH0es89j9nnMPo/Z5zH7PGQ8ZNZj9nnMPo/Z56HjoeMx+zxmn8fs85h9HrPPY/Z5zD4PGw+b9Zh9HrPPY/Z52HjYeMw+j9nnMfs8Zp/H7POYfR6zz+OMx5n1mH0es89j9nn4ePh4zD6P2ecx+zxmn8fs85h9HrPPI8YjZj1mn8fs85h9HjEeMR6zz2P2ecw+j9nnMfs8Zp/H7PPI8chZj9nnMfs8Zp9HPh55XaPWqD1KRukoG3VG+ajHI69nPXL2ec4+z9nnOfftOfftOfs8Z5/n7POcfZ6zz3P2ec4+zz0eW0bpKBt1Ro3HHo/Z5zn7PGef5+zznH2es89z9nnKeIiPmrmafZ6zz3Pu21PHY/Z5zj7P2ec5+zxnn+fs85x9njYeNusx+zxnn+fs85z79rTxmH2es89z9nnOPs/Z5zn7PGef5xmPM+sx+zxnn+fs85z79vTxmH2es89z9nnOPs/Z5zn7PGefp4+Hz3rMPs/Z5zn7POe+PWM8Zp/n7POcfZ6zz3P2ec4+z9nnmeORsx6zz3P2ec4+z7lvzxyPZ59//f3LqDVqj5JROspG3R6/lI+KUfmoZ5//UuPx7PNfSkbpqPFY47HGY43HmuvYcx17PPZcx9c+31cp/frH10rZqDPKR8WofNTXPr/VGrVHyajxkPGQ8ZDxkPGQ8dDx0PHQ8dDx0PHQ8dDx0PHQ8dDxsPGw8bDxsPGw8bDxsPGw8fja518By18qH/W1z2/15VGr9bXPbyWjdJSNOlPro8bja5/3f/e1z281Hj4ePh4+Hj4ePh4+Hj4ePtcRcx0xHjEeMR4xHjEeX/v8Vj4qRs115Hh87fNb7VEySkeNR45HjkeORz4e67pGrVF7lIx6PNbXPr/VGeWjYtR4rPFY47HGY43H0lE26ozyUeOxnvVY+xq1Ru1R47HHY4/HHo89HjtGzXXIXIfMdch4iIyauZKZK5m5kvGQ8ZDx0PHQ8dCZK53r0LkOnevQ8dBZD5250pkrm7my8bDxsPGw8bDxsJkrm+uwuQ6b65h9XomrW81cnZmrM3M1+7xiV7cajzMes8/X7PM1+3zNPl+zzyt+1R4+6zH7fM0+X7PPK4PVtTEes8/X7PM1+3zNPl+zz9fs8zX7vMJY7RGzHrPP1+zzNfu8Elldm+Mx+3zNPl+zz9fs8zX7fM8+37PPK5pVHpXNupWOslFnlE9tjBqP2ed79vmefb5nn+/Z53v2eQW12mP5qBj1zNWefV5pra7d4zH7fM8+37PP9+zzPft8zz7fs88rttUeskbNXM0+37PPK7t1147H7PM9+3zPPt+zz/fs8z37fM8+rxBXe+isx+zzPft8zz6vJFfX2njMPt+zz/fs8z37fM8+37PP9+zzPb/ne37P9+zzPft8zz7f83u+5/d8zz7fs8/37PM9+3zPPt+zz/fs8wp4tYfPesw+37PP9+zzSnndteMx+3zPPt+zz/fs8z37fM8+37PPK+7VHjHrMft8zz7fs88r89W1OR6zz/fs8z37fM8+37PP9+zzPfu8wl/lUemvW+1RMkpH2dSeUT4qRo3H7HOZfS6zz2X2eUXB2mPZqDPKR8Wo8djjMftcZp/L7HOZfS6zz2X2ucw+r2BYe+xnPWT2ucw+l9nnlQ7rWhmP2ecy+1xmn8vsc5l9LrPPZfZ5xcTaQ2c9Zp/L7HOZfV5Zsbt2PGafy+xzmX0us89l9rnMPpfZ5xUaaw+b9Zh9LrPPZfa5zH27zH27zD6X2ecy+1xmn8vsc5l9LrPPK0LWHj7rMftcZp/L7HOZ+/YKkt1qPGafy+xzmX0us89l9rnMPq9AWXvErMfsc5l9LrPPZe7bK1Z2q/GYfS6zz2X2ucw+l9nnMvu84mXtkc966OxznX2us8917tsrZHYrG3VG+agY9VyHzj7X2ecVNmuPJaN0lI06o8Zjjcfsc519rrPPdfa5zj7X2ec6+7yiZ+2xfVSMmrmafa5z314BtFuNx+xznX2us8919rnOPtfZ5xVEaw+d9Zh9rrPPdfa5zn17xdFuNR6zz3X2uc4+19nnOvtcZ59XLK09bNZj9rnOPtfZ5zr37Tr7XOf3XOf3XGef69y3V0LtVuMx+1xnn+vsc53f88qpfb0gZFdQzfp/k1E6ykadUT4qRuWjvvb5rdao8YjxiPGI8YjxiPGI8YjxyPHI8cjxyPHI8cjx+NrnX3/wvSvBdqxUjMpbVYjtVmvUHiWjdJSNOqN+eXz9wxm7wmy3ykd97fNbrVF7lIzSUTbqjPrKRK1SMSofVX9k0WqN2qNklI6yUWfU17O+r79125Vwe2SOrEfut1yQG1IgFdIgD+SX26oJrEfvt8yR9fD960+qd2XfHrkhv9zqkWQl4Jb2/2qQB9IhAzJH1mP4Wy7IDSmQcDO4GdwMbgY3g1s9kP96EdGujNyympJ6JH9LgVRIgzyQDhmQObIezd/yy+3UnNXD+VsKpEIa5IF0yIDMkfWQ/pb1VPgquSEFUiEN8kA6ZEDmyH5c3/LL7etdM7sDdbcUSIU0yAPpkAGZj+xg3S2/uuvXe+p2Rev21x9E78rWPVIhDfJAOmRA5si6Rbjlgvxy2/UZ6i7hlgppkAfSIQMyR9bNwi0X5Jfb18siduXtHqmQBnkgHTIgc2TdNtxyQdYD8SwpkAppkAfSIQMyR/YD/pYLstZtlax12yVr3eri6y7i6+0ju2J4uxpT5fB2taAK4u1qQZXE23XwUVG8XU/pK4v3i+hL1rpVWd1N1I90xfF+YWzJWrf6ZHVDIbXcdUch9SHrlkK6rGayyuqmQqqs7iq0yuq2Qqus7iu0rq1uLLSure4stD5k3VpYl325WZd9uVmXfblZldXtRfWSyuf96molv9ysrq1Ion6GO6LXc9ZZ3JYH0p9m3jG9W+bI6iU9vzFduaN6txRIhTTIA+mQATlduSN7t4Rbwi3hlnBLuCXcEm4Jtxy3Du/dckFuSIFUSIM8kA4ZkHBbcFtwW3BbcFtwW3BbcFtwW3BbcNtw23DbcNtw23DbcNtw23DbcNtwE7gJ3ARuAjeBm8BN4CZwE7gJ3BRuCjeFm8IN9yWO+xLHfYnjvsRxX+K4L3HclzjuSxz3JY77Esd9ieO+xHFf4rgvcdyXOO5LOvh3y/XcojjuSxz3JY77Esd9ieO+xHFf4rgvcdyXOO5LOgN4y7kvcdyXOO5LHPcljvsSx32J477EcV/iuC/pNOAt577EcV/iuC9x3Jc47ksc9yWO+xLHfYnjvuTOBbac+xLHfYnjvsRxX+K4L3HclzjuSxz3JYH7kk4I3rLWzUoKZK3bKVnr5iVr3aJkrVuWrJm8StZMfv0ydFTw7JI1k1VWveRUWacLqqzjBV1WOYkuq4BBfchOGGjJihjUh+yMQZV1yKDKOmVQZR0zqLLODVZZB4Tr2johXNfWfwpQH7J6SXZZzWSX1UxWWfWSrLLqJVll1Uuyrq3uS666trovuepD1n1Jf966L7mlQwZkjqz7klsuyA0pkAoJN4Wbwk3hpnAzuBncDG4GN4Obwc3gZnAzuBncDtwO3A7cDtwO3A7cDtwO3A7cDtwcbg43h5vDzeHmcHO4Odwcbg63gFvALeAWcAu4BdwCbgG3gFvALeGWcEu4JdwSbgm3hFvCLeGW41YhxEcuyA0pkAppkAfyy60oKcE4CcZJME6CcSqQ+EiBVEiDPJAOOYyTYJwE4yQYp6KJjxRIhTTIA+mQwzgJxkkwToJxKqT4SIFUSIM8kA45jJNgnATjJBgndUMKpEIa5IF0yFq3Ws1mnK9WXLHFpqTKLTYlVXCxKamSi01JFV1sSqrsYlNShRebkiq92JRU8cWmpMovNiVVgLEpqRKMTUkVYWxKqgxjU1KFGJuSKsXYlFQxxqakyjE2JVWQsSmpkoxNSRVlbEqqLGNTUjbjVFkzTpVVL7Eu+3KzLiui6rIiqrq26iX1y1uZxqakDjX2nNV9yS03ZD3nqrK6L7mlQRZR9WBzh5dgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ4dx5BrGkWsYR65hHLmGceQaxpFrGEeuYRy5hnHkGsaR64LbgtuC24LbgtuC24LbgtuC24LbgtuG24bbhtuG24bbhtuG24bbhtuGm8BN4CZwE7gJ3ARuAjeBm8BN4KZwU7gp3BRuCjeFm8JN4aZwU7gZ3AxuBjeDm8HN4GZwM7gZ3AxuB24HbgduB24HbgduB27FOF99Uq5hHLmGceQaxpFrGEcqMPlIgVRIgzyQDvkwjlzDOHIN48g1jCMVnXykQCqkQR5Ih3wYR65hHLmGceQaxpErN6RAKqRBHkiHfBhHrmEcWcM4soZxpOKUjxRIhTTIA+mQtW5WMkdWL/nq1VK5yqIkqWBlUZJUsrIoSSpaWZQkla0sSpIKVxYlSaUri5Kk4pVFSbL675yrrP/Qucqql3iV9Z9M1Ifsv5nQkkVU9SGbcbqsZrLLaia7rNaty2rdqqz/dKKurf92oq6t/3iiPmT1kqyy6iXZZTWTXVYz2WU1k11W61bXVvclV11b3Zdc9SGHcWQN48gaxpE1jCNrGOeXPJAOGZA5chhHlsHN4GZwM7gZ3AxuBjeDm8HtwO3A7cDtwO3A7cDtwO3A7cDtwM3h5nBzuDncHG4ON4ebw83h5nALuAXcAm4Bt4BbwC3gFnALuAXcEm4Jt4Rbwi3hlnBLuCXcEm7DOLKHcWQP48gexpE9jCN7GEf2MI7sYRzp3OYtAxJuC24LbgtuxThflCR7GEf2MI7sYRzZwzjSEc5b5sh9QS7IDSmQD+PIHsaRPYwjexhHOsx5yxwpF+SC3JAC+TCO7GEc2cM4sodxpGOdt8yRekEuyA0pkA/jyB7GkT2MI3sYRzrgecscaRfkgtyQAlnrVqvZjLNL1rrVxVcv+aIk6ajnquWuXrLq81Yv+bqLl057flGSdNxzV1n1kl1l1Ut2l9W6dVmtW5fVutUnq14itdzVS6Q+ZPUSqbLqJVJl1UukyqqXaJVVL9Euq5msa6teonVt1Uu0PmQzTpcV41RZ9RKrsuolVmXVS+p2pjOg9cvbIdD65e0UaP3y7nhOjaRyoI8MyOfUSCoK+sgFWURVgw3jyB7GkT2MI3sYR/YwjuxhHNlgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOHLgduB24OZwc7g53Ipxqk8KGEfAOALGETCOeEAOUUlckAtyQwrkMI6AcQSMI2CcCps+coiq4qaPXJAbUiCHcQSMI2AcAeNIBuQQlV4X5ILckAI5jKNgHAXjKBinAqiPHKKqCOojF+SGFMhaNytpkLVup2Stm5esdYuStW5fK19h1KakSqM2JVUctSmp8qhNSRVIbUrS/svwLqtToy6rU6Muq1Oj+pD9tpevldd+3Ut9yGacKmvGqbL+C/Eq6z8R77Jaty6rdatr67dB1LX1a1/qQ1YvKUqqgGpTUiVUm5IqotqUVBnVpqQKqTYldUq1KKljqkVJCsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcA+MYGMfAOAbGMTCOgXEMjGNgHAPjGBjHwDgGxjEwTiVdHwm3BbcFtwW3BbdinKIkA+MYGMfAOAbGqdDrIw3yQDpkQA5RGRjHwDgGxjEwTuVeH2mQB9IhA3KIysA4BsYxMI6BcSr3+kiDPJAOGZBDVAbGMTCOgXEMjGOmkAZ5IB0yIIeorBmnVrMZZ5esdauLr15SlFS516akyr02JVXutSmpcq9NSZV7bUqq3GtTUuVem5Iq99qUVLnXpqTKvTYlVe61Kalyr01JlXttSqrca1NS5V6bkir32pRUudempMq9NiVV7rUpqXKvTUnWjNNlxThdVqdGXVanRl1WRNVlRVR1bdVL6pe3cq9NSZ177Tmr+5JbKuRzaiSde72lQxZR9WBzh3fAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOP1mylvCzeHmcHO4OdyKcapPHjDOAeMcMM4B43Tu9ZYGeSAdMiCHqA4Y54BxDhjngHE693pLgzyQDhmQQ1QOxnEwjoNxHIxzv7iypUEeSIcMyCEqB+M4GMfBOA7G6dzrLQ3yQDpkQA5Rde61GnTnXm9Z63ZK1rrVPFQvKUrq3GtRUudei5I691qU1LnXoqTOvRYlde61KKlzr0VJnXstSurca1FS516Lkjr3WpTUudeipPvNll1WM9llNZNV1i+xrbJ+G1aV9euw6tr6fVh1bf1CrPqQ1Uuyy2omu6xmsstqJrusZrLKqpcUJVXutSmpcq9NSQ7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GCfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME7lXm+54bbhtuG24bbhVoxTlBRgnADjBBgnwDiVe33kgtyQAqmQBjmME2CcAOMEGKdzr7dckBtSIBXSIIdxAowTYJwA43Tu9ZYLckMKpEIa5DBOgHECjBNgnM693nJBbkiBVEiDrHWr1WzG2SVr3eriq5cUJXXute7tO/dad/Gde627+M69FiV17nV3Wc1kl9W6dVmtW5fVunVZrVt9suolRUmdey1K6txrUVLnXouSOvcqXVbX1mU1k11WM1nXVr2kKKlzr0VJnXstSurca1FS516Lkjr3WpTUuVfrsiKqurbqJfXL27nX+uXtV2/2nNV9Scl++eYt59SoX795S4EsovKSc4eXYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJx+l2fLgFvALeAWcAu49d/2ZclhnATjJBgnwTiZF+SC3JACqZAGOYyTYJwE4+Qwjnbu9ZYLckMKpEIa5MM4eg3j6DWMo9cwjnbu9ZYLckMKpEIa5MM4eg3j6DWMo9cwjnbu9ZYLckMKpEIaZK2blXTIWrdTstat5qF6yRclaedevyhJO/d66qNXL/miJO3c6xclaedeT5fVunVZnRp1WZ0adVmdGlVZv/C3PmS/2VtLFlHVh2zGqbJmnC6rmeyyWrcuq3Xrslq3urZ+829dW7/iuz5k9ZKssuolWWXVS7LKqpdkl9VMdlmtW11b3ZdcdW11X3LVhxzG0WsYR69hHL2GcfQaxtFrGEevYRy9hnH0GsbRaxhHrwM3h5vDzeHmcHO4Odwcbg43h5vDLeAWcAu4BdwCbgG3gFvALeAWcEu4JdwSbgm3hFvCLeGWcEu4DePoGsbRNYyjaxhH1zCOrmEcXcM4uoZxdA3j6BrG0XXBbcFtwW3BbcFtwW3BbcFtwW3BbcFtw23DbcNtw23DbcNtw23DbcNtw03gVozzRUm6hnF0DePoGsbRNYyj/aLRWzpkQOZIvSAX5MM4uoZxdA3j6BrG+SUPpEMGZI60C3JBPoyjaxhH1zCOrmEc7dzrLR0yIHPkuSAX5MM4uoZxdA3j6BrG0c693tIhAzJH+gW5IGvdajWbcXbJWre6+OolX5SknXtdtdzVS1Z93uolX3fx2rnXL0rSzr3uKqtesqusesmusuolu8qql+wuq3WrT1a9RGq5q5dIfcjqJdJlNZNVVr1Eqqx6iVZZ9RKtsuolWtdWvUTr2qqXaH3IZpwuK8bpsjo16rI6Nfoq69zr1+2Mdu61fnk791q/vJ17rV/efT2nRlq510ceyOfUSCv3+sgcWfclNb97GEf3MI7uYRzdwzi6h3F0D+PoHsbRPYyjexhH9zCO7g23DbcNtw23DbcNtw23DbcNN4GbwE3gJnATuAncBG4CN4GbwE3hpnBTuCncFG4KN4Wbwk3hpnAzuBncDG4GN4Obwc3gZnAzuBncDtwO3A7cDtwO3A7cDtwO3A7cDtwcbg43h5vDzeHmcHO4Odwcbg63gFvALeAWcAu4BdwCbgG3gFvALeHWf9uXJR/G0T2Mo3sYR/cwjnbu9ZYOGZAPUWnnXm+5IIdxBIwjYBwB43Tu9ZYOGZBDVJ17veWCHMYRMI6AcQSM07nXWzpkQA5Rde71lgtyGEfAOALGETBO515v6ZABOUTVuddbLshaNyspkLVup2StW81D9ZKipM69FiV17rUoqXOvRUmdey1K6txrUVLnXouSOvdalNS5V++yOjXqsjo1qg9ZvaQoqXOvRUmde60brc69FiV17rUoqXOvRUmdey1K6txrUVLnXouSOvdalNS51+yymskuq5mssuolRUmdey1K6txrUVK/S7UoqV+mWpQkYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXj9PtYbwk3gZvATeAmcCvGKUpSMI6CcRSMo2CcfjXrLQVSIQ3yQDrkMI6CcRSMo2Cczr3eUiAV0iAPpEMO4ygYR8E4Csbp3OstBVIhDfJAOuQwjoJxFIyjYJzOvd5SIBXSIA+kQ9a61Wo243y14s69FiV17rUoqXOvdW/fude6i+/ca93Fd+61KKlzr7vLaia7rNaty2rdqqx6SVFS516Lkjr3WpTUudeipM69SpfVTHZZzWSX1bV1Wc1kl9VMfl1b516Lkjr3WpTUudeipM69FiV17tW6rE6NuqyIqsuKqKxkEdUpWUT19SFtPadGWrnXR27I59RIK/f6SIMsourB5g7PwDgGxjEwjoFxDIxjYBwD4xgYx8A4BsYxMI6BcQyMY2AcA+MYGMfAOAbGMTCOgXEMjGNgHAPjGBjHwDgGxsH7XhXve1W871XxvlfF+14V73tVvO9V8b5XxfteFe97VbzvVfG+V8X7XhXve1W871Xxvlc1MI6BcQyMY2AcA+MYGMfAOAbGMTCOgXEMjGNgHAPjGBjHwDgGxjEwjoFxDIxjYBwD4xgYx8A4BsYxMI6BcQyMY2AcA+MYGMfAOJZwS7gl3BJuCbeEW/9tX5YcxjEwzgHjHDDO/U+ptxRIhTTIA+mQwzgHjHPAOAeM07nXWwqkQhrkgXTIYZwDxjlgnAPGuf959ZYCqZAGeSAdchjngHEOGOeAcTr3ekuBVEiDPJAOWetmJXNk9ZLq1Z17rV7dudeipM69FiV17rUoqXOvRUmdey1K6tzr6bJaty6rU6Mq63/Cscr633Cssv5HHOtD9r/iWCvf/4xjfchmnC6rmeyymskuq3Xrslq3Kut/zLGurf81x7q2/ucc60NWLylK6txrdlnNZJfVTHZZzWSX1brVtdV9SVFSv++1KOmAcQ4Y54BxDhjngHEOGOeAcQ4Y54BxDhjngHEOGOeAcQ4Y54BxDhjngHEOGOeAcQ4Y54BxDhjngHEOGOeAcQ4Y54BxDhjngHEcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4LnATuAncFG4KN4VbMU5RkoNxHIzjYBwH47gG5BCV2wW5IDekQA7jOBjHwTgOxunc6y2HqDr3essFuSEFchjHwTgOxnEwTudebzlE1bnXWy7IDSmQwzgOxnEwjoNxOvd6yyGqzr3eckFuSIGsdavVbMbZJWvd6uKrlxQlde617u0791p38Z17rbv4zr0WJXXutSipc69FSZ173V1W69ZltW5dVutWn6x6SVFS516Lkjr3WpTUudeipM69FiV17rUoqXOv2mU1k7tkzaSUrJnUksU4XVaMU2XVS4qSOvdalNS517qd6dxr/fJ27rV+eTv3Wr+8/b7X1f+BQwbknBr1+15vuSCLqGowME6AcQKME2CcAOMEGCfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME6AcQKME2CcAOMEGCfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME6AcQKME2CcAOMEGCfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME6AcSLhlnCbv+3TnL/t05y/7dOcv+3Tzr1Wn0wwToJxEoyTYJzOvd5yiKpzr7dckBtSIIdxEoyTYJwE43Tu9ZZDVJ17veWC3JACOYyTYJwE4yQY5/4H6VsOUd3/JH3LBbkhBXIYJ8E4CcZJME7nXm85RNW511suyA0pkLVuVtIga91qjauXVK/u3GtRUudei5I691qU1LnXoqTOvRYlde61KKlzr6fL6tSoy+rUqMvq1KjL6tSoPmT1kqKkzr0WJd3/Yn2VNeNUWf+b9VVWvSS6rNaty2rd6tqqlxQlde61KKlzr0VJnXstSurca1FS516Lkjr3WpTUudeipH7fa1FSv++1KCnBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcHMaxaxjHrmEcu4Zx7BrGsWsYx65hHLuGcewaxrFrGMeuC24LbgtuC24LbgtuC24LbgtuC24LbhtuG24bbhtuG24bbhtuG24bbhtuAjeBm8BN4CZwE7gJ3ARuAjeBm8JN4aZwU7gp3BRuCjeFm8KtGOeLkuwaxrFrGMeuYRy7hnHsMoU0yAPpkAGZI4dx7BrGsWsYx65hHOvc6y0N8kA6ZEDmyGEcu4Zx7BrGsWsYxzr3ekuDPJAOGZA5chjHrmEcu4Zx7BrGsc693tIgD6RDBmSObMap1WzG2SVr3eriq5d8UZJ17nXVclcvWfV5q5d83cVb516/KMk697q7rGbyq6xzr1+UZJ17/aIk69zrFyVZ516/KMk69/pFSda51y9Kss69SpfVTHZZzWSX1bVVWfUSrbLqJV+UZJ17/aIk69zrFyVZ516ty4pxuqxOjbqsTo26rIiqy4qo6tqql1hdW/USqw+5n1Mj6/e93lIhn1Mj6/e93tIhi6h6sOcOz9Ywjq1hHFvDOLaGcWwN49gaxrE1jGNrGMfWMI4tgZvCTeGmcFO4KdwUbgo3hZvCTeFmcDO4GdwMbgY3g5vBzeBmcDO4HbgduB24HbgduB24HbgduB24Hbg53BxuDjeHm8PN4eZwc7g53BxuAbeAW8At4BZwC7gF3AJuAbeAW8It4ZZwS7gl3BJuCbeEW8JtGMf2MI7tYRzbwzi25/0ltuf9Jbbnb/tsz9/22Z6/7bM9f9tnnXutPrmHcWwP49gexrE9jGOde72lQR5IhwzIHDmMY3sYx/Ywju1hHOvc6y0N8kA6ZEDmyGEc28M4todxbA/jWOdeb2mQB9IhAzJHDuPYHsaxPYxjexjHOvd6S4M8kA4ZkDmyekk16M693rLWrda4ekn16s69flGSde7VauWrl5z66NVLvijJOvf6RUnWuddTZdVLTpVVL/Eqq17iVVa9xKuseonXh6xe4rXy1Uu8PmQzTpfVTHZZzWSVVS+JKqteElVWvSTq2qqXRF1b9ZKoD1m9JLusZrLLaia7rGayy2omq6x6Sda11X3JVddW9yVXfchhHNvDOLaHcWwP49gexrE9jGN7GMf2MI7tYRzbwzi2E24Jt4Rbwi3hlnAD4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYRxRuBjeDm8HN4GZwK8YpShIwjoBxBIwjYBw5F+SC3JACqZAGOYwjYBwB4wgYp3Ovt1yQG1IgFdIgh3EEjCNgHAHjdO71lgtyQwqkQhrkMI6AcQSMI2Cczr3eckFuSIFUSIOsdavVbMbZJWvd6uKrlxQlde617u0791p38Z17rbv4zr0WJXXudXdZzWSX1bp1Wa1bl9W6dVmt29cn69xrUVLnXouSOvdalNS516Kkzr1Kl9W1dVnNZJfVTO6SNZNSsmayPmQzTpU141RZ9ZKipM69FiV17tW6rIiqrq16Sf3ydu61fnn7fa89Z3Vf0lIuyOfUyPp9r7cUyCKqGgyMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIxjYBwD4xgYx8A4BsYxMI6BcQyMY2Acu+C24LbgtuC24Lbg1n/blyWHcQyMY2AcA+N07vWWC3JDCqRCGuQwjoFxDIxjYJzOvd5yQW5IgVRIgxzGMTCOgXEMjNO511suyA0pkAppkMM4BsYxMI6BcTr3essFuSEFUiENstbNSjpkrVutcfWS6tWdey1K6txrUVLnXouSOvdalNS516Kkzr2eLqt167I6NeqyOjXqsjo1qrLqJUVJnXstSurca1FS517rRqtzr9FlNZNdVuvWZbVuXVbrVtdWvaQoqXOvRUmdey1K6txrUVLnXouSOveaXVYz2WW1bnVtdV9SlNTvey1KMjCOgXEMjGNgHAPjGBjHwDgGxjEwjoFxDIxzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDjH4GZwM7gZ3AxuB27FOEVJB4xzwDgHjHPAOOccSIcMyCGqzr3eckEO4xwwzgHjHDBO515v6ZABOUTVuddbLshhnAPGOWCcA8bp3OstHTIgh6g693rLBTmMc8A4B4xzwDide72lQwbkEFXnXm+5IGvdVslat12y1k1K1rppyVo3K1nrdkrWunnJWrevntq516Kkzr0WJXXutSipc69FSZ173V1W61afrHpJUVLnXouSOvcqXVYzWWXVS4qSOvdalNS516Kkzr0WJXXutSipc69FSZ17tS4rxumyOjXqsjo1qrLqJXU707nX+uXt3Gv98nbutX55+32vPWd1X3LLAzmnRv2+11vmyLov6fkF4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJxbcFtwW3BbcFtw23Ppv+7LkME6AcQKME2Cczr3e0iEDcoiqc6+3XJDDOAHGCTBOgHE693pLhwzIIarOvd5yQQ7jBBgnwDgBxunc6y0dMiCHqDr3essFOYwTYJwA4wQYp3Ovt3TIgByi6tzrLRdkrZuVFMhat1rj6iXVqzv3WpTUudeipM69FiV17rUoqXOvRUmdey1K6txrUVLnXouSOvfqXVanRl1Wp0b1IauXFCV17rUoqXOvdaPVudeipM69FiV17rUoqXOvRUmdey1K6txrUVLnXouSOveaXVYz2WU1k1VWvaQoqXOvRUmdey1K6ve9FiX1+16LkgKME2CcAOMEGCfAOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJw8cDtwO3A7cDtwO3ArxilKSjBOgnESjJNgnPQNKZAKaZAH0iGHcRKMk2CcBON07vWWAqmQBnkgHXIYJ8E4CcZJME7nXm8pkAppkAfSIYdxchjnXMM45xrGOZ17vaVAKqRBHkiHrHVbJWvd9pesXvJFSadzr1+UdDr3+nVvfzr3+nUXfzr3+nUXfzr3+kVJp3Ovu8tqJrus1q3Lat2qrHrJrrLqJbs+WfWSL0o6nXuV+pDVS6TLaia7rGayy+rauqxmsstqJuvaqpdoXVv1Eq0P2YxTZc04VVa9xLqsTo26rIiqy4qo6tqql1hdW/USqw+pz6nR6fe93nJDPqdGp9/3ekuDLKLqwZ47vHMN45xrGOdcwzjnGsY51zDOuYZxzjWMc65hnHMN45zL4GZwM7gduB24HbgduB24HbgduB24HbgduDncHG4ON4ebw83h5nBzuDncHG4Bt4BbwC3gFnALuAXcAm4Bt4Bbwi3hlnBLuCXcEm4Jt4Rbwm0Y56xhnLOGcc4axjlrGOesYZyzhnHOGsY5axjnrGGcsy64LbgtuC24LbgtuC24LbgtuC24LbhtuG24bbhtuG24bbhtuPXf9mXJh3HOGsY5axjnrGGc07nXWwqkQhrkgXTIh3HOGsY5axjnrGGc07nXWwqkQhrkgXTIh3HOGsY5axjnrGGc07nXWwqkQhrkgXTIh3HOGsY5axjnrGGc07nXWwqkQhrkgXTIWjcrmSOrl1Sv7txr9erOvX5R0uncq9XKVy859dGrl3xR0unc6xclnc69ni6rdeuyOjWqsuolXmXVS7zKqpd4fcjqJV4rX73E60M243RZzWSX1Ux2Wa1bl9W6VVn1kqhrq14SdW3VS6I+ZPWSrLLqJdllNZNdVjPZZTWTXVbrVtdW9yVflHT6fa9flHT2MM7ZwzhnD+OcPYxz9jDO2cM4Zw/jnD2Mc/YwztnDOGcvuC24LbgtuC24LbgtuC24LbhtuG24bbhtuG24bbhtuG24bbhtuAncBG4CN4GbwE3gJnATuAncBG4KN4Wbwk3hpnBTuCncFG4KN4Wbwc3gZnAzuBncDG4GN4Obwc3gduB24HbgduB24HbgduB24HbgduDmcHO4OdyKcb4o6exhnLOHcc4exjl7GOdsD8gcGRfkgtyQAvkwztnDOGcP45w9jHM693rLHJkX5ILckAL5MM7ZwzhnD+OcPYxzOvd6y4eoTudeb7kgN6RADuMIGEfAOALG6dzrLYeoOvd6ywW5IQWy1m2VrHXbJWvdpGStm5asdbOStW71efvfE/aStW5RsmayyqqXFCV17nV3Wa1bl9W6dVmtW32y6iVFSZ17LUrq3GtRUudei5I691qU1LnXoqTOvWqX1UzWtVUvKUrq3GtRUudercuKcaqseklRUudei5I691q3M517rV/ezr3WL2/nXuuXt9/32nNW9yW3DMjn1Oj0+15vuSCLqGowMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcXTDbcNtw03gJnATuPXf9mXJYRwF4ygYR8E4nXu95RBV515vuSA3pEAO4ygYR8E4Csbp3Osth6g693rLBbkhBXIYR8E4CsZRME7nXm85RNW511suyA0pkMM4CsZRMI6CcTr3esshqs693nJBbkiBrHWzkgZZ61ZrXL2kenXnXouSOvdalNS516Kkzr0WJXXutSipc69FSZ17PV1Wp0ZdVqdGXVanRl1Wp0b1IauXFCV17rUoqXOvdaPVudeipM69FiV17jW6rNaty2rd6tqqlxQlde61KKlzr0VJnXstSurca1FS516Lkjr3WpTUudeipH7fa1FSv++1KMnAOAbGMTCOgXEMjGNgHAPjGBjHwDgGxjEwjoFxDIxjYBwD4xgYx8A4BsYxMI6BcQyMY2AcA+MYGMfAOAbGMTCOgXEMjGNgHAPjGBjHwDgGxjEwjoFxDIxjYBwD4xgYx8A4BsYxMI6BcQyMY2AcA+MYGMfAOAbGMTCOgXEMjGNgHAPjGBjHwDgGxjEwjoFxDIxjYBwD4xgYx8A4BsYxh5vDzeHmcHO4OdyKcYqSDIxjYBwD4xgYx0IhDfJAOmRADlEZGMfAOAbGMTBO515vaZAH0iEDcojqgHEOGOeAcQ4Yp3OvtzTIA+mQATlEdcA4B4xzwDgHjNO511sa5IF0yIAcourca1FS516Lkjr3WpTUudeipM691r19517rLr5zr3UX37nXoqTOve4uq5mssuolRUmdey1K6txrUVLnXouSOvdalNS516Kkzr1Kl9VMdlnNZJfVtVVZ9ZKipM69FiV17rUoqXOvRUmde7UuK8bpsjo16rI6NeqyIqouK6Kqa6teUr+8nXutX95+32vPWd2X3FIh59So3/d6S4csourB5g7vgHEOGOeAcQ4Y54BxDhjngHEOGOeAcQ4Y54BxDhjngHEOGOeAcQ4Y54BxDhjngHEOGOeAcQ4Y54BxDhjngHEOGOeAcQ4Y54BxDhjngHEOGOeAcQ4Y54BxDhjngHEOGOeAcQ4Yx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOC5wE7gJ3ARuAjeBW/9t31dbcTCOg3EcjONgnM693tIgD6RDBuQQlYNxHIzjYBwH43Tu9ZYGeSAdMiCHqByM42AcB+M4GKdzr7c0yAPpkAE5ROVgHAfjOBjHwTide72lQR5IhwzIIarOvVaD7tzrLWvdao2rl1Sv7txrUVLnXouSOvdalNS516Kkzr0WJXXutSipc69FSZ17LUrq3GtRUudei5I691qU1LnXoqTOvRYlde41uqxmsstqJr/KOvdalNS516Kkzr0WJXXutSipc69FSZ17zS6rmeyymskuq5nssprJKqteUpTU73stSur3vRYlBRgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME6AcQKME2CcAOMEGCfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME6AcQKME2CcAOMEGCfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME6AcQKME2CcAOMEGCfAOOFwC7gF3AJuAbeAWzFOUVKAcQKME2CcAONEXpALckMKpEIa5DBOgHECjBNgnM693nJBbkiBVEiDHMZJME6CcRKM07nXWy7IDSmQCmmQwzgJxkkwToJxOvd6ywW5IQVSIQ2y1m2VrHXbJWvd6uKrlxQlde617u0791p38Z17rbv4zr0WJXXudXdZzWSX1bp1Wa1bl9W6dVmtW32y6iVFSZ17LUrq3GtRUudei5I69ypdVtfWZTWTXVYzWddWvaQoqXOvRUmdey1K6txrUVLnXouSOvdalNS5V+uyIqq6tuol9cvbudf65e33vfac1X1Jy3NBzqlRv+/1lgJZRFWDgXESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTwzh+DeP4NYzj1zCOX8M4fg3j+DWM49cwjl/DOH4N4/h1wW3BbcFtwW3BbcFtwW3BbcFtwW3BbcNtw23DbcNtw23DbcNtw23DbcNN4CZwE7gJ3ARuAjeBm8BN4CZwU7gp3BRuCjeFW/9tX5Z8GMevYRy/hnH8Gsbxzr3eckFuSIFUSIN8GMevYRy/hnH8Gsbxzr3eckFuSIFUSIN8GMevYRy/hnH8Gsbxzr3eckFuSIFUSIN8GMevYRy/hnH8Gsbxzr3eckFuSIFUSIOsdbOSDlnrVmtcvcRqHqqXfFGSd+7VauWrl5z66NVLvijJO/f6RUneudfTZbVuXVanRl1Wp0ZdVqdGX2Wde/2iJO/c6xcleedevyjJO/f6daPlnXuNLquZ7LJaty6rdeuyWrdTstbt69o69/pFSd6516yy6iVZZdVLssqql2SX1Ux2Wa1blqy/tLhKfv2aXvUhh3F8DeP4GsbxNYzjaxjH1zCOr2EcX8M4voZxfA3j+NpwE7gJ3ARuAjeBm8BN4CZwE7gJ3BRuCjeFm8JN4aZwU7gp3BRuCjeDm8HN4GZwM7gZ3AxuBjeDm8HtwO3A7cDtwO3A7cDtwO3A7cDtwM3h5nBzuDncHG4ON4ebw83h5nALuAXcAm4Bt4BbwC3gFnALuAXcEm7FOFdtsmEcX8M4voZxfA3j+MoD6ZAB+RCVd+71lgvyYRzfwzi+h3F8D+N4515v6ZABmSPXBbkgH8bxPYzjexjH9zCOd+71lg4ZkDlyX5AL8mEc38M4vodxfA/jeOdeb+mQAZkj5YJckLVuq2St2y5Z61YXX73ki5K8c69f9/beuddVn7f/PWEvWev21VM797qrrHrJrrLqJbvKqpfsKqtesrus1q0+WfUSqeWuXiL1IauXSJfVTFZZ9RKpsuolWmXVS7TKqpdoXVv1Eq1rq16i9SGbcbqsGKfL6tSoy+rUqMqql9TtTOde65e3c6/1y9u51/rl7fe99pzVfcktD+RzauT9vtdb5si6L+n5HcbxPYzjexjH9zCO72Ec38M4vodxfA/j+B7G8T2M80vCLeAWcAu4BdwCbgG3gFvALeGWcEu4JdwSbgm3hFvCLeEGxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjiMJN4aZwU7gp3Axu/bd9WXIYR8A4AsYRME7nXm/pkAE5RNW511suyGEcAeMIGEfAOJ17vaVDBuQQVedeb7kgh3EEjCNgHAHjdO71lg4ZkENUnXu95YIcxhEwjoBxBIzTuddbOmRADlF17vWWC7LWzUoKZK1brXH1kurVnXstSurca1FS516Lkjr3WpTUudeipM69FiV17rUoqXOvRUmde/Uuq1OjLqtTIylZRKUli6isZM1klTXjVFn1kqKkzr0WJXXutSipc69FSZ17LUrq3GtRUudes8tqJrusZrLKqpcUJXXutSipc69FSf2+16Kkft9rUZKCcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjCbeEW8It4ZZwS7gV4xQlKRhHwTgGxjEwjl0bUiAV0iAPpEMO4xgYx8A4Bsbp3OstBVIhDfJAOuQwjoFxDIxjYJzOvd5SIBXSIA+kQw7jGBjHwDgGxunc6y0FUiEN8kA6ZK3bKlnr9tWKO/dalNS516Kkzr3WvX3nXusuvnOvdRffudeipM697i6rmeyyWrcuq3WrsuolRUmdey1K6txrUVLnXouSOvcqXVYz2WU1k11W19ZlNZNdVjNZ11a9pCipc69FSZ17LUrq3GtRUudercvq1KjLiqi6rIiqrq16Sf3ydu61fnn7fa89Z3VfcssN+Zwaeb/v9ZYGWUTVg80dnoFxDIxjYBwD4xgYx8A4BsYxMI6BcQyMY2AcA+MYGMfAOAbGMTCOgXEMjGNgHAPjGBjHwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMcwxuBjeDm8HN4GZw67/ty5LDOAeMc8A4B4zTuddbCqRCGuSBdMhhnAPGOWCcA8bp3OstBVIhDfJAOuQwzgHjHDDOAeN07vWWAqmQBnkgHXIY54BxDhjngHE693pLgVRIgzyQDlnrZiXzkZ17rV7dudfq1Z17LUrq3GtRUudei5I691qU1LnXoqTOvZ4uq3Xrsjo1qrLqJUVJnXstSurca1FS516Lkjr3WpTUudfosprJLquZ7LJaty6rdauy6iVFSZ17LUrq3GtRUudei5I695pdVjPZZTWTXVYz2WW1bnVtdV9SlNTvey1KcjCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcTzhlnCbdzR6zDsaPeb9JR7z/hKv3GtTUoBxAowTYJwA48QVkENUsS7IBbkhBXIYJ8A4AcYJME7nXm85RNW511suyA0pkMM4AcYJME6AcTr3esshqs693nJBbkiBHMYJME6AcQKM07nXWw5Rde71lgtyQwpkrVutZjPOLlnrVhdfvaQoqXOvdW/fude6i+/ca93Fd+61KKlzr0VJnXstSurc6+6yWrcuq3Xrslq3+mTVS4qSOvdalNS516Kkzr0WJXXutSipc69FSZ171S6rmaxrq15SlNS516Kkzr1alxXjVFn1kqKkzr0WJXXutW5nOvdav7yde61f3s691i9vv++156zuS24ZkHNq1O97veWCLKKqwcA4AcYJME6AcQKME2CcAOMEGCfAOAHGCTBOgHECjBNgnADjBBgnwDgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJg5vBzeB24HbgduDWf9uXJYdxEoyTYJwE43Tu9ZZDVJ17veWC3JACOYyTYJwE4yQYp3Ovtxyi6tzrLRfkhhTIYZwE4yQYJ8E4nXu95RBV515vuSA3pEAO4yQYJ8E4Ccbp3OstH6KKzr3eckFuSIGsdbOSBlnrdkrWunnJWrcoWeuWX7J6yRclRedevygpOvf6RUnRuddTZdVLTpfVqVGX1alRl9WpUZfVqVF9yOolX5QUnXv1+pDNOFXWjFNl1UuiyqqXRJfVunVZrVtdW/WSqGurXhL1IauXZJVVL8kqq16SVVa9JKuseklWWfWSrGur+5Krrq3uS676kMM4cQ3jxDWME9cwTlzDOHEN48Q1jBPXME5cwzhxDePEpXBTuCncDG4GN4Obwc3gZnAzuBncDG4GtwO3A7cDtwO3A7cDtwO3A7cDtwM3h5vDzeHmcHO4Odwcbg43h5vDLeAWcAu4BdwCbgG3gFvALeAWcEu4JdwSbgm3hFvCLeGWcEu4DePEGsaJNYwTaxgn1ryjMda8ozHWvKMx1ryjMda8vyTWvL8kKvdalBRrGCfWME6sYZxYwzixlkIa5IF0yIDMkcM4sYZxYg3jxBrGic693tIgD6RDBmSOHMaJNYwTaxgn1jBOdO71lgZ5IB0yIHPkME6sYZxYwzixhnGic6+3NMgD6ZABmSObcWo1m3F2yVq3uvjqJV+UFJ17XbXc1UtWfd7+94S9ZK1blKyZ7LKaySqrXrKrrHrJrrLqJbvKqpfs+mTVS6SWu3qJ1IesXiJdVjPZZTWTXVbXVmXVS7TKqpdoXVv1Eq1rq16i9SGbcbqsGKfL6tSoy+rUqMuKqLqsiKqurXpJ/fJ27rV+eft9rz1ndV9yS4V8To2i3/d6S4csourBnju8WMM4sYZxYg3jxBrGiTWME2sYJ9YwTqxhnFjDOLGGcWIP48Qexok9jBN7GCf2ME7sYZzYwzixh3FiD+PEvuC24LbgtuC24LbgtuC24LbgtuC24LbhtuG24bbhtuG24bbhtuG24bbhJnATuAncBG4CN4GbwE3gJnATuCncFG4KN4Wbwk3hpnBTuCncFG4GN4Obwc3gZnAzuBncDG4GN4PbgduB24HbgduB24HbgduB24Fb/23fV1vZwzixh3FiD+PEHsaJzr3e0iAPpEMGZI4cxvklF+SGFEiFNMgD6ZABmSOHcWIP48Qexok9jBOde72lQR5IhwzIh6hCwDgCxhEwjoBxOvd6S4M8kA4ZkENUnXutBt2511vWup2StW5estYtSta6Zcmayfro1UuKkjr3WpTUudeipM69FiV17rUoqXOvRUmdey1K6txrUVLnXouSOvdalNS51+iymskuq5mssuolRUmdey1K6txrUVLnXouSOvdalNS51+yymskuq5nssprJLquZrLLqJUVJ/b7XoqR+32tRkoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcRSMo2AcBeMoGEfBOArGUTCOgnEUjKMX3BbcFtwW3BbcFtyKcYqSFIyjYBwF4ygYR/cFuSA3pEAqpEEO4ygYR8E4Csbp3OstF+SGFEiFNMhhHAXjKBhHwTide73lgtyQAqmQBjmMo2AcBeMoGKdzr7dckBtSIBXSIGvdajWbcXbJWre6+OolRUmde617+8691l18517rLr5zr0VJnXvdXVYz2WW1bl1W69ZltW5dVutWn6x6SVFS516Lkjr3WpTUudeipM69SpfVtXVZzWSX1UzWtVUvKUrq3GtRUudei5I691qU1LnXoqTOvRYlde7VuqyIqq6tekn98nbutX55+32vPWd1X9IyL8jn1Cj6fa+3FMgiqhoMjKNgHAXjKBhHwTgGxjEwjoFxDIxjYBwD4xgYx8A4BsYxMI6BcQyMY2AcA+MYGMfAOAbGMTCOgXEMjGNgHAPjGBjHwDgGxjEwjoFxDIxjYBwD4xgYx8A4BsYxMI6BcQyMY2AcA+MYGMfAOAbGMTCOgXEMjGNgHAPjGBjHwDgGxjEwjoFxDIxjYBwD4xgYx8A4BsYxMI6BcQyMY2AcA+MYGMfAOAbGMTCOgXEMjGNgHDtwc7g53BxuDjeHW/9tX5YcxjEwjoFxDIzTuddbLsgNKZAKaZDDOAbGMTCOgXE693rLBbkhBVIhDXIYx8A4BsYxME7nXm+5IDekQCqkQQ7jHDDOAeMcME7nXm+5IDekQCqkQda6WUmHrHU7JWvdvuahc69FSZ17LUrq3GtRUudei5I691qU1LnX02W1bl1Wp0ZdVqdGXVanRlVWvaQoqXOvRUmdey1K6txr3Wh17jW6rGayy2rduqzWrctq3eraqpcUJXXutSipc69FSZ17LUrq3GtRUudes8tqJrus1q2ure5LipL6fa9FSQeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4zjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3F8wW3BbcFtwW3BbcOtGKcoycE4DsZxMI6DcXwfSIcMyCGqzr3eckEO4zgYx8E4Dsbp3OstHTIgh6g693rLBTmM42AcB+M4GKdzr7d0yIAcourc6y0X5DCOg3EcjONgnM693tIhA3KIqnOvt1yQtW61ms04u2StW1189ZKipM691r19517rLr5zr3UX37nXoqTOvRYlde61KKlzr0VJnXstSurc6+6yWrf6ZNVLipI691qU1LlX6bKaySqrXlKU1LnXoqTOvRYlde61KKlzr0VJnXstSurcq3VZMU6X1alRl9WpUZVVL6nbmc691i9v517rl7dzr/XL2+977Tmr+5JbHsg5Ner3vd7yyeFFv++15jfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME6AcQKME2CcAOMEGCfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME6AcQKME2CcAOMEGCfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME6AcQKME2CcAOMEGCfAOAHGCYebw83h5nBzuAXc+m/7suQwToBxAowTYJzOvd7SIQNyiKpzr7dckMM4AcYJME6AcTr3ekuHDMghqs693nJBDuMkGCfBOAnG6dzrLR0yIIeoOvd6ywU5jJNgnATjJBinc6+3dMiAHKLq3OstF2Stm5UUyFq3U7LWreaheklRUudei5I691qU1LnXoqTOvRYlde61KKlzr0VJnXstSurcq3dZnRp1WZ0a1YesXlKU1LnXoqTOvdaNVudei5I691qU1LnXoqTOvRYlde61KKlzr0VJnXstSurca3ZZzWSX1UxWWfWSoqTOvRYlde61KKnf91qU1O97LUpKME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwcxslrGCevYZy8hnHyGsbJaxgnr2GcvIZx8hrGyWsYJ68LbgtuC24LbgtuC24LbgtuC24LbgtuG24bbhtuG24bbhtuG27FOF+UlNcwTl7DOHkN4+Q1jJOXbEiBVEiDPJAO+TBOXsM4eQ3j5DWMk517vaVAKqRBHkiHfBgnr2GcvIZx8hrGyc693lIgFdIgD6RDPoyT1zBOXsM4eQ3jZOdebymQCmmQB9Iha91qNZtx9pesXrLq4quXfFFSdu511XJXL1n1efvfE/aStW5Rsmayy2omu6zWrctq3aqsesmusuoluz5Z9RKp5a5eIvUhq5dIl9VMdlnNZJfVtXVZzWSX1UzWtVUv0bq26iVaH7IZp8qacaqseol1WZ0adVkRVZcVUdW1VS+xurbqJV+/vNnve6056/e93nJDPqdG2e97vaVBFlH1YM8dXq5hnFzDOLmGcXIN4+Qaxsk1jJNrGCfXME6uYZxcC24LbgtuG24bbhtuG24bbhtuG24bbhtuG24CN4GbwE3gJnATuAncBG4CN4Gbwk3hpnBTuCncFG4KN4Wbwk3hZnAzuBncDG4GN4Obwc3gZnAzuB24HbgduB24HbgduB24HbgduB24Odwcbg43h5vDzeHmcHO4OdwcbgG3gFvALeAWcAu4Bdz6b/uy5MM4uYZxcg3j5BrGyc693lIgFdIgD6RDPoyTaxgn9zBO7mGc7NzrLQVSIQ3yQDrkwzi5h3FyD+PkHsbJzr3eUiAV0iAPpEM+jJN7GCf3ME7uYZzs3OstBVIhDfJAOmStm5XMkdVLqld37rV6dedevygpO/f6RUnZuddTH716yRclZedevygpO/d6uqzWrcvq1KjKqpd4lVUv8SqrXuL1IauXfFFSdu7V60M243RZzWSX1Ux2Wa1bl9W6VVn1kqhrq14SdW3VS6I+ZPWSrLLqJdllNZNdVjPZZTWTXVbrVtdW9yVXXVvdl1z1IYdxcg/j5B7GyT2Mk3sYJ/cwTu5hnNzDOLmHcXIP4+R2uDncHG4ON4ebw83h5nBzuAXcAm4Bt4BbwC3gFnALuAXcAm4Jt4Rbwi3hlnBLuCXcEm4JNzCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHNlw23DbcBO4CdwEbsU4RUkCxhEwjoBxBIwjEpBDVKIX5ILckAI5jCNgHAHjCBinc6+3HKLq3OstF+SGFMhhHAHjCBhHwDide73lEFXnXm+5IDekQA7jCBhHwDgCxunc6y2HqDr3essFuSEFstatVrMZZ5esdauLr15SlNS517q379xr3cV37rXu4jv3WpTUudeipM69FiV17nV3Wa1bl9W6dVmtW32y6iVFSZ17LUrq3GtRUudei5I691qU1LnXoqTOvWqX1UzWtVUvKUrq3GtRUudercuKcb7KOvdalNS516Kkzr3W7UznXuuXt3Ov9cvbudf65e33va7+DxwyIJ9To+z3vd5yQRZR1WBgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjaMAt4BZwS7gl3BJu/bd9WXIYR8E4CsZRME7nXm85RNW511suyA0pkMM4BsYxMI6BcTr3esshqs693nJBbkiBHMYxMI6BcQyM07nXWw5Rde71lgtyQwrkMI6BcQyMY2Cczr3ecoiqc6+3XJAbUiBr3aykQda6nZK1bjUP1UuKkjr3WpTUudeipM69FiV17rUoqXOvRUmdez1dVqdGXVanRl1Wp0ZdVqdG9SGrlxQlde61KKlzr3Wj1bnXoqTOvRYlde41uqzWrctq3eraqpcUJXXutSipc69FSZ17LUrq3GtRUudei5I691qU1LnXoqR+32tRUr/vtSjJwDgGxjEwjoFxDIxjYBwD4xgYx8A4BsYxMI6BcQyMY2AcA+MYGMfAOAbGMTCOgXEMjGNgHAPjGBjHwDgGxjEwjoFxDIxjYBwD4xgYx8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHMEbgI3gZvATeAmcCvGKUo6YJwDxjlgnAPGOaqQBnkgHTIgh6gOGOeAcQ4Y54BxOvd6S4M8kA4ZkENUB4xzwDgHjHPAOJ17vaVBHkiHDMghqgPGOWCcA8Y5YJzOvd7SIA+kQwbkEFXnXouSOvdalNS516Kkzr0WJXXute7tO/dad/Gde627+M69FiV17nV3Wc1klVUvKUrq3GtRUudei5I691qU1LnXoqTOvRYlde5VuqxmsstqJrusru2rrHOvRUmdey1K6txrUVLnXouSOvdqXVaM02V1atRldWrUZUVUXVZE9XVtnXutX97OvdYvb7/vdfV/IJAKOadG/b7XWzpkEVUPNnd4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsbxhFvCLeGWcEu4Jdz6b/u+2kqAcQKME2CcAON07vWWBnkgHTIgh6gCjBNgnADjBBinc6+3NMgD6ZABOUQVYJwA4wQYJ8A4nXu9pUEeSIcMyCGqAOMEGCfAOAHG6dzrLQ3yQDpkQA5Rde61GnTnXm9Z63ZK1rrVPFQvKUrq3GtRUudei5I691qU1LnXoqTOvRYlde61KKlzr0VJnXstSurca1FS516Lkjr3WpTUudeipM69RpfVTHZZzWSVVS8pSurca1FS516Lkjr3WpTUudeipM69ZpfVTHZZzWSX1Ux2Wc1klVUvKUrq970WJfX7XouSAowTYJwA4wQYJ8A4AcYJME6AcQKME2CcAOMEGCfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnBS4KdwUbgo3hZvCrRinKCnBOAnGSTBOgnHSLsgFuSEFUiENchgnwTgJxkkwTudeb7kgN6RAKqRBDuMkGCfBOAnG6dzrLRfkhhRIhTTIYZwE4yQYJ8E4nXu95YLckAKpkAZZ61ar2YyzS9a61cVXLylK6txr3dt37rXu4jv3WnfxnXstSurc6+6ymskuq3Xrslq3Lqt167Jat1+fbF0dfP3CpC9dc7la12R665rNaF3TedfWFd61NaF3bc3obl1TKq1rTrV0407XNu90bTUW69rqLNa11Vrsri3CstaFWKd1MVZ/5vUcJH3phN4X6ecs6Utv0kK6UKvHHPr50oe0kw7SCT0I9KUX6U1aSCtp8hXyFfIV8hXyVfJV8lXyVfJV8lXyVfJV8lXyVfI18jXyNfI18jXyNfI18jXyNfI18j3ke8j3kO8h30O+h3wP+R7yPeR7yNfJ18nXydfJ18nXydfJ18nXydfJN8g3yDfIN8g3yDfIN8g3yDfIN8g3yTfJN8k3yTfJN8k3yTfJN8k34buui/QivUkLaSVdvtn6wakv7aSDdEKvi/QivUkLaSVtpB+w+tJOOkgn9L5IL9KbtJBW0kb6Qawv7aSDdELLRXqR3qSFtJI20g9sfWknHaQTWi/Si/QmLaSVtJGu9bXWTrrWt78P1a/696LjuBata337e1L96vS1VL86q3XN825d83zX1vretXWmddfWodZdW6daXVv9yvszV7/y/p5Uv/L+zM1hXdsgdtfWPN+1tb53ba3vXVvr29db/Sr6eqtfRX/m6lfZtdWvsmurX2XXVr/Ku7bm+a6t9e3rrTupq6+3bqWu/szDZb/0gNmXXqQ3aSGtpI30Ie2kgzT5Jvkm+Sb5Jvkm+Sb5Jvkm+Sb5Jnz3dZFepDdpIa2kjfQh7aSDNPku8l3ku8h3ke8i30W+i3wX+S7yXeS7yXeT7ybfTb6bfDf5bvLd5LvJd5OvkK+Qr5CvkK+Qr5CvkK+Qr5CvkK+Sr5Kvkq+Sr5Kvkq+Sr5Kvkq+Sr5Fv8d1lrR/A+9JCWkkb6UPaSQfphD4X6UX6Qb0vLaSVtJE+pJ10kE5ov0gv0g/0fWkhraSN9CHtpIN0QsdFepF+8O9LC2klbaQPaScdpBM6L9KLdK1vr3uT4G5d69tzUv1qaeta3/5uVL9qrumIcHNNZ4RX9fMOCW9tXfNsrWt9T+taX29d63vX1vpm65rnq3XN82pd83zX1jx3bfWr5srOCzdXdmC4ubITw82VHRluruzMcHNlh4btri0evGvr0O2urVO3rq1+1fdmnRzu+4SODvd9QmeH+z6hX5q77v/GSB/Sz+nblw7SCV33Vz3/QjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPKjEg0o8qMSDSjyoxIN6GelD2kkHafJd5Nt/d5mtwYNKPKjEg0o82MHkRzvpIA0O7XDyoxdp8KASDyrxoBIPdkT50U46SINDO6b86EUaPKjEg0o8qMSDHVZ+tJMO0uDQDiw/epEGDyrxoBIPKvFgx5Yf7aSDNDi0o8uPXqRrfa21kK717e9D9av+vegAc3NlJ5ibKzvC3FzZGebmyg4xN1d2irm5smPMzZWdY26u7CCz37V1DnjX1kFgf+bqV82VHWZuruw0c99Ddpy5ubLzzM2VHWhuruxEc3NlR5qbKzvT3FzZoebmyk41511b83zX1jx3bfWr5spONjdXdrS5ubLf6dtc2S/1ba5U4kElHlTiQSUeVOJBJR5U4kElHlTiQSUeVOJBJR5U4kElHlTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx40I18jXyNfI18jXyPf4sHmSiMeNOJBIx404kE7m7SQVtJG+pB20uBBIx404kEjHuzQ9KOFtJI20oe0kwYPGvGgEQ8a8WDHpx8tpJW0kT6knTR40IgHjXjQiAc7SP1oIa2kjfQh7aRrfXvdmwfrt6AD1c2VnahuruxIdfNOZ6qbazpU3VzTqermyo5V77u25vmurfW9a2t9u7b6VXNlZ6ubKztc3VzZ6ermyo5Xy11b83zX1jzftXW9d23N811b89zXW/2qubJT1s2VHbNuruycdXNlB63trq1zybu2OPSuLQ7t661+1fcJnbbu+4R+zfA9n3V/9ehNGueS/arhRxvp4tB7TNzHHuLBQzx4iAcP8eAhHjzEg4d48BAPHuLBQzx4iAcP8eAhHjzEg4d48BAPHuLBQzx4iAcP8eAhHjzEg4d48BAPHuLBQzx4iAcP8eAhHjzEg4d48BAPHuLBQzx4iAcP8eAhHjzEg4d48BAPHuLBQzx4iAcP8eAhHjzEg4d48BAPHuLBQzx4iAcP8eAhHjzEg4d48BAPHuLBQzx4iAcP8eAhHjzEg0486MSDTjzoxINOPOjEg0486MSDTjzoxINOPOiLfBf5LvJd5LvId5Fv/6VqtgYPOvGgEw868WBHuR8tpJW0kT6knTR40IkHnXjQiQc71P1oIa2kjfQh7aTBg0486MSDTjzY8e5HC2klbaQPaScNHnTiQScedOLBDno/WkgraSN9SDvpWl9rndDVr/r3ohPf/XvRke/mys58N1d26Lu5slPfzZUd+26u7Nz3uWtrfe/aOpfs2upXzZWd/W6u7PB3c2Wnv5srO/7dXNn577hra57v2prnu7bW966t9e3a6lfNlZ0Cb67sGHhzZefAmys7CJ53bc3zXVvzfNfWPN+1tb59vXV/1VzZr0FurnTiQScedOJBJx504kEnHnTiQScedOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgwjXyNfI99Dvod8D/kWDzZXBvFgEA8G8WAQD8YJ0uDQ8Iv0Ir1JC2nwYBAPBvFgEA92zPzR4NAOmj96kd6khTR4MIgHg3gwiAc7cP5ocGhHzh+9SG/SQho8GMSDQTwYxIMdPX80OLTD549epDdpIV3ru1rX+u7Wtb7SutZXW9f6Wuta3/r8HUNvrukcenNlB9GbKzuJ3lzZUfR919b63rW1vndtrW9/zupXzZWdR2+u7EB6c2Un0psrO5LeXNmZ9ObKDqXrXVvz3Ndb/aq5snPpzZUdTLe7tniwa6tfNVd2Nr25ssPpfW/W6fS+T+h4et8ndD697xP6xcz3fNb91aODNM4l++XMj16ki0N7TOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M8OC6wIPrAg+uCzy4LvDgusCD6wIPrgs8uC7w4LrAg+u6yHeR7yLfRb6LfBf5LvJd5LvId5HvIt9Nvpt8N/n23/Zm6+HBdYEH1wUeXBd4cHW+/dEJLRfpRXqTFtLDg+sCD64LPLgu8ODqfPujE1ov0ov0Ji2khwfXBR5cF3hwXeDB1fn2Rye0XaQX6U1aSA8Prgs8uC7w4LrAg6vz7Y9O6HORXqQ3aSFd62utjXStb38fql9Zz0/1q+LK1fl26+9J9avT11L9qrhydb69uHJ1vv10bfWrc9fWueRdW+eSd22dS961dS7Zn7n6lff3pPqV92duHuza5sGurX4VXVv9Ku7aWt+7tta3r7f6VfT1Vr+K/szVr7Jrq19l11a/yq6tfpVdW/0qu7b6Vfb11v3V1ddb91dXf2bw4LrAg+sCD64FHlwLPLgWeHAt8OBa4MG1wINrgQfXAg+uBR5c6yLfRb6LfBf5LvJd5LvId5HvIt9Fvot8N/lu8t3ku8l3k+8m302+m3w3+W7yFfIV8hXyFfIV8hXyFfIV8hXyFfJV8lXyVfJV8lXyVfJV8lXyVfJV8jXyNfI18jXyNfI18jXyNfI18jXyPeR7yPeQ7yHfQ76HfA/5HvI95Fs8WFy5FnhwLfDgWuDBtcCDa7mSNtKHtJMO0gkNHlwLPLgWeHAt8ODqfPujjfQh7aSDdEKDB9cCD64FHlwLPLg63/5oI31IO+kgPRy6NnhwbfDg2uDBtcGDq/PtjzbSh7STDtIJ3Ty4Wtf67ta1vtK61ldb1/pa61rf/vz9D6J761rfaF3zfNfWPHdt9avdtdWvdtdWv9pdW/1q9+esflVcuTrfLv2Zq1/JXVvzfNfWPN+1db1dW/1Ku7b6lfb1Vr/Svt7qV9qfuXnwri0evGvrXPKurXPJu7Y49K4tDu3rrX7V9wmdb+/7hH6V9T2fdX/1aCU955KrX2f9aCddHHqPifvYDR5cGzy4NnhwbfDg2uDBtcGDa4MH1wYPrg0eXNvI95DvId9Dvod8D/ke8j3ke8j3kO8hXydfJ18nXydfJ18nXydfJ18nXyffIN8g3yDfIN8g3yDfIN8g3yDfIN8k3yTfJN8k3yTfJN8k3yTfJF/iQSEeFOJBIR4U4kEhHhTiQSEeFOJBIR4U4kEhHhTiQSEeFOJBIR4U4kEhHhTiQSEeFOJBIR4U4kEhHpRNvpt8N/lu8t3ku8m3/965epcQDwrxoBAPCvFg59sfbaQPaScdpMGhQjwoxINCPCjEg51vf7SRPqSddJAGhwrxoBAPCvGgEA92vv3RRvqQdtJBGhwqxINCPCjEg0I82Pn2RxvpQ9pJB2lwaOfb+zei8+2PrvXt70P1q/696Hx7c2Xn25srO9/eXNn59ubKzrc3V3a+vbmy8+3NlZ1vb67sfHtzZefbmys7395c2fn25srOtzdXdr497tqa57u25rlrq181V3a+vbmy8+3NlZ1vb67sfHtzZefb866teb5ra57v2prnu7bmuWo7395c2W/abq7sV203VyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASD+ohXydfJ18nXydfJ9/iweZKJR5U4kElHlTiQY2L9CK9SQtpJW2kwYNKPKjEg0o82Pn2Ry/Sm7SQVtJGGjyoxINKPKjEg51vf/QivUkLaSVtpMGDRjxoxINGPNj59kcv0pu0kFbSRrrWd7Wu9d2ta32lda1v9fPOtzfvdL69uabz7c01nW9vrux8+75ra57v2lrfu7bW966t9b1ra337c1a/aq7sfHtzZefbmys7395c2fl2uWvreu/amue7tua5r7f6VXNl59ubKzvf3lzZ+fbmys63N1d2vr25svPtdtcWh/b1Vr/q+4TOt/d9Qr/8+57Pur+6tV2k51xy9QvAHy2ki0N7TOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404sFDPHiIBw/x4CEePMSDh3jwEA8e4sFDPHiIBw/x4CEePMSDh3jwEA8e4sFDPHiIBw/x4CEePMSDh3jwEA8e4sFDPHiIBw/x4CEePMSDZ5OvkK+Qr5CvkK+Qb/+9c7YGDx7iwUM8eIgHO9/+6EV6kxbSStpIgwcP8eAhHjzEg51vf/QivUkLaSVtpMGDh3jwEA8e4sHOtz96kd6khbSSNtLgwUM8eIgHD/Fg59sfvUhv0kJaSRvpWl9r7aRrffv7UP2qfy86395c2fn25srOtzdXdr69ubLz7c2VnW8/d22t711b55J3bZ1L3rV1Ltm11a+aKzvf3lzZ+fbmys639z1k59vjrq15vmtrfe/aWt+7tta3r7f6VXNl59ubKzvf3lzZ+fbmys63N1d2vj3v2prnu7bWN1vX33ldrb9+95srnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkH3cnXydfJ18nXyTfIt3iwudKJB5140IkHnXjQ45B20kEaHNr59kcv0uBBJx504kEnHux8+6OddJAGh3a+/dGLNHgwiAeDeDCIBzvf/mgnHaTBoZ1vf/QiDR4M4sEgHgziwc63P9pJB2lwaOfbH71I1/qu1rW+u3Wtb89J9avmys63N+90vr25pvPtzTWdb2+u7Hx7c2Xn25srO9/eXNn59ubKzrfvu7bWtz9n9avmys63N1d2vl3u2prnrq1+1VzZ+fbmys63N1d2vr25svPtzZWdb2+u7Hy73bXFg3dtnUvetXUu2bXVr/rerPPtfZ/Q+fa+T+h8e98n9OvS7/ms+6tHH9I4l+xXpj86oev+6p5/4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkwhXyFfIV8hXyFfJd/+e+dsDR5M4sEkHkziwc63P9pJB2lwaOfbH71IgweTeDCJB5N4sPPtj3bSQRoc2vn2Ry/S4MEkHkziwSQe7Hz7o510kAaHdr790Ys0eDCJB5N4MIkHO9/+aCcdpMGhnW9/9CJd62uthXStb38fql/170Xn25srO9/eXNn59ubKzrc3V3a+vbmy8+3NlZ1vb67sfHtzZefb/a6tc8m7ts4l+zNXv2qu7Hx7c2Xn2+secne+vbhyd769uHJ3vr24cne+vbhyd769uHJ3vr24cne+vbhyd74979qa57u25rlrq19l11a/yq6tflVcufv97cWVu9/ffvVnBg/uCzy4L/DgvsCD+wIP7gs8uC/w4L7Ag/sCD+4LPLivTb6bfDf5bvLd5CvkK+Qr5CvkK+Qr5CvkK+Qr5Cvkq+Sr5Kvkq+Sr5Kvkq+Sr5Kvkq+Rr5Gvka+Rr5Gvka+Rr5Gvka+Rr5HvI95DvId9Dvod8D/ke8j3ke8j3kK+Tr5Ovk6+Tr5Ovk6+Tr5Ovk6+Tb5BvkG+Qb5BvkG+Qb5Bv8eDVexY8uC/w4L7Ag/sCD+4rN2khraSN9CHtpIcH9wUe3As8uBd4cHe+/dFCWkkb6UPaSQ8P7gUe3As8uBd4cHe+/dFCWkkb6UPaSQ8P7gUe3As8uBd4cHe+/dFCWkkb6UPaSdf6rta1vvVb0Pn21XNS/aq4cne+vXhnd7599eevflVcszvfXly5O9++79qa57u21veurfXt2upXu2urX+3+nNWviit359ulP3P1K7lra57v2prnu7au966teb5ra577eqtfaV9v9Svtz9w82LXNg11b/cru2jqXvGuLQ+/a4tC+3upX1tdb/cr6M3e/6v+9+9WtN2khraSN9CHtpIN0Qjv5Ovk6+Tr5Ovk6+Tr5Ovk6+Tr5BvkG+Qb5BvkG+Qb5BvkG+Qb5Bvkm+Sb5Jvkm+fb7Gfq71O9nuPUhXb79Heu/x7l1jr7f337rRXrPOPf722+tpI3++0PaSQdp8l3ku8h3ke8i30W+y0gf0uS7yHeR7ybfTb59f3VrIa2k6Xo3+fb91a2DdEL3/dWtyVfIV8hXyFfIV2ieha5X6HqFrlfJt++vbk3zrDTPSvOs5Kvkq+Sr5KvkazTPRtdrdL1G12vka7S+RvNsNM9G82zke8j3kO8h30O+h+b50PUeut5D13vI99D6Os2z0zw7zbOTr5Ovk6+Tr5Ov0zw7XW/Q9QZdb5Bv0PoGzXPQPAfNc5BvkG+Qb5Jvkm/SPCddb9L1Jl0v9at+f/ujaZ4T89zvb380fPv97Y8W0kraSB/STjpI43r7/e2371qkN2khraTJd5Ev9SuhfiXUr4T6lVC/EupXQv1KNvluI31IO+kgTb5CvtSvhPqVUL8S6ldC/UqoXwn1KxHyFVpf6ldC/UqoX4mSr5Iv9SuhfiXUr4T6lVC/EupXQv1KjHyN1pf6lVC/EupXYuRr5Ev9SqhfCfUroX4l1K+E+pVQv5JDvofWl/qVUL8S6lfi5OvkS/1KqF8J9SuhfiXUr4T6lVC/kiDfoPWlfiXUr4T6lQT5BvlSvxLqV0L9SqhfCfUroX4l1K+E7q+E7q+E+pVQvxLqV0L3V0r3V0r9SqlfKfUrpX6l1K+U+pVSv7rz7dEa66vUr5T6lVK/uvPtPc4iX+pXSv1KqV8p9SulfqXUr5T61Z1vb98tpJW0kT6kyXeTL/UrpX6l1K+U+pVSv1LqV0r96s63t684aZpn6ldK/erOt/c4Sr7Ur5T6lVK/UupXSv1KqV8p9as7396+RutL/UqpXyn1qzvffo9DvtSvlPqVUr9S6ldK/UqpXyn1qzvf3r6H1pf6lVK/UupXd769x3HypX6l1K+U+pVSv1LqV0r9Sqlfdb799nVaX+pXSv1KqV91vv0eJ8iX+pVSv1LqV0r9SqlfKfUrpX51v7+9fZPWl/qVUr9S6ldKPKjEg0r9yqhfGfUro35l1K+M+pVRv7rf3x6tnXSQxjwb9SsjHrzf335r8qV+ZdSvjPqVUb8y6ldG/ep+f3v77kV6kxbSSpp8N/lSvzLqV0b9yqhfGfUro35l1K/u97e3rxhpmmfqV0b9yogH7/e335p8qV8Z9SujfmXUr4z6lVG/ut/f3r5K60v9yqhfGfUrIx68399+a/KlfmXUr4z6lVG/MupXRv2q399++x5aX+pXRv3KqF8Z8WC/v/3R5Ev9yqhfGfUro35l1K+M+lW/v/32dVpf6ldG/cqoXxnxYL+//dHkS/3KqF8Z9SujfmXUr4z6Vb+//fZNWl/qV0b9yqhfGfGgUb8yur8yur8y6leHeLDf3/7oTVrov1fSRvqQ/vLN1fqX7y8ga53QX/1q9CK9SQtpJW2kf/n+grnW/qW9dZBO6K9+NXqR3qSFtJI20of0l28/f658++iE/upXoxfpTVpIK2kjfUh/+fZz6cq3j07or341epHepIW0kjbSh/SX7zmtg3RCf/Wr0Yv0Ji2klbSRPqS/fKOv/atfjU7or341epHepIW0kjbShzT5HvI95Ovk6+Tr5Ovk6+Tr5Ovk6+Tr5OvkG+Qb5BvkG+Qb5BvkG+Qb5BvkG+Sb5Jvl23swN2khXb79/UkjfUg76SCdM07l20cv0nv++8q3j1bSRvqQdtJBmnwX+S7yXZu0kCbfRb6LfBf5LvKtfnXr6lePXqTpejf5Vr96tJE+pJ00+W7yFfIV8hXyFZpnoesVul6h6xXyrX71aJpnpXlWmmclXyVfJV8lXyVfpXlWul6l6zW6XiNfo/U1mmejeTaaZyNfI18jXyPfQ76H5vnQ9R663kPXe8j30PoemudD83xonp18nXydfJ18nXyd5tnpep2u1+l6nXyD1jdonoPmOWieg3yDfIN8g3yDfIPmOel6k6436XqpX3nS+ibNc9I8J80z9StP+MZ1kV6kN2khraSN9CEN37iCNOY5qF8F9atY5LvIl/pVUL8K6ldB/SqoXwX1q6B+FZt89yYtpJW0kSbfTb7Ur4L6VVC/CupXQf0qqF8F9asQ8pVDmuaZ+lVQvwolXyVf6ldB/SqoXwX1q6B+FdSvgvpVKPkarS/1q6B+FdSvwsjXyJf6VVC/CupXQf0qqF8F9augfhWHfA+tL/WroH4V1K/ikO8hX+pXQf0qqF8F9augfhXUr4L6VTj5Oq0v9augfhXUryLIN8iX+lVQvwrqV0H9KqhfBfWroH4VdH8VdH8V1K+C+lVQvwq6vwq6vwrqV0H9KqlfJfWrpH6V1K+S+lVe8M3rkHbSQRrznIt8F/lSv0rqV0n9KqlfJfWrpH6V1K9yke++SC/Sm7SQJt9NvtSvkvpVUr9K6ldJ/SqpXyX1qxTyFSVN80z9KqlfpZCvkC/1q6R+ldSvkvpVUr9K6ldJ/SqVfJXWl/pVUr9K6ldp5GvkS/0qqV8l9aukfpXUr5L6VVK/ykO+h9aX+lVSv0rqV3nI95Av9aukfpXUr5L6VVK/SupXSf0qnXyd1pf6VVK/SupXGeQb5Ev9KqlfJfWrpH6V1K+S+lVSv8og36T1pX6V1K+S+lUSDybxYFK/SupXSf0q0a/kQr+SC/1KLvQrua7xletS0kb6kHbSQeOQ7yLfRb6LfNGv5EK/kgv9Si70K7kW+a4gndDoV3KhX8m1yXeT7ybfTb6bfNGv5Np0vZuuV+h6hXxlk6Z5FppnoXkW8hXyFfIV8lXyVZpnpetVul6l61XyVVpfpXlWmmeleTbyNfI18jXyNfI1mmej6zW6XqPrNfI9tL6H5vnQPB+a50O+h3wP+R7yPeR7aJ6drtfpep2u18nXaX2d5tlpnp3m2cnXyTfIN8g3yDdonoOuN+h6g643yDdofYPmOWmek+Y5yTfpepOuN+l6k3yTfJN88fxKFvWrRf1qUb9auL+S1f3KWpdvtj6knXSQTujuV7depDdpIa2kyXeR7yLfRb6LfDf5bvLd5LvJd5PvJt9Nvpt8N/lu8hXyFfIV8hXyFfIV8hXyFfIV8q1+VecdUvn20Yv0l2/2d6D61aOVtJE+pJ3GCdLkW/3q/u+rXz2afI18jXyNfI18jXyNfI18D13voes95HvI95DvId9DvtWvHh2kE9rpep18q189WkgraSNNvk6+Tr5OvkG+QfMcdL1B1xt0vUG+1a8eTfMcNM9B85zkm+Sb5Jvkm+SbNM9J15t0vUnXm/CtfPvoRXqTFtLwrXz76EPaSQdpzHPl20cv0ps0+S4lbaQPaSdNvot8N/lu8t3ku4U0Xe+m6910vZt8d5CmeRaaZ6F5FvIV8hXyFfIV8hWaZ6HrFbpepeulfrWV1ldpnpXmWWmeqV9tJV8lXyVf6leb+tWmfrWpX23qV9vI12h9qV9t6leb+tU+5HvIl/rVpn61qV9t6leb+tWmfrWpX+1Dvk7rS/1qU7/a1K+2k6+TL/WrTf1qU7/a1K829atN/WpTv9pBvkHrS/1qU7/a1K92kG+QL/WrTf1qU7/a1K829atN/WpTv9pJvknrS/1KqF8J9Su54CuXkFbSRvqQdtJBGtcr1K9kke/apIW0kjbS5LvIl/qVUL8S6ldC/UqoXwn1K6F+JZt89yHtpIM0zbOQr5Av9SuhfiXUr4T6lVC/EupXQv1K6P5K6P5KqF8J9SuhfiV0fyV0fyXUr4T6lVC/EupXQv1KqF8J9Ssx8jVaX+pXQv1KqF+Jka+RL/UroX4l1K+E+pVQvxLqV0L9Sg75Hlpf6ldC/UqoX4mTr5Mv9SuhfiXUr4T6lVC/EupXQv1KgnyD1pf6lVC/EupXEuQb5Ev9SqhfCfUroX4l1K+E+pVQv5Ik36T1pX4l1K+E+pVe8NVrkd6khbSSNtKHtJMO0uS7LtKL9CYtpMl3kS/1K6V+pdSvlPqVUr9S6ldK/Uo3+W4lbaQPaSdNvpt8qV8p9SulfqXUr5T6lVK/UupXKuQrQZrmmfqVUr9S4kElHlTqV0r9SqlfKfUrpX6l1K+U+pUa+RqtL/UrpX6l1K+UeFCNfKlfKfUrpX6l1K+U+pVSv1LqV3rI99D6Ur9S6ldK/UqJB9XJl/qVUr9S6ldK/UqpXyn1K6V+pU6+QetL/UqpXyn1KyUe1CBf6ldK/UqpXyn1K6V+pdSvlPqVJvkmrS/1K6V+pdSvlHhQE75G/cqoXxn1K6N+ZdSvjPqVUb+yC752BWnMs1G/MupXRjxoi3ypXxn1K6N+ZdSvjPqVUb8y6le2yXdv0kJaSRtp8t3kS/3KqF8Z9SujfmXUr4z6lVG/MiFfOaRpnqlfGfUrIx406ldG91dG91dG/cqIB03Jl55fGfUro35l1K+M7q+s+5W2Lt9oraSN9CHtpIN0Qne/uvUivUmT7yHfQ76HfA/5HvI95Ovk6+Tr5Ovk6+Tr5Ovk6+Tr5OvkG+Qb5BvkG+Qb5BvkG+T71a+03uMklW8fndBf/Uqv/g589avRm7SQVtJG4xzS5JtB/32Ornz76EV6kxbSShq+lW8f7aSDNK638u3POIt8F/ku8l3ku4z0Ie2kgzT57ov0Ir1JC2ny3eS7yXeT7ybfTfMsdL1C1yt0vUK+oqRpnoXmWWiehXyFfJV8lXyVfJXmWel6la5X6XqVfJXWV2mejebZaJ6NfI18jXyNfI18jebZ6HqNrvfQ9R7yPbS+h+b50DwfmudDvod8D/ke8nXydZpnp+t1ul6n63XydVpfp3l2mmeneQ7yDfIN8g3yDfINmueg6w263qDrpX51ktY3aZ6T5jlpnqlfnSTfJN8kX+pXh/qVU79y6ldO/cov+PqlpI30Ie2kg8YhX+pXTv3KqV859SunfuXUr5z6lS/yXUEa8+zUr5z6lW/y3eRL/cqpXzn1K6d+5dSvnPqVU79yIV/ZpGmeqV859SsX8hXypX7l1K+c+pVTv3LqV079yqlfuZKv0vpSv3LqV079yo18jXypXzn1K6d+5dSvnPqVU79y6ldu5HtofalfOfUrp37lh3wP+VK/cupXTv3KqV859SunfuXUr9zJ12l9qV859SunfuVOvk6+1K+c+pVTv3LqV079yqlfOfUrp/srp/srp37l1K+c+pXT/ZXT/ZVTv3LqV079yqlfOfUrp34V1K/igm9cm7SQVtJG+tA4TjpIky/1q6B+FdSvgvpVUL+KRb7rkHbSQRrzHJt8N/lSvwrqV0H9KqhfBfWroH4V1K9ik69cpGmeqV8F9asQ8hXypX4V1K+C+lVQvwrqV0H9KqhfhZKv0vpSvwrqV0H9KpR8lXypXwX1q6B+FdSvgvpVUL8K6ldh5Gu0vtSvgvpVUL+KQ76HfKlfBfWroH4V1K+C+lVQvwrqV+Hk67S+1K+C+lVQvwon3/9/E3eUY8lxnGF0L3r2Q2dEZGaE92IIkiwbBAhRoCUDhsG9i113uu95+0kO5lNlUgdVRGMuXbxqvGq8arxqvGq8arzqptvcL141XjVeNd+Dzfdg41XjVeNV41XjVeNV41XPuzsfH+zFDnay39352OzDvuxmv8958GrwavBqFt1V7M0+7Mumu+ji1eDV4NXg1eDV4NXg1QTdaDbnjFeDV8P34CRdvBq8GrwavBq8GrwavJqiW9wvXg1eDV4N34NTdPFq8GrwavBq8GrwavBqNt3N/eLV4NXg1fA9OIcuXg1eDV4NXg1eDV4NXs2he7lfvBq8Grwavgfn0sWrwavBq8GrwavBq8GrabrN/eLV4NXg1fA9OHg1vF8N71eDV8P34Axd/vvV4NXg1eDVvN+v6uPlVb72Zzd//P1gJ7vYm33Yl93see/Hq69Nd9FddBfdRXfRXXQX3UU36AbdoBt0g+7jVdZrP9157ctu9rz349XXXuxgJ7vYm/3Zff7c4Hp+vv17N3ve+/Hqay92sJNd7M3+7J792pfd7Hnvx6uvvdjBTnaxN/uze/u1L7vZ896PV197sYOd7GJv9me3f+zL/uzO6/8vj1c/9uPV117sYCe72Jt92JdN99Jtuk236Tbdptt0m27TbbpNd+gO3aE7dIfu0B26Q3fozrv7/Hz7917sp7tfO9nFfrrntQ/7sps97/149eP3ebz62nQfr75+fbHpLrqL7qK76AbdoBt0g+cNnjfoBt2gG3SD7uPV117sYPO8Sffx6msf9mU3m27RLbpFt+gW51w8b/G8xfMW3cerH3tzzptz3pzzprvpbrqb7qa7OefN8x6e9/C8h+7hfg/nfDjnwzkfuofuoXvpXrqXc7487+V5L8976V7u93LOl3NuzrnpNt2m23SbbnPOzfM2z9s879Ad7nc45+Gch3MeukN36A7deXfj44O92MFO9rsbH5t92JfdbLqL7qK76OJV4FXgVeBV4FUsuut9v4FXgVeBVxF0gy5eBV4FXgVeBV4FXgVeRdLNZHPOeBV4FUk36eJV4FXgVeBV4FXgVeBVFN3ifvEq8CrwKjbdTRevAq8CrwKvAq8CrwKv4tA93C9eBV4FXsWhe+jiVeBV4FXgVeBV4FXgVVy6l/vFq8CrwKu4dJsuXgVeBV4FXgVeBV4FXkXTbe4XrwKvAq9i6A5dvAq8CrwKvAq8SrxKvErer5L3q8SrxKvEq+T9Knm/SrxKvEq8SrxKvEq8SrzKRXdddrPf55x4lUE36OJV4lXiVeJV4lXiVeJVJt1cbM4ZrxKvMukmXbxKvEq8SrxKvEq8SrzKolvcL14lXiVeZdHddPEq8SrxKvEq8SrxKvEqN93N/eJV4lXiVR66hy5eJV4lXiVeJV4lXiVe5aV7uV+8SrxKvMpL99LFq8SrxKvEq8SrxKvEq2y6zf3iVeJV4lUO3aGLV4lXiVeJV4lXiVeJV/Xx7tbHYgc72cXe/D6HfdnNpotXhVeFV4VXteiuzT7sy2423aCLV4VXhVeFV4VXhVeFVxV0432/hVeFV4VXxfdgJV28KrwqvCq8KrwqvCq8qqJb3C9eFV4VXhXfg1V08arwqvCq8KrwqvCq8Ko23c394lXhVeFV8T1Yhy5eFV4VXhVeFV4VXhVe1aV7uV+8KrwqvCq+B+vSxavCq8KrwqvCq8Krwqtqus394lXhVeFV8T1YQxevCq8KrwqvCq8KrwqvaujO+343Xm282ni1+R7ceLV5v9q8X2282nwP7g+6/PerjVcbrzZebd6v9surfu3fu7//j33ty272vPenV997sYOd7GJvNt2gG3SDbtJNukk36SbdpJt0k27STbpFt+gW3aJbdItu0S26Rbfo7qdbr73YwX66r38HdrE3+7Avu/l95r0P3bPev/4Em+6he+geuofuoXvoXrqX570876V76V66l+6le5s9790fbJ636Xayi73Zh0236TbdoTt0h3Mennd43uF5h+5cNuc873N+fr79e7+7z8+3f+9kF3uzD/uym/1+3ufn27+6a7GDnexi0110F91Fd9GNDzbPGzxv8LxBNzb7sC+72XSTbtJNukk3OefkeZPnTZ436Sb3W5xzcc7FORfdolt0i27RLc65eN7N826eF6/O5n4357w5580549XZdDfdQxevDl4dvDp4dfDqHLqH+8Wrg1cHr86le+ni1cGrg1cHrw5eHbw6eHWabnO/eHXw6uDVabpNF68OXh28Onh18Org1cGrM3SH+8Wrg1cHr868u/fjg73YwU52sTf7sC/73b0f7/u9eHXx6uLVXXQXXby6eHXx6uLVxauLVxevbtCNZBd7sw+bbtDFq4tXF68uXl28unh18eom3bxszhmvLl7dolt08eri1cWri1cXry5eXby6vF9d3q8uXl28unh1eb+6vF9dvLp4dfHq4tXFq4tXF6/uoXu4X7y6eHXx6h66ly5eXby6eHXx6uLVxauLV/fSvdwvXl28unh1m27TxauLVxevLl5dvLp4dfHqDt3hfvHq4tXFqzt0hy5eNV41XjVeNV41XjVe9ce72x+X3ez3OTde9aK76OJV41XjVeNV41XjVeNVB91Y7GAnu9h0gy5eNV41XjVeNV41XjVeddLNzeac8arxqpNu0cWrxqvGq8arxqvGq8arLrrF/eJV41XjVfM92HwPNl41XjVeNV41XjVeNV71oXu4X7xqvGq8ar4H+9DFq8arxqvGq8arxqvGq750L/eLV41XjVfN92A3XbxqvGq8arxqvGq8arzqoTvcL141XjVeNd+DPXTxqvGq8WrwavBq8Grwaj7e3fnY7MO+7GbTXXTxavBq8GrwavBq8Grwahbd9b7fwavBq8Gr4Xtwgi5eDV4NXg1eDV4NXg1eTdLNZHPOeDV4NXwPTtLFq8GrwavBq8GrwavBqym6xf3i1eDV4NXwPTh4NbxfDe9Xg1fD9+Bsuvz3q8GrwavBq+H9al5e3df+7K712pt92Jfd7Hnvx6uvvdjBTjbdS/fSvXQv3Uu36Tbdptt0m27TbbpNt+k23aE7dIfu0B26Q3foDt3Hq5WvPV97Pz/f/r2fbr12sJNd7M0+/D6X3ex5//rHq69Nd9FddBfdRXfRXXQX3cXzBs8bdINu0A26Qffx6mtfdrN53qT7ePW1g53sYtNNukk36Sbd4pyL5y2et3jeovt49bU55+Kci3Muupvuprvpbrqbc9487+Z5N8+76W7u93DOh3M+nPOhe+geuofuoXs458PzXp738ryX7uV+L+d8OefLOV+6l+6l23SbbnPOzfM2z9s8b9Nt7rc55+ach3MeukN36A7doTuc8/C8w/PO+3kXXq2PxQ52sou9+X0O+7KbTRevFl4tvFp4tRbdtdmHfdnNpht08Wrh1cKrhVcLrxZeLbxaQTfe97vwauHVwquVdJMuXi28Wni18Grh1cKrhVer6Bb3i1cLrxZeraJbdPFq4dXCq4VXC68WXi28Wpvu5n7xauHVwqt16B66eLXwauHVwquFVwuvFl6tS/dyv3i18Grh1bp0L128Wni18Grh1cKrhVcLr1bTbe4XrxZeLbxaTXfo4tXCq4VXC68WXi28Wni1hi7vV4FXgVeBV8H7VfB+FXgVeBV4FXgVeBV4FXgVi+5KdrE3+7DpLrp4FXgVeBV4FXgVeBV4FUE3LrvZnDNeRdJNungVeBV4FXgVeBV4FXgVRbe4X7wKvAq8iqJbdPEq8CrwKvAq8CrwKvAqNt3N/eJV4FXgVWy6hy5eBV4FXgVeBV4FXgVexaF7uF+8CrwKvIpL99LFq8CrwKvAq8CrwKvAq2i6zf3iVeBV4FU03aaLV4FXgVeBV4FXgVeBVzF0h/vFq8CrxKvkezD5Hky8SrxKvEq8SrxKvEq8ykV3LXawk11suosuXiVeJV4lXiVeJV4lXmXQjc0+7MtuNt2ki1eJV4lXiVeJV4lXiVeZdJP7xavEq8Sr5Hswiy5eJV4lXiVeJV4lXiVe5aa7uV+8SrxKvEq+B3PTxavEq8SrxKvEq8SrxKs8dA/3i1eJV4lXyfdgXrp4lXiVeJV4lXiVeJV4lU23uV+8SrxKvEq+B7Pp4lXiVeJV4lXiVeJV4lUO3eF+8SrxKvEq+R4svCrer4r3q8Kr4nuwPjb7sC+/vtl0eb+ql1fntT+79ePvJ7vYm33Yl93see/Hq6+92HSDbtANukE36AbdoJt0k27STbpJN+k+XtV97c/u8+cn7Ofn27/3vPfj1dde7GAnu9ibfdif3efPT9jPz7d/73nvx6uvvdjBTnaxN/uwP7vPn5+wn59v/97z3o9XX3uxg53sYm/2YX92nz//eT8/3/69570fr772Ygc72cXe7MP+vXvyde+fXn3vee9Pr773Ygc72cXe7MOm23Sb7tAdukN3nu7r39VPr069/v359Op7H/ZlN3u+9/Pz7d97sYOd7M/u3q+92Yd92c2e9/706nsvdrCT/dk9/dqbfdiX3ex570+vvvdiBzvZn91er73Zh33ZzZ73/vTqey92sPPZv/3bH/73T7/+9Kc///zX//nDv///73/5X//821/+8dMvf/vxl//4v79//ZM///rTzz//9N9//Puvv/zlr//5z1//+seff/nL889++4/f/gU=",
147
- "file_map": {
148
- "18": {
149
- "source": "pub mod bn254;\nuse crate::{runtime::is_unconstrained, static_assert};\nuse bn254::lt as bn254_lt;\n\nimpl Field {\n /// Asserts that `self` can be represented in `bit_size` bits.\n ///\n /// # Failures\n /// Causes a constraint failure for `Field` values exceeding `2^{bit_size}`.\n // docs:start:assert_max_bit_size\n pub fn assert_max_bit_size<let BIT_SIZE: u32>(self) {\n // docs:end:assert_max_bit_size\n static_assert(\n BIT_SIZE < modulus_num_bits() as u32,\n \"BIT_SIZE must be less than modulus_num_bits\",\n );\n __assert_max_bit_size(self, BIT_SIZE);\n }\n\n /// Decomposes `self` into its little endian bit decomposition as a `[u1; N]` array.\n /// This array will be zero padded should not all bits be necessary to represent `self`.\n ///\n /// # Failures\n /// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting array will not\n /// be able to represent the original `Field`.\n ///\n /// # Safety\n /// The bit decomposition returned is canonical and is guaranteed to not overflow the modulus.\n // docs:start:to_le_bits\n pub fn to_le_bits<let N: u32>(self: Self) -> [u1; N] {\n // docs:end:to_le_bits\n let bits = __to_le_bits(self);\n\n if !is_unconstrained() {\n // Ensure that the byte decomposition does not overflow the modulus\n let p = modulus_le_bits();\n assert(bits.len() <= p.len());\n let mut ok = bits.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bits[N - 1 - i] != p[N - 1 - i]) {\n assert(p[N - 1 - i] == 1);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bits\n }\n\n /// Decomposes `self` into its big endian bit decomposition as a `[u1; N]` array.\n /// This array will be zero padded should not all bits be necessary to represent `self`.\n ///\n /// # Failures\n /// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting array will not\n /// be able to represent the original `Field`.\n ///\n /// # Safety\n /// The bit decomposition returned is canonical and is guaranteed to not overflow the modulus.\n // docs:start:to_be_bits\n pub fn to_be_bits<let N: u32>(self: Self) -> [u1; N] {\n // docs:end:to_be_bits\n let bits = __to_be_bits(self);\n\n if !is_unconstrained() {\n // Ensure that the decomposition does not overflow the modulus\n let p = modulus_be_bits();\n assert(bits.len() <= p.len());\n let mut ok = bits.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bits[i] != p[i]) {\n assert(p[i] == 1);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bits\n }\n\n /// Decomposes `self` into its little endian byte decomposition as a `[u8;N]` array\n /// This array will be zero padded should not all bytes be necessary to represent `self`.\n ///\n /// # Failures\n /// The length N of the array must be big enough to contain all the bytes of the 'self',\n /// and no more than the number of bytes required to represent the field modulus\n ///\n /// # Safety\n /// The result is ensured to be the canonical decomposition of the field element\n // docs:start:to_le_bytes\n pub fn to_le_bytes<let N: u32>(self: Self) -> [u8; N] {\n // docs:end:to_le_bytes\n static_assert(\n N <= modulus_le_bytes().len(),\n \"N must be less than or equal to modulus_le_bytes().len()\",\n );\n // Compute the byte decomposition\n let bytes = self.to_le_radix(256);\n\n if !is_unconstrained() {\n // Ensure that the byte decomposition does not overflow the modulus\n let p = modulus_le_bytes();\n assert(bytes.len() <= p.len());\n let mut ok = bytes.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bytes[N - 1 - i] != p[N - 1 - i]) {\n assert(bytes[N - 1 - i] < p[N - 1 - i]);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bytes\n }\n\n /// Decomposes `self` into its big endian byte decomposition as a `[u8;N]` array of length required to represent the field modulus\n /// This array will be zero padded should not all bytes be necessary to represent `self`.\n ///\n /// # Failures\n /// The length N of the array must be big enough to contain all the bytes of the 'self',\n /// and no more than the number of bytes required to represent the field modulus\n ///\n /// # Safety\n /// The result is ensured to be the canonical decomposition of the field element\n // docs:start:to_be_bytes\n pub fn to_be_bytes<let N: u32>(self: Self) -> [u8; N] {\n // docs:end:to_be_bytes\n static_assert(\n N <= modulus_le_bytes().len(),\n \"N must be less than or equal to modulus_le_bytes().len()\",\n );\n // Compute the byte decomposition\n let bytes = self.to_be_radix(256);\n\n if !is_unconstrained() {\n // Ensure that the byte decomposition does not overflow the modulus\n let p = modulus_be_bytes();\n assert(bytes.len() <= p.len());\n let mut ok = bytes.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bytes[i] != p[i]) {\n assert(bytes[i] < p[i]);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bytes\n }\n\n fn to_le_radix<let N: u32>(self: Self, radix: u32) -> [u8; N] {\n // Brillig does not need an immediate radix\n if !crate::runtime::is_unconstrained() {\n static_assert(1 < radix, \"radix must be greater than 1\");\n static_assert(radix <= 256, \"radix must be less than or equal to 256\");\n static_assert(radix & (radix - 1) == 0, \"radix must be a power of 2\");\n }\n __to_le_radix(self, radix)\n }\n\n fn to_be_radix<let N: u32>(self: Self, radix: u32) -> [u8; N] {\n // Brillig does not need an immediate radix\n if !crate::runtime::is_unconstrained() {\n static_assert(1 < radix, \"radix must be greater than 1\");\n static_assert(radix <= 256, \"radix must be less than or equal to 256\");\n static_assert(radix & (radix - 1) == 0, \"radix must be a power of 2\");\n }\n __to_be_radix(self, radix)\n }\n\n // Returns self to the power of the given exponent value.\n // Caution: we assume the exponent fits into 32 bits\n // using a bigger bit size impacts negatively the performance and should be done only if the exponent does not fit in 32 bits\n pub fn pow_32(self, exponent: Field) -> Field {\n let mut r: Field = 1;\n let b: [u1; 32] = exponent.to_le_bits();\n\n for i in 1..33 {\n r *= r;\n r = (b[32 - i] as Field) * (r * self) + (1 - b[32 - i] as Field) * r;\n }\n r\n }\n\n // Parity of (prime) Field element, i.e. sgn0(x mod p) = 0 if x `elem` {0, ..., p-1} is even, otherwise sgn0(x mod p) = 1.\n pub fn sgn0(self) -> u1 {\n self as u1\n }\n\n pub fn lt(self, another: Field) -> bool {\n if crate::compat::is_bn254() {\n bn254_lt(self, another)\n } else {\n lt_fallback(self, another)\n }\n }\n\n /// Convert a little endian byte array to a field element.\n /// If the provided byte array overflows the field modulus then the Field will silently wrap around.\n pub fn from_le_bytes<let N: u32>(bytes: [u8; N]) -> Field {\n static_assert(\n N <= modulus_le_bytes().len(),\n \"N must be less than or equal to modulus_le_bytes().len()\",\n );\n let mut v = 1;\n let mut result = 0;\n\n for i in 0..N {\n result += (bytes[i] as Field) * v;\n v = v * 256;\n }\n result\n }\n\n /// Convert a big endian byte array to a field element.\n /// If the provided byte array overflows the field modulus then the Field will silently wrap around.\n pub fn from_be_bytes<let N: u32>(bytes: [u8; N]) -> Field {\n let mut v = 1;\n let mut result = 0;\n\n for i in 0..N {\n result += (bytes[N - 1 - i] as Field) * v;\n v = v * 256;\n }\n result\n }\n}\n\n#[builtin(apply_range_constraint)]\nfn __assert_max_bit_size(value: Field, bit_size: u32) {}\n\n// `_radix` must be less than 256\n#[builtin(to_le_radix)]\nfn __to_le_radix<let N: u32>(value: Field, radix: u32) -> [u8; N] {}\n\n// `_radix` must be less than 256\n#[builtin(to_be_radix)]\nfn __to_be_radix<let N: u32>(value: Field, radix: u32) -> [u8; N] {}\n\n/// Decomposes `self` into its little endian bit decomposition as a `[u1; N]` array.\n/// This array will be zero padded should not all bits be necessary to represent `self`.\n///\n/// # Failures\n/// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting array will not\n/// be able to represent the original `Field`.\n///\n/// # Safety\n/// Values of `N` equal to or greater than the number of bits necessary to represent the `Field` modulus\n/// (e.g. 254 for the BN254 field) allow for multiple bit decompositions. This is due to how the `Field` will\n/// wrap around due to overflow when verifying the decomposition.\n#[builtin(to_le_bits)]\nfn __to_le_bits<let N: u32>(value: Field) -> [u1; N] {}\n\n/// Decomposes `self` into its big endian bit decomposition as a `[u1; N]` array.\n/// This array will be zero padded should not all bits be necessary to represent `self`.\n///\n/// # Failures\n/// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting array will not\n/// be able to represent the original `Field`.\n///\n/// # Safety\n/// Values of `N` equal to or greater than the number of bits necessary to represent the `Field` modulus\n/// (e.g. 254 for the BN254 field) allow for multiple bit decompositions. This is due to how the `Field` will\n/// wrap around due to overflow when verifying the decomposition.\n#[builtin(to_be_bits)]\nfn __to_be_bits<let N: u32>(value: Field) -> [u1; N] {}\n\n#[builtin(modulus_num_bits)]\npub comptime fn modulus_num_bits() -> u64 {}\n\n#[builtin(modulus_be_bits)]\npub comptime fn modulus_be_bits() -> [u1] {}\n\n#[builtin(modulus_le_bits)]\npub comptime fn modulus_le_bits() -> [u1] {}\n\n#[builtin(modulus_be_bytes)]\npub comptime fn modulus_be_bytes() -> [u8] {}\n\n#[builtin(modulus_le_bytes)]\npub comptime fn modulus_le_bytes() -> [u8] {}\n\n/// An unconstrained only built in to efficiently compare fields.\n#[builtin(field_less_than)]\nunconstrained fn __field_less_than(x: Field, y: Field) -> bool {}\n\npub(crate) unconstrained fn field_less_than(x: Field, y: Field) -> bool {\n __field_less_than(x, y)\n}\n\n// Convert a 32 byte array to a field element by modding\npub fn bytes32_to_field(bytes32: [u8; 32]) -> Field {\n // Convert it to a field element\n let mut v = 1;\n let mut high = 0 as Field;\n let mut low = 0 as Field;\n\n for i in 0..16 {\n high = high + (bytes32[15 - i] as Field) * v;\n low = low + (bytes32[16 + 15 - i] as Field) * v;\n v = v * 256;\n }\n // Abuse that a % p + b % p = (a + b) % p and that low < p\n low + high * v\n}\n\nfn lt_fallback(x: Field, y: Field) -> bool {\n if is_unconstrained() {\n // Safety: unconstrained context\n unsafe {\n field_less_than(x, y)\n }\n } else {\n let x_bytes: [u8; 32] = x.to_le_bytes();\n let y_bytes: [u8; 32] = y.to_le_bytes();\n let mut x_is_lt = false;\n let mut done = false;\n for i in 0..32 {\n if (!done) {\n let x_byte = x_bytes[32 - 1 - i] as u8;\n let y_byte = y_bytes[32 - 1 - i] as u8;\n let bytes_match = x_byte == y_byte;\n if !bytes_match {\n x_is_lt = x_byte < y_byte;\n done = true;\n }\n }\n }\n x_is_lt\n }\n}\n\nmod tests {\n use crate::{panic::panic, runtime, static_assert};\n use super::{\n field_less_than, modulus_be_bits, modulus_be_bytes, modulus_le_bits, modulus_le_bytes,\n };\n\n #[test]\n // docs:start:to_be_bits_example\n fn test_to_be_bits() {\n let field = 2;\n let bits: [u1; 8] = field.to_be_bits();\n assert_eq(bits, [0, 0, 0, 0, 0, 0, 1, 0]);\n }\n // docs:end:to_be_bits_example\n\n #[test]\n // docs:start:to_le_bits_example\n fn test_to_le_bits() {\n let field = 2;\n let bits: [u1; 8] = field.to_le_bits();\n assert_eq(bits, [0, 1, 0, 0, 0, 0, 0, 0]);\n }\n // docs:end:to_le_bits_example\n\n #[test]\n // docs:start:to_be_bytes_example\n fn test_to_be_bytes() {\n let field = 2;\n let bytes: [u8; 8] = field.to_be_bytes();\n assert_eq(bytes, [0, 0, 0, 0, 0, 0, 0, 2]);\n assert_eq(Field::from_be_bytes::<8>(bytes), field);\n }\n // docs:end:to_be_bytes_example\n\n #[test]\n // docs:start:to_le_bytes_example\n fn test_to_le_bytes() {\n let field = 2;\n let bytes: [u8; 8] = field.to_le_bytes();\n assert_eq(bytes, [2, 0, 0, 0, 0, 0, 0, 0]);\n assert_eq(Field::from_le_bytes::<8>(bytes), field);\n }\n // docs:end:to_le_bytes_example\n\n #[test]\n // docs:start:to_be_radix_example\n fn test_to_be_radix() {\n // 259, in base 256, big endian, is [1, 3].\n // i.e. 3 * 256^0 + 1 * 256^1\n let field = 259;\n\n // The radix (in this example, 256) must be a power of 2.\n // The length of the returned byte array can be specified to be\n // >= the amount of space needed.\n let bytes: [u8; 8] = field.to_be_radix(256);\n assert_eq(bytes, [0, 0, 0, 0, 0, 0, 1, 3]);\n assert_eq(Field::from_be_bytes::<8>(bytes), field);\n }\n // docs:end:to_be_radix_example\n\n #[test]\n // docs:start:to_le_radix_example\n fn test_to_le_radix() {\n // 259, in base 256, little endian, is [3, 1].\n // i.e. 3 * 256^0 + 1 * 256^1\n let field = 259;\n\n // The radix (in this example, 256) must be a power of 2.\n // The length of the returned byte array can be specified to be\n // >= the amount of space needed.\n let bytes: [u8; 8] = field.to_le_radix(256);\n assert_eq(bytes, [3, 1, 0, 0, 0, 0, 0, 0]);\n assert_eq(Field::from_le_bytes::<8>(bytes), field);\n }\n // docs:end:to_le_radix_example\n\n #[test(should_fail_with = \"radix must be greater than 1\")]\n fn test_to_le_radix_1() {\n // this test should only fail in constrained mode\n if !runtime::is_unconstrained() {\n let field = 2;\n let _: [u8; 8] = field.to_le_radix(1);\n } else {\n panic(\"radix must be greater than 1\");\n }\n }\n\n // Updated test to account for Brillig restriction that radix must be greater than 2\n #[test(should_fail_with = \"radix must be greater than 1\")]\n fn test_to_le_radix_brillig_1() {\n // this test should only fail in constrained mode\n if !runtime::is_unconstrained() {\n let field = 1;\n let _: [u8; 8] = field.to_le_radix(1);\n } else {\n panic(\"radix must be greater than 1\");\n }\n }\n\n #[test(should_fail_with = \"radix must be a power of 2\")]\n fn test_to_le_radix_3() {\n // this test should only fail in constrained mode\n if !runtime::is_unconstrained() {\n let field = 2;\n let _: [u8; 8] = field.to_le_radix(3);\n } else {\n panic(\"radix must be a power of 2\");\n }\n }\n\n #[test]\n fn test_to_le_radix_brillig_3() {\n // this test should only fail in constrained mode\n if runtime::is_unconstrained() {\n let field = 1;\n let out: [u8; 8] = field.to_le_radix(3);\n let mut expected = [0; 8];\n expected[0] = 1;\n assert(out == expected, \"unexpected result\");\n }\n }\n\n #[test(should_fail_with = \"radix must be less than or equal to 256\")]\n fn test_to_le_radix_512() {\n // this test should only fail in constrained mode\n if !runtime::is_unconstrained() {\n let field = 2;\n let _: [u8; 8] = field.to_le_radix(512);\n } else {\n panic(\"radix must be less than or equal to 256\")\n }\n }\n\n #[test(should_fail_with = \"Field failed to decompose into specified 16 limbs\")]\n unconstrained fn not_enough_limbs_brillig() {\n let _: [u8; 16] = 0x100000000000000000000000000000000.to_le_bytes();\n }\n\n #[test(should_fail_with = \"Field failed to decompose into specified 16 limbs\")]\n fn not_enough_limbs() {\n let _: [u8; 16] = 0x100000000000000000000000000000000.to_le_bytes();\n }\n\n #[test]\n unconstrained fn test_field_less_than() {\n assert(field_less_than(0, 1));\n assert(field_less_than(0, 0x100));\n assert(field_less_than(0x100, 0 - 1));\n assert(!field_less_than(0 - 1, 0));\n }\n\n #[test]\n unconstrained fn test_large_field_values_unconstrained() {\n let large_field = 0xffffffffffffffff;\n\n let bits: [u1; 64] = large_field.to_le_bits();\n assert_eq(bits[0], 1);\n\n let bytes: [u8; 8] = large_field.to_le_bytes();\n assert_eq(Field::from_le_bytes::<8>(bytes), large_field);\n\n let radix_bytes: [u8; 8] = large_field.to_le_radix(256);\n assert_eq(Field::from_le_bytes::<8>(radix_bytes), large_field);\n }\n\n #[test]\n fn test_large_field_values() {\n let large_val = 0xffffffffffffffff;\n\n let bits: [u1; 64] = large_val.to_le_bits();\n assert_eq(bits[0], 1);\n\n let bytes: [u8; 8] = large_val.to_le_bytes();\n assert_eq(Field::from_le_bytes::<8>(bytes), large_val);\n\n let radix_bytes: [u8; 8] = large_val.to_le_radix(256);\n assert_eq(Field::from_le_bytes::<8>(radix_bytes), large_val);\n }\n\n #[test]\n fn test_decomposition_edge_cases() {\n let zero_bits: [u1; 8] = 0.to_le_bits();\n assert_eq(zero_bits, [0; 8]);\n\n let zero_bytes: [u8; 8] = 0.to_le_bytes();\n assert_eq(zero_bytes, [0; 8]);\n\n let one_bits: [u1; 8] = 1.to_le_bits();\n let expected: [u1; 8] = [1, 0, 0, 0, 0, 0, 0, 0];\n assert_eq(one_bits, expected);\n\n let pow2_bits: [u1; 8] = 4.to_le_bits();\n let expected: [u1; 8] = [0, 0, 1, 0, 0, 0, 0, 0];\n assert_eq(pow2_bits, expected);\n }\n\n #[test]\n fn test_pow_32() {\n assert_eq(2.pow_32(3), 8);\n assert_eq(3.pow_32(2), 9);\n assert_eq(5.pow_32(0), 1);\n assert_eq(7.pow_32(1), 7);\n\n assert_eq(2.pow_32(10), 1024);\n\n assert_eq(0.pow_32(5), 0);\n assert_eq(0.pow_32(0), 1);\n\n assert_eq(1.pow_32(100), 1);\n }\n\n #[test]\n fn test_sgn0() {\n assert_eq(0.sgn0(), 0);\n assert_eq(2.sgn0(), 0);\n assert_eq(4.sgn0(), 0);\n assert_eq(100.sgn0(), 0);\n\n assert_eq(1.sgn0(), 1);\n assert_eq(3.sgn0(), 1);\n assert_eq(5.sgn0(), 1);\n assert_eq(101.sgn0(), 1);\n }\n\n #[test(should_fail_with = \"Field failed to decompose into specified 8 limbs\")]\n fn test_bit_decomposition_overflow() {\n // 8 bits can't represent large field values\n let large_val = 0x1000000000000000;\n let _: [u1; 8] = large_val.to_le_bits();\n }\n\n #[test(should_fail_with = \"Field failed to decompose into specified 4 limbs\")]\n fn test_byte_decomposition_overflow() {\n // 4 bytes can't represent large field values\n let large_val = 0x1000000000000000;\n let _: [u8; 4] = large_val.to_le_bytes();\n }\n\n #[test]\n fn test_to_from_be_bytes_bn254_edge_cases() {\n if crate::compat::is_bn254() {\n // checking that decrementing this byte produces the expected 32 BE bytes for (modulus - 1)\n let mut p_minus_1_bytes: [u8; 32] = modulus_be_bytes().as_array();\n assert(p_minus_1_bytes[32 - 1] > 0);\n p_minus_1_bytes[32 - 1] -= 1;\n\n let p_minus_1 = Field::from_be_bytes::<32>(p_minus_1_bytes);\n assert_eq(p_minus_1 + 1, 0);\n\n // checking that converting (modulus - 1) from and then to 32 BE bytes produces the same bytes\n let p_minus_1_converted_bytes: [u8; 32] = p_minus_1.to_be_bytes();\n assert_eq(p_minus_1_converted_bytes, p_minus_1_bytes);\n\n // checking that incrementing this byte produces 32 BE bytes for (modulus + 1)\n let mut p_plus_1_bytes: [u8; 32] = modulus_be_bytes().as_array();\n assert(p_plus_1_bytes[32 - 1] < 255);\n p_plus_1_bytes[32 - 1] += 1;\n\n let p_plus_1 = Field::from_be_bytes::<32>(p_plus_1_bytes);\n assert_eq(p_plus_1, 1);\n\n // checking that converting p_plus_1 to 32 BE bytes produces the same\n // byte set to 1 as p_plus_1_bytes and otherwise zeroes\n let mut p_plus_1_converted_bytes: [u8; 32] = p_plus_1.to_be_bytes();\n assert_eq(p_plus_1_converted_bytes[32 - 1], 1);\n p_plus_1_converted_bytes[32 - 1] = 0;\n assert_eq(p_plus_1_converted_bytes, [0; 32]);\n\n // checking that Field::from_be_bytes::<32> on the Field modulus produces 0\n assert_eq(modulus_be_bytes().len(), 32);\n let p = Field::from_be_bytes::<32>(modulus_be_bytes().as_array());\n assert_eq(p, 0);\n\n // checking that converting 0 to 32 BE bytes produces 32 zeroes\n let p_bytes: [u8; 32] = 0.to_be_bytes();\n assert_eq(p_bytes, [0; 32]);\n }\n }\n\n #[test]\n fn test_to_from_le_bytes_bn254_edge_cases() {\n if crate::compat::is_bn254() {\n // checking that decrementing this byte produces the expected 32 LE bytes for (modulus - 1)\n let mut p_minus_1_bytes: [u8; 32] = modulus_le_bytes().as_array();\n assert(p_minus_1_bytes[0] > 0);\n p_minus_1_bytes[0] -= 1;\n\n let p_minus_1 = Field::from_le_bytes::<32>(p_minus_1_bytes);\n assert_eq(p_minus_1 + 1, 0);\n\n // checking that converting (modulus - 1) from and then to 32 BE bytes produces the same bytes\n let p_minus_1_converted_bytes: [u8; 32] = p_minus_1.to_le_bytes();\n assert_eq(p_minus_1_converted_bytes, p_minus_1_bytes);\n\n // checking that incrementing this byte produces 32 LE bytes for (modulus + 1)\n let mut p_plus_1_bytes: [u8; 32] = modulus_le_bytes().as_array();\n assert(p_plus_1_bytes[0] < 255);\n p_plus_1_bytes[0] += 1;\n\n let p_plus_1 = Field::from_le_bytes::<32>(p_plus_1_bytes);\n assert_eq(p_plus_1, 1);\n\n // checking that converting p_plus_1 to 32 LE bytes produces the same\n // byte set to 1 as p_plus_1_bytes and otherwise zeroes\n let mut p_plus_1_converted_bytes: [u8; 32] = p_plus_1.to_le_bytes();\n assert_eq(p_plus_1_converted_bytes[0], 1);\n p_plus_1_converted_bytes[0] = 0;\n assert_eq(p_plus_1_converted_bytes, [0; 32]);\n\n // checking that Field::from_le_bytes::<32> on the Field modulus produces 0\n assert_eq(modulus_le_bytes().len(), 32);\n let p = Field::from_le_bytes::<32>(modulus_le_bytes().as_array());\n assert_eq(p, 0);\n\n // checking that converting 0 to 32 LE bytes produces 32 zeroes\n let p_bytes: [u8; 32] = 0.to_le_bytes();\n assert_eq(p_bytes, [0; 32]);\n }\n }\n\n /// Convert a little endian bit array to a field element.\n /// If the provided bit array overflows the field modulus then the Field will silently wrap around.\n fn from_le_bits<let N: u32>(bits: [u1; N]) -> Field {\n static_assert(\n N <= modulus_le_bits().len(),\n \"N must be less than or equal to modulus_le_bits().len()\",\n );\n let mut v = 1;\n let mut result = 0;\n\n for i in 0..N {\n result += (bits[i] as Field) * v;\n v = v * 2;\n }\n result\n }\n\n /// Convert a big endian bit array to a field element.\n /// If the provided bit array overflows the field modulus then the Field will silently wrap around.\n fn from_be_bits<let N: u32>(bits: [u1; N]) -> Field {\n let mut v = 1;\n let mut result = 0;\n\n for i in 0..N {\n result += (bits[N - 1 - i] as Field) * v;\n v = v * 2;\n }\n result\n }\n\n #[test]\n fn test_to_from_be_bits_bn254_edge_cases() {\n if crate::compat::is_bn254() {\n // checking that decrementing this bit produces the expected 254 BE bits for (modulus - 1)\n let mut p_minus_1_bits: [u1; 254] = modulus_be_bits().as_array();\n assert(p_minus_1_bits[254 - 1] > 0);\n p_minus_1_bits[254 - 1] -= 1;\n\n let p_minus_1 = from_be_bits::<254>(p_minus_1_bits);\n assert_eq(p_minus_1 + 1, 0);\n\n // checking that converting (modulus - 1) from and then to 254 BE bits produces the same bits\n let p_minus_1_converted_bits: [u1; 254] = p_minus_1.to_be_bits();\n assert_eq(p_minus_1_converted_bits, p_minus_1_bits);\n\n // checking that incrementing this bit produces 254 BE bits for (modulus + 4)\n let mut p_plus_4_bits: [u1; 254] = modulus_be_bits().as_array();\n assert(p_plus_4_bits[254 - 3] < 1);\n p_plus_4_bits[254 - 3] += 1;\n\n let p_plus_4 = from_be_bits::<254>(p_plus_4_bits);\n assert_eq(p_plus_4, 4);\n\n // checking that converting p_plus_4 to 254 BE bits produces the same\n // bit set to 1 as p_plus_4_bits and otherwise zeroes\n let mut p_plus_4_converted_bits: [u1; 254] = p_plus_4.to_be_bits();\n assert_eq(p_plus_4_converted_bits[254 - 3], 1);\n p_plus_4_converted_bits[254 - 3] = 0;\n assert_eq(p_plus_4_converted_bits, [0; 254]);\n\n // checking that Field::from_be_bits::<254> on the Field modulus produces 0\n assert_eq(modulus_be_bits().len(), 254);\n let p = from_be_bits::<254>(modulus_be_bits().as_array());\n assert_eq(p, 0);\n\n // checking that converting 0 to 254 BE bytes produces 254 zeroes\n let p_bits: [u1; 254] = 0.to_be_bits();\n assert_eq(p_bits, [0; 254]);\n }\n }\n\n #[test]\n fn test_to_from_le_bits_bn254_edge_cases() {\n if crate::compat::is_bn254() {\n // checking that decrementing this bit produces the expected 254 LE bits for (modulus - 1)\n let mut p_minus_1_bits: [u1; 254] = modulus_le_bits().as_array();\n assert(p_minus_1_bits[0] > 0);\n p_minus_1_bits[0] -= 1;\n\n let p_minus_1 = from_le_bits::<254>(p_minus_1_bits);\n assert_eq(p_minus_1 + 1, 0);\n\n // checking that converting (modulus - 1) from and then to 254 BE bits produces the same bits\n let p_minus_1_converted_bits: [u1; 254] = p_minus_1.to_le_bits();\n assert_eq(p_minus_1_converted_bits, p_minus_1_bits);\n\n // checking that incrementing this bit produces 254 LE bits for (modulus + 4)\n let mut p_plus_4_bits: [u1; 254] = modulus_le_bits().as_array();\n assert(p_plus_4_bits[2] < 1);\n p_plus_4_bits[2] += 1;\n\n let p_plus_4 = from_le_bits::<254>(p_plus_4_bits);\n assert_eq(p_plus_4, 4);\n\n // checking that converting p_plus_4 to 254 LE bits produces the same\n // bit set to 1 as p_plus_4_bits and otherwise zeroes\n let mut p_plus_4_converted_bits: [u1; 254] = p_plus_4.to_le_bits();\n assert_eq(p_plus_4_converted_bits[2], 1);\n p_plus_4_converted_bits[2] = 0;\n assert_eq(p_plus_4_converted_bits, [0; 254]);\n\n // checking that Field::from_le_bits::<254> on the Field modulus produces 0\n assert_eq(modulus_le_bits().len(), 254);\n let p = from_le_bits::<254>(modulus_le_bits().as_array());\n assert_eq(p, 0);\n\n // checking that converting 0 to 254 LE bytes produces 254 zeroes\n let p_bits: [u1; 254] = 0.to_le_bits();\n assert_eq(p_bits, [0; 254]);\n }\n }\n}\n",
150
- "path": "std/field/mod.nr"
37
+ "visibility": "private"
38
+ },
39
+ {
40
+ "name": "index_bits",
41
+ "type": {
42
+ "kind": "array",
43
+ "length": 24,
44
+ "type": { "kind": "integer", "sign": "unsigned", "width": 8 }
45
+ },
46
+ "visibility": "private"
47
+ },
48
+ {
49
+ "name": "merchant_pk_hash",
50
+ "type": { "kind": "field" },
51
+ "visibility": "private"
52
+ },
53
+ {
54
+ "name": "merchant_rho",
55
+ "type": { "kind": "field" },
56
+ "visibility": "private"
57
+ },
58
+ {
59
+ "name": "change_pk_hash",
60
+ "type": { "kind": "field" },
61
+ "visibility": "private"
62
+ },
63
+ {
64
+ "name": "change_rho",
65
+ "type": { "kind": "field" },
66
+ "visibility": "private"
67
+ },
68
+ {
69
+ "name": "pay_amount",
70
+ "type": { "kind": "integer", "sign": "unsigned", "width": 128 },
71
+ "visibility": "private"
72
+ },
73
+ {
74
+ "name": "challenge_nonce",
75
+ "type": {
76
+ "kind": "array",
77
+ "length": 32,
78
+ "type": { "kind": "integer", "sign": "unsigned", "width": 8 }
151
79
  },
152
- "51": {
153
- "source": "use dep::keccak256::keccak256;\n\nfn field_to_bytes32(x: Field) -> [u8; 32] {\n x.to_be_bytes()\n}\n\nfn concat2(a: [u8; 32], b: [u8; 32]) -> [u8; 64] {\n let mut preimage: [u8; 64] = [0; 64];\n for i in 0..32 {\n preimage[i] = a[i];\n preimage[32 + i] = b[i];\n }\n preimage\n}\n\nfn concat3(a: [u8; 32], b: [u8; 32], c: [u8; 32]) -> [u8; 96] {\n let mut preimage: [u8; 96] = [0; 96];\n for i in 0..32 {\n preimage[i] = a[i];\n preimage[32 + i] = b[i];\n preimage[64 + i] = c[i];\n }\n preimage\n}\n\nfn concat4(a: [u8; 32], b: [u8; 32], c: [u8; 32], d: [u8; 32]) -> [u8; 128] {\n let mut preimage: [u8; 128] = [0; 128];\n for i in 0..32 {\n preimage[i] = a[i];\n preimage[32 + i] = b[i];\n preimage[64 + i] = c[i];\n preimage[96 + i] = d[i];\n }\n preimage\n}\n\nfn keccak2(a: [u8; 32], b: [u8; 32]) -> [u8; 32] {\n let preimage = concat2(a, b);\n keccak256(preimage, 64)\n}\n\nfn keccak3(a: [u8; 32], b: [u8; 32], c: [u8; 32]) -> [u8; 32] {\n let preimage = concat3(a, b, c);\n keccak256(preimage, 96)\n}\n\nfn keccak4(a: [u8; 32], b: [u8; 32], c: [u8; 32], d: [u8; 32]) -> [u8; 32] {\n let preimage = concat4(a, b, c, d);\n keccak256(preimage, 128)\n}\n\nfn merkle_root_from_path(\n leaf: [u8; 32],\n path: [[u8; 32]; 32],\n index_bits: [u8; 32]\n) -> [u8; 32] {\n let mut cur = leaf;\n for i in 0..32 {\n assert((index_bits[i] == 0) | (index_bits[i] == 1));\n if index_bits[i] == 0 {\n cur = keccak2(cur, path[i]);\n } else {\n cur = keccak2(path[i], cur);\n }\n }\n cur\n}\n\nfn main(\n note_amount: u128,\n note_rho: Field,\n note_pk_hash: Field,\n nullifier_secret: Field,\n merkle_path: [[u8; 32]; 32],\n index_bits: [u8; 32],\n merchant_pk_hash: Field,\n merchant_rho: Field,\n change_pk_hash: Field,\n change_rho: Field,\n pay_amount: u128,\n challenge_nonce: [u8; 32],\n merchant_address_word: [u8; 32]\n) -> pub ([u8; 32], [u8; 32], [u8; 32], [u8; 32], [u8; 32], Field) {\n assert(pay_amount <= note_amount);\n\n let note_commitment = keccak3(\n field_to_bytes32(note_amount as Field),\n field_to_bytes32(note_rho),\n field_to_bytes32(note_pk_hash)\n );\n\n let computed_root = merkle_root_from_path(note_commitment, merkle_path, index_bits);\n\n let nullifier = keccak2(field_to_bytes32(nullifier_secret), note_commitment);\n\n let merchant_commitment = keccak3(\n field_to_bytes32(pay_amount as Field),\n field_to_bytes32(merchant_rho),\n field_to_bytes32(merchant_pk_hash)\n );\n\n let change_amount = note_amount - pay_amount;\n let change_commitment = keccak3(\n field_to_bytes32(change_amount as Field),\n field_to_bytes32(change_rho),\n field_to_bytes32(change_pk_hash)\n );\n\n let challenge_domain_hash: [u8; 32] = [\n 227, 46, 36, 165, 28, 53, 16, 147, 211, 57, 192, 3, 81, 119, 220, 45,\n 165, 193, 184, 185, 86, 62, 65, 67, 147, 237, 215, 85, 6, 220, 192, 85\n ];\n let challenge_hash = keccak4(\n challenge_domain_hash,\n challenge_nonce,\n field_to_bytes32(pay_amount as Field),\n merchant_address_word\n );\n\n (\n nullifier,\n computed_root,\n merchant_commitment,\n change_commitment,\n challenge_hash,\n pay_amount as Field\n )\n}\n",
154
- "path": "/shielded-402/circuits/spend_change/src/main.nr"
80
+ "visibility": "private"
81
+ },
82
+ {
83
+ "name": "merchant_address_word",
84
+ "type": {
85
+ "kind": "array",
86
+ "length": 32,
87
+ "type": { "kind": "integer", "sign": "unsigned", "width": 8 }
155
88
  },
156
- "55": {
157
- "source": "mod tests;\nmod oracle_tests;\nmod benchmarks;\n\nuse std::hash::keccakf1600;\nuse std::runtime::is_unconstrained;\n\nglobal BLOCK_SIZE_IN_BYTES: u32 = 136; //(1600 - BITS * 2) / WORD_SIZE;\nglobal WORD_SIZE: u32 = 8; // Limbs are made up of u64s so 8 bytes each.\nglobal LIMBS_PER_BLOCK: u32 = BLOCK_SIZE_IN_BYTES / WORD_SIZE;\nglobal NUM_KECCAK_LANES: u32 = 25;\n\n#[no_predicates]\npub fn keccak256<let N: u32>(input: [u8; N], message_size: u32) -> [u8; 32] {\n assert(N >= message_size);\n\n // Copy input to block bytes. For that we'll need at least input bytes (N)\n // but we want it to be padded to a multiple of BLOCK_SIZE_IN_BYTES.\n let mut block_bytes = [0; ((N / BLOCK_SIZE_IN_BYTES) + 1) * BLOCK_SIZE_IN_BYTES];\n if is_unconstrained() {\n for i in 0..message_size {\n block_bytes[i] = input[i];\n }\n } else {\n for i in 0..N {\n if i < message_size {\n block_bytes[i] = input[i];\n }\n }\n }\n\n //1. format_input_lanes and apply padding\n let max_blocks = (N + BLOCK_SIZE_IN_BYTES) / BLOCK_SIZE_IN_BYTES;\n let real_max_blocks = (message_size + BLOCK_SIZE_IN_BYTES) / BLOCK_SIZE_IN_BYTES;\n\n // Apply Keccak padding (0x01 after message, 0x80 at block end)\n apply_keccak_padding(&mut block_bytes, message_size, real_max_blocks);\n\n // populate a vector of 64-bit limbs from our byte array\n let mut sliced_buffer =\n [0; (((N / BLOCK_SIZE_IN_BYTES) + 1) * BLOCK_SIZE_IN_BYTES) / WORD_SIZE];\n for i in 0..sliced_buffer.len() {\n let limb_start = WORD_SIZE * i;\n\n let mut sliced = 0;\n let mut v = 1;\n sliced += v * (block_bytes[limb_start] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 1] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 2] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 3] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 4] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 5] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 6] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 7] as Field);\n sliced.assert_max_bit_size::<64>();\n sliced_buffer[i] = sliced as u64;\n }\n\n //2. sponge_absorb\n let mut state: [u64; NUM_KECCAK_LANES] = [0; NUM_KECCAK_LANES];\n // `real_max_blocks` is guaranteed to at least be `1`\n // We peel out the first block as to avoid a conditional inside of the loop.\n // Otherwise, a dynamic predicate can cause a blowup in a constrained runtime.\n state[0] = sliced_buffer[0];\n state[1] = sliced_buffer[1];\n state[2] = sliced_buffer[2];\n state[3] = sliced_buffer[3];\n state[4] = sliced_buffer[4];\n state[5] = sliced_buffer[5];\n state[6] = sliced_buffer[6];\n state[7] = sliced_buffer[7];\n state[8] = sliced_buffer[8];\n state[9] = sliced_buffer[9];\n state[10] = sliced_buffer[10];\n state[11] = sliced_buffer[11];\n state[12] = sliced_buffer[12];\n state[13] = sliced_buffer[13];\n state[14] = sliced_buffer[14];\n state[15] = sliced_buffer[15];\n state[16] = sliced_buffer[16];\n state = keccakf1600(state);\n\n let state = if is_unconstrained() {\n // When in an unconstrained runtime we can take advantage of runtime loop bounds,\n // thus allowing us to simplify the loop body.\n for i in 1..real_max_blocks {\n for j in 0..LIMBS_PER_BLOCK {\n state[j] = state[j] ^ sliced_buffer[i * LIMBS_PER_BLOCK + j];\n }\n state = keccakf1600(state);\n }\n\n state\n } else {\n // We store the intermediate states in an array to avoid having a dynamic predicate\n // inside the loop, which can cause a blowup in a constrained runtime.\n let mut intermediate_states = [state; (N + BLOCK_SIZE_IN_BYTES) / BLOCK_SIZE_IN_BYTES + 1];\n for i in 1..max_blocks {\n let mut previous_state = intermediate_states[i - 1];\n for j in 0..LIMBS_PER_BLOCK {\n previous_state[j] = previous_state[j] ^ sliced_buffer[i * LIMBS_PER_BLOCK + j];\n }\n intermediate_states[i] = keccakf1600(previous_state);\n }\n\n // We can then take the state as of `real_max_blocks`, ignoring later permutations.\n intermediate_states[real_max_blocks - 1]\n };\n\n //3. sponge_squeeze\n let mut result = [0; 32];\n let lane = state[0] as Field;\n let lane_le: [u8; 8] = lane.to_le_bytes();\n result[0] = lane_le[0];\n result[1] = lane_le[1];\n result[2] = lane_le[2];\n result[3] = lane_le[3];\n result[4] = lane_le[4];\n result[5] = lane_le[5];\n result[6] = lane_le[6];\n result[7] = lane_le[7];\n\n let lane = state[1] as Field;\n let lane_le: [u8; 8] = lane.to_le_bytes();\n result[8 * 1] = lane_le[0];\n result[8 * 1 + 1] = lane_le[1];\n result[8 * 1 + 2] = lane_le[2];\n result[8 * 1 + 3] = lane_le[3];\n result[8 * 1 + 4] = lane_le[4];\n result[8 * 1 + 5] = lane_le[5];\n result[8 * 1 + 6] = lane_le[6];\n result[8 * 1 + 7] = lane_le[7];\n\n let lane = state[2] as Field;\n let lane_le: [u8; 8] = lane.to_le_bytes();\n result[8 * 2] = lane_le[0];\n result[8 * 2 + 1] = lane_le[1];\n result[8 * 2 + 2] = lane_le[2];\n result[8 * 2 + 3] = lane_le[3];\n result[8 * 2 + 4] = lane_le[4];\n result[8 * 2 + 5] = lane_le[5];\n result[8 * 2 + 6] = lane_le[6];\n result[8 * 2 + 7] = lane_le[7];\n\n let lane = state[3] as Field;\n let lane_le: [u8; 8] = lane.to_le_bytes();\n result[8 * 3] = lane_le[0];\n result[8 * 3 + 1] = lane_le[1];\n result[8 * 3 + 2] = lane_le[2];\n result[8 * 3 + 3] = lane_le[3];\n result[8 * 3 + 4] = lane_le[4];\n result[8 * 3 + 5] = lane_le[5];\n result[8 * 3 + 6] = lane_le[6];\n result[8 * 3 + 7] = lane_le[7];\n\n result\n}\n\n// Apply Keccak padding to the block_bytes array\n// Append 0x01 after message, then 0x80 at end of block\n// If both padding bytes collide at the same byte, combine them as 0x81\n#[inline_always]\npub(crate) fn apply_keccak_padding<let BLOCK_BYTES: u32>(\n block_bytes: &mut [u8; BLOCK_BYTES],\n message_size: u32,\n real_max_blocks: u32,\n) {\n let real_blocks_bytes = real_max_blocks * BLOCK_SIZE_IN_BYTES;\n\n if message_size == real_blocks_bytes - 1 {\n // Combine both padding bits: 0x01 | 0x80 = 0x81\n block_bytes[message_size] = 0x81;\n } else {\n block_bytes[message_size] = 0x01;\n block_bytes[real_blocks_bytes - 1] = 0x80;\n }\n}\n",
158
- "path": "nargo/github.com/noir-lang/keccak256/v0.1.3/src/keccak256.nr"
159
- }
89
+ "visibility": "private"
90
+ }
91
+ ],
92
+ "return_type": {
93
+ "abi_type": {
94
+ "kind": "tuple",
95
+ "fields": [
96
+ {
97
+ "kind": "array",
98
+ "length": 32,
99
+ "type": { "kind": "integer", "sign": "unsigned", "width": 8 }
100
+ },
101
+ {
102
+ "kind": "array",
103
+ "length": 32,
104
+ "type": { "kind": "integer", "sign": "unsigned", "width": 8 }
105
+ },
106
+ {
107
+ "kind": "array",
108
+ "length": 32,
109
+ "type": { "kind": "integer", "sign": "unsigned", "width": 8 }
110
+ },
111
+ {
112
+ "kind": "array",
113
+ "length": 32,
114
+ "type": { "kind": "integer", "sign": "unsigned", "width": 8 }
115
+ },
116
+ {
117
+ "kind": "array",
118
+ "length": 32,
119
+ "type": { "kind": "integer", "sign": "unsigned", "width": 8 }
120
+ },
121
+ { "kind": "field" }
122
+ ]
123
+ },
124
+ "visibility": "public"
125
+ },
126
+ "error_types": {
127
+ "819864067177566446": {
128
+ "error_kind": "string",
129
+ "string": "Field failed to decompose into specified 8 limbs"
130
+ },
131
+ "1998584279744703196": {
132
+ "error_kind": "string",
133
+ "string": "attempt to subtract with overflow"
134
+ },
135
+ "12469291177396340830": {
136
+ "error_kind": "string",
137
+ "string": "call to assert_max_bit_size"
138
+ },
139
+ "15835548349546956319": {
140
+ "error_kind": "string",
141
+ "string": "Field failed to decompose into specified 32 limbs"
142
+ }
143
+ }
144
+ },
145
+ "bytecode": "H4sIAAAAAAAA/+x9B7gURdP1FHADOahIZhEkmbOC5JyDWZEMipJRMUtQQDKICQETKhiJioqYEyZMBCPmnFFQ0t8Nuy+za12mT93t2o/nd56nXn2PvbdPT805XcXdaSjYfRWK/3NQrwGD7zwxCB47evf/JxMF4/+016gUzH4uNwXLYrBsBsthsFwGK8xgRRisKIMVY7DiDFaCwUoyWCkGK81gZRhsPwbbn8EOYLCyDHYgg5VjsPIMVoHBKjJYJQarzGBVGKwqg8UYrBqDHcRg1RmsBoMdzGA1GawWg9VmsDoMVpfBDmGwQxnsMAY7nMGOYLAjGewoBjuawY5hsGMZ7DgGO57BTmCwExnsJAarx2D1GexkBmvAYA0ZrBGDNWawJgzWlMGaMVhzBmvBYC0ZrBWDtWawNgzWlsHaMVh7BuvAYB0ZrBODdWawLgzWlcFOYbBTGew0Bjudwc5gsDMZ7CwGO5vBzmGwbgx2LoN1Z7AeDNaTwXoxWG8G68NgfRmsH4P1Z7DzGOx8BhvAYBcw2IUMNpDBBjHYYAYbwmBDGWwYgw1nsBEMdhGDXcxglzDYSAa7lMEuY7DLGewKBruSwa5isKsZ7BoGG8VgoxlsDIONZbBrGew6BhvHYOMZbAKDXc9gExlsEoNNZrApDDaVwaYx2HQGm8FgMxnsBgabxWA3MthNDHYzg93CYLcy2GwGu43B5jDYXAabx2C3M9gdDHYng93FYHcz2HwGu4fB7mWw+xhsAYMtZLD7GewBBnuQwR5isIcZ7BEGW8RgixlsCYMtZbBlDLacwR5lsMcYbAWDPc5gTzDYkwy2ksGeYrBVDPY0gz3DYM8y2HMM9jyDvcBgLzLYSwz2MoO9wmCvMthqBnuNwV5nsDcY7E0Ge4vB1jDY2wz2DoO9y2DvMdj7DLaWwdYx2HoG28BgHzDYhwz2EYN9zGCfMNinDLaRwT5jsM8Z7AsG+5LBvmKwrxnsGwb7lsG+Y7DvGewHBvuRwX5isJ8Z7BcG+5XBfmOw3xnsDwbbxGB/MthfDLaZwbYw2N8M9g+DbWWwbQy2ncF2MNhOBrP/k4oRgxVgsIIMVojBshgsm8FyGCyXwQozWBEGK8pgxRisOIOVYLCSDFaKwUozWBkG24/B9mewAxisLIMdyGDlGKw8g1VgsIoMVonBKjNYFQarymAxBqvGYAcxWHUGq8FgBzNYTQarxWC1GawOg9VlsEMY7FAGO4zBDmewIxjsSAY7isGOZrBjGOxYBjuOwY5nsBMY7EQGO4nB6jFYfQY7mcEaMFhDBmvEYI0ZrAmDNWWwZgzWnMFaMFhLBmvFYK0ZrA2DtWWwdgzWnsE6MFhHBuvEYJ0ZrAuDdWWwUxjsVAY7jcFOZ7AzGOxMBjuLwc5msHMYrBuDnctg3RmsB4P1ZLBeDNabwfowWF8G68dg/RnsPAY7n8EGMNgFDHYhgw1ksEEMNpjBhjDYUAYbxmDDGWwEg13EYBcz2CUMNpLBLmWwyxjscga7gsGuZLCrGOxqBruGwUYx2GgGG8NgYxnsWga7jsHGMdh4BpvAYNcz2EQGm8RgkxlsCoNNZbBpDDadwWYw2EwGu4HBZjHYjQx2E4PdzGC3MNitDDabwW5jsDkMNpfB5jHY7Qx2B4PdyWB3MdjdDDafwe5hsHsZ7D4GW8BgCxnsfgZ7gMEeZLCHGOxhBnuEwRYx2GIGW8JgSxlsGYMtZ7BHGewxBlvBYI8z2BMM9iSDrWSwpxhsFYM9zWDPMNizDPYcgz3PYC8w2IsM9hKDvcxgrzDYqwy2msFeY7DXGewNBnuTwd5isDUM9jaDvcNg7zLYewz2PoOtZbB1DLaewTYw2AcM9iGDfcRgHzPYJwz2KYNtZLDPGOxzBvuCwb5ksK8Y7GsG+4bBvmWw7xjsewb7gcF+ZLCfGOxnBvuFwX5lsN8Y7HcG+4PBNjHYnwz2F4NtZrAtDPY3g/3DYFsZbBuDbWewHQy2k8GCAv/GiMEKMFhBBivEYFkMls1gOQyWy2CFGawIgxVlsGIMVpzBSjBYSQYrxWClGawMg+3HYPsz2AEMVpbBDmSwcgxWnsEqMFhFBqvEYJUZrAqDVWWwGINVY7CDGKw6g9VgsIMZrCaD1WKw2gxWh8HqMtghDHYogx3GYIcz2BEMdiSDHcVgRzPYMQx2LIMdx2DHM9gJDHYig53EYPUYrD6DncxgDRisIYM1YrDGDNaEwZoyWDMGa85gLRisJYO1YrDWDNaGwdoyWDsGa89gHRisI4N1YrDODNaFwboy2CkMdiqDncZgpzPYGQx2JoOdxWBnM9g5DNaNwc5lsO4M1oPBejJYLwbrzWB9GKwvg/VjsP4Mdh6Dnc9gAxjsAga7kMEGMtggBhvMYEMYbCiDDWOw4Qw2gsEuYrCLGewSBhvJYJcy2GUMdjmDXcFgVzLYVQx2NYNdw2CjGGw0g41hsLEMdi2DXcdg4xhsPINNYLDrGWwig01isMkMNoXBpjLYNAabzmAzGGwmg93AYLMY7EYGu4nBbmawWxjsVgabzWC3MdgcBpvLYPMY7HYGu4PB7mSwuxjsbgabz2D3MNi9DHYfgy1gsIUMdj+DPcBgDzLYQwz2MIM9wmCLGGwxgy1hsKUMtozBljPYowz2GIOtYLDHGewJBnuSwVYy2FMMtorBnmawZxjsWQZ7jsGeZ7AXGOxFBnuJwV5msFcY7FUGW81grzHY6wz2BoO9yWBvMdgaBnubwd5hsHcZ7D0Ge5/B1jLYOgZbz2AbGOwDBvuQwT5isI8Z7BMG+5TBNjLYZwz2OYN9wWBfMthXDPY1g33DYN8y2HcM9j2D/cBgPzLYTwz2M4P9wmC/MthvDPY7g/3BYJsY7E8G+4vBNjPYFgb7m8H+YbCtDLaNwbYz2A4G28lg9l9SMWKwAgxWkMEKMVgWg2UzWA6D5TJYYQYrwmBFGawYgxVnsBIMVpLBSjFYaQYrw2D7Mdj+DHYAg5VlsAMZrByDlWewCgxWkcFiBf/9znc1ZtxBDFadwWow2MEMVpPBajFYbQarw2B1GewQBjuUwQ5jsMMZ7AgGO5LBjmKwoxnsGAY7lsGOY7DjGewEBjuRwU5isHoMVp/BTmawBgzWkMEaMVhjBmvCYE0ZrBmDNWewFgzWksFaMVhrBmvDYG0ZrB2DtWewDgzWkcE6MVhnBuvCYF0Z7BQGO5XBTmOw0xnsDAY7k8HOYrCzGewcBuvGYOcyWHcG68FgPeNY4nyMAsG/rwQWC5wuCo89sm/H4Z8ddUedFZ1bPDp69Jnn1j7m29aXPT50RrPP/rzBvusQK5jnz6XA4Yo5fja8rgLxxRYsFCTfDAuMyuODsfg/oxZkf4br2EKF8r6pO1OuMM9CDM9CKTwjLnGSUsZ2SxlLBQrJ7hXHb6/kAf4FCrnfl/AzETVv1M8CxrJXLB/DYoHLRf9bE4U+k2VuQraJHBO5JgqbKGKiqIliJoqbKGGipIlSJkqbKGNiPxP7mzjARFkTB5ooZ6K8iQomKpqoZKKyiSomqtq8mKhm4iAT1U3USBWlJfOvapvBchgsl8EKM1gRBivKYMUYrDiDlWCwkgxWisFKM1gZBtuPwfZnsAMYrCyDHchg5RisPINVYLCKDFaJwSozWBUGq8pgMQarxmAHMVh1BqsRx8JXtfg/Y4HTBRlrlqNZ/mL8P9t5bEA5rmMN31y3sTOtuRd2Grtp10ZQxGXsxt2bRlGHsU3jG0yx6LHTE5tR8cixQ/63cZWIGrtizyZXMmLspaENsdTex7YKb56l9zr2m6SNtszexh6dvCnvt5extVI28P0LuW/2B+Q59ozUZ53K5jV21L90QQfmMXbUvzVE5fixyxm9UXl2bHNOm1SBG9uJ1TFVZMY+xmueKv17bO08/IEq/2vs7Xl5CVVJHXtknr5DVVPGbszboyiWPHbYXvyMqiWN7bA376ODwmP77NUnqXpo7BF791Sq4V7s7SqabYFPzH9Di70a7l7+dni+gwvlY0L7YaRDsZMf7H6DqKbjon7NxxrsHEhFb9dQE0yyvbjWNj9JjrjWcGAscJomiWut+AJqp1bGteI3LozVZiqYgtDk0JNMtYAHpDZ489Dk2IeiFvgwWV61MuQY1d3v89zwfHWkjmEnrIM7xtw6gGPU9ewYdg11cceYWzdDjlHdfd45HBgLnKZJ4npIfAGHpjrGIYxjHJoGxwCeZDoEeEAOFd489A/tEE6HAWL43/8AXGrGH3D0T12RrfpwQAzcGqKG23t0uMCJD8+QEx/k/vwuDc93hNSJ7YRH4E689Ajg4TvSsxPbNRyJO/HSI/P58LkI6HDPAjoKXEPiQo0JyeHRwLORzh3uIPd5l3BgLHCaJonrMfEFHJu6wx3D7HDHpmGHAxyCjgGSdqzw5qEPEsLpuHzucFGfseI5WrA7HO9517LrPl6BV+JCc3g8kMMTPOcwL5N1MWfXsSeChpauaqCau9anhec7SVoN2AlPwquBaScBN6ie52rArqEeXg1Mq+e5GrBCOLGQX7HVB8WWuFBOSA5PzlA1UM193qkcGAucpkni2iC+gIap1UADphpomIZqAHAIagAkraHw5qEPEsKpkeedxIrnZMGu29hzNWDX3ViBV+JCc9gYyGETzznMy2SjPoeYbNMM/dlAzF3rsfB8zaTVgJ2wGV4NxJoBSW7uuRqwa2iOVwOx5p6rASuEpoX8iq2FUjWA5LBlhqqBmPu8VTkwFjhNk8S1VXwBrVOrgVZMNdA6DdUA4BDUCkhaa+HNQx8khFMbzzuJFU9Lwa7b1nM1YNfdVoFX4kJz2BbIYTvPOczLZKM+h5hs+wxVA1Xdtb4mPF8HaTVgJ+yAVwNrOgBJ7ui5GrBr6IhXA2s6eq4GrBDaF/Irtk5K1QCSw84Zqgaqus/7FgfGAqdpkrh2iS+ga2o10IWpBrqmoRoAHIK6AEnrKrx56IOEcDrF805ixdNZsOue6rkasOs+VYFX4kJzeCqQw9M85zAvk436HGKyp2eoGqjirvVe4fnOkFYDdsIz8Gqg1xlAks/0XA3YNZyJVwO9zvRcDVghnF7Ir9jOUqoGkByenaFqoIr7vD05MBY4TZPE9Zz4ArqlVgPnMNVAtzRUA4BD0DlA0roJbx76ICGczvW8k1jxnC3Ydbt7rgbsursr8EpcaA67Azns4TmHeZls1OcQk+2ZoWqgsrvW14fn6yWtBuyEvfBqYH0vIMm9PVcDdg298WpgfW/P1YAVQs9CfsXWR6kaQHLYN0PVQGX3eddxYCxwmiaJa7/4AvqnVgP9mGqgfxqqAcAhqB+QtP7Cm4c+SAin8zzvJFY8fQW77vmeqwG77vMVeCUuNIfnAzkc4DmHeZls1OcQk70gQ9VAJXettwnPd6G0GrATXohXA20uBJI80HM1YNcwEK8G2gz0XA1YIVxQyK/YBilVA0gOB2eoGqjkPm9rDowFTtMkcR0SX8DQ1GpgCFMNDE1DNQA4BA0BkjZUePPQBwnhNMzzTmLFM1iw6w73XA3YdQ9X4JW40BwOB3I4wnMO8zLZqM8hJntRhqqBiu5aXxye72JpNWAnvBivBhZfDCT5Es/VgF3DJXg1sPgSz9WAFcJFhfyKbaRSNYDk8NIMVQMV3eddxIGxwGmaJK6XxRdweWo1cBlTDVyehmoAcAi6DEja5cKbhz5ICKcrPO8kVjyXCnbdKz1XA3bdVyrwSlxoDq8EcniV5xzmZbJRn0NM9uoMVQMV3LW+MjzfNdJqwE54DV4NrLwGSPIoz9WAXcMovBpYOcpzNWCFcHUhv2IbrVQNIDkck6FqoIL7vE9yYCxwmiaJ69j4Aq5NrQbGMtXAtWmoBgCHoLFA0q4V3jz0QUI4Xed5J7HiGSPYdcd5rgbsuscp8EpcaA7HATkc7zmHeZls1OcQk52QoWqgvLvW24Xnu15aDdgJr8ergXbXA0me6LkasGuYiFcD7SZ6rgasECYU8iu2SUrVAJLDyRmqBsq7z9uWA2OB0zRJXKfEFzA1tRqYwlQDU9NQDQAOQVOApE0V3jz0QUI4TfO8k1jxTBbsutM9VwN23dMVeCUuNIfTgRzO8JzDvEw26nOIyc7MUDVQzl3ro8Lz3SCtBuyEN+DVwKgbgCTP8lwN2DXMwquBUbM8VwNWCDML+RXbjUrVAJLDmzJUDZRzn/caDowFTtMkcb05voBbUquBm5lq4JY0VAOAQ9DNQNJuEd489EFCON3qeSex4rlJsOvO9lwN2HXPVuCVuNAczgZyeJvnHOZlslGfQ0x2ToaqgQOF1cBcaTVgJ5wrqAbmAkme57kasGuYJ6gG5nmuBqwQ5hTyK7bblaoBJId3ZKgaODAD1cCd8QXclVoN3MlUA3eloRoAHILuBJJ2l1I1gHC62/NOYsVzh2DXne+5GrDrnq/AK3GhOZwP5PAezznMy2SjPoeY7L0ZqgbKumt9YXi++6TVgJ3wPrwaWHgfkOQFnqsBu4YFeDWwcIHnasAK4d5CfsW2UKkaQHJ4f4aqgbLu8y7gwFjgNE0S1wfiC3gwtRp4gKkGHkxDNQA4BD0AJO1B4c1DHySE00OedxIrnvsFu+7DnqsBu+6HFXglLjSHDwM5fMRzDvMy2ajPISa7KEPVwAHuWp8fnm+xtBqwEy7Gq4H5i4EkL/FcDdg1LMGrgflLPFcDVgiLCvkV21KlagDJ4bIMVQMHuM97NwfGAqdpkrgujy/g0dRqYDlTDTyahmoAcAhaDiTtUeHNQx8khNNjnncSK55lgl13hedqwK57hQKvxIXmcAWQw8c95zAvk436HGKyT2SoGtjfXesbwvM9Ka0G7IRP4tXAhieBJK/0XA3YNazEq4ENKz1XA1YITxTyK7anlKoBJIerMlQN7O8+73oOjAVO0yRxfTq+gGdSq4GnmWrgmTRUA4BD0NNA0p4R3jz0QUI4Pet5J7HiWSXYdZ/zXA3YdT+nwCtxoTl8Dsjh855zmJfJRn0OMdkXMlQN7Oeu9TfD870orQbshC/i1cCbLwJJfslzNWDX8BJeDbz5kudqwArhhUJ+xfayUjWA5PCVDFUD+7nP+wYHxgKnaZK4vhpfwOrUauBVphpYnYZqAHAIehVI2mrhzUMfJITTa553EiueVwS77uueqwG77tcVeCUuNIevAzl8w3MO8zLZqM8hJvtmhqqBMu5aLx+e7y1pNWAnfAuvBsq/BSR5jedqwK5hDV4NlF/juRqwQnizkF+xva1UDSA5fCdD1UAZ93nLcWAscJomieu78QW8l1oNvMtUA++loRoAHILeBZL2nvDmoQ8Swul9zzuJFc87gl13redqwK57rQKvxIXmcC2Qw3Wec5iXyUZ9DjHZ9RmqBkq7a/3x8HwbpNWAnXADXg08vgFI8geeqwG7hg/wauDxDzxXA1YI6wv5FduHStUAksOPMlQNlHafdwUHxgKnaZK4fhxfwCep1cDHTDXwSRqqAcAh6GMgaZ8Ibx76ICGcPvW8k1jxfCTYdTd6rgbsujcq8EpcaA43Ajn8zHMO8zLZqM8hJvt5hqqBUu5anxCe7wtpNWAn/AKvBiZ8AST5S8/VgF3Dl3g1MOFLz9WAFcLnhfyK7SulagDJ4dcZqgZKuc87ngNjgdM0SVy/iS/g29Rq4BumGvg2DdUA4BD0DZC0b4U3D32QEE7fed5JrHi+Fuy633uuBuy6v1fglbjQHH4P5PAHzznMy2SjPoeY7I8ZqgZKumu9dXi+n6TVgJ3wJ7waaP0TkOSfPVcDdg0/49VA6589VwNWCD8W8iu2X5SqASSHv2aoGijpPm8rDowFTtMkcf0tvoDfU6uB35hq4Pc0VAOAQ9BvQNJ+F9489EFCOP3heSex4vlVsOtu8lwN2HVvUuCVuNAcbgJy+KfnHOZlslGfQ0z2rwxVAyXctT4jPN9maTVgJ9yMVwMzNgNJ3uK5GrBr2IJXAzO2eK4GrBD+KuRXbH8rVQNIDv/JUDVQwn3e6RwYC5ymSeK6Nb6AbanVwFamGtiWhmoAcAjaCiRtm/DmoQ8Swmm7553Eiucfwa67w3M1YNe9Q4FX4kJzuAPI4U7POczLZKM+h5hskJWZaqC4u9aHhuejrHxMaD8MVgNDyf0GUYEsv9WAXYOdA6wGhhYAkszxchFCkOVXbAWBPIT/D8oJyWEhgFM6q4Hi7sYzhANjgdM0SVyz4sLLzgqSd/6srH9XA3ZQfqsBwCEoC0hadpbs5qEPEsIpB3y40QfGiqdQFi7s3HwaR9Rwu+5cBV6JC81hLpDDwp5zmJfJRn0OMdkiGaoGirlrfVV4vqLSasBOWBSvBlYVBZJczHM1YNdQDK8GVhXzXA1YIRTJ8iu24krVAJLDEhmqBoq5VwNPcWAscJomiWvJuPBKpVYDJZlqoFQaqgHAIagkkLRSWbKbhz5ICKfSnncSK54Sgl23jOdqwK67jAKvxIXmsAyQw/085zAvk436HGKy+2eoGijqrvVYeL4DpNWAnfAAvBqIHQAkuaznasCuoSxeDcTKeq4GrBD2z/IrtgOVqgEkh+UyVA0Uda8GqnJgLHCaJolr+bjwKqRWA+WZaqBCGqoBwCGoPJC0Clmym4c+SAinip53EiuecoJdt5LnasCuu5ICr8SF5rASkMPKnnOYl8lGfQ4x2SoZqgaKuGu9WHi+qtJqwE5YFa8GilUFkhzzXA3suml4NVAs5rkasEKokuVXbNWUqgEkhwdlqBoo4l4NFOXAWOA0TRLX6nHh1UitBqoz1UCNNFQDgENQdSBpNbJkNw99kBBOB3veSax4DhLsujU9VwN23TUVeCUuNIc1gRzW8pzDvEw26nOIydbOUDVQ2F3rg8Pz1ZFWA3bCOng1MLgOkOS6nqsBu4a6eDUwuK7nasAKoXaWX7EdolQNIDk8NEPVQGH3amAQB8YCp2mSuB4WF97hqdXAYUw1cHgaqgHAIegwIGmHZ8luHvogIZyO8LyTWPEcKth1j/RcDdh1H6nAK3GhOTwSyOFRnnOYl8lGfQ4x2aMzVA3kumu9dHi+Y6TVgJ3wGLwaKH0MkORjPVcDdg3H4tVA6WM9VwNWCEdn+RXbcUrVAJLD4zNUDeS6VwOlODAWOE2TxPWEuPBOTK0GTmCqgRPTUA0ADkEnAEk7MUt289AHCeF0kuedxIrneMGuW89zNWDXXU+BV+JCc1gPyGF9zznMy2SjPoeY7MkZqgZygHdEwvM1kFYDdsIGWfjnGnre4S2vhll7gFjgfqEisg/syVl+RdFIaddG8tI4n0J1WXNjQQ7TKahsoaCaSAVlJ2wiEFRTz4KyvJqmSVBRw23im2bJHpiY2xxpfUiygO+Xh+drJn1I7ITNBI7TDFBsc88PlF1Dc0GSm3vuwexD1FxQHjQC7lcLz+WgvbcthGJNXOiz1QJYf0vPJV5eO3LU55AduZXnHNp71EqwESB5CL/Wnl++FMieswCbJ+YM/uui/60pzLW1uV9tTLQ10c5EexMdTHQ00clEZxNdTHQ1cYqJU02cZuJ0E2eYONPEWSbONnGOiW4mzjXR3UQPEz1N9DLR20QfE31N9DPR38R5qX8G0Dre74exNgzWlsHaMVh7BuvAYB0ZrBODdWawLgzWlcFOYbBTGew0Bjudwc5gsDMZ7CwGO5vBzmGwbgx2LoN1Z7AeDNaTwXoxWG8G68NgfRmsH4P1Z7Dzsv79Z0vV4v+MBU5XkuijzKa1ozHZP4dq4zw2oLauYw3fdm5jZxq+1N5p7Ca7NurgMnbjrvtAHR3GNt19z6hT9Njp8ftLnSPHDknkgrpEjV3xv7xR14ixl+7JMZ2y97GtQs8DnbrXsd+Enx06bW9jj056zuj0vYytlfxM0hl5j+2W8vzSmXmOPSP1Waez8ho76l+6oLPzGDvq3xqic/ixyxm9UTd2bHNOm3QuN7YTq2Pqzox9jNc89fj32Np5+AP1/NfY2/PyEuqVOvbIPH2HeqeM3Zi3R1Gf5LHD9uJn1DdpbIe9eR/1C4/ts1efpP6hsUfs3VPpvAx1vOe5e/nb4fnOl3a8dsLzs+DfOr59vvsNogGOi5J2vHYNA8CO165hAJhke6Xjt2PAw7WGA2OB0zRJXC+IPyAXplbGF8RvXBi7MCv/vx0DnmS6AHhALgRvHpoc+1BcAD5MltcFGXKM/u73eW54voFSx7ATDsQdY+5AwDEGeXYMu4ZBuGPMHZQhx+jvPu8cDowFTtMkcR0cf0CGpDrGYMYxhqTBMYAnmQYDD8gQ4c1D/6AO4TQUEMP//gfgMiD+gKN/UIds1cMAMXBriBpu79EwgRMPy5AT93N/fpeG5xsudWI74XDciZcOBx6+EZ6d2K5hBO7ES0fk8+FzEdAwzwK6CFxD4kKNCcnhxcCzkc4drp/7vEs4MBY4TZPE9ZK48Eam7nCXMDvcyDTscIBD0CVA0kYKbx76ICGcLs3nDhf1GSueiwW7w2Wedy277ssUeCUuNIeXATm83HMO8zJZF3N2HXsFaGjpqgb6umt9Wni+K6XVgJ3wSrwamHYlcIOu8lwN2DVchVcD067yXA1YIVyR5VdsV4NiS1woJySH12SoGujrPu9UDowFTtMkcR0VF97o1GpgFFMNjE5DNQA4BI0CkjZaePPQBwnhNMbzTmLFc41g1x3ruRqw6x6rwCtxoTkcC+TwWs85zMtkoz6HmOx1GfqzgT7uWo+F5xsnrQbshOPwaiA2DkjyeM/VgF3DeLwaiI33XA1YIVyX5VdsE5SqASSH12eoGujjPm/azp2bGBfepNRqYCJTDUxKQzUAOARNBJI2SXjz0AcJ4TTZ805ixXO9YNed4rkasOueosArcaE5nALkcKrnHOZlslGfQ0x2Woaqgd7uWl8Tnm+6tBqwE07Hq4E104Ekz/BcDdg1zMCrgTUzPFcDVgjTsvyKbaZSNYDk8IYMVQO93ed9iwNjgdM0SVxnxYV3Y2o1MIupBm5MQzUAOATNApJ2o/DmoQ8SwukmzzuJFc8Ngl33Zs/VgF33zQq8Eheaw5uBHN7iOYd5mWzU5xCTvTVD1UAvd633Cs83W1oN2Aln49VAr9lAkm/zXA3YNdyGVwO9bvNcDVgh3JrlV2xzlKoBJIdzM1QN9HKftycHxgKnaZK4zosL7/bUamAeUw3cnoZqAHAImgck7XbhzUMfJITTHZ53EiueuYJd907P1YBd950KvBIXmsM7gRze5TmHeZls1OcQk707Q9VAT3etrw/PN19aDdgJ5+PVwPr5QJLv8VwN2DXcg1cD6+/xXA1YIdyd5Vds9ypVA0gO78tQNdDTfd51HBgLnKZJ4rogLryFqdXAAqYaWJiGagBwCFoAJG2h8OahDxLC6X7PO4kVz32CXfcBz9WAXfcDCrwSF5rDB4AcPug5h3mZbNTnEJN9KEPVQA93rbcJz/ewtBqwEz6MVwNtHgaS/IjnasCu4RG8GmjziOdqwArhoSy/YlukVA0gOVycoWqgh/u8rTkwFjhNk8R1SVx4S1OrgSVMNbA0DdUA4BC0BEjaUuHNQx8khNMyzzuJFc9iwa673HM1YNe9XIFX4kJzuBzI4aOec5iXyUZ9DjHZxzJUDXR31/ri8HwrpNWAnXAFXg0sXgEk+XHP1YBdw+N4NbD4cc/VgBXCY1l+xfaEUjWA5PDJDFUD3d3nXcSBscBpmiSuK+PCeyq1GljJVANPpaEaAByCVgJJe0p489AHCeG0yvNOYsXzpGDXfdpzNWDX/bQCr8SF5vBpIIfPeM5hXiYb9TnEZJ/NUDVwrrvWV4bne05aDdgJn8OrgZXPAUl+3nM1YNfwPF4NrHzeczVghfBsll+xvaBUDSA5fDFD1cC57vM+yYGxwGmaJK4vxYX3cmo18BJTDbychmoAcAh6CUjay8Kbhz5ICKdXPO8kVjwvCnbdVz1XA3bdryrwSlxoDl8Fcrjacw7zMtmozyEm+1qGqoFu7lpvF57vdWk1YCd8Ha8G2r0OJPkNz9WAXcMbeDXQ7g3P1YAVwmtZfsX2plI1gOTwrQxVA93c523LgbHAaZokrmviwns7tRpYw1QDb6ehGgAcgtYASXtbePPQBwnh9I7nncSK5y3Brvuu52rArvtdBV6JC83hu0AO3/Ocw7xMNupziMm+n6Fq4Bx3rY8Kz7dWWg3YCdfi1cCotUCS13muBuwa1uHVwKh1nqsBK4T3s/yKbb1SNYDkcEOGqoFz3Oe9hgNjgdM0SVw/iAvvw9Rq4AOmGvgwDdUA4BD0AZC0D4U3D32QEE4fed5JrHg2CHbdjz1XA3bdHyvwSlxoDj8GcviJ5xzmZbJRn0NM9tMMVQNnC6uBjdJqwE64UVANbASS/JnnasCu4TNBNfCZ52rACuHTLL9i+1ypGkBy+EWGqoGzM1ANfBkX3lep1cCXTDXwVRqqAcAh6EsgaV8pVQMIp6897yRWPF8Idt1vPFcDdt3fKPBKXGgOvwFy+K3nHOZlslGfQ0z2uwxVA2e5a31heL7vpdWAnfB7vBpY+D2Q5B88VwN2DT/g1cDCHzxXA1YI32X5FduPStUAksOfMlQNnOU+7wIOjAVO0yRx/TkuvF9Sq4GfmWrglzRUA4BD0M9A0n4R3jz0QUI4/ep5J7Hi+Umw6/7muRqw6/5NgVfiQnP4G5DD3z3nMC+TjfocYrJ/ZKgaONNd6/PD822SVgN2wk14NTB/E5DkPz1XA3YNf+LVwPw/PVcDVgh/ZPkV219K1QCSw80ZqgbOdJ/3bg6MBU7TJHHdEhfe36nVwBamGvg7DdUA4BC0BUja38Kbhz5ICKd/PO8kVjybBbvuVs/VgF33VgVeiQvN4VYgh9s85zAvk436HGKy2zNUDZzhrvUN4fl2SKsBO+EOvBrYsANI8k7P1YBdw068Gtiw03M1YIWwPcuv2IJsnWoAySEBnNJZDZzhns/1HBgLnKZJ4loge/c/C2YHyTu//Q+p1YAdlN9qAHAIKpDtnrSC2bKbhz5ICKdC4MONPjBWPJSNCzvLnVd8ouSfHzXcrjtLgVfiQnOYBeQw23MO8zLZqM8hJpsD3Nd0VgOnu2v9zfB8udn5mNB+GKwG3swFklwYeHikaygMiseuoXA+Re0ihJxsv2IrolQNIDksmqFq4HT3auANDowFTtMkcS0WF17x1GqgGFMNFE9DNQA4BBUDklY8W3bz0AcJ4VTC805ixVNUsOuW9FwN2HWXVOCVuNAclgRyWMpzDvMy2ajPISZbOkPVwGnuWi8fnq+MtBqwE5bBq4HyZYAk7+e5GrBr2A+vBsrv57kasEIone1XbPsrVQNIDg/IUDVwmns1UI4DY4HTNElcy8aFd2BqNVCWqQYOTEM1ADgElQWSdmC27OahDxLCqZznncSK5wDBrlveczVg111egVfiQnNYHshhBc85zMtkoz6HmGzFDFUDp7pr/fHwfJWk1YCdsBJeDTxeCUhyZc/VgF1DZbwaeLyy52rACqFitl+xVVGqBpAcVs1QNXCqezWwggNjgdM0SVxjceFVS60GYkw1UC0N1QDgEBQDklYtW3bz0AcJ4XSQ553EiqeqYNet7rkasOuursArcaE5rA7ksIbnHOZlslGfQ0z24AxVA6e4a31CeL6a0mrATlgTrwYm1ASSXMtzNWDXUAuvBibU8lwNWCEcnO1XbLWVqgEkh3UyVA2c4l4NjOfAWOA0TRLXunHhHZJaDdRlqoFD0lANAA5BdYGkHZItu3nog4RwOtTzTmLFU0ew6x7muRqw6z5MgVfiQnN4GJDDwz3nMC+TjfocYrJHZKga6Oqu9dbh+Y6UVgN2wiPxaqD1kUCSj/JcDdg1HIVXA62P8lwNWCEcke1XbEcrVQNIDo/JUDXQ1b0aaMWBscBpmiSux8aFd1xqNXAsUw0cl4ZqAHAIOhZI2nHZspuHPkgIp+M97yRWPMcIdt0TPFcDdt0nKPBKXGgOTwByeKLnHOZlslGfQ0z2pAxVA13ctT4jPF89aTVgJ6yHVwMz6gFJru+5GrBrqI9XAzPqe64GrBBOyvYrtpOVqgEkhw0yVA10ca8GpnNgLHCaJolrw7jwGqVWAw2ZaqBRGqoBwCGoIZC0Rtmym4c+SAinxp53EiueBoJdt4nnasCuu4kCr8SF5rAJkMOmnnOYl8lGfQ4x2WYZqgY6u2t9aHi+5tJqwE7YHK8GhjYHktzCczVg19ACrwaGtvBcDVghNMv2K7aWStUAksNWGaoGOrtXA0M4MBY4TZPEtXVceG1Sq4HWTDXQJg3VAOAQ1BpIWpts2c1DHySEU1vPO4kVTyvBrtvOczVg191OgVfiQnPYDshhe885zMtkoz6HmGyHDFUDndy1vio8X0dpNWAn7IhXA6s6Aknu5LkasGvohFcDqzp5rgasEDpk+xVbZ6VqAMlhlwxVA53cq4GnODAWOE2TxLVrXHinpFYDXZlq4JQ0VAOAQ1BXIGmnZMtuHvogIZxO9byTWPF0Eey6p3muBuy6T1PglbjQHJ4G5PB0zznMy2SjPoeY7BkZqgY6ums9Fp7vTGk1YCc8E68GYmcCST7LczVg13AWXg3EzvJcDVghnJHtV2xnK1UDSA7PyVA10NG9GqjKgbHAaZokrt3iwjs3tRroxlQD56ahGgAcgroBSTs3W3bz0AcJ4dTd805ixXOOYNft4bkasOvuocArcaE57AHksKfnHOZlslGfQ0y2V4aqgQ7uWi8Wnq+3tBqwE/bGq4FivYEk9/FcDdg19MGrgWJ9PFcDVgi9sv2Kra9SNYDksF+GqoEO7tVAUQ6MBU7TJHHtHxfeeanVQH+mGjgvDdUA4BDUH0jaedmym4c+SAin8z3vJFY8/QS77gDP1YBd9wAFXokLzeEAIIcXeM5hXiYb9TnEZC/MUDXQ3l3rg8PzDZRWA3bCgXg1MHggkORBnqsBu4ZBeDUweJDnasAK4cJsv2IbrFQNIDkckqFqoL17NTCIA2OB0zRJXIfGhTcstRoYylQDw9JQDQAOQUOBpA3Llt089EFCOA33vJNY8QwR7LojPFcDdt0jFHglLjSHI4AcXuQ5h3mZbNTnEJO9OEPVQDt3rZcOz3eJtBqwE16CVwOlLwGSPNJzNWDXMBKvBkqP9FwNWCFcnO1XbJcqVQNIDi/LUDXQzr0aKMWBscBpmiSul8eFd0VqNXA5Uw1ckYZqAHAIuhxI2hXZspuHPkgIpys97yRWPJcJdt2rPFcDdt1XKfBKXGgOrwJyeLXnHOZlslGfQ0z2mgxVA22Bv0gnPN8oaTVgJxyVjX9utOcd3vIanb0HiAXuFyoi+8Bek+1XFGOUdm0kL2PzKVSXNY8V5DCdgmojFNS1UkHZCa8VCOo6z4KyvK5Lk6CihtvEX5cte2BibnOk9SFpjfyVXKEPjpM+JHbCcQLHGQcodrznB8quYbwgyeM992D2IRovKA/GAPdrgudy0N7bCUKxJi702ZoArP96zyVeXjty1OeQHXmi5xzaezRRsBEgeSgU7Gk388u3QCB7zgJsnpgz+K+L/rcmCn1mkrlfk01MMTHVxDQT003MMDHTxA0mZpm40cRNJm42cYuJW03MNnGbiTkm5pqYZ+J2E3eYuNPEXSbuNjHfxD0m7jVxn4kFJhaauD/1zwAmxfv9MDaZwaYw2FQGm8Zg0xlsBoPNZLAbGGwWg93IYDcx2M0MdguD3cpgsxnsNgabw2BzGWweg93OYHcw2J0MdheD3c1g8xnsHga7l8HuY7AFDLaQwe7P/vefLVWL/zMWOF1Joo8ym0mOxmT/HGqy89iApriONXynuo2dafjSNKexm+zaaLrL2I277gPNcBjbdPc9o5nRY6fH7y/dEDl2SCIXNCtq7Ir/5Y1ujBh76Z4c0017H9sq9DzQzXsd+0342aFb9jb26KTnjG7dy9hayc8kzc57bLeU55duy3PsGanPOs3Ja+yof+mC5uYxdtS/NUTz+LHLGb3R7ezY5pw26Q5ubCdWx3QnM/YxXvN017/H1s7DH+juf429PS8vofmpY4/M03fonpSxG/P2KLo3eeywvfgZ3Zc0tsPevI8WhMf22atP0sLQ2CP27ql0f4Y63vvdvfzt8HwPSDteO+ED2fBvHd9+wP0G0YOOi5J2vHYND4Idr13Dg2CS7ZWO344BD9caDowFTtMkcX0o/oA8nFoZPxS/cWHs4ez8/3YMeJLpIeABeRi8eWhy7EPxEPgwWV4PZcgxFrrf57nh+R6ROoad8BHcMeY+AjjGIs+OYdewCHeMuYsy5BgL3eedw4GxwGmaJK6L4w/IklTHWMw4xpI0OAbwJNNi4AFZIrx56B/UIZyWAmL43/8AXB6MP+DoH9QhW/UyQAzcGqKG23u0TODEyzLkxAvcn9+l4fmWS53YTrgcd+Kly4GH71HPTmzX8CjuxEsfzefD5yKgZZ4F9Bi4hsSFGhOSwxXAs5HOHW6B+7xLODAWOE2TxPXxuPCeSN3hHmd2uCfSsMMBDkGPA0l7Qnjz0AcJ4fRkPne4qM9Y8awQ7A4rPe9adt0rFXglLjSHK4EcPuU5h3mZrIs5u45dBRpauqqB+9y1Pi0839PSasBO+DReDUx7GrhBz3iuBuwansGrgWnPeK4GrBBWZfsV27Og2BIXygnJ4XMZqgbuc593KgfGAqdpkrg+HxfeC6nVwPNMNfBCGqoBwCHoeSBpLwhvHvogIZxe9LyTWPE8J9h1X/JcDdh1v6TAK3GhOXwJyOHLnnOYl8lGfQ4x2Vcy9GcD97prPRae71VpNWAnfBWvBmKvAkle7bkasGtYjVcDsdWeqwErhFey/YrtNaVqAMnh6xmqBu51nzdt5869ERfem6nVwBtMNfBmGqoBwCHoDSBpbwpvHvogIZze8ryTWPG8Lth113iuBuy61yjwSlxoDtcAOXzbcw7zMtmozyEm+06GqoF73LW+Jjzfu9JqwE74Ll4NrHkXSPJ7nqsBu4b38GpgzXueqwErhHey/YrtfaVqAMnh2gxVA/e4z/sWB8YCp2mSuK6LC299ajWwjqkG1qehGgAcgtYBSVsvvHnog4Rw2uB5J7HiWSvYdT/wXA3YdX+gwCtxoTn8AMjhh55zmJfJRn0OMdmPMlQNzHfXeq/wfB9LqwE74cd4NdDrYyDJn3iuBuwaPsGrgV6feK4GrBA+yvYrtk+VqgEkhxszVA3Md5+3JwfGAqdpkrh+Fhfe56nVwGdMNfB5GqoBwCHoMyBpnwtvHvogIZy+8LyTWPFsFOy6X3quBuy6v1TglbjQHH4J5PArzznMy2SjPoeY7NcZqgbudtf6+vB830irATvhN3g1sP4bIMnfeq4G7Bq+xauB9d96rgasEL7O9iu275SqASSH32eoGrjbfd51HBgLnKZJ4vpDXHg/plYDPzDVwI9pqAYAh6AfgKT9KLx56IOEcPrJ805ixfO9YNf92XM1YNf9swKvxIXm8Gcgh794zmFeJhv1OcRkf81QNXCXu9bbhOf7TVoN2Al/w6uBNr8BSf7dczVg1/A7Xg20+d1zNWCF8Gu2X7H9oVQNIDnclKFq4C73eVtzYCxwmiaJ659x4f2VWg38yVQDf6WhGgAcgv4EkvaX8OahDxLCabPnncSKZ5Ng193iuRqw696iwCtxoTncAuTwb885zMtkoz6HmOw/GaoG7nTX+uLwfFul1YCdcCteDSzeCiR5m+dqwK5hG14NLN7muRqwQvgn26/YtitVA0gOd2SoGrjTfd5FHBgLnKZJ4rozIbycIHnn38lUA3ZQfqsBwCFoJyK8HNnNQx8khBPlYA83+sBY8ewQ7LoF3HntIRe487LrtnP45pW40ByG54kaW9BzDvMy2ajPISZbCLiv6awG7nDX+srwfFk5+ZjQfhisBlZmAUnOBh4e6Rqyc+BqYGV2PkXtIoRCOX7FlgOKLXGhnJAc5gKc0lkN3OFeDTzJgbHAaZokroXjwiuSWg0Uzvl3NVAkDdUA4BBUGEhakRzZzUMfJIRTUc87iRVPrmDXLea5GrDrLqbAK3GhOSwG5LC45xzmZbJRn0NMtkSGqoHb3bXeLjxfSWk1YCcsiVcD7UoCSS7luRqwayiFVwPtSnmuBqwQSuT4FVtppWoAyWGZDFUDt7tXA205MBY4TZPEdb+48PZPrQb2Y6qB/dNQDQAOQfsBSds/R3bz0AcJ4XSA553EiqeMYNct67kasOsuq8ArcaE5LAvk8EDPOczLZKM+h5hsuQxVA/PctT4qPF95aTVgJyyPVwOjygNJruC5GrBrqIBXA6MqeK4GrBDK5fgVW0WlagDJYaUMVQPz3KuBazgwFjhNk8S1clx4VVKrgcpMNVAlDdUA4BBUGUhalRzZzUMfJIRTVc87iRVPJcGuG/NcDexatwKvxIXmMAbksJrnHOZlslGfQ0z2oAxVA3OF1UB1aTVgJ6wuqAaqA0mu4bkasGuoIagGaniuBqwQDsrxK7aDlaoBJIc1M1QNzM1ANVArLrzaqdVALaYaqJ2GagBwCKoFJK22UjWAcKrjeSex4qkp2HXreq4G7LrrKvBKXGgO6wI5PMRzDvMy2ajPISZ7aIaqgTnuWl8Ynu8waTVgJzwMrwYWHgYk+XDP1YBdw+F4NbDwcM/VgBXCoTl+xXaEUjWA5PDIDFUDc9yrgQUcGAucpknielRceEenVgNHMdXA0WmoBgCHoKOApB2dI7t56IOEcDrG805ixXOkYNc91nM1YNd9rAKvxIXm8Fggh8d5zmFeJhv1OcRkj89QNXCbu9bnh+c7QVoN2AlPwKuB+ScAST7RczVg13AiXg3MP9FzNWCFcHyOX7GdpFQNIDmsl6Fq4Db3auBuDowFTtMkca0fF97JqdVAfaYaODkN1QDgEFQfSNrJObKbhz5ICKcGnncSK556gl23oedqwK67oQKvxIXmsCGQw0aec5iXyUZ9DjHZxhmqBma7a31DeL4m0mrATtgErwY2NAGS3NRzNWDX0BSvBjY09VwNWCE0zvErtmZK1QCSw+YZqgZmu1cD6zkwFjhNk8S1RVx4LVOrgRZMNdAyDdUA4BDUAkhayxzZzUMfJIRTK887iRVPc8Gu29pzNWDX3VqBV+JCc9gayGEbzznMy2SjPoeYbNsMVQO3umv9zfB87aTVgJ2wHV4NvNkOSHJ7z9WAXUN7vBp4s73nasAKoW2OX7F1UKoGkBx2zFA1cKt7NfAGB8YCp2mSuHaKC69zajXQiakGOqehGgAcgjoBSeucI7t56IOEcOrieSex4uko2HW7eq4G7Lq7KvBKXGgOuwI5PMVzDvMy2ajPISZ7aoaqgVvctV4+PN9p0mrATngaXg2UPw1I8umeqwG7htPxaqD86Z6rASuEU3P8iu0MpWoAyeGZGaoGbnGvBspxYCxwmiaJ61lx4Z2dWg2cxVQDZ6ehGgAcgs4CknZ2juzmoQ8SwukczzuJFc+Zgl23m+dqwK67mwKvxIXmsBuQw3M95zAvk436HGKy3TNUDdzsrvXHw/P1kFYDdsIeeDXweA8gyT09VwN2DT3xauDxnp6rASuE7jl+xdZLqRpActg7Q9XAze7VwAoOjAVO0yRx7RMXXt/UaqAPUw30TUM1ADgE9QGS1jdHdvPQBwnh1M/zTmLF01uw6/b3XA3YdfdX4JW40Bz2B3J4nucc5mWyUZ9DTPb8DFUDN7lrfUJ4vgHSasBOOACvBiYMAJJ8gedqwK7hArwamHCB52rACuH8HL9iu1CpGkByODBD1cBN7tXAeA6MBU7TJHEdFBfe4NRqYBBTDQxOQzUAOAQNApI2OEd289AHCeE0xPNOYsUzULDrDvVcDdh1D1XglbjQHA4FcjjMcw7zMtmozyEmOzxD1cCN7lpvHZ5vhLQasBOOwKuB1iOAJF/kuRqwa7gIrwZaX+S5GrBCGJ7jV2wXK1UDSA4vyVA1cKN7NdCKA2OB0zRJXEfGhXdpajUwkqkGLk1DNQA4BI0EknZpjuzmoQ8SwukyzzuJFc8lgl33cs/VgF335Qq8Eheaw8uBHF7hOYd5mWzU5xCTvTJD1cAsd63PCM93lbQasBNehVcDM64Ckny152rAruFqvBqYcbXnasAK4cocv2K7RqkaQHI4KkPVwCz3amA6B8YCp2mSuI6OC29MajUwmqkGxqShGgAcgkYDSRuTI7t56IOEcBrreSex4hkl2HWv9VwN2HVfq8ArcaE5vBbI4XWec5iXyUZ9DjHZcRmqBm5w1/rQ8HzjpdWAnXA8Xg0MHQ8keYLnasCuYQJeDQyd4LkasEIYl+NXbNcrVQNIDidmqBq4wb0aGMKBscBpmiSuk+LCm5xaDUxiqoHJaagGAIegSUDSJufIbh76ICGcpnjeSax4Jgp23ameqwG77qkKvBIXmsOpQA6nec5hXiYb9TnEZKdnqBqY6a71VeH5ZkirATvhDLwaWDUDSPJMz9WAXcNMvBpYNdNzNWCFMD3Hr9huUKoGkBzOylA1MNO9GniKA2OB0zRJXG+MC++m1GrgRqYauCkN1QDgEHQjkLSbcmQ3D32QEE43e95JrHhmCXbdWzxXA3bdtyjwSlxoDm8Bcnir5xzmZbJRn0NMdnaGqoEZ7lqPhee7TVoN2Alvw6uB2G1Akud4rgbsGubg1UBsjudqwAphdo5fsc1VqgaQHM7LUDUww70aqMqBscBpmiSut8eFd0dqNXA7Uw3ckYZqAHAIuh1I2h05spuHPkgIpzs97yRWPPMEu+5dnqsBu+67FHglLjSHdwE5vNtzDvMy2ajPISY7P0PVwHR3rRcLz3ePtBqwE96DVwPF7gGSfK/nasCu4V68Gih2r+dqwAphfo5fsd2nVA0gOVyQoWpguns1UJQDY4HTNElcF8aFd39qNbCQqQbuT0M1ADgELQSSdn+O7OahDxLC6QHPO4kVzwLBrvug52rArvtBBV6JC83hg0AOH/Kcw7xMNupziMk+nKFqYJq71geH53tEWg3YCR/Bq4HBjwBJXuS5GrBrWIRXA4MXea4GrBAezvErtsVK1QCSwyUZqgamuVcDgzgwFjhNk8R1aVx4y1KrgaVMNbAsDdUA4BC0FEjashzZzUMfJITTcs87iRXPEsGu+6jnasCu+1EFXokLzeGjQA4f85zDvEw26nOIya7IUDUw1V3rpcPzPS6tBuyEj+PVQOnHgSQ/4bkasGt4Aq8GSj/huRqwQliR41dsTypVA0gOV2aoGpjqXg2U4sBY4DRNEten4sJblVoNPMVUA6vSUA0ADkFPAUlblSO7eeiDhHB62vNOYsWzUrDrPuO5GrDrfkaBV+JCc/gMkMNnPecwL5ON+hxiss9lqBqY4m5oSfM9L60G7ITP5+Cfe8HzDm95vZCzB4gF7hcqIvvAPpfjVxQvKu3aSF5eyqdQXdb8kiCH6RTUZKGgXpYKyk74skBQr3gWlOX1SpoEFTXcJv6VHNkDE3ObI60PyaRsd47h+V6VPiR2wlcFjvMqoNjVnh8ou4bVgiSv9tyD2YdotaA8eBG4X695LgftvX1NKNbEhT5brwHrf91ziZfXjhz1OWRHfsNzDu09ekOwESB5CF+FHedJ8KlcyIFTfHAVl7HxwVWdxu4eHHMbu2twNcexdvBBrmPN4OqF3HNTo5B7bt4Eni+7vsQfGdjPNU7572huDwByWxbI7YFAbssBuS0P5LYCkNuKQG4rAbl9S5jbt9KQ2+JAbksAuS0J5LYUkNvSQG7LALndD8jt/kBu1whzuyYNuc0CcpsN5DYHyG0ukNvCQG6LALktCuS2GJDbt4W5fTsNue2Z5Z7bXlnuue2d5Z7bPlnuue2b5Z7bflnuue2f5Z7b87Lcc/uOMLfvpCG3ZwK5PQvI7dlAbs8BctsNyO25QG67A7ntAeT2XWFu301DbjsDue0C5LYrkNtTgNyeCuT2NCC3pwO5PQPI7XvC3L6Xhty2BnLbBshtWyC37YDctgdy2wHIbUcgt52A3L4vzO37acjt3dnuuZ2f7Z7be7Ldc3tvtntu78t2z+2CbPfcLnT/E3C6H/iD0LXC3K5NQ25vA3I7B8jtXCC384Dc3g7k9g4gt3cCub0LyO06YW7XpSG3NwC5nQXk9kYgtzcBub0ZyO0tQG6Bv3WbZgO5XS/M7fo05HYSkNvJQG6nALmdCuR2GpDb6UBugTecnY8NsbndIMzthnhu7b8XCfb8OaT951s5e/58w/7z7Zw9fVOixk7UY4m9O+HzCU9IPD+JuewVC5xpOq8pk2NHAWORn/vf2OTrA/P8fGjiIxMfm/jExKcmNpr4zMTnJr4w8aWJr0x8beIbE9+a+M7E9yZ+MPGjiZ9M/GziFxO/mvjNxO85u3+5nNBH6kUYX/oA/D1T6hVzG5Yr/yz9b00U+kF/GN6bTPxp4i8Tm01sMfG3iX9Sv/v4R/x7jmFsE4P9yWB/MdhmBtvCYH8z2D85/74brhtV4j58APwS7g/Hsfb7mZucxwb0p+tYw/cvt7EzDV/a7DR2k10bbXEZu3HXfaC/HcY23X3P6B/wmx7pEuOH+6gYtxre20xsN7HDxM6c3f+RTBRIFcBWRhTbGGw7g+1gsJ0MZoFUjBisQG7+xfghIMatgBi3AWLcDohxByDGnYAY7Y2MHBsXIzmMTYixQG5mxPjRPirGguZfCpnIMpFtIsc+4yYKmyiSKoCCjCgKMVgWg2UzWA6D5TJYYQYrkgYxfgSIsWBu4CiwnVTIeWxAWa5jDd9st7G7xJjjNHa3GHMBMRYGxFgkQ2L8eB8VY1HzL8VMFDdRwkRJE6VMlDZRJlUARRlRFGOw4gxWgsFKMlgpBivNYGXSIMaPATEWBcRYDBBjcUCMJQAxlgTEWAoQY2lAjGVAMabrC8mFCrrPG55vv9x8TGg/jH5u/1z3B1DKa/+QSmJun/OWDOTb4QfkJxn2w+g3eA9wf1qprELiyjIPVNRcZQHFcbyifr59mMrm4t8s3t/jvU1cqPv/4bxlU7DJdSzt/kMal7H23v/lNnZXmjY7jd2d0S0uY+PJ/9thbOI5+QfYMQ8EnsXwzm4/1zjlv6O53QrkdhuQ2+1AbncAud0J5DbIdc8t5brntgCgu3LC3JZLQ24L5rrntlCue26zct1zm53rntucXPfc5gK5LQzktgiQ2/LC3JZPQ26LArktBuS2OJDbEkBuSwK5LQXktjSQ2zJAbisIc1shDbktFLjnNitwz2124J7bnMA9t7mBe24LB+65LRK457Zo4J7bisLcVkxDbosF7rktHrjntkTgntuSgXtuSwXuuS0duOe2TOCe2/0C99xWEua2Uhpyu3/gntsDAvfclg3cc3tg4J7bcoF7bssH7rmtELjntmLgntvKwtxWTkNuKwXuua0cuOe2SuCe26qBe25jgXtuqwXuuT0ocM9t9cA9t1WEua2S++9vFB2Yu6eGTtRbib054eMJzSeej8TPCgL3ZwIYi/zc/+/HjgLGIj/3v7HJV1WrORPVTBxkorqJGiYONlHTRC0TtU3UMVHXxCEmDjVxmInDTRxh4kgTR5k42sQxJo41cZyJ402ckJveXx1VBf/MLvWKuQ3LlX+W/9XRieZfTjJRz0R9EyebaGCioYlGqb+uOZH5Fc5JDFaPweoz2MkM1oDBGjJYo9z8/+qoKtB0nQj86ugk4FdH9YBfHdUHfnV0MvCrowbAr44aAr86agSIIp1ijO2jYmxs/qWJiaYmmplobqKFiZYmWqUKoDEjiiYM1pTBmjFYcwZrwWAtGaxVGsQYA8TYGBBjE0CMTQExNgPE2BwQYwtAjC0BMbbKkBir7aNibG3+pY2JtibamWhvooOJjiY6pQqgNSOKNgzWlsHaMVh7BuvAYB0ZrFMaxFgNEGNrQIxtADG2BcTYDhBje0CMHQAxdgTE2ClDYjxoHxVjZ/MvXUx0NXGKiVNNnGbidBNnpAqgMyOKLgzWlcFOYbBTGew0Bjudwc5IgxgPAsTYGRBjF0CMXQExngKI8VRAjKcBYjwdEOMZgChsThN/lrO3P6ux/9zbn/XYKxY4XQSMRX7u//djRwFjkZ/739jk60zzvJ9l4mwT55joZuJcE91N9DDR00QvE71N9DHR10Q/E/1NnGfifBMDTFxg4kITA00MMjHYxBATQ3PTu0meuY9uksPMvww3McLERSYuNnGJiZEmLk3dmIYxm9VwBhvBYBcx2MUMdgmDjWSwS9OwSZ4JbJLDgE1yOLBJjgA2yYuATfJiYJO8BNgkRwKb5KUZqljP2kfFeJn5l8tNXGHiShNXmbjaxDUmRqUK4DJGFJcz2BUMdiWDXcVgVzPYNQw2Kg1iPAsQ42WAGC8HxHgFIMYrATFeBYjxakCM1wBiHJUhMZ69j4pxtPmXMSbGmrjWxHUmxpkYb2JCqgBGM6IYw2BjGexaBruOwcYx2HgGm5AGMZ4NiHE0IMYxgBjHAmK8FhDjdYAYxwFiHA+IcUKGxHjOPirG682/TDQxycRkE1NMTDUxzcT0VAFcz4hiIoNNYrDJDDaFwaYy2DQGm54GMZ4DiPF6QIwTATFOAsQ4GRDjFECMUwExTgPEOB0UBfp+kX3fBHkPxo61vzpG37X5A3hHY4bnNW8SrPkkwZo3AWue6XnNfwrWXE+w5j+BNd/gec1/CdZcX7Dmv4A1z/K85s2CNZ8sWPNmYM03el7zFsGaGwjWvAVY802e1/y3YM0NBWv+G1jzzZ7X/I9gzY0Ea0beJ7zF85q3CtbcWLDmrcCab/W85m2CNTcRrHkbsObZnte8XbDmpoI1bwfWfJvnNe8QrLmZYM07gDXP8bzmnYI1NxeseSew5rme12ybTHTNLQRrdjpLK85pnuc1k2DNLQVrJmDNt3tecwHBmlsJ1oy8E36H5zUXFKy5tWDNBYE13+l5zYUEa24jWHMhYM13eV5zlmDNbQVrzgLWfLfnNWcL1txOsOZsYM3zPa85R7Dm9oI15wBrvsfzmnMFa+4gWHMusOZ7Pa+5sGDNHQVrLgys+T7Pay4iWHMnwZqRcz0WeF5zUcGaOwvWXBRY80LPay4mWHMXwZqLAWu+3/OaiwvW3FWw5uLAmh/wvOYSgjWfIlhzCWDND3pec0nBmk8VrLkksOaHPK+5lGDNpwnWXApY88Oe11xasObTBWsuDaz5Ec9rLiNY8xmCNSNnMy0C1pzOAzqzhKelLs7Nx4T2w+jnlgA3U8prSe4eIOb2OW/JiPyDr9AHl+YnGUtzcQUtBdSzTCFxy5gHKmquZaDLoD/fPkzLBK6xRPHeRn3GOt8wwb39rIa/e2u/tWR5DRfw+twrr907xQgBry988orvYBcJeH3pj9eub35ZXhcLeH3ljdfub5lZXpcIeH3ti1f8G22W10gBr2888Up8e87yulTA69t88ooabnnNEPD6zisv2uWrMwW8vvfJi3b7/Q0CXj945GXHWl6zBLx+9Mdr11DL60YBr5+88do90vK6ScDrZ1+84gMtr5sFvH7xxCsxzvK6RcDrV5BX4iqfMk8UzWHONSEFw13H0u5axWWsvS8X5brr4uJc92f1klz352dkrntOLwVq4+VAzQ3UtgTUmwTUgATUZQTUSgTULwTUFATs8wTsvQTshwTsUQTsGwR4OQH+SoDnEeJDVh+JN1Psc984hNsrFv+nS294mcAztyn0hpcLeG1X6A2vEPDaodAbXingtVOhN7xKwCs42H9veLWAF/niFeoNrxHwKuCJV7g3HCXgVTCfvKKGW163CngV8sprd284W8AryyeveG94m4BXtkdeid5wjoBXjj9e/+sN5wp45Xrjtac3nCfgVdgXr1BveLuAVxFPvMK94R0CXkVBXokL7Q0vA3rDy4He8AqgN7wS6A2vAnrDq4He8BqgNxwF9IaPAr0hUNsSUG8SUAMSUJcRUCsRUL8QUFMQsM8TsPcSsB8SsEcRsG8Q4OUE+CsBnkeID4V7w0fz2RuOFnjmgd5q9z294RgBr3Jeee2uRccKeJX3ySteI18r4FXBH6//9YbXCXhVVOgNxwl4VVLoDccLeFVW6A0nCHhVUegN7xTwqqrQG94l4BVT6A3vFvCqptAbzhfwOkihN7xHwKu6Qm94r4BXDYXe8D4Br4MVesMFAl41lXrD0UBvOAboDccCveG1QG94HdAbjgN6w/FAbzgB6A0fA3pDoLYloN4koAYkoC4joFYioH4hoKYgYJ8nYO8lYD8kYI8iYN8gwMsJ8FcCPI9qCnvDx/LZG14v8MyjFXrDiQJexyj0hpMEvI5V6A0nC3gdp9AbThHwOl6hN5wq4HWCQm84TcDrRIXecLqA10kKveFCAa96Cr3h/QJe9RV6wwcEvE5W6A0fFPBqoNAbPiTg1VChN3xYwKuRQm/4iIBXY4XecJGAVxOl3vB6oDecCPSGk4DecDLQG04BesOpQG84DegNpwO94QqgNwRqWwLqTQJqQALqMgJqJQLqFwJqCgL2eQL2XgL2QwL2KAL2DQK8nAB/JcDzqImwN1wR6g0TF3raeQ3nsbt+he3sTTUdx9p11HIbu8saajuN3e0idVzGxg2nrsPYhDcdErh70+O5stw+nobcHhq45/awwD23hwfuuT0icM/tkYF7bo8K3HN7dOCe22MC99w+IcztE2nI7bGBe26PC9xze3zgntsTAvfcnhi45/akwD239QL33NYP3HP7pDC3T6YhtycH7rltELjntmHgnttGgXtuGwfuuW0SuOe2aeCe22aBe25XCnO7Mp5b+++Jv2F0ebzveDR3z5/XJvbmhI8nNJ94PhI/KwjcnwlgLPJz/78fOwoYi/zc/8YmX0+Z532ViadNPGPiWRPPmXjexAsmXjTxkomXTbxi4lUTq028ZuJ1E2+YeNPEWybWmHjbxDsm3jXxnon3c9P7Vzc9lYvdh9Qr5jYsV/5Z/q9uWmv+ZZ2J9SY2mPjAxIcmPjLxcW6QbGh2cCq2jsHWM9gGBvuAwT5ksI8Y7OPc/P/VTU8Bf2iw1nGs/YXVOuexAa13HWv4bnAbu+uXLR84jd39C5APXcbGfynxkcPYxC8KPgZEkU4xrtpHxfiJ+ZdPTWw08ZmJz018YeJLE1+lCuATRhSfMthGBvuMwT5nsC8Y7EsG+yoNYlwFiPETQIyfAmLcCIjxM0CMnwNi/AIQ45eAGL/KkBif3kfF+LX5l29MfGviOxPfm/jBxI8mfkoVwNeMKL5hsG8Z7DsG+57BfmCwHxnspzSI8WlAjF8DYvwGEOO3gBi/A8T4PSDGHwAx/giI8acMifGZfVSMP5t/+cXEryZ+M/G7iT9MbDLxZ6oAfmZE8QuD/cpgvzHY7wz2B4NtYrA/0yDGZwAx/gyI8RdAjL8CYvwNEOPvgBj/AMS4CRDjn0JRoGdzIgel/uXOicL/p1AKp6jPDgM4bQY4febnXJmkC13rcGCtW8Jjj/m+xuDOg6+fevOfQ1fvXFfotaLLeh7V6LHYknn7zetWKvksoaix3yutdQSw1r+TxlYpMXPVqi3lak7pX3/12g/fWvvM/jOG/rXu3c6LF/8zsFTSWUhRY39QWutFwFr/SR7b9MovDms9blHFHUfVv/PDez+cFGvxdu0DJw7r27lEkYGlv6zhPvZHpbVeDKx1a2jsYd0LTxrzxAnL6t9651G9ym2PvXdEl/6vfvdbo+Xf91s4qEqRQeGzqKLG/qS01kuAtW4Lja341+YDxrxz0hELSy9esH1V9yfmfbd9aaFH+s1auOj+AXMaVCkaPksrauzPSmsdCax1e2js4Rf+VTQnp/PoysW/HND15/G/fF7u5nYlx9aOzb7j10U72jeoGj4LLGrsL0prRc5/2xEaW/fRWd8V+OOeAw6teFudtw+ee9SaEx5btaPoNQe+0fyklx/9uX3D8FlmUWN/VVrrZcBadwL7K3KeQaGDddZ6ObBWWwT/b2zEnrkd2F+zlNZ6BbBWKuy+Z+4A9tdspbVeCay1QGH3PXMnsL/mKK31KmCtBQu775nh8zyixuYqrfVqYK2FCrvvmeHzSKLGFlZa6zXAWrMKu++Z4fNUosYWUVrrKGCt2YXd98zweTBRY4sqrXU0sNacwu4/F3kntKrSWscAa80F9tfwO61RY2NKax0LrLUwsL+G38mNGltNaa3XAmstAuyvFQ52H3uQ0lqvA9ZaFNhfKwL7a3WltY4D1loM2F8rAftrDaW1jgfWWhzYXysD++vBSmtFziEoAeyvVYD9tabSWq8H1loS2F+R92rqKa11IrDWUsD+egywv9ZXWuskYK2lgf31WGB/PVlprZOBtZYB9tfjgP21gdJapwBr3Q/YX48H9teGSmudCqx1f2B/PQHYXxsprXUasNYDgP31RGB/bay0VuRdzrLA/noSsL+i7/oSuEb7u2D7ldLUz0Wtt5/nswosr3UCXv09n1Vgea0X8DrP81kFltcGAa/zPZ9VYHl9IOA1wPNZBZbXhwJeF3g+q8Dy+kjA60LPZxVYXh8LeA307F/2+ymbBbwGefYvy2uLgNdgz/5lef0t4DXEs39ZXv8IeA317F+W11YBr2Ge/cvy2ibgNdyzf1le2wW8Rnj2L8trh4DXRcJaszQ4z4HAn1kAtRcB9RABNQoBdQMBezkB+ysBex4B+xABewMBfk2AhxLgawR4DQH6J0CThOjEajDxvWT73DcO4faKOf2U3b3LJwJNX6nQu3wq4HWVQu+yUcDraoXe5TMBr2sUepfPBbxGKfQuXwh4jVboXb4U8Bqj0Lt8JeA1VqF32Sngda1C72K/F4fyuk6hdyEBr3EKvUsBAa/xCr1LQQGvCQq9SyEBr+sVepcsAa+JCr1LtoDXJKXepRzQuwC1FwH1EAE1CgF1AwF7OQH7KwF7HgH7EAF7AwF+TYCHEuBrBHgNAfonQJM0Sdi7lMtn7/K1YO+/QaF3+UbAa5ZC7/KtgNeNCr3LdwJeNyn0Lt8LeN2s0Lv8IOB1i0Lv8qOA160KvctPAl6zFXqXHEFNcptC75Ir4DVHoXcpLOA1V6F3KSLgNU+hdykq4HW7Qu9STMDrDoXepbiA150KvUsJAa+7lHqX8kDvAtReBNRDBNQoBNQNBOzlBOyvBOx5BOxDBOwNBPg1AR5KgK8R4DUE6J8ATdJdwt6lfD57l58FNcn9Cr3LLwJeDyj0Lr8KeD2o0Lv8JuD1kELv8ruA18MKvcsfAl6PKPQumwS8Fin0Ln8KeC1W6F1KCmqSJQq9SykBr6UKvUtpAa9lCr1LGQGv5Qq9y34CXo8q9C77C3g9ptC7HCDgtUKhdykr4PW4Uu9SAehdgNqLgHqIgBqFgLqBgL2cgP2VgD2PgH2IgL2BAL8mwEMJ8DUCvIYA/ROgSXpc2LtUKPzvv89ib39fhf3ngXEdlyu8p/9J/Cx7xQJnGpC2/xvrNnYUMBb5uf+NTb4qmue9konKJqqYqGr3EBPVTBxkorqJGiYONlHTRC0TtU3UMVHXxCEmDjVxmInDTRxh4kgTR5k42sQxhdN7UHDFwth9SL1ibsNy5Z/lDwo+1vA+zsTxJk4wcaKJk0zUM1G/cJBsaHZwbgp2HIMdz2AnMNiJDHYSg9VjsPqF839QcMXC7kXMsY5j7UHBxzmPDeh417GG7wluY3cdFHyi09jdBwWf5DI2flBwPYexiYOC6wOiSKcYK+2jYjzZ8G5goqGJRrZ4MNHERFMTzVLFeDIjigYM1pDBGjFYYwZrwmBNGaxZGsRYCRDjyYAYGwBibAiIsREgxsaAGJsAYmwKiLFZhsRYeR8VY3PDu4WJliZamWhtoo2JtibapYqxOSOKFgzWksFaMVhrBmvDYG0ZrF0axFgZEGNzQIwtADG2BMTYChBja0CMbQAxtgXE2C5DYqyyj4qxveHdwURHE51MdDbRxURXE6ekirE9I4oODNaRwToxWGcG68JgXRnslDSIsQogxvaAGDsAYuwIiLETIMbOgBi7AGLsCojxFKEoEoKMOebmVPd5oHdnBx2sw/+08D2NOJcr/D5v1NjBSvxPT3om9n7WVvgd46ixQ5T4n5H8TO/1/KzzD3YfO1SJ/5kh/lFnYoXfxY4aO0yJ/1kh/lHnXIXfD48aO1yJ/9kh/lFnV4XfWY8aO0KJ/zkh/lHnUYXfo48ae5ES/26A/yPvH12rxP9cwP+vAvz/OiX+3QH/vxrw/3FK/HsA/n8N4P/jlfj3BPx/FOD/E5T49wL8fzTg/9cr8e8N+P8YwP8nKvHvA/j/WMD/Jynx7wv4P/Id7tuU+PcD/H8W4P9zlPj3B/z/RsD/5yrxPw/w/5sA/5+nxP98wP9vBvz/diX+AwD/vwXw/zuU+F8A+P+tgP/fqcT/QsD/ZwP+f5cS/4GA/yPfg1uixH8Q4P8PAP6/VIn/YMD/HwT8f5kS/yGA/z8E+P9yJf5DAf9/GPD/R5X4DwP8/xHA/x9T4j8c8P9FgP+vUOI/AvD/xYD/I9/vtL+Ms3+PNTH/jVLWE3FRdkH3ecPzXVQ4HxPaD6Ofuxj4BZSU18WF9wAxt895S0bUGsPzXZKfZNgPo38r+iVAFTFSIXEjmQcqaq6R4G/c0J9vH6aRzL2Nmubi/0P31r6Vdqrg3r6h8PbqaQJebyq8vXq6gNdbCm+vniHgtUbh7dUzBbzeVnh79SwBr3cU3l49W8DrXYW3V88R8HrPq0/sfnv1WAGv9xXeXj1OwGutwturxwt4rVN4e/UEAa/1Cm+vnijgtUHh7dWTBLw+UHh7tZ6A14cKb6/WF/D6SOnt1UuBmhCovQiohwioUQioGwjYywnYXwnY8wjYhwjYGwjwawI8lABfI8BrCNA/AZokRCdWg4lvrtrnvnEIt1fM6afs7l26CTT9pULvcq6A11cKvUt3Aa+vFXqXHgJe3yj0Lj0FvL5V6F16CXh9p9C79Bbw+l6hd+kj4PWDQu9ysoDXjwq9SwMBr58UepeGAl4/K/QujQS8flHoXRoLeP2q0Ls0EfD6TaF3aSrg9btC79JMwOsPpd7lMqB3AWovAuohAmoUAuoGAvZyAvZXAvY8AvYhAvYGAvyaAA8lwNcI8BoC9E+AJukPYe9yWT57l74CTW9V6F36CXhtU+hd+gt4bVfoXc4T8Nqh0LucL+C1U6F3GSDgFdT037tcIOBFnniFe5cLBbwK+Lpf8eG2Jmku4FXQK6/dvUsLAa9CPnnFe5eWAl5ZHnklepdWAl7Z/nj9r3dpLeCV443Xnt6ljYBXrmf/srzaCngV9uxfllc7Aa8iIK/EhfYulwO9C1B7EVAPEVCjEFA3ELCXE7C/ErDnEbAPEbA3EODXBHgoAb5GgNcQoH8CNEmITsK9y+X57F0GCjRdxvPeb3kNEvDaz/Peb3kNFvDa3/Peb3kNEfA6wPPeb3kNFfAq63nvt7yGCXgdqNC7DBfwKqfQu4wQ8Cqv0Lu0F/CqoNC7dBDwqqjQu3QU8Kqk0Lt0EvCqrNC7dBbwqqLQu3QR8Kqq0Lt0FfCKKfQupwh4VVPqXa4Aeheg9iKgHiKgRiGgbiBgLydgfyVgzyNgHyJgbyDArwnwUAJ8jQCvIUD/BGiSqgl7lytCvUviSrwfFQucLmruPJaCFq5jDbmWjmPtOlq5jd1lP62dxu52qjYuY+Om1tZhbML/2gXu3nRlYVlur0xDbtsH7rntELjntmPgnttOgXtuOwfuue0SuOe2a+Ce21MC99xeJcztVWnI7amBe25PC9xze3rgntszAvfcnhm45/aswD23ZwfuuT0ncM/t1cLcXp2G3HYL3HN7buCe2+6Be257BO657Rm457ZX4J7b3oF7bvsE7rm9Rpjbawr/+28YujReF19WeM+fJyb25oSPJzSfeD4SPysI3J8JYCzyc/+/HzsKGIv83P/GJl+jzPM+2sQYE2NNXGviOhPjTIw3McHE9SYmmphkYrKJKSammphmYrqJGSZmmrjBxCwTN5q4ycTNJm4pnN6j20cVxu5D6hVzG5b2o9tvNbxnm7jNxBwTc03MM3G7iTsKB8mGZgenHqE+m8FuY7A5DDaXweYx2O0Mdkfh/B/dHk5a1CZwq+NYe3T7bOexAd3mOtbwneM2dtfR7XOdxu4+un2ey9j40e23O4xNHN1+ByCKdIpx9D4qxjsN77tM3G1ivol7TNxr4j4TC1LFeCcjirsY7G4Gm89g9zDYvQx2H4MtSIMYRwNivBMQ412AGO8GxDgfEOM9gBjvBcR4HyDGBRkS45h9VIwLDe/7TTxg4kETD5l42MQjJhalinEhI4r7GewBBnuQwR5isIcZ7BEGW5QGMY4BxLgQEOP9gBgfAMT4ICDGhwAxPgyI8RFAjIsyJMax+6gYFxveS0wsNbHMxHITj5p4zMSKVDEuZkSxhMGWMtgyBlvOYI8y2GMMtiINYhwLiHExIMYlgBiXAmJcBohxOSDGRwExPgaIcYVQFOjZcMhBfY+7c6Lw/0FPbXwCmAc5P+N94Tt0KP8nw/c04iTbN4FTb9cq8V+Z9Ezs/STbt4BTb9cp8X8q+Zne60m2a4BTb9cr8V8V4h91ku3bwKm3G5T4Px3iH3WS7TvAqbcfKPF/JsQ/6iTbd4FTbz9U4v9siH/USbbvAafefqTE/znA/5F3kH9U4v884P9fAf7/kxL/FwD//xrw/5+V+L8I+P83gP//osT/JcD/vwX8/1cl/i8D/v8d4P+/KfF/BfD/7wH//12J/6uA//8A+P8fSvxXA/6PvMdVsKYO/9cA/98G+H8hJf6vA/6/HfD/LCX+bwD+vwPw/2wl/m8C/r8T8P8cJf5vAf4fflcxamyuEv81gP+H35+MGltYif/bgP+H3+mMGltEif87gP+X8fO97qQL5f8u4P/h7+dHja2oxP89wP/D7wxEja2kxP99wP8PqOk+trIS/7WA/4ffrYgaW0WJ/zrA/w8E/L+qEv/1gP+XA/w/psR/A+D/5QH/R9+FohTeUcPt7yLsV5oIXG8Tz+9yWl6zBbyaen6X0/K6TcCrmed3OS2vOQJezT2/y2l5zRXwauH5XU7La56AV0vP73JaXrcLeLXy/C6n5XWHgFdrz/5lfz/6hIBXG8/+ZXk9KeDV1rN/WV4rBbzaefYvy+spAa/2nv3L8lol4NXBs39ZXk8LeHX07F+W1zMCXp08+5fl9ayAV2eld9E/APpvoPYioB4ioEYhoG4gYC8nYH8lYM8jYB8iYG8gwK8J8FACfI0AryFA/wRokhCdWA0mvhdnn/vGIdxeMaefsrt3uVOg6TMVepe7BLzOUuhd7hbwOluhd5kv4HWOQu9yj4BXN4Xe5V4Br3MVepf7BLy6K/QuCwS8eij0Ls8JePVU6F2eF/DqpdC7vCDg1Vuhd3lRwKuPQu/ykoBXX4Xe5WUBr34KvcsrAl79FXqXVwW8zlPqXT4Eeheg9iKgHiKgRiGgbiBgLydgfyVgzyNgHyJgbyDArwnwUAJ8jQCvIUD/BGiSzhP2Lh/ms3dZKND0EIXe5X4Br6EKvcsDAl7DFHqXBwW8hiv0Lg8JeI1Q6F0eFvC6SKF3eUTA62KF3mWRgNclCr3LagGvkQq9y2sCXpcq9C6vC3hdptC7vCHgdblC7/KmgNcVCr3LWwJeVyr0LmsEvK5S6F3eFvC6Wql3+QjoXYDai4B6iIAahYC6gYC9nID9lYA9j4B9iIC9gQC/JsBDCfA1AryGAP0ToEm6Wti7fJTP3mWxQNPjFHqXJQJe4xV6l6UCXhMUepdlAl7XK/QuywW8Jir0Lo8KeE1S6F0eE/CarNC7rBDwmqLQu7wj4DVVoXd5V8BrmkLv8p6A13SF3uV9Aa8ZCr3LWgGvmQq9yzoBrxsUepf1Al6zFHqXDQJeNyr1Lh8DvQtQexFQDxFQoxBQNxCwlxOwvxKw5xGwDxGwNxDg1wR4KAG+RoDXEKB/AjRJNwp7l48L//s89b2dl27/+UH8nx8W3tP/JH6WvWKBMw1I2/+NdRs7ChiL/Nz/xiZfn5jn/VMTG018ZuJzE1+Y+NLEVya+NvGNiW9NfGfiexM/mPjRxE8mfjbxi4lfTfxm4ncTf5jYZOJPE38VTu9BlZ8Uxu5D6hVzG5b2gyo3G95bTPxt4h8TW01sM7HdxI7CQbKh2cGpB0ZuYbC/GewfBtvKYNsYbDuD7Sic/4Mqw0mLKmI2O461B1VucR4b0N+uYw3ff9zG7jqocqvT2N0HVW5zGRs/qHK7w9jEQZU7AFGkU4yf7qNi3GkfYFMpkIkCJgqaKGQiy0R2ooJICGAnIwr74VSMGKwAgxVksEIMlsVg2UXyL8ZPATHuBMRo74nb2IDIdazhW8Bt7C4xFnQau1uMhVzGxsWY5TA2IcbsIpkR48Z9VIw59pk2UdhEERNFTRQzUdxEiVQx5jCiyGWwwgxWhMGKMlgxBivOYCXSIMaNgBhznAW2k3IBMRYGxFgEEGNRQIzFADEWB8RYIkNi/GwfFWNJc79KmShtooyJ/Uzsb+IAE2VTxViSEUUpBivNYGUYbD8G25/BDmCwsmkQ42eAGEsCYiwFiLE0IMYygBj3A8S4PyDGAwAxlgXEGL7Qs1cOdJ8Hene2TU0d/uXC9zTiPKrw+7xRY9sq8S+f9Ezs/Tyq8DvGUWPbKfGvkPxM7/U8quY13ce2V+JfMcQ/6jyq8LvYUWM7KPGvFOIfdR5V+P3wqLEdlfhXDvGPOo8q/M561NhOSvyrhPhHnUcVfo8+amxnJf5VAf9H3j/qqcQ/Bvj/WYD/91LiXw3w/7MB/++txP8gwP/PAfy/jxL/6oD/dwP8v68S/xqA/58L+H8/Jf4HA/7fHfD//kr8awL+3wPw//OU+NcC/B/5DvdIJf61Af8fCvj/pUr86wD+Pwzw/8uU+NcF/H844P+XK/E/BPD/EYD/X6HE/1DA/y8C/P9KJf6HAf5/MeD/VynxPxzw/0sA/79aif8RgP8j34ObqsT/SMD/xwP+P02J/1GA/08A/H+6Ev+jAf+/HvD/GUr8jwH8fyLg/zOV+B8L+P8kwP9vUOJ/HOD/kwH/n6XE/3jA/6cA/o98v9P+Ms7+ParE/DdKWU/ERTkF3ecNz3dCkXxMaD+Mfu7EIu5JkvI6scgeIOb2OW/JiFpjeL6T8pMM+2H0b+U9Cagi6ikkrh7zQEXNVQ/8jRv68+3DVI+5t1HTnPh/6N7at9IOFNzbhQpvr5YT8Lpf4e3V8gJeDyi8vVpBwOtBhbdXKwp4PaTw9molAa+HFd5erSzg9YjC26tVBLwWefWJ3W+vbha8lbZY4e3VLQJeSxTeXv1bwGupwtur/wh4LVN4e3WrgNdyhbdXtwl4Parw9up2Aa/HFN5e3SHgtULp7dX6QE0I1F4E1EME1CgE1A0E7OUE7K8E7HkE7EME7A0E+DUBHkqArxHgNQTonwBNEqITq8HEN1ftc984hNsr5vRTdvcuVQU1yTMKvUtMwOtZhd6lmoDXcwq9y0ECXs8r9C7VBbxeUOhdagh4vajQuxws4PWSQu9SU8DrZYXeZaegJnlFoXcJBPfrVYXehQS8Viv0LgUEvF5T6F0KCni9rtC7FBLwekOhd8kS8HpToXfJFvB6S6l3ORnoXYDai4B6iIAahYC6gYC9nID9lYA9j4B9iIC9gQC/JsBDCfA1AryGAP0ToEl6S9i7nJzP3qWWQNPrFHqX2gJe6xV6lzoCXhsUepe6Al4fKPQuhwh4fajQuxwq4PWRQu9ymIDXxwq9y+ECXp8o9C45Al6fKvQuuQJeGxV6l8ICXp8p9C5FBLw+V+hdigp4faHQuxQT8PpSoXcpLuD1lULvUkLA62ul3qUB0LsAtRcB9RABNQoBdQMBezkB+ysBex4B+xABewMBfk2AhxLgawR4DQH6J0CT9LWwd2mQz97lCIGmf1boXY4U8PpFoXc5SsDrV4Xe5WgBr98UepdjBLx+V+hdjhXw+kOhdzlOwGuTQu9yvIDXnwq9S0kBr78UepdSAl6bFXqX0gJeWxR6lzICXn8r9C77CXj9o9C77C/gtVWhdzlAwGubQu9SVsBru1Lv0hDoXYDai4B6iIAahYC6gYC9nID9lYA9j4B9iIC9gQC/JsBDCfA1AryGAP0ToEnaLuxdGoZ6l8SFnnbY13ksBf1cxxpy/R3H2nWc5zZ2l/2c7zR2t1MNcBkbN7ULHMYm/O/CwN2bGhWR5bZRGnI7MHDP7aDAPbeDA/fcDgncczs0cM/tsMA9t8MD99yOCNxz21iY28ZpyO1FgXtuLw7cc3tJ4J7bkYF7bi8N3HN7WeCe28sD99xeEbjntokwt03SkNsrA/fcXhW45/bqwD231wTuuR0VuOd2dOCe2zGBe27HBu65bSrMbdMi//4bhurH6+KTi+z588TE3pzw8YTmE89H4mcFgfszAYxFfu7/92NHAWORn/vf2OSrmXnem5toYaKliVYmWptoY6KtiXYm2pvoYKKjiU4mOpvoYqKriVNMnGriNBOnmzjDxJkmzjJxtolziqT36PZm4DvzqVfMbVjaj27vZnifa6K7iR4meproZaK3iT4J00oYmh2ceoT6uQzWncF6MFhPBuvFYL0ZrE+R/B/d3gw4JKCb41h7dPu5zmMD6u461vDt4TZ219HtPZ3G7j66vZfL2PjR7b0dxiaObu8DiCKdYmy+j4qxr+Hdz0R/E+eZON/EABMXmLgwVYx9GVH0Y7D+DHYeg53PYAMY7AIGuzANYmwOiLEvIMZ+gBj7A2I8DxDj+YAYBwBivAAQ44UZEmOLfVSMAw3vQSYGmxhiYqiJYSaGmxiRKsaBjCgGMdhgBhvCYEMZbBiDDWewEWkQYwtAjAMBMQ4CxDgYEOMQQIxDATEOA8Q4HBDjiAyJseU+KsaLDO+LTVxiYqSJS01cZuJyE1ekivEiRhQXM9glDDaSwS5lsMsY7HIGuyINYmwJiPEiQIwXA2K8BBDjSECMlwJivAwQ4+WAGK8QigI9Gw45qO9Kd04U/j/oqY1XAfMg52csFv4uF+V/dfieRpxkGz7TI2rsEiX+1yQ9E3s/yTZ8zkjU2KVK/EclP9N7Pcn2wZruY5cp8R8d4h91km34PJaoscuV+I8J8Y86yTZ8RkzU2EeV+I8N8Y86yTZ8bk3U2MeU+F8b4h91km34LJ2osSuU+F8H+D/yDvIrSvzHAf7/LOD/ryrxHw/4/3OA/69W4j8B8P/nAf9/TYn/9YD/vwD4/+tK/CcC/v8i4P9vKPGfBPj/S4D/v6nEfzLg/y8D/v+WEv8pgP8j73F9qsR/KuD/6wH/36jEfxrg/xsA//9Mif90wP8/APz/cyX+MwD//xDw/y+U+M8E/P8jwP+/VOJ/A+D/HwP+/5US/1mA/38C+P/XSvxvBPwf+S78X0r8bwL8/xfA/zcr8b8Z8P9fAf/fosT/FsD/fwP8/28l/rcC/v874P//KPGfDfj/H4D/b1Xifxvg/5sA/9+mxH8O4P9/Av6PvgtFKbyjhtvfRdivNBG43sq1fPKiXb8jOVfAq4pPXrT7dzfdBbyqeuRlx1pePQS8Yv547RpqefUU8KrmjdfukZZXLwGvg3zxig+0vHoLeFX3xCsxzvLqI+BVw6tPBGR/P3qVgNfBnv3L8rpawKumZ/+yvK4R8Krl2b8sr1ECXrU9+5flNVrAq45n/7K8xgh41fXsX5bXWAGvQzz7l+V1rYDXoSCvxIW+iz4X6L+B2ouAeoiAGoWAuoGAvZyA/ZWAPY+AfYiAvYEAvybAQwnwNQK8hgD9E6BJQnRiNZj4Xpx97huHcHvFnH7K7t6lr0DTxyr0Lv0EvI5T6F36C3gdr9C7nCfgdYJC73K+gNeJCr3LAAGvkxR6lwsEvOop9C4XCnjVV+hdrhPwOlmhdxkn4NVAoXcZL+DVUKF3mSDg1Uihd7lewKuxQu8yUcCriULvMknAq6lC7zJZwKuZUu8yD+hdgNqLgHqIgBqFgLqBgL2cgP2VgD2PgH2IgL2BAL8mwEMJ8DUCvIYA/ROgSWom7F3m5bN3GSjQdDuF3mWQgFd7hd5lsIBXB4XeZYiAV0eF3mWogFcnhd5lmIBXZ4XeZbiAVxeF3mWEgFdXhd5lioDXKQq9y1QBr1MVepdpAl6nKfQu0wW8TlfoXWYIeJ2h0LvMFPA6U6F3uUHA6yyF3mWWgNfZSr3L7UDvAtReBNRDBNQoBNQNBOzlBOyvBOx5BOxDBOwNBPg1AR5KgK8R4DUE6J8ATdLZwt7l9nz2LhcJNN1boXe5WMCrj0LvcomAV1+F3mWkgFc/hd7lUgGv/gq9y2UCXucp9C6XC3idr9C7XCHgNUChd7lRwOsChd7lJgGvCxV6l5sFvAYq9C63CHgNUuhdbhXwGqzQu8wW8Bqi0LvcJuA1VKF3mSPgNUypd7kD6F2A2ouAeoiAGoWAuoGAvZyA/ZWAPY+AfYiAvYEAvybAQwnwNQK8hgD9E6BJGibsXe4o8u/z1Pd2Xrr959z4P+cV2dP/JH6WvWKBMw1I2/+NdRs7ChiL/Nz/xiZfd5rn/S4Td5uYb+IeE/eauM/EAhMLTdxv4gETD5p4yMTDJh4xscjEYhNLTCw1sczEchOPmnjMxAoTjxdJ70GVdxbB7kPqFXMblvaDKp8wvJ80sdLEUyZWmXjaxDMmnk2YVsLQ7ODUAyOfZLCVDPYUg61isKcZ7BkGe7ZI/g+qDCctqoh5wnGsPajySeexAa10HWv4PuU2dtdBlaucxu4+qPJpl7HxgyqfcRibOKjyWUAU6RTjXfuoGJ8zvJ838YKJF028ZOJlE6+YeDVVjM8xoniewV5gsBcZ7CUGe5nBXmGwV9MgxrsAMT4HiPF5QIwvAGJ8ERDjS4AYXwbE+AogxlczJMa791Exrja8XzPxuok3TLxp4i0Ta0y8nSrG1YwoXmOw1xnsDQZ7k8HeYrA1DPZ2GsR4NyDG1YAYXwPE+DogxjcAMb4JiPEtQIxrADG+nSExzt9HxfiO4f2uifdMvG9irYl1Jtab2JAqxncYUbzLYO8x2PsMtpbB1jHYegbbkAYxzgfE+A4gxncBMb4HiPF9QIxrATGuA8S4HhDjBqEo0LNXPnCfB3p39uBaOvw/DN/TiPOowu/zRo2tqcT/o6RnYu/nUYXfMY4aW0uJ/8fJz/Rez6OK1XIfW1uJ/ych/lHnUYXfxY4aW0eJ/6ch/lHnUYXfD48aW1eJ/8YQ/6jzqMLvrEeNPUSJ/2ch/lHnUYXfo48ae6gS/88B/0fePzpZif8XgP8fB/h/AyX+XwL+fzzg/w2V+H8F+P8JgP83UuL/NeD/JwL+31iJ/zeA/58E+H8TJf7fAv5fD/D/pkr8vwP8vz7g/82U+H8P+D/yHe5TlPj/APh/e8D/T1Xi/yPg/x0A/z9Nif9PgP93BPz/dCX+PwP+3wnw/zOU+P8C+H9nwP/PVOL/K+D/XQD/P0uJ/2+A/3cF/P9sJf6/A/6PfA/uAiX+fwD+3wfw/wuV+G8C/L8v4P8Dlfj/Cfh/P8D/Bynx/wvw//6A/w9W4r8Z8P/zAP8fosR/C+D/5wP+P1SJ/9+A/w8A/B/5fqf9ZZz9e1SJ+W+Usp6Ii3ILus8bnu+fIvmY0H4Y/dxW4BdQUl5bi+wBYm6f85aMqDWG59uWn2TYD6N/K+82oIrYrpC47cwDFTXXdvA3bujPtw/TdubeRk2z9f/QvbVvpX0guLfXKby9+qGA1ziFt1c/EvAar/D26scCXhMU3l79RMDreoW3Vz8V8Jqo8PbqRgGvSQpvr34m4DXZq0/sfnv1CQGvKQpvrz4p4DVV4e3VlQJe0xTeXn1KwGu6wturqwS8Zii8vfq0gNdMhbdXnxHwukHh7dVnBbxmKb29ugOoCYHai4B6iIAahYC6gYC9nID9lYA9j4B9iIC9gQC/JsBDCfA1AryGAP0ToElCdGI1mPjmqn3uG4dwe8Wcfsru3uVzgabnKPQuXwh4zVXoXb4U8Jqn0Lt8JeB1u0Lv8rWA1x0Kvcs3Al53KvQu3wp43aXQu3wn4HW3Qu/ynIDXfIXe5XkBr3sUepcXBLzuVehdXhTwuk+hd3lJwGuBQu/ysoDXQoXe5RUBr/sVepdXBbweUOpddgK9C1B7EVAPEVCjEFA3ELCXE7C/ErDnEbAPEbA3EODXBHgoAb5GgNcQoH8CNEkPCHuXnfnsXb4XaHqpQu/yg4DXMoXe5UcBr+UKvctPAl6PKvQuPwt4PabQu/wi4LVCoXf5VcDrcYXe5TcBrycUepfVAl5PKvQurwl4rVToXV4X8HpKoXd5Q8BrlULv8qaA19MKvctbAl7PKPQuawS8nlXoXd4W8HpOqXcJirp7HlB7EVAPEVCjEFA3ELCXE7C/ErDnEbAPEbA3EODXBHgoAb5GgNcQoH8CNEnPCXsX+9w3DuH2ijn9lN29y+8CTa9W6F3+EPB6TaF32STg9bpC7/KngNcbCr3LXwJebyr0LpsFvN5S6F22CHitUehd/hbweluhd3lHwOsdhd7lXQGvdxV6l/cEvN5T6F3eF/B6X6F3WSvgtVahd1kn4LVOoXdZL+C1XqF32SDgtUGpdyGgdwFqLwLqIQJqFALqBgL2cgL2VwL2PAL2IQL2BgL8mgAPJcDXCPAaAvRPgCZpg7B3oVDvkrjQ0w6vdR5LwXWuYw25cY5j7TrGu43dZT8TnMbudqrrXcbGTW2iw9iE/00K3L2pQFFZbgukIbeTA/fcTgncczs1cM/ttMA9t9MD99zOCNxzOzNwz+0NgXtuCwpzWzANuZ0VuOf2xsA9tzcF7rm9OXDP7S2Be25vDdxzOztwz+1tgXtuCwlzWygNuZ0TuOd2buCe23mBe25vD9xze0fgnts7A/fc3hW45/buwD23WcLcZhX9998wtCNeF+8ssufPExN7c8LHE5pPPB+JnxUE7s8EMBb5uf/fjx0FjEV+7n9jk69s87znmMg1UdhEERNFTRQzUdxECRMlTZQyUdpEGRP7mdjfxAEmypo40EQ5E+VNVDBR0UQlE5VNVCma3qPbs4ti9yH1irkNS/vR7VUtbxPVTBxkorqJGiYONlGzaJBsaHZw6hHqMQarxmAHMVh1BqvBYAczWM2i+T+6PZy0qE2gquNYe3R7zHlsQNVcxxq+B7mN3XV0e3WnsbuPbq/hMjZ+dPvBDmMTR7fXBESRTjHm7KNirGV41zZRx0RdE4eYONTEYSYOTxVjLUYUtRmsDoPVZbBDGOxQBjuMwQ5PgxhzADHWAsRYGxBjHUCMdQExHgKI8VBAjIcBYjw8Q2LM3UfFeIThfaSJo0wcbeIYE8eaOM7E8aliPIIRxZEMdhSDHc1gxzDYsQx2HIMdnwYx5gJiPAIQ45GAGI8CxHg0IMZjADEeC4jxOECMx2dIjIX3UTGeYHifaOIkE/VM1DdxsokGJhqmivEERhQnMthJDFaPweoz2MkM1oDBGqZBjIUBMZ4AiPFEQIwnAWKsB4ixPiDGkwExNgDE2FAoCvRsOOSgvkbunCj8f9BTGxsD8yDnZ0wR/i4X5d8knOeIk2zDZ3pEjZ2qxL9p0nO695Nsw+eMRI2dpsS/WbLO9nqS7YRa7mOnK/FvHuIfdZJt+DyWqLEzlPi3CPGPOsk2fEZM1NiZSvxbhvhHnWQbPrcmauwNSvxbhfhHnWQbPksnauwsJf6tAf9H3kGer8S/DeD/cwH/v0eJf1vA/+cB/n+vEv92gP/fDvj/fUr82wP+fwfg/wuU+HcA/P9OwP8XKvHvCPj/XYD/36/EvxPg/3cD/v+AEv/OgP8j73E9qcS/C+D/ywD/X6nEvyvg/8sB/39Kif8pgP8/Cvj/KiX+pwL+/xjg/08r8T8N8P8VgP8/o8T/dMD/Hwf8/1kl/mcA/v8E4P/PKfE/E/B/5Lvw7yjxPwvw/9cA/39Xif/ZgP+/Dvj/e0r8zwH8/w3A/99X4t8N8P83Af9fq8T/XMD/3wL8f50S/+6A/68B/H+9Ev8egP+/Dfg/+i4UpfCOGm5/F2G/0kTgev/2/C7nrt+RCHj94/ldTsurmoDXVs/vclpeBwl4bfP8LqflVV3Aa7vndzktrxoCXjs8v8tpeR0s4LXT87uclldNAa+gtl//sr8fbSzgRV550a7f2zYR8Crgkxft/n1yUwGvgh552bGWVzMBr0L+eO0aank1F/DK8sZr90jLq4WAV7YvXvGBlldLAa8cT7wS4yyvVgJeuSCvxIW+i94T6L+B2ouAeoiAGoWAuoGAvZyA/ZWAPY+AfYiAvYEAvybAQwnwNQK8hgD9E6BJQnRiNZj4Xpx97huHcHvFnH7K7t6llkDTpTzv/ZZXbQGv0p73fsurjoBXGc97v+VVV8BrP897v+V1iIDX/p73fsvrUAGvAzzv/ZbXYQJeZT3v/ZbX4QJeByr0Lq0FvMop9C5tBLzKK/QubQW8Kij0Lu0EvCoq9C7tBbwqKfQuHQS8Kiv0Lh0FvKoo9C6dBLyqKvUuvYDeBai9CKiHCKhRCKgbCNjLCdhfCdjzCNiHCNgbCPBrAjyUAF8jwGsI0D8BmqSqwt6lVz57lyMEmq6l0LscKeBVW6F3OUrAq45C73K0gFddhd7lGAGvQxR6l2MFvA5V6F2OE/A6TKF3OV7A63CF3qWzgNcRCr1LFwGvIxV6l64CXkcp9C6nCHgdrdC7nCrgdYxC73KagNexCr3L6QJexyn0LmcIeB2v1Lv0BnoXoPYioB4ioEYhoG4gYC8nYH8lYM8jYB8iYG8gwK8J8FACfI0AryFA/wRoko4X9i6989m7nCDQdEOF3uVEAa9GCr3LSQJejRV6l3oCXk0Uepf6Al5NFXqXkwW8min0Lg0EvJor9C4NBbxaKPQuZwp4tVToXc4S8Gql0LucLeDVWqF3OUfAq41C79JNwKutQu9yroBXO4XepbuAV3uF3qWHgFcHpd6lD9C7ALUXAfUQATUKAXUDAXs5AfsrAXseAfsQAXsDAX5NgIcS4GsEeA0B+idAk9RB2Lv0Kfrv89T3dl66/WfP+D97Fd3T/yR+lr1igTMNSNv/jXUbOwoYi/zc/8YmX33N897PRH8T55k438QAExeYuNDEQBODTAw2McTEUBPDTAw3McLERSYuNnGJiZEmLjVxmYnLTVxh4sqi6T2osm9R7D6kXjG3Ybnyz/IHVV5leF9t4hoTo0yMNjHGxFgT1xYNkg3NDk49MPJqBruGwUYx2GgGG8NgYxns2qL5P6gynLSoIuYqx7H2oMqrnccGdI3rWMN3lNvYXQdVjnYau/ugyjEuY+MHVY51GJs4qPJaQBTpFGO/fVSM1xne40yMNzHBxPUmJpqYZGJyqhivY0QxjsHGM9gEBruewSYy2CQGm5wGMfYDxHgdIMZxgBjHA2KcAIjxekCMEwExTgLEODlDYuy/j4pxiuE91cQ0E9NNzDAx08QNJmalinEKI4qpDDaNwaYz2AwGm8lgNzDYrDSIsT8gximAGKcCYpwGiHE6IMYZgBhnAmK8ARDjrAyJ8bx9VIw3Gt43mbjZxC0mbjUx28RtJuakivFGRhQ3MdjNDHYLg93KYLMZ7DYGm5MGMZ4HiPFGQIw3AWK8GRDjLYAYbwXEOBsQ422AGOcIRYGevTLXfR7o3Vn0jIDEhfKfF76nEedR/QOcXVVAif/tSc/E3s+j2gqcXVVQif8dyc/0Xs+j2gacXVVIif+dIf5R51FtB86uylLif1eIf9R5VDuAs6uylfjfHeIfdR7VTuDsqhwl/vND/KPOowq/Rx81NleJ/z2A/yPvH5VT4n8v4P/hd6KixpZX4n8f4P/h97SixlZQ4r8A8P/9aruPrajEfyHg/+H32aLGVlLifz/g/+F37KLGVlbi/wDg/+H3/qLGVlHi/yDg/wcC/l9Vif9DgP8j3+E+Qon/w4D/1wb8/0gl/o8A/l8H8P+jlPgvAvy/LuD/RyvxXwz4/yGA/x+jxH8J4P+HAv5/rBL/pYD/Hwb4/3FK/JcB/n844P/HK/FfDvg/8j24lkr8HwX8vxHg/62U+D8G+H9jwP9bK/FfAfh/E8D/2yjxfxzw/6aA/7dV4v8E4P/NAP9vp8T/ScD/mwP+316J/0rA/1sA/o98v9P+Ms7+ParE/DdKWU/ERYULus8bnu+povmY0H4Y/dwq4BdQUl6riu4BYm6f85aMqDWG53s6P8mwH0b/Vt6ngSriGYXEPcM8UFFzPQP+xg39+fZheoa5t1HTrPo/dG/tW2lzBfe2l7+3hnaNtrzmCXj19smLdr/Fd7uAVx/Pb39ZXncIePX1/PaX5XWngFc/z29/WV53CXj19/z2l+V1t4DXeZ7f/rK85gt4ne/VJ3a/vXqVgNcAz/5leV0t4HWBZ/+yvK4R8LrQs39ZXqMEvAZ69i/La7SA1yDP/mV5jRHwGuzZvyyvsQJeQzz7l+V1rYDXUGHXib69+ixQEwK1FwH1EAE1CgF1AwF7OQH7KwF7HgH7EAF7AwF+TYCHEuBrBHgNAfonQJOE6MRqMPHNVfvcNw7h9oo5/ZTdvcs9Ak1fqtC73CvgdZlC73KfgNflCr3LAgGvKxR6l4UCXlcq9C73C3hdpdC7PCDgdbVC7/KggNc1Cr3LdQJeoxR6l3ECXqMVepfxAl5jFHqXCQJeYxV6l+sFvK5V6F0mCnhdp9C7TBLwGqfQu0wW8Bqv1Ls8B/QuQO1FQD1EQI1CQN1AwF5OwP5KwJ5HwD5EwN5AgF8T4KEE+BoBXkOA/gnQJI0X9i7P5bN3eUig6WkKvcvDAl7TFXqXRwS8Zij0LosEvGYq9C6LBbxuUOhdlgh4zVLoXZYKeN2o0LssE/C6SaF3mSLgdbNC7zJVwOsWhd5lmoDXrQq9y3QBr9kKvcsMAa/bFHqXmQJecxR6lxsEvOYq9C6zBLzmKfUuzwO9C1B7EVAPEVCjEFA3ELCXE7C/ErDnEbAPEbA3EODXBHgoAb5GgNcQoH8CNEnzhL3L8/nsXZYLNH2vQu/yqIDXfQq9y2MCXgsUepcVAl4LFXqXxwW87lfoXZ4Q8HpAoXd5UsDrQYXeZaWA10MKvcuNAl4PK/QuNwl4PaLQu9ws4LVIoXe5RcBrsULvcquA1xKF3mW2gNdShd7lNgGvZQq9yxwBr+VKvcsLQO8C1F4E1EME1CgE1A0E7OUE7K8E7HkE7EME7A0E+DUBHkqArxHgNQTonwBN0nJh7/JCqHdJXOhph/Odx1Jwj+tYQ+5ex7F2Hfe5jd1lPwucxu52qoUuY+Omdr/D2IT/PRC4e9OLRWW5fTENuX0wcM/tQ4F7bh8O3HP7SOCe20WBe24XB+65XRK453Zp4J7bl4S5fSkNuV0WuOd2eeCe20cD99w+FrjndkXgntvHA/fcPhG45/bJwD23Lwtz+3IacrsycM/tU4F7blcF7rl9OnDP7TOBe26fDdxz+1zgntvnA/fcviLM7StF//03DD0br4ufK7rnzxMTe3PCxxOaTzwfiZ8VBO7PBDAW+bn/348dBYxFfu5/Y5OvV83zvtrEayZeN/GGiTdNvGVijYm3Tbxj4l0T75l438RaE+tMrDexwcQHJj408ZGJj018YuJTExtNfFY0vUe3v1oUuw+pV8xtWK78s/zR7Z8b3l+Y+NLEVya+NvGNiW9NfFc0SDY0Ozg3BfuCwb5ksK8Y7GsG+4bBvmWw74rm/+j2cNKiNoHPHcfao9u/cB4b0JeuYw3fr9zG7jq6/WunsbuPbv/GZWz86PZvHcYmjm7/DhBFOsW4eh8V4/eG9w8mfjTxk4mfTfxi4lcTv6WK8XtGFD8w2I8M9hOD/cxgvzDYrwz2WxrEuBoQ4/eAGH8AxPgjIMafADH+DIjxF0CMvwJi/C1DYnxtHxXj74b3HyY2mfjTxF8mNpvYYuLvVDH+zojiDwbbxGB/MthfDLaZwbYw2N9pEONrgBh/B8T4ByDGTYAY/wTE+Bcgxs2AGLcAYvw7Q2J8fR8V4z+G91YT20xsN7HDxE4rwmJmXLEgWQD/MKLYymDbGGw7g+1gsJ0MZsmkYlQs/2J8HRDjP4AYtwJi3AaIcTsgxh2AGHcCYrS5iBqbECMVk4kCPRsOOaivgDsnCv8f9NTGgsA8yPkZ6DlBiQvlXyic54iTbMNnekSNvUCJf1bSc7r3k2zD54xEjb1QiX92ss72epJt39ruYwcq8c8J8Y86yTZ8HkvU2EFK/HND/KNOsg2fERM1drAS/8Ih/lEn2YbPrYkaO0SJf5EQ/6iTbMNn6USNHarEvyjg/8g7yKOU+BcD/P8ywP9HK/EvDvj/5YD/j1HiXwLw/ysA/x+rxL8k4P9XAv5/rRL/UoD/XwX4/3VK/EsD/n814P/jlPiXAfz/GsD/xyvx3w/wf+Q9rpuV+O8P+P90wP9vUeJ/AOD/MwD/v1WJf1nA/2cC/j9bif+BgP/fAPj/bUr8ywH+Pwvw/zlK/MsD/n8j4P9zlfhXAPz/JsD/5ynxrwj4P/Jd+IeV+FcC/P8+wP8fUeJfGfD/BYD/L1LiXwXw/4WA/y9W4l8V8P/7Af9fosQ/Bvj/A4D/L1XiXw3w/wcB/1+mxP8gwP8fAvwffReKUnhHDbe/i/i86L8/F7Xe973yol2/I/lCwGutT160+3c3Xwp4rfPIy45dFf/eHsprvT9eu4auin+XEOW1wRuv3SNXxb/fiPL6wBev+MBV8e9corw+9MQrMW5V/HugKK+PPPuX/f2o/d0lyutjz/5leRUS8PrEs39ZXlkCXp969i/LK1vAa6Nn/7K8cgS8PvPsX5ZXroDX5579y/IqLOD1hWf/sryKCHh9Kawf0XfRqwP9N1B7EVAPEVCjEFA3ELCXE7C/ErDnEbAPEbA3EODXBHgoAb5GgNcQoH8CNEmITqwGE9+Ls8994xBur5jTT9ndu3wvqEl+VOhdfhDw+kmhd/lRwOtnhd7lJwGvXxR6l58FvH5V6F1+EfD6TaF3+VXA63eF3uU3Aa8/FHqXooKaZJNC71JMwOtPhd6luIDXXwq9SwkBr80KvUtJAa8tCr1LKQGvvxV6l9ICXv8o9C5lBLy2KvUuNYDeBai9CKiHCKhRCKgbCNjLCdhfCdjzCNiHCNgbCPBrAjyUAF8jwGsI0D8BmqStwt6lRj57l98FNUnBOn73/lXxtx1RXoV88or3LpsEvLI88kr0Ln8KeGX74/W/3uUvAa8cb7z29C6bBbxyffEK9S5bBLwKe+IV7l3+FvAq4tUndvcu+wlqkqKe/cvy2l/Aq5hn/7K8DhDwKu7ZvyyvsgJeJTz7l+V1oIBXSc/+ZXmVE/Aq5dm/LK/yAl6lPfuX5VVBwKsMyCtxob3LwUDvAtReBNRDBNQoBNQNBOzlBOyvBOx5BOxDBOwNBPg1AR5KgK8R4DUE6J8ATRKik3DvcnA+e5d/BDVJBYXeZauAV0WF3mWbgFclhd5lu4BXZYXeZYeAVxWF3mWngFdVhd4lEOyxMYXehQS8qin0LhUFvA5S6F0qCXhVV+hdKgt41VDoXaoIeB2s0LtUFfCqqdC7xAS8ain0LtUEvGor9C4HCXjVUepdagK9C1B7EVAPEVCjEFA3ELCXE7C/ErDnEbAPEbA3EODXBHgoAb5GgNcQoH8CNEl1hL1LzWL/Pk99b+el239Wj+u4RrE9/U/iZ9krFjjTgLT931i3saOAscjP/W9s8lXLPO+1TdQxUdfEISYONXGYicNNHGHiSBNHmTjaxDEmjjVxnInjTZxg4kQTJ5moZ6K+iZNNNDDR0ESjYuk9qLJWMew+pF4xt2G58s/yB1U2NrybmGhqopmJ5iZamGhpolWxINnQ7ODcFKwJgzVlsGYM1pzBWjBYSwZrVSz/B1XWKuZexDR2HGsPqmziPDagpq5jDd9mbmN3HVTZ3Gns7oMqW7iMjR9U2dJhbOKgylaAKNIpxtr7qBhbG95tTLQ10c5EexMdTHQ00SlVjK0ZUbRhsLYM1o7B2jNYBwbryGCd0iDG2oAYWwNibAOIsS0gxnaAGNsDYuwAiLEjIMZOGRJjnX1UjJ0N7y4mupo4xcSpJk4zcbqJM1LF2JkRRRcG68pgpzDYqQx2GoOdzmBnpEGMdQAxdgbE2AUQY1dAjKcAYjwVEONpgBhPB8R4RobEWHcfFeOZhvdZJs42cY6JbibONdHdRI9UMZ7JiOIsBjubwc5hsG4Mdi6DdWewHmkQY11AjGcCYjwLEOPZgBjPAcTYDRDjuYAYuwNi7CEUBXr2Sk/3eaB3Z9EzAhIXyr9X+J5GnEe1Fji76hMl/r2Tnom9n0e1Dji76lMl/n2Sn+m9nke1Hji7aqMS/74h/lHnUW0Azq76TIl/vxD/qPOoPgDOrvpciX//EP+o86g+BM6u+kKJ/3kh/lHnUX0EnF31pRL/8wH/R94/2qTEfwDg/z8B/v+nEv8LAP//GfD/v5T4Xwj4/y+A/29W4j8Q8P9fAf/fosR/EOD/vwH+/7cS/8GA//8O+P8/SvyHAP7/B+D/W5X4DwX8H/kOd9E6OvyHAf4f/l551NhiSvyHA/4f/q571NjiSvxHAP6fXcd9bAkl/hcB/h9+JyBqbEkl/hcD/h9+TyFqbCkl/pcA/h9+dyJqbGkl/iMB/w+/zxE1towS/0sB/6/g5ztdSRfK/zLA/ysC/l9dif/lgP9XAvy/hhL/KwD/rwz4/8FK/K8E/L8K4P81lfhfBfh/VcD/aynxvxrw/xjg/7WV+F8D+H81wP+R73faX8bZv0eVmP9GKeuJuKhIQfd5w/ONKpaPCe2H0c+NBn4BJeU1utgeIOb2OW/JiFpjeL4x+UmG/TD6t/KOAaqIsQqJG8s8UFFzjQV/44b+fPswjWXubdQ0o/8P3Vv7VlpPwb1toPD2ai8Br4YKb6/2FvBqpPD2ah8Br8YKb6/2FfBqovD2aj8Br6YKb6/2F/BqpvD26nkCXs29+sTut1cbC3i1UHh7tYmAV0uFt1ebCni1Unh7tZmAV2uFt1ebC3i1UXh7tYWAV1uFt1dbCni1U3h7tZWAV3ult1evBWpCoPYioB4ioEYhoG4gYC8nYH8lYM8jYB8iYG8gwK8J8FACfI0AryFA/wRokhCdWA0mvrlqn/vGIdxeMaefsrt3OV+g6VMVepcBAl6nKfQuFwh4na7Qu1wo4HWGQu8yUMDrTIXeZZCA11kKvctgAa+zFXqXIQJe5yj0Lq0FvLop9C5tBLzOVehd2gp4dVfoXdoJePVQ6F3aC3j1VOhdOgh49VLoXToKePVW6F06CXj1UepdrgN6F6D2IqAeIqBGIaBuIGAvJ2B/JWDPI2AfImBvIMCvCfBQAnyNAK8hQP8EaJL6CHuX6/LZuwwVaPpChd5lmIDXQIXeZbiA1yCF3mWEgNdghd7lIgGvIQq9y8UCXkMVepdLBLyGKfQuIwW8hiv0Lp0FvEYo9C5dBLwuUuhdugp4XazQu5wi4HWJQu9yqoDXSIXe5TQBr0sVepfTBbwuU+hdzhDwulypdxkH9C5A7UVAPURAjUJA3UDAXk7A/krAnkfAPkTA3kCAXxPgoQT4GgFeQ4D+CdAkXS7sXcbls3e5VKDpMQq9y2WS7wkq9C6XC3hdq9C7XCHgdZ1C73KlgNc4hd7lKgGv8Qq9y9UCXhMUepdrBLyuV+hdzhTwmqjQu5wl4DVJoXc5W8BrskLvco6A1xSF3qWbgNdUhd7lXAGvaQq9S3cBr+kKvUsPAa8ZSr3LeKB3AWovAuohAmoUAuoGAvZyAvZXAvY8AvYhAvYGAvyaAA8lwNcI8BoC9E+AJmmGsHcZH+pdElfh+D9jgdNFLziPpeBF17GG3EuOY+06XnYbu8t+XnEau9upXnUZGze11Q5jE/73WgDUlsVkuZ2Qhty+Hrjn9o3APbdvBu65fStwz+2awD23bwfuuX0ncM/tuwFQnwtze30acvte4J7b9wP33K4N3HO7LnDP7frAPbcbAvfcfhC45/bDAOhxhLmdmIbcfhS45/bjwD23nwTuuf00cM/txsA9t58F7rn9PHDP7ReBe24nCXM7qdi//4aha+N18XXF9vx5YmJvTvh4QvOJ5yPxs4LA/ZkAxiI/9//7saOAscjP/W9s8jXZPO9TTEw1Mc3EdBMzTMw0cYOJWSZuNHGTiZtN3GLiVhOzTdxmYo6JuSbmmbjdxB0m7jRxl4m7Tcwvlt6j2ycXw+5D6hVzG5b2o9vvMbzvNXGfiQUmFpq438QDJh4sFiQbmh2ceoT6vQx2H4MtYLCFDHY/gz3AYA8Wy//R7eGkRW0C9ziOtUe33+s8NqD7XMcavgvcxu46un2h09jdR7ff7zI2fnT7Aw5jE0e3PwiIIp1inLKPivEhw/thE4+YWGRisYklJpaaWJYqxocYUTzMYI8w2CIGW8xgSxhsKYMtS4MYpwBifAgQ48OAGB8BxLgIEONiQIxLADEuBcS4LENinLqPinG54f2oicdMrDDxuIknTDxpYmWqGJczoniUwR5jsBUM9jiDPcFgTzLYyjSIcSogxuWAGB8FxPgYIMYVgBgfB8T4BCDGJwExrsyQGKfto2J8yvBeZeJpE8+YeNbEcyaeN/FCqhifYkSxisGeZrBnGOxZBnuOwZ5nsBfSIMZpgBifAsS4ChDj04AYnwHE+CwgxucAMT4PiPEFoSjQs+GQg/pedOdE4f+Dntr4EjAPcn5GC+HvclH+L4fvacRJtuEzPaLGtlTi/0rSM7H3k2zD54xEjW2lxP/V5Gd6ryfZNq7jPra1Ev/VIf5RJ9mGz2OJGttGif9rIf5RJ9mGz4iJGttWif/rIf5RJ9mGz62JGttOif8bIf5RJ9mGz9KJGtteif+bgP8j7yB3U+L/FuD/pwH+f64S/zWA/58O+H93Jf5vA/5/BuD/PZT4vwP4/5mA//dU4v8u4P9nAf7fS4n/e4D/nw34f28l/u8D/n8O4P99lPivBfwfeY9rhBL/dYD/DwT8/yIl/usB/x8E+P/FSvw3AP4/GPD/S5T4fwD4/xDA/0cq8f8Q8P+hgP9fqsT/I8D/hwH+f5kS/48B/x8O+P/lSvw/Afwf+S78RCX+nwL+Pxbw/0lK/DcC/n8t4P+Tlfh/Bvj/dYD/T1Hi/zng/+MA/5+qxP8LwP/HA/4/TYn/l4D/TwD8f7oS/68A/78e8H/0XShK4R013P4uwn6licD1Lvb8Lqflda+A1xLP73JaXvcJeC31/C6n5bVAwGuZ53c5La+FAl7LPb/LaXndL+D1qOd3OS2vBwS8HvP8Lqfl9aCA1wrP/mV/P/qSgNfjnv3L8npZwOsJz/5leb0i4PWkZ/+yvF4V8Frp2b8sr9UCXk959i/L6zUBr1We/cvyel3A62nP/mV5vSHg9YzSu+hfA/03UHsRUA8RUKMQUDcQsJcTsL8SsOcRsA8RsDcQ4NcEeCgBvkaA1xCgfwI0SYhOrAYT34uzz33jEG6vmNNP2d27PCTQ9CsKvcvDAl6vKvQujwh4rVboXRYJeL2m0LssFvB6XaF3WSLg9YZC77JUwOtNhd5lmYDXWwq9y5sCXmsUepe3BLzeVuhd1gh4vaPQu7wt4PWuQu/yjoDXewq9y7sCXu8r9C7vCXitVehd3hfwWqfUu3wD9C5A7UVAPURAjUJA3UDAXk7A/krAnkfAPkTA3kCAXxPgoQT4GgFeQ4D+CdAkrRP2Lt/ks3dZLtD0pwq9y6MCXhsVepfHBLw+U+hdVgh4fa7Quzwu4PWFQu/yhIDXlwq9y5MCXl8p9C4rBby+Vuhd1gp4faPQu6wT8PpWoXdZL+D1nULvskHA63uF3uUDAa8fFHqXDwW8flToXT4S8PpJoXf5WMDrZ6Xe5VugdwFqLwLqIQJqFALqBgL2cgL2VwL2PAL2IQL2BgL8mgAPJcDXCPAaAvRPgCbpZ2Hv8m0+e5enBJr+S6F3WSXgtVmhd3lawGuLQu/yjIDX3wq9y7MCXv8o9C7PCXhtVehdnhfw2qbQu7wg4LVdoXf5RMBrh0Lv8qmA106F3mWjgFdQ13/v8pmAF/nj9b/e5XMBrwLeeO3pXb4Q8Croi1eod/lSwKuQJ17h3uUrAa8skFfiQnuX74DeBai9CKiHCKhRCKgbCNjLCdhfCdjzCNiHCNgbCPBrAjyUAF8jwGsI0D8BmiREJ+He5bti/z5PfW/npdt/fh3/5zfF9vQ/iZ9lr1jgTAPS9n9j3caOAsYiP/e/scnX9+Z5/8HEjyZ+MvGziV9M/GriNxO/m/jDxCYTf5r4y8RmE1tM/G3iHxNbTWwzsd3EDhM7rYaKG3GYKFA8vQdVfl8Muw+pV8xtWNoPqixo74OJLBPZJnJM5JoobKJI8SDZ0Ozg1AMjCzFYFoNlM1gOg+UyWGEGK1I8/wdVhpMWWVwWdxtrD6os5DzWbC6uYw3fbLexuw6qzHEau/ugylyXsfGDKgs7jE0cVFmkuLso0inGH/ZRMRY196uYieImSpgoaaKUidImyqSKsSgjimIMVpzBSjBYSQYrxWClGaxMGsT4AyDGooAYiwFiLA6IsQQgxpKAGEsBYiwNiLFMhsT44z4qxv3M/drfxAEmypo40EQ5E+VNVEgV436MKPZnsAMYrCyDHchg5RisPINVSIMYfwTEuB8gxv0BMR4AiLEsIMYDATGWA8RYHhBjhQyJ8ad9VIwVzf2qZKKyiSomqtr7Z6KaiYNSxViREUUlBqvMYFUYrCqDxRisGoMdlAYx/gSIsSIgxkqAGCsDYqwCiLEqIMYYIMZqgBgPAsQYvtCzV6q7zwO9O4ueEZC4UP41wvc04jyq8Pu8UWOfUOJ/cNIzsffzqMLvGEeNfVKJf83kZ3qv51Etq+M+dqUS/1oh/lHnUYXfxY4a+5QS/9oh/lHnUYXfD48au0qJf50Q/6jzqMLvrEeNfVqJf90Q/6jzqMLv0UeNfUaJ/yGA/yPvH61R4n8o4P+vAv7/thL/wwD/Xw34/ztK/A8H/P81wP/fVeJ/BOD/rwP+/54S/yMB/38D8P/3lfgfBfj/m4D/r1XifzTg/28B/r9Oif8xgP8j3+H+Ron/sYD/bwT8/1sl/scB/v8Z4P/fKfE/HvD/zwH//16J/wmA/38B+P8PSvxPBPz/S8D/f1TifxLg/18B/v+TEv96gP9/Dfj/z0r86wP+j3wPbocS/5MB/98M+P9OJf4NAP/fAvh/UFeHf0PA//8G/J+U+DcC/P8fwP8LKPFvDPj/VsD/CyrxbwL4/zbA/wsp8W8K+P92wP+R73faX8bZv0eVmP9GKeuJuKhoQfd5w/M1K56PCe2H0c81L+6eJCmv5sX3ADG3z3lLRuSLGaEPtshPMuyH0b+VtwVQRbRUSFxL5oGKmqsl+Bs39Ofbh6klc2+jpmn+f+je2rfSqgvubXmPbzPZ0ZZXDQGvCj550e63+A4W8Kro+e0vy6umgFclz29/WV61BLwqe377y/KqLeBVxfPbX5ZXHQGvqp7f/rK86gp4xbz6xO63VwsKeFXz7F+WVyEBr4M8+5fllSXgVV3h7dVsAa8aCm+v5gh4Hazw9mqugFdNhbdXCwt41VJ4e7WIgFdtpbdXWwE1IVB7EVAPEVCjEFA3ELCXE7C/ErDnEbAPEbA3EODXBHgoAb5GgNcQoH8CNEmITqwGE99ctc994xBur5jTT9nduxwi0PSRCr3LoQJeRyn0LocJeB2t0LscLuB1jELvcoSA17EKvcuRAl7HKfQuRwl4Ha/Quxwt4HWCQu9SVMDrRIXepZiA10kKvUtxAa96Cr1LCQGv+gq9S0kBr5MVepdSAl4NFHqX0gJeDRV6lzICXo2UepfWQO8C1F4E1EME1CgE1A0E7OUE7K8E7HkE7EME7A0E+DUBHkqArxHgNQTonwBNUiNh79I6n73LMQJNt1LoXY4V8Gqt0LscJ+DVRqF3OV7Aq61C73KCgFc7hd7lRAGv9gq9y0kCXh0Uepd6Al4dFXqX/QS8Oin0LvsLeHVW6F0OEPDqotC7lBXw6qrQuxwo4HWKQu9STsDrVIXepbyA12kKvUsFAa/TlXqXNkDvAtReBNRDBNQoBNQNBOzlBOyvBOx5BOxDBOwNBPg1AR5KgK8R4DUE6J8ATdLpwt6lTT57l/oCTXdX6F1OFvDqodC7NBDw6qnQuzQU8Oql0Ls0EvDqrdC7NBbw6qPQuzQR8Oqr0Ls0FfDqp9C7VBTw6q/Qu1QS8DpPoXepLOB1vkLvUkXAa4BC71JVwOsChd4lJuB1oULvUk3Aa6BC73KQgNcgpd6lLdC7ALUXAfUQATUKAXUDAXs5AfsrAXseAfsQAXsDAX5NgIcS4GsEeA0B+idAkzRI2Lu0DfUuiatw/J+xwOmiL53HUvCV61hD7mvHsXYd37iN3WU/3zqN3e1U37mMjZva9w5jE/73Q+DuTe2Ky3LbLg25/TFwz+1PgXtufw7cc/tL4J7bXwP33P4WuOf298A9t38E7rltL8xt+zTkdlPgnts/A/fc/hW453Zz4J7bLYF7bv8O3HP7T+Ce262Be247CHPbIQ253Ra453Z74J7bHYF7bncG7rm1/xs9Nj6U3HNbgNxzW5Dcc9tRmNuOxf/9Nwy1itfFrYvv+fPExN6c8PGE5hPPR+Jn2SsWONNw5vzfWPexo4CxyM/9b2zy1ck8751NdDHR1cQpJk41cZqJ002cYeJME2eZONvEOSa6mTjXRHcTPUz0NNHLRG8TfUz0NdHPRH8T5xVP79HtnYpj9yH1irkNS/vR7ecb3gNMXGDiQhMDTQwyMdjEkOJBsqHZwalHqA9gsAsY7EIGG8hggxhsMIMNKZ7/o9vDSYv8QznHsfbo9gHOY01D6TrWNpRuY3cd3T7Qaezuo9sHuYyNH90+2GFs4uj2IYAo0inGzvuoGIca3sNMDDcxwsRFJi42cYmJkaliHMqIYhiDDWewEQx2EYNdzGCXMNjINIixMyDGoYAYhwFiHA6IcQQgxosAMV4MiPESQIwjMyTGLvuoGC81vC8zcbmJK0xcaeIqE1ebuCZVjJcyoriMwS5nsCsY7EoGu4rBrmawa9Igxi6AGC8FxHgZIMbLATFeAYjxSkCMVwFivBoQ4zUZEmPXfVSMowzv0SbGmBhr4loT15kYZ2J8qhhHMaIYzWBjGGwsg13LYNcx2DgGG58GMXYFxDgKEONoQIxjADGOBcR4LSDG6wAxjgPEOF4oCvRsOOSgvgnunCj8f9BTG68H5kHOz6gm/F0uyn9i+J5GnGQbPtMjauxBSvwnJT0Tez/JNnzOSNTY6kr8Jyc/03s9ybZSXfexNZT4TwnxjzrJNnweS9TYg5X4Tw3xjzrJNnxGTNTYmkr8p4X4R51kGz63JmpsLSX+00P8o06yDZ+lEzW2thL/GYD/I+8gn6jEfybg/0cB/n+SEv8bAP8/GvD/ekr8ZwH+fwzg//WV+N8I+P+xgP+frMT/JsD/jwP8v4ES/5sB/z8e8P+GSvxvAfz/BMD/GynxvxXwf+Q9rk5K/GcD/t8a8P/OSvxvA/y/DeD/XZT4zwH8vy3g/12V+M8F/L8d4P+nKPGfB/h/e8D/T1Xifzvg/x0A/z9Nif8dgP93BPz/dCX+dwL+j3wXvr8S/7sA/+8B+P95SvzvBvy/J+D/5yvxnw/4fy/A/wco8b8H8P/egP9foMT/XsD/+wD+f6ES//sA/+8L+P9AJf4LAP/vB/g/+i4UpfCOGm5/F2G/0kTgeqd4fpfT8hog4DXV87ucltcFAl7TPL/LaXldKOA13fO7nJbXQAGvGZ7f5bS8Bgl4zfT8LqflNVjA6wbP73JaXkMEvGZ59i/7+9HrBbxu9OxfltdEAa+bPPuX5TVJwOtmz/5leU0W8LrFs39ZXlMEvG717F+W11QBr9me/cvymibgdZtn/7K8pgt4zVF6F30h0H8DtRcB9RABNQoBdQMBezkB+ysBex4B+xABewMBfk2AhxLgawR4DQH6J0CThOjEajDxvTj73DcO4faKOf2U3b3LUIGm5yv0LsMEvO5R6F2GC3jdq9C7jBDwuk+hd7lIwGuBQu9ysYDXQoXe5RIBr/sVepeRAl4PKPQuMwS8HlToXWYKeD2k0LvcIOD1sELvMkvA6xGF3uVGAa9FCr3LTQJeixV6l5sFvJYo9C63CHgtVepd7gd6F6D2IqAeIqBGIaBuIGAvJ2B/JWDPI2AfImBvIMCvCfBQAnyNAK8hQP8EaJKWCnuX+/PZu1wq0PSTCr3LZQJeKxV6l8sFvJ5S6F2uEPBapdC7XCng9bRC73KVgNczCr3L1QJezyr0LtcIeD2n0LvcKuD1vELvMlvA6wWF3uU2Aa8XFXqXOQJeLyn0LnMFvF5W6F3mCXi9otC73C7g9apC73KHgNdqpd7lAaB3AWovAuohAmoUAuoGAvZyAvZXAvY8AvYhAvYGAvyaAA8lwNcI8BoC9E+AJmm1sHd5IJ+9yyiBpt9R6F1GC3i9q9C7jBHwek+hdxkr4PW+Qu9yrYDXWoXe5ToBr3UKvcs4Aa/1Cr3LeAGvDQq9y50CXh8o9C53CXh9qNC73C3g9ZFC7zJfwOtjhd7lHgGvTxR6l3sFvD5V6F3uE/DaqNC7LBDw+kypd3kQ6F2A2ouAeoiAGoWAuoGAvZyA/ZWAPY+AfYiAvYEAvybAQwnwNQK8hgD9E6BJ+kzYuzxY/N/nqe/tvHT7z4Xxf95ffE//k/hZ9ooFzjQgbf831m3sKGAs8nP/G5t8PWSe94dNPGJikYnFJpaYWGpimYnlJh418ZiJFSYeN/GEiSdNrDTxlIlVJp428YyJZ008Z+J5Ey+YeLF4eg+qfKg4dh9Sr5jbsLQfVPmS4f2yiVdMvGpitYnXTLxu4o3iQbKh2cGpB0a+zGCvMNirDLaawV5jsNcZ7I3i+T+oMpy0yF8kOI61B1W+7DzW/IGb61j7B25uY3cdVLnaaezugypfcxkbP6jydYexiYMq3wBEkU4xPryPivFNw/stE2tMvG3iHRPvmnjPxPupYnyTEcVbDLaGwd5msHcY7F0Ge4/B3k+DGB8GxPgmIMa3ADGuAcT4NiDGdwAxvguI8T1AjO9nSIyP7KNiXGt4rzOx3sQGEx+Y+NDERyY+ThXjWkYU6xhsPYNtYLAPGOxDBvuIwT5OgxgfAcS4FhDjOkCM6wExbgDE+AEgxg8BMX4EiPHjDIlx0T4qxk8M709NbDTxmYnPTXxh4ksTX6WK8RNGFJ8y2EYG+4zBPmewLxjsSwb7Kg1iXASI8RNAjJ8CYtwIiPEzQIyfA2L8AhDjl4AYvxKKAj175Wv3eaB3Z2+sq8P/m/A9jTiPKvw+b9TYm5T4f5v0TOz9PKrwO8ZRY29W4v9d8jO91/Ooptd1H3uLEv/vQ/yjzqMKv4sdNfZWJf4/hPhHnUcVfj88auxsJf4/hvhHnUcVfmc9auxtSvx/CvGPOo8q/B591Ng5Svx/Bvwfef/oQSX+vwD+fw/g/w8p8f8V8P97Af9/WIn/b4D/3wf4/yNK/H8H/H8B4P+LlPj/Afj/QsD/Fyvx3wT4//2A/y9R4v8n4P8PAP6/VIn/X4D/I9/hfl6J/2bA/1cC/v+CEv8tgP8/Bfj/i0r8/wb8fxXg/y8p8f8H8P+nAf9/WYn/VsD/nwH8/xUl/tsA/38W8P9XlfhvB/z/OcD/Vyvx3wH4P/I9uA+U+O8E/P9dwP8/VOIflHD39PcA//9IiT+VcPf09wH//1iJf4ES7p6+FvD/T5T4Fyzh7unrAP//VIl/oRLunr4e8P+NSvyzSrh7+gbA/5Hvd9pfxtm/R5WY/0Yp64m4qFhB93nD82WXyMeE9sPo53JKACYr5JVTYg8Qc/uct2REGnHog7n5SYb9MPq38uaWcJ+jsELiCjMPVNRchd3XwPKK+vn2YSrM3NuoaXL+D91b+1aa/Y0huvY/Fd5e/UbA6y+Ft1e/FfDarPD26ncCXlsU3l79XsDrb4W3V38Q8PpH4e3VHwW8tiq8vfqTgNc2rz6x++3VlwS8tiu8vfqygNcOhbdXXxHw2qnw9uqrAl7BIX79y/JaLeBF3njtHml5vSbgVcAXr/hAy+t1Aa+Cnnglxllebwh4FQJ5JS707dUiQE0I1F4E1EME1CgE1A0E7OUE7K8E7HkE7EME7A0E+DUBHkqArxHgNQTonwBNEqITq8HEN1ftc984hNsr5vRTdvcuPws0XczfnhEkepdfBLyK++QV711+FfAq4ZFXonf5TcCrpOe93/L6XcCrlOe93/L6Q8CrtOe93/LaJOBVxvPeb3n9KeC1n1ef2N27vCngtb9n/7K83hLwOsCzf1leawS8ynr2L8vrbQGvAxV6l3cEvMop9C7vCniVV+hd3hPwqqDQu7wv4FVRqXcpCvQuQO1FQD1EQI1CQN1AwF5OwP5KwJ5HwD5EwN5AgF8T4KEE+BoBXkOA/gnQJFUU9i5F89m7/CXQdHWF3mWzgFcNhd5li4DXwQq9y98CXjUVepd/BLxqKfQuWwW8aiv0LtsEvOoo9C7bBbzqKvQuawW8DlHoXdYJeB2q0LusF/A6TKF32SDgdbhC7/KBgNcRCr3LhwJeRyr0Lh8JeB2l0Lt8LOB1tFLvUgzoXYDai4B6iIAahYC6gYC9nID9lYA9j4B9iIC9gQC/JsBDCfA1AryGAP0ToEk6Wti7FMtn77JDoOl6Cr3LTgGv+gq9SyD4/uLJCr0LCXg1UOhdCgh4NVToXQoKeDVS6F0KCXg1VuhdsgS8mij0Lp8IfKKpQu/yqYBXM4XeZaOAV3OF3uUzAa8WCr3L5wJeLRV6ly8EvFop9C5fCni1VuhdvhLwaqPUuxQHeheg9iKgHiKgRiGgbiBgLydgfyVgzyNgHyJgbyDArwnwUAJ8jQCvIUD/BGiS2gh7l+Kh3iVxoacdFiL3fTnLdawZl+041q4jx23sLvvJdRq726kKu4yNm1oRh7EJ/ytK7t5UooQstyXSkNtiQG6LA7ktAeS2JJDbUkBuSwO5LQPkdj8gtyWFuS2ZhtzuD+T2ACC3ZYHcHgjkthyQ2/JAbisAua0I5LaUMLel0pDbSkBuKwO5rQLktiqQ2xiQ22pAbg8CclsdyG1pYW5Ll/j33zBUJN7XFy2x588TE3tzwscTmk88H4mfZa9Y4EzDmfN/Y93HjgLGIj/3v7HJVxnzvO9nYn8TB5goa+JAE+VMlDdRwURFE5VMVDZRxURVq1MT1UwcZKK6iRomDjZR00QtE7VN1DFRt0R6j24vA74zn3rF3Ial/ej2QwzvQ00cZuJwE0eYONLEUSaOLhEkG5odnHqE+qEMdhiDHc5gRzDYkQx2FIMdXSL/R7eXAQ4JOMRxrD26/VDnseaXbK5jDd/D3cbuOrr9CKexu49uP9JlbPzo9qMcxiaObj8aEEU6xbjfPirGYwzvY00cZ+J4EyeYONHESSbqpYrxGEYUxzLYcQx2PIOdwGAnMthJDFYvDWLcDxDjMYAYjwXEeBwgxuMBMZ4AiPFEQIwnAWKslyEx7r+PirG+4X2yiQYmGppoZKt5E01MNE0VY31GFCczWAMGa8hgjRisMYM1YbCmaRDj/oAY6wNiPBkQYwNAjA0BMTYCxNgYEGMTQIxNMyTGA/ZRMTYzvJubaGGipYlWJlqbaGOibaoYmzGiaM5gLRisJYO1YrDWDNaGwdqmQYwHAGJsBoixOSDGFoAYWwJibAWIsTUgxjaAGNsKRYGeDYcc1NfOnROF/w96amN7YJ4//ZwFkXSh/DuE72nESbZ/Aafe7lDi3zHpmdj7SbabgVNvdyrx75T8TO/1JNstwKm3wSE6/DuH+EedZPs3cOotKfHvEuIfdZLtP8CptwWU+HcN8Y86yXYrcOptQSX+p4T4R51kuw049baQEv9TAf9H3kHeX4n/aYD/h9+Ljhp7gBL/0wH/D7+rHTW2rBL/MwD/L3mI+9gDlfifCfh/+J32qLHllPifBfh/+D37qLHllfifDfh/+N3/qLEVlPifA/h/+DyCqLEVlfh3A/wfeY/rECX+5wL+XwPw/0OV+HcH/P9gwP8PU+LfA/D/moD/H67Evyfg/7UA/z9CiX8vwP9rA/5/pBL/3oD/1wH8/ygl/n0A/68L+P/RSvz7Av6PfBe+qRL/foD/1wf8v5kS//6A/58M+H9zJf7nAf7fAPD/Fkr8zwf8vyHg/y2V+A8A/L8R4P+tlPhfAPh/Y8D/WyvxvxDw/yaA/6PvQlEK76jh9ncR9itNBK53gOd3OS2vQwW8LvD8LqfldZiA14We3+W0vA4X8Bro+V1Oy+sIAa9Bnt/ltLyOFPAa7PldTsvrKAGvIZ7f5bS8jhbwGurZv+zvR9sLeA3z7F+WVwcBr+Ge/cvy6ijgNcKzf1lenQS8LvLsX5ZXZwGviz37l+XVRcDrEs/+ZXl1FfAa6dm/LK9TBLwuVXoXfSDQfwO1FwH1EAE1CgF1AwF7OQH7KwF7HgH7EAF7AwF+TYCHEuBrBHgNAfonQJOE6MRqMPG9OPvcNw7h9oo5/ZTdvcsxAk2PUuhdjhXwGq3Quxwn4DVGoXc5XsBrrELvcoKA17UKvcuJAl7XKfQuJwl4jVPoXeoJeI1X6F1OFfCaoNC7nCbgdb1C73K6gNdEhd7lDAGvSQq9y5kCXpMVepezBLymKPQuZwt4TVXoXc4R8Jqm1LsMAnoXoPYioB4ioEYhoG4gYC8nYH8lYM8jYB8iYG8gwK8J8FACfI0AryFA/wRokqYJe5dB+exd6gs0fbNC73KygNctCr1LAwGvWxV6l4YCXrMVepdGAl63KfQujQW85ij0Lk0EvOYq9C5NBbzmKfQu3QS8blfoXc4V8LpDoXfpLuB1p0Lv0kPA6y6F3qWngNfdCr1LLwGv+Qq9S28Br3sUepc+Al73KvUug4HeBai9CKiHCKhRCKgbCNjLCdhfCdjzCNiHCNgbCPBrAjyUAF8jwGsI0D8BmqR7hb3L4Hz2Ls0Emn5YoXdpLuD1iELv0kLAa5FC79JSwGuxQu/SSsBriULv0lrAa6lC79JGwGuZQu/SVsBruULv0lfA61GF3qWfgNdjCr1LfwGvFQq9y3kCXo8r9C7nC3g9odC7DBDwelKhd7lAwGulQu9yoYDXU0q9yxCgdwFqLwLqIQJqFALqBgL2cgL2VwL2PAL2IQL2BgL8mgAPJcDXCPAaAvRPgCbpKWHvMqTEv89T39t56fafA+P/HFRiT/+T+Fn2igXONCBt/zfWbewoYCzyc/8bm3wNNc/7MBPDTYwwcZGJi01cYmKkiUtNXGbichNXmLjSxFUmrjZxjYlRJkabGGNirIlrTVxnYpyJ8SYmlEjvQZVDS2D3IfWKuQ1L+0GV1xveE01MMjHZxBQTU01MMzG9RJBsaHZw6oGRExlsEoNNZrApDDaVwaYx2PQS+T+oMpy0yC+NOY61B1VOdB4b0CTXsYbvZLexuw6qnOI0dvdBlVNdxsYPqpzmMDZxUOV0QBTpFOOwfVSMMwzvmSZuMDHLxI0mbjJxs4lbUsU4gxHFTAa7gcFmMdiNDHYTg93MYLekQYzDADHOAMQ4ExDjDYAYZwFivBEQ402AGG8GxHhLhsQ4fB8V462G92wTt5mYY2KuiXkmbjdxR6oYb2VEMZvBbmOwOQw2l8HmMdjtDHZHGsQ4HBDjrYAYZwNivA0Q4xxAjHMBMc4DxHg7IMY7MiTGEfuoGO80vO8ycbeJ+SbuMXGviftMLEgV452MKO5isLsZbD6D3cNg9zLYfQy2IA1iHAGI8U5AjHcBYrwbEON8QIz3AGK8FxDjfYAYFwhFgZ69stB9Hujd2WGH6PC/P3xPI86jCr/PGzV2uBL/B5Keib2fRxV+xzhq7Agl/g8mP9N7PY9q4CHuYy9S4v9QiH/UeVThd7Gjxl6sxP/hEP+o86jC74dHjb1Eif8jIf5R51GF31mPGjtSif+iEP+o86jC79FHjb1Uif9iwP+R948mKPFfAvj/aMD/r1fivxTw/zGA/09U4r8M8P+xgP9PUuK/HPD/awH/n6zE/1HA/68D/H+KEv/HAP8fB/j/VCX+KwD/Hw/4/zQl/o8D/o98h/t2Jf5PAP5/C+D/dyjxfxLw/1sB/79Tif9KwP9nA/5/lxL/pwD/vw3w/7uV+K8C/H8O4P/zlfg/Dfj/XMD/71Hi/wzg//MA/79Xif+zgP8j34N7VIn/c4D/PwL4/2NK/J8H/H8R4P8rlPi/APj/YsD/H1fi/yLg/0sA/39Cif9LgP8vBfz/SSX+LwP+vwzw/5VK/F8B/H854P/I9zvtL+Ps36NKzH+jlPVEXFS8oPu84fleLZGPCe2H0c+tBn4BJeW1usQeIOb2OW/JiFpjeL7X8pMM+2H0b+V9DagiXldI3OvMAxU11+vgb9zQn28fpteZexs1zer/Q/fWvpW2UHBv31Z4e/V+Aa93FN5efUDA612Ft1cfFPB6T+Ht1YcEvN5XeHv1YQGvtQpvrz4i4LVO4e3VRQJe6736xO63V68X8Nqg8PbqRAGvDxTeXp0k4PWhwturkwW8PlJ4e3WKgNfHCm+vThXw+kTh7dVpAl6fKry9Ol3Aa6PS26tvADUhUHsRUA8RUKMQUDcQsJcTsL8SsOcRsA8RsDcQ4NcEeCgBvkaA1xCgfwI0SYhOrAYT31y1z33jEG6vmNNP2d27LBZo+luF3mWJgNd3Cr3LUgGv7xV6l2UCXj8o9C7LBbx+VOhdHhXw+kmhd3lMwOtnhd5lhYDXLwq9ywwBr18VepeZAl6/KfQuNwh4/a7Qu8wS8PpDoXe5UcBrk0LvcpOA158KvcvNAl5/KfQutwh4bVbqXd4Eeheg9iKgHiKgRiGgbiBgLydgfyVgzyNgHyJgbyDArwnwUAJ8jQCvIUD/BGiSNgt7lzfz2bs8LtD0ToXe5QkBr+BQ/73LkwJe5JFXondZKeBVwB+v//UuTwl4FfTGa0/vskrAq5AvXqHe5WkBryxPvMK9yzMCXtk+9RjvXW4V8Mrxymt37zJbwCvXs39ZXrcJeBX27F+W1xwBryKe/cvymivgVdSzf1le8wS8inn2L8vrdgGv4p79y/K6Q8CrBMgrcaG9y1tA7wLUXgTUQwTUKATUDQTs5QTsrwTseQTsQwTsDQT4NQEeSoCvEeA1BOifAE0SopNw7/JWPnuXZwWaLut577e8nhPwOlChd3lewKucQu/ygoBXeYXe5UUBrwoKvctLAl4VFXqXlwW8Kin0Lq8IeFVW6F3uFPCqotC73CXgVVWhd7lbwCum0LvMF/CqptC73CPgdZBC73KvgFd1hd7lPgGvGgq9ywIBr4OVepc1QO8C1F4E1EME1CgE1A0E7OUE7K8E7HkE7EME7A0E+DUBHkqArxHgNQTonwBN0sHC3mVNqHdJXOhphzXIfV8+2HWsGVfTcaxdRy23sbvsp7bT2N1OVcdlbNzU6jqMTfjfIeTuTW+XkOX27TTk9lAgt4cBuT0cyO0RQG6PBHJ7FJDbo4HcHgPk9h1hbt9JQ26PBXJ7HJDb44HcngDk9kQgtycBua0H5LY+kNt3hbl9Nw25PRnIbQMgtw2B3DYCctsYyG0TILdNgdw2A3L7njC375X4998w9Ea8Ln6zxJ4/T0zszQkfT2g+8Xwkfpa9YoEzDWfO/411HzsKGIv83P/GJl/vm+d9rYl1Jtab2GDiAxMfmvjIxMcmPjHxqYmNJj4z8bmJL0x8aeIrE1+b+MbEtya+M/G9iR9M/GjipxLpPbr9/RLYfUi9Ym7D0n50+8+G9y8mfjXxm4nfTfxhYpOJP0sEyYZmB6ceof4Lg/3KYL8x2O8M9geDbWKwP0vk/+j2cNIiv2zvONYe3f6L89iAfnUda/j+5jZ219HtvzuN3X10+x8uY+NHt29yGJs4uv1PQBTpFOPafVSMfxnem01sMfG3iX9MbDWxzcT2VDH+xYhiM4NtYbC/GewfBtvKYNsYbHsaxLgWEONfgBg3A2LcAojxb0CM/wBi3AqIcRsgxu0ZEuO6fVSMOwzvnVZ0JQ1uooCJgiYKmcgqGSQLYAcjip0MZn9YKkYMVoDBCjJYIQbLKpl/Ma4DxLgDEONOQIz2XjmNNXzJbewuMRZwGrtbjAVdxsbFWMhhbEKMWSUzI8b1+6gYs839yrHPtYnCJoqYKGqimIniqWLMZkSRw2C5DFaYwYowWFEGK8ZgxdMgxvWAGLNdRWPEmOM8NqBcQIyFATEWAcRYFBBjMUCMxQExhi/0bDjkoL4S7pwo/H/QUxtLAvMg52dsEL5Dh/IvFc5zxEm27wCn3n6gxL900nO695Ns3wVOvf1QiX+ZZJ3t9STb94BTbz9S4r9fiH/USbbvA6fefqzEf/8Q/6iTbNcCp95+osT/gBD/qJNs1wGn3n6qxL9siH/USbbrgVNvNyrxPxDw/2/9vE+bdKH8ywH+/x3g/78p8S8P+P/3gP//rsS/AuD/PwD+/4cS/4qA//8I+P8mJf6VAP//CfD/P5X4Vwb8/2fA//9S4l8F8P9fAP/frMS/KuD/yHtcOYfq8I8B/h9+tyxqbK4S/2qA/4ffd4saW1iJ/0GA/xc41H1sESX+1QH/D78XGDW2qBL/GoD/h99VjBpbTIn/wYD/h9+fjBpbXIl/TcD/w+90Ro0tocS/FuD/Zf18rzvpQvnXBvz/QMD/qyrxrwP4fznA/2NK/OsC/l8e8P9qSvwPAfy/AuD/BynxPxTw/4qA/1dX4n8Y4P+VAP+vocT/cMD/KwP+j74LRSm8o4bb30X8LHhHq4XndzlXx7+PhvJq6fldztXx78ihvFp5fpdzdfx7eyiv1p7f5Vwd/y4hyquN53c5V8e/34jyauv5Xc7V8e9corzaeX6Xc3X8e6Aor/ae/cv+ftT+7hLl1cGzf1lepQS8Onr2L8urtIBXJ8/+ZXmVEfDq7Nm/LK/9BLy6ePYvy2t/Aa+unv3L8jpAwOsUz/5leZUV8DpV6V30I4D+G6i9CKiHCKhRCKgbCNjLCdhfCdjzCNiHCNgbCPBrAjyUAF8jwGsI0D8BmiREJ1aDie/F2ee+cQi3V8zpp+zuXf4S1CTdFHqXzQJe5yr0LlsEvLor9C5/C3j1UOhd/hHw6qnQu2wV8Oql0LtsE/DqrdC7bBfw6qPQuxwoqEn6KvQu5QS8+in0LuUFvPor9C4VBLzOU+hdKgp4na/Qu1QS8Bqg0LtUFvC6QKF3qSLgdaFS73Ik0LsAtRcB9RABNQoBdQMBezkB+ysBex4B+xABewMBfk2AhxLgawR4DQH6J0CTdKGwdzkyn73LDkFNMkKhd9kp4HWRQu8SCDzwYoXehQS8LlHoXQoIeI1U6F0KCnhdqtC7FBLwukyhd8kS8LpcoXepKuB1hULvEhPwulKhd6km4HWVQu9ykIDX1Qq9S3UBr2sUepcaAl6jFHqXgwW8Riv0LjUFvMYo9S5HAb0LUHsRUA8RUKMQUDcQsJcTsL8SsOcRsA8RsDcQ4NcEeCgBvkaA1xCgfwI0SWOEvctR+exdsgWanqjQu+QIeE1S6F1yBbwmK/QuhQW8pij0LkUEvKYq9C5FBbymKfQuxQS8piv0LsUFvGYo9C61BLxmKvQutQW8blDoXeoIeM1S6F3qCnjdqNC7HCLgdZNC73KogNfNCr3LYQJetyj0LocLeN2q1LscDfQuQO1FQD1EQI1CQN1AwF5OwP5KwJ5HwD5EwN5AgF8T4KEE+BoBXkOA/gnQJN0q7F2OLvnv89T3dl66/ecRcR0fWXJP/5P4WfaKBc40IG3/N9Zt7ChgLPJz/xubfB1jnvdjTRxn4ngTJ5g40cRJJuqZqG/iZBMNTDQ00chqzUQTE01NNDPR3EQLEy1NtDLR2kQbE21NtCuZ3oMqjymJ3YfUK+Y2LO0HVbY3vDuY6Giik4nOJrqY6GrilJJBsqHZwakHRnZgsI4M1onBOjNYFwbrymCnlMz/QZXhpEW+IOQ41h5U2cF5bEAdXccavp3cxu46qLKz09jdB1V2cRkbP6iyq8PYxEGVpwCiSKcYj91HxXiq4X2aidNNnGHiTBNnmTjbxDmpYjyVEcVpDHY6g53BYGcy2FkMdjaDnZMGMR4LiPFUQIynAWI8HRDjGYAYzwTEeBYgxrMBMZ6TITEet4+KsZvhfa6J7iZ6mOhpopeJ3ib6pIqxGyOKcxmsO4P1YLCeDNaLwXozWJ80iPE4QIzdADGeC4ixOyDGHoAYewJi7AWIsTcgxj4ZEuPx+6gY+xre/Uz0N3GeifNNDDBxgYkLU8XYlxFFPwbrz2DnMdj5DDaAwS5gsAvTIMbjATH2BcTYDxBjf0CM5wFiPB8Q4wBAjBcAYrxQKAr07JWB7vNA7852OFSH/6DwPY04jyr8Pm/U2I5K/AcnPRN7P48q/I5x1NhOSvyHJD/Tez2PqvWh7mM7K/EfGuIfdR5V+F3sqLFdlPgPC/GPOo8q/H541NiuSvyHh/hHnUcVfmc9auwpSvxHhPhHnUcVfo8+auypSvwvAvwfef+orxL/iwH/Pxfw/35K/C8B/L874P/9lfiPBPy/B+D/5ynxvxTw/56A/5+vxP8ywP97Af4/QIn/5YD/9wb8/wIl/lcA/t8H8P8LlfhfCfg/8h3uK5T4XwX4/0WA/1+pxP9qwP8vBvz/KiX+1wD+fwng/1cr8R8F+P9IwP+vUeI/GvD/SwH/H6XEfwzg/5cB/j9aif9YwP8vB/x/jBL/awH/R74HN1OJ/3WA/08C/P8GJf7jAP+fDPj/LCX+4wH/nwL4/41K/CcA/j8V8P+blPhfD/j/NMD/b1biPxHw/+mA/9+ixH8S4P8zAP9Hvt9pfxln/x5VYv4bpawn4qISBd3nDc83uWQ+JrQfRj83BfgFlJTXlJJ7gJjb57wlI2qN4fmm5icZ9sPo38o7FagipikkbhrzQEW+aQb+xg39+fZhmsbc26hppvwfurf2rbSBgnv7kMLbq4MEvB5WeHt1sIDXIwpvrw4R8Fqk8PbqUAGvxQpvrw4T8Fqi8PbqcAGvpQpvr44Q8Frm1Sd2v73aXsBrucLbqx0EvB5VeHu1o4DXYwpvr3YS8Fqh8PZqZwGvxxXeXu0i4PWEwturXQW8nlR4e/UUAa+VSm+vTgdqQqD2IqAeIqBGIaBuIGAvJ2B/JWDPI2AfImBvIMCvCfBQAnyNAK8hQP8EaJIQnVgNJr65ap/7xiHcXjGnn7K7d7lIoOkXFHqXiwW8XlToXS4R8HpJoXcZKeD1skLvcqmA1ysKvctlAl6vKvQulwt4rVboXa4Q8HpNoXc5VcDrdYXe5TQBrzcUepfTBbzeVOhdzhDwekuhdzlTwGuNQu9yloDX2wq9y9kCXu8o9C7nCHi9q9S7zAB6F6D2IqAeIqBGIaBuIGAvJ2B/JWDPI2AfImBvIMCvCfBQAnyNAK8hQP8EaJLeFfYuM/LZu1wp0PSHCr3LVQJeHyn0LlcLeH2s0LtcI+D1iULvMkrA61OF3mW0gNdGhd5ljIDXZwq9y1gBr88VepduAl5fKPQu5wp4fanQu3QX8PpKoXfpIeD1tULv0lPA6xuF3qWXgNe3Cr1LbwGv7xR6lz4CXt8r9S4zgd4FqL0IqIcIqFEIqBsI2MsJ2F8J2PMI2IcI2BsI8GsCPJQAXyPAawjQPwGapO+FvcvMfPYu1wo0/btC73KdgNcfCr3LOAGvTQq9y3gBrz8VepcJAl5/KfQu1wt4bVboXSYKeG1R6F0mCXj9rdC79BXw+kehd+kn4LVVoXfpL+C1TaF3OU/Aa7tC73K+gNcOhd7l/7F3HlBSVE0b3gIVFZWcBYYkOYlEyTlnJIiYJedsQMREkJxzBgHJOYOAWURQcs4qIiaQ/Ndld356xyvdb+107cc59Dn1cazv7vQzc/t9bxU799JSwHVToXdpJeCKyO1/79JawEUgV/BCe5fhQO8C1F4E1EME1CgE1A0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNEqITZ+8y3NG7BC/0tMPy5H1druB1LI+r6HGseR+VvI29ZT+VPY2NdKoqXsZGmVpVD2OD/leNvHvTiASyuR0RhrmtDsxtDWBuawJzWwuY29rA3NYB5rYuMLf1gLkdKZzbkWGY2/rA3DYA5vYZYG4bAnPbCJjbxsDcNgHm9llgbkcJ53ZUGOa2KTC3zwFz2wyY2+eBuX0BmNsXgbl9CZjbl4G5HS2c29EJ/v0vDA2JqouHJrj994nBtTno40HNB5+P4GuZKxDhGcMz872x3sf2BsYir3tvbPRrDD/vYznGcYznmMAxkWMSx2SOKRxTOaZxTOeYwTGTYxbHbI6POeZwzOWYx/EJx3yOBRwLORYlCO/R7WMSYJ9D6BXwNizsR7cvZu4lHEs5lnEs51jBsZJjVYKI6IZmBoceob7EkltqyS2z5JZbcissuZWW3KoEMT+63TlprhurPY41R7cv8Tw2gpZ6Hcu8y7yNvXV0+3JPYyOPbl/hZWzU0e0rPYwNHt2+ChBFOMU49i4V42rmXsOxlmMdx3qODRwbOTaFinG1RRRrLLm1ltw6S269JbfBkttoyW0KgxjHAmJcDYhxDSDGtYAY1wFiXA+IcQMgxo2AGDfFkhjH3aVi3Mzcn3Js4djKsY3jM47POb4IFeNmiyg+teS2WHJbLbltltxnltznltwXYRDjOECMmwExfgqIcQsgxq2AGLcBYvwMEOPngBi/iCUxjr9Lxfglc3/F8TXHNxzfcmzn+I5jR6gYv7SI4itL7mtL7htL7ltLbrsl950ltyMMYhwPiPFLQIxfAWL8GhDjN4AYvwXEuB0Q43eAGHcIRYGeDYcc1Pe9dyZy/gd6auNO4D7I+RnoOUHBC+Xf5fxMXU6ydZ7p4TZ2hRL/D9GeiTufZOs8Z8Rt7Eol/h+jP9N3PMl2US7vY1cp8e928LudZOs8j8Vt7Gol/j0OfreTbJ1nxLiNXaPEv9fB73aSrfPcGrexa5X49zn43U6ydZ6l4zZ2nRL/fsD/kT3I3yjxHwD8fxvg/98q8R8E/P8zwP+3K/EfAvz/c8D/v1PiPwz4/xeA/+9Q4j8C+P+XgP9/r8R/FPD/rwD/36nEfwzw/68B/9+lxH8c8H9kH9cJJf4TgP8fBPz/pBL/ScD/DwH+f0qJ/xTg/4cB/z+txH8a8P8jgP+fUeI/A/j/UcD/zyrxnwX8/xjg/z8p8f8E+P9xwP9/VuL/GfB/5LvwV5T4fwH8/0/A/68q8Z8D/P8vwP+vKfH/Cvj/34D/X1fiPw/4/0XA/28o8f8G+P8lwP9vKvFfAPz/H8D/I3Lr8P8O+P9lwP/Jpz1aweHmdxHmK00Evt8MvnLRrd+RLBFwZfSTiyJ/d7NUwJXJRy4z1nAtE3Bl9o/r1lDDtVzAlcU3rsiRhmuFgOsJv7iiBhqulQKurD7v5TRcqwRc2Xz2L/P70Z0Cruw++5fh2iXgyuGzfxmuHwRcOX32L8P1o4Arl8/+Zbh2C7hy++xfhmuPgCuPz/5luPYKuPL67F+Ga5+AK5/SXvQ/gP4bqL0IqIcIqFEIqBsIWMsJWF8JWPMIWIcIWBsI8GsCPJQAXyPAawjQPwGaJEQnRoPB78WZ5760I2+ugKdXiexdVgs0XUShd1kj4Cqq0LusFXAVU+hd1gm4nlboXdYLuIor9C4bBFwlFHqXjQKukgq9yyYBVymF3mW/gKu0Qu9yQMBVRqF3OSjgKqvQuxwScJVT6F0OC7jKK/QuRwRcFRR6l6MCrooKvcsxAVclpd7lT6B3AWovAuohAmoUAuoGAtZyAtZXAtY8AtYhAtYGAvyaAA8lwNcI8BoC9E+AJqmSsHf5M4a9y2aBpmsp9C6fCrhqK/QuWwRcdRR6l60CrroKvcs2AVc9hd7lMwFXfYXe5XMBVwOF3uULAdczCr3LcQFXQ4Xe5YSAq5FC73JSwNVYoXc5JeBqotC7nBZwPavQu5wRcDVV6F3OCrieU+hdfhJwNVPqXf4Ceheg9iKgHiKgRiGgbiBgLSdgfSVgzSNgHSJgbSDArwnwUAJ8jQCvIUD/BGiSmgl7l79i2Lt8KdD0awq9y1cCruYKvcvXAq4WCr3LNwKulgq9y7cCrlYKvct2AVdrhd7lOwFXG4XeZYeAq61C7/KzgKudQu/yi4CrvULvck7A1UGhd/lVwNVRoXc5L+DqpNC7/Cbg6qzQu1wQcHVR6F1+F3B1Vepd/gZ6F6D2IqAeIqBGIaBuIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJK6CnuXvxP8+zz1O52Xbv78I+rPPxPc7n+Cr2WuQIRnDEjb98Z6G9sbGIu87r2x0a+L/Lxf4viH4zLHFY6rHNc4rnPc4LhpNJGQH3aOOBxxOe7juJ/jAY54HA9yPMTxMEd8jkc4HuV4LGF4D6q8mAD7HEKvgLdhYT+oMgF/Dgk5EnEk5kjCkZQjGUfyhBHRDc0MDj0wMqEll8iSS2zJJbHkklpyySy55AljflClc9Lcihjz3r2MNQdVJvQ8NoISeR3LvIm9jb11UGUST2MjD6pM6mVs1EGVyTyMDR5UmTyhd1GEU4yX7lIxpuDPKyVHKo7UHGk4HudIy5EuVIwpLKJIacmlsuRSW3JpLLnHLbm0lly6MIjxEiDGFIAYUwJiTAWIMTUgxjSAGB8HxJgWEGO6WBLjP3epGNObz4sjA0dGjkwcmTmycDwRKsb0FlEELLkMllxGSy6TJZfZkstiyT0RBjH+A4gxPSDGACDGDIAYMwJizASIMTMgxiyAGJ+IJTFevkvFmJU/r2wc2TlycOTkyMWRmyNPqBizWkSRzZLLbsnlsORyWnK5LLncllyeMIjxMiDGrIAYswFizA6IMQcgxpyAGHMBYswNiDEPIEbnhZ69ktf7faC9s9lz6/Dnc36mLudROffzuo3NocSfP9ozcefzqJx7jN3G5lTifzL6M33H86gy5/Y+NpcSfwEHv9t5VM692G5jcyvxP+XgdzuPyrk/3G1sHiX+gg5+t/OonHvW3cbmVeIv5OB3O4/KuY/ebWw+Jf7CgP8j+49KK/EXAfy/KOD/ZZT4iwL+Xwzw/7JK/MUA/38a8P9ySvxPA/5fHPD/8kr8xQH/LwH4fwUl/hKA/5cE/L+iEn9JwP9LAf5fSYm/FOD/yHe4Gyrxlwb8vzbg/42U+MsA/l8H8P/GSvxlAf+vC/h/EyX+coD/1wP8/1kl/vKA/9cH/L+pEn8FwP8bAP7/nBJ/RcD/nwH8v5kSfyXA/5HvwbVT4q8M+H9zwP/bK/FXAfy/BeD/HZT4qwL+3xLw/45K/NUA/28F+H8nJf7qgP+3Bvy/sxJ/DcD/2wD+30WJvybg/20B/0e+32l+GWf+HVWy/H8U8n5cLkoQ1/t9nferlTAGNzQ/jP5c7YTeJ0nKVTvh7UTA28/5Nhlu79F5vzoxmQzzw+i/ylsHqCLqKkxcXcsD5XqqCPgbN/T1zcNU1/LZut2m9v/QZ2t2peUVfLb9FHav5hNw9VfYvZpfwDVAYffqkwKujxR2rxYQcA1U2L36lIBrkMLu1YICrsEKu1cLCbiG+OoTkbtXEwi4hirsXk0o4BqmsHs1kYBruMLu1cQCrhEKu1eTCLhGKuxeTSrgGqWwezWZgGu0wu7V5AKuMUq7V+sBNSFQexFQDxFQoxBQNxCwlhOwvhKw5hGwDhGwNhDg1wR4KAG+RoDXEKB/AjRJiE6MBoPfXDXPfWlH3lwBT68S2bsUFmh6ikLvUkTANVWhdykq4Jqm0LsUE3BNV+hdnhZwzVDoXYoLuGYq9C4lBFyzFHqXkgKu2Qq9SwoB18cKvUtKAdcchd4llYBrrkLvklrANU+hd0kj4PpEoXd5XMA1X6F3SSvgWqDQu6QTcC1U6l3qA70LUHsRUA8RUKMQUDcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0SQuFvUv9GPYupQSaXqnQu5QWcK1S6F3KCLhWK/QuZQVcaxR6l3ICrrUKvUt5Adc6hd6lgoBrvULvUlHAtUGhd0kv4Nqo0LsEBFybFHqXDAKuzQq9S0YB16cKvUsmAdcWhd4ls4Brq0LvkkXAtU2hd3lCwPWZUu/SAOhdgNqLgHqIgBqFgLqBgLWcgPWVgDWPgHWIgLWBAL8mwEMJ8DUCvIYA/ROgSfpM2Ls0iGHvUkmg6e0KvUtlAdd3Cr1LFQHXDoXepaqA63uF3qWagGunQu9SXcC1S6F3qSHg+kGhd6kp4PpRoXfJKuDardC7ZBNw7VHoXbILuPYq9C45BFz7FHqXnAKu/Qq9Sy4B1wGF3iW3gOugQu+SR8B1SKl3eQboXYDai4B6iIAahYC6gYC1nID1lYA1j4B1iIC1gQC/JsBDCfA1AryGAP0ToEk6JOxdnnH0LsELPe3wFfK+Lr/qdSyPe83jWPM+mnsbe8t+WngaG+lULb2MjTK1Vh7GBv2vNXn3poYJZXPbMAxz2waY27bA3LYD5rY9MLcdgLntCMxtJ2BuOwNz20g4t43CMLddgLntCsxtN2BuuwNz2wOY257A3L4OzO0bwNw2Fs5t4zDM7ZvA3L4FzG0vYG7fBua2NzC37wBz2weY23eBuW0inNsmCf/9LwzVi6qL6ye8/feJwbU56ONBzQefj+BrmSsQ4RnDM/O9sd7H9gbGIq97b2z061l+3ptyPMfRjON5jhc4XuR4ieNljlc4XuV4jaM5RwuOlhytOFpztOFoy9GOoz1HB46OHJ04OicM79HtzybEPofQK+BtWNiPbu/C3F05unF05+jB0ZPjdY43EkZENzQzOPQI9a6WXDdLrrsl18OS62nJvW7JvZEw5ke3OyfNbRHo4nGsObq9q+exEdTN61jm7e5t7K2j23t4Ght5dHtPL2Ojjm5/3cPY4NHtbwCiCKcYm96lYnyTud/i6MXxNkdvjnc4+nC8GyrGNy2ieMuS62XJvW3J9bbk3rHk+lhy74ZBjE0BMb4JiPEtQIy9ADG+DYixNyDGdwAx9gHE+G4sifG5u1SM7zH3+xwfcHzI0ZejH0d/jgGhYnzPIor3LbkPLLkPLbm+llw/S66/JTcgDGJ8DhDje4AY3wfE+AEgxg8BMfYFxNgPEGN/QIwDYkmMze5SMX7E3AM5BnEM5hjCMZRjGMfwUDF+ZBHFQEtukCU32JIbYskNteSGWXLDwyDGZoAYPwLEOBAQ4yBAjIMBMQ4BxDgUEOMwQIzDhaJAz4ZDDuob4Z2JnP+Bnto4ErgPcn7GUOHvclH+Uc7P1OUkW+eZHm5jhynxj472TNz5JFvnOSNuY4cr8Y+J/kzf8STbj3J7HztCiX+sg9/tJFvneSxuY0cq8Y9z8LudZOs8I8Zt7Cgl/vEOfreTbJ3n1riNHa3EP8HB73aSrfMsHbexY5T4JwL+j+xB/liJfxLg/1MB/5+jxD8Z8P9pgP/PVeKfAvj/dMD/5ynxTwX8fwbg/58o8U8D/H8m4P/zlfinA/4/C/D/BUr8MwD/nw34/0Il/pmA/yP7uDYq8c8C/H8V4P+blPhnA/6/GvD/zUr8HwP+vwbw/0+V+OcA/r8W8P8tSvxzAf9fB/j/ViX+eYD/rwf8f5sS/yeA/28A/P8zJf75gP8j34XfrcS/APD/7wD/36PEvxDw/x2A/+9V4l8E+P/3gP/vU+JfDPj/TsD/9yvxLwH8fxfg/weU+JcC/v8D4P8HlfiXAf7/I+D/6F4oCuF2G25+F2G+0kTg+73u815Ow9VVwHXD572chqubgOumz3s5DVd3AVdEHt+4bg01XD0EXOQbV+RIw9VTwBXHL66ogYbrdQFXXJ+4guMM1xsCrvv8e75uDTe/Hx0p4LrfVy669XvbUQKuB/zkosjfJ48WcMXzkcuMNVxjBFwP+uxfhmusgOshn/3LcI0TcD3ss38ZrvECrvg++5fhmiDgegTkCl7oXvTlQP8N1F4E1EME1CgE1A0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNEqITo8Hg9+LMc1/akTdXwNOrRPYubwo0ndTntd9wvSXgSubz2m+4egm4kvu89huutwVcKRR6l94CrpQKvcs7Aq5UCr1LHwFXaoXe5V0BVxqF3mWigOtxhd5lkoArrULvMlnAlU6hd5ki4Eqv0LtMFXAFFHqXaQKuDAq9y3QBV0aF3mWGgCuTUu+yAuhdgNqLgHqIgBqFgLqBgLWcgPWVgDWPgHWIgLWBAL8mwEMJ8DUCvIYA/ROgScok7F1WxLB3eU+g6ZwKvcv7Aq5cCr3LBwKu3Aq9y4cCrjwKvUtfAVdehd6ln4Arn0Lv0l/AlV+hdxkg4HpSoXeZKeAqoNC7zBJwPaXQu8wWcBVU6F0+FnAVUuhd5gi4Civ0LnMFXEUUepd5Aq6iCr3LJwKuYkq9y0qgdwFqLwLqIQJqFALqBgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCapmLB3WRnD3uUjgabLKvQuAwVc5RR6l0ECrvIKvctgAVcFhd5liICrokLvMlTAVUmhdxkm4Kqs0LsMF3BVUehd5gu4qir0LgsEXNUUepeFAq7qCr3LIgFXDYXeZbGAq6ZC77JEwFVLoXdZKuCqrdC7LBNw1VHqXVYBvQtQexFQDxFQoxBQNxCwlhOwvhKw5hGwDhGwNhDg1wR4KAG+RoDXEKB/AjRJdYS9y6qE/z5P/U7npZs/l0f9uSLh7f4n+FrmCkR4xoC0fW+st7G9gbHI694bG/1azc/7Go61HOs41nNs4NjIsYljM8enHFs4tnJs4/iM43OOLzi+5PiK42uObzi+5djO8R3HDo7vE4b3oMrVCbHPIfQKeBsW9oMqdzL3Lo4fOH7k2M2xh2Mvx76EEdENzQwOPTBylyX3gyX3oyW325LbY8ntteT2JYz5QZXOSXMrYnZ6HGsOqtzleWwE/eB1LPP+6G3srYMqd3saG3lQ5R4vY6MOqtzrYWzwoMp9gCjCKcY1d6kY9zP3AY6DHIc4DnMc4TjKcSxUjPstojhgyR205A5ZcoctuSOW3FFL7lgYxLgGEON+QIwHADEeBMR4CBDjYUCMRwAxHgXEeCyWxLj2LhXjceY+wXGS4xTHaY4zHGc5fgoV43GLKE5YcictuVOW3GlL7owld9aS+ykMYlwLiPE4IMYTgBhPAmI8BYjxNCDGM4AYzwJi/CmWxLjuLhXjz8z9C8c5jl85znP8xnGB4/dQMf5sEcUvltw5S+5XS+68JfebJXfBkvs9DGJcB4jxZ0CMvwBiPAeI8VdAjOcBMf4GiPECIMbfhaJAz175w/t9oL2z9+fR4f/T+Zm6nEd1Azi76gEl/r+iPRN3Po/qJnB2VTwl/r+jP9N3PI/Kue/ZbeyDSvwXHfxu51E592K7jX1Iif+Sg9/tPCrn/nC3sQ8r8f/j4Hc7j8q5Z91tbHwl/ssOfrfzqJz76N3GPqLEfwXwf2T/0eNK/FcB/3fuiXIbm1aJ/xrg/8nzeB+bTon/OuD/KQD/T6/EfwPw/5SA/weU+G8C/p8K8P8MSvzmF/fBsW6enhrw/4xK/JTIu6enAfw/kxJ/nETePR35DncBJf64ibx7ei7A/59S4r8vkXdPzw34f0El/vsTeff0PID/F1LifyCRd0/PC/h/YSX+eIm8e3o+wP+LKPE/CPh/fsD/iyrxPwT4/5OA/xdT4n8Y8H/ke3BVlfjjA/5fDvD/akr8jwD+Xx7w/+pK/I8C/l8B8P8aSvyPAf5fEfD/mkr8CQD/rwT4fy0l/oSA/1cG/L+2En8iwP+rAP6PfL/T/DLO/DuqZPn/KOT9uFyUMK73+zrvlzhRDG5ofhj9uSSJgCZTyJUk0e1EwNvP+TYZro2o4weTxmQyzA+j/ypvUqCKSKYwccksD5TrCZLe34OVy+31zcOUzPLZut0myf/QZ2t2pZnfGKLv/VWF3at/CrheU9i9+peAq7nC7tW/BVwtFHavXhRwtVTYvXpJwNVKYffqPwKu1gq7Vy8LuNr46hORu1d3CrjaKuxe3SXgaqewe/UHAVd7hd2rPwq4OijsXt0t4OqosHt1j4Crk8Lu1b0Crs4Ku1f3Cbi6KO1eTQ7UhEDtRUA9RECNQkDdQMBaTsD6SsCaR8A6RMDaQIBfE+ChBPgaAV5DgP4J0CQhOjEaDH5z1Tz3pR15cwU8vUpk73JFoOk3FXqXqwKutxR6l2sCrl4Kvct1AdfbCr3LDQFXb4Xe5aaA6x2F3iVC8Pc0fRR6FxJwvavQu+wXzON7Cr3LAQHX+wq9y0EB1wcKvcshAdeHCr3LYQFXX4Xe5YiAq59C73JUwNVfoXc5JuAaoNS7pAB6F6D2IqAeIqBGIaBuIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJIGCHuXFDHsXeIIapLhCr1LXAHXCIXe5T4B10iF3uV+Adcohd7lAQHXaIXeJZ6Aa4xC7/KggGusQu/ykIBrnELvclxQk4xX6F1OCLgmKPQuJwVcExV6l1MCrkkKvctpAddkhd7ljIBrikLvclbANVWhd/lJwDVNqXdJCfQuQO1FQD1EQI1CQN1AwFpOwPpKwJpHwDpEwNpAgF8T4KEE+BoBXkOA/gnQJE0T9i4pY9i7PCyoSeYq9C7xBVzzFHqXRwRcnyj0Lo8KuOYr9C6PCbgWKPQuCQRcCxV6l4QCrkUKvUsiAddihd7lZ0FNskShd/lFwLVUoXc5J+BaptC7/CrgWq7Qu5wXcK1Q6F1+E3CtVOhdLgi4Vin0Lr8LuFYr9S6pgN4FqL0IqIcIqFEIqBsIWMsJWF8JWPMIWIcIWBsI8GsCPJQAXyPAawjQPwGapNXC3iWVo3cJXuhph++R93X5fa9jedwHHsea9/Ght7G37Kevp7GRTtXPy9goU+vvYWzQ/waQd29KnUg2t6nDMLcfAXM7EJjbQcDcDgbmdggwt0OBuR0GzO1wYG7TCOc2TRjmdgQwtyOBuR0FzO1oYG7HAHM7FpjbccDcjgfm9nHh3D4ehrmdAMztRGBuJwFzOxmY2ynA3E4F5nYaMLfTgblNK5zbtIn+/S8MJY/q61Mkuv33icG1OejjQc0Hn4/ga5krEOEZwzPzvbHex/YGxiKve29s9CsdP+/pje44MnBk5MjEkZkjC8cTHFk5snFk58jBkZMjF0dujjwceTnyceTneJKjAMdTHAU5CiUK79Ht6cA986FXwNuwsB/dXpi5i3AU5SjG8TRHcY4SHCUTRUQ3NDM49Aj1IpZcUUuumCX3tCVX3JIrYcmVTBTzo9vTAYcEFPY41hzdXsTz2Agq6nUs8xbzNvbW0e1PexobeXR7cS9jo45uL+FhbPDo9pKAKMIpxvR3qRhLmYKBowxHWY5yHOU5KnBUDBVjKYsoSltyZSy5spZcOUuuvCVXwZKrGAYxpgfEWAoQY2lAjGUAMZYFxFgOEGN5QIwVADFWjCUxBu5SMVZi7socVTiqclTjqM5Rg6NmqBgrWURR2ZKrYslVteSqWXLVLbkallzNMIgxAIixEiDGyoAYqwBirAqIsRogxuqAGGsAYqwZS2LMcJeKsRZz1+aow1GXox5HfY4GHM+EirGWRRS1Lbk6llxdS66eJVffkmtgyT0TBjFmAMRYCxBjbUCMdQAx1gXEWA8QY31AjA0AMT4jFAV6NhxyUF9D70zk/A/01MZGwH2Q8zPaCn+Xi/I3dn6mLifZOs/0cBvbTom/SbRn4s4n2TrPGXEb216J/9noz/QdT7Jtkcf72A5K/E0d/G4n2TrPY3Eb21GJ/zkHv9tJts4zYtzGdlLib+bgdzvJ1nlujdvYzkr8zzv43U6ydZ6l4za2ixL/C4D/I3uQ31PifxHw/7cA/39fif8lwP97Af7/gRL/y4D/vw34/4dK/K8A/t8b8P++SvyvAv7/DuD//ZT4XwP8vw/g//2V+JsD/v8u4P8DlPhbAP6P7OMar8TfEvD/EYD/T1DibwX4/0jA/ycq8bcG/H8U4P+TlPjbAP4/GvD/yUr8bQH/HwP4/xQl/naA/48F/H+qEn97wP/HAf4/TYm/A+D/yHfhlyjxdwT8fx7g/0uV+DsB/v8J4P/LlPg7A/4/H/D/5Ur8XQD/XwD4/wol/q6A/y8E/H+lEn83wP8XAf6/Som/O+D/iwH/R/dCUQi323DzuwjzlSYC3+8+n/dyGq4iAq79Pu/lNFxFBVwHfN7LabiKCbgO+ryX03A9LeA65PNeTsNVXMB12Oe9nIarhIDriM97OQ1XSQHXUZ/9y/x+tJGA65jP/mW4Ggu4jvvsX4ariYDrhM/+ZbieFXCd9Nm/DFdTAdcpn/3LcD0n4Drts38ZrmYCrjM++5fhel7AdVZpL3oPoP8Gai8C6iECahQC6gYC1nIC1lcC1jwC1iEC1gYC/JoADyXA1wjwGgL0T4AmCdGJ0WDwe3HmuS/tyJsr4OlVInuXUgJNX1DoXUoLuH5X6F3KCLj+UOhdygq4/lToXcoJuP5S6F3KC7j+VuhdKgi4Lir0LhUFXJcUepcXBFz/KPQuLwq4Liv0Li8JuK4o9C4vC7iuKvQurwi4rin0Lq8KuK4r9C6vCbhuKPQuzQVcN5V6l55A7wLUXgTUQwTUKATUDQSs5QSsrwSseQSsQwSsDQT4NQEeSoCvEeA1BOifAE3STWHv0jOGvUslgabj5fV37TdclQVcD/rJFdW7VBFwPeQjV7B3qSrgetg/rv/vXaoJuOL7xnW7d6ku4HrELy5H71JDwPWoT1zO3qWmgOsxX30isndpIeBK4LN/Ga6WAq6EPvuX4Wol4Erks38ZrtYCrsQ++5fhaiPgSuKzfxmutgKupD77l+FqJ+BK5rN/Ga72Aq7kIFfwQnuX14HeBai9CKiHCKhRCKgbCFjLCVhfCVjzCFiHCFgbCPBrAjyUAF8jwGsI0D8BmiREJ87e5fUY9i61BJpOp9C71BZwpVfoXeoIuAIKvUtdAVcGhd6lnoAro0LvUl/AlUmhd2kg4Mqs0Ls8I+DKotC7dBBwPaHQu3QUcGVV6F06CbiyKfQunQVc2RV6ly4CrhwKvUtXAVdOhd6lm4Arl0Lv0l3AlVupd3kD6F2A2ouAeoiAGoWAuoGAtZyA9ZWANY+AdYiAtYEAvybAQwnwNQK8hgD9E6BJyi3sXd5I9O/z1O90Xrr5s0fUnz0T3e5/gq9lrkCEZwxI2/fGehvbGxiLvO69sdGvN/l5f4ujF8fbHL053uHow/Eux3sc73N8wPEhR1+Ofhz9OQZwfMQxkGMQx2COIRxDOYZxDOcYkSi8B1W+mQj7HEKvgLdhYT+ociRzj+IYzTGGYyzHOI7xHBMSRUQ3NDM49MDIUZbcaEtujCU31pIbZ8mNt+QmJIr5QZXOSXMrYkZ6HGsOqhzleWwEjfY6lnnHeBt766DKsZ7GRh5UOc7L2KiDKsd7GBs8qHICIIpwivGtu1SME5l7EsdkjikcUzmmcUznmBEqxokWUUyy5CZbclMsuamW3DRLbrolNyMMYnwLEONEQIyTADFOBsQ4BRDjVECM0wAxTgfEOCOWxNjrLhXjTOaexTGb42OOORxzOeZxfBIqxpkWUcyy5GZbch9bcnMsubmW3DxL7pMwiLEXIMaZgBhnAWKcDYjxY0CMcwAxzgXEOA8Q4yexJMa371IxzmfuBRwLORZxLOZYwrGUY1moGOdbRLHAkltoyS2y5BZbckssuaWW3LIwiPFtQIzzATEuAMS4EBDjIkCMiwExLgHEuBQQ4zKhKNCzV5Z7vw+0d/ZYHh3+Fc7P1OU8qv3A2VXHlfhXRnsm7nwe1QHg7KoTSvyroj/TdzyP6iBwdtVJJf7VDn6386gOAWdXnVLiX+PgdzuP6jBwdtVpJf61Dn6386iOAGdXnVHiX+fgdzuP6ihwdtVZJf71gP9f8GcvTbQL5d8A+P/vgP9fVuLfCPj/H4D/X1Hi3wT4/5+A/19V4t8M+P9fgP9fU+L/FPD/vwH/v67EvwXw/4uA/99Q4t8K+P8lwP9vKvFvA/wf+Q53grw6/J8B/u/8Xrnb2IRK/J8D/u/8rrvb2ERK/F8A/v9wXu9jEyvxfwn4v3NPgNvYJEr8XwH+79yn4DY2qRL/14D/O/dOuI1NpsT/DeD/zv0cbmOTK/F/C/h/On++0xXtQvm3A/6fHvD/rEr83wH+HwD8P5sS/w7A/zMA/p9dif97wP8zAv6fQ4l/J+D/mQD/z6nEvwvw/8yA/+dS4v8B8P8sgP8j3+80v4wz/44qWf4/Cnk/Lhcliuv9vs77/ZgoBjc0P4z+3G7gF1BSrt2JbicC3n7Ot8lwe4/O++2JyWSYH0b/Vd49QBWxV2Hi9loeKLd77QV/44a+vnmY9lo+W7fb7P4f+mzNrrTlgs+2jMLu1RUCrrIKu1dXCrjKKexeXSXgKq+we3W1gKuCwu7VNQKuigq7V9cKuCop7F5dJ+Cq7KtPRO5eHSngqqKwe3WUgKuqwu7V0QKuagq7V8cIuKor7F4dK+CqobB7dZyAq6bC7tXxAq5aCrtXJwi4aivtXt0H1IRA7UVAPURAjUJA3UDAWk7A+krAmkfAOkTA2kCAXxPgoQT4GgFeQ4D+CdAkIToxGgx+c9U896UdeXMFPL1KZO+yXqDpRgq9ywYBV2OF3mWjgKuJQu+yScD1rELvslnA1VShd/lUwPWcQu+yRcDVTKF32Srgel6hd5ko4HpBoXeZJOB6UaF3mSzgekmhd5ki4HpZoXeZKuB6RaF3mSbgelWhd5ku4HpNoXeZIeBqrtS77Ad6F6D2IqAeIqBGIaBuIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJKaC3uX/THsXbYJNN1eoXf5TMDVQaF3+VzA1VGhd/lCwNVJoXf5UsDVWaF3+UrA1UWhd/lawNVVoXf5RsDVTaF3mSng6q7Qu8wScPVQ6F1mC7h6KvQuHwu4XlfoXeYIuN5Q6F3mCrjeVOhd5gm43lLoXT4RcPVS6l0OAL0LUHsRUA8RUKMQUDcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0Sb2EvcuBGPYu3wo0/YFC77JdwPWhQu/ynYCrr0LvskPA1U+hd/lewNVfoXfZKeAaoNC77BJwfaTQu/wg4Bqo0LvMF3ANUuhdFgi4Biv0LgsFXEMUepdFAq6hCr3LYgHXMIXeZYmAa7hC77JUwDVCoXdZJuAaqdS7HAR6F6D2IqAeIqBGIaBuIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJJGCnuXg47eJXihpx3OIO/r8kyvY3ncLI9jzfuY7W3sLfv52NPYSKea42VslKnN9TA26H/zyLs3HUokm9tDYZjbT4C5nQ/M7QJgbhcCc7sImNvFwNwuAeZ2KTC3h4VzezgMc7sMmNvlwNyuAOZ2JTC3q4C5XQ3M7RpgbtcCc3tEOLdHwjC364C5XQ/M7QZgbjcCc7sJmNvNwNx+CsztFmBujwrn9miif/8LQ/ui6uL9iW7/fWJwbQ76eFDzwecj+FrmCkR4xvDMfG+s97G9gbHI694bG/06xs/7cY4THCc5TnGc5jjDcZbjJ46fOX7hOMfxK8d5jt84LnD8zvEHx58cf3H8zXGR4xLHPxyXE4X36PZjibDPIfQKeBsW9qPbrzD3VY5rHNc5bnDcNF6TmMcljohuaGZw6BHqVy25a5bcdUvuhiV305IzMKE5Shzzo9udk+a2CFzxONYc3X7V89gIuuZ1LPNe9zb21tHtNzyNjTy6/aaXsVFHt5u5cBsbPLqdEnsXRTjFePwuFWMc/rzictzHcT/HAxzxzHPO8VCoGONYRBHXkrvPkrvfknvAkotnyT1oyT0UBjEeB8QYJ3GER4HdpLiex0bQfV7HMu/93sbeEuMDnsZGijGel7FRYnwQEONDsSTGE3epGB/mzys+xyMcj3I8xpGAIyFHolAxPmwRRXxL7hFL7lFL7jFLLoEll9CSSxQGMZ4AxPgwIMb4gBgfAcT4KCDGxwAxJgDEmBAQY6JYEuPJu1SMifnzSsKRlCMZR3KOFBwpOVKFijGxRRRJLLmkllwySy65JZfCkktpyaUKgxhPAmJMDIgxCSDGpIAYkwFiTA6IMQUgxpSAGFMBYnRe6NlwyEF9qb0zkfM/0FMb0wD3Qc7PqCL8XS7K/7hznl1OsnWe6eE2tqoSf9poz+mdT7J1njPiNraaEn+66Dq740m25fN6H1tdiT+9g9/tJFvneSxuY2so8Qcc/G4n2TrPiHEbW1OJP4OD3+0kW+e5NW5jaynxZ3Twu51k6zxLx21sbSX+TID/I3uQX1Dizwz4f2PA/19U4s8C+H8TwP9fUuJ/AvD/ZwH/f1mJPyvg/00B/39FiT8b4P/PAf7/qhJ/dsD/mwH+/5oSfw7A/58H/L+5En9OwP+RfVzdlfhzAf7fAfD/Hkr8uQH/7wj4f08l/jyA/3cC/P91Jf68gP93Bvz/DSX+fID/dwH8/00l/vyA/3cF/P8tJf4nAf/vBvh/LyX+AoD/I9+FH6TE/xTg/x8C/j9Yib8g4P99Af8fosRfCPD/foD/D1XiLwz4f3/A/4cp8RcB/H8A4P/DlfiLAv7/EeD/I5T4iwH+PxDwf3QvFIVwuw03v4u4ItijtdznvZy7o76PhnKt8Hkv5+6o78ihXCt93su5O+p7eyjXKp/3cu6O+i4hyrXa572cu6O+34hyrfF5L+fu4HcuQa61Pu/lNFwk4Frns3+Z34+mEXCt99m/DNfjAq4NPvuX4Uor4Nros38ZrnQCrk0++5fhSi/g2uyzf936XoCA61Of/ctwZRBwbfHZvwxXRgHXVqW96E8D/TdQexFQDxFQoxBQNxCwlhOwvhKw5hGwDhGwNhDg1wR4KAG+RoDXEKB/AjRJiE6MBoPfizPPfWlH3lwBT68S2bvEEWj6G4XeJa6A61uF3uU+Add2hd7lfgHXdwq9ywMCrh0KvUs8Adf3Cr3LgwKunQq9y0MCrl0KvUsmAdcPCr1LZgHXjwq9SxYB126F3uUJAdcehd4lq4Brr0Lvkk3AtU+hd8ku4Nqv0LvkEHAdUOpdigO9C1B7EVAPEVCjEFA3ELCWE7C+ErDmEbAOEbA2EODXBHgoAb5GgNcQoH8CNEkHhL1L8Rj2Lg8LNH1CoXeJL+A6qdC7PCLgOqXQuzwq4Dqt0Ls8JuA6o9C7JBBwnVXoXRIKuH5S6F0SCbh+Vuhdcgq4flHoXXIJuM4p9C65BVy/KvQueQRc5xV6l7wCrt8Uepd8Aq4LCr1LfgHX7wq9y5MCrj+UepcSQO8C1F4E1EME1CgE1A0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBN0h/C3qVEDHuXxAJNX1HoXZIIuK4q9C5JBVzXFHqXZAKu6wq9S3IB1w2F3iWFgOumQu+SUsAVkc//3iWVgIt84goONzVJAQFXHF+5InuXpwRccf3kiupdCgq47vORK9i7FBJw3e8f1//3LoUFXA/4xnW7dyki4IrnF5ejdykq4HrQZ/8yXMUEXA+BXMEL7V1KAr0LUHsRUA8RUKMQUDcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0SYhOnL1LycT/Pk/9Tuelmz+fjtJx8cS3+5/ga5krEOEZA9L2vbHexvYGxiKve29s9KuU0Q5HGY6yHOU4ynNU4KjIUYmjMkcVjqoc1Tiqc9TgqMlRi6M2Rx2Ouhz1OOpzNOB4hqNh4vAeVFkqMfY5hF4Bb8PCflBlI+ZuzNGE41mOphzPcTTjeD5xRHRDM4NDD4xsbMk1seSeteSaWnLPWXLNLLnnE8f8oErnpLkVMY08jjUHVTb2PDaCmngdy7zPeht766DKpp7GRh5U+ZyXsVEHVTbzMDZ4UOXzgCjCKcbSd6kYX2DuFzle4niZ4xWOVzle42geKsYXLKJ40ZJ7yZJ72ZJ7xZJ71ZJ7zZJrHgYxlgbE+AIgxhcBMb4EiPFlQIyvAGJ8FRDja4AYm8eSGMvcpWJswdwtOVpxtOZow9GWox1H+1AxtrCIoqUl18qSa23JtbHk2lpy7Sy59mEQYxlAjC0AMbYExNgKEGNrQIxtADG2BcTYDhBj+1gSY9m7VIwdmLsjRyeOzhxdOLpydOPoHirGDhZRdLTkOllynS25LpZcV0uumyXXPQxiLAuIsQMgxo6AGDsBYuwMiLELIMaugBi7AWLsLhQFevZKD+/3gfbOomcEBC+Uv6fzM3U5j2oFcHbVBiX+16M9E3c+j2olcHbVRiX+N6I/03c8j2oVcHbVJiX+Nx38budRrQbOrtqsxP+Wg9/tPKo1wNlVnyrx93Lwu51HtRY4u2qLEv/bDn6386jWAWdXbVXi7w34P7L/6Acl/ncA//8W8P8flfj7AP6/HfD/3Ur87wL+/x3g/3uU+N8D/H8H4P97lfjfB/z/e8D/9ynxfwD4/07A//cr8X8I+P8uwP8PKPH3Bfwf+Q73L0r8/QD/Pwn4/zkl/v6A/58C/P9XJf4BgP+fBvz/vBL/R4D/nwH8/zcl/oGA/58F/P+CEv8gwP9/Avz/dyX+wYD//wz4/x9K/EMA/0e+B4d+3zd4ofxDAf+/Cvh/XCX+YYD/XwP8/z4l/uGA/18H/P9+Jf4RgP/fAPz/ASX+kYD/3wT8P54S/yjA/53fP3Ub+6AS/2jA/53fiXUbi3y/0/wyzvw7qmT5/yjk/bhclDiu9/s67zcmcQxuaH4Y/bmxwC+gpFxjE99OBLz9nG+T4brxx/GD42IyGeaH0X+VdxxQRYxXmLjxlgfK7V7jwd+4oa9vHqbxls/W7TZj/4c+W7MrrYfgs02bL2afrdtow9VTwJXO591fhut1AVd6H7nMWMP1hoAr4PPuL8P1poArg8+7vwzXWwKujD7v/jJcvQRcmRR2r74t4Mrsq09E7l5tJODKorB7tbGA6wmF3atNBFxZFXavPivgyqawe7WpgCu7wu7V5wRcORR2rzYTcOVU2L36vIArl7DrRHevTgBqQqD2IqAeIqBGIaBuIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJIQnRgNBr+5ap770o68uQKeXiWyd+kt0PRTCr3LOwKuggq9Sx8BVyGF3uVdAVdhhd7lPQFXEYXe5X0BV1GF3uUDAVcxhd7lQwHX0wq9ywsCruIKvcuLAq4SCr3LSwKukgq9y8sCrlIKvcsrAq7SCr3LqwKuMgq9y2sCrrIKvUtzAVc5pd5lItC7ALUXAfUQATUKAXUDAWs5AesrAWseAesQAWsDAX5NgIcS4GsEeA0B+idAk4ToxNm7TIxh79JXoOlqCr1LPwFXdYXepb+Aq4ZC7zJAwFVToXf5SMBVS6F3GSjgqq3QuwwScNVR6F0GC7jqKvQuLQRc9RR6l5YCrvoKvUsrAVcDhd6ltYDrGYXepY2Aq6FC79JWwNVIoXdpJ+BqrNC7tBdwNVHqXSYBvQtQexFQDxFQoxBQNxCwlhOwvhKw5hGwDhGwNhDg1wR4KAG+RoDXEKB/AjRJiE6cvcukGPYuQwSafkmhdxkq4HpZoXcZJuB6RaF3GS7gelWhdxkh4HpNoXcZKeBqrtC7jBJwtVDoXUYLuFoq9C4dBFytFHqXjgKu1gq9SycBVxuF3qWzgKutQu/SRcDVTqF36Srgaq/Qu3QTcHVQ6F26C7g6KvUuk4HeBai9CKiHCKhRCKgbCFjLCVhfCVjzCFiHCFgbCPBrAjyUAF8jwGsI0D8BmiREJ87eZbKjdwle6GmHW8n7urzN61ge95nHseZ9fO5t7C37+cLT2Ein+tLL2ChT+8rD2KD/fU3evWlKYtncTgnD3H4DzO23wNxuB+b2O2BudwBz+z0wtzuBud0FzO1U4dxODcPc/gDM7Y/A3O4G5nYPMLd7gbndB8ztfmBuDwBzO004t9PCMLcHgbk9BMztYWBujwBzexSY22PA3B4H5vYEMLfThXM7PfG//4WhCVF18cTEt/8+Mbg2B308qPng8xF8LXMFIjxjeGa+N9b72N7AWOR1742Nfs3g530mxyyO2Rwfc8zhmMsxj+MTjvkcCzgWciziWMyxhGMpxzKO5RwrOFZyrOJYzbGGYy3HusThPbp9RmLscwi9At6Ghf3o9vXMvYFjI8cmjs0cn3Js4diaOCK6oZnBoUeob7DkNlpymyy5zZbcp5bcFktua+KYH93unDS3RWC9x7Hm6PYNnsdG0EavY5l3k7ext45u3+xpbOTR7Z96GRt1dPsWD2ODR7dvBUQRTjHOvEvFuI25P+P4nOMLji85vuL4muObUDFus4jiM0vuc0vuC0vuS0vuK0vua0vumzCIcSYgxm2AGD8DxPg5IMYvADF+CYjxK0CMXwNi/CaWxDjrLhXjt8y9neM7jh0c33Ps5NjF8UOoGL+1iGK7JfedJbfDkvvekttpye2y5H4IgxhnAWL8FhDjdkCM3wFi3AGI8XtAjDsBMe4CxPhDLIlx9l0qxh+ZezfHHo69HPs49nMc4DgYKsYfLaLYbcntseT2WnL7LLn9ltwBS+5gGMQ4GxDjj4AYdwNi3AOIcS8gxn2AGPcDYjwAiPGgUBTo2XDIQX2HvDOR8z/QUxsPA/dBzs9AzwkKXij/Eedn6nKSrfNMD7exTyjxH432TNz5JFvnOSNuY7Mq8R+L/kzf8STbQD7vY7Mp8R938LudZOs8j8VtbHYl/hMOfreTbJ1nxLiNzaHEf9LB73aSrfPcGrexOZX4Tzn43U6ydZ6l4zY2lxL/acD/kT3IxZX4zwD+XxDw/xJK/GcB/y8E+H9JJf6fAP8vDPh/KSX+nwH/LwL4f2kl/l8A/y8K+H8ZJf5zgP8XA/y/rBL/r4D/Pw34fzkl/vOA/yP7uOop8f8G+H91wP/rK/FfAPy/BuD/DZT4fwf8vybg/88o8f8B+H8twP8bKvH/Cfh/bcD/Gynx/wX4fx3A/xsr8f8N+H9dwP+bKPFfBPwf+S58KyX+S4D/vwz4f2sl/n8A/38F8P82SvyXAf9/FfD/tkr8VwD/fw3w/3ZK/FcB/28O+H97Jf5rgP+3APy/gxL/dcD/WwL+j+6FohBut+HmdxHmK00Evt+hvnLRrd+RbBBwDfOTiyJ/d7NRwDXcRy4z1nBtEnCN8I/r1lDDtVnANdI3rsiRhutTAdcov7iiBhquLQKu0T5xBccZrq0CrjE++5f5/ehhAddYn/3LcB0RcI3z2b8M11EB13if/ctwHRNwTfDZvwzXcQHXRJ/9y3CdEHBN8tm/DNdJAddkn/3LcJ0ScE0R1o/oXvQbQP8N1F4E1EME1CgE1A0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNEqITo8Hg9+LMc1/akTdXwNOrRPYu2wSa/lihd/lMwDVHoXf5XMA1V6F3+ULANU+hd/lSwPWJQu/ylYBrvkLv8rWAa4FC7/KNgGuhQu9yWsC1SKF3OSPgWqzQu5wVcC1R6F1+EnAtVehdfhZwLVPoXX4RcC1X6F3OCbhWKPQuvwq4Vir1LjeB3gWovQiohwioUQioGwhYywlYXwlY8whYhwhYGwjwawI8lABfI8BrCNA/AZokRCfO3uVmDHuXbwWa3qjQu2wXcG1S6F2+E3BtVuhddgi4PlXoXb4XcG1R6F12Cri2KvQuuwRc2xR6lx8EXJ8p9C7nBVyfK/Quvwm4vlDoXS4IuL5U6F1+F3B9pdC7/CHg+lqhd/lTwPWNQu/yl4DrW4Xe5W8B13al3iUiiXfPA2ovAuohAmoUAuoGAtZyAtZXAtY8AtYhAtYGAvyaAA8lwNcI8BoC9E+AJgnRibN3Mc99aUfeXAFPrxLZu/wo0PRuhd5lt4Brj0LvskfAtVehd9kr4Nqn0LvsE3DtV+hd9gu4Dij0LgcEXAcVepeDAq5DCr3LRQHXYYXe5ZKA64hC7/KPgOuoQu9yWcB1TKF3uSLgOq7Qu1wVcJ1Q6F2uCbhOKvQu1wVcp5R6FwJ6F6D2IqAeIqBGIaBuIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJIQnTh7F0ry7/PU73ReuvnzRtSfNxPf7n+Cr2WuQIRnDEjb98Z6G9sbGIu87r2x0a84/LzH5biP436OBzjicTzI8RDHwxzxOR7heJTjMY4EHAk5EnEk5kjCkZQjGUdyjhQcKTlScaROEt6DKuMkwT6H0CvgbVjYD6pMw9yPc6TlSMeR3rwPjgwcGZNERDc0Mzj0wMjHLbm0llw6Sy69JRew5DJYchmTxPygSuekuRUxaTyONQdVPu55bASl9TqWedN5G3vroMr0nsZGHlQZ8DI26qDKDB7GBg+qzAiIIpxijHuXijETc2fmyMLxBEdWjmwc2TlyhIoxk0UUmS25LJbcE5ZcVksumyWX3ZLLEQYxxgXEmAkQY2ZAjFkAMT4BiDErIMZsgBizA2LMEUtivO8uFWNO5s7FkZsjD0dejnwc+TmeDBVjTosocllyuS25PJZcXksunyWX35J7MgxivA8QY05AjLkAMeYGxJgHEGNeQIz5ADHmB8T4ZCyJ8f67VIwFmPspjoIchTgKcxThKMpRLFSMBSyieMqSK2jJFbLkCltyRSy5opZcsTCI8X5AjAUAMT4FiLEgIMZCgBgLA2IsAoixKCDGYkJRoGevPO39PtDeWfSMgOCF8hd3fqYu51E59/O6jR2nxF8i2jNx5/OonHuM3caOV+IvGf2ZvuN5VCPyeR87QYm/lIPf7Twq515st7ETlfhLO/jdzqNy7g93GztJib+Mg9/tPCrnnnW3sZOV+Ms6+N3Oo3Luo3cbO0WJvxzg/8j+o0VK/OUB/58D+P9iJf4KgP/PBfx/iRJ/RcD/5wH+v1SJvxLg/58A/r9Mib8y4P/zAf9frsRfBfD/BYD/r1Dirwr4/0LA/1cq8VcD/B/5DvfnSvzVAf/fBPj/F0r8NQD/3wz4/5dK/DUB//8U8P+vlPhrAf6/BfD/r5X4awP+vxXw/2+U+OsA/r8N8P9vlfjrAv7/GeD/25X46wH+j3wP7rASf33A//cA/n9Eib8B4P97Af8/qsT/DOD/+wD/P6bE3xDw//2A/x9X4m8E+P8BwP9PKPE3Bvz/IOD/J5X4mwD+fwjwf+T7neaXcebfUSXL/0ch78floiRxvd/Xeb9nk8TghuaH0Z9rCvwCSsrVNMntRMDbz/k2Ga5faHf84HMxmQzzw+i/yvscUEU0U5i4ZpYHyu1ezcDfuKGvbx6mZpbP1u02Tf+HPluzK+1pwWd7OV/MPlu30YaruIDrip9cFLmLr4SA66qPXGas4Sop4LrmH9etoYarlIDrum9ckSMNV2kB1w2/uKIGGq4yAq6bPnEFxxmusgKuiPx++kTk7tU0Ai7ylSty9+rjAq44fnJR5C6+tAKuuD5ymbGGK52A6z7/uG4NNVzpBVz3+8YVOdJwBQRcD/jFFTXQcGUQcMXziSs4znBlFHA9CHIFL3T36vNATQjUXgTUQwTUKATUDQSs5QSsrwSseQSsQwSsDQT4NQEeSoCvEeA1BOifAE0SohOjweA3V81zX9qRN1fA06tE9i7lBJpO6PPab7jKC7gS+bz2G64KAq7EPq/9hquigCuJz2u/4aok4Erq89pvuCoLuJL5vPYbrioCruQ+r/2Gq6qAK4VC75JJwJVSoXfJLOBKpdC7ZBFwpVboXZ4QcKVR6F2yCrgeV+hdsgm40ir0LtkFXOkUepccAq70Sr3LC0DvAtReBNRDBNQoBNQNBKzlBKyvBKx5BKxDBKwNBPg1AR5KgK8R4DUE6J8ATVJ6Ye/yQgx7l2oCTWdV6F2qC7iyKfQuNQRc2RV6l5oCrhwKvUstAVdOhd6ltoArl0LvUkfAlVuhd6kr4Mqj0LvkFHDlVehdcgm48in0LrkFXPkVepc8Aq4nFXqXvAKuAgq9Sz4B11MKvUt+AVdBhd7lSQFXIaXe5UWgdwFqLwLqIQJqFALqBgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCapkLB3eTGGvUs9gaZLKvQu9QVcpRR6lwYCrtIKvcszAq4yCr1LQwFXWYXepZGAq5xC79JYwFVeoXdpIuCqoNC7FBBwVVToXZ4ScFVS6F0KCrgqK/QuhQRcVRR6l8ICrqoKvUsRAVc1hd6lqICrukLvUkzAVUOpd3kJ6F2A2ouAeoiAGoWAuoGAtZyA9ZWANY+AdYiAtYEAvybAQwnwNQK8hgD9E6BJqiHsXV5y9C7BCz3t8CR5X5dPeR3L4057HGvexxlvY2/Zz1lPYyOd6icvY6NM7WcPY4P+9wt596aXk8jm9uUwzO05YG5/Beb2PDC3vwFzewGY29+Buf0DmNs/gbl9RTi3r4Rhbv8C5vZvYG4vAnN7CZjbf4C5vQzM7RVgbq8Cc/uqcG5fDcPcXgPm9jowtzeAub0JzK3Z+Ok+NnIoxfE+t3HieJ/buHG8z+1rwrl9Lcm//4Wh56Pq4heS3P77xODaHPTxoOaDz0fwtcwViPCM4Zn53ljvY3sDY5HXvTc2+tWcn/cWHC05WnG05mjD0ZajHUd7jg4cHTk6cXTm6MLRlaMbR3eOHhw9OV7neIPjTY63OHpxvJ0kvEe3Nwf3zIdeAW/Dwn50e2/mfoejD8e7HO9xvM/xAceHSSKiG5oZHHqE+juWXB9L7l1L7j1L7n1L7gNL7sMkMT+63TlpbotAb49jzdHt73geG0F9vI5l3ne9jb11dPt7nsZGHt3+vpexUUe3f+BhbPDo9g8BUYRTjC3uUjH2Ze5+HP05BnB8xDGQYxDH4FAx9rWIop8l19+SG2DJfWTJDbTkBllyg8MgxhaAGPsCYuwHiLE/IMYBgBg/AsQ4EBDjIECMg2NJjC3vUjEOYe6hHMM4hnOM4BjJMYpjdKgYh1hEMdSSG2bJDbfkRlhyIy25UZbc6DCIsSUgxiGAGIcCYhwGiHE4IMYRgBhHAmIcBYhxdCyJsdVdKsYxzD2WYxzHeI4JHBM5JnFMDhXjGIsoxlpy4yy58ZbcBEtuoiU3yZKbHAYxtgLEOAYQ41hAjOMAMY4HxDgBEONEQIyTADFOFooCPRsOOahvincmcv4HemrjVOA+yPkZJPxdLso/zfmZupxk6zzTw21sHCX+6dGeiTufZOs8Z8RtbFwl/hnRn+k7nmR7LZ/3sfcp8c908LudZOs8j8Vt7P1K/LMc/G4n2TrPiHEb+4AS/2wHv9tJts5za9zGxlPi/9jB73aSrfMsHbexDyrxzwH8H9mDnFKJfy7g/8590W5jUynxzwP837lX221saiX+TwD/T5Lf+9g0SvzzAf937ml3G/u4Ev8CwP+d++zdxqZV4l8I+L9z77/b2HRK/IsA/08B+H96Jf7FgP8j+7jyKvEvAfw/G+D/+ZT4lwL+nx3w//xK/MsA/88B+P+TSvzLAf/PCfh/ASX+FYD/5wL8/ykl/pWA/+cG/L+gEv8qwP/zAP5fSIl/NeD/yHfhKyrxrwH8vxTg/5WU+NcC/l8a8P/KSvzrAP8vA/h/FSX+9YD/lwX8v6oS/wbA/8sB/l9NiX8j4P/lAf+vrsS/CfD/CoD/o3uhKITbbbj5XYT5ShOB77etz3s5Ddc7Aq52Pu/lNFx9BFztfd7LabjeFXB18Hkvp+F6T8DV0ee9nIbrfQFXJ5/3chquDwRcnX3ey2m4PhRwdfHZv8zvR6cKuLr67F+Ga5qAq5vP/mW4pgu4uvvsX4ZrhoCrh8/+ZbhmCrh6+uxfhmuWgOt1n/3LcM0WcL3hs38Zro8FXG8q7UXfDPTfQO1FQD1EQI1CQN1AwFpOwPpKwJpHwDpEwNpAgF8T4KEE+BoBXkOA/gnQJCE6MRoMfi/OPPelHXlzBTy9SmTv0leg6fcUepd+Aq73FXqX/gKuDxR6lwECrg8VepePBFx9FXqXgQKufgq9yyABV3+F3mWwgGuAQu8yR8D1kULvMlfANVChd5kn4Bqk0Lt8IuAarNC7zBdwDVHoXRYIuIYq9C4LBVzDFHqXRQKu4Uq9y6dA7wLUXgTUQwTUKATUDQSs5QSsrwSseQSsQwSsDQT4NQEeSoCvEeA1BOifAE3ScGHv8mkMe5chAk2PV+hdhgq4Jij0LsMEXBMVepfhAq5JCr3LCAHXZIXeZaSAa4pC7zJKwDVVoXcZLeCaptC7LBZwTVfoXZYIuGYo9C5LBVwzFXqXZQKuWQq9y3IB12yF3mWFgOtjhd5lpYBrjkLvskrANVepd9kC9C5A7UVAPURAjUJA3UDAWk7A+krAmkfAOkTA2kCAXxPgoQT4GgFeQ4D+CdAkzRX2Llti2LuMEWh6iULvMlbAtVShdxkn4Fqm0LuMF3AtV+hdJgi4Vij0LhMFXCsVepdJAq5VCr3LZAHXaoXeZbWAa41C77JGwLVWoXdZK+Bap9C7rBNwrVfoXdYLuDYo9C4bBFwbFXqXjQKuTQq9yyYB12al3mUr0LsAtRcB9RABNQoBdQMBazkB6ysBax4B6xABawMBfk2AhxLgawR4DQH6J0CTtFnYu2xN8u/z1O90Xrr5c3PUn58mud3/BF/LXIEIzxiQtu+N9Ta2NzAWed17Y6Nf2/h5/4zjc44vOL7k+Irja45vOL7l2M7xHccOju85dnLs4viB40eO3Rx7OPZy7OPYz3GA4yDHoSThPahyWxLscwi9At6Ghf2gysPMfYTjKMcxjuMcJzhOcpxKEhHd0Mzg0AMjj1hyRy25Y5bccUvuhCV30pI7lSTmB1U6J82tiDnscaw5qPKI57ERdNTrWOY95m3srYMqj3saG3lQ5QkvY6MOqjzpYWzwoMpTgCjCKcbP7lIxnmbuMxxnOX7i+JnjF45zHL+GivG0RRRnLLmzltxPltzPltwvltw5S+7XMIjxM0CMpwExngHEeBYQ40+AGH8GxPgLIMZzgBh/jSUxfn6XivE8c//GcYHjd44/OP7k+Ivj71AxnreI4jdL7oIl97sl94cl96cl95cl93cYxPg5IMbzgBh/A8R4ARDj74AY/wDE+Ccgxr8AMf4dS2L84i4V40XmvsTxD8dljiscVzmucVwPFeNFiyguWXL/WHKXLbkrltxVS+6aJXc9DGL8AhDjRUCMlwAx/gOI8TIgxiuAGK8CYrwGiPG6UBTo2Ss3vN8H2jvbNb8O/03nZ+pyHpVzP6/b2G5K/BFJnWPvfB6Vc4+x29juSvwUjf/O51F1yO99bA8l/jgOfrfzqJx7sd3G9lTij+vgdzuPyrk/3G3s60r89zn43c6jcu5Zdxv7hhL//Q5+t/OonPvo3ca+qcT/QFLvno7sP/pIiT9eUu+e/j7g/wOV+B8E/P8DwP8HKfE/BPj/h4D/D1bifxjw/76A/w9R4o8P+H8/wP+HKvE/Avh/f8D/hynxPwr4/wDA/4cr8T8G+D/yHe7pSvwJAP+fAPj/DCX+hID/TwT8f6YSfyLA/ycB/j9LiT8x4P+TAf+frcSfBPD/KYD/f6zEnxTw/6mA/89R4k8G+P80wP/nKvEnB/wf+R7cGiX+FID/LwX8f60Sf0rA/5cB/r9OiT8V4P/LAf9fr8SfGvD/FYD/b1DiTwP4/0rA/zcq8T8O+P8qwP83KfGnBfx/NeD/yPc7zS/jzL+jSpb/j0Lej8tFSeN6v6/zfumSxuCG5ofRn0uf1PskSbnSJ72dCHj7Od8mw/Uv4h0/GIjJZJgfRv9V3gBQRWRQmLgMlgfK7V4ZvL8HK5fb65uHKYPls3W7Tfr/oc/W7EozvzFE3/uPCrtXbwq4divsXo0QPIt7FHavkoBrr8Lu1TgCrn0Ku1fjCrj2K+xevU/AdUBh9+r9Aq6DvvpE5O7VwwKfOKSwe/WIgOuwwu7VowKuIwq7V48JuI4q7F49LuA6prB79YSA67jC7tWTAq4TCrtXTwm4TirtXs0I1IRA7UVAPURAjUJA3UDAWk7A+krAmkfAOkTA2kCAXxPgoQT4GgFeQ4D+CdAkIToxGgx+c9U896UdeXMFPL1KZO/ygKAmOafQu8QTcP2q0Ls8KOA6r9C7PCTg+k2hd3lYwHVBoXeJL+D6XaF3eUTA9YdC7/KogOtPhd7ltKAm+Uuhdzkj4PpboXc5K+C6qNC7/CTguqTQu/ws4PpHoXf5RcB1WaF3OSfguqLQu/wq4Lqq1LtkAnoXoPYioB4ioEYhoG4gYC0nYH0lYM0jYB0iYG0gwK8J8FACfI0AryFA/wRokq4Ke5dMMexdHhPUJHGf9HftN1wJBFz3+ckV1bskFHDd7yNXsHdJJOB6wD+u/+9dEgu44vnGdbt3SSLgetAvLkfvklTA9ZBPXM7eJZmA62FffSKydzkvqEni++xfU6LOU0C5HvHZv6ZEnfGAcj3qs39NiTp3AuV6zGf/mhJ1FgbKlcBn/5oSdT4HypXQZ/+aEnVmCMqVyGf/mhJ1jgnKlRjkCl5o75IZ6F2A2ouAeoiAGoWAuoGAtZyA9ZWANY+AdYiAtYEAvybAQwnwNQK8hgD9E6BJQnTi7F0yx7B3SS6oSVIr9C4pBFxpFHqXlAKuxxV6l1QCrrQKvUtqAVc6hd4ljYArvULv8riAK6DQu6SVfG9XoXe5KKhJMir0LpcEXJkUepd/BFyZFXqXywKuLAq9yxUB1xMKvctVAVdWhd7lmoArm0Lvcl3AlV2pd8kC9C5A7UVAPURAjUJA3UDAWk7A+krAmkfAOkTA2kCAXxPgoQT4GgFeQ4D+CdAkZRf2LlkcvUvwQk87vC+O93X5fq9jGe4Bj2PN+4jnbewt+3nQ09hIp3rIy9goU3vYw9ig/8WPA6xlSWVz+0QY5vYRYG4fBeb2MWBuEwBzmxCY20TA3CYG5jYJMLdZhXObNQxzmxSY22TA3CYH5jYFMLcpgblNBcxtamBu0wBzm004t9nCMLePA3ObFpjbdMDcpgfmNgDMbQZgbjMCc5sJmNvswrnNnvTf/8JQxqi+PlPS23+fGFybgz4e1Hzw+Qi+lrkCEZ4xPDPfG+t9bG9gLPK698ZGv3Lw856TIxdHbo48HHk58nHk53iSowDHUxwFOQpxFOYowlGUoxjH0xzFOUpwlOQoZfTIUYajbNLwHt2eA9wzH3oFvA0L+9Ht5Zi7PEcFjooclTgqc1ThqJo0IrqhmcGhR6iXt+QqWHIVLblKllxlS66KJVc1acyPbs8BHBJQzuNYc3R7ec9jI6iC17HMW9Hb2FtHt1fyNDby6PbKXsZGHd1excPY4NHtVQFRhFOMOe9SMVZj7uocNThqctTiqM1Rh6NuqBirWURR3ZKrYcnVtORqWXK1Lbk6llzdMIgxJyDGaoAYqwNirAGIsSYgxlqAGGsDYqwDiLFuLIkx110qxnrMXZ+jAcczHA05GnE05mgSKsZ6FlHUt+QaWHLPWHINLblGllxjS65JGMSYCxBjPUCM9QExNgDE+AwgxoaAGBsBYmwMiLFJLIkx910qxmeZuynHcxzNOJ7neIHjRY6XQsX4rEUUTS255yy5Zpbc85bcC5bci5bcS2EQY25AjM8CYmwKiPE5QIzNADE+D4jxBUCMLwJifEkoCvRsOOSgvpe9M5HzP9BTG18B7oOcn3FIuIcO5X/V+Zm6nGS7Gzj19rAS/2vRnok7n2S7Bzj19ogSf/Poz/QdT7LdC5x6e1SJv4WD3+0k233AqbfHlPhbOvjdTrLdD5x6e1yJv5WD3+0k2wPAqbcnlPhbO/jdTrI9CJx6e1KJvw3g/+f82U8b7UL52wL+/yvg/38r8bcD/P884P8XlfjbA/7/G+D/l5T4OwD+fwHw/3+U+DsC/v874P+Xlfg7Af7/B+D/V5T4OwP+/yfg/1eV+LsA/o/s44r/pA5/V8D/nXvL3MY+osTfDfB/5343t7GPKvF3B/z/gSe9j31Mib8H4P/OfYFuYxMo8fcE/N+5V9FtbEIl/tcB/3fun3Qbm0iJ/w3A/517Ot3GJlbifxPw/9T+fK872oXyvwX4fxrA/zMp8fcC/P9xwP8zK/G/Dfh/WsD/syjx9wb8Px3g/08o8b8D+H96wP+zKvH3Afw/APh/NiX+dwH/zwD4P7oXikK43Yab30WYrzQR+H6r+LyX03CVF3BV9Xkvp+GqIOCq5vNeTsNVUcBV3ee9nIarkoCrhs97OQ1XZQFXTZ/3chquKgKuWj7v5TRcVQVctX32L/P70VcEXHV89i/D9aqAq67P/mW4XhNw1fPZvwxXcwFXfZ/9y3C1EHA18Nm/DFdLAdczPvuX4Wol4Gros38ZrtYCrkZKe9HfA/pvoPYioB4ioEYhoG4gYC0nYH0lYM0jYB0iYG0gwK8J8FACfI0AryFA/wRokhCdGA0GvxdnnvvSjry5Ap5eJbJ3qSbQ9AsKvUt1AdeLCr1LDQHXSwq9S00B18sKvUstAdcrCr1LbQHXqwq9Sx0B12sKvUtdAVdzhd6ljYCrhULv0lbA1VKhd2kn4Gql0Lu0F3C1VuhdOgi42ij0Lh0FXG0VepdOAq52Cr1LZwFXe6Xe5X2gdwFqLwLqIQJqFALqBgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCapvbB3eT+GvUs9gaa7K/Qu9QVcPRR6lwYCrp4KvcszAq7XFXqXhgKuNxR6l0YCrjcVepfGAq63FHqXJgKuXgq9SxcB19sKvUtXAVdvhd6lm4DrHYXepbuAq49C79JDwPWuQu/SU8D1nkLv8rqA632F3uUNAdcHSr3LB0DvAtReBNRDBNQoBNQNBKzlBKyvBKx5BKxDBKwNBPg1AR5KgK8R4DUE6J8ATdIHwt7lgxj2Ls8KND1IoXdpKuAarNC7PCfgGqLQuzQTcA1V6F2eF3ANU+hdXhBwDVfoXV4UcI1Q6F1eEnCNVOhd3hRwjVLoXd4ScI1W6F16CbjGKPQubwu4xir0Lr0FXOMUepd3BFzjFXqXPgKuCQq9y7sCrolKvcuHQO8C1F4E1EME1CgE1A0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBN0kRh7/Jh0n+fp36n89LNn+9F/fl+0tv9T/C1zBWI8IwBafveWG9jewNjkde9Nzb61Zef934c/TkGcHzEMZBjEMdgjiEcQzmGcQznGMExkmMUx2iOMRxjOcZxjOeYwDGRYxLHZI4pScN7UGXfpNjnEHoFvA0L+0GVU5l7Gsd0jhkcMzlmcczm+DhpRHRDM4NDD4ycZslNt+RmWHIzLblZltxsS+7jpDE/qNI5aW5FzFSPY81BldM8j42g6V7HMu8Mb2NvHVQ509PYyIMqZ3kZG3VQ5WwPY4MHVX4MiCKcYux3l4pxDnPP5ZjH8QnHfI4FHAs5FoWKcY5FFHMtuXmW3CeW3HxLboElt9CSWxQGMfYDxDgHEONcQIzzADF+AohxPiDGBYAYFwJiXBRLYux/l4pxMXMv4VjKsYxjOccKjpUcq0LFuNgiiiWW3FJLbpklt9ySW2HJrbTkVoVBjP0BMS4GxLgEEONSQIzLADEuB8S4AhDjSkCMq2JJjAPuUjGuZu41HGs51nGs59jAsZFjU6gYV1tEscaSW2vJrbPk1ltyGyy5jZbcpjCIcQAgxtWAGNcAYlwLiHEdIMb1gBg3AGLcCIhxk1AU6Nkrm73fB9o7W+dJHf5PnZ+py3lUzv28bmPrKvFvifZM3Pk8KuceY7ex9ZT4t0Z/pu94HlX1J72Pra/Ev83B73YelXMvttvYBkr8nzn43c6jcu4Pdxv7jBL/5w5+t/OonHvW3cY2VOL/wsHvdh6Vcx+929hGSvxfAv6P7D9qocT/FeD/LwL+31KJ/2vA/18C/L+VEv83gP+/DPh/ayX+bwH/fwXw/zZK/NsB/38V8P+2SvzfAf7/GuD/7ZT4dwD+3xzw//ZK/N8D/o98h/ttJf6dgP/3APy/txL/LsD/ewL+/44S/w+A/78O+H8fJf4fAf9/A/D/d5X4dwP+/ybg/+8p8e8B/P8twP/fV+LfC/h/L8D/P1Di3wf4P/I9uFFK/PsB/x8M+P9oJf4DgP8PAfx/jBL/QcD/hwL+P1aJ/xDg/8MA/x+nxH8Y8P/hgP+PV+I/Avj/CMD/JyjxHwX8fyTg/8j3O80v48y/o0qW/49C3o/LRcnier+v837HksbghuaH0Z87DvwCSsp1POntRMDbz/k2GW7v0Xm/EzGZDPPD6L/KewKoIk4qTNxJywPldq+T4G/c0Nc3D9NJy2frdpvj/0OfrdmVtlnw2S5W2L36qYBricLu1S0CrqUKu1e3CriWKexe3SbgWq6we/UzAdcKhd2rnwu4VirsXv1CwLXKV5+I3L06VcC1WmH36jQB1xqF3avTBVxrFXavzhBwrVPYvTpTwLVeYffqLAHXBoXdq7MFXBsVdq9+LODapLR79RRQEwK1FwH1EAE1CgF1AwFrOQHrKwFrHgHrEAFrAwF+TYCHEuBrBHgNAfonQJOE6MRoMPjNVfPcl3bkzRXw9CqRvcuXAk1/odC7fCXg+lKhd/lawPWVQu/yjYDra4Xe5VsB1zcKvct2Ade3Cr3LdwKu7Qq9yw4B13cKvcscAdcOhd5lroDre4XeZZ6Aa6dC7/KJgGuXQu8yX8D1g0LvskDA9aNC77JQwLVboXdZJODao9S7nAZ6F6D2IqAeIqBGIaBuIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJL2CHuX0zHsXb4XaPqIQu+yU8B1VKF32SXgOqbQu/wg4Dqu0Lv8KOA6odC77Jb8Llehd9kj4Dql0LvsFXCdVuhdFgu4zij0LksEXGcVepelAq6fFHqXZQKunxV6l+UCrl8UepcVAq5zCr3LSgHXrwq9yyoB13ml3uUM0LsAtRcB9RABNQoBdQMBazkB6ysBax4B6xABawMBfk2AhxLgawR4DQH6J0CTdF7Yu5yJYe+yT6Dpiwq9y34B1yWF3uWAgOsfhd7loIDrskLvckjAdUWhdzks4Lqq0LscEXBdU+hdjgq4riv0LqsFXDcUepc1Aq6bCr3LWgFXRAH/e5d1Ai7yj+v/e5f1Aq44vnHd7l02CLji+sXl6F02Crju84nL2btsEnDdD3IFL7R3OQv0LkDtRUA9RECNQkDdQMBaTsD6SsCaR8A6RMDaQIBfE+ChBPgaAV5DgP4J0CQhOnH2LmcdvUvwQk87zBzH+7qcxetYhnvC41jzPrJ6G3vLfrJ5GhvpVNm9jI0ytRwexgb9L2cc7970U1LZ3P4UhrnNBcxtbmBu8wBzmxeY23zA3OYH5vZJYG4LAHP7s3Bufw7D3D4FzG1BYG4LAXNbGJjbIsDcFgXmthgwt08Dc/uLcG5/CcPcFgfmtgQwtyWBuS0FzG1pYG7LAHNbFpjbcsDcnhPO7bmk//4Xhk5F1cWnk97++8Tg2hz08aDmg89H8LXMFYjwjOGZ+d5Y72N7A2OR1703Nvr1Kz/v5zl+47jA8TvHHxx/cvzF8TfHRY5LHP9wXOa4wnGV4xrHdY4bHDeNbpKxIDjicMTluI/j/mThPbr916TY5xB6BbwNC/vR7Q/w5xCP40GOhzge5ojP8QjHo8kiohuaGRx6hHo8S+5BS+4hS+5hSy6+JfeIJfdospgf3e6cNLdFwLx3L2PN0e3xPI+NoAe9jmXeh7yNvXV0+8OexkYe3R7fy9ioo9sf8TA2eHT7o8m8iyKcYjx/l4rxMf68EnAk5EjEkZgjCUdSjmShYnzMIooEllxCSy6RJZfYkktiySW15JKFQYznATE+BogxASDGhIAYEwFiTAyIMQkgxqSAGJPFkhh/u0vFmJw/rxQcKTlScaTmSMPxOEfaUDEmt4gihSWX0pJLZcmltuTSWHKPW3JpwyDG3wAxJgfEmAIQY0pAjKkAMaYGxJgGEOPjgBjTxpIYL9ylYkzHn1d685lxZODIyJGJIzNHllAxprOIIr0lF7DkMlhyGS25TJZcZksuSxjEeAEQYzpAjOkBMQYAMWYAxJgREGMmQIyZATFmAcTovNCz4ZCD+p7wzkTO/0BPbcwK3Ac5PwM9Jyh4ofzZnPPscpKt80wPt7FrlPizR3tO73ySrfOcEbexa5X4c0TX2R1Psl32pPex65T4czr43U6ydZ7H4jZ2vRJ/Lge/20m2zjNi3MZuUOLP7eB3O8nWeW6N29iNSvx5HPxuJ9k6z9JxG7tJiT8v4P/IHuQdSvz5AP//EvD/75X48wP+/xXg/zuV+J8E/P9rwP93KfEXAPz/G8D/f1Difwrw/28B//9Rib8g4P/bAf/frcRfCPD/7wD/36PEXxjwf2Qf1xkl/iKA/x8F/P+sEn9RwP+PAf7/kxJ/McD/jwP+/7MS/9OA/58A/P8XJf7igP+fBPz/nBJ/CcD/TwH+/6sSf0nA/08D/n9eib8U4P/Id+FvKPGXBvz/EuD/N5X4ywD+/w/g/xEFdPjLAv5/GfB/UuIvB/j/FcD/4yjxlwf8/yrg/3GV+CsA/n8N8P/7lPgrAv5/HfD/+33cA2iGm99FmK80Efh+s/jKRbd+RxJPwPWEn1wU+bubBwVcWX3ey2m4HhJwZfN5L6fheljAld3nvZyGK76AK4fPezkN1yMCrpw+7+U0XI8KuHL57F/m96NZBVy5ffYvw5VNwJXHZ/8yXNkFXHl99i/DlUPAlc9n/zJcOQVc+X32L8OVS8D1pM/+ZbhyC7gK+OxfhiuPgOsppb3olYD+G6i9CKiHCKhRCKgbCFjLCVhfCVjzCFiHCFgbCPBrAjyUAF8jwGsI0D8BmiREJ0aDwe/Fmee+tCNvroCnV4nsXR4TaLq4Qu+SQMBVQqF3SSjgKqnQuyQScJVS6F0SC7hKK/QuSQRcZRR6l6QCrrIKvUsyAVc5hd4lr4CrvELvkk/AVUGhd8kv4Kqo0Ls8KeCqpNC7FBBwVVboXZ4ScFVR6F0KCriqKvQuhQRc1ZR6l8pA7wLUXgTUQwTUKATUDQSs5QSsrwSseQSsQwSsDQT4NQEeSoCvEeA1BOifAE1SNWHvUjmGvUtygabrKfQuKQRc9RV6l5QCrgYKvUsqAdczCr1LagFXQ4XeJY2Aq5FC7/K4gKuxQu+SVsDVRKF3KSzgelahdyki4Gqq0LsUFXA9p9C7FBNwNVPoXZ4WcD2v0LsUF3C9oNC7lBBwvajQu5QUcL2k1LtUAXoXoPYioB4ioEYhoG4gYC0nYH0lYM0jYB0iYG0gwK8J8FACfI0AryFA/wRokl4S9i5VYti7pBNoupVC75JewNVaoXcJCLjaKPQuGQRcbRV6l4wCrnYKvUsmAVd7hd4ls4Crg0LvkkXA1VGhdykl4Oqk0LuUFnB1Vuhdygi4uij0LmUFXF0VepdyAq5uCr1LeQFXd4XepYKAq4dC71JRwNVTqXepCvQuQO1FQD1EQI1CQN1AwFpOwPpKwJpHwDpEwNpAgF8T4KEE+BoBXkOA/gnQJPUU9i5Vk/37PPU7nZdu/qwUpePKyW73P8HXMlcgwjMGpO17Y72N7Q2MRV733tjoVzV+3qtz1OCoyVGLozZHHY66HPU46nM04HiGoyFHI47GHE04nuVoyvEcRzOO5zle4HiR4yWOl5OF96DKasmwzyH0CngbFvaDKl9h7lc5XuNoztGCoyVHK47WySKiG5oZHHpg5KuW3GuWXHNLroUl19KSa2XJtU4W84MqnZPmVsS84nGsOajyVc9jI+g1r2OZt7m3sbcOqmzhaWzkQZUtvYyNOqiylYexwYMqWwOiCKcYq9+lYmzD3G052nG05+jA0ZGjE0fnUDG2sYiirSXXzpJrb8l1sOQ6WnKdLLnOYRBjdUCMbQAxtgXE2A4QY3tAjB0AMXYExNgJEGPnWBJjjbtUjF2YuytHN47uHD04enK8zvFGqBi7WETR1ZLrZsl1t+R6WHI9LbnXLbk3wiDGGoAYuwBi7AqIsRsgxu6AGHsAYuwJiPF1QIxvxJIYa96lYnyTud/i6MXxNkdvjnc4+nC8GyrGNy2ieMuS62XJvW3J9bbk3rHk+lhy74ZBjDUBMb4JiPEtQIy9ADG+DYixNyDGdwAx9gHE+K5QFOjZK+95vw+0dzZ3AR3+952fqct5VM79vG5j8yjxfxDtmbjzeVTOPcZuY/Mq8X8Y/Zm+43lU2Qp4H5tPib+vg9/tPCrnXmy3sfmV+Ps5+N3Oo3LuD3cb+6QSf38Hv9t5VM49625jCyjxD3Dwu51H5dxH7zb2KSX+jwD/R/YflVfiHwj4fwnA/yso8Q8C/L8k4P8VlfgHA/5fCvD/Skr8QwD/Lw34f2Ul/qGA/5cB/L+KEv8wwP/LAv5fVYl/OOD/5QD/r6bEPwLwf+Q73M8q8Y8E/L8+4P9NlfhHAf7fAPD/55T4RwP+/wzg/82U+McA/t8Q8P/nlfjHAv7fCPD/F5T4xwH+3xjw/xeV+McD/t8E8P+XlPgnAP6PfA+ukxL/RMD/WwP+31mJfxLg/20A/++ixD8Z8P+2gP93VeKfAvh/O8D/uynxTwX8vz3g/92V+KcB/t8B8P8eSvzTAf/vCPg/8v1O88s48++okuX/o5D343JR8rje7+u834xkMbih+WH052YCv4CScs1MdjsR8PZzvk2G23t03m9WTCbD/DD6r/LOAqqI2QoTN9vyQLndazb4Gzf09c3DNNvy2brdZub/0GdrdqW9J/hsByrsXn1fwDVIYffqBwKuwQq7Vz8UcA1R2L3aV8A1VGH3aj8B1zCF3av9BVzDFXavDhBwjfDVJyJ3r74i4BqpsHv1VQHXKIXdq68JuEYr7F5tLuAao7B7tYWAa6zC7tWWAq5xCrtXWwm4xivsXm0t4JqgtHv1Y6AmBGovAuohAmoUAuoGAtZyAtZXAtY8AtYhAtYGAvyaAA8lwNcI8BoC9E+AJgnRidFg8Jur5rkv7cibK+DpVSJ7l48Emp6h0LsMFHDNVOhdBgm4Zin0LoMl/b1C7zJEwPWxQu8yVMA1R6F3GSbgmqvQuwwXcM1T6F3aCLg+Uehd2gq45iv0Lu0EXAsUepf2Aq6FCr1LBwHXIoXepaOAa7FC79JJwLVEoXfpLOBaqtS7zAF6F6D2IqAeIqBGIaBuIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJKWCnuXOTHsXUYINL1WoXcZKeBap9C7jBJwrVfoXUYLuDYo9C5jBFwbFXqXsQKuTQq9yzgB12aF3mW8gOtThd6li4Bri0Lv0lXAtVWhd+km4Nqm0Lt0F3B9ptC79BBwfa7Qu/QUcH2h0Lu8LuD6UqF3eUPA9ZVS7zIX6F2A2ouAeoiAGoWAuoGAtZyA9ZWANY+AdYiAtYEAvybAQwnwNQK8hgD9E6BJ+krYu8yNYe8yQaDpnQq9y0QB1y6F3mWSgOsHhd5lsoDrR4XeZYqAa7dC7zJVwLVHoXeZJuDaq9C7TBdw7VPoXd4UcO1X6F3eEnAdUOhdegm4Dir0Lm8LuA4p9C69BVyHFXqXdwRcRxR6lz4CrqMKvcu7Aq5jSr3LPKB3AWovAuohAmoUAuoGAtZyAtZXAtY8AtYhAtYGAvyaAA8lwNcI8BoC9E+AJumYsHeZ5+hdghd62mH5ON7X5QpexzJcRY9jzfuo5G3sLfup7GlspFNV8TI2ytSqehgb9L9qcbx70yfJZHP7SRjmtjowtzWAua0JzG0tYG5rA3NbB5jbusDc1gPmdr5wbueHYW7rA3PbAJjbZ4C5bQjMbSNgbhsDc9sEmNtngbldIJzbBWGY26bA3D4HzG0zYG6fB+b2BWBuXwTm9iVgbl8G5nahcG4XJvv3vzD0cVRdPCfZ7b9PDK7NQR8Paj74fARfy1yBCM8YnpnvjfU+tjcwFnnde2OjX4v4eV/MsYRjKccyjuUcKzhWcqziWM2xhmMtxzqO9RwbODZybOLYzPEpxxaOrRzbOD7j+Jzji2ThPbp9UTLscwi9At6Ghf3o9i+Z+yuOrzm+4fiWYzvHdxw7kkVENzQzOPQI9a8sua8tuW8suW8tue2W3HeW3I5kMT+63Tlprr/w9TjWHN3+leexEfS117HM+423sbeObv/W09jIo9u3exkbdXT7dx7GBo9u3wGIIpxiXHyXivF75t7JsYvjB44fOXZz7OHYGyrG7y2i2GnJ7bLkfrDkfrTkdltyeyy5vWEQ42JAjN8DYtwJiHEXIMYfADH+CIhxNyDGPYAY98aSGJfcpWLcx9z7OQ5wHOQ4xHGY4wjH0VAx7rOIYr8ld8CSO2jJHbLkDltyRyy5o2EQ4xJAjPsAMe4HxHgAEONBQIyHADEeBsR4BBDj0VgS49K7VIzHmPs4xwmOkxynOE5znOE4GyrGYxZRHLfkTlhyJy25U5bcaUvujCV3NgxiXAqI8RggxuOAGE8AYjwJiPEUIMbTgBjPAGI8KxQFejYcclDfT96ZyPkf6KmNPwP3Qc7PGCn8XS7K/4vzM3U5ydZ5pofb2FFK/OeiPRN3PsnWec6I29jRSvy/Rn+m73iS7ZAC3seOUeI/7+B3O8nWeR6L29ixSvy/OfjdTrJ1nhHjNnacEv8FB7/bSbbOc2vcxo5X4v/dwe92kq3zLB23sROU+P8A/B/Zg/yJEv+fgP/PBPx/vhL/X4D/zwL8f4ES/9+A/88G/H+hEv9FwP8/Bvx/kRL/JcD/5wD+v1iJ/x/A/+cC/r9Eif8y4P/zAP9fqsR/BfB/ZB/XFiX+q4D/rwP8f6sS/zXA/9cD/r9Nif864P8bAP//TIn/BuD/GwH//1yJ/ybg/5sA//9CiT8iuXdP3wz4/5dK/JTcu6d/Cvj/V0r8cZJ793Tku/D7lfjjJvfu6bsA/z+gxH9fcu+e/gPg/weV+O9P7t3TfwT8/5AS/wPJvXv6bsD/Dyvxx0vu3dP3AP5/RIn/QcD/9wL+f1SJ/yHA//cB/o/uhaIQbrfh5ncR5itNBL5fespPLrr1O5KvBFxx/OSiyN/dfC3giusjlxlruL4RcN3nH9etoYbrWwHX/b5xRY40XNsFXA/4xRU10HB9J+CK5xNXcJzh2iHgetBXn4gg8/vRnwVcD/nsX4brFwHXwz77l+E6J+CK77N/Ga5fBVyP+Oxfhuu8gOtRn/3LcP0m4HrMZ/8yXBcEXAl89i/D9buAKyHIFbzQvegPA/03UHsRUA8RUKMQUDcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0SYhOjAaD34szz31pR95cAU+vEtm7fC/QdEqF3mWngCuVQu+yS8CVWqF3+UHAlUahd/lRwPW4Qu+yW8CVVqF32SPgSqfQu+wVcKVX6F3+EHAFFHqXPwVcGRR6l78EXBkVepe/BVyZFHqXiwKuzAq9yyUBVxaF3uUfAdcTCr3LZQFXVqXeJT7QuwC1FwH1EAE1CgF1AwFrOQHrKwFrHgHrEAFrAwF+TYCHEuBrBHgNAfonQJOUVdi7xI9h77JPoOm8Cr3LfgFXPoXe5YCAK79C73JQwPWkQu9ySMBVQKF3OSzgekqhdzki4Cqo0LscFXAVUuhdrgi4Civ0LlcFXEUUepdrAq6iCr3LdQFXMYXe5YaA62mF3uWmgKu4Qu9ivkOJcpVQ6F1IwFVSqXd5BOhdgNqLgHqIgBqFgLqBgLWcgPWVgDWPgHWIgLWBAL8mwEMJ8DUCvIYA/ROgSSop7F0eiWHvckzggRUVepfjAq5KCr3LCQFXZYXe5aSAq4pC73JKwFVVoXc5LeCqptC7nBFwVVfoXc4KuGoo9C5xBDVJTYXeJa6Aq5ZC73KfgKu2Qu9yv4CrjkLv8oCAq65C7xJPwFVPoXd5UMBVX6F3eUjA1UCpd3kU6F2A2ouAeoiAGoWAuoGAtZyA9ZWANY+AdYiAtYEAvybAQwnwNQK8hgD9E6BJaiDsXR5N/u/z1O90XvqtcVE6jp/8dv8TfC1zBSI8Y0DavjfW29jewFjkde+NjX49xs97Ao6EHIk4EnMk4UjKkYwjOUcKjpQcqThSc6TheJwjLUc6jvRm3eHIwJGRIxNHZo4sHE8kD+9BlY8lxz6H0CvgbVjYD6rMytzZOLJz5ODIyZGLIzdHnuQR0Q3NDA49MDKbJZfdksthyeW05HJZcrktuTzJY35Q5WPJvRcxWT2ONQdVZvM8NoKyex3LvDm8jb11UGVOT2MjD6rM5WVs1EGVuT2MDR5UmQcQRTjFmOAuFWNe5s7HkZ/jSY4CHE9xFOQoFCrGvBZR5LPk8ltyT1pyBSy5pyy5gpZcoTCIMQEgxryAGPMBYswPiPFJQIwFADE+BYixICDGQrEkxoR3qRgLM3cRjqIcxTie5ijOUYKjZKgYC1tEUcSSK2rJFbPknrbkiltyJSy5kmEQY0JAjIUBMRYBxFgUEGMxQIxPA2IsDoixBCDGkrEkxkR3qRhLmVaaowxHWY5yHOU5KnBUDBVjKYsoSltyZSy5spZcOUuuvCVXwZKrGAYxJgLEWAoQY2lAjGUAMZYFxFgOEGN5QIwVADFWFIoCPXulkvf7QHtnH3pKh7+y8zN1OY/KuZ/XbezDSvxVoj0Tdz6PyrnH2G1sfCX+qtGf6TueR3XfU97HPqLEX83B73YelXMvttvYR5X4qzv43c6jcu4Pdxv7mBJ/DQe/23lUzj3rbmMTKPHXdPC7nUfl3EfvNjahEn8twP+R/UcBJf7agP+nAvw/gxJ/HcD/UwP+n1GJvy7g/2kA/8+kxF8P8P/HAf/PrMRfH/D/tID/Z1HibwD4fzrA/59Q4n8G8P/0gP9nVeJvCPg/8h3uwkr8jQD/zwf4fxEl/saA/+cH/L+oEn8TwP+fBPy/mBL/s4D/FwD8/2kl/qaA/z8F+H9xJf7nAP8vCPh/CSX+ZoD/FwL8v6QS//OA/yPfg6upxP8C4P+VAP+vpcT/IuD/lQH/r63E/xLg/1UA/6+jxP8y4P9VAf+vq8T/CuD/1QD/r6fE/yrg/9UB/6+vxP8a4P81AP9Hvt9pfhln/h1Vsvx/FPJ+XC5KEdf7fZ33a548Bjc0P4z+XAvgF1BSrhbJbycC3n7Ot8lwe4/O+7WMyWSYH0b/Vd6WQBXRSmHiWlkeKLd7tQJ/44a+vnmYWlk+W7fbtPgf+mzNrrRKgs+2pcLu1cqSOVfYvVpFwNVaYfdqVQFXG4Xdq9UEXG0Vdq9WF3C1U9i9WkPA1V5h92pNAVcHX30icvdqVgFXR4Xdq9kEXJ0Udq9mF3B1Vti9mkPA1UVh92pOAVdXhd2ruQRc3RR2r+YWcHVX2L2aR8DVQ2n3amugJgRqLwLqIQJqFALqBgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCYJ0YnRYPCbq+a5L+3Imyvg6VUie5daAk33Vuhdagu43lHoXeoIuPoo9C51BVzvKvQu9QRc7yn0LvUFXO8r9C4NBFwfKPQuzwi4PlToXfIKuPoq9C75BFz9FHqX/AKu/gq9y5MCrgEKvUsBAddHCr3LUwKugQq9S0EB1yCF3qWQgGuwUu/SBuhdgNqLgHqIgBqFgLqBgLWcgPWVgDWPgHWIgLWBAL8mwEMJ8DUCvIYA/ROgSRos7F3axLB3aSjQ9GiF3qWRgGuMQu/SWMA1VqF3aSLgGqfQuzwr4Bqv0Ls0FXBNUOhdnhNwTVToXZoJuCYp9C6FBVyTFXqXIgKuKQq9S1EB11SF3qWYgGuaQu/ytIBrukLvUlzANUOhdykh4Jqp0LuUFHDNUupd2gK9C1B7EVAPEVCjEFA3ELCWE7C+ErDmEbAOEbA2EODXBHgoAb5GgNcQoH8CNEmzhL1L2xj2Ls8LNL1AoXd5QcC1UKF3eVHAtUihd3lJwLVYoXd5WcC1RKF3eUXAtVShd3lVwLVMoXd5TcC1XKF3KSXgWqHQu5QWcK1U6F3KCLhWKfQuZQVcqxV6l3ICrjUKvUt5Addahd6lgoBrnULvUlHAtV6pd2kH9C5A7UVAPURAjUJA3UDAWk7A+krAmkfAOkTA2kCAXxPgoQT4GgFeQ4D+CdAkrRf2Lu0cvUvwQk87fCWO93X5Va9jGe41j2PN+2jubewt+2nhaWykU7X0MjbK1Fp5GBv0v9ZxvHtT++SyuW0fhrltA8xtW2Bu2wFz2x6Y2w7A3HYE5rYTMLedgbntIJzbDmGY2y7A3HYF5rYbMLfdgbntAcxtT2BuXwfm9g1gbjsK57ZjGOb2TWBu3wLmthcwt28Dc9sbmNt3gLntA8ztu8DcdhLObafk//4XhlpH1cVtkt/++8Tg2hz08aDmg89H8LXMFYjwjOGZ+d5Y72N7A2OR1703NvrVmZ/3LhxdObpxdOfowdGT43WONzje5HiLoxfH2xy9Od7h6MPxLsd7HO9zfMDxIUdfjn4c/TkGJA/v0e2dwT3zoVfA27CwH93+EXMP5BjEMZhjCMdQjmEcw5NHRDc0Mzj0CPWBltwgS26wJTfEkhtqyQ2z5IYnj/nR7c5Jc/1yr8ex5uj2gZ7HRtAgr2OZd7C3sbeObh/iaWzk0e1DvYyNOrp9mIexwaPbhwOiCKcYu9ylYhzB3CM5RnGM5hjDMZZjHMf4UDGOsIhipCU3ypIbbcmNseTGWnLjLLnxYRBjF0CMIwAxjgTEOAoQ42hAjGMAMY4FxDgOEOP4WBJj17tUjBOYeyLHJI7JHFM4pnJM45geKsYJFlFMtOQmWXKTLbkpltxUS26aJTc9DGLsCohxAiDGiYAYJwFinAyIcQogxqmAGKcBYpweS2LsdpeKcQZzz+SYxTGb42OOORxzOeaFinGGRRQzLblZltxsS+5jS26OJTfXkpsXBjF2A8Q4AxDjTECMswAxzgbE+DEgxjmAGOcCYpwnFAV6NhxyUN8n3pnI+R/oqY3zgfsg52d0FP4uF+Vf4PxMXU6ydZ7p4Ta2kxL/wmjPxJ1PsnWeM+I2trMS/6Loz/QdT7Jt85T3sV2U+Bc7+N1OsnWex+I2tqsS/xIHv9tJts4zYtzGdlPiX+rgdzvJ1nlujdvY7kr8yxz8bifZOs/ScRvbQ4l/OeD/yB7kvkr8KwD/fwfw/35K/CsB/+8D+H9/Jf5VgP+/C/j/ACX+1YD/vwf4/0dK/GsA/38f8P+BSvxrAf//APD/QUr86wD//xDw/8FK/OsB/0f2cU1W4t8A+P8YwP+nKPFvBPx/LOD/U5X4NwH+Pw7w/2lK/JsB/x8P+P90Jf5PAf+fAPj/DCX+LYD/TwT8f6YS/1bA/ycB/j9LiX8b4P/Id+FXKPF/Bvj/QsD/Vyrxfw74/yLA/1cp8X8B+P9iwP9XK/F/Cfj/EsD/1yjxfwX4/1LA/9cq8X8N+P8ywP/XKfF/A/j/csD/0b1QFMLtNtz8LsJ8pYnA93vI572chmuggOuwz3s5DdcgAdcRn/dyGq7BAq6jPu/lNFxDBFzHfN7LabiGCriO+7yX03ANE3Cd8Hkvp+EaLuA66bN/md+PzhdwnfLZvwzXAgHXaZ/9y3AtFHCd8dm/DNciAddZn/3LcC0WcP3ks38ZriUCrp999i/DtVTA9YvP/mW4lgm4zintRf8W6L+B2ouAeoiAGoWAuoGAtZyA9ZWANY+AdYiAtYEAvybAQwnwNQK8hgD9E6BJQnRiNBj8Xpx57ks78uYKeHqVyN5lhEDTfyn0LiMFXH8r9C6jBFwXFXqX0QKuSwq9yxgB1z8KvctYAddlhd5lnIDrikLvMl7AdVWhd1ku4Lqm0LusEHBdV+hdVgq4bij0LqsEXDcVepfVAq6Igv73LmsEXOQXl6N3WSvgiuMTl7N3WSfgigtyBS+0d9kO9C5A7UVAPURAjUJA3UDAWk7A+krAmkfAOkTA2kCAXxPgoQT4GgFeQ4D+CdAkITpx9i7bY9i7TBBoOr5v3hw52nBNFHA94idXVO8yScD1qI9cwd5lsoDrMf+4/r93mSLgSuDz2m+4pgq4Evq89huuaQKuRD6v/YZruoArsa8+Edm7rBdwJfHZvwzXBgFXUp/9y3BtFHAl89m/DNcmAVdyn/3LcG0WcKVQ6F0+FXClVOhdtgi4Uin0LlsFXKmVepfvgN4FqL0IqIcIqFEIqBsIWMsJWF8JWPMIWIcIWBsI8GsCPJQAXyPAawjQPwGapNTC3uW7GPYuMwSazqjQu8wUcGVS6F1mCbgyK/QuswVcWRR6l48FXE8o9C5zBFxZFXqXuQKubAq9yzwBV3aF3mWbgCuHQu/ymYArp0Lv8rmAK5dC7/KFgCu3Qu/ypYArj0Lv8pWAK69C7/K1gCufQu/yjYArv1LvsgPoXYDai4B6iIAahYC6gYC1nID1lYA1j4B1iIC1gQC/JsBDCfA1AryGAP0ToEnKL+xddiT/93nqdzov3fz5bdSf25Pf7n+Cr2WuQIRnDEjb98Z6G9sbGIu87r2x0a/v+XnfybGL4weOHzl2c+zh2Muxj2M/xwGOgxyHOA5zHOE4ynGM4zjHCY6THKc4TnOc4TjL8VPy8B5U+X1y7HMIvQLehoX9oMqfmfsXjnMcv3Kc5/iN4wLH78kjohuaGRx6YOQvltw5S+5XS+68JfebJXfBkvs9ecwPqnROmuuGBI9jzUGVv3geG0HnvI5l3l+9jb11UOV5T2MjD6r8zcvYqIMqL3gYGzyo8ndAFOEU4867VIx/MPefHH9x/M1xkeMSxz8cl0PF+IdFFH9acn9Zcn9bchctuUuW3D+W3OUwiHEnIMY/ADH+CYjxL0CMfwNivAiI8RIgxn8AMV6OJTHuukvFeIW5r3Jc47jOcYPjphFhCh6XIiK6AK5YRHHVkrtmyV235G5YcjctOQMTmqMUMRfjLkCMVwAxXgXEeA0Q43VAjDcAMd4ExGjmwm1sUIyUInbE+MNdKsY4/HnF5biP436OBzjimeec46FQMcaxiCKuJXefJXe/JfeAJRfPknvQknsoDGL8ARBjnBQRHgV2k+J6HhtB93kdy7z3ext7S4wPeBobKcZ4XsZGifFBQIwPAWJ0XujZKw97vw+0dxY9IyB4ofzxnZ+py3lUh4Gzq04r8T8S7Zm483lUR4Czq84o8T8a/Zm+43lUR4Gzq84q8T/m4Hc7j+oYcHbVT0r8CRz8budRHQfOrvpZiT+hg9/tPKoTwNlVvyjxJ3Lwu51HdRI4u+qcEn9iwP//8mcvTbQL5U8C+P/fgP9fV+JPCvj/RcD/byjxJwP8/xLg/zeV+JMD/v8P4P8RBXX4UwD+fxnwf1LiTwn4/xXA/+Mo8acC/P8q4P9xlfhTA/6PfIc7iRJ/GsD/nd8rdxubVIn/ccD/nd91dxubTIk/LeD/jxX0Pja5En86wP+dewLcxqZQ4k8P+L9zn4Lb2JRK/AHA/517J9zGplLizwD4v3M/h9vY1Er8GQH/z+jPd7qiXSh/JsD/MwH+n1OJPzPg/5kB/8+lxJ8F8P8sgP/nVuJ/AvD/JwD/z6PEnxXw/6yA/+dV4s8G+H82wP/zKfFnB/w/O+D/yPc7zS/jzL+jSpb/j0Lej8tFKeN6v6/zfjlSxOCG5ofRn8uZwvskSblypridCHj7Od8mw/WAJ8cP5orJZJgfRv9V3lxAFZFbYeJyWx4o150t4G/c0Nc3D1Nuy2frdpuc/0OfrdmV9rDgs62gsHs1voCrosLu1UcEXJUUdq8+KuCqrLB79TEBVxWF3asJBFxVFXavJhRwVVPYvZpIwFXdV5+I3L36s2BXWg2F3au/CLhqKuxePSfgqqWwe/VXAVdthd2r5wVcdRR2r/4m4KqrsHv1goCrnsLu1d8FXPWVdq/mAWpCoPYioB4ioEYhoG4gYC0nYH0lYM0jYB0iYG0gwK8J8FACfI0AryFA/wRokhCdGA0Gv7lqnvvSjry5Ap5eJbJ3SSyoSZoq9C5JBFzPKfQuSQVczRR6l2QCrucVepfkAq4XFHqXFAKuFxV6l5QCrpcUepdUAq6XFXqXPwQ1ySsKvcufAq5XFXqXvwRcryn0Ln8LuJor9C4XBVwtFHqXSwKulgq9yz8CrlYKvctlAVdrpd4lL9C7ALUXAfUQATUKAXUDAWs5AesrAWseAesQAWsDAX5NgIcS4GsEeA0B+idAk9Ra2LvkjWHvklpQk3RW6F3SCLi6KPQujwu4uir0LmkFXN0Uepd0Aq7uCr1LegFXD4XeJSDg6qnQu2QQcL2u0LtcEdQkbyj0LlcFXG8q9C7XBFxvKfQu1wVcvRR6lxsCrrcVepebAq7eCr1LhMAn3lHoXUjA1Uepd8kH9C5A7UVAPURAjUJA3UDAWk7A+krAmkfAOkTA2kCAXxPgoQT4GgFeQ4D+CdAk9RH2Lvli2LtkFGi6v0LvkknANUChd8ks4PpIoXfJIuAaqNC7PCHgGqTQu2QVcA1W6F2yCbiGKPQu2QVcQxV6lzgCrmEKvUtcAddwhd7lPgHXCIXe5X4B10iF3uUBAdcohd4lnoBrtELv8qCAa4xC7/KQgGusUu+SH+hdgNqLgHqIgBqFgLqBgLWcgPWVgDWPgHWIgLWBAL8mwEMJ8DUCvIYA/ROgSRor7F3yO3qX4IWedvheHO/r8vtexzLcBx7Hmvfxobext+ynr6exkU7Vz8vYKFPr72Fs0P8GxPHuTU+mkM3tk2GY24+AuR0IzO0gYG4HA3M7BJjbocDcDgPmdjgwtwWEc1sgDHM7ApjbkcDcjgLmdjQwt2OAuR0LzO04YG7HA3P7lHBunwrD3E4A5nYiMLeTgLmdDMztFGBupwJzOw2Y2+nA3BYUzm3BFP/+F4byRNXFeVPc/vvE4Noc9PGg5oPPR/C1zBWI8IzhmfneWO9jewNjkde9Nzb6VYif98IcRTiKchTjeJqjOEcJjpIcpYy+OMpwlOUox1GeowJHRY5KHJU5qnBU5ajGUZ2jBkfNFOE9ur0QuGc+9Ap4Gxb2o9trMXdtjjocdTnqcdTnaMDxTIqI6IZmBoceoV7bkqtjydW15OpZcvUtuQaW3DMpYn50eyHgkIBaHseao9trex4bQXW8jmXeut7G3jq6vZ6nsZFHt9f3Mjbq6PYGHsYGj25/BhBFOMVY+C4VY0PmbsTRmKMJx7McTTme42gWKsaGFlE0suQaW3JNLLlnLbmmltxzllyzMIixMCDGhoAYGwFibAyIsQkgxmcBMTYFxPgcIMZmsSTGInepGJ9n7hc4XuR4ieNljlc4XuV4LVSMz1tE8YIl96Il95Il97Il94ol96ol91oYxFgEEOPzgBhfAMT4IiDGlwAxvgyI8RVAjK8CYnwtlsRY9C4VY3PmbsHRkqMVR2uONhxtOdqFirG5RRQtLLmWllwrS661JdfGkmtrybULgxiLAmJsDoixBSDGloAYWwFibA2IsQ0gxraAGNsJRYGeDYcc1NfeOxM5/wM9tbEDcB/k/Iwawt/lovwdnZ+py0m2zjM93MbWVOLvFO2ZuPNJts5zRtzG1lLi7xz9mb7jSbaVC3ofW1uJv4uD3+0kW+d5LG5j6yjxd3Xwu51k6zwjxm1sXSX+bg5+t5NsnefWuI2tp8Tf3cHvdpKt8ywdt7H1lfh7AP6P7EF+RYm/J+D/zwH+/6oS/+uA/zcD/P81Jf43AP9/HvD/5kr8bwL+/wLg/y2U+N8C/P9FwP9bKvH3Avz/JcD/Wynxvw34/8uA/7dW4u8N+D+yj+sNJf53AP/vAvj/m0r8fQD/7wr4/1tK/O8C/t8N8P9eSvzvAf7fHfD/t5X43wf8vwfg/72V+D8A/L8n4P/vKPF/CPj/64D/91Hi7wv4P/Jd+GFK/P0A/x8A+P9wJf7+gP9/BPj/CCX+AYD/DwT8f6QS/0eA/w8C/H+UEv9AwP8HA/4/Wol/EOD/QwD/H6PEPxjw/6GA/6N7oSiE2224+V2E+UoTge93tc97OQ1XbQHXGp/3chquOgKutT7v5TRcdQVc63zey2m46gm41vu8l9Nw1RdwbfB5L6fhaiDg2ujzXk7D9YyAa5PP/mV+P9pBwLXZZ/8yXB0FXJ/67F+Gq5OAa4vP/mW4Ogu4tvrsX4ari4Brm8/+Zbi6Crg+89m/DFc3AdfnPvuX4eou4PpCaS/6EKD/BmovAuohAmoUAuoGAtZyAtZXAtY8AtYhAtYGAvyaAA8lwNcI8BoC9E+AJgnRidFg8Htx5rkv7cibK+DpVSJ7l4YCTe9Q6F0aCbi+V+hdGgu4dir0Lk0EXLsUepdnBVw/KPQuTQVcPyr0Ls8JuHYr9C7NBFx7FHqXHgKuvQq9S08B1z6F3uV1Add+hd7lDQHXAYXe5U0B10GF3uUtAdchhd6ll4DrsELv8raA64hS7zIU6F2A2ouAeoiAGoWAuoGAtZyA9ZWANY+AdYiAtYEAvybAQwnwNQK8hgD9E6BJOiLsXYbGsHd5XqDpMwq9ywsCrrMKvcuLAq6fFHqXlwRcPyv0Li8LuH5R6F1eEXCdU+hdXhVw/arQu7wm4Dqv0Lv0FnD9ptC7vCPguqDQu/QRcP2u0Lu8K+D6Q6F3eU/A9adC7/K+gOsvhd7lAwHX3wq9y4cCrotKvcswoHcBai8C6iECahQC6gYC1nIC1lcC1jwC1iEC1gYC/JoADyXA1wjwGgL0T4Am6aKwdxkWw96luUDTNxR6lxYCrpsKvUtLAVdEIf97l1YCLvKP6/97l9YCrji+cd3uXdoIuOL6xeXoXdoKuO7zicvZu7QTcN3v43MfEdW79BVwPeArV2Tv0k/AFc9Prqjepb+A60Gf/ctwDRBwPeSzfxmujwRcD/vsX4ZroIArvs/+ZbgGCbge8dm/DNdgAdejIFfwQnuX4UDvAtReBNRDBNQoBNQNBKzlBKyvBKx5BKxDBKwNBPg1AR5KgK8R4DUE6J8ATRKiE2fvMjzFv89Tv9N56ebPIVF/Dk1xu/8Jvpa5AhGeMSBt3xvrbWxvYCzyuvfGRr9G8PM+kmMUx2iOMRxjOcZxjOeYwDGRYxLHZI4pHFM5pnFM55jBMZNjFsdsjo855nDM5ZjH8UmK8B5UOSIF9jmEXgFvw8J+UOV85l7AsZBjEcdijiUcSzmWpYiIbmhmcOiBkQssuYWW3CJLbrElt8SSW2rJLUsR84MqnZPmVsTM9zjWHFS5wPPYCFrodSzzLvI29tZBlYs9jY08qHKJl7FRB1Uu9TA2eFDlMkAU4RTjyLtUjMuZewXHSo5VHKs51nCs5VgXKsblFlGssORWWnKrLLnVltwaS26tJbcuDGIcCYhxOSDGFYAYVwJiXAWIcTUgxjWAGNcCYlwXS2IcdZeKcT1zb+DYyLGJYzPHpxxbOLaGinG9RRQbLLmNltwmS26zJfepJbfFktsaBjGOAsS4HhDjBkCMGwExbgLEuBkQ46eAGLcAYtwaS2IcfZeKcRtzf8bxOccXHF9yfMXxNcc3oWLcZhHFZ5bc55bcF5bcl5bcV5bc15bcN2EQ42hAjNsAMX4GiPFzQIxfAGL8EhDjV4AYvwbE+I1QFOjZK996vw+0d3ZzQR3+7c7P1OU8qjXA2VWfKvF/F+2ZuPN5VGuBs6u2KPHviP5M3/E8qnXA2VVblfi/d/C7nUe1Hji7apsS/04Hv9t5VBuAs6s+U+Lf5eB3O49qI3B21edK/D84+N3Oo9oEnF31hRL/j4D/I/uP9irx7wb8/3vA//cp8e8B/H8n4P/7lfj3Av6/C/D/A0r8+wD//wHw/4NK/PsB//8R8P9DSvwHAP/fDfj/YSX+g4D/7wH8/4gS/yHA/5HvcP+mxH8Y8P+zgP9fUOI/Avj/T4D//67EfxTw/58B//9Dif8Y4P+/AP7/pxL/ccD/zwH+/5cS/wnA/38F/P9vJf6TgP+fB/z/ohL/KcD/ke/BPVBIh/804P83Af+Pp8R/BvB/5/cF3cY+qMR/FvB/KuR97ENK/D8B/u/8XqXb2IeV+H8G/N/5XU+3sfGV+H8B/N/5/VO3sY8o8Z8D/N/5nVi3scj3O80v48y/o0qW/49C3o/LRanier+v836/pojBDc0Poz93HvgFlJTrfIrbiYC3n/NtMlw3ljl+8LeYTIb5YfRf5f0NqCIuKEzcBcsD5XqKAfgbN/T1zcN0wfLZut3m/P/QZ2t2pX0r+Gwz+Lz7y3BtF3Bl9Hn3l+H6TsCVSWH36g4BV2aF3avfC7iyKOxe3SngekJh9+ouAVdWhd2rPwi4sinsXp0v4MqusHt1gYArh8Lu1YUCrpwKu1cXCbhyKexeXSzgyq2we3WJgCuPwu7VpQKuvAq7V5cJuPIp7V79HagJgdqLgHqIgBqFgLqBgLWcgPWVgDWPgHWIgLWBAL8mwEMJ8DUCvIYA/ROgSUJ0YjQY/Oaqee5LO/LmCnh6lcje5UeBposo9C67BVxFFXqXPQKuYgq9y14B19MKvcs+AVdxhd5lv4CrhELvckDAVVKhdzko4Cql0LssF3CVVuhdVgi4yij0LisFXGUVepdVAq5yCr3LagFXeYXeZY2Aq4JC77JWwFVRoXdZJ+CqpNS7/AH0LkDtRUA9RECNQkDdQMBaTsD6SsCaR8A6RMDaQIBfE+ChBPgaAV5DgP4J0CRVEvYuf8Swdzkk0HQthd7lsICrtkLvckTAVUehdzkq4Kqr0LscE3DVU+hdjgu46iv0LicEXA0UepeTAq5nFHqX9QKuhgq9ywYBVyOF3mWjgKuxQu+yScDVRKF32Szgelahd/lUwNVUoXfZIuB6TqF32SrgaqbUu/wJ9C5A7UVAPURAjUJA3UDAWk7A+krAmkfAOkTA2kCAXxPgoQT4GgFeQ4D+CdAkNRP2Ln/GsHc5JdD0awq9y2kBV3OF3uWMgKuFQu9yVsDVUqF3+UnA1Uqhd/lZwNVaoXf5RcDVRqF3OSfgaqvQu2wTcLVT6F0+E3C1V+hdPhdwdVDoXb4QcHVU6F2+FHB1UuhdvhJwdVboXb4WcHVR6F2+EXB1Vepd/gJ6F6D2IqAeIqBGIaBuIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJK6CnuXvxy9S/BCTzucEcf7ujzT61iGm+VxrHkfs72NvWU/H3saG+lUc7yMjTK1uR7GBv1vXhzv3vR3Ctnc/h2Guf0EmNv5wNwuAOZ2ITC3i4C5XQzM7RJgbpcCc3tROLcXwzC3y4C5XQ7M7QpgblcCc7sKmNvVwNyuAeZ2LTC3l4RzeykMc7sOmNv1wNxuAOZ2IzC3m4C53QzM7afA3G4B5vYf4dz+k+Lf/8LQ71F18R8pbv99YnBtDvp4UPPB5yP4WuYKRHjG8Mx8b6z3sb2Bscjr3hsb/brMz/sVjqsc1ziuc9zguGl0kJIfcI44HHE57uO4n+MBjngcD3I8xPEwR3yORzge5XiMIwFHQo5EKcN7dPvlFNjnEHoFvA0L+9HtiflzSMKRlCMZR3KOFBwpOVKljIhuaGZw6BHqSSy5pJZcMksuuSWXwpJLacmlShnzo9udk+a2CJj37mWsObo9ieexEZTU61jmTeZt7K2j25N7Ght5dHsKL2Ojjm5P6WFs8Oj2VCm9iyKcYrxyl4oxNX9eaTge50jLkY4jvfkMOTKEijG1RRRpLLnHLbm0llw6Sy69JRew5DKEQYxXADGmBsSYBhDj44AY0wJiTAeIMT0gxgAgxgyxJMard6kYM/LnlYkjM0cWjic4snJk48geKsaMFlFksuQyW3JZLLknLLmsllw2Sy57GMR4FRBjRkCMmQAxZgbEmAUQ4xOAGLMCYswGiDF7LInx2l0qxhz8eeXkyMWRmyMPR16OfBz5Q8WYwyKKnJZcLksutyWXx5LLa8nls+Tyh0GM1wAx5gDEmBMQYy5AjLkBMeYBxJgXEGM+QIz5ATE6L/RsOOSgvie9M5HzP9BTGwsA90HOz8gu/F0uyv+Uc55dTrJ1nunhNjaHEn/BaM/pnU+ydZ4z4jY2pxJ/oeg6u+NJtpkLeR+bS4m/sIPf7SRb53ksbmNzK/EXcfC7nWTrPCPGbWweJf6iDn63k2yd59a4jc2rxF/Mwe92kq3zLB23sfmU+J8G/B/Zg1xaib844P9FAf8vo8RfAvD/YoD/l1XiLwn4/9OA/5dT4i8F+H9xwP/LK/GXBvy/BOD/FZT4ywD+XxLw/4pK/GUB/y8F+H8lJf5ygP8j+7gaKvGXB/y/NuD/jZT4KwD+Xwfw/8ZK/BUB/68L+H8TJf5KgP/XA/z/WSX+yoD/1wf8v6kSfxXA/xsA/v+cEn9VwP+fAfy/mRJ/NcD/ke/Ct1Pirw74f3PA/9sr8dcA/L8F4P8dlPhrAv7fEvD/jkr8tQD/bwX4fycl/tqA/7cG/L+zEn8dwP/bAP7fRYm/LuD/bQH/R/dCUQi323DzuwjzlSYC3+9In/dyGq4kAq5RPu/lNFxJBVyjfd7LabiSCbjG+LyX03AlF3CN9Xkvp+FKIeAa5/NeTsOVUsA13ue9nIYrlYBrgs/+ZX4/WkDANdFn/zJcTwm4JvnsX4aroIBrss/+ZbgKCbim+OxfhquwgGuqz/5luIoIuKb57F+Gq6iAa7rP/mW4igm4ZijtRa8H9N9A7UVAPURAjUJA3UDAWk7A+krAmkfAOkTA2kCAXxPgoQT4GgFeQ4D+CdAkIToxGgx+L84896UdeXMFPL1KZO+SWqDpTxR6lzQCrvkKvcvjAq4FCr1LWgHXQoXeJZ2Aa5FC75JewLVYoXcJCLiWKPQuGQRcSxV6l6cFXMsUepfiAq7lCr1LCQHXCoXepaSAa6VC71JKwLVKoXcpLeBardC7lBFwrVHoXcoKuNYq9S71gd4FqL0IqIcIqFEIqBsIWMsJWF8JWPMIWIcIWBsI8GsCPJQAXyPAawjQPwGapLXC3qV+DHuXjAJNb1HoXTIJuLYq9C6ZBVzbFHqXLAKuzxR6lycEXJ8r9C5ZBVxfKPQu2QRcXyr0LtkFXF8p9C7lBFxfK/Qu5QVc3yj0LhUEXN8q9C4VBVzbFXqXSgKu7xR6l8oCrh0KvUsVAdf3Cr1LVQHXTqXepQHQuwC1FwH1EAE1CgF1AwFrOQHrKwFrHgHrEAFrAwF+TYCHEuBrBHgNAfonQJO0U9i7NIhh75JDoOn9Cr1LTgHXAYXeJZeA66BC75JbwHVIoXfJI+A6rNC75BVwHVHoXfIJuI4q9C75BVzHFHqXagKu4wq9S3UB1wmF3qWGgOukQu9SU8B1SqF3qSXgOq3Qu9QWcJ1R6F3qCLjOKvQudQVcPyn1Ls8AvQtQexFQDxFQoxBQNxCwlhOwvhKw5hGwDhGwNhDg1wR4KAG+RoDXEKB/AjRJPwl7l2dS/vs89Tudl27+rBel4/opb/c/wdcyVyDCMwak7XtjvY3tDYxFXvfe2OhXQ37eG3E05mjC8SxHU47nOJpxPM/xAseLHC9xvMzxCserHK9xNOdowdGSoxVHa442HG052nG0TxnegyobpsQ+h9Ar4G1Y2A+q7MDcHTk6cXTm6MLRlaMbR/eUEdENzQwOPTCyoyXXyZLrbMl1seS6WnLdLLnuKWN+UKVz0tyKmA4ex5qDKjt6HhtBnbyOZd7O3sbeOqiyi6exkQdVdvUyNuqgym4exgYPquwOiCKcYmx0l4qxB3P35Hid4w2ONzne4ujF8XaoGHtYRNHTknvdknvDknvTknvLkutlyb0dBjE2AsTYAxBjT0CMrwNifAMQ45uAGN8CxNgLEOPbsSTGxnepGHsz9zscfTje5XiP432ODzg+DBVjb4so3rHk+lhy71py71ly71tyH1hyH4ZBjI0BMfYGxPgOIMY+gBjfBcT4HiDG9wExfgCI8cNYEmOTu1SMfZm7H0d/jgEcH3EM5BjEMThUjH0touhnyfW35AZYch9ZcgMtuUGW3OAwiLEJIMa+gBj7AWLsD4hxACDGjwAxDgTEOAgQ42ChKNCzV4Z4vw+0d3ZiIR3+oc7P1OU8Kud+Xrexk5T4h0V7Ju58HpVzj7Hb2MlK/MOjP9N3PI9qTCHvY6co8Y9w8LudR+Xci+02dqoS/0gHv9t5VM794W5jpynxj3Lwu51H5dyz7jZ2uhL/aAe/23lUzn30bmNnKPGPAfwf2X+0TIl/LOD/8wH/X67EPw7w/wWA/69Q4h8P+P9CwP9XKvFPAPx/EeD/q5T4JwL+vxjw/9VK/JMA/18C+P8aJf7JgP8vBfx/rRL/FMD/ke9wf63EPxXw/62A/3+jxD8N8P9tgP9/q8Q/HfD/zwD/367EPwPw/88B//9OiX8m4P9fAP6/Q4l/FuD/XwL+/70S/2zA/78C/H+nEv/HgP8j34M7rsQ/B/D/A4D/n1Dinwv4/0HA/08q8c8D/P8Q4P+nlPg/Afz/MOD/p5X45wP+fwTw/zNK/AsA/z8K+P9ZJf6FgP8fA/wf+X6n+WWc+XdUyfL/Ucj7cbkodVzv93Xeb1HKGNzQ/DD6c4uBX0BJuRanvJ0IePs53ybD7T0677ckJpNhfhj9V3mXAFXEUoWJW2p5oFxPrAN/44a+vnmYllo+W7fbLP4f+mzNrrQhgs/2usLu1aECrhsKu1eHCbhuKuxeHS7giijsG9etoYZrhICLfOOKHGm4Rgq44vjFFTXQcI0ScMX1iSs4znCNFnDd59/zdWu42ZXWQcB1v69ckbtXOwq4HvCTiyJ38XUScMXzkcuMNVydBVwP+uxfhquLgOshn/3LcHUVcD3ss38Zrm4Crvg++5fh6i7gegTkCl7o7tVlQE0I1F4E1EME1CgE1A0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNEqITo8HgN1fNc1/akTdXwNOrRPYuYwSaTurz2m+4xgq4kvm89huucQKu5D6v/YZrvIArhULvMkHAlVKhd5ko4Eql0LtMEnClVuhdJgu40ij0Lj0EXI8r9C49BVxpFXqX1wVc6RR6lzcEXOkVepc3BVwBhd7lLQFXBoXepZeAK6NC7/K2gCuTUu+yHOhdgNqLgHqIgBqFgLqBgLWcgPWVgDWPgHWIgLWBAL8mwEMJ8DUCvIYA/ROgSUJ04uxdlsewd5ki0HROhd5lqoArl0LvMk3AlVuhd5ku4Mqj0LvMEHDlVehdZgq48in0LrMEXPkVepfZAq4nFXqX3gKuAgq9yzsCrqcUepc+Aq6CCr3LuwKuQgq9y3sCrsIKvcv7Aq4iCr3LBwKuogq9y4cCrmJKvcsKoHcBai8C6iECahQC6gYC1nIC1lcC1jwC1iEC1gYC/JoADyXA1wjwGgL0T4AmCdGJs3dZEcPe5WOBpssq9C5zBFzlFHqXuQKu8gq9yzwBVwWF3uUTAVdFhd5lvoCrkkLvskDAVVmhd1ko4Kqi0Lv0FXBVVehd+gm4qin0Lv0FXNUVepcBAq4aCr3LRwKumgq9y0ABVy2F3mWQgKu2Qu8yWMBVR6l3WQn0LkDtRUA9RECNQkDdQMBaTsD6SsCaR8A6RMDaQIBfE+ChBPgaAV5DgP4J0CQhOnH2LisdvUvwQk873BrH+7q8zetYhvvM41jzPj73NvaW/XzhaWykU33pZWyUqX3lYWzQ/76O492bVqWUze2qMMztN8DcfgvM7XZgbr8D5nYHMLffA3O7E5jbXcDcrhbO7eowzO0PwNz+CMztbmBu9wBzuxeY233A3O4H5vYAMLdrhHO7JgxzexCY20PA3B4G5vYIMLdHgbk9BsztcWBuTwBzu1Y4t2tT/vtfGFoWVRcvT3n77xODa3PQx4OaDz4fwdcyVyDCM4Zn5ntjvY/tDYxFXvfe2OjXOn7e13Ns4NjIsYljM8enHFs4tnJs4/iM43OOLzi+5PiK42uObzi+5djO8R3HDo7vOXZy7OL4IWV4j25flxL7HEKvgLdhYT+6/Ufm3s2xh2Mvxz6O/RwHOA6mjIhuaGZw6BHquy25PZbcXktunyW335I7YMkdTBnzo9udk+a2CPzocaw5un2357ERtMfrWObd623sraPb93kaG3l0+34vY6OObj/gYWzw6PaDgCjCKcb1d6kYDzH3YY4jHEc5jnEc5zjBcTJUjIcsojhsyR2x5I5acscsueOW3AlL7mQYxLgeEOMhQIyHATEeAcR4FBDjMUCMxwExngDEeDKWxLjhLhXjKeY+zXGG4yzHTxw/c/zCcS5UjKcsojhtyZ2x5M5acj9Zcj9bcr9YcufCIMYNgBhPAWI8DYjxDCDGs4AYfwLE+DMgxl8AMZ6LJTFuvEvF+Ctzn+f4jeMCx+8cf3D8yfFXqBh/tYjivCX3myV3wZL73ZL7w5L705L7Kwxi3AiI8VdAjOcBMf4GiPECIMbfATH+AYjxT0CMfwlFgZ4NhxzU97d3JnL+B3pq40XgPsj5GfcLf5eL8l9yfqYuJ9neAE69fUCJ/59oz8SdT7K9CZx6G0+J/3L0Z/qOJ9k6zz5xG/ugEv8VB7/bSbbO81jcxj6kxH/Vwe92kq3zjBi3sQ8r8V9z8LudZOs8t8ZtbHwl/usOfreTbJ1n6biNfUSJ/wbg/8ge5MeV+G8C/u/cF+02Nq0Sf0Qq756evLD3semU+CmVd09PAfh/eiX+OKm8e3pKwP8DSvxxU3n39FSA/2dQ4r8vlXdPTw34f0Yl/vtTeff0NID/Z1LifyCVd09H9nEVUOKPl8q7p+cC/P8pJf4HAf/PDfh/QSX+hwD/zwP4fyEl/ocB/88L+H9hJf74gP/nA/y/iBL/I4D/5wf8v6gS/6OA/z8J+H8xJf7HAP9HvgtfVYk/AeD/5QD/r6bEnxDw//KA/1dX4k8E+H8FwP9rKPEnBvy/IuD/NZX4kwD+Xwnw/1pK/EkB/68M+H9tJf5kgP9XAfwf3QtFIdxuw83vIsxXmgh8vx193su5OOr7aChXJ5/3ci6O+o4cytXZ572ci6O+t4dydfF5L+fiqO8Solxdfd7LuTjq+40oVzef93IujvrOJcrV3ee9nIujvgeKcvXw2b/M70cvCrh6+uxfhuuSgOt1n/3LcP0j4HrDZ/8yXJcFXG/67F+G64qA6y2f/ctwXRVw9fLZvwzXNQHX2z77l+G6LuDqrbQXPTnQfwO1FwH1EAE1CgF1AwFrOQHrKwFrHgHrEAFrAwF+TYCHEuBrBHgNAfonQJOE6MRoMPi9OPPcl3bkzRXw9CqRvcshgab7KvQuhwVc/RR6lyMCrv4KvctRAdcAhd7lmIDrI4Xe5biAa6BC73JCwDVIoXc5KeAarNC73BBwDVHoXW4KuIYq9C7mezIo1zCF3oUEXMMVepc4Aq4RCr1LXAHXSIXe5T4B1yiF3uV+Addopd4lBdC7ALUXAfUQATUKAXUDAWs5AesrAWseAesQAWsDAX5NgIcS4GsEeA0B+idAkzRa2LukiGHvckqwxk5W6F1OC7imKPQuZwRcUxV6l7MCrmkKvctPAq7pCr3LzwKuGQq9yy8CrpkKvcs5Adcshd7lAUFNMluhd4kn4PpYoXd5UMA1R6F3eUjANVehd3lYwDVPoXeJL+D6RKF3eUTANV+hd3lUwLVAqXdJCfQuQO1FQD1EQI1CQN1AwFpOwPpKwJpHwDpEwNpAgF8T4KEE+BoBXkOA/gnQJC0Q9i4pY9i7/CqoSVYo9C7nBVwrFXqX3wRcqxR6lwsCrtUKvcvvAq41Cr3LHwKutQq9y58CrnUKvctfAq71Cr3LY4KaZINC75JAwLVRoXdJKODapNC7JBJwbVboXRILuD5V6F2SCLi2KPQuSQVcWxV6l2QCrm1KvUsqoHcBai8C6iECahQC6gYC1nIC1lcC1jwC1iEC1gYC/JoADyXA1wjwGgL0T4AmaZuwd0mV6t/nqd/pvHTzZ/IoHadIdbv/Cb6WuQIRnjEgbd8b621sb2As8rr3xka/UvPznobjcY60HOk40pt1hCMDR0aOTByZObJwPMGRlSMbR3aOHBw5OXJx5ObIw5GXIx9Hfo4nU4X3oMrUqbDPIfQKeBsW9oMqCzD3UxwFOQpxFOYowlGUo1iqiOiGZgaHHhj5lCVX0JIrZMkVtuSKWHJFLbliqWJ+UGXqVN6LmAIex5qDKp/yPDaCCnody7yFvI29dVBlYU9jIw+qLOJlbNRBlUU9jA0eVFkMEEU4xZjmLhXj08xdnKMER0mOUqaA4CjDUTZUjE9bRFHckithyZW05EpZcqUtuTKWXNkwiDENIManATEWB8RYAhBjSUCMpQAxlgbEWAYQY9lYEuPjd6kYyzF3eY4KHBU5KnFU5qjCUTVUjOUsoihvyVWw5CpacpUsucqWXBVLrmoYxPg4IMZygBjLA2KsAIixIiDGSoAYKwNirAKIsWosiTHtXSrGasxdnaMGR02OWhy1Oepw1A0VYzWLKKpbcjUsuZqWXC1LrrYlV8eSqxsGMaYFxFgNEGN1QIw1ADHWBMRYCxBjbUCMdQAx1hWKAj17pZ73+0B7Z3sW1uGv7/xMXc6jcu7ndRv7uhJ/g2jPxJ3Po3LuMXYb+4YS/zPRn+k7nkfVpbD3sW8q8Td08LudR+Xci+029i0l/kYOfrfzqJz7w93G9lLib+zgdzuPyrln3W3s20r8TRz8budROffRu43trcT/LOD/yP6jIUr8TQH/7wf4/1Al/ucA/+8P+P8wJf5mgP8PAPx/uBL/84D/fwT4/wgl/hcA/x8I+P9IJf4XAf8fBPj/KCX+lwD/Hwz4/2gl/pcB/0e+wz1bif8VwP+nAP7/sRL/q4D/TwX8f44S/2uA/08D/H+uEn9zwP+nA/4/T4m/BeD/MwD//0SJvyXg/zMB/5+vxN8K8P9ZgP8vUOJvDfg/8j24DUr8bQD/Xwn4/0Yl/raA/68C/H+TEn87wP9XA/6/WYm/PeD/awD//1SJvwPg/2sB/9+ixN8R8P91gP9vVeLvBPj/esD/ke93ml/GmX9HlSz/H4W8H5eL0sT1fl/n/TqnisENzQ+jP9cF+AWUlKtLqtuJgLef820y3N6j835dYzIZ5ofRf5W3K1BFdFOYuG6WB8rtXt3A37ihr28epm6Wz9btNl3+hz5bsyutnuCz3aewe7W+gGu/wu7VBgKuAwq7V58RcB1U2L3aUMB1SGH3aiMB12GF3auNBVxHFHavNhFwHfXVJyJ3rxYQcB1T2L36lIDruMLu1YICrhMKu1cLCbhOKuxeLSzgOqWwe7WIgOu0wu7VogKuMwq7V4sJuM4q7V7tDtSEQO1FQD1EQI1CQN1AwFpOwPpKwJpHwDpEwNpAgF8T4KEE+BoBXkOA/gnQJCE6MRoMfnPVPPelHXlzBTy9SmTv8qxA0xcUepemAq7fFXqX5wRcfyj0Ls0EXH8q9C7PC7j+UuhdXhBw/a3Qu7wo4Lqo0Lu8JOC6pNC7PC3g+kehdyku4Lqs0LuUEHBdUehdSgq4rir0LqUEXNcUepfSAq7rCr1LGQHXDYXepayA66ZS79ID6F2A2ouAeoiAGoWAuoGAtZyA9ZWANY+AdYiAtYEAvybAQwnwNQK8hgD9E6BJuinsXXrEsHd5WaDpeEX8XfsN1ysCrgf95IrqXV4VcD3kI1ewd3lNwPWwf1z/37s0F3DF943rdu/SQsD1iF9cjt6lpYDrUZ+4nL1LKwHXY776RGTvUk7AlcBn/zJc5QVcCX32L8NVQcCVyGf/MlwVBVyJffYvw1VJwJXEZ/8yXJUFXEl99i/DVUXAlcxn/zJcVQVcyUGu4IX2Lj2B3gWovQiohwioUQioGwhYywlYXwlY8whYhwhYGwjwawI8lABfI8BrCNA/AZokRCfO3qVnDHuX1gJNp1PoXdoIuNIr9C5tBVwBhd6lnYArg0Lv0l7AlVGhd+kg4Mqk0Lt0FHBlVuhdOgm4svjqE5G9SzUB1xMKvUt1AVdWhd6lhoArm0LvUlPAlV2hd6kl4Mqh0LvUFnDlVOhd6gi4cin0LnUFXLmVepfXgd4FqL0IqIcIqFEIqBsIWMsJWF8JWPMIWIcIWBsI8GsCPJQAXyPAawjQPwGaJEQnzt7ldUfvErzQ0w5PxvG+Lp/yOpbhTnsca97HGW9jb9nPWU9jI53qJy9jo0ztZw9jg/73Sxzv3vRGKtncvhGGuT0HzO2vwNyeB+b2N2BuLwBz+zswt38Ac/snMLdvCuf2zTDM7V/A3P4NzO1FYG4vAXP7DzC3l4G5vQLM7VVgbt8Szu1bYZjba8DcXgfm9gYwtzeBuY2I631uKa73uY0T1/vcxgU2FPcSzm2vVP/+F4a6R9XFPVLd/vvE4Noc9PGg5oPPR/C1zBWI8IzhmfneWO9jewNjkde9Nzb69TY/77053uHow/Eux3sc73N8wPEhR1+Ofhz9OQZwfMQxkGMQx2COIRxDOYZxDOcYwTGSYxTH6FThPbr9bXDPfOgV8DYs7Ee3j2HusRzjOMZzTOCYyDGJY3KqiOiGZgaHHqE+1pIbZ8mNt+QmWHITLblJltzkVDE/ut05aW6LwBiPY83R7WM9j42gcV7HMu94b2NvHd0+wdPYyKPbJ3oZG3V0+yQPY4NHt08GRBFOMfa+S8U4hbmnckzjmM4xg2MmxyyO2aFinGIRxVRLbpolN92Sm2HJzbTkZllys8Mgxt6AGKcAYpwKiHEaIMbpgBhnAGKcCYhxFiDG2bEkxnfuUjF+zNxzOOZyzOP4hGM+xwKOhaFi/NgiijmW3FxLbp4l94klN9+SW2DJLQyDGN8BxPgxIMY5gBjnAmKcB4jxE0CM8wExLgDEuDCWxNjnLhXjIuZezLGEYynHMo7lHCs4VoaKcZFFFIstuSWW3FJLbpklt9ySW2HJrQyDGPsAYlwEiHExIMYlgBiXAmJcBohxOSDGFYAYVwpFgZ4NhxzUt8o7Ezn/Az21cTVwH+T8jGPCPXQo/xrnZ+pyku1+4NTb40r8a6M9E3c+yfYAcOrtCSX+ddGf6TueZHsQOPX2pBL/ege/20m2h4BTb08p8W9w8LudZHsYOPX2tBL/Rge/20m2R4BTb88o8W9y8LudZHsUOPX2rBL/ZsD/L/iznzbahfJ/Cvj/74D/X1bi3wL4/x+A/19R4t8K+P+fgP9fVeLfBvj/X4D/X1Pi/wzw/78B/7+uxP854P8XAf+/ocT/BeD/lwD/v6nE/yXg/8g+rgRFdPi/AvzfubfMbWxCJf6vAf937ndzG5tIif8bwP8fLuJ9bGIl/m8B/3fuC3Qbm0SJfzvg/869im5jkyrxfwf4v3P/pNvYZEr8OwD/d+7pdBubXIn/e8D/0/nzve5oF8q/E/D/9ID/Z1Xi3wX4fwDw/2xK/D8A/p8B8P/sSvw/Av6fEfD/HEr8uwH/zwT4f04l/j2A/2cG/D+XEv9ewP+zAP6P7oWiEG634eZ3EeYrTQS+3xo+7+U0XGMFXDV93stpuMYJuGr5vJfTcI0XcNX2eS+n4Zog4Krj815OwzVRwFXX572chmuSgKuez3s5DddkAVd9n/3L/H50tYCrgc/+ZbjWCLie8dm/DNdaAVdDn/3LcK0TcDXy2b8M13oBV2Of/ctwbRBwNfHZvwzXRgHXsz77l+HaJOBqqrQXfR/QfwO1FwH1EAE1CgF1AwFrOQHrKwFrHgHrEAFrAwF+TYCHEuBrBHgNAfonQJOE6MRoMPi9OPPcl3bkzRXw9CqRvcsUgaZfUehdpgq4XlXoXaYJuF5T6F2mC7iaK/QuMwRcLRR6l5kCrpYKvcssAVcrhd5ltoCrtULvslnA1Uahd/lUwNVWoXfZIuBqp9C7bBVwtVfoXbYJuDoo9C6fCbg6KvQunwu4Oin0Ll8IuDor9S77gd4FqL0IqIcIqFEIqBsIWMsJWF8JWPMIWIcIWBsI8GsCPJQAXyPAawjQPwGapM7C3mV/DHuXjwWafkOhd5kj4HpToXeZK+B6S6F3mSfg6qXQu3wi4HpboXeZL+DqrdC7LBBwvaPQuywUcPVR6F2+FHC9q9C7fCXgek+hd/lawPW+Qu/yjYDrA4Xe5VsB14cKvct2AVdfhd7lOwFXP4XeZYeAq79S73IA6F2A2ouAeoiAGoWAuoGAtZyA9ZWANY+AdYiAtYEAvybAQwnwNQK8hgD9E6BJ6i/sXQ7EsHdZJND0MIXeZbGAa7hC77JEwDVCoXdZKuAaqdC7LBNwjVLoXZYLuEYr9C4rBFxjFHqXlQKusQq9y/cCrnEKvctOAdd4hd5ll4BrgkLv8oOAa6JC7/KjgGuSQu+yW8A1WaF32SPgmqLQu+wVcE1V6l0OAr0LUHsRUA8RUKMQUDcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0SVOFvcvBVP8+T/1O56WbP/dF/bk/1e3+J/ha5gpEeMaAtH1vrLexvYGxyOveGxv9OsTP+2GOIxxHOY5xHOc4wXGS4xTHaY4zHGc5fuL4meMXjnMcv3Kc5/iN4wLH7xx/cPzJ8RfH36nCe1DloVTY5xB6BbwNC/tBlReZ+xLHPxyXOa5wXOW4xnE9VUR0QzODQw+MvGTJ/WPJXbbkrlhyVy25a5bc9VQxP6jSOWluRcxFj2PNQZWXPI+NoH+8jmXey97G3jqo8oqnsZEHVV71MjbqoMprHsYGD6q8DoginGI8fJeK8QZz3zSiS815jjgccTnu47g/dUR0AdywiOKmJWdeLDRHllwcSy6uJXefJXd/6piL8TAgxhuAGG8CYjSflaexzEvext4SYxxPYyPFGNfL2Cgx3udhbFCM96eOHTEeuUvF+AB/XvHMc83xEMfDHPE5HuF4NFSMD1hEEc+Se9CSe8iSe9iSi2/JPWLJPRoGMR4BxPiAV9GwGON5HhtBDwJifAgQ48OAGOMDYnwEEOOjsSTGo3epGB/jzysBR0KORByJOZJwJOVIFirGxyyiSGDJJbTkEllyiS25JJZcUksuWRjEeBQQ42OAGBMAYkwIiDERIMbEgBiTAGJMCogxGSBG54WevZLc+32gvbMNiujwp3B+pi7nUTn387qNfUaJP2W0Z+LO51E59xi7jW2oxJ8q+jN9x/OoahfxPraREn9qB7/beVTOvdhuYxsr8adx8LudR+XcH+42tokS/+MOfrfzqJx71t3GPqvEn9bB73YelXMfvdvYpkr86QD/R/YftVHiTw/4/6uA/7dV4g8A/v8a4P/tlPgzAP7fHPD/9kr8GQH/bwH4fwcl/kyA/7cE/L+jEn9mwP9bAf7fSYk/C+D/rQH/76zE/wTg/8h3uN9V4s8K+P+bgP+/p8SfDfD/twD/f1+JPzvg/70A//9AiT8H4P9vA/7/oRJ/TsD/ewP+31eJPxfg/+8A/t9PiT834P99AP/vr8SfB/B/5Htw45T48wL+Pxzw//FK/PkA/x8B+P8EJf78gP+PBPx/ohL/k4D/jwL8f5ISfwHA/0cD/j9Zif8pwP/HAP4/RYm/IOD/YwH/R77fGc5fxsWNkH1uEdh9Ap6T/7qi/zIu+DOFeB4KcxThKMpRjONpjuIcJThKcpTiKM1RhqMsRzmO8hwVOCpyVOKozFGFoypHNY7qHDU4anLU4qjNUYejLkc9jvocDUJ/2VfI8ku3wpZcEUuuqCVXzJJ72pIrbsmVsORKWnKlLLnSllwZS66sJVfOkitvyVWw5CpacpUsucqWXBVLrqolV82Sq27J1bDkalpytSy52pZcHUuuriVXz5Krb8k1SP3vX+ZmiPozEOHpiiZ6N8MrBPwytzDwy9wiwC9ziwK/zC0G/DL3aeCXucWBX+aWcB87JOrzpZKuY9sH54JKuY1d9f/zRqVdxva4PcdU5s5jKzmeByp7x7FnnM8OlbvT2CejPWdU/g5js0Z/JqnCf49tGvL8UsX/HNsw9FmnSv81tve/dEGV/2Ns739riKrYxy636I2qWseWt2mTqtnG1rLqmKpbxq60a55q/Htstv/wB6r5r7GT/8tLqFbo2Hz/6TtUO2Ts0f/2KKoTfWzHO/gZ1Y02tsadvI/qOce+fEefpPqOsXnv7KnUwHsTfqvYixNxu7BzXmix18C7l3/vvN8zqWNwQ/PDcUJ+zu3mz3j/gKihxzd1IQbvwdyDwPfQEJxkc8WxAYTc1wuvx7E7bMlAhKfbRGNtFPWANA6tjBtFfXDOXGNLBRPahrndHXiSqRHwgDQGPzx0csxD0Qh8mAxXo1hyjPreP+eJzvs1kTqGuWET3DEmNgEc41mfHcO8h2dxx5j4bCw5Rn3v951gSwYiPN0mGmvTqAfkuVDHaGpxjOfC4BjAk0xNgQfkOeGHhzzg5j4IUzNADP//PwBLw6gHPPQ9uN0LWaqfB8Rgew9uw81n9LzAiZ+PJSeu5/35Xeq83wtSJzY3fAF34qUvAA/fiz47sXkPL+JOvPTFGD58XgT0vM8Cegl8D8ELNSZkDl8Gno1wrnD1vN93iS0ZiPB0m2isr0QJ79XQFe4Vywr3ahhWOMAh6BVg0l4Vfnjog4QwvRbDFc7tZ4x4XhasDs19XrXM+26uwBW80DlsDsxhC5/n8L9M1os5ex3bEjS0cFUDdb1rfbDzfq2k1YC5YSu8GhjcCviAWvtcDZj30BqvBga39rkaMEJomdpfsbUBxRa8UCZkDtvGUjVQ1/t9B9mSgQhPt4nG2i5KeO1Dq4F2lmqgfRiqAcAhqB0wae2FHx76ICFMHXxeSYx42gpW3Y4+VwPmfXdU4Ape6Bx2BOawk89z+F8m6/ZziMl2jqW/G6jjXesB5/26SKsBc8MueDUQ6AJMclefqwHzHrri1UCgq8/VgBFC59T+iq2bUjWAzGH3WKoG6ni/b3pbMhDh6TbRWHtECa9naDXQw1IN9AxDNQA4BPUAJq2n8MNDHySE6XWfVxIjnu6CVfcNn6sB877fUOAKXugcvgHM4Zs+z+F/mazbzyEm+1YsVQO1vWt9h/N+vaTVgLlhL7wa2NELmOS3fa4GzHt4G68GdrztczVghPBWan/F1lupGkDm8J1YqgZqe7/vd7ZkIMLTbaKx9okS3ruh1UAfSzXwbhiqAcAhqA8wae8KPzz0QUKY3vN5JTHieUew6r7vczVg3vf7ClzBC53D94E5/MDnOfwvk3X7OcRkP4ylaqCWd62/6LxfX2k1YG7YF68GXuwLTHI/n6sB8x764dXAi/18rgaMED5M7a/Y+itVA8gcDoilaqCW9/u+YEsGIjzdJhrrR1HCGxhaDXxkqQYGhqEaAByCPgImbaDww0MfJIRpkM8riRHPAMGqO9jnasC878EKXMELncPBwBwO8XkO/8tk3X4OMdmhsVQN1PSu9b3O+w2TVgPmhsPwamDvMGCSh/tcDZj3MByvBvYO97kaMEIYmtpfsY1QqgaQORwZS9VATe/33WNLBiI83SYa66go4Y0OrQZGWaqB0WGoBgCHoFHApI0Wfnjog4QwjfF5JTHiGSlYdcf6XA2Y9z1WgSt4oXM4FpjDcT7P4X+ZrNvPISY7PpaqgRretV7Feb8J0mrA3HACXg1UmQBM8kSfqwHzHibi1UCViT5XA0YI41P7K7ZJStUAMoeTY6kaqOH9vpVtyUCEp9tEY50SJbypodXAFEs1MDUM1QDgEDQFmLSpwg8PfZAQpmk+ryRGPJMFq+50n6sB876nK3AFL3QOpwNzOMPnOfwvk3X7OcRkZ8ZSNVDdu9YXO+83S1oNmBvOwquBxbOASZ7tczVg3sNsvBpYPNvnasAIYWZqf8X2sVI1gMzhnFiqBqp7v+8iWzIQ4ek20VjnRglvXmg1MNdSDcwLQzUAOATNBSZtnvDDQx8khOkTn1cSI545glV3vs/VgHnf8xW4ghc6h/OBOVzg8xz+l8m6/RxisgtjqRqo5l3r65z3WyStBswNF+HVwLpFwCQv9rkaMO9hMV4NrFvsczVghLAwtb9iW6JUDSBzuDSWqoFq3u+71pYMRHi6TTTWZVHCWx5aDSyzVAPLw1ANAA5By4BJWy788NAHCWFa4fNKYsSzVLDqrvS5GjDve6UCV/BC53AlMIerfJ7D/zJZt59DTHZ1LFUDVb1rvZrzfmuk1YC54Rq8Gqi2BpjktT5XA+Y9rMWrgWprfa4GjBBWp/ZXbOuUqgFkDtfHUjVQ1ft9q9qSgQhPt4nGuiFKeBtDq4ENlmpgYxiqAcAhaAMwaRuFHx76ICFMm3xeSYx41gtW3c0+VwPmfW9W4Ape6BxuBubwU5/n8L9M1u3nEJPdEkvVQBXvWu/tvN9WaTVgbrgVrwZ6bwUmeZvP1YB5D9vwaqD3Np+rASOELan9FdtnStUAMoefx1I1UMX7fd+2JQMRnm4TjfWLKOF9GVoNfGGpBr4MQzUAOAR9AUzal8IPD32QEKavfF5JjHg+F6y6X/tcDZj3/bUCV/BC5/BrYA6/8XkO/8tk3X4OMdlvY6kaqCysBrZLqwFzw+2CamA7MMnf+VwNmPfwnaAa+M7nasAI4dvU/opth1I1gMzh97FUDVSOhWpgZ5TwdoVWAzst1cCuMFQDgEPQTmDSdilVAwjTDz6vJEY83wtW3R99rgbM+/5RgSt4oXP4IzCHu32ew/8yWbefQ0x2TyxVA5W8a32O8357pdWAueFevBqYsxeY5H0+VwPmPezDq4E5+3yuBowQ9qT2V2z7laoBZA4PxFI1UMn7fT+2JQMRnm4TjfVglPAOhVYDBy3VwKEwVAOAQ9BBYNIOCT889EFCmA77vJIY8RwQrLpHfK4GzPs+osAVvNA5PALM4VGf5/C/TNbt5xCTPRZL1UBF71qf4bzfcWk1YG54HK8GZhwHJvmEz9WAeQ8n8GpgxgmfqwEjhGOp/RXbSaVqAJnDU7FUDVT0ft/ptmQgwtNtorGejhLemdBq4LSlGjgThmoAcAg6DUzaGeGHhz5ICNNZn1cSI55TglX3J5+rAfO+f1LgCl7oHP4EzOHPPs/hf5ms288hJvtLLFUDFbxrfZ/zfuek1YC54Tm8Gth3DpjkX32uBsx7+BWvBvb96nM1YITwS2p/xXZeqRpA5vC3WKoGKni/715bMhDh6TbRWC9ECe/30GrggqUa+D0M1QDgEHQBmLTfhR8e+iAhTH/4vJIY8fwmWHX/9LkaMO/7TwWu4IXO4Z/AHP7l8xz+l8m6/Rxisn/HUjVQ3rvWtzvvd1FaDZgbXsSrge0XgUm+5HM1YN7DJbwa2H7J52rACOHv1P6K7R+lagCZw8uxVA2U937fb23JQISn20RjvRIlvKuh1cAVSzVwNQzVAOAQdAWYtKvCDw99kBCmaz6vJEY8lwWr7nWfqwHzvq8rcAUvdA6vA3N4w+c5/C+Tdfs5xGRvxlI1UM671lNFu1+aGNzQ/DBYDaQyPxPweA9K4281YN6DuQdYDaQi7+/ByuVFCDdT+yu2OMA8OP8DZULmMC7AFM5qoJx30aa0JQMRnm4TjfW+KOHdnyYi+sp/X5p/VwNmUEyrAcAh6D5g0u5PI/vw0AcJYXoAfLjRB8aIJ24aXNjxYmgcbsPN+46nwBW80DmMB8zhgz7P4X+ZrNvPISb7EPC5hrMaKOtd66ud93tYWg2YGz6MVwOrHwYmOb7P1YB5D/HxamB1fJ+rASOEh9L4K7ZHlKoBZA4fjaVqoKz3amCVLRmI8HSbaKyPRQkvQWg18JilGkgQhmoAcAh6DJi0BGlkHx76ICFMCX1eSYx4HhWsuol8rgbM+06kwBW80DlMBMxhYp/n8L9M1u3nEJNNEkvVQBnvWu/rvF9SaTVgbpgUrwb6JgUmOZnP1YB5D8nwaqBvMp+rASOEJGn8FVtypWoAmcMUsVQNlPFeDXxoSwYiPN0mGmvKKOGlCq0GUlqqgVRhqAYAh6CUwKSlSiP78NAHCWFK7fNKYsSTQrDqpvG5GjDvO40CV/BC5zANMIeP+zyH/2Wybj+HmGzaWKoGSnvXemXn/dJJqwFzw3R4NVA5HTDJ6X2uBsx7SI9XA5XT+1wNGCGkTeOv2AJK1QAyhxliqRoo7b0aqGRLBiI83SYaa8Yo4WUKrQYyWqqBTGGoBgCHoIzApGVKI/vw0AcJYcrs80pixJNBsOpm8bkaMO87iwJX8ELnMAswh0/4PIf/ZbJuP4eYbNZYqgZKedf6UOf9skmrAXPDbHg1MDQbMMnZfa4GzHvIjlcDQ7P7XA0YIWRN46/YcihVA8gc5oylaqCU92pgiC0ZiPB0m2isuaKElzu0GshlqQZyh6EaAByCcgGTljuN7MNDHySEKY/PK4kRT07BqpvX52rAvO+8ClzBC53DvMAc5vN5Dv/LZN1+DjHZ/LFUDZT0rvUOzvs9Ka0GzA2fxKuBDk8Ck1zA52rAvIcCeDXQoYDP1YARQv40/ortKaVqAJnDgrFUDZT0Xg20tyUDEZ5uE421UJTwCodWA4Us1UDhMFQDgENQIWDSCqeRfXjog4QwFfF5JTHiKShYdYv6XA2Y911UgSt4oXNYFJjDYj7P4X+ZrNvPISb7dCxVAyW8a32D837FpdWAuWFxvBrYUByY5BI+VwPmPZTAq4ENJXyuBowQnk7jr9hKKlUDyByWiqVqoIT3amC9LRmI8HSbaKylo4RXJrQaKG2pBsqEoRoAHIJKA5NWJo3sw0MfJISprM8riRFPKcGqW87nasC873IKXMELncNywByW93kO/8tk3X4OMdkKsVQNFPeu9YDzfhWl1YC5YUW8GghUBCa5ks/VgHkPlfBqIFDJ52rACKFCGn/FVlmpGkDmsEosVQPFvVcD6W3JQISn20RjrRolvGqh1UBVSzVQLQzVAOAQVBWYtGppZB8e+iAhTNV9XkmMeKoIVt0aPlcD5n3XUOAKXugc1gDmsKbPc/hfJuv2c4jJ1oqlauBp71p/xHm/2tJqwNywNl4NPFIbmOQ6PlcD5j3UwauBR+r4XA0YIdRK46/Y6ipVA8gc1oulauBp79VAfFsyEOHpNtFY60cJr0FoNVDfUg00CEM1ADgE1QcmrUEa2YeHPkgI0zM+ryRGPPUEq25Dn6sB874bKnAFL3QOGwJz2MjnOfwvk3X7OcRkG8dSNVDMu9bbOe/XRFoNmBs2wauBdk2ASX7W52rAvIdn8Wqg3bM+VwNGCI3T+Cu2pkrVADKHz8VSNVDMezXQ1pYMRHi6TTTWZlHCez60GmhmqQaeD0M18H/tXQeUFUXTnZGcc97Qu4uCOecIoiSJCiiggIiKSlBRMa8ZI2JOiAEVjATJUZGcgwKKiBGzqBhQgb9K3sjMo6enb7/XM+c7559z7rd+3T1UVd++1ZdlA9Ah3PMA0no0MNs89CAhOfW0fJOweM41uHV7WXYDXHevGPLyHpTDXgCH51vmMKzJRr2HNNneCbmBY/W1Xs0f7wJTN8ABL8DdQLULAJL7WHYDXEMf3A1U62PZDbAQejewK7YLY3IDCIcXJeQGjtV3A1Vlg8LRChPI9eKU8Pqmu4GLJW6gbxbcANAh3IsB0vo2MNs89CAhOV1i+SZh8VxkcOteatkNcN2XxpCX96AcXgpweJllDsOabNR7SJPtl5AbOAb4icj+eP1N3QAH7N8Af2+A5Rue8xrQYPeAcPQfVER8YPs1sCuKgTHd2ggvl2coVJ2aLzfgMJuCOtpQUFeYCooDXmEgqCstC4rzujJLgopazsRf2cDswAi9GFk9JEcBP6XWH2+Q6SHhgIMMOs4gQLFXWT5QXMNVBiRfZfnvYHyIrjKwBwOB/brash3kvb3aUKzeg56tq4H6r7Fs8cJu5Kj3kBt5sGUOeY8GG1wECA/+p5xmHC+ftjo3Y2pxO61bdNfi9no37r+LO2jezry4o+5NTovP1L71Xecs4BepdAIuimuB88X1eZ8y4PdOSZtHuT0d4LY5wG0LgNuWALetAG5bA9yeAXDbBuD2OkNur8sCtycB3J4McHsKwG0TgNumALenAtwCv5VM+1d9MrfXG3J7fRa4PQrg9miA22MAbo8FuD0O4PZ4gFvgK8C1v62Kub3BkNsbUtzyf5d3dvdpT9Me/95a/lin7K6PdVMf66U+1k99Plg42mlo5/z/a/XXFgNrkT/3/9cGnxtJDzcRbiYUE24h3Eq4jXA74Q7CnYS7CEMIdxPuIdxLuI9wP+EBwlDCg4RhhIcIDxMeITzaYNcnAzy9pj8ulq97o+Gn1B0sTlnzd93/anJ9f9BjlPfjhCcITxKeIjxNeIYwPP3fqh5L/buUf+xxydgTkrEnJWNPScaelow9Ixkb3mDP3dC9OL19uBH4S9Njmmv539Me117ruE/orqV8n9Rb+xDl6z6ltXYr1+Y+rbN207/74D6jsbbprj1zh4OfmcuWGG/6HxXjs5T3CMJzhOcJLxBeJIwkvJQuxmclohghGXtOMva8ZOwFydiLkrGRkrGXsiDGmwAxPguIcQQgxucAMT4PiPEFQIwvAmIcCYjxpYTEePP/qBhfprxfIYwijCa8SniN8DrhjXQxviwRxSuSsVGSsdGSsVclY69Jxl6XjL2RBTHeDIjxZUCMrwBiHAWIcTQgxlcBMb4GiPF1QIxvJCTG4v9RMb5Jeb9FGEMYSxhHGE94mzAhXYxvSkTxlmRsjGRsrGRsnGRsvGTsbcnYhCyIsRgQ45uAGN8CxDgGEONYQIzjADGOB8T4NiDGCQmJUZSIRYxCe3CPJyhG752JtF+TCJMJUwhTCdMI0wkzCDMJswizCe8Q3iXMIbxHmEuYR5hPWEBYSFhEWExYQlhKWEZYTlhBWElYRVhNWEN4P13sEyWimyQZmywZmyIZmyoZmyYZmy4ZmyEZmykZmyUZmy0Ze0cy9q5kbI5k7D3J2FzJ2DzJ2HzJ2ALJ2ELJ2CLJ2GLJ2BLJ2FLJ2DLJ2HLJ2ArJ2ErJ2CrJ2GrJ2BrJ2PuSZl6Q+igcrScg+qhmPhFo5pOAZj4ZaOZTgGY+FWjm04BmPh1o5jOi1z6Y2l93ZuTaAR4X7qyotZP/482dHbF28G6O3XfUa5v7zoP7rnLtZv/Zceeo1h4WOGfue4q1jYJn0p0bvrZ72vl154Wu7ZJ+1t35YWuL99CFuyBkbfGeGnIXytdOkOjNXSRd20ymTXexbG07qY7dJZK1k+Sad5fuubZxSH9wl+2xdkRYL3GXp689JLTvuCvS1m4K71HuyuDayxX9zF0VWNtG1fvc1f61vZV90l3jW3uwuqe674NmL1tfLfi+fi9f6Y/3QYMMAvLL4HdsrfxAf4PctZpFmX61INfAMVywhrUgyfxk4zuLgMO1QjYoHK0wgVzXpQ7I+nRnvC61cf6x9Q0y/84i4CS764ADsh7cPJQcPhTrwMPEea1LqGOs0d/n4f54H5p2DA74Id4xhn8IdIyPLHcMruEjvGMM/yihjrFGP+4zskHhaIUJ5LohdUA+Tu8YGyQd4+MsdAzgJLsbgAPyseHmoV/kjOS0ERDDf/8D5LI2dcDRL3JGrupPADHIaohaznv0iUEn/iShTrxa//yO98fbZNqJOeAmvBOP3wQcvk8td2Ku4VO8E4//NMPDpyOgTywL6DOwBu9BGxPC4efA2cjmDbdaP+442aBwtMIEcv0iJbwv02+4LyQ33JdZuOGADuF+AZD2peHmoQcJyemrDG+4qHdYPJ8b3A6bLd9aXPfmGPLyHpTDzQCHX1vmMKzJ6jRn3bXfgA0tW25glb7Wh/rjfWvqBjjgt7gbGPotsEHfWXYDXMN3uBsY+p1lN8BC+KaBXbF9D4rNe9CcEA5/SMgNrNKP+4BsUDhaYQK5/pgS3k/pbuBHiRv4KQtuAOgQ7o8AaT8Zbh56kJCctli+SVg8Pxjcuj9bdgNc988x5OU9KIc/Axz+YpnDsCYb9R7SZH9N6HMDK/W1Lvzxtpq6AQ64FXcDYitA8m+W3QDX8BvuBsRvlt0AC+HXBnbF9ntMbgDh8I+E3MBK/bhZ+509f6aEty3dDfwpcQPbsuAGgA7h/gmQts1w89CDhOT0l+WbhMXzh8Gt+7dlN8B1/x1DXt6Dcvg3wOE/ljkMa7JR7yFNdntCbmCFvtZX+OPtMHUDHHAH7gZW7ABI3mnZDXANO3E3sGKnZTfAQtjewK7YnJx43ADCoQvklE03sEKfz+WyQeFohQnkulfOro8lcpzgzc8T6W6AF2XqBoAO4e6Vo09aiRyzzUMPEpJTSfBwoweGxePm4MIupZ9XKlDwz49aznWXiiEv70E5LAVwWNoyh2FNNuo9pMmWAfY1m25gub7We/njlc3JICC/DLqBXmUBkssBh8e0hnKgeLiGchmKWkcIZXLsiq18TG4A4bBCQm5gub4b6CkbFI5WmECuFVPCq5TuBipK3EClLLgBoEO4FQHSKuWYbR56kJCcKlu+SVg8FQxu3SqW3QDXXSWGvLwH5bAKwGFVyxyGNdmo95AmWy0hN7BMX+vr/PGqm7oBDlgddwPrqgMk17DsBriGGrgbWFfDshtgIVTLsSu2mjG5AYTDWgm5gWX6bmCtbFA4WmECudZOCa9OuhuoLXEDdbLgBoAO4dYGSKuTY7Z56EFCcqpr+SZh8dQyuHXrWXYDXHe9GPLyHpTDegCH9S1zGNZko95DmmyDhNzAUn2tt/THyzF1AxwwB3cDLXMAknMtuwGuIRd3Ay1zLbsBFkKDHLtiy4vJDSAc5ifkBpbqu4EWskHhaIUJ5CpSwitIdwNC4gYKsuAGgA7hCoC0ghyzzUMPEpJToeWbhMWTb3DrFll2A1x3UQx5eQ/KYRHAYUPLHIY12aj3kCa7d0JuYIm+1sf64+1j6gY44D64Gxi7D0ByI8tugGtohLuBsY0suwEWwt45dsXWOCY3gHC4b0JuYIm+GxgjGxSOVphArvulhLd/uhvYT+IG9s+CGwA6hLsfQNr+OWabhx4kJKcDLN8kLJ59DW7dAy27Aa77wBjy8h6UwwMBDg+yzGFYk416D2myByfkBhbra326P94hpm6AAx6Cu4HphwAkH2rZDXANh+JuYPqhlt0AC+HgHLtiOywmN4BweHhCbmCxvhuYJhsUjlaYQK5HpIR3ZLobOELiBo7MghsAOoR7BEDakTlmm4ceJCSnoyzfJCyeww1u3aMtuwGu++gY8vIelMOjAQ6PscxhWJONeg9psscm5AYW6Wu9tT/ecaZugAMeh7uB1scBJB9v2Q1wDcfjbqD18ZbdAAvh2By7YjshJjeAcHhiQm5gkb4baCUbFI5WmECuJ6WEd3K6GzhJ4gZOzoIbADqEexJA2sk5ZpuHHiQkp1Ms3yQsnhMNbt0mlt0A190khry8B+WwCcBhU8schjXZqPeQJntqQm5gob7Wi/3xmpm6AQ7YDHcDxc0Akk+z7Aa4htNwN1B8mmU3wEI4Nceu2E6PyQ0gHDZPyA0s1HcDN8sGhaMVJpBri5TwWqa7gRYSN9AyC24A6BBuC4C0ljlmm4ceJCSnVpZvEhZPc4Nbt7VlN8B1t44hL+9BOWwNcHiGZQ7DmmzUe0iTbZOQG1hg6AbamroBDtjWwA20BUhuZ9kNcA3tDNxAO8tugIXQJseu2NrH5AYQDjsk5AYWJOAGOqaEd2a6G+gocQNnZsENAB3C7QiQdmZMbgDJ6SzLNwmLp4PBrdvJshvgujvFkJf3oBx2AjjsbJnDsCYb9R7SZLsk5Abm62t9tD/e2aZugAOejbuB0WcDJJ9j2Q1wDefgbmD0OZbdAAuhS45dsXWNyQ0gHHZLyA3M13cDo2SDwtEKE8i1e86uj+fmOMGbnyfS3QAvytQNAB3C5Rx01m5J5aaZQ2Dz0IOE5HReDna40QPD4umWgwu7h35eu5Nz9PPiunvEkJf3oBz2ADjsaZnDsCYb9R7SZHsB+5pNNzBPX+sj/fHOz8kg4Pk5sBsYeT5Acm9g401r6J0Du4GRvTMUtY4QeuXYFdsFoNi8B80J4bAPkFM23cA8fTfwomxQOFphArlemBLeRelu4EKJG7goC24A6BDuhQBpF+WYbR56kJCcLrZ8k7B4+hjcun0tuwGuu28MeXkPymFfgMNLLHMY1mSj3kOa7KUJuYG5+lpf7493makb4ICX4W5g/WUAyf0suwGuoR/uBtb3s+wGWAiX5tgVW/+Y3ADC4YCE3MBcfTewTjYoHK0wgVwHpoR3ebobGChxA5dnwQ0AHcIdCJB2eY7Z5qEHCcnpCss3CYtngMGte6VlN8B1XxlDXt6DcnglwOEgyxyGNdmo95Ame1VCbuA9fa0v88e72tQNcMCrcTew7GqA5GssuwGu4RrcDSy7xrIbYCFclWNXbINjcgMIh9cm5Abe03cDS2WDwtEKE8j1upTwrk93A9dJ3MD1WXADQIdwrwNIuz7HbPPQg4TkdIPlm4TFc63BrXujZTfAdd8YQ17eg3J4I8DhTZY5DGuyUe8hTfbmhNzAHH2t1/PHKzZ1AxywGHcD9YoBkm+x7Aa4hltwN1DvFstugIVwc45dsd0akxtAOLwtITcwR98N1JUNCkcrTCDX21PCuyPdDdwucQN3ZMENAB3CvR0g7Y4cs81DDxKS052WbxIWz20Gt+5dlt0A131XDHl5D8rhXQCHQyxzGNZko95DmuzdCbmBd/W1PsUf7x5TN8AB78HdwJR7AJLvtewGuIZ7cTcw5V7LboCFcHeOXbHdF5MbQDi8PyE38K6+G5gsGxSOVphArg+khDc03Q08IHEDQ7PgBoAO4T4AkDY0x2zz0IOE5PSg5ZuExXO/wa07zLIb4LqHxZCX96AcDgM4fMgyh2FNNuo9pMk+nJAbeEdf60P88R4xdQMc8BHcDQx5BCD5UctugGt4FHcDQx617AZYCA/n2BXbYzG5AYTDxxNyA+/ou4G7ZIPC0QoTyPWJlPCeTHcDT0jcwJNZcANAh3CfAEh7Msds89CDhOT0lOWbhMXzuMGt+7RlN8B1Px1DXt6Dcvg0wOEzljkMa7JR7yFNdnhCbmC2vtZb+OM9a+oGOOCzuBto8SxA8gjLboBrGIG7gRYjLLsBFsLwHLtiey4mN4Bw+HxCbmC2vhtoLhsUjlaYQK4vpIT3YrobeEHiBl7MghsAOoT7AkDaizlmm4ceJCSnkZZvEhbP8wa37kuW3QDX/VIMeXkPyuFLAIcvW+YwrMlGvYc02VcScgOz9LU+zB9vlKkb4ICjcDcwbBRA8mjLboBrGI27gWGjLbsBFsIrOXbF9mpMbgDh8LWE3MAsfTfwoGxQOFphArm+nhLeG+lu4HWJG3gjC24A6BDu6wBpb+SYbR56kJCc3rR8k7B4XjO4dd+y7Aa47rdiyMt7UA7fAjgcY5nDsCYb9R7SZMcm5AZm6mt9oD/eOFM3wAHH4W5g4DiA5PGW3QDXMB53AwPHW3YDLISxOXbF9nZMbgDhcEJCbmCmvhsYIBsUjlaYQK4TU8KblO4GJkrcwKQsuAGgQ7gTAdIm5ZhtHnqQkJwmW75JWDwTDG7dKZbdANc9JYa8vAflcArA4VTLHIY12aj3kCY7LSE3MENf6zP98aabugEOOB13AzOnAyTPsOwGuIYZuBuYOcOyG2AhTMuxK7aZMbkBhMNZCbmBGfpuYIZsUDhaYQK5zk4J7510NzBb4gbeyYIbADqEOxsg7Z0cs81DDxKS07uWbxIWzyyDW3eOZTfAdc+JIS/vQTmcA3D4nmUOw5ps1HtIk52bkBuYrq914Y83z9QNcMB5uBsQ8wCS51t2A1zDfNwNiPmW3QALYW6OXbEtiMkNIBwuTMgNTNd3A/myQeFohQnkuiglvMXpbmCRxA0szoIbADqEuwggbXGO2eahBwnJaYnlm4TFs9Dg1l1q2Q1w3UtjyMt7UA6XAhwus8xhWJONeg9psssTcgPT9LVe0R9vhakb4IArcDdQcQVA8krLboBrWIm7gYorLbsBFsLyHLtiWxWTG0A4XJ2QG5im7wYqyAaFoxUmkOualPDeT3cDayRu4P0suAGgQ7hrANLezzHbPPQgITl9YPkmYfGsNrh111p2A1z32hjy8h6Uw7UAh+sscxjWZKPeQ5rs+oTcwFR9rff3x/vQ1A1wwA9xN9D/Q4Dkjyy7Aa7hI9wN9P/IshtgIazPsSu2DTG5AYTDjxNyA1P13UA/2aBwtMIEct2YEt4n6W5go8QNfJIFNwB0CHcjQNonOWabhx4kJKdNlm8SFs/HBrfup5bdANf9aQx5eQ/K4acAh59Z5jCsyUa9hzTZzxNyA1P0tV7NH+8LUzfAAb/A3UC1LwCSv7TsBriGL3E3UO1Ly26AhfB5jl2xfRWTG0A43JyQG5ii7waqygaFoxUmkOvXKeF9k+4Gvpa4gW+y4AaADuF+DZD2TY7Z5qEHCcnpW8s3CYtns8Gt+51lN8B1fxdDXt6DcvgdwOH3ljkMa7JR7yFN9oeE3MBk/YYWiPejqRvggD/m4O/9ZPmG57x+ytk9IBz9BxURH9gfcuyKYktMtzbCy88ZClWn5p8NOMymoCYZCuoXU0FxwF8MBPWrZUFxXr9mSVBRy5n4X3PMDozQi5HVQzKxgX6O/nhbTQ8JB9xq0HG2Aor9zfKB4hp+MyD5N8t/B+ND9JuBPdgC7Nfvlu0g7+3vhmL1HvRs/Q7U/4dlixd2I0e9h9zIf1rmkPfoT4OLAOGhpLP7r5uZ5ptbwuycOVgcoT24x+P+V5Pre2cb7ddfhL8J/xC2E3YQdrJ+crkwOkeEEoSShFKE0oQyhLKEcoTyhAqEioRKhMqEKoSqhGqE6oQahJqEWoTahDqEurlO8O/721J/3/eP/SUZ+1sy9o9kbLtkbIdkbKdkjItPH3MlY3tJxkpIxkpKxkpJxkpLxspIxspKxspJxspLxipIxipKxipJxipLxqpIxqpKxqpJxqpLxmpIxmpKxmpJxmpLxupIxurm7vm5pYLUR+FoPQHRRzWbbZqNiT8P9Zf2Wsf9W3ct5fuP3tqHKF93u9barVybu0Nn7aZ/98HdqbG26a49c1mDEWsfTO2v60auHeBx4e4VtXbyf7y5JSLWDt7NsVtSvba57zy4pZRrN/vPjltatfawwDlzyyjWNgqeSbds+NruaefXLRe6tkv6WXfLh60t3kMXboWQtcV7asitKF87QaI3t5J0bTOZNt3KsrXtpDp2q0jWTpJr3q2659rGIf3BrbbH2hFhvcStnr72kNC+49ZIW7spvEe5NYNrL1f0M7dWYG0bVe9za/vX9lb2SbeOb+3B6p7q1s3VN13Z/Btv3ei+5PXylf549XIzCMgvg//quLKe/ga59TWLMv0bL9fAMVywhvogyfxk41/HgMO1QjYoHK0wgVwbpA5ITrozbpDaOP9YTm7m/zoGnGS3AXBAcsDNQ8nhQ9EAPEycV4OEOkYd/X0e7o+Xa9oxOGAu3jGG5wIdI89yx+Aa8vCOMTwvoY5RRz/uM7JB4WiFCeSanzogIr1j5Es6hshCxwBOspsPHBBhuHnoJ+qQnAoAMfz3P0Au9VMHHP1EHXJVFwJikNUQtZz3qNCgExcm1Ilr65/f8f54RaadmAMW4Z14fBFw+Bpa7sRcQ0O8E49vmOHh0xFQoWUB7Q3W4D1oY0I43Ac4G9m84Wrrxx0nGxSOVphAro1SwmucfsM1ktxwjbNwwwEdwm0EkNbYcPPQg4TktG+GN1zUOyyefQxuh/0s31pc934x5OU9KIf7ARzub5nDsCar05x11x4ANrRsuYFa+lof6o93oKkb4IAH4m5g6IHABh1k2Q1wDQfhbmDoQZbdAAvhgFy7YjsYFJv3oDkhHB6SkBuopR/3AdmgcLTCBHI9NCW8w9LdwKESN3BYFtwA0CHcQwHSDjPcPPQgITkdbvkmYfEcYnDrHmHZDXDdR8SQl/egHB4BcHikZQ7DmmzUe0iTPSqhzw3U1Ne68Mc72tQNcMCjcTcgjgZIPsayG+AajsHdgDjGshtgIRyVa1dsx8bkBhAOj0vIDdTUj5u1nzt3fEp4J6S7geMlbuCELLgBoEO4xwOknWC4eehBQnI60fJNwuI5zuDWPcmyG+C6T4ohL+9BOTwJ4PBkyxyGNdmo95Ame0pCbqCGvtZX+OM1MXUDHLAJ7gZWNAFIbmrZDXANTXE3sKKpZTfAQjgl167YTo3JDSAcNkvIDdTQj7tcNigcrTCBXE9LCe/0dDdwmsQNnJ4FNwB0CPc0gLTTDTcPPUhITs0t3yQsnmYGt24Ly26A624RQ17eg3LYAuCwpWUOw5ps1HtIk22VkBuorq/1Xv54rU3dAAdsjbuBXq0Bks+w7Aa4hjNwN9DrDMtugIXQKteu2NrE5AYQDtsm5Aaq68ftKRsUjlaYQK7tUsJrn+4G2kncQPssuAGgQ7jtANLaG24eepCQnDpYvklYPG0Nbt2Olt0A190xhry8B+WwI8DhmZY5DGuyUe8hTfashNxANX2tr/PH62TqBjhgJ9wNrOsEkNzZshvgGjrjbmBdZ8tugIVwVq5dsXWJyQ0gHJ6dkBuoph93rWxQOFphArmekxJe13Q3cI7EDXTNghsAOoR7DkBaV8PNQw8SklM3yzcJi+dsg1u3u2U3wHV3jyEv70E57A5weK5lDsOabNR7SJM9LyE3UFVf6y398XqYugEO2AN3Ay17ACT3tOwGuIaeuBto2dOyG2AhnJdrV2y9YnIDCIfnJ+QGqurHbSEbFI5WmECuvVPCuyDdDfSWuIELsuAGgA7h9gZIu8Bw89CDhOTUx/JNwuI53+DWvdCyG+C6L4whL+9BObwQ4PAiyxyGNdmo95Ame3FCbqCKvtbH+uP1NXUDHLAv7gbG9gVIvsSyG+AaLsHdwNhLLLsBFsLFuXbFdmlMbgDh8LKE3EAV/bhjZIPC0QoTyLVfSnj9091AP4kb6J8FNwB0CLcfQFp/w81DDxKS0wDLNwmL5zKDW3egZTfAdQ+MIS/vQTkcCHB4uWUOw5ps1HtIk70iITdQWV/r0/3xrjR1AxzwStwNTL8SIHmQZTfANQzC3cD0QZbdAAvhily7YrsqJjeAcHh1Qm6gsn7cabJB4WiFCeR6TUp4g9PdwDUSNzA4C24A6BDuNQBpgw03Dz1ISE7XWr5JWDxXG9y611l2A1z3dTHk5T0oh9cBHF5vmcOwJhv1HtJkb0jIDVTS13prf7wbTd0AB7wRdwOtbwRIvsmyG+AabsLdQOubLLsBFsINuXbFdnNMbgDhsDghN1BJP24r2aBwtMIEcr0lJbxb093ALRI3cGsW3ADQIdxbANJuNdw89CAhOd1m+SZh8RQb3Lq3W3YDXPftMeTlPSiHtwMc3mGZw7AmG/Ue0mTvTMgNVNTXerE/3l2mboAD3oW7geK7AJKHWHYDXMMQ3A0UD7HsBlgId+baFdvdMbkBhMN7EnIDFfXj3iwbFI5WmECu96aEd1+6G7hX4gbuy4IbADqEey9A2n2Gm4ceJCSn+y3fJCyeewxu3QcsuwGu+4EY8vIelMMHAA6HWuYwrMlGvYc02QcTcgMVDN3AMFM3wAGHGbiBYQDJD1l2A1zDQwZu4CHLboCF8GCuXbE9HJMbQDh8JCE3UCEBN/BoSniPpbuBRyVu4LEsuAGgQ7iPAqQ9FpMbQHJ63PJNwuJ5xODWfcKyG+C6n4ghL+9BOXwC4PBJyxyGNdmo95Am+1RCbqC8vtZH++M9beoGOODTuBsY/TRA8jOW3QDX8AzuBkY/Y9kNsBCeyrUrtuExuQGEw2cTcgPl9eOOkg0KRytMINcRKeE9l+4GRkjcwHNZcANAh3BHAKQ9Z7h56EFCcnre8k3C4nnW4NZ9wbIb4LpfiCEv70E5fAHg8EXLHIY12aj3kCY7MiE3UE5f6yP98V4ydQMc8CXcDYx8CSD5ZctugGt4GXcDI1+27AZYCCNz7YrtlZjcAMLhqITcQDn9uC/KBoWj8wTdwOiU8F5NdwOjJW7g1Sy4AaBDuKMB0l413Dz0ICE5vWb5JmHxjDK4dV+37Aa47tdjyMt7UA5fBzh8wzKHYU026j2kyb6ZkBsoq6/19f54b5m6AQ74Fu4G1r8FkDzGshvgGsbgbmD9GMtugIXwZq5dsY2NyQ0gHI5LyA2U1Y+7TjYoHK0wgVzHp4T3drobGC9xA29nwQ0AHcIdD5D2tuHmoQcJyWmC5ZuExTPO4NadaNkNcN0TY8jLe1AOJwIcTrLMYViTjXoPabKTE3IDZfS1vswfb4qpG+CAU3A3sGwKQPJUy26Aa5iKu4FlUy27ARbC5Fy7YpsWkxtAOJyekBsoox93qWxQOFphArnOSAlvZrobmCFxAzOz4AaADuHOAEibabh56EFCcppl+SZh8Uw3uHVnW3YDXPfsGPLyHpTD2QCH71jmMKzJRr2HNNl3E3IDpfW1Xs8fb46pG+CAc3A3UG8OQPJ7lt0A1/Ae7gbqvWfZDbAQ3s21K7a5MbkBhMN5CbmB0vpx68oGhaMVJpDr/JTwFqS7gfkSN7AgC24A6BDufIC0BYabhx4kJKeFlm8SFs88g1t3kWU3wHUviiEv70E5XARwuNgyh2FNNuo9pMkuScgNlNLX+hR/vKWmboADLsXdwJSlAMnLLLsBrmEZ7gamLLPsBlgIS3Ltim15TG4A4XBFQm6glH7cybJB4WiFCeS6MiW8VeluYKXEDazKghsAOoS7EiBtleHmoQcJyWm15ZuExbPC4NZdY9kNcN1rYsjLe1AO1wAcvm+Zw7AmG/Ue0mQ/SMgNlNTX+hB/vLWmboADrsXdwJC1AMnrLLsBrmEd7gaGrLPsBlgIH+TaFdv6mNwAwuGHCbmBkvpx75INCkcrTCDXj1LC25DuBj6SuIENWXADQIdwPwJI22C4eehBQnL62PJNwuL50ODW3WjZDXDdG2PIy3tQDjcCHH5imcOwJhv1HtJkNyXkBkroa72FP96npm6AA36Ku4EWnwIkf2bZDXANn+FuoMVnlt0AC2FTrl2xfR6TG0A4/CIhN1BCP25z2aBwtMIEcv0yJbyv0t3AlxI38FUW3ADQIdwvAdK+Mtw89CAhOW22fJOweL4wuHW/tuwGuO6vY8jLe1AOvwY4/MYyh2FNNuo9pMl+m5Ab2Etf68P88b4zdQMc8DvcDQz7DiD5e8tugGv4HncDw7637AZYCN/m2hXbDzG5AYTDHxNyA3vpx31QNigcrTCBXH9KCW9Luhv4SeIGtmTBDQAdwv0JIG2L4eahBwnJ6WfLNwmL50eDW/cXy26A6/4lhry8B+XwF4DDXy1zGNZko95DmuzWhNyAq6/1gf54v5m6AQ74G+4GBv4GkPy7ZTfANfyOu4GBv1t2AyyErbl2xfZHTG4A4fDPhNyAqx93gGxQOFphArluSwnvr3Q3sE3iBv7KghsAOoS7DSDtL8PNQw8SktPflm8SFs+fBrfuP5bdANf9Twx5eQ/K4T8Ah9stcxjWZKPeQ5rsjoTcgKOv9Zn+eDtN3QAH3Im7gZk7EZLz7LoBroFjgG5gpj8vvUD6f74nhB25dsXm5gH75HvQnBAO9wJyyqYbcPTP5AzZoHD0wvhzLZG362PJPCd485fI29MN8KJM3QDQIdwSAGkl88w2Dz1ISE6lwMMN28e8XYcVFXbpDBtH1HKuu3QMeXkPymFpgMMyljkMa7JR7yFNtiywr9l0AztztLUu/PHK5WUQkF8G3YAoB5Bc3rIb4BrK425AlLfsBlgIZfPsiq1CTG4A4bBiQm7AL56IJ182KBytMIFcK6WEVzndDVSSuIHKWXADQIdwKwGkVc4z2zz0ICE5VbF8k7B4KhrculUtuwGuu2oMeXkPymFVgMNqljkMa7JR7yFNtnpCbmCHvtYr+uPVMHUDHLAG7gYq1gBIrmnZDXANNXE3ULGmZTfAQqieZ1dstWJyAwiHtRNyAzv03UAF2aBwtMIEcq2TEl7ddDdQR+IG6mbBDQAdwq0DkFY3z2zz0IOE5FTP8k3C4qltcOvWt+wGuO76MeTlPSiH9QEOG1jmMKzJRr2HNNmchNzAdn2t9/fHyzV1AxwwF3cD/XMBkvMsuwGuIQ93A/3zLLsBFkJOnl2x5cfkBhAORUJuYLu+G+gnGxSOVphArgUp4RWmu4ECiRsozIIbADqEWwCQVphntnnoQUJyKrJ8k/wrHoNbt6FlN8B1N4whL+9BOWwIcLi3ZQ7DmmzUe0iT3SchN/CPvtar+eM1MnUDHLAR7gaqNQJIbmzZDXANjXE3UK2xZTfAQtgnz67Y9o3JDSAc7peQG/hH3w1UlQ0KRytMINf9U8I7IN0N7C9xAwdkwQ0AHcLdHyDtgDyzzUMPEpLTgZZvEhbPfga37kGW3QDXfVAMeXkPyuFBAIcHW+YwrMlGvYc02UMScgN/6ze0QLxDTd0ABzw0D3/vMMs3POd1WN7uAeHoP6iI+MAekmdXFIfHdGsjvByRoVB1aj7CgMNsCuovQ0EdaSooDnikgaCOsiwozuuoLAkqajkTf1Se2YERejGyeki25ejn6I93tOkh4YBHG3ScowHFHmP5QHENxxiQfIzlv4PxITrGwB4cDuzXsZbtIO/tsYZi9R70bB0L1H+cZYsXdiNHvYfcyMdb5pD36HiDiwDhoaSz+6+bmeabU8LsnDlYHKE9uMfj/leT63vnBNqvEwknEU4mnEJoQmhKOJXQjHAa4XRCc0ILQktCK0JrwhmENoS2hHaE9oQOhI6EMwlnEToROhO6EM4mnEPoSuiW/jmAE1J/3/ePnSgZO0kydrJk7BTJWBPJWFPJ2KmSsWaSsdMkY6dLxppLxlpIxlpKxlpJxlpLxs6QjLWRjLWVjLWTjLWXjHWQjHWUjJ0pGTtLMtZJMtZZMtZFMna2ZOwcyVhXyVi3vD0/t1SQ+igcrScg+qhmc4JmY+LPQ52ovdZxT9JdS/merLf2IcrXPUVr7VauzW2is3bTv/vgNtVY23TXnrmnRq99MLW/brPItQM8LtzTotZO/o839/SItYN3c+w2V69t7jsPbgvl2s3+s+O2VK09LHDO3FaKtY2CZ9JtHb62e9r5dc8IXdsl/ay7bcLWFu+hC7dtyNriPTXktpOvnSDRm9teuraZTJtuB9nadlIdux0layfJNe+euefaxiH9wT1rj7UjwnqJ2yl97SGhfcftnLZ2U3iPcrsE116u6Gfu2YG1bVS9zz3Hv7a3sk+6XX1rD1b3VLdbQn/j7abfy1f643U3/RsvB+yeB/+r48ru+hvknqtZlOnfeLmGc8G/8XIN54Ik85ONfx0DDtcK2aBwtMIEcj0vdUB6pDvj81Ib5x/rkZf5v44BJ9k9DzggPcDNQ8nhQ3EeeJg4r/MS6hhd9fd5uD9eT9OOwQF74h1jeE+gY/Sy3DG4hl54xxjeK6GO0VU/7jOyQeFohQnken7qgPRO7xjnSzpG7yx0DOAku+cDB6S34eahn6hDcroAEMN//wPkcm7qgKOfqEOu6j6AGGQ1RC3nPepj0In7JNSJz9E/v+P98S407cQc8EK8E4+/EDh8F1nuxFzDRXgnHn9RhodPR0B9LAvoYrAG70EbE8JhX+BsZPOGO0c/7jjZoHC0wgRyvSQlvEvTb7hLJDfcpVm44YAO4V4CkHap4eahBwnJ6bIMb7iod1g8fQ1uh36Wby2uu18MeXkPymE/gMP+ljkMa7I6zVl37QCwoWXLDZytr/Wh/ngDTd0ABxyIu4GhA4ENutyyG+AaLsfdwNDLLbsBFsKAPLtiuwIUm/egOSEcXpmQGzhbP+4DskHhaIUJ5DooJbyr0t3AIIkbuCoLbgDoEO4ggLSrDDcPPUhITldbvklYPFca3LrXWHYDXPc1MeTlPSiH1wAcDrbMYViTjXoPabLXJvS5gS76Whf+eNeZugEOeB3uBsR1AMnXW3YDXMP1uBsQ11t2AyyEa/Psiu2GmNwAwuGNCbmBLvpxs/Zz525KCe/mdDdwk8QN3JwFNwB0CPcmgLSbDTcPPUhITsWWbxIWz40Gt+4tlt0A131LDHl5D8rhLQCHt1rmMKzJRr2HNNnbEnIDnfW1vsIf73ZTN8ABb8fdwIrbAZLvsOwGuIY7cDew4g7LboCFcFueXbHdGZMbQDi8KyE30Fk/7nLZoHC0wgRyHZIS3t3pbmCIxA3cnQU3AHQIdwhA2t2Gm4ceJCSneyzfJCyeuwxu3XstuwGu+94Y8vIelMN7AQ7vs8xhWJONeg9psvcn5AY66Wu9lz/eA6ZugAM+gLuBXg8AJA+17Aa4hqG4G+g11LIbYCHcn2dXbA/G5AYQDocl5AY66cftKRsUjlaYQK4PpYT3cLobeEjiBh7OghsAOoT7EEDaw4abhx4kJKdHLN8kLJ5hBrfuo5bdANf9aAx5eQ/K4aMAh49Z5jCsyUa9hzTZxxNyA2fpa32dP94Tpm6AAz6Bu4F1TwAkP2nZDXANT+JuYN2Tlt0AC+HxPLtieyomN4Bw+HRCbuAs/bhrZYPC0QoTyPWZlPCGp7uBZyRuYHgW3ADQIdxnANKGG24eepCQnJ61fJOweJ42uHVHWHYDXPeIGPLyHpTDEQCHz1nmMKzJRr2HNNnnE3IDZ+prvaU/3gumboADvoC7gZYvACS/aNkNcA0v4m6g5YuW3QAL4fk8u2IbGZMbQDh8KSE3cKZ+3BayQeFohQnk+nJKeK+ku4GXJW7glSy4AaBDuC8DpL1iuHnoQUJyGmX5JmHxvGRw64627Aa47tEx5OU9KIejAQ5ftcxhWJONeg9psq8l5AY66mt9rD/e66ZugAO+jruBsa8DJL9h2Q1wDW/gbmDsG5bdAAvhtTy7YnszJjeAcPhWQm6go37cMbJB4WiFCeQ6JiW8seluYIzEDYzNghsAOoQ7BiBtrOHmoQcJyWmc5ZuExfOWwa073rIb4LrHx5CX96Acjgc4fNsyh2FNNuo9pMlOSMgNdNDX+nR/vImmboADTsTdwPSJAMmTLLsBrmES7gamT7LsBlgIE/Lsim1yTG4A4XBKQm6gg37cabJB4WiFCeQ6NSW8aeluYKrEDUzLghsAOoQ7FSBtmuHmoQcJyWm65ZuExTPF4NadYdkNcN0zYsjLe1AOZwAczrTMYViTjXoPabKzEnID7fW13tofb7apG+CAs3E30Ho2QPI7lt0A1/AO7gZav2PZDbAQZuXZFdu7MbkBhMM5CbmB9vpxW8kGhaMVJpDreynhzU13A+9J3MDcLLgBoEO47wGkzTXcPPQgITnNs3yTsHjmGNy68y27Aa57fgx5eQ/K4XyAwwWWOQxrslHvIU12YUJuoJ2+1ov98RaZugEOuAh3A8WLAJIXW3YDXMNi3A0UL7bsBlgIC/Psim1JTG4A4XBpQm6gnX7cm2WDwtEKE8h1WUp4y9PdwDKJG1ieBTcAdAh3GUDacsPNQw8SktMKyzcJi2epwa270rIb4LpXxpCX96AcrgQ4XGWZw7AmG/Ue0mRXJ+QG2hq6gTWmboADrjFwA2sAkt+37Aa4hvcN3MD7lt0AC2F1nl2xfRCTG0A4XJuQG2ibgBtYlxLe+nQ3sE7iBtZnwQ0AHcJdB5C2PiY3gOT0oeWbhMWz1uDW/ciyG+C6P4ohL+9BOfwI4HCDZQ7DmmzUe0iT/TghN9BGX+uj/fE2mroBDrgRdwOjNwIkf2LZDXANn+BuYPQnlt0AC+HjPLti2xSTG0A4/DQhN9BGP+4o2aBwtMIEcv0sJbzP093AZxI38HkW3ADQIdzPANI+N9w89CAhOX1h+SZh8XxqcOt+adkNcN1fxpCX96Acfglw+JVlDsOabNR7SJPdnJAbOENf6yP98b42dQMc8GvcDYz8GiD5G8tugGv4BncDI7+x7AZYCJvz7Irt25jcAMLhdwm5gTP0474oGxSOVphArt+nhPdDuhv4XuIGfsiCGwA6hPs9QNoPhpuHHiQkpx8t3yQsnu8Mbt2fLLsBrvunGPLyHpTDnwAOt1jmMKzJRr2HNNmfE3IDrfW1vt4f7xdTN8ABf8HdwPpfAJJ/tewGuIZfcTew/lfLboCF8HOeXbFtjckNIBz+lpAbaK0fd51sUDg6T9AN/J4S3h/pbuB3iRv4IwtuAOgQ7u8AaX8Ybh56kJCc/rR8k7B4fjO4dbdZdgNc97YY8vIelMNtAId/WeYwrMlGvYc02b8TcgOt9LW+zB/vH1M3wAH/wd3Asn8AkrdbdgNcw3bcDSzbbtkNsBD+zrMrth0xuQGEw50JuYFW+nGXygaFoxUmmGvqV/i4+U7w5ueJdDfAizJ1A0CHcDkHnbVbUrlp5hDYPPQgITntlY8dbvTAsHh2Gty6JfTz2p2co58X110i335e3oNyWALgsKRlDsOabNR7SJMtBexrNt1AS32t1/PHK52fQUB+GXQD9UoDJJcBDo9pDWVA8XANZTIUtY4QSuXbFVtZUGzeg+aEcFgOyCmbbqClvhuoKxsUjlaYQK7lU8KrkO4GykvcQIUsuAGgQ7jlAdIq5JttHnqQkJwqWr5JWDzlDG7dSpbdANddKYa8vAflsBLAYWXLHIY12aj3kCZbJSE30EJf61P88aqaugEOWBV3A1OqAiRXs+wGuIZquBuYUs2yG2AhVMm3K7bqMbkBhMMaCbmBFvpuYLJsUDhaYQK51kwJr1a6G6gpcQO1suAGgA7h1gRIq5VvtnnoQUJyqm35JmHx1DC4detYdgNcd50Y8vIelMM6AId1LXMY1mSj3kOabL2E3EBzfa0P8cerb+oGOGB93A0MqQ+Q3MCyG+AaGuBuYEgDy26AhVAv367YcmJyAwiHuQm5geb6buAu2aBwtMIEcs1LCS8/3Q3kSdxAfhbcANAh3DyAtPx8s81DDxKSk7B8k7B4cg1u3QLLboDrLoghL+9BOSwAOCy0zGFYk416D2myRQm5gdP1td7CH6+hqRvggA1xN9CiIUDy3pbdANewN+4GWuxt2Q2wEIry7Yptn5jcAMJho4TcwOn6bqC5bFA4WmECuTZOCW/fdDfQWOIG9s2CGwA6hNsYIG3ffLPNQw8SktN+lm8SFk8jg1t3f8tugOveP4a8vAflcH+AwwMscxjWZKPeQ5rsgQm5gdP0tT7MH+8gUzfAAQ/C3cCwgwCSD7bsBriGg3E3MOxgy26AhXBgvl2xHRKTG0A4PDQhN3Cavht4UDYoHK0wgVwPSwnv8HQ3cJjEDRyeBTcAdAj3MIC0w/PNNg89SEhOR1i+SVg8hxrcukdadgNc95Ex5OU9KIdHAhweZZnDsCYb9R7SZI9OyA0009f6QH+8Y0zdAAc8BncDA48BSD7WshvgGo7F3cDAYy27ARbC0fl2xXZcTG4A4fD4hNxAM303MEA2KBytMIFcT0gJ78R0N3CCxA2cmAU3AHQI9wSAtBPzzTYPPUhITidZvklYPMcb3LonW3YDXPfJMeTlPSiHJwMcnmKZw7AmG/Ue0mSbJOQGTtXX+kx/vKamboADNsXdwMymAMmnWnYDXMOpuBuYeaplN8BCaJJvV2zNYnIDCIenJeQGTtV3AzNkg8LRChPI9fSU8Jqnu4HTJW6geRbcANAh3NMB0prnm20eepCQnFpYvklYPKcZ3LotLbsBrrtlDHl5D8phS4DDVpY5DGuyUe8hTbZ1Qm6gqb7WhT/eGaZugAOegbsBcQZAchvLboBraIO7AdHGshtgIbTOtyu2tjG5AYTDdgm5gab6biBfNigcrTCBXNun/qQO6W6gvcQNdMiCGwA6hNseIK1DvtnmoQcJyamj5ZuExdPO4NY907Ib4LrPjCEv70E5PBPg8CzLHIY12aj3kCbbKSE30ERf6xX98TqbugEO2Bl3AxU7AyR3sewGuIYuuBuo2MWyG2AhdMq3K7azY3IDCIfnJOQGmui7gQqyQeFohQnk2jUlvG7pbqCrxA10y4IbADqE2xUgrVu+2eahBwnJqbvlm4TFc47BrXuuZTfAdZ8bQ17eg3J4LsDheZY5DGuyUe8hTbZHQm7gFH2t9/fH62nqBjhgT9wN9O8JkNzLshvgGnrhbqB/L8tugIXQI9+u2M6PyQ0gHPZOyA2cou8G+skGhaMVJpDrBSnh9Ul3AxdI3ECfLLgBoEO4FwCk9ck32zz0ICE5XWj5JmHx9Da4dS+y7Aa47otiyMt7UA4vAji82DKHYU026j2kyfZNyA2crK/1av54l5i6AQ54Ce4Gql0CkHypZTfANVyKu4Fql1p2AyyEvvl2xXZZTG4A4bBfQm7gZH03UFU2KBytMIFc+6eENyDdDfSXuIEBWXADQIdw+wOkDcg32zz0ICE5DbR8k7B4+hncupdbdgNc9+Ux5OU9KIeXAxxeYZnDsCYb9R7SZK9MyA2cBPzofH+8QaZugAMOysffu8ryDc95XZW/e0A4+g8qIj6wV+bbFcXVMd3aCC/XZChUnZqvMeAwm4I60VBQg00FxQEHGwjqWsuC4ryuzZKgopYz8dfmmx0YoRcjq4fkBOBn1vvjXWd6SDjgdQYd5zpAsddbPlBcw/UGJF9v+e9gfIiuN7AHVwP7dYNlO8h7e4OhWL0HPVs3APXfaNnihd3IUe8hN/JNljnkPbrJ4CJAePA/5TTjePksa6CRU2rxcp21qcUrtNbuWrxSb+2/i1dpruXFq3XX0uI1DfS5eb+BPjc3A+eL6/M+ZcDvnZI2j3I7D+B2PsDtAoDbhQC3iwBuFwPcLgG4XQpwW2zIbXEWuJ0JcDsL4HY2wO07ALfvAtzOAbh9D+B2LsDtLYbc3pIFbicC3E4CuJ0McDsF4HYqwO00gNvpALczAG5vNeT21ixwWy1Xn9vqufrc1sjV57Zmrj63tXL1ua2dq89tnVx9buvm6nN7myG3t2WB23IAt+UBbisA3FYEuK0EcFsZ4LYKwG1VgNvbDbm9PQvcugC3ewHclgC4LQlwWwrgtjTAbRmA27IAt3cYcntHFrjdlqPP7V85+tz+naPP7T85+txuz9HndkeOPrc7c/S5dQBu7zTk9s4scHtWnj63nfL0ue2cp89tlzx9bs/O0+f2nDx9brsCvzW4G/CJ0LsMub0rC9yeAXDbBuC2LcBtO4Db9gC3HQBuOwLcnglwO8SQ2yFZ4LYZwO1pALenA9w2B7htAXDbEuAW+K3bbmuA27sNub07C9yeAHB7IsDtSQC3JwPcngJw2wTgFvgOZ+0fG8Lc3mPI7T0pbvm/yzu7Pw/JH4vzd39+gz/emr/7702ex/b8mHd3e33e6wne+fFi8SMc7TS1a0pybTGwFvlz/39t8LmXzs99hPsJDxCGEh4kDCM8RHiY8AjhUcJjhMcJTxCeJDxFeJrwDGE44VnCCMJzhOcJLxBezN/1j8uePtIfF8vXvRf8d6b0R+gtK2v+rvtfTa7vDxpJeb9EeJnwCmEUYTThVcJr6V/7ODL1dY7+sZckYy9Lxl6RjI2SjI2WjL0qGXstf8/d0L2ovH24F/hHuJGaa/nrM1/SXuu4L+uupXxf0Vv7EOXrjtJau5Vrc0frrN307z64r2qsbbprz9zXwK/0yJYY7/sfFePrlPcbhDcJbxHGEMYSxhHGp4vxdYko3pCMvSkZe0syNkYyNlYyNk4yNj4LYrwPEOPrgBjfAMT4JiDGtwAxjgHEOBYQ4zhAjOMTEuP9/6NifJvynkCYSJhEmEyYQphKmJYuxrclopggGZsoGZskGZssGZsiGZsqGZuWBTHeD4jxbUCMEwAxTgTEOAkQ42RAjFMAMU4FxDgtITE+8D8qxumU9wzCTMIswmzCO4R3CXPSxThdIooZkrGZkrFZkrHZkrF3JGPvSsbmZEGMDwBinA6IcQYgxpmAGGcBYpwNiPEdQIzvAmKcYygK9Fu8/GujeBQl9Ne+B+TvP5v8XrGT3QbznuFeOlgcoT24xxNsMN47cynveYT5hAWEhYRFhMWEJYSlhGWE5YQVhJWEVYTVhDWE9wkfENYS1hHWEz4kfETYQPiYsJHwCWET4VPCZ4TPCV+kN7C5kkYyTzI2XzK2QDK2UDK2SDK2WDK2RDK2VDK2TDK2XDK2QjK2UjK2SjK2WjK2RjL2vmTsA8nYWsnYOsnYesnYh5KxjyRjGyRjH0vGNkrGPpGMbZKMfSoZ+0wy9rlk7AvJBVWQ+igcrScg+qhmNRe4oOYBF9R84IJaAFxQC4ELahFwQS0GLqgl0WsfTO2vuzRy7QCPC3dZ1NrJ//HmLo9YO3g3x+4K9drmvvPgrlSu3ew/O+4q1drDAufMXa1Y2yh4Jt014Wu7p51f9/3QtV3Sz7r7Qdja4j104a4NWVu8p4bcdfK1EyR6c9dL1zaTadP9ULa2nVTH7keStZPkmnc37Lm2cUh/cD/eY+2IsF7ibkxfe0ho33E/SVu7KbxHuZuCay9X9DP308DaNqre537mX9tb2Sfdz31rD1b3VPcLwHRl8zvqvtDv5Sv98b7MzyAgvwz+VJOVX+pvkPsVcJmZ1sAxXLCGr0CS+cnGT98ADtcK2aBwtMIEct2cOiBfpzvjzamN8499nZ/5T98ATrK7GTggX4Obh5LDh2IzeJg4r80JdYzP9fd5uD/eN6YdgwN+g3eM4d8AHeNbyx2Da/gW7xjDv02oY3yuH/cZ2aBwtMIEcv0udUC+T+8Y30k6xvdZ6BjASXa/Aw7I94abh34jMJLTD4AY/vsfIJevUgcc/UZg5Kr+ERCDrIao5bxHPxp04h8T6sSf6Z/f8f54P5l2Yg74E96Jx/8EHL4tljsx17AF78Tjt2R4+HQE9KNlAf0M1uA9aGNCOPwFOBvZvOE+0487TjYoHK0wgVx/TQlva/oN96vkhtuahRsO6BDurwBpWw03Dz1ISE6/ZXjDRb3D4vnF4Hb43fKtxXX/HkNe3oNy+DvA4R+WOQxrsjrNWXftn2BDy5Yb+FRf60P98baZugEOuA13A0O3ARv0l2U3wDX8hbuBoX9ZdgMshD/z7Yrtb1Bs3oPmhHD4T0Ju4FP9uA/IBoWjFSaQ6/aU8Haku4HtEjewIwtuAOgQ7naAtB2Gm4ceJCSnnZZvEhbPPwa3Li8Ujv6D5sV182LbeXkPyqE/TtRaV9jlMKzJRr2HNNm9hP6+ZtMNbNLXuvDHKyEyCMgvo7/Xlt8RmjFKCrtugGvgGKAbEP68tAIBf74nBD5INsVWSsTjBhAOS4tk3MAm/csjXzYoHK0wgVzLiF0fywonePPzRLob4EWZugGgQ7icg87aLancNHMIbB56kJCcygm7NwmLhw8rKuzy+nntTs7Rz4vrLh9DXt6DcuiPE7W2grDLoSvkTTYyltCvoaJIxg18oq/1Ff54lUQGAfll0A2s4HeEZozKwq4b4Bo4BugGVvjz0goE/PmeEPgg2RRbFRGPG0A4rCqScQOf6LuB5bJB4WiFCeRaTez6WF04wZufJ9LdAC/K1A0AHcLlHHTWbknlpplDYPPQg4TkVEPYvUlYPHxYUWHX1M9rd3KOfl5cd80Y8vIelEN/nKi1tYRdDsOabNR7SJOtLZJxAxv1td7LH6+OyCAgvwy6gV78jtCMUVfYdQNcA8cA3UAvf15agYA/3xMCHySbYqsn4nEDCIf1RTJuYKO+G+gpGxSOVphArg3Ero85wgne/DyR7gZ4UaZuAOgQLuegs3ZLKjfNHHr6/w96kJCccoXdm4TFw4cVFXaefl67k3P08+K682LIy3tQDv1xotbmC7schjXZqPeQJitEMm7gY32tr/PHKxAZBOSXQTewjt8RmjEKhV03wDVwDNANrPPnpRUI+PP/E4KwK7YiEY8bQDhsKJJxAx/ru4G1skHhaIUJ5Lq32PVxH+EEb36eSHcDvChTNwB0CJdz0Fm7JZWbZg6BzUMPEpJTI2H3JmHx8GFFhd1YP6/dyTn6eXHdjWPIy3tQDv1xotbuK+xyGNZko95Dmux+Ihk3sEFf6y398fYXGQTkl0E30JLfEZoxDhB23QDXwDFAN9DSn5dWIODP94TAB8mm2A4U8bgBhMODRDJuYIO+G2ghGxSOVphArgeLXR8PEU7w5ueJdDfAizJ1A0CHcDkHnbVbUrlp5hDYPPQgITkdKuzeJCwePqyosA/Tz2t3co5+Xlz3YTHk5T0oh/44UWsPF3Y5DGuyUe8hTfYIkYwb+Ehf62P98Y4UGQTkl0E3MJbfEZoxjhJ23QDXwDFANzDWn5dWIODP94TAB8mm2I4W8bgBhMNjRDJu4CN9NzBGNigcrTCBXI8Vuz4eJ5zgzc8T6W6AF2XqBoAO4XIOOmu3pHLTzCGweehBQnI6Xti9SVg8fFhRYZ+gn9fu5Bz9vLjuE2LIy3tQDv1xotaeKOxyGNZko95DmuxJIhk38KG+1qf7450sMgjIL4NuYDq/IzRjnCLsugGugWOAbmC6Py+tQMCf7wmBD5JNsTUR8bgBhMOmIhk38KG+G5gmGxSOVphArqeKXR+bCSd48/NEuhvgRZm6AaBDuJyDztotqdw0cwhsHnqQkJxOE3ZvkiZi12FFhX26fl67k3P08+K6T48hL+9BOfTHiVrbXNjlMKzJRr2HNNkWIhk3sF5f66398VqKDALyy6AbaM3vCM0YrYRdN8A1cAzQDbT256UVCPjzPSHwQbIpttYiHjeAcHiGSMYNrNd3A61kg8LRChPItY3Y9bGtcII3P0+kuwFelKkbADqEyznorN2Syk0zh8DmoQcJyamdsHuTsHj4sKLCbq+f1+7kHP28uO72MeTlPSiH/jhRazsIuxyGNdmo95Am21Ek4wbW6Wu92B/vTJFBQH4ZdAPF/I7QjHGWsOsGuAaOAbqBYn9eWoGAP98TAh8km2LrJOJxAwiHnUUybmCdvhu4WTYoHK0wgVy7iF0fz+aP/pufJ9LdAC/K1A0AHcLlHHTWbknlpplDYPPQg4TkdI6we5OwePiwosLuqp/X7uQc/by47q4x5OU9KIf+OFFruwm7HIY12aj3kCbbXSTjBtYauoFzRQYB+WXUDfA7QjPGecKuG+AaOAbqBvx5aQUC/nxPCHyQbIqth4jHDSAc9hTJuIG1CbiBXmLXx/OFE7z5eSLdDfCiTN0A0CFczkFn7ZZUbpo5ZOQGkJx6C7s3CYuHDysq7Av089qdnKOfF9d9QQx5eQ/KoT9O1No+wi6HYU026j2kyV4oknEDH+hrfbQ/3kUig4D8MugGRvM7QjPGxcKuG+AaOAboBkb789IKBPz5nhD4INkUW18RjxtAOLxEJOMGPtB3A6Nkg8LRChPI9VKx6+Nlwgne/DyR7gZ4UaZuAOgQLuegs3ZLKjfNHAKbhx4kJKd+wu5NwuLhw4oKu79+XruTc/Tz4rr7x5CX96Ac+uNErR0g7HIY1mSj3kOa7ECRjBt4X1/rI/3xLhcZBOSXQTcwkt8RmjGuEHbdANfAMUA3MNKfl1Yg4M/3hMAHyabYrhTxuAGEw0EiGTfwvr4beFE2KBytMIFcrxK7Pl4tnODNzxPpboAXZeoGgA7hcg46a7ekctPMIbB56EFCcrpG2L1JWDx8WFFhD9bPa3dyjn5eXPfgGPLyHpRDf5yotdcKuxyGNdmo95Ame51Ixg2s0df6en+860UGAfll0A2s53eEZowbhF03wDVwDNANrPfnpRUI+PM9IfBBsim2G0U8bgDh8CaRjBtYo+8G1skGhaMVJpDrzWLXx2LhBG9+nkh3A7woUzcAdAiXc9BZuyWVm2YOgc1DDxKS0y3C7k3C4uHDigr7Vv28difn6Od1i9gVw3Ze3oNy6I8TtfY2YZfDsCYb9R7SZG8XybiB1fpaX+aPd4fIICC/DLqBZfyO0Ixxp7DrBrgGjgG6gWX+vLQCAX++JwQ+SDbFdpeIxw0gHA4RybiB1fpuYKlsUDhaYQK53i12fbxHOMGbnyfS3QAvytQNAB3C5Rx01m5J5aaZQ2Dz0IOE5HSvsHuTsHj4sKLCvk8/r93JOfp5cd33xZCX96Ac+uNErb1f2OUwrMlGvYc02QdEMm5glb7W6/njDRUZBOSXQTdQj98RmjEeFHbdANfAMUA3UM+fl1Yg4M/3hMAHyabYhol43ADC4UMiGTewSt8N1JUNCkcrTCDXh8Wuj48IJ3jz80S6G+BFmboBoEO4nIPO2i2p3DRzCGweepCQnB4Vdm8SFg8fVlTYj+nntTs5Rz8vrvuxGPLyHpRDf5yotY8LuxyGNdmo95Am+4RIxg2s1Nf6FH+8J0UGAfll0A1M4XeEZoynhF03wDVwDNANTPHnpRUI+PM9IfBBsim2p0U8bgDh8BmRjBtYqe8GJssGhaMVJpDrcLHr47PCCd78PJHuBnhRpm4A6BAu56CzdksqN80cApuHHiQkpxHC7k3C4uHDigr7Of28difn6OfFdT8XQ17eg3LojxO19nlhl8OwJhv1HtJkXxDJuIEV+lof4o/3osggIL8MuoEh/I7QjDFS2HUDXAPHAN3AEH9eWoGAP98TAh8km2J7ScTjBhAOXxbJuIEV+m7gLtmgcLTCBHJ9Rez6OEo4wZufJ9LdAC/K1A0AHcLlHHTWbknlpplDYPPQg4TkNFrYvUlYPHxYUWG/qp/X7uQc/by47ldjyMt7UA79caLWvibscvi8kDfZqPeQJvu6SMYNLNfXegt/vDdEBgH5ZdANtOB3hGaMN4VdN8A1cAzQDbTw56UVCPjzPSHwQbIptrdEPG4A4XCMSMYNLNd3A81lg8LRChPIdazY9XGccII3P0+kuwFelKkbADqEyznorN2Syk0zh8DmoQcJyWm8sHuTsHj4sKLCfls/r93JOfp5cd1vx5CX96Ac+uNErZ0g7HIY1mSj3kOa7ESRjBtYpq/1Yf54k0QGAfll0A0M43eEZozJwq4b4Bo4BugGhvnz0goE/PmeEPgg2RTbFBGPG0A4nCqScQPL9N3Ag7JB4WiFCeQ6Tez6OF04wZufJ9LdAC/K1A0AHcLlHHTWbknlpplDYPPQg4TkNEPYvUlYPHxYUWHP1M9rd3KOfl5c98wY8vIelEN/nKi1s4RdDsOabNR7SJOdLZJxA0v1tT7QH+8dkUFAfhl0AwP5HaEZ411h1w1wDRwDdAMD/XlpBQL+fE8IfJBsim2OiMcNIBy+J5JxA0v13cAA2aBwtMIEcp0rdn2cJ5zgzc8T6W6AF2XqBoAO4XIOOmu3pHLTzCGweehBQnKaL+zeJCwePqyosBfo57U7OUc/L657QQx5eQ/KoT9O1NqFwi6HYU026j2kyS4SybiBJfpan+mPt1hkEJBfBt3ATH5H6MYQdt0A18AxQDcw05+XViDgz/eEwAfJptiWinjcAMLhMpGMG1ii7wZmyAaFoxUmkOtysevjCuEEb36eSHcDvChTNwB0CJdz0Fm7JZWbZg6BzUMPEpLTSmH3JmHx8GFFhb1KP6/dyTn6eXHdq2LIy3tQDv1xotauFnY5DGuyUe8hTXaNSMYNLNbXuvDHe19kEJBfBt2A4HeEZowPhF03wDVwDNANCH9eWoGAP98TAh8km2JbK+JxAwiH60QybmCxvhvIlw0KRytMINf1YtfHD4UTvPl5It0N8KJM3QDQIVzOQWftllRumjkENg89SEhOHwm7NwmLhw8rKuwN+nntTs7Rz4vr3hBDXt6DcuiPE7X2Y2GXw7AmG/Ue0mQ3imTcwCJ9rVf0x/tEZBCQXwbdQEV+R2jG2CTsugGugWOAbqCiPy+tQMCf7wmBD5JNsX0q4nEDCIefiWTcwCJ9N1BBNigcrTCBXD8Xuz5+IZzgzc8T6W6AF2XqBoAO4XIOOmu3pHLTzCGweehBQnL6Uti9ST4Vuw4rKuyv9PPanZyjnxfX/VUMeXkPyqE/TtTazcIuh2FNNuo9pMl+LZJxAwv1td7fH+8bkUFAfhl0A/35HaEZ41th1w1wDRwDdAP9/XlpBQL+fE8IfJBsiu07EY8bQDj8XiTjBhbqu4F+skHhaIUJ5PqD2PXxR+EEb36eSHcDvChTNwB0CJdz0Fm7JZWbZg6BzUMPEpLTT8LuTcLi4cOKCnuLfl67k3P08+K6t8SQl/egHPrjRK39WdjlMKzJRr2HNNlfRDJuYIG+1qv54/0qMgjIL4NuoBq/IzRjbBV23QDXwDFAN1DNn5dWIODP94TAB8mm2H4T8bgBhMPfRTJuYIG+G6gqGxSOVphArn+IXR//FE7w5ueJdDfAizJ1A0CHcDkHnbVbUrlp5hDYPPQgITltE3ZvEhYPH1ZU2H/p57U7OUc/L677rxjy8h6UQ3+cqLV/C7schjXZqPeQJvuPSMYNzNdvaIF420UGAfll9L0dwu4Nz3nt8C3WfE8aS+fAMuE2RbFTxHNrQ7wUZCZUnZo5hpP2XtSTTUHNMxSUW5BBQH4ZfW+vAruC4rz2MiDDJBYTv1eB2YERejGyekjm5uvn6I9XwvSQcEB+GVV3CUCxJS0fKK6hpAHJJQsyO3w6h6hkAW4P/IcvKkapDGuIWs57W8pQrN6Dnq1SwHkpneHNEfVO2I0c9R5yI5exzCHvURmDiwDhoaSz+6+bmeabX8LsnDlYHKE9uMfj/leT63unLO1XOUJ5QgVCRUIlQmVCFUJVQjVCdUINQk1CLUJtQh1CXUI9Qn1CA0IOIZeQR8hnLggFhEJCEaEhYW/CPoRGBU7w7/ucTNm0sXKSsfKSsQqSsYqSsUqSscqSsSqSsaqSsWqSseqSsRqSsZqSsVqSsdqSsTqSsbqSsXqSsfqSsQaSsRzJWK5kLE8yli8ZE5KxAslYoWSsSDLWUDK2t2RsH8lYo4I9P7dUkPooHK0nIPqoZsNnW2ctfx6qnPZaxy2vu5byraC39iHK162otXYr1+ZW0lm76d99cCtrrG26a8/cKtFrH0ztr1s1cu0Ajwu3WtTayf/x5laPWDt4N8duDfXa5r7z4NZUrt3sPztuLdXawwLnzK2tWNsoeCbdOuFru6edX7du6Nou6WfdrRe2tngPXbj1Q9YW76kht4F87QSJ3twc6dpmMm26ubK17aQ6dvMkayfJNe/m77m2cUh/cMUea0eE9RK3IH3tIaF9xy1MW7spvEe5RcG1lyv6mdswsLaNqve5e/vX9lb2SXcf39qD1T3VbVSgb7qy+TfeRvq9fKU/XuOCDALyy+C/Oq5srL9B7r6aRZn+jZdr4BguWMO+IMn8ZONfx4DDtUI2KBytMIFc90sdkP0LnKBb2S+1cf6x/Qsy/9cx4CS7+wEHZH9w81By+FDsBx4mzmu/hDrGPvr7PNwf7wDTjsEBD8A7xvADgI5xoOWOwTUciHeM4Qcm1DH20Y/7jGxQOFphArkelDogB6d3jIMkHePgLHQM4CS7BwEH5GDDzUM/UYfkdAgghv/+B8hl39QBRz9Rh1zVhwJikNUQtZz36FCDTozklc1OvLf++R3vj3dYQQYBD8M78fjDgMN3uOVOzDUcjnfi8YdnePh0BHSoZQEdAdbgPWhjQjg8Ejgb2bzh9taPO042KBytMIFcj0oJ7+j0G+4oyQ13dBZuOKBDuEcBpB1tuHnoQUJyOibDGy7qHRbPkQa3w7EZNo6o5Vz3sTHk5T0oh8cCHB5nmcOwJqvTnHXXHg82tGy5gYb6Wh/qj3dCQQYBT8DdwNATgA06Edh40xpOxN3A0BMtuwEWwvEFdsV2Eig270FzQjg8GRSPPx9ZwsLR+7Ma6sd9QDYoHK0wgVxPSQmvSbobOEXiBppkwQ0AHcI9BSCtieHmoQcJyamp5ZuExXNyAS7sUzNsHFHLue5TY8jLe1AOTwU4bGaZw7AmG/Ue0mRPA/Y1m26gSF/rwh/v9IIMAp6OuwFxOkByc2DjTWtojrsB0dyyG2AhnFZgV2wtQLF5D5oTwmHLhNxAkX7crP3cuVYp4bVOdwOtJG6gdRbcANAh3FYAaa0NNw89SEhOZ1i+SVg8LQtwYbfJsHFELee628SQl/egHLYBOGxrmcOwJhv1HtJk2yXkBgr1tb7CH699QQYB2+NuYEV7gOQOwMab1tABdwMrOlh2AyyEdgV2xdYRFJv3oDkhHJ6ZkBso1I+7XDYoHK0wgVzPSgmvU7obOEviBjplwQ0AHcI9CyCtk+HmoQcJyamz5ZuExXNmAS7sLhk2jqjlXHeXGPLyHpTDLgCHZ1vmMKzJRr2HNNlzEnIDBfpa7+WP17Ugg4BdcTfQqytAcjdg401r6Ia7gV7dLLsBFsI5BXbF1h0Um/egOSEcnpuQGyjQj9tTNigcrTCBXM9LCa9Huhs4T+IGemTBDQAdwj0PIK2H4eahBwnJqaflm4TFc24BLuxeGTaOqOVcd68Y8vIelMNeAIfnW+YwrMlGvYc02d4JuQGhr/V1/ngXFGQQ8ALcDay7ACC5D7DxpjX0wd3Auj6W3QALoXeBXbFdCIrNe9CcEA4vSsgNCP24a2WDwtEKE8j14pTw+qa7gYslbqBvFtwA0CHciwHS+hpuHnqQkJwusXyTsHguKsCFfWmGjSNqOdd9aQx5eQ/K4aUAh5dZ5jCsyUa9hzTZfgm5gXx9rbf0x+tfkEHA/rgbaNkfIHkAsPGmNQzA3UDLAZbdAAuhX4FdsQ0ExeY9aE4Ih5cn5Aby9eO2kA0KRytMINcrUsK7Mt0NXCFxA1dmwQ0AHcK9AiDtSsPNQw8SktMgyzcJi+fyAlzYV2XYOKKWc91XxZCX96AcXgVweLVlDsOabNR7SJO9JiE3kKev9bH+eIMLMgg4GHcDYwcDJF8LbLxpDdfibmDstZbdAAvhmgK7YrsOFJv3oDkhHF6fkBvI0487RjYoHK0wgVxvSAnvxnQ3cIPEDdyYBTcAdAj3BoC0Gw03Dz1ISE43Wb5JWDzXF+DCvjnDxhG1nOu+OYa8vAfl8GaAw2LLHIY12aj3kCZ7S0JuIFdf69P98W4tyCDgrbgbmH4rQPJtwMab1nAb7gam32bZDbAQbimwK7bbQbF5D5oTwuEdCbmBXP2402SDwtEKE8j1zpTw7kp3A3dK3MBdWXADQIdw7wRIu8tw89CDhOQ0xPJNwuK5owAX9t0ZNo6o5Vz33THk5T0oh3cDHN5jmcOwJhv1HtJk703IDeToa721P959BRkEvA93A63vA0i+H9h40xrux91A6/stuwEWwr0FdsX2ACg270FzQjgcmpAbyNGP20o2KBytMIFcH0wJb1i6G3hQ4gaGZcENAB3CfRAgbZjh5qEHCcnpIcs3CYtnaAEu7IczbBxRy7nuh2PIy3tQDh8GOHzEModhTTbqPaTJPpqQG2igr/Vif7zHCjII+BjuBoofA0h+HNh40xoex91A8eOW3QAL4dECu2J7AhSb96A5IRw+mZAbaKAf92bZoHC0wgRyfSolvKfT3cBTEjfwdBbcANAh3KcA0p423Dz0ICE5PWP5JmHxPFmAC3t4ho0jajnXPTyGvLwH5XA4wOGzljkMa7JR7yFNdkRCbqC+oRt4riCDgM8ZuIHnAJKfBzbetIbnDdzA85bdAAthRIFdsb0Ais170JwQDl9MyA3UN7zQHChO0A2MTAnvpXQ3MFLiBl7KghsAOoQ7EiDtpZjcAJLTy5ZvEhbPiwW4sF/JsHFELee6X4khL+9BOXwF4HCUZQ7DmmzUe0iTHZ2QG6inr/XR/nivFmQQ8FXcDYx+FSD5NWDjTWt4DXcDo1+z7AZYCKML7IrtdVBs3oPmhHD4RkJuoJ5+3FGyQeFohQnk+mZKeG+lu4E3JW7grSy4AaBDuG8CpL1luHnoQUJyGmP5JmHxvFGAC3tsho0jajnXPTaGvLwH5XAswOE4yxyGNdmo95AmOz4hN1BXX+sj/fHeLsgg4Nu4Gxj5NkDyBGDjTWuYgLuBkRMsuwEWwvgCu2KbCIrNe9CcEA4nJeQG6urHfVE2KBytMIFcJ6eENyXdDUyWuIEpWXADQIdwJwOkTTHcPPQgITlNtXyTsHgmFeDCnpZh44haznVPiyEv70E5nAZwON0yh2FNNuo9pMnOSMgN1NHX+np/vJkFGQScibuB9TMBkmcBG29awyzcDayfZdkNsBBmFNgV22xQbN6D5oRw+E5CbqCOftx1skHhaIUJ5PpuSnhz0t3AuxI3MCcLbgDoEO67AGlzDDcPPUhITu9ZvklYPO8U4MKem2HjiFrOdc+NIS/vQTmcC3A4zzKHYU026j2kyc5PyA3U1tf6Mn+8BQUZBFyAu4FlCwCSFwIbb1rDQtwNLFto2Q2wEOYX2BXbIlBs3oPmhHC4OCE3UFs/7lLZoHC0wgRyXZIS3tJ0N7BE4gaWZsENAB3CXQKQttRw89CDhOS0zPJNwuJZXIALe3mGjSNqOde9PIa8vAflcDnA4QrLHIY12aj3kCa7MiE3UEtf6/X88VYVZBBwFe4G6q0CSF4NbLxpDatxN1BvtWU3wEJYWWBXbGtAsXkPmhPC4fsJuYFa+nHrygaFoxUmkOsHKeGtTXcDH0jcwNosuAGgQ7gfAKStNdw89CAhOa2zfJOweN4vwIW9PsPGEbWc614fQ17eg3K4HuDwQ8schjXZqPeQJvtRQm6gpr7Wp/jjbSjIIOAG3A1M2QCQ/DGw8aY1fIy7gSkfW3YDLISPCuyKbSMoNu9Bc0I4/CQhN1BTP+5k2aBwtMIEct2UEt6n6W5gk8QNfJoFNwB0CHcTQNqnhpuHHiQkp88s3yQsnk8KcGF/nmHjiFrOdX8eQ17eg3L4OcDhF5Y5DGuyUe8hTfbLhNxADX2tD/HH+6ogg4Bf4W5gyFcAyZuBjTetYTPuBoZstuwGWAhfFtgV29eg2LwHzQnh8JuE3EAN/bh3yQaFoxUmkOu3KeF9l+4GvpW4ge+y4AaADuF+C5D2neHmoQcJyel7yzcJi+ebAlzYP2TYOKKWc90/xJCX96Ac/gBw+KNlDsOabNR7SJP9KSE3UF1f6y388bYUZBBwC+4GWmwBSP4Z2HjTGn7G3UCLny27ARbCTwV2xfYLKDbvQXNCOPw1ITdQXT9uc9mgcLTCBHLdmhLeb+luYKvEDfyWBTcAdAh3K0Dab4abhx4kJKffLd8kLJ5fC3Bh/5Fh44haznX/EUNe3oNy+AfA4Z+WOQxrslHvIU12W0JuoJq+1of54/1VkEHAv3A3MOwvgOS/gY03reFv3A0M+9uyG2AhbCuwK7Z/QLF5D5oTwuH2hNxANf24D8oGhaMVJpDrjpTwdqa7gR0SN7AzC24A6BDuDoC0nYabhx4kJCen0O5NwuLZXoAL29XPa3dyDlBL4a4YtvPyHpRDf5yotXtZ5jCsyUa9hzTZEsC+ZtMNVNXX+kB/vJKFGQTkl0E3MLAkQHIp4PCY1lAKFA/XUCpDUesIoUShXbGVBsXmPWhOCIdlgJyy6Qaq6l9oA2SDwtEKE8i1bEp45Qqd4M1ftnBPN8CLMnUDQIdwywKklSs02zz0ICE5lbd8k7B4yhjcuhUsuwGuu0IMeXkPymEFgMOKljkMa7JR7yFNtlJCbqCKvtZn+uNVNnUDHLAy7gZmVgZIrmLZDXANVXA3MLOKZTfAQqhUaFdsVWNyAwiH1RJyA37xRDwzZIPC0QoTyLV6Sng10t1AdYkbqJEFNwB0CLc6QFqNQrPNQw8SklNNyzcJi6eawa1by7Ib4LprxZCX96Ac1gI4rG2Zw7AmG/Ue0mTrJOQGKutrXfjj1TV1AxywLu4GRF2A5HqW3QDXUA93A6KeZTfAQqhTaFds9WNyAwiHDRJyA37xRDz5skHhaIUJ5JqTEl5uuhvIkbiB3Cy4AaBDuDkAabmFZpuHHiQkpzzLNwmLp4HBrZtv2Q1w3fkx5OU9KIf5AIfCModhTTbqPaTJFiTkBirpa72iP16hqRvggIW4G6hYCJBcZNkNcA1FuBuoWGTZDbAQCgrtiq1hTG4A4XDvhNyAXzwRTwXZoHC0wgRy3SclvEbpbmAfiRtolAU3AHQIdx+AtEaFZpuHHiQkp8aWbxIWz94Gt+6+lt0A171vDHl5D8rhvgCH+1nmMKzJRr2HNNn9E3IDFfW13t8f7wBTN8ABD8DdQP8DAJIPtOwGuIYDcTfQ/0DLboCFsH+hXbEdFJMbQDg8OCE34BdPxNNPNigcrTCBXA9JCe/QdDdwiMQNHJoFNwB0CPcQgLRDC802Dz1ISE6HWb5JWDwHG9y6h1t2A1z34THk5T0oh4cDHB5hmcOwJhv1HtJkj0zIDVTQ13o1f7yjTN0ABzwKdwPVjgJIPtqyG+AajsbdQLWjLbsBFsKRhXbFdkxMbgDh8NiE3IBfPBFPVdmgcLTCBHI9LiW849PdwHESN3B8FtwA0CHc4wDSji802zz0ICE5nWD5JmHxHGtw655o2Q1w3SfGkJf3oByeCHB4kmUOw5ps1HtIkz05ITdQXr+hBeKdYuoGOOAphfh7TSzf8JxXk8LdA8LRf1AR8YE9udCuKJrGdGsjvJyaoVB1aj7VgMNsCqqcoaCamQqKAzYzENRplgXFeZ2WJUFFLWfiTys0OzBCL0ZWD0nZAv0c/fFONz0kHPB0g45zOqDY5pYPFNfQ3IDk5pb/DsaHqLmBPWgK7FcLy3aQ97aFoVi9Bz1bLYD6W1q2eGE3ctR7yI3cyjKHvEetDC4ChIeSzu6/bmaab14Js3PmYHGE9uAej/tfTa7vnda0X2cQ2hDaEtoR2hM6EDoSziScRehE6EzoQjibcA6hK6EboTvhXMJ5hB6EnoRehPMJvQkXEPoQLiRcRLiY0JdwSfrnAFqn/r7vHztDMtZGMtZWMtZOMtZeMtZBMtZRMnamZOwsyVgnyVhnyVgXydjZkrFzJGNdJWPdJGPdJWPnSsbOk4z1kIz1lIz1koydLxnrLRm7QDLWRzJ2oWTsIsnYxZKxvpKxSwr3/NxSQeqjcLSegOijmk1rzcbEn4c6Q3ut47bRXUv5ttVb+xDl67bTWruVa3Pb66zd9O8+uB001jbdtWdux+i1D6b21z0zcu0Ajwv3rKi1k//jze0UsXbwbo7dzuq1zX3nwe2iXLvZf3bcs1VrDwucM/ccxdpGwTPpdg1f2z3t/LrdQtd2ST/rbvewtcV76MI9N2Rt8Z4acs+Tr50g0ZvbQ7q2mUybbk/Z2nZSHbu9JGsnyTXvnr/n2sYh/cHtvcfaEWG9xL0gfe0hoX3H7ZO2dlN4j3IvDK69XNHP3IsCa9uoep97sX9tb2WfdPv61h6s7qnuJYAJzebfeC/R7+Ur/fEuLcwg4KWF8L86rrxUf4PcyzSLMv0bL9dwGfg3Xq7hMpBkfvaSJZAWVydfzbUrZIPC0QoTyLVf6oD0T3fG/VIb5x/rX5j5v44BJ9ntBxyQ/uDmoeTwoegHHibOq19CHaOv/j4P98cbYNoxOOAAvGMMHwB0jIGWOwbXMBDvGMMHJtQx+urHfUY2KBytMIFcL08dkCvSO8blko5xRRY6BnCS3cuBA3KF4eYhB5zjIDldCYjhv/8BcrksdcDTa4iKhVzVgwAxyGqIWs57NMigEw9KqBNfrH9+x/vjXWXaiTngVXgnHn8VcPiuttyJuYar8U48/uoMD5+OgAZZFtA1YA3egzYmhMPBwNnI5g13sX7ccbJB4WiFCeR6bUp416XfcNdKbrjrsnDDAR3CvRYg7TrDzUMPEpLT9RnecFHvsHgGG9wON1i+tbjuG2LIy3tQDm8AOLzRModhTVanOeuuvQlsaNlyAxfpa32oP97Npm6AA96Mu4GhNwMbVGzZDXANxbgbGFps2Q2wEG4qtCu2W0CxeQ+aE8LhrQm5gYv04z4gGxSOVphArrelhHd7uhu4TeIGbs+CGwA6hHsbQNrthpuHHiQkpzss3yQsnlsNbt07LbsBrvvOGPLyHpTDOwEO77LMYViTjXoPabJDEvrcwIX6Whf+eHebugEOeDfuBsTdAMn3WHYDXMM9uBsQ91h2AyyEIYV2xXZvTG4A4fC+hNzAhfpxs/Zz5+5PCe+BdDdwv8QNPJAFNwB0CPd+gLQHDDcPPUhITkMt3yQsnvsMbt0HLbsBrvvBGPLyHpTDBwEOh1nmMKzJRr2HNNmHEnIDffS1vsIf72FTN8ABH8bdwIqHAZIfsewGuIZHcDew4hHLboCF8FChXbE9GpMbQDh8LCE30Ec/7nLZoHC0wgRyfTwlvCfS3cDjEjfwRBbcANAh3McB0p4w3Dz0ICE5PWn5JmHxPGZw6z5l2Q1w3U/FkJf3oBw+BXD4tGUOw5ps1HtIk30mITdwgb7We/njDTd1AxxwOO4Geg0HSH7WshvgGp7F3UCvZy27ARbCM4V2xTYiJjeAcPhcQm7gAv24PWWDwtEKE8j1+ZTwXkh3A89L3MALWXADQIdwnwdIe8Fw89CDhOT0ouWbhMXznMGtO9KyG+C6R8aQl/egHI4EOHzJModhTTbqPaTJvpyQG+itr/V1/nivmLoBDvgK7gbWvQKQPMqyG+AaRuFuYN0oy26AhfByoV2xjY7JDSAcvpqQG+itH3etbFA4WmECub6WEt7r6W7gNYkbeD0LbgDoEO5rAGmvG24eepCQnN6wfJOweF41uHXftOwGuO43Y8jLe1AO3wQ4fMsyh2FNNuo9pMmOScgNnK+v9Zb+eGNN3QAHHIu7gZZjAZLHWXYDXMM43A20HGfZDbAQxhTaFdv4mNwAwuHbCbmB8/XjtpANCkcrTCDXCSnhTUx3AxMkbmBiFtwA0CHcCQBpEw03Dz1ISE6TLN8kLJ63DW7dyZbdANc9OYa8vAflcDLA4RTLHIY12aj3kCY7NSE30Etf62P98aaZugEOOA13A2OnASRPt+wGuIbpuBsYO92yG2AhTC20K7YZMbkBhMOZCbmBXvpxx8gGhaMVJpDrrJTwZqe7gVkSNzA7C24A6BDuLIC02Yabhx4kJKd3LN8kLJ6ZBrfuu5bdANf9bgx5eQ/K4bsAh3MscxjWZKPeQ5rsewm5gZ76Wp/ujzfX1A1wwLm4G5g+FyB5nmU3wDXMw93A9HmW3QAL4b1Cu2KbH5MbQDhckJAb6Kkfd5psUDhaYQK5LkwJb1G6G1gocQOLsuAGgA7hLgRIW2S4eehBQnJabPkmYfEsMLh1l1h2A1z3khjy8h6UwyUAh0stcxjWZKPeQ5rssoTcQA99rbf2x1tu6gY44HLcDbReDpC8wrIb4BpW4G6g9QrLboCFsKzQrthWxuQGEA5XJeQGeujHbSUbFI5WmECuq1PCW5PuBlZL3MCaLLgBoEO4qwHS1hhuHnqQkJzet3yTsHhWGdy6H1h2A1z3BzHk5T0ohx8AHK61zGFYk416D2my6xJyA+fpa73YH2+9qRvggOtxN1C8HiD5Q8tugGv4EHcDxR9adgMshHWFdsX2UUxuAOFwQ0Ju4Dz9uDfLBoWjFSaQ68cp4W1MdwMfS9zAxiy4AaBDuB8DpG003Dz0ICE5fWL5JmHxbDC4dTdZdgNc96YY8vIelMNNAIefWuYwrMlGvYc02c8ScgPnGrqBz03dAAf83MANfA6Q/IVlN8A1fGHgBr6w7AZYCJ8V2hXblzG5AYTDrxJyA+cm4AY2p4T3dbob2CxxA19nwQ0AHcLdDJD2dUxuAMnpG8s3CYvnK4Nb91vLboDr/jaGvLwH5fBbgMPvLHMY1mSj3kOa7PcJuYHu+lof7Y/3g6kb4IA/4G5g9A8AyT9adgNcw4+4Gxj9o2U3wEL4vtCu2H6KyQ0gHG5JyA101487SjYoHK0wgVx/Tgnvl3Q38LPEDfySBTcAdAj3Z4C0Xww3Dz1ISE6/Wr5JWDxbDG7drZbdANe9NYa8vAflcCvA4W+WOQxrslHvIU3294TcQDd9rY/0x/vD1A1wwD9wNzDyD4DkPy27Aa7hT9wNjPzTshtgIfxeaFds22JyAwiHfyXkBrrpx31RNigcrTCBXP9OCe+fdDfwt8QN/JMFNwB0CPdvgLR/DDcPPUhITtst3yQsnr8Mbt0dlt0A170jhry8B+VwB8DhTsschjXZqPeQJusUJeMGuuprfb0/nluUQUB+GXQD6139DXL3KrLrBrgGjgG6gfV7ASTL8tIRglNkV2wlAB78/wfNCeGwJJBTNt1AV/3Gs042KBytMIFcS6WEV7rICd78pYr2dAO8KFM3AHQItxRAWukis81DDxKSUxnwcKMHhsVTsggXdtkMG0fUcq67bAx5eQ/KYVmAw3KWOQxrslHvIU22fEJu4Bx9rS/zx6tg6gY4YAXcDSyrAJBc0bIb4Boq4m5gWUXLboCFUL7IrtgqxeQGEA4rJ+QGztF3A0tlg8LRChPItUpKeFXT3UAViRuomgU3AHQItwpAWtUis81DDxKSUzXLNwmLp7LBrVvdshvguqvHkJf3oBxWBzisYZnDsCYb9R7SZGsm5AbO1td6PX+8WqZugAPWwt1AvVoAybUtuwGuoTbuBurVtuwGWAg1i+yKrU5MbgDhsG5CbuBsfTdQVzYoHK0wgVzrpYRXP90N1JO4gfpZcANAh3DrAaTVLzLbPPQgITk1sHyTsHjqGty6OZbdANedE0Ne3oNymANwmGuZw7AmG/Ue0mTzEnIDXfS1PsUfL9/UDXDAfNwNTMkHSBaW3cC/m4a7gSnCshtgIeQV2RVbQUxuAOGwMCE30EXfDUyWDQpHK0wg16KU8Bqmu4EiiRtomAU3AHQItwggrWGR2eahBwnJaW/LNwmLp9Dg1t3HshvguveJIS/vQTncB+CwkWUOw5ps1HtIk22ckBvorK/1If54+5q6AQ64L+4GhuwLkLyfZTfANeyHu4Eh+1l2AyyExkV2xbZ/TG4A4fCAhNxAZ303cJdsUDhaYQK5HpgS3kHpbuBAiRs4KAtuAOgQ7oEAaQcVmW0eepCQnA62fJOweA4wuHUPsewGuO5DYsjLe1AODwE4PNQyh2FNNuo9pMkelpAb6KSv9Rb+eIebugEOeDjuBlocDpB8hGU3wDUcgbuBFkdYdgMshMOK7IrtyJjcAMLhUQm5gU76bqC5bFA4WmECuR6dEt4x6W7gaIkbOCYLbgDoEO7RAGnHFJltHnqQkJyOtXyTsHiOMrh1j7PsBrju42LIy3tQDo8DODzeModhTTbqPaTJnpCQGzhLX+vD/PFONHUDHPBE3A0MOxEg+STLboBrOAl3A8NOsuwGWAgnFNkV28kxuQGEw1MScgNn6buBB2WDwtEKE8i1SUp4TdPdQBOJG2iaBTcAdAi3CUBa0yKzzUMPEpLTqZZvEhbPKQa3bjPLboDrbhZDXt6DctgM4PA0yxyGNdmo95Ame3pCbuBMfa0P9MdrbuoGOGBz3A0MbA6Q3MKyG+AaWuBuYGALy26AhXB6kV2xtYzJDSActkrIDZyp7wYGyAaFoxUmkGvrlPDOSHcDrSVu4IwsuAGgQ7itAdLOKDLbPPQgITm1sXyTsHhaGdy6bS27Aa67bQx5eQ/KYVuAw3aWOQxrslHvIU22fUJuoKO+1mf643UwdQMcsAPuBmZ2AEjuaNkNcA0dcTcws6NlN8BCaF9kV2xnxuQGEA7PSsgNdNR3AzNkg8LRChPItVNKeJ3T3UAniRvonAU3AHQItxNAWucis81DDxKSUxfLNwmL5yyDW/dsy26A6z47hry8B+XwbIDDcyxzGNZko95DmmzXhNxAB32tC3+8bqZugAN2w92A6AaQ3N2yG+AauuNuQHS37AZYCF2L7Irt3JjcAMLheQm5gQ76biBfNigcrTCBXHukhNcz3Q30kLiBnllwA0CHcHsApPUsMts89CAhOfWyfJOweM4zuHXPt+wGuO7zY8jLe1AOzwc47G2Zw7AmG/Ue0mQvSMgNtNfXekV/vD6mboAD9sHdQMU+AMkXWnYDXMOFuBuoeKFlN8BCuKDIrtguiskNIBxenJAbaK/vBirIBoWjFSaQa9+U8C5JdwN9JW7gkiy4AaBDuH0B0i4pMts89CAhOV1q+SZh8VxscOteZtkNcN2XxZCX96AcXgZw2M8yh2FNNuo9pMn2T8gNtNPXen9/vAGmboADDsDdQP8BAMkDLbsBrmEg7gb6D7TsBlgI/Yvsiu3ymNwAwuEVCbmBdvpuoJ9sUDhaYQK5XpkS3qB0N3ClxA0MyoIbADqEeyVA2qAis81DDxKS01WWbxIWzxUGt+7Vlt0A1311DHl5D8rh1QCH11jmMKzJRr2HNNnBCbmBtvpar+aPd62pG+CA1+JuoNq1AMnXWXYDXMN1uBuodp1lN8BCGFxkV2zXx+QGEA5vSMgNtNV3A1Vlg8LRChPI9caU8G5KdwM3StzATVlwA0CHcG8ESLupyGzz0IOE5HSz5ZuExXODwa1bbNkNcN3FMeTlPSiHxQCHt1jmMKzJRr2HNNlbE3IDbfQbWiDebaZugAPeVoS/d7vlG57zur1o94Bw9B9URHxgby2yK4o7Yrq1EV7uzFCoOjXfacBhNgV1hqGg7jIVFAe8y0BQQywLivMakiVBRS1n4ocUmR0YoRcjq4ekdaF+jv54d5seEg54t0HHuRtQ7D2WDxTXcI8ByfdY/jsYH6J7DOzBHcB+3WvZDvLe3msoVu9Bz9a9QP33WbZ4YTdy1HvIjXy/ZQ55j+43uAgQHvxPOc04Xj4f52vklFq8UWdtavEnWmt3Ld6kt/bfxZ9qruXFn+mupcWf5+tz80W+PjcPAOeL6yuR+sjvnZI2j3L7PsDtBwC3awFu1wHcrge4/RDg9iOA2w0At0MNuR2aBW6XAtwuA7hdDnC7AuB2JcDtKoDb1QC3awBuHzTk9sEscDsX4HYewO18gNsFALcLAW4XAdwuBrhdAnA7zJDbYVngVhToc1tQoM9tYYE+t0UF+tw2LNDndu8CfW73KdDntlGBPrcPGXL7UBa4rQtwWw/gtj7AbQOA2xyA21yA2zyA23yA24cNuX04C9xWBbitBnBbHeC2BsBtTYDbWgC3tQFu6wDcPmLI7SNZ4LYswG05gNvyALcVAG4rAtxWAritDHBbBeD2UUNuH80Ct70L9bm9oFCf2z6F+txeWKjP7UWF+txeXKjPbV/9z4C7lwCfCH3MkNvHssBtN4Db7gC35wLcngdw2wPgtifAbS+A2/MBbh835PbxLHB7JsDtWQC3nQBuOwPcdgG4PRvgFvit225XgNsnDLl9Igvctga4PQPgtg3AbVuA23YAt+0BboHvcNb+sSHM7ZOG3D6Z4pb/u7yz+/OQ/HFo0e7Pb/DHYUW7/97EHx8u2u3HvLvb6/NeT/DOjxeLH+Fop6ldU5Jri4G1yJ/7/2uDz1N0fp4mPEMYTniWMILwHOF5wguEFwkjCS8RXia8QhhFGE14lfAa4XXCG4Q3CW8RxhDGEsYV7frHZU8f6Y+L5es+Bf47U/oj9JaVNX/X/a8m1/cHjae83yZMIEwkTCJMJkwhTC1ygg2EF5dNG3tbMjZBMjZRMjZJMjZZMjZFMja1aM/d0L2ovH14CvhHuPGaa/nrM9/WXuu4E3TXUr4T9dY+RPm6k7TWbuXa3Mk6azf9uw/uFI21TXftmTsVEEU2xfj0/6gYp1He0wkzCDMJswizCe8Q3k0X4zSJKKZLxmZIxmZKxmZJxmZLxt6RjL2bBTE+DYhxGiDG6YAYZwBinAmIcRYgxtmAGN8BxPhuQmJ85n9UjHMo7/cIcwnzCPMJCwgLCYvSxThHIor3JGNzJWPzJGPzJWMLJGMLJWOLsiDGZwAxzgHE+B4gxrmAGOcBYpwPiHEBIMaFgBgXJSTG4f+jYlxMeS8hLCUsIywnrCCsJKxKF+NiiSiWSMaWSsaWScaWS8ZWSMZWSsZWZUGMwwExLgbEuAQQ41JAjMsAMS4HxLgCEONKQIyrDEWB8lhQQl8Ehbpr6ZAVaa7l89hQb+2/Gtxba+0uue6jszal7EYaa70m0LiE/tlfDfDo1yi/d0raPMrtvgC3+wHc7g9wewDA7YEAtwcB3B4McHsIwO0aQ27XZIHbQwFuDwO4PRzg9giA2yMBbo8CuD0a4PYYgNv3Dbl9PwvcHgtwexzA7fEAtycA3J4IcHsSwO3JALenANx+YMjtB1ngtgnAbVOA21MBbpsB3J4GcHs6wG1zgNsWALdrDbldmwVuWwLctgK4bQ1wewbAbRuA27YAt+0AbtsD3K4z5HZdFrjtAHDbEeD2TIDbswBuOwHcdga47QJwezbA7XpDbtdngdtzAG67Atx2A7jtDnB7LsDteQC3PQBuewLcfmjI7YdFwa8N4EdEvP9w1SNzXmp40Oc6aw/ccE2HErOPXa2z9tQmJ3WeMvmdl3TWdpq9oXSntT88zHnz3+M8z+/5Q89L8Meb83d9LE59vCX18db83feS18O88+7tjU4uxbs+uDpr/c//r8XWfkR8bCB8TNhI+ISwifAp4TPC54QvCF8SviJsJnxN+IbwLeE7wveEHwg/En4ibCH8TPiF8GtRdj/p+lERtg/pj9BblvVPum6lvH8j/E74g/AnYRvhL8LfRU6wgfDi9E9+/iYZ+10y9odk7E/J2DbJ2F+Ssb+LMv+kq5+0qKa7VXMtf9L1N+21jvu77lrK9w+9tf9+0vVPrbW7Pum6TWdt6pOuf2ms9T7p+jcgimyKccP/qBj/oby3E3YQdrL4GtI8YS9CiYZOUAD/SESxXTK2QzK2UzLGwdLHXMnYXpKxEg0zF+MGQIz/AGLcDohxByDGnYAYeW+j1+4So6uzNiXGvTTWemIs0TAZMX78PyrGkrRfpQilCWX4fBPKEcoTKqSLsaREFKUkY6UlY2UkY2UlY+UkY+UlYxWyIMaPATGWbOhoCmynW0p7reOW1l1L+ZbRW/uvGMsCYiwHiLE8IMYKCYlx4/+oGCvSflUiVCZUIVQlVCNUJ9RIF2NFiSgqScYqS8aqSMaqSsaqScaqS8ZqZEGMGwExVgTEWAkQY2VAjFUAMVYFxFgNEGN1QIw1ADH6H/RnGvUqoc/jYw3iyel8IKfHY8qpN5DTEzHldAGQ05Mx5dQHyOmpmHK6EMjp6ZhyugjI6ZmYcroYyGl4TDn1BXJ6NqacLgFyGhFTTpcCOT0XU06XATk9H1NO/YCcXogpp/5ATi/GlNMAIKeRMeU0EMjppZhyuhzI6eWYcroCyOmVmHK6EshpVEw5DQJyGh1TTlcBOb0aU05XAzm9FlNO1wA5vR5TToOBnN6IKadrgZzejCmn64Cc3oopp+uBnMbElNMNQE5jY8rpRiCncTHldBOQ0/iYcroZyOntmHIqBnKaAOaE/jzwQfUcp3Z9/fWTaf3v9fBPLt9Swn4ddcA6/jCo49YY6qgL1vGnQR23xVBHPbCObQZ13B5DHfXBOv4yqOOOGOpoANbxt0Edd8ZQRw5Yxz8GddwVQx25YB3bDeoYEkMdeWAdOwzquDuGOvLBOnYa1HFPDHUIsA6nPl7HvTHUUQDW4RrUcV8MdRSCdexlUMf9MdRRBNZRwqCOB2KooyFYR0mDOobGUMfeYB2lDOp4MIY69gHrKG1Qx7AY6mgE1lHGoI6HYqijMVhHWYM6Ho6hjn3BOsoZ1PFIDHXsB9ZR3qCOR2OoY3+wjgoGdTwWQx0HgHVUNKjj8RjqOBCso5JBHU/EUMdBYB2VDep4MoY6DgbrqGJQx1Mx1HEIWEdVgzqejqGOQ8E6qhnU8UwMdRwG1lHdoI7hMdRxOFhHDYM6no2hjiPAOmoa1DEihjqOBOuoZVDHc2AdYfVExXke+Tqb/HhyegH5OpuYcnoR+TqbmHIaiXydTUw5vYR8nU1MOb2MfJ1NTDm9gnydTUw5jUK+ziamnEYjX2cTU06vIl9nE1NOryFfZxNTTq8jX2cTU05vIF9nE1NObyJfZxNTTm8hX2cTU05jkK+ziSmnscjX2cSU0zjk62xiymk8kNPEmHJ6G8hpUkw5TQBymhxTThOBnKbElNMkIKepMeU0GchpWkw5TQFymh5TTlOBnGbElNM0IKeZMeU0HchpVkw5zQBymh1TTjOBnN6JKadZQE7vxpTTbCCnOTHl9A7i6YriyeldxNPFlNMcxNPFlNN7iKeLKae5iKeLKad5iKeLKaf5iKeLKacFiKeLKaeFiKeLKadFiKeLKafFiKeLKacliKeLKaeliKeLKadliKeLKafliKeLKacViKeLKaeViKeLKadVQE7vxZTTaiCnuTHltAbIaV5MOb0P5DQ/ppw+AHJaEFNOa4GcFsaU0zogp0Ux5bQeyGlxTDl9COS0JKacPgJyWhpTThuAnJbFlNPHQE7LY8ppI5DTiphy+gTIaWVMOW0CcloVU06fAjltjSmnz4Ccfospp8+BnH6PKacvgJz+iCmnL4Gc/owpp6+AnLbFlNNmIKe/YsrpayCnv2PK6Rsgp39iyulbIKftMeX0HZDTjphy+h7IaWdMOf0A5OTE9DOAfwRycmPK6Scgp71iymkLkFOJmHL6GcipZEw5/QLkVCqmnH4FciodU05bgZzKxJTTb0BOZWPK6Xcgp3Ix5fQHkFP5mHL6E8ipQkw5bQNyqhhTTn8BOVWKKae/gZwqx5TTP0BOVWLKaTuQU9WYctoB5FQtppx2AjlVjykn/q0xQjOnbP3+i6g4ooR+/m5J/Zz492r892IqLx7iX5xTilCaUMbZ9XtY+Hev8O8+rUCoSKhEqEyoQqhKqEaoTqhBqEmoRahNqEOoS0j9KCWnASGHkEvII+Sn9qGAUEigv+LwXymcvQn7EBoRGhP2JexH2J9wAOFAwkGEgwmHEA4lHEY4nHAE4UjCUYSjCccQjiUcRziecALhRMJJhJMJpxCaEJoSTiU0I5xGOJ3QnNCC0JLQitCacAahDaEtoR2hPaEDoSPhTMJZhE6EzoQuhLMJ5xC6EroRuhPOJZxH6EHoyVwQzif0JlxA6EO4kHAR4WJCX8IlhEsJlxH6EfoTBhAGEi4nXEG4kjCIcBXhasI1hMGEawnXEa4n3EC4kXAT4WZn1+9mvYVwK+E2wu2EOwh3Eu4iDCHcTbiHcC/hPsL9hAcIQwkPEoYRHiI8THiE8CjhMcLjhCcITxKeIjxNeIYwnPAsYQThOcLzhBcILxJGEvgX3L5MeIUwijCa8CrhNcLrhDcIbxLeIowhjCWMI4wnvE2YQJhImESYTJhCmEqYRphOmEGYSZhFmE14h/AuYQ7hPcJcwjzCfMICwkLCIsJiwhLCUsIywnLCCsJKwioC/xLfNYT3CR8Q1hLWEdYTPiR8RNhA+JiwkfAJYRPhU8JnhM8JXxC+JHxF2Ez4mvAN4VvCd4TvCT8QfiT8ROAe8TPhF8KvhK2E3wi/E/4g/EnYRviL8DfhH8J2wg7CTgKL3yXsRShBKEkoRShNKEMoSyhHKE+oQKhIqESoTKhCqEqoRqhOqEGoSahFqE2oQ6hLqEeoT2hAyCHkEvII+QRBKCAUEooIDQl7E/YhNCI0JuxL2I+wP+EAwoGEgwgHEw4hHEo4jHA44QjCkYSjCEcTjiEcSziOcDzhBMKJhJMIJxNOITQhNCWcSmhGOI1wOqE5oQWhJaEVoTXhDEIbQltCO0J7QgdCR8KZhLMInQidCV0IZxPOIXQldCN0J5xLOI/Qg9CT0ItwPqE34QJCH8KFhIsIFxP6Ei4hXEq4jNCP0J8wgDCQcDnhCsKVhEGEqwhXE64hDCZcS7iOcD3hBsKNhJsINxOKCbcQbiXcRridcAfhTsJdhCGEuwn3EO4l3Ee4n/AAYSjhQcIwwkME/mXTjxAeJTxGeJzwBOFJwlOEpwnPEIYTniWMIDxHeJ7wAuFFwkjCS4SXCa8QRhFGE14lvEZ4nfAG4U3CW4QxhLGEcYTxhLcJEwgTCZMIkwlTCFMJ0wjTCTMIMwmzCLMJ7xDeJcwhvEeYS5hHmE9YQFhIWERYTFhCWEpYRlhOWEFYSVhFWE1YQ3if8AFhLWEdYT3hQ8JHhA2EjwkbCZ8QNhE+JXxG+JzwBeFLwleEzYSvCd8QviV8R/ie8APhR8JPhC2Enwm/EH4lbCX8Rvid8AfhT8I2wl+Evwn/ELYTdhB2Evjidwl7EUoQShJKEUoTyhDKEsoRyhMqECoSKhEqE6oQqhKqEaoTahBqEmoRahPqEOoS6hHqExoQcgi5hDxCPkEQCgiFhCJCQ8LehH0IjQiNCfsS9iPsTziAcCDhIMLBhEMIhxIOIxxOOIJwJOEowtGEYwjHEo4jHE84gXAi4STCyYRTCE0ITQmnEpoRTiOcTmhOaEFoSWhFaE04g9CG0JbQjtCe0IHQkXAm4SxCJ0JnQhfC2YRzCF0J3QjdCecSziP0IPQk9CKcT+hNuIDQh3Ah4SLCxYS+hEsIlxIuI/Qj9CcMIAwkXE64gnAlYRDhKsLVhGsIgwnXEq4jXE+4gXAj4SbCzYRiwi2EWwm3EW4n3EG4k3AXYQjhbsI9hHsJ9xHuJzxAGEp4kDCM8BDhYcIjhEcJjxEeJzxBeJLwFOFpwjOE4YRnCSMIzxGeJ7xAeJEwkvAS4WXCK4RRhNGEVwmvEV4nvEF4k/AWYQxhLGEcYTzhbcIEwkTCJMJkwhTCVMI0wnTCDMJMwizCbMI7hHcJcwjvEeYS5hHmExYQFhIWERYTlhCWEpYRlhNWEFYSVhFWE9YQ3id8QFhLWEdYT/iQ8BFhA+FjwkbCJ4RNhE8JnxE+J3xB+JLwFWEz4WvCN4RvCd8Rvif8QPiR8BNhC+Fnwi+EXwlbCb8Rfif8QfiTsI3wF+Fvwj+E7YQdhJ0ENv0uYS9CCUJJQilCaUIZQllCOUJ5QgVCRUIlQmVCFUJVQjVCdUINQk1CLUJtQh1CXUI9Qn1CA0IOIZeQR8gvsevvNwWEQkIRoSFhb8I+hEaExoR9CfsR9iccQDiQcBDhYMIhhEMJhxEOJxxBOJJwFOFowjGEYwnHEY4nnEA4kXAS4WTCKYQmhKaEUwnNCKcRTic0J7QgtCS0IrQmnEFoQ2hLaEdoT+hA6Eg4k3AWoROhM6EL4WzCOYSuhG6E7oRzCecRehB6+v4e9nzqI//djH/HIP9OP/4devw76/h3xPHvZOPfgca/c4x/xxf/Ti3+HVb8O6P4dzTx70Ti30HEv/OHf8cO/04b/h0y/Dtb+Hek8O8k4d8Bwr9zg3/HBf9OCf4dDvw7E/h3FPDvBOCfwc8/k55/njv/LHT+OeL8M7j551fzz37mn5vMP3OYf14v/6xb/jmx/DNW+eeT8s/25J+LyT9Tkn8eI/8sQ/45gPwz9Pjnz/HPbuOfe8Y/M4x/3hb/rCr+OU/8M5L45wvxz+bhn2vDP3OGf8YL/0wV/hkm/DND+Gd08M/E4J9BwT/zgX/GAv9MA/4ZAvw9+/w98vw96fw94Pw91/w9zvw9xfw9vPw9s/w9qvw9ofw9mPw9j/w9hvw9ffw9dPw9a/w9Yvw9Wfw9UPw9R/w9Pvw9Nfw9LPw9I/w9Gvw9Efw9CPw1//w19vw17fw15Pw12/w10vw1yfw1wPw1t/w1rvw1pfw1nPw1k/w1ivw1gfw1ePw1b/w1Zvw1Xfw1VPw1S/w1Qvw1Ofw1MPw1J/w1Hvw1Ffw1DPw1A/xv9Pxv4vxv0PxvvvxvrPxvmvxviPxvdvxvZPxvUvxvQPxvLvxvHPxvCvw5fP6cOX+Omj8nzJ+D5c958ucY+XN6/Dk0/pwVf46IPyfDnwDgzyPwXes9fB74yS992gcd95/zkeN7mpQKn3PLhM89n/oFr+eVHTGj6aoKb/jnXlTMvaSYe0UxN1ox95pi7g3F3FuKubGKufGKuQmKuUmKuXdTcz+uOHZw6Zk9K/jnlijmPlDMbVLMfaPI5TvF3A+KuZ8Ucz8r5n5VzP2mmPtDMbdXufDaKyrmaivmhGJuf8XckYq5kxVzLRVzt5YLr/0RxdzLirnJirmpirnpirmZirnZirnFitrfV8x9opj7RjGXUz48l4MUc6co5joq5s4tH57LRYq5yxVz1yvm3lbkMk8xt04x961i7nvF3I+KuS2KuV8Uc9sVtZepED5XTTHXQDHXtkJ4Lj0Vc1co5m5XzA1V5PKkYu5FxdwbirmvFLn8qZgrXzF8Lkcxl6eYE4q5QsVcQ8XcwRXDaz9WMXeqYq6NYq5YkctDirmRirmJirl3FLksVsy9r5j7RDFXt1J4Lvsp5k5QzLVVzLVXzHVUzJ2lmOusmOtVKbz2SxVzVynmblbMjVPk8p5i7gPF3NeKuV8VuWxXzJWpHD5XTTHXqnJ4Lt0Vc/0Vc8WKuVsVc7cr5u5UzA1RzD2sqH24Yu4VxdxYxdwXilx+V8yVrRI+V18xt3eV8FwOVswdq5g7VTF3gyKXBxRzzynmxinm3lbMTVTMTVbMTVXMzVXUvlwxt14x97lirnbV8FwaK+aOU8ydoZjrUjU8l16KuUsVc1cp5t5U5DJbMbdKMfeFYu4rxdzXirlvFXPfK+b+UNTuVgufq6CYq6WYa1EtPJeuirnLFHM3KebuVuTysGJuuGLuFcXcJkUuvyjmSlYPn6utmKurmKuvmMtRzOUp5vatHl774Yq5ExVzzRVz1ylyuU8x96xiboxibpoil7mKueWKufWKueo1wnNpqJg7SjHXQjHXSjF3hmKurWKuvWKuW43w2vso5gYo5q5VzL2uyGWmYm6FYu4zxdwPilz+UMy5NcPnKijmmtUMz6WzYu5ixdx1irkbFHM3KeaKFXO3KubuV9T+uGLuecXca4q5jYpctijm9qoVPldTMZdfKzyXfRVzhyvmTlTMXa3IZYhi7inF3OuKuTcVc2MUc+MUc28r5mYpal+omFutmPtYMVe1dnguhYq5IxRzpyvmOtQOz6WbYq6PYm6AYm6UIpepirklirmNirlNirnPFHNfKOa+Usz9rKj9b8VcqTrhc1UUc03rhOdylmLuQsXcYMXcbYpc7lfMPa6Ye14x96Eil+8VczsUc1Xrhs9VV8zVVMzVVszVVcwV1Q2v/UDF3NGKuSaKuUGKXO5UzD2hmHtVMTdBkcssxdxCxdxqxVzFeuG55CnmDlHMNVXMNVPMna6Ya6GYa6WY61QvvPYeirm+irkrFXMvK3KZrJhbpJjboJjbrMjlZ8Xc34o5/r27YXMn1Q/Ppb1i7nzF3CDF3NWKucGKuesUczco5u5S1D5MMfe0Yu4lxdw6RS7fKub+UcxVbhA+V69BeC5FirkDFXNHK+YGKnK5VTH3iGLuZcXcKMXcq4q51xVzbyrmpihqn6OYW6qYW6uYK58TnkuOYu4gxdwpirnWOeG5dFLM9VDM9VXMvaDI5W3F3DzF3DrF3IeKuQ2KuY2KuU2Kue8Utf+mmNupmCuXGz53Qm54Lm0Vcz0Vc1co5m5U5HKXYm6YYu5pxdwaRS5fKeb+VMyVzwufq6iYq6yYq6qYq66Yy80Lr72RYu5Qxdzxirn+ilyKFXMPKeZGKubeUuQyRTE3RzG3VDFXOj88l7qKuf0Ucyco5k5SzJ2imGuqmGummGuXH177OYq53oq5foq55xS5jFPMvaeY+0Ax96kil+8Uc78p5nYq5o4R4bm0Usx1V8z1V8wNVMxdoZgbpJi7WjF3S2pOVvu9irlHFXMjFHOrFLl8oZj7XTFXtiB8rkZBeC65irlGirlDFXOXKHK5QTH3gGLuOcXcC4q5kYq5lxVzoxRz4xW1z1DMzVfMrVTMlSwMz6W2Yq6xYu44xdxpheG5tFPMnaOY662Ye0aRy5uKudmKuVWKuTWKuQ8Uc+sUcx8q5r5U1P6TYm6bYq5EUfjcUUXhubRQzHVVzF2mmLtGkcstirl7FXOPKuaWKXLZpJj7RTHHP98tbK60Yq6sYq68Yq6iYq5Ow/DaCxRz+yvmjlTMXazI5TrF3H2KuWcVc6MVuYxXzM1QzM1XzJXbe9dH2fd6jd4nPM/XFHNvKObeUsxN3Sc8z/cUc8sUc+sUc3/tE1771Mbhc9ftFz5X/4Dw+nIUc3mKOaGYK1TMNVTM7aOYa6yY208xd4Bi7iDF3CGKueNTczL+TlPMtVPMnaOY65aa2/DthpNX9JnewD93Y2pOxvuJB4XPbT84fG74oeG1j1DMPa+Ye1Ex95Ji7hXF3GjF3GuKuTcUc28p5sYq5sYr5mam5mTcLlDMrVLMbVDMbVTkskkx95li7gvF3FeKua8Vc98q5r5XzP2hqN09LHyugmKuVshc6tuVndQ/XTgX9L2iT+9Bfa/u06Nv/0F9LupzRY/LrxowqG+f/oNS3wDqeB/Lexml/hThaD17ee9XMHv/35+2lv6U9/13hfSAqY8lJe+5If9/r7SPqrXp4/6xipI5789MfcFjIN/yaXO72Rg0oMcVvS7oOzj15bH/sVDKFxHZRe/90mbvu977ZczeLyFjsYzvv726Svj+fCftv72YXi7lzHIp70ril0j7M9Nz8K+Rnay90v5/ybTxEhprZSfLm6siyS/9vXKSXP1jHgeyU5q+7/7zJvuzyqTlkH4+MuWouiSml1vqy/MDvevqPlcMKpcWu5ZZ7P/Oek2z96Udq5bvv70/14vjPw/CwR6Pm1KSufROWCItrvfRxeO7YXnIzrDHZU3fmLcf/weZfIpqWX0dAA==",
146
+ "debug_symbols": "tf3Rji09cp2Lvktf62KSwYgg/SoHG4Isy0YDDcmQ5Q0cGHr3s2ZEZnzhA6yaiarVVzX670WOJDk5Zn7JqKz/85f/9i//9X//j3/867/+93/7X3/5L/+f//OX//rvf/3b3/76P/7xb//2z//0H3/9t3/99V//z3/+w1/u//mP//Hv//Ivv/7TX9r//6vV//ynf/+Xf/2Pv/yXf/3ff/vbP/zl//2nv/3v+Ef/63/+07/Gz//4p3//9f++/uEv//Kv/+3Xz18d/ve//u1f3uo//4HWr983na+1rtbzZac60PG4hyFy9zBUvtXDMHpYv+tBft/Dvmfg/NZ//b61zmqv81j1MPb/1YP+vgfzOa8ezNf+XQ9fXYNNv6/BRH/aw5Jv9eC7ejjf6kH9/jT9kt8axX5VD/v127X48tNk9Yke5/W7z8OYP/o4Dfnx52msH3+gvryKZ5+ox138/iP1dRePPlNfdvHsQ/VlFz//VM3XvaZzym8/VXP86FM1548/VVN+/Kn68iqefaoed/H7T9XXXTz6VH3ZxbNP1Zdd/PxT9TqHT5X99pvviy7GS+81Ha82jv//Lr74YI5JFzIHXej/3cUXU/FrHe81tWXzt118dRW27jUdtl/f6sLnvSDD7ZtdjEMX43tdvH7cBZ+ssdc3B1IfrV9dfHMg+8dd7F0DOfN7A9l+6OKbV2E/7uJwV/F6fW8gRw9dfPMq1k+7+L9u+L+3zeZLuIr9zauYP+5iTO7zvrfZf4HHoYtvXsXrx13M2uxzrm8OpH2PrG8OZP+4i6mjunD/XRdqX3yl+s2SNl6/+0L98hpk1GTK9O8MQ8a5L0J+fU6/1cWvL/PqohPt8y6Wvu6vw6XDftzF1O91oau68N9+Nu2Lm07ZtUNkz9/eaNlXNDQrfG2eb30ulp777nnZ9/J72ajptLm/18Wy6kK/t6hW963L9vc+Wv667/eWj/m9LqSm07+XWcu1ptPte9Ppu6bTz/emc1derD3nj7uQ8b0urKZz+28H4vbjbeb+991mpzB5nfG9z8Wp7FxnfW9Rj9cH/OxvLaq+Kjv1Nfb3uqg7LX1970vgV4AX87/Ot6ZTebiqY9r3uig+/PVN9L3pHAzkFxP8uIvzrW92nbPmYq7fDuR9I/TDbXZef9dtptMYiH9vUaW+BFS+9yWgIrVHZH1vUYWnMPK9bzNdoz4X63uIqau+lnV972tZf317VBfne9OpdX+h+r37i193azUQ/Wbk9C5MvtfFqbmw128HMl7zx/tsvOTvu9FMGMr63rKa8azSv7eszoNGH99b1l93adWFfm+XuNcn49eN17e62KOm85t3W7rrMaFu/d508lBK9/ntdH55GmACZf72ue346kxirArgsYb+vI/5+mYfU6uPJd+9jkEf63t9aOX4L+nfvI7j9LF/38cX3/CnhnLG70cyv/p01IafPr93DbPOir5Yka/OJh4+Tf+6j2eP0z/08eh5+oc+Xj/v49kT9Q/X8eiR+oc+9s/7ePZQ/UMfj56qf+jDft7Hs+fqH/p49GD9Qx/rx308fLT+oY9Hz9Y/9DF/3sezp+sf+nj0eP1DH6+f9/HsAfuH63j0hP1DH/vnfTx7xj6W/vAh+9dX8ewp+5d9PHzM/nUfz56zf9nHwwftz/v4/ZP2D308etQez2J+Sk36c2r6MJZHT9u/7uPZ4/YPfTx63v6hj0cP3L/u49kT9w99PHrk/qGPR8/cP/Tx6KH71308e+r+vA8Z3+zj0XP3YfrzPWf2d95zzx69f+jj0bP3D308evj+ZR8Pn75/6OPR4/cPfTx6/v51H88ewH/o49ET+A99PHoE/7yP873v/YcP4ce7wu+ne87P33fPPXwO/3Ufzx7Ef+jj0ZP4D308ehT/dR/PnsV/6OPRw/gPfTx6Gv91H88ex3/o49Hz+Od9/P6B/Ic+nj2RP+Pne+7Mv/Oee/ZI/kMfj57Jf93Hs4fyH/p49FT+Qx+PHst/3cez5/If+nj0YP5DH4+ezH94jqz1PFv9t8/m51enT4+ev86vzp4e0u3XfTyj2y/7eEi3z/v4Pd1+6OMR3c7Xz7/15+vn3/ofxvKIbr/u4xndfujjEd1+6OMR3X7dxzO6/dDHI7r90Mcjuv3QxyO6/bqPZ3T7vI/f0+2HPh7R7Zw//9afc/6d99wzuv3QxyO6/dDHI7r9so+HdPuhj0d0+6GPR3T7dR/P6PZDH4/o9kMfj+j2eR+/p9uv+3hGt1PWz/ec6N93zz2k26/7eEa3H/p4RLcf+nhEt1/38YxuP/TxiG4/9PGIbr/u4xndfujjEd0+7+P3dPuhj0d0O5f/fM+t/Xfec8/o9kMfj+j26z6e0e2HPh7R7Yc+HtHt1308o9sPfTyi2w99PKLbL/t4WNfzdR/P6no+9PGorudDH6+f9/GsrufDdTyq6/nQx/55H8/qej708aiu50Mf9vM+ntX1fOjjUV3Phz7Wj/t4WNfzoY9HdT0f+pg/7+NZXc+HPh7V9Xzo4/XzPp7V9Xy4jkd1PR/62D/v41ldT7wD5PfflQ/qer6+imd1PV/Vvop69XDGb5+d7p+9zWnun7/Pae6fv9Hp6+t4+K6Ux3188bKU/fP3On3dx8PXpey/77udhDRfr9++rWyeHz/bP199pzx7X8o8X/1K87MXpnx9HQ/vBc8fuBc8f+Be8PyBe8HzB+4Fzx+4Fzx/4F7w/IF7wfMH7gXPH7gXPH/gXvD8gXvB8wfuBc8fuBc8f+Be8PyBe8HzB+4Fzx+4Fzx/4F7w/IF7wfMH7gXPH7gXPD+/F5Sxf3oveH5+L/hlH09Pwc8fOAU/f+AU/HEfX5yCn5+fgsv8eb2pzJ/Xm34Yy7NT8PMHTsHPHzgFP3/gFPz8gVPw8wdOwc8fOAU/f+AU/PyBU/DHfcj4Zh+PTsHjjOmne07O33nPPTwFP3/gFPz8gVPw8wdOwc8fOAU/f+AU/PyBU/DzB07Bzx84BX/cx/ne9/7DU3DRn1eeiM6/7557egp+/sAp+PkDp+DnD5yCnz9wCn7+wCn4+QOn4OcPnIKfP3AK/riPL07Bz89PwcV+Xnkipn/nPffwFPz8gVPw8wdOwc8fOAU/f+AU/PyBU/DzB07Bzx84Bf+6D6OP3z/9+OpJ8qoZnev89u0rX/bAE6l1fv/u7q/euPfgpEO++j2ohycd8uXvQT076fj6Op6ddDzv4/cnHR/6eHTS8XUfz046vu7j5ycd+qrPp37xZvhtP/t0bf/5p2vvn3+6vryOh5+ux3188en6uo9nn64v+3j46fqyjz/w6Vp8uvZv3xslR3/26Tr280/X8Z9/ur68joefrsd9fPHp+rqPZ5+uL/t4+On6so+ff7rWmny6fptd6/XFnejDP2uxXvrjc9r1sh+f0359Hc/Oab/u49k57Yc+Hp3Tfujj9fM+np3TfriOR+e0H/rYP+/j2Tnthz4endN+6MN+3sezc9oPfTw6p/3Qx/pxHw/PaT/08eic9kMf8+d9PDun/dDHo3PaD328ft7Hs3PaD9fx6Jz2Qx/75308O6dd8tOava+v4tk57Zd9PDyn/bqPZ+e0X/bx8Jz2eR+/P6f90Mejc9q4N/jhs7QlP/+Nkg9jeXRO+3Ufz85pP/Tx6Jz2Qx+Pzmm/7uPZOe2HPh6d037o49E57Yc+Hp3Tft3Hs3Pa533I+GYfj85pf23vn++5r86d/siee3ZO+6GPR+e0H/p4dE77ZR8Pz2k/9PHonPZDH4/Oab/u49k57Yc+Hp3Tfujj0Tnt8z7O9773H57Trj/w953WH/gDTx/G8uic9us+np3Tfujj0Tnthz4endN+3cezc9oPfTw6p/3Qx6Nz2q/7eHZO+6GPR+e0z/v4/Tnthz4endOuP/DHntYf+GtPX4/l2Tnthz4endN+3cezc9oPfTw6p/3Qx6Nz2q/7eHZO+6GPR+e0H/p4dE77oY8fn9PauMl0mvh3zmm9/qDD9Cnf6cFqJn718Nu/CbG++qNPD05L1hk/Pi1ZX75979lpydfX8ey05Hkfvz8t+dDHo9OSr/t4dlrydR8/Py1x4dNl8/efjvOjT5e+Xj/+dOlr/PjT9fV1PPt0Pe/j95+uD308+nR93cezT9fXffyBT1cR4K81Xr//dOwffrrOzz9d4/UHPl3nD3y6zh/4dJ0/8Ok6f+DTdf6uny6z+m3vPX5bR6DDf3zSq1/9ttPDk1796m8uPTzp/fo6np30ft3Hs5PeD308Oun90Mfr5308O+n9cB2PTno/9LF/3sezk94PfTw66f3Qh/28j2cnvR/6eHTS+6GP9eM+Hp70fujj0Unvhz7mz/t4dtL7oY9HJ70f+nj9vI9nJ70fruPRSe+HPvbP+3h20qtLfnjS+/VVPDvp/bKPhye9X/fx7KT3yz4envQ+7+P3J70f+nh00qt/4NRJ/8Cp04exPDrp/bqPZye9H/p4dNL7oY9HJ71f9/HspPdDH49Oej/08eik90Mfj056v+7j2Unv8z5kfLOPRye9+gdOnfQPnDp9PZZnJ70f+nh00vuhj0cnvV/28fCk90Mfj056P/Tx6KT36z6enfR+6OPRSe+HPh6d9D7v43zve//hSa/+gVMn/QOnTh/G8uik9+s+np30fujj0Unvhz4enfR+3cezk94PfTw66f3Qx6OT3q/7eHbS+6GPRye9z/v4/Unvhz4enfTqPj/fc1+dPf2RPffspPdDH49Oer/u49lJ74c+Hp30fujj0Unv1308O+n90Mejk94PfTw66f3Qx09PeoXnFjL0t781ZF+dQT04qbDX/PHT/a9G8arceKP276/iq999Gl5/wWqc9fs+vjh593qY7Wt8q4f9uh8U7Jd/bxyz7o3HnF+M4+dP9u318yf7X1/Hsyf7X/fx7Mn+hz4ePdn/0Mfr5308e7L/4ToePdn/0Mf+eR/Pnux/6OPRk/0PfdjP+3j2ZP9DH4+e7H/oY/24j4dP9j/08ejJ/oc+5s/7ePZk/0Mfj57sf+jj9fM+nj3Z/3Adj57sf+hj/7yPZ0/2TX76ZP/rq3j2ZP/LPh4+2f+6j2dP9r/s4+GT/ed9/P7J/oc+Hj3Zt/XzJ/u2fv5k/8NYHj3Z/7qPZ0/2P/Tx6Mn+hz4ePdn/uo9nT/Y/9PHoyf6HPh492f/Qx6Mn+1/38ezJ/vM+ZHyzj0dP9k1//mTfdP2d99yzJ/sf+nj0ZP9DH4+e7H/Zx8Mn+x/6ePRk/0Mfj57sf93Hsyf7H/p49GT/Qx+Pnuw/7+N873v/4ZN9s58/2Y9qv7/nnnv4ZP/rPp492f/Qx6Mn+x/6ePRk/+s+nj3Z/9DHoyf7H/p49GT/6z6ePdn/0MejJ/vP+/j9k/0PfTx6sm/+8yf7tl9/5z337Mn+hz4ePdn/uo9nT/Y/9PHoyf6HPh492f+6j2dP9j/08ejJ/oc+Hj3Z/9DH75/s/z+//tc//fNf//0f//Zv//xP//HXf/vX//Vu+Otqf30E/+HXz5M/7XX9HNfPef2U6+f6dQ3vn3r9tOunXz/39fPkT39dP8f1c14/5fp59edXf37151d/fvXnV3/76m9f/e2rv331t6/+9tXfvvrbV3/76m9f/Z2rv3P1d67+ztXfufo7V3/n6u9c/Z1f/e33zxM/f92IXj9/9XfeP+f1U66f6/qp10+7/r1fP/f18+T/P17Xz6u/cfU3rv7G1d+4+htXf+Pqb1z9jev65nV98+pvXv3Nq7959Tev/qZdP/36ua+f1/XJ1Z+M6+e8fsr1c10/r/7k6k+u/uTqT67+1jXedV3fuq5vXde3rv6WXj+v8a5rvOsa77r606s/vfrTqz+9+tNrvHpdn17Xp9f16dWfXvNn13jtGq9d47WrP7v6s6s/u/qzqz+7xmvX9fl1fX5dn1/9+TV/fo3Xr/H6NV6/+vOrP7/621d/++pvX+Pd1/Xt6/r2dX376m9f87ev8e5rvOca77n6O1d/5+rvXP2dq79zjfdc13eu6zt5feN1bZBfYtxi3kJusW6hdyu7hd9i3+Lu+doqv8S4xbyF3OLueegt7BZ+i32Lu+d59zzvnufd87x7vjbOL3Ff87yved7XPO+e57mE3LMh92zIPRty9yx3z3L3LHfPcvcs92zIfc3rvuZ1X/O6e173PK97NtY9G+uejXX3vO6e192z3j3r3bPes6H3Net9zXpfs9496z3Pes+G3rNh92zY3bPdPdvds909292z3bNh9zXbfc12X7PfPfs9z37Pht+z4fds+N2z3z373bPfPfvd875nY9/XvO9r3vc177vnfc/zvmdj37Ox79nYd8/n7vncPZ+753P3fO7ZOPc1n/uaz33N5+75+o4a496D496D496D4/qe+iXWLfQWdgu/xb7Fdc3j3oPj3oNj3D0PucW6hd7CbnH3PO6e7z047j047j047j047j047j047j045t3z9FvsW9yzce/BIXfPcvd878Fx78Fx78Fx78Fx78Fx78Fx78Gx7p7XPc/3Hhz3Hhz3Hhzr7nndPd97cNx7cNx7cNx7cNx7cNx7cNx7cOjds97zfO/Bce/Bce/BoXfPdvd878Fx78Fx78Fx78Fx78Fx78Fx78Fhd892z/O9B8e9B8e9B4ffPfvd870Hx70Hx70Hx70Hx70Hx70Hx70Hx7573vc833tw3Htw3Htw7Lvnffd878Fx78Fx78Fx78Fx78Fx78Fx78Fx7p7PPc/3Hhz3Hpz3HpzXneIvMW8ht1i30FvYLfwW+xbXNc9x9zzGLeYt5BbrFnfP4+753oPz3oPz3oPz3oPz3oPz3oPz3oNz3j1PvYXdwm+xb3H3LHfP9x6c9x6c9x6c9x6c9x6c9x6c9x6ccvcs9zzfe3Dee3Dee3Cuu+d193zvwXnvwXnvwXnvwXnvwXnvwXnvwal3z3rP870H570H570Hp949693zvQfnvQfnvQfnvQfnvQfnvQfnvQen3T3bPc/3Hpz3Hpz3Hpx+9+x3z/cenPcenPcenPcenPcenPcenPcenPvued/zfO/Bee/Bee/Bue+e993zvQfnvQfnvQfnvQfnvQfnvQfnvQfnuXs+9zzfe3Dee3Dee3De96Jy70G5vwfl/h6Uew/KfS8qL72F3cLvf7Nvcfd8fw/Kew+OEepN0hpKSq1SWspKeald6tzqvRkvNUqVxyyPWR6zPGZ5zPKY5THLQ8pDykPKQ8pDykPKQ8pDykPKQ8pjlccqj1UeqzxWeazyeG/T9y+s/1Jeapd6e8RKvbfqpUapWUpKrbvte79eqjzeO/b6d7tUeVh5WHlYeVh5WHlYeVh5WI3DahxWHl4eXh5eHl4e7y18KS1lpWocXh7vfZzqvZEvNUrNUuWxy2OXxy6PXR675mrXOE6N49Q4Tnm8d/Wlaq5OzdWpuTrlccrj3B7r9So1Ss1SUmqV0lK3x3p5qV3qnqs1XqXKY5THKI9RHqM8hpXyUrtUjWOWxxylZikptUqVxyyPWR6zPGZ5SM2V1DikxiE1DikP0VI1V1JzJTVXUh6rPFZ5rPJY5bFqrlaNY9U4Vo2j9vlatR5ac6U1V1pzVft8aXloeWh51D5ftc9X7fNV+3zVPl9WHlbrUft81T5ftc+XlYeVR+3zVft81T5ftc9X7fNV+3zVPl9eHl7rUft81T5ftc/XLo9dHrXPV+3zVft81T5ftc9X7fNV+3yd8ji1HrXPV+3zVft8nfI45VH7fNU+X7XPtfa51j7X2uda+1xft4e+tJSV8lK7VHmM8qh9rrXPtfa51j7X2uda+1xrn+soj3Gvh9Y+19rnWvtcZ3nM8qh9rrXPtfa51j7X2uda+1xrn6uUh0ipmqva51r7XKU8pDxqn2vtc619rrXPtfa51j7X2uda3+da3+da+1xrn2vtc63vc63vc619rrXPtfa51j7X2uda+1xrn6uVh9V61D7X2uda+1ytPKw8ap9r7XOtfa61z7X2udY+19rn6uXhtR61z7X2udY+Vy+PXR61z7X2udY+19rnWvtca59r7XPd5bFrPWqfa+1zrX2upzxOedQ+19rnWvtca59r7XOrfW61z+11e9hLSq1SWspKebXdpcqj9rnVPrfa51b73GqfW+1zG+UxvNQudc+V1T63WR6zPGqfW+1zq31utc+t9rnVPrfa5yblIaNUzVXtc6t9blIeUh61z632udU+t9rnVvvcap9b7XNb5bFqPWqfW+1zq31udd9udd9utc+t9rnVPrfa51b73GqfW+1z0/LQWo/a51b73GqfW923m5VH7XOrfW61z632udU+t9rnVvvcvDy81qP2udU+t9rnVvft5uVR+9xqn1vtc6t9brXPrfa51T63XR671qP2udU+t9rnVvftdsqj9rnVPrfa51b73GqfW+1zq33ur9vDX6PULCWlVimttlbKS+1S5VH73Gufe+1zr33uozyGlrJSXmqXKo9ZHrXPvfa51z732ude+9xrn3vtc5/lMe/18NrnXvvca5973be7lEftc6997rXPvfa51z732ude+9xXeaxaj9rnXvvca5973bd77XOv73Ov73Ovfe513+5aHsXnXvvca5977XOv73N/7/P5eqv3Pn//Ysf796hKzVJSapXSUlbKS+1S51ZeHl4eXh5eHl4eXh5eHl4eXh5eHrs8dnns8tjlsctjl8cuj10euzx2eZzyOOVxyuOUx3ufv0safyktZaXeHrFa731+qXOp/d7nlxql5tV2v/f5pVYprX9npbzULlUeozxGeYzyGOUxymNoKStVHqM8RnnM8pjl8d7nl5JSq1SNY5bHe59fapc6t3rv80uVh5SHlIeUh5SH1FxJjUNqHFLjWOXx3ueXqrlaNVer5mqVxyqPVR6rPFZ5aM2V1ji0xqE1Di0PrfXQmiutudKaKy0PKw8rDysPKw+rubIah9U4rMZh5WG1Hl5z5TVXXnPl5eHl4eXh5eHl4TVXXuPYNY5d49jlsWs9ds3VrrnaNVe7PHZ57PI45XHK49RcnRrHqXGcGkft86iFulTN1bnnKiqiLnV7RFXUpaTUKqWlrJSX2qXucUSVVHqMUWqWklKrVHmM8qh9fmqfn9rnp/b5qX1+ap+f2udRQZUeU0tZKS+1S5WHlEft81P7/NQ+P7XPT+3zU/v81D6P6qr0kFqP2uen9vmpfR51Vtl2lUft81P7/NQ+P7XPT+3zU/v81D6Pyqv00FqP2uen9vmpfR41WFfb8qh9fmqfn9rnp/b5qX1+ap+f2udRlZUeVutR+/zUPj+1z6M+K9t6edQ+P7XPT+3zU/v81D4/tc9P7fOo2EqPXetR+/zUPj+1z6N262pbHrXPT+3zU/v81D4/tc9P7fNT+/zU9/mp7/NT+/zUPj+1z8/9fT5f9/f5fN37fL7ufT5f9z6fr3ufz9e9z+fr3ufzde/zGQVeb48ZFV6p7n0+X/c+n697n8+o8sq2ozxGeYzyGOVx7/P5GjWOWeOYNY5ZHlNKrVJaykqVxyyPWR5SHlIeUnMlNQ6pcUiNQ8pDvFTNldRcrZqrVR6rPFZ5rPJY5bFqrlaNY9U4Vo1Dy0NrPbTmSmuutOZKy0PLQ8tDy0PLw2qurMZhNQ6rcVh5WK2H1VxZzZXVXFl5eHl4eXh5eHl4zZXXOLzG4TUOLw+v9dg1V7vmatdc7fLY5bHLY5fHLo9dc7VrHKfGcWocpzxOrcepuTo1V6fm6pTHKY/a56P2+ah9Pmqfj9rno/b5qH0eJWThETVkl9ql7rkatc/HKI9RHrXPR+3zUft81D4ftc9H7fNR+zwKytJjjlKzlJRapcpjlkft81H7fNQ+H7XPR+3zUft81D6P8rL0EC1Vc1X7fNQ+H1Ieqzxqn4/a56P2+ah9Pmqfj9rno/Z5FJulx6r1qH0+ap+P2udDy0PLo/b5qH0+ap+P2uej9vmofT5qn0fpWXpYrUft81H7fNQ+H1YeVh61z0ft81H7fNQ+H7XPR+3zUfs8CtHSw2s9ap+P2uej9vnY5bHLo/b5qH0+ap+P2uej9vmofT5qn0dZWnqcWo/a56P2+ah9Pk551D4fp8Zxahy1z+d93z6jQu1Ss5TUv1ultJSVenucUPv9Wzqhzq3e+/xSo9QsJaVWKS1lpbxUeYzymOUxy2OWxyyPWR6zPGZ5zPKY5THLQ8pDyuO9z9+/Yj2jgs001CqlpayUl9qlzq3e+/xSo9Qs9cvj/acqZhSzXUpLWSkvtUudW733+aVGqVnqXRM1Qq1SWspKeald6twqittSjVKz1PtZ3/u3y2ZUuN1SkYZ05EaekvHY/ZIDOZFvtxETGI/eL6nIt9uIT3w8fb/kRr7dRix4PIBf8V/jCfwlJ1KQC6lIQzpyI0/Jg9vB7eB2cDu4HdzigfyKvRlP5DWmJB7JX/LcMirlbjmQEynIhVSkId9u799PnlE5d8tTMh7PX3IgJ1KQC6lIQ8ZT4VfIjTwl80F9yoGcSEEupCIN+XZ7v91lZkHdJU/JeGR/yYGcSEEupCIN+U7X95vhZpTWzRHXEPcGKePm4JIDOZGCXEhFGtKRb7cZ1xB3CSnjNuGSAzmRglxIRRrSkW+39+sZZtTbXTJuGC45kBMpyIVUpCEdGQ/ET8hTMh/tpxzIiRTkQirSkI6MdRshY93mW8ZNxIjBx13EiI0TtxERTFGHNyOCohBvRgRFJd58H3zMKMWbM5vFTGazWLdsFusWzeJ2YkazuJ+IL+woyJsSyx13FBIXGbcUks1iJrNZzGQ2i7Fls5jJbBYz+R5bFObN959fmFGZN9/vqphRmjffr+6fUZsX73qaUZwXrxWcUZ03NZu93TSbvd1UQ77d1EK+3eJrOEv0Ys6yRu+SEyl3mGeZ3iUVaXfEZ6Xeyv+6kZXKWax3yYGcSEEupCINidvEbeImuAlugpvgJrgJboKb4Ca4CW4Lt4Xbwm3htnBbuC3cFm4Lt4Wb4qa4KW6Km+KmuCluipviprgZboab4Wa4GW6Gm+FmuBluhpvj5rg5bo6b4+a4OW6Om+PmuHFfsrgvWdyXLO5LFvcli/uSxX3J4r5kcV+yuC9Z3Jcs7ksW9yWL+5LFfcniviQL/y7p9y3K4r5kcV+i3Jco9yXKfYlyX6Lclyj3Jcp9SdYAXrLuS5T7EuW+RLkvUe5LlPsS5b5EuS9R7kuyGvCSdV+i3Jco9yXKfYlyX6Lclyj3Jcp9iXJfctUFpqz7EuW+RLkvUe5LlPsS5b5EuS9R7kuU+5KsELxkrJuGPCWz6N9CxrrFPGTZ/w4Z63ZCxkzGpUeW2AgZMzlDxkxms1i3bBbVBdEsywuiWdYFR7MsMIiLzAqDWPksMYiLzBqDbBYzmc1iJrNZrFs2i3WLZlkgHGPLCuEYW/4qQFxkZMmJZpElJ5vFTGazmMlsFjOZzWLdYmxxX/KKscV9ySsuMu5L8nrjvuSSglxIRRrSkRt5SsZ9ySVx27ht3DZuG7eN28Zt47ZxO7gd3A5uB7eD28Ht4HZwO7idcosCw1sO5EQKciEVaUhHbiRuA7eB28Bt4DZwG7gN3AZuA7eB28Rt4jZxm7hN3CZuE7eJ28Rt4ia4CW6Cm+AmuAlugpvgJrgJbgu3hdvCLRgnKMlgHINxDMYxGCcKEm9ZRBUlibccyIkUZDGOwTgG4xiME6WJtyyiiuLEWw7kRAqyGMdgHINxDMaJIsVbFlFFmeItB3IiBVmMYzCOwTgG45hvZBGV7RdyICdSkLFusZrJODNkrFsMPrIkKCkKF5OSonIxKSlKF5OSonYxKSmKF5OSonoxKSnKF5OSon4xKSkKGJOSooIxKSlKGJOSooYxKSmKGJOSoooxKSnKGJOSoo4xKSkKGZOSopIxKSlKGZOSopYxKcmTcbJZME40iywJSop6xqSkKGhMSoqKxqSkKGlMSoqaxqSkLGoc+Q8cuZHxnCuaxX3JJQcyiCo6g3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxvGD28HtlFsUSt5yICcy3E7IYpwN42wYZ8M4UTB5yyKqKJm85UBOpCCLcTaMs2GcDeNE6eQti6iiePKWAzmRgizG2TDOhnE2jLPnRhZRbXkhB3IiBVmMs2GcDeNsGCfKKW9ZRBUFlbccyIkUZKybhlRkrFuscWRJZHUUViYlRWVlUlKUViYlRW1lUlIUVyYlRXVlUlKUVyYl7fw952wWxdrZLCrbs1mUa8dF5u9MxMrnL03ERSbjRLNknGiWvzcRzfIXJ7JZrFs2i3WLseXvTsTY8pcn4iIjS4KSotwyKSnqLZOSouAyKSkqLpOSouQyKSlrLoOSsugyKGnDOBvG2TDOhnE2jLNhnA3jbBhnwzgbxtkwzoZxNoyzYZwN42wYZ8M4G8bZMM6GcTaMs2GcDeMcGOfAOAfGOTDOgXEOjHNgnAPjHBjnwDgHxjkwzoFxDoxzYJwD4xwY58A4B8Y5MM6BcQ6Mc2CcA+McGOfAOAfGOTDOgXEOjHNgnAPjHBjnwDgHxjkwzoFxDoxzYJwD4xwY58A4B8bJus1L4rZwW7gt3BZuwThBSQfGOTDOgXEOjJMlnJdUpCEduZFFVAfGOTDOgXEOjJPFnJdUpCEduZFFVAfGOTDOgXEOjJNlnZdUpCEduZFFVAfGOTDOgXEOjJMFnpdUpCEduZFFVFnmGZSUdZ5BSVnoGZSUlZ5BSVnqGff2WesZd/FZ7Bl38VntGZSU5Z4zm8VM/momWfD5piTJis83JUmWfL4pSbLm801JkkWfb0qSrPp8U5Jk2adks5jJbBYzmc1ibNEssmRFs8iSNyVJFn++KUmy+vNNSZLln5rNgnGyWZwaZbM4NcpmQVTZLIgqxhZZojG2yBKNi5z3qZFEHegtF/I+NZIoBb2lI4OosrP7Dk9exTjyKsaRVzGOvIpx5FWMI69iHHkV48irGEdexTjyEtwWbgu3hdvCbeG2cFu4LdwWbgs3xU1xU9wUN8VNcVPcFDfFTXEz3Aw3w81wM9wMN8PNcDPcDDfHzXFz3Bw3x81xc9wcN8fNcdu4bdw2bhu3jdvGbeO2cdu4bdwObge3g9vB7eB2cDu4HdwObsU4MopxZBTjyCjGkfES5EIq0pCO3Mhwe8fKKMaRUYwjoxhHRjGOjLGQijSkIzfylCzGkVGMI6MYR0YxjkSx6S0VaUhHbuQpWYwjoxhHRjGOjGIcGbKQijSkIzfylCzGkVGMI6MYR0YxjkQB6i0VaUhHbuQpGVkSAR11qLeMdYs1jiyJrI5S1KAkiVrUoCSJYtSgJIlq1KAkiXLUoCSJetSgJImC1KAkGfmb4dEsfzU8muU7IKJZvgQiLjLf9hIrn697iYtMxslmMZPZLGYymuWviEez/B3xaJYvg4ix5dsgYmz52pe4yMiSk81iJrNZzGQ2i5nMZjGT0Syy5MTY4r7kFWOL+5JXXGQxjoxiHBnFODKKcWQU48goxpFRjCOjGEdGMY6MYhwZB7eD28Ht4HZwO7gV48gsxpFZjCOzGEdmMY7MYhyZxTgyi3FkFuPILMaR+cJt4DZwG7gN3AZuA7eB28Bt4DZwm7hN3CZuE7eJ28Rt4jZxm7hN3AQ3wU1wE9wEN8FNcBPcBDfBbeG2cFu4LdwWbgu3hdvCbeG2cFPcFDfFTXFT3IJx3pQksxhHZjGOzGIcmcU4EkWvtxzIiRTkQiryZhyZxTgyi3FkFuNI1L3eciAnUpALqcibcWQW48gsxpFZjCNR93rLgZxIQS6kIm/GkVmMI7MYR2YxjszzQg7kRApyIRUZ6xarmYwzQ8a6xeAjS96UJFH3GpQkUfcalCRR9xqUJFH3GpQkUfcalCRR95qUFHWvSUlR95qUFHWvSUlR95qUFHWvSUlR95qUFHWvSUlR95qUFHWvSUlR95qUFHWvSUlR95qUFHWvSUlR95qUJMk40SwZJ5pFlgQlRd1rUlLUvSYlRd1rUlLUvSYlRd1rUlLWveacxX1JSnkh71MjybrXSwoyiCo6g3EExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEWjLNgnAXjLBhnwTgLxlkwzoJxFoyTb6ZMOXAbuA3cBm4Dt2CcyMkF4ywYZ8E4C8bJutdLDuRECnIhFVmMs2CcBeMsGCfrXi85kBMpyIVUZDHOgnEWjLNgnOvFlSkHciIFuZCKLMZZMM6CcRaMk3WvlxzIiRTkQioy1k1DOjLWLdY4siSyOuteg5Ky7jUoKeteg5Ky7jUoKeteg5Ky7tWyWaxbNotTo2wWp0bZLE6NollkSVBS1r0GJWXda1DS9WbLaJaMk81iJrNZrFs2i3XLZrFuMbZ8H1aMLV+IFRcZWRKUlHWvQUlZ9xqUlHWvJ5vFTGazWLcYW9yXBCVF3WtS0oJxFoyzYJwF4ywYZ8E4C8ZZMM6CcRaMs2AchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYJ+peb4mb4qa4KW6GWzBOUJLCOArjKIyjME7Uvd7SkRtZRJV1r5ccyGIchXEUxlEYJ+teL+nIjSyiyrrXSw5kMY7COArjKIyTda+XdORGFlFl3eslB7IYR2EchXEUxsm610s6ciOLqLLu9ZIDGes2Qsa6zZCxbhIy1m2FjHXTkLFuFjLWzUPGur0zNeteg5Ky7jUoKeteg5Ky7jUoKeteZzaLdYsriywJSsq616CkrHuVbBYzGc0iS4KSsu41KCnrXoOSsu41KCnrXoOSsu41KCnrXjWbBeNkszg1ymZxahTNIkvidibrXuObN+te45s3617jmzdfvZlzFvcllzRknRrl6zcveUrGfUnOL4xjMI7BOAbjGIxjMI7BOAbjGIxjMI7BOAbjGIxjMI7BOAbjGIxjMI7BOAbjGIxjMI7BOAbjGIxjMI7BOAbjGIxjMI7BOAbjGIxjMI7BOAbjGIxjMI7BOAbjGIxjMI7BOAbjGIxjMI7BOAbjGIxjMI7BOAbjGIxjMI7BOAbjGIxjMI7BOA7jOIzjMI7DOA7jOIzjMI7DOA7jOIzjMI7DOA7jOIzjME6+y/OSuA3cBm4Dt4lb/m7fCVmM4zCOwzgO42Td6yUduZFFVFn3esmBLMZxGMdhHIdxsu71ko7cyCKqrHu95EAW4ziM4zCOwzhZ93pJR25kEVXWvV5yIItxHMZxGMdhnKx7vaQjN7KIKuteLzmQsW4aUpCxbrHGkSWR1Vn3GpSUda9BSVn3GpSUda9BSVn3GpSUda9BSVn3GpSUda9BSVn36tksTo2yWZwaxUXmm71j5fPV3nGRyTjRLBknmuVbf6NZvvY3muV7f6NZvvg3xpZv/o2x5Su+4yIjS042i5nMZjGT0SyyJCgp616DkrLuNSgp3wwalJSvBg1KchjHYRyHcRzGcRhnwzgbxtkwzoZxNoyzYZwN42wYZ8M4G8bZMM6GcTaMs2GcDeNsGGfDOBvG2TDOhnE2jLNhnA3jbBhnwzgbxtkwzoZxNoyzYZwN42wYZ8M4G8bZMM6GcTaMs2GcDeNsGGfDOBvG2TDOhnE2jLNhnA3jbBhnwzgbxtkwzoZxNoyzYZwN42wYZ8M4G8bZMM6GcTaMk28XvSRuhpvhZrgZbsE4QUkbxtkwzoZxNoyTLxq9pCAXUpGGdGQxzoZxNoyzYZyse72kIBdSkYZ0ZDHOhnE2jLNhnKx7vaQgF1KRhnRkMc6GcQ6Mc2CcrHu9pCAXUpGGdGSs2wgZ6/aO4qx7DUrKutegpKx7jXv7rHuNu/ise427+Kx7DUrKuteZzWIms1msWzaLdYtmkSVBSVn3GpSUda9BSVn3GpSUda+SzWIms1nMZDaLsWWzmMlsFjMZY4ssCUrKutegpKx7DUrKutegpKx71WwWp0bZLIgqmwVRxdgiS+KbN+te45v3rDo1irrXW05knRpF3estFRlElZ3VHd6BcQ6Mc2CcA+McGOfAOAfGOTDOgXEOjHNgnAPjHBjnwDgHxjkwzoFxDoxzYJwD4xwY58A4B8Y5MM6BcQ6Mc2CcA+McGOfAOAfGOTDOgXEOjHNgnAPjHBjnwDgHxjkwzoFxDoxzYJwD4xwY58A4B8Y5MM6BcQ6Mc2CcU4yzXsU461WMs17FOOtVjLNexTjrVYyzXsU461WMs17FOOv1wm3gNnAbuA3cBm4Dt4HbwG3gNnCbuE3cJm4Tt4nbxG3ilr/bd0LejLNexTjrVYyzXsU4K+teLynIhVSkIR15M856FeOsVzHOehXjrKx7vaQgF1KRhnTkzTjrVYyzXsU461WMs7Lu9ZKCXEhFGtKRN+OsVzHOehXjrFcxzsq610sKciEVaUhHxrppyFMyskRjjSNLNOYhsuRNSSvrXjVWPrLE4tIjS96UtLLu9U1JK+teLZvFumWzODWKZvmHyqJZ/kXCaJZ/kjAuMrLEY+UjSzwuMhknm8VMZrOYyWwW65bNYt2iWf5pwhhb/o2TGFv+kZO4yMiSE80iS042i5nMZjGT2SxmMpvFusXY4r7kTUkrX6b6pqQ1inHWKMZZoxhnjWKcNYpx1ijGWaMYZ41inDWKcdYoxllj4DZwG7gN3AZuA7eB28Bt4DZxm7hN3CZuE7eJ28Rt4jZxm7gJboKb4Ca4CW6Cm+AmuAlugtvCbeG2cFu4LdwWbgu3hdvCbeGmuCluipviprgpboqb4qa4KW6Gm+FmuBluhpvhZrgZboab4ea4OW6OWzDOm5LWKMZZoxhnjWKcNYpxVr6a9ZKn5H4hB3IiBXkzzhrFOGsU46xRjLOy7vWSp+R5IQdyIgV5M84axThrFOOsUYyzsu71kjdRrax7veRATqQgb8ZZsxhnzWKcNYtxVta9XvKUHC/kQE6kIGPdRshYtxky1k1CxrqtkLFuGjLWLa43suR9F7+y7vVNSSvrXmc0iyyZ0SyyZGazWLdsFuuWzWLd4soiS96UtLLuVeIiI0skmkWWSDSLLJFoFlmyollkycpmMZMxtsiSFWOLLFlxkck42SwYJ5pFlmg0iyzRaBZZErczWfca37xZ9xrfvFn3Gt+8c92nRivqXm+5kfep0Yq611sOZBBVdFaMs2YxzprFOGsW46xZjLNmMc6axThrFuOsWYyzZjHOmoab4Wa4GW6Gm+FmuDlujpvj5rg5bo6b4+a4OW6O28Zt47Zx27ht3DZuG7eN28Zt43ZwO7gd3A5uB7eD28Ht4HZwg3EExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcmbhN3CZugpvgJrjl7/adkMU4AuMIjCMwzvWn1FMWUV1/TD3lQE6kIItxBMYRGEdgnKx7vWQRVda9XnIgJ1KQxTgC4wiMIzDO9efVUxZRXX9gPeVATqQgi3EExhEYR2CcrHu9ZBFV1r1eciAnUpCxbhpSkbFuscaRJZHVWfcalJR1r0FJWfcalJR1r0FJWfcalJR1r0FJWfdq2SxOjbJZnBplszg1ymZxahQXmX/FMVY+/4xjXGQyTjRLxolm+Zcco1n+KcdsFuuWzWLdYmz51xxjbPnnHOMiI0uCkrLuNSgp616DkrLuNSgp616DkrLuNSgp3/calJTvew1KWjDOgnEWjLNgnAXjLBhnwTgLxlkwzoJxFoyzYJwF4ywYZ8E4C8ZZMM6CcRaMs2CcBeMsGGfBOAvGWTDOgnEWjLNgnAXjLBhnwTgLxlkwzoJxFoyzYJwF4ywYZ8E4C8ZZMM6CcRaMs2CcBeMsGGfBOAvGWTDOgnEWjLNgnAXjLBhnwTgLxlkwzoJxFoyzYJwF4ywYZ8E4C8ZZMM6CcZbj5rg5bo6b4+a4BeMEJS0YZ8E4C8ZZMM7aC6lIQzpyI4uoFoyzYJwF4ywYJ+teL6lIQzpyI4uoFMZRGEdhHIVxsu71koo0pCM3sohKYRyFcRTGURgn614vqUhDOnIji6iy7jUoKeteg5Ky7jUoKeteg5Ky7jXu7bPuNe7is+417uKz7jUoKeteZzaLmYxmkSVBSVn3GpSUda9BSVn3GpSUda9BSVn3GpSUda+SzWIms1nMZDaLsUWzyJKgpKx7DUrKutegpKx7DUrKulfNZsE42SxOjbJZnBplsyCqbBZEFWOLLIlv3qx7jW/efN9rzlncl1xyIe9To5Xve72kI4OosrO6w1MYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxjEYx2Acg3EMxjEYx2Acg3EMxjEYx2Acg3EMxjEYx2Acg3EMxjEYx2Acg3EMxjEYx2Acg3EMxjEYx2Acg3EMxjEYx2Acg3EMxjEYxwQ3wU1wE9wEN8Etf7fvHSsG4xiMYzCOwThZ93pJRRrSkRtZRGUwjsE4BuMYjJN1r5dUpCEduZFFVAbjGIxjMI7BONcfpE+pSEM6ciOLqAzGMRjHYByDcbLu9ZKKNKQjN7KIKuteI6Cz7vWSsW6xxpElkdVZ9xqUlHWvQUlZ9xqUlHWvQUlZ9xqUlHWvQUlZ9xqUlHWvQUlZ9xqUlHWvQUlZ9xqUlHWvQUlZ9xqUdP3F+mwWM5nNYibfzbLuNSgp616DkrLuNSgp616DkrLuNSgp615PNouZzGYxk9ksZjKbxUxGs8iSoKR832tQUr7vNSjJYRyHcRzGcRjHYRyHcRzGcRjHYRyHcRzGcRjHYRyHcRzGcRjHYRyHcRzGcRjHYRyHcRzGcRjHYRyHcRzGcRjHYRyHcRzGcRjHYRyHcRzGcRjHYRyHcRzGcRjHYRyHcRzGcRjHYRyHcRzGcRjHYRyHcRzGcRjHYRyHcRzGcRjHYRyHcRzGcRjHYRyHcRzGcRjHYRyHcdxx27ht3DZuG7eNWzBOUJLDOA7jOIzjMI6fF3IgJ1KQC6nIYhyHcRzGcRgn614vOZATKciFVGQxzoZxNoyzYZyse73kQE6kIBdSkcU4G8bZMM6GcbLu9ZIDOZGCXEhFxrqNkLFuM2SsWww+siQoKete494+617jLj7rXuMuPuteg5Ky7nVms5jJbBbrls1i3bJZrFs2i3WLK4ssCUrKutegpKx7DUrKutegpKx7lWwWY8tmMZPZLGYyxhZZEpSUda9BSVn3GpSUda9BSVn3GpSUda9BSVn3qtksiCrGFlkS37xZ9xrfvPm+15yzuC9JaS9knRrl+14vKcggqugMxtkwzoZxNoyzYZwN42wYZ8M4G8bZMM6GcTaMs2GcDeNsGGfDOBvG2TDOhnE2jLNhnA3jbBhnwzgbxtkwzoZxNoyzYZwN42wYZ8M4G8bZMM6GcQ6Mc2CcA+McGOfAOAfGOTDOgXEOjHNgnAPjHBjnwDgHxjkwzoFxDoxzYJwD4xwY58A4B8Y5MM6BcQ6Mc2CcA+McGOfAOAfGOTDOgXEOjHNgnAPjHBjnwDgHxjkwzhHcFm4Lt4Xbwm3hlr/bd0IW4xwY58A4B8bJutdLDuRECnIhFVmMc2CcA+McGCfrXi85kBMpyIVUZDHOgXEOjHNgnKx7veRATqQgF1KRxTgHxjkwzoFxsu71kgM5kYJcSEXGumlIR8a6xRpHlkRWZ91rUFLWvQYlZd1rUFLWvQYlZd1rUFLWvVo2i3XLZnFqlM3i1CibxanRr2aada9vStKse31Tkmbd65uSNOte3zdamnWvO5vFTGazWLdsFuuWzWLdLGSsm79lZMmbkjTrXk80iyw50Syy5ESzyJKTzWIms1ms2wkZv2nxCvn+Nn3FRRbj6KsYR1/FOPoqxtFXMY6+inH0VYyjr2IcfRXj6KsYR18TN8FNcBPcBDfBTXAT3AQ3wU1wW7gt3BZuC7eF28Jt4bZwW7gt3BQ3xU1xU9wUN8VNcVPcFDfFzXAz3Aw3w81wM9wMN8PNcDPcHDfHzXFz3Bw3x81xc9wcN8dt47Zx27ht3DZuG7eN28Zt47ZxO7gF47xikxXj6KsYR1/FOPoqxtHXMaQjN/ImKs2610sO5M04OopxdBTj6CjG0ax7vaQjN/KUHC/kQN6Mo6MYR0cxjo5iHM2610s6ciNPyflCDuTNODqKcXQU4+goxtGse72kIzfylJQXciBj3UbIWLcZMtYtBh9Z8qYkzbrX9729Zt3riOvNvyfsIWPd3pmada8zmkWWzGgWWTKjWWTJjGaRJTObxbrFlUWWSCx3ZInERUaWSDaLmYxmkSUSzSJLVjSLLFnRLLJkxdgiS1aMLbJkxUUm42SzYJxsFqdG2SxOjaJZZIlGs8gSjbFFlmiMLbJE4yLtPjXSfN/rJQ15nxppvu/1kqdk3Jfk/Bbj6CjG0VGMo6MYR0cxjo5iHB3FODqKcXQU4+goxtGxcdu4bdw2bhu3jdvGbeO2cTu4HdwObge3g9vB7eB2cDu4FePoLMbRWYyjsxhHZzGOzmIcncU4OotxdBbj6CzG0fnCbeA2cBu4DdwGbgO3gdvAbeA2cJu4TdwmbhO3idvEbeI2cZu4TdwEN8FNcBPcBDfBTXAT3AQ3wW3htnBbuC3cFm4Lt4Xbwm3htnBT3PJ3+07Im3F0FuPoLMbRWYyjWfd6SUdu5ClpL+RA3oyjsxhHZzGOzmIczbrXSzpyI09JfyEH8mYcncU4OotxdBbjaNa9XtKRG3lK7hdyIG/G0VmMo7MYR2cxjmbd6yUduZGn5HkhBzLWTUMKMtYt1jiyJLI6617flKRZ96qx8pElFpceWfKmJM261zclada9vilJs+71TUmada9vStKse/VsFqdG2SxOjSRkENUKGUSlIWMmo1kyTjSLLAlKyrrXoKSsew1KyrrXoKSsew1KyrrXoKSsez3ZLGYym8VMRrPIkqCkrHsNSsq616CkfN9rUFK+7zUoSWAcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXHk4HZwO7gd3A5uB7dgnKAkgXEExlkwzoJx1msiBbmQijSkI4txFoyzYJwF42Td6yUFuZCKNKQji3EWjLNgnAXjZN3rJQW5kIo0pCOLcRaMs2CcBeNk3eslBbmQijSkI2PdRshYt3cUZ91rUFLWvQYlZd1r3Ntn3WvcxWfda9zFZ91rUFLWvc5sFjOZzWLdslmsWzSLLAlKyrrXoKSsew1KyrrXoKSse5VsFjOZzWIms1mMLZvFTGazmMkYW2RJUFLWvQYlZd1rUFLWvQYlZd2rZrM4NcpmQVTZLIgqxhZZEt+8Wfca37z5vtecs7gvueRE3qdGmu97vaQig6iys7rDWzDOgnEWjLNgnAXjLBhnwTgLxlkwzoJxFoyzYJwF4ywYZ8E4C8ZZMM6CcRaMs2CcBeMsGEdhHIVxFMZRGEdhHIVxFMZRGEdhHIVxFMZRGEdhHIVxFMZRGEdhHIVxFMZRGEdhHIVxFMZRGEdhHIVxFMZRGEdhHIVxFMZRGEdhHIVxFMZRGEdhHIVxFMZRGEdhHIVxFMZRGEdhHIVxFMZRGEdhHIVxFMZRxU1xU9wUN8VNccvf7Tshi3EUxlEYR2GcrHu9pCAXUpGGdGQxjsI4CuMojJN1r5cU5EIq0pCOLMZRGEdhHIVxsu71koJcSEUa0pHFOArjKIyjME7WvV5SkAupSEM6MtZNQ55bZt1rZHXWvUZWZ91rUFLWvQYlZd1rUFLWvQYlZd1rUFLWvVo2i3XLZnFqFM0iS4KSsu41KCnrXoOSsu41KCnrXoOSsu51Z7OYyWwWM5nNYt2yWaxbNIssCUrKutegpKx7DUrKutegpKx7PdksZjKbxUxms5jJbBbrFmOL+5KgpHzfa1CSwTgG4xiMYzCOwTgG4xiMYzCOwTgG4xiMYzCOwTgG4xiMYzCOwTgG4xiMYzCOwTgG4xiMYzCOwTgG4xiMYzCOwTgG4xiMYzCOwTgG4xiMYzCOwTgG4xiMYzCOwTgG4xiMYzCOwTgG4xiMYzCOwTgG4xiMYzCOwTgG4xiMYzCOwTgG4xiMYzCOwTgG4xiMYzCOwTgG49jB7eBW72hUr3c0qtf7S9Tr/SUada9JSQ7jOIzjMI7DOP7ayCIqHy/kQE6kIItxHMZxGMdhnKx7vWQRVda9XnIgJ1KQxTgO4ziM4zBO1r1esogq614vOZATKchiHIdxHMZxGCfrXi9ZRJV1r5ccyIkUZKxbrGYyzgwZ6xaDjywJSsq617i3z7rXuIvPute4i8+616CkrHsNSsq616CkrHud2SzWLZvFumWzWLe4ssiSoKSsew1KyrrXoKSsew1KyrrXoKSsew1KyrrXlc1iJmNskSVBSVn3GpSUda+azYJxollkSVBS1r0GJWXda9zOZN1rfPNm3Wt882bda3zz5vtec87ivuSSG1mnRvm+10sOZBBVdAbjOIzjMI7DOA7jOIzjMI7DOA7jOIzjMI7DOA7jOIzjMI7DOA7jbBhnwzgbxtkwzoZxNoyzYZwN42wYZ8M4G8bZMM6GcTaMs2GcDeNsGGfDOBvG2TDOhnE2jLNhnA3jbBhnwzgbxtkwzoZxNoyzYZwN42wYZ8M4G8bZMM6GcTaMs2GcDeNsGGfDOBvG2TDOhnE2jLNhnA3jbBhnwzgbxtkwzoZxNoyzYZwN42wYZytuipviZrgZboZb/m7fCVmMs2GcDeNsGCfrXi9ZRJV1r5ccyIkUZDHOhnE2jLNhnKx7vWQRVda9XnIgJ1KQxTgbxtkwzoZxsu71kkVUWfd6yYGcSEEW42wYZ8M4G8bJutdLFlFl3eslB3IiBRnrpiEVGetmIWPdPGSs2w4Z6/Ze+ax7DUrKutegpKx7DUrKutegpKx7tWwWp0bZLE6NslmcGmWzODWKi4wsCUrKutegpKx7jRutrHsNSsq616CkrHvd2SzWLZvFusXYIkuCkrLuNSgp616DkrLuNSgp616DkrLuNSgp616DkrLuNSgp3/calJTvew1KOjDOgXEOjHNgnAPjHBjnwDgHxjkwzoFxDoxzYJwD4xwY58A4B8Y5MM6BcQ6Mc2CcA+McGOfAOAfGOTDOgXEOjHNgnAPjHBjnwDgHxjkwzoFxDoxzYJwD4xwY58A4B8Y5MM6BcQ6Mc2CcA+McGOfAOAfGOTDOgXEOjHNgnAPjHBjnwDgHxjkwzoFxDoxzYJwD4xwY5xTj2KsYx17FOPYqxrFXvaPRXvWORnvVOxrtVe9otFe9v8Re9f4Si7rXoCR7FePYqxjHXsU49irGsddYSEUa0pEbeUoW49irGMdexTj2KsaxrHu9pCIN6ciNPCWLcexVjGOvYhx7FeNY1r1eUpGGdORGnpLFOPYqxrFXMY69inEs614vqUhDOnIjT8lknFjNZJwZMtYtBh9Z8qYky7rXEcsdWTLievPvCXvIWLcdMmYym8VMRrPIkhnNIktmNIssmdEssmTGlUWWSCx3ZInERUaWSDaLmcxmMZPZLMYWzSJLVjSLLFkxtsiSFWOLLFlxkck42SwYJ5vFqVE2i1OjbBZElc2CqGJskSUaY4ss0bjIfZ8aWb7v9ZILeZ8aWb7v9ZKODKLKzu47PHsV49irGMdexTj2KsaxVzGOvYpx7FWMY69iHHsV49irGMdGMY6NYhwbxTg2inFsFOPYKMaxUYxjoxjHRjGOjRduA7eB28Bt4DZwG7gN3AZuA7eB28Rt4jZxm7hN3CZuE7eJ28Rt4ia4CW6Cm+AmuAlugpvgJrgJbgu3hdvCbeG2cFu4LdwWbgu3hZviprgpboqb4qa4KW6Km+KmuBluhpvhZrgZboab4Wa4GW75u33vWBnFODaKcWwU49goxrGse72kIg3pyI08JYtxbBTj2CjGsVGMY1n3eklFGtKRG3lKFuPYKMaxUYxjoxjHsu71koo0pCM38iYqm8U4NotxbBbj2CzGsax7vaQiDenIjTwlI0sioLPu9ZKxbhYy1s1DxrrtkLFuJ2TMZFx6ZMmbkizrXt+UZFn3atEsssSiWWSJR7PIEo9mkSUezSJLPC4ysuRNSZZ1rx4XmYyTzWIms1nMZDSLLNnRLLJkR7PIkh1jiyzZMbbIkh0XGVlyslnMZDaLmcxmMZPZLGYymkWWnBhb3Je8YmxxX/KKiyzGsVmMY7MYx2Yxjs1iHJvFODaLcWwW49gsxrFZjGNTcVPcFDfFTXFT3BQ3w81wM9wMN8PNcDPcDDfDzXBz3Bw3x81xc9wcN8fNcXPcHLeN28Zt47Zx27ht3DZuG7eN28bt4HZwO7gd3A5uB7eD28Ht4AbjCIwjMI7AOALjCIwjMI7AOALjCIwjL9wGbgO3gdvAbeAWjBOUJDCOwDgC4wiMI/OFHMiJFORCKrIYR2AcgXEExsm610sO5EQKciEVWYwjMI7AOALjZN3rJQdyIgW5kIosxhEYR2AcgXGy7vWSAzmRglxIRca6xWom48yQsW4x+MiSoKSse417+6x7jbv4rHuNu/isew1KyrrXmc1iJrNZrFs2i3XLZrFu2SzWLa4ssiQoKeteg5Ky7jUoKeteg5Ky7lWyWYwtm8VMZrOYyRhbZElQUta9BiVl3WtQUta9BiVl3WtQUta9BiVl3atmsyCqGFtkSXzzZt1rfPPm+15zzuK+JOV5Ie9TI8v3vV5SkEFU0RmMIzCOwDgC4wiMs2CcBeMsGGfBOAvGWTDOgnEWjLNgnAXjLBhnwTgLxlkwzoJxFoyzYJwF4ywYZ8E4C8ZZMM6CcRaMs2CcBeMsGGfBOAvGWTDOgnEWjLNgnAXjLBhnwTgLxlkwzoJxFoyzYJwF4ywYZ8E4C8ZZMM6CcRaMs2CcBeMsGGfBOAvGWTDOgnEWjLNgnAXjLBhnwTgLxlkwzoJxFoyzYJwF4ywYZ8E4C8ZZhpvj5rg5bo6b45a/23dCFuMsGGfBOAvGybrXSw7kRApyIRVZjLNgnAXjLBgn614vOZATKciFVGQxzoJxFoyzYJyse73kQE6kIBdSkcU4CuMojKMwTta9XnIgJ1KQC6nIWDcN6chYNwsZ6/aeh6x7DUrKutegpKx7DUrKutegpKx7DUrKulfLZrFu2SxOjbJZnBplszg1imaRJUFJWfcalJR1r0FJWfcaN1pZ97qzWcxkNot1y2axbtks1i3GFlkSlJR1r0FJWfcalJR1r0FJWfcalJR1ryebxUxms1i3GFvclwQl5fteg5IUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2Ecg3EMxjEYx2Acg3EMxjEYx2Acg3EMxjEYx2Acg3EMxjEYxwZuA7eB28Bt4DZxC8YJSjIYx2Acg3EMxrFpSEduZBFV1r1eciCLcQzGMRjHYJyse72kIzeyiCrrXi85kMU4BuMYjGMwTta9XtKRG1lElXWvlxzIYhyDcQzGMRgn614v6ciNLKLKutdLDmSsW6xmMs4MGesWg48sCUrKute4t8+617iLz7rXuIvPutegpKx7DUrKutegpKx7DUrKutegpKx7ndks1i2uLLIkKCnrXoOSsu5VslnMZDSLLAlKyrrXoKSsew1KyrrXoKSsew1KyrrXoKSse9VsFoyTzeLUKJvFqVE0iyyJ25mse41v3qx7jW/erHuNb95832vOWdyXXNKQdWqU73u95F2HZ/m+15hfh3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnEYx2Ech3EcxnHHzXFz3Bw3x23jlr/bd0IW4ziM4zCOwzhZ93pJR25kEVXWvV5yIItxHMZxGMdhnKx7vaQjN7KIKuteLzmQxTgbxtkwzoZxsu71ko7cyCKqrHu95EAW42wYZ8M4G8bJutdLOnIji6iy7vWSAxnrpiEFGetmIWPdYh4iS4KSsu41KCnrXoOSsu41KCnrXoOSsu41KCnrXoOSsu41KCnrXj2bxalRNotTo7jIyJKgpKx7DUrKute40cq616CkrHsNSsq616CkrHsNSsq616CkrHsNSsq616CkrHs92SxmMpvFTEazyJKgpKx7DUrKutegpHzfa1BSvu81KGnDOBvG2TDOhnE2jLNhnA3jbBhnwzgbxtkwzoZxNoyzYZwN42wYZ8M4G8bZMM6GcTaMs2GcDeNsGGfDOBvG2TDOhnE2jLNhnA3jbBhnwzgbxtkwzoZxNoyzYZwN42wYZ8M4G8bZMM6GcTaMc2CcA+McGOfAOAfGOTDOgXEOjHNgnAPjHBjnwDgHxjkwzoFxDoxzYJwD4xwY58A4B8Y5E7eJ28Rt4jZxm7gF4wQlHRjnwDgHxjkwzpGJFORCKtKQjizGOTDOgXEOjJN1r5cU5EIq0pCOLMY5MM6BcQ6Mk3WvlxTkQirSkI4sxjkwzoFxDoyTda+XFORCKtKQjox1i9VMxnlHcda9BiVl3WtQUta9xr191r3GXXzWvcZdfNa9BiVl3evMZjGT2SzWLZvFukWzyJKgpKx7DUrKutegpKx7DUrKulfJZjGT2SxmMpvF2LJZzGQ2i5mMsUWWBCVl3WtQUta9BiVl3WtQUta9ajaLU6NsFkSVzYKoYmyRJfHNm3Wv729ez/e9vufM832vl5zI+9TI832vl1RkEFV2dt/h+asYx1/FOP4qxvFXMY6/inH8VYzjr2IcfxXj+KsYx18Dt4HbwG3iNnGbuE3cJm4Tt4nbxG3iNnET3AQ3wU1wE9wEN8FNcBPcBLeF28Jt4bZwW7gt3BZuC7eF28JNcVPcFDfFTXFT3BQ3xU1xU9wMN8PNcDPcDDfDzXAz3Aw3w81xc9wcN8fNcXPcHDfHzXFz3DZuG7eN28Zt47Zx27jl7/adkDfj+KsYx1/FOP4qxvGse72kIBdSkYZ05M04/irG8VGM46MYx7Pu9ZKCXEhFGtKRN+P4KMbxUYzjoxjHs+71koJcSEUa0pE34/goxvFRjOOjGMez7vWSglxIRRrSkbFuGvKUjCx5Z7Vn3Wtkdda9vinJs+71TUmeda8Wlx5Z8qYkz7rXNyV51r1aNot1y2ZxahTNIks8mkWWeDSLLPG4yMiSNyV51r16XGQyTjaLmcxmMZPZLNYtm8W6RbPIkh1jiyzZMbbIkh0XGVlyollkyclmMZPZLGYym8VMZrNYtxhb3Je8YmxxX/KKiyzG8VGM46MYx0cxjo9iHB/FOD6KcXwU4/goxvFRjOPDcXPcHDfHzXFz3Bw3x81x27ht3DZuG7eN28Zt47Zx27ht3A5uB7eD28Ht4HZwO7gd3A5uxTg+i3F8FuP4LMbxWYzjsxjHZzGOz2Icn8U4PotxfL5wG7gN3AZuA7eB28Bt4DZwG7gN3CZuE7eJ28Rt4jZxm7hN3CZuEzfBTXAT3IJx3pTksxjHZzGOz2Icn8U4PmUjT8n1Qg7kRAryZhyfxTg+i3F8FuN41r1e8pTUF3IgJ1KQN+P4LMbxWYzjsxjHs+71kqekvZADOZGCvBnHZzGOz2Icn8U4nnWvlzwl/YUcyIkUZKxbrGYyzgwZ6xaDjyx5U5Jn3Wvc22fda9zFZ91r3MXP/HvCO2TMZDSLLJnRLLJkZrNYt2wW65bNYt3iyiJLJJY7skTiIiNLJJpFlkg0iyyRaBZZsqJZZMnKZjGTMbbIkhVjiyxZcZHJONksGOfdLOte35TkWff6piTPute4ncm61/jmzbrX+ObNutf45s33vY78B47cyPvUyPN9r5ccyCCq6AzGERhHYByBcQTGERhHYByBcQTGERhHYByBcQTGERhHYByBcQTGERhHYByBcQTGERhHYByBcQTGERhHYByBcQTGERhHYByBcQTGERhHYByBcQTGERhHYByBcQTGERhHYByBcQTGERhHYByBcQTGERhHYByBcQTGERhHYByBcQTGERhHYByBcQTGERhHYByBcQTGERhHYByBcQTGERhHYByBcQTGERhHNm4bt43bwe3gdnDL3+07IYtxBMYRGEdgnKx7vWQRVda9XnIgJ1KQxTgLxlkwzoJxsu71kkVUWfd6yYGcSEEW4ywYZ8E4C8bJutdLFlFl3eslB3IiBVmMs2CcBeMsGCfrXi9ZRJV1r5ccyIkUZKybhlRkrJuFjHWLeYgsCUrKutegpKx7DUrKutegpKx7DUrKutegpKx7tWwWp0bZLE6NslmcGmWzODWKi4wsCUrKutegpKx7jRutrHsNSsq616CkrHvd2SzWLZvFusXYIkuCkrLuNSgp616DkrLuNSgp616DkrLuNSgp616DkrLuNSgp3/calJTvew1KWjDOgnEWjLNgnAXjLBhnwTgLxlkwzoJxFoyzYJwF4ywYZ8E4C8ZZMM6CcRaMs2CcBeMsGGfBOAvGWTDOgnEWjLNgnAXjLBhnwTgLxlkwjsI4CuMojKMwjsI4CuMojKMwjsI4CuMojKMwjsI4CuMojKMwjsI4CuMojKMwjsI4CuMojKMwjsI4CuMojKMwjsI4CuMojKMwjsI4KrgJboKb4Ca4CW7BOEFJCuMojKMwjsI4uhZSkYZ05EYWUSmMozCOwjgK42Td6yUVaUhHbmQRlcI4CuMojKMwTta9XlKRhnTkRhZRKYyjMI7COArjZN3rJRVpSEduZBFV1r0GJWXda1BS1r0GJWXda1BS1r3GvX3WvcZdfNa9xl181r0GJWXd68xmMZPRLLIkKCnrXoOSsu41KCnrXoOSsu41KCnrXoOSsu5VslnMZDaLmcxmMbZ3s6x7DUrKutegpKx7DUrKutegpKx71WwWjJPN4tQom8WpUTYLospmQVTvsWXda3zzZt1rfPPm+15H/gNBLmSdGuX7Xi/pyCCq7Kzu8AzGMRjHYByDcQzGMRjHYByDcQzGMRjHYByDcQzGMRjHYByDcQzGMRjHYByDcQzGMRjHYByDcQzGMRjHYByDcQzGMRjHYByDcQzGMRjHYByDcQzGMRjHYByDcQzGMRjHYByDcQzGMRjHYByDcQzGMRjHYByDcQzGMRjHYByDcQzGMRjHYByDcQzGMRjHYByDcQzGMRjHYByDcQzGMRjHYByDcQzGsYPbwe3gdnA7uB3c8nf73rHiMI7DOA7jOIyTda+XVKQhHbmRRVQO4ziM4zCOwzhZ93pJRRrSkRtZROUwjsM4DuM4jJN1r5dUpCEduZFFVA7jOIzjMI7DOFn3eklFGtKRG1lElXWvEdBZ93rJWDcLGesW8xBZEpSUda9BSVn3GpSUda9BSVn3GpSUda9BSVn3GpSUda9BSVn3GpSUda9BSVn3GpSUda9BSVn3GpSUda87m8VMZrOYyWgWWRKUlHWvQUlZ9xqUlHWvQUlZ9xqUlHWvJ5vFTGazmMlsFjOZzWImo1lkSVBSvu81KCnf9xqU5DCOwzgO4ziM4zCOwzgO4ziM4zCOwzgO4ziM4zCOwzgO4ziM4zCOwzgO4ziM4zCOwzgO4ziM4zCOwzgO42wYZ8M4G8bZMM6GcTaMs2GcDeNsGGfDOBvG2TDOhnE2jLNhnA3jbBhnwzgbxtkwzoZxNoyzYZwN42wYZ8M4G8bZMM6GcTaMs2GcDeNsGGfDOBvG2TDOhnE2jLNhnC24LdwWbgu3hdvCLRgnKGnDOBvG2TDOhnG2vpADOZGCXEhFFuNsGGfDOBvGybrXSw7kRApyIRVZjLNhnA3jbBgn614vOZATKciFVGQxzoZxNoyzYZyse73kQE6kIBdSkbFusZrJODNkrFsMPrIkKCnrXuPePute4y4+617jLj7rXoOSsu51ZrOYyWwW65bNYt2yWaxbNot1e19Z1r0GJWXda1BS1r0GJWXda1BS1r1KNouxZbOYyWwWMzlDxkxKyJjJ90Vm3WtQUta9BiVl3WtQUta9BiVl3atmsyAqDRlEZSGDqOIiR50a5fteU84Xsk6N8n2vlxRkEFV0BuMcGOfAOAfGOTDOgXEOjHNgnAPjHBjnwDgHxjkwzoFxDoxzYJwD4xwY58A4B8Y5MM6BcQ6Mc2CcA+McGOfAOAfGOTDOgXEOjHNgnAPjHBjnwDgHxjkwzoFxDoxzYJwD4xwY58A4B8Y5MM6BcQ6Mc2CcA+McGOfAOAfGOTDOgXEOjHNgnAPjHBjnwDgHxjkwzoFxDoxzYJwD4xwY58A4B8Y5MM6BcQ6Mc2CcA+McGOfU+0v2q95fsl/1u337Vb/bt1/1u337Vb/bt7Pu9Z2T+1WMs1/FOPtVjLNfxTg7614vOZATKciFVOTNOPtVjLNfxTj7VYyzs+71kgM5kYJcSEXejLNfxTj7VYyzX8U4O+teLzmQEynIhVTkzTj7VYyzX8U4+1WMs7Pu9ZIDOZGCXEhFxrppSEfGusUaR5ZozENkyZuSdta9aqx8ZInFpUeWvClpZ93rm5J21r1aNot1y2ZxapTN4tQom8WpUTSLLPG4yMgSj5WPLPG4yGScaJaMk81iJrNZrFs2i3XLZrFuMbbIkh1jiyzZcZGRJSeaRZacaBZZcqJZZMnJZjGT2SzWLcYW9yWvGFvcl7ziIotx9qsYZ7+KcfarGGe/inH2qxhnv4px9qsYZ7+KcfarGGe/Nm4Ht4Pbwe3gdnA7uB3cDm4Ht2KcPYpx9ijG2aMYZ49inD2KcfYoxtmjGGePYpw9inH2eOE2cBu4DdwGbgO3gdvAbeA2cBu4TdwmbhO3idvEbeI2cZu4TdwmboKb4Ca4CW6Cm+AmuAlugpvgtnBbuC3cFm4Lt4Xbwm3htnBbuCluwThvStqjGGePYpw9inH2KMbZQw3pyI08Je2FHMibcfYoxtmjGGePYpydda+XdORGnpL+Qg7kzTh7FOPsUYyzRzHOzrrXSzpyI0/J/UIO5M04exTj7FGMs0cxzs6610s6ciNPyfNCDmSsW6xmMs4MGesWg48seVPSzrrXEcsdWTLievPvCXvIWLd3pmbd65uSdta9vilpZ93rm5J21r2+KWln3evMZrFuJ2TM5CtkzOQIGTOZzWImo1lkiUSzyJIVzSJLVjSLLHlT0s661zcl7ax7XXGRyTjZLBgnm8WpUTaLU6NoFlkStzNZ9xrfvFn3Gt+8Wfca37z5vteR/0CRhrxPjXa+7/WSp2Tcl8T8zmKcPYtx9izG2bMYZ89inD2LcfYsxtmzGGfPYpw9i3H2XLgt3BZuC7eF28Jt4bZwW7gpboqb4qa4KW6Km+KmuCluipvhZrgZboab4Wa4GW6Gm+FmuDlujpvj5rg5bo6b4+a4OW6O28Zt47Zx27ht3DZuG7eN28Zt43ZwO7gd3A5uB7eD28Ht4HZwg3EExhEYR2AcgXEExpF6f8mWen/Jlvrdvi31u31bXrgN3PJ3+07IYhyBcQTGERgn614v6ciNLKLKutdLDmQxjsA4AuMIjJN1r5d05EYWUWXd6yUHshhHYByBcQTGybrXSzpyI4uosu71kgNZjCMwjsA4AuNk3eslHbmRRVRZ93rJgYx105CCjHWLNY4siazOutegpKx7DUrKutegpKx7DUrKutegpKx7DUrKutegpKx7DUrKulfPZnFqlM3i1CguMrIkKCnrXoOSsu41brSy7jUoKeteg5Ky7jUoKeteg5Ky7jUoKeteg5Ky7jUoKeteTzaLmcxmMZPRLLIkKCnrXoOSsu41KCnf9xqUlO97DUoSGEdgHIFxBMYRGEdgHIFxBMYRGEdgHIFxBMYRGEdgHIFxFoyzYJwF4ywYZ8E4C8ZZMM6CcRaMs2CcBeMsGGfBOAvGWTDOgnEWjLNgnAXjLBhnwTgLxlkwzoJxFoyzYJwF4ywYZ8E4C8ZZMM6CcRaMs2CcBeMsGGfBOAvGWTDOgnEWjLNgnAXjLBhnwTgLxlkwzoJxFoyzYJwF4yzFTXFT3BQ3xU1xC8YJSlowzoJxFoyzYJxlEynIhVSkIR1ZjLNgnAXjLBgn614vKciFVKQhHVmMs2CcBeMsGCfrXi8pyIVUpCEdWYyzYJwF4ywYJ+teLynIhVSkIR0Z6xarmYzzjuKsew1KyrrXoKSse417+6x7jbv4rHuNu/isew1KyrrXmc1iJrNZrFs2i3WLZpElQUlZ9xqUlHWvQUlZ9xqUlHWvks1iJrNZzGQ2i7Fls5jJbBYzGWOLLAlKyrrXoKSsew1KyrrXoKSse9VsFqdG2SyIKpsFUcXYIkvimzfrXuObN9/3mnMW9yWXnMj71Gjn+14vqcggquys7vAUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYR2EchXEUxlEYx2Acg3EMxjEYx2Acg3EMxjEYx2Acg3EMxrGB28Bt4DZwG7gN3PJ3+07IYhyDcQzGMRgn614vKciFVKQhHVmMYzCOwTgG42Td6yUFuZCKNKQji3EMxjEYx2CcrHu9pCAXUpGGdGQxjsE4BuMYjJN1r5cU5EIq0pCOjHXTkKdkZElkdda9RlZn3WtQUta9BiVl3WtQUta9BiVl3WtQUta9WjaLdctmcWoUzSJLgpKy7jUoKeteg5Ky7jUoKeteg5Ky7nVns5jJbBYzmc1i3bJZrFs0iywJSsq616CkrHsNSsq616CkrHs92SxmMpvFTGazmMlsFusWY4v7kqCkfN9rUJLBOAbjGIxjMI7BOAbjGIxjMI7BOA7jOIzjMI7DOA7jOIzjMI7DOA7jOIzjMI7DOA7jOIzjMI7DOA7jOIzjMI7DOA7jOIzjMI7DOA7jOIzjMI7DOA7jOIzjMI7DOA7jOIzjMI7DOA7jOIzjMI7DOA7jOIzjMI7DOA7jOIzjMI7DOA7jOIzjMI7DOA7jOIzjMI7DOA7juOKmuCluhpvhZrgF4wQlOYzjMI7DOA7juG1kEZX7CzmQEynIYhyHcRzGcRgn614vWUSVda+XHMiJFGQxjsM4DuM4jJN1r5csosq610sO5EQKshjHYRyHcRzGybrXSxZRZd3rJQdyIgUZ6zZCxrrNkLFuEjLWbYWMddOQsW7v682617iLz7rXoKSsew1KyrrXoKSse53ZLNYtm8W6ZbNYt7iyyJKgpKx7DUrKutegpKx7DUrKutegpKx7DUrKuteVzWImY2yRJUFJWfcalJR1r5rNgnGiWWRJUFLWvQYlZd1r3M5k3Wt882bda3zzZt1rfPPm+15zzuK+5JIbWadG+b7XSw5kEFV0BuNsGGfDOBvG2TDOhnE2jLNhnA3jbBhnwzgbxtkwzoZxNoyzYZwN42wYZ8M4G8bZMM6GcTaMs2GcDeNsGGfDOBvG2TDOhnE2jLNhnA3jbBhnwzgbxtkwzoZxNoyzYZwN42wYZ8M4G8bZMM6GcTaMs2GcDeNsGGfDOBvG2TDOhnE2jLNhnA3jHBjnwDgHxjkwzoFxDoxzYJwD4xwY58A4B8Y5MM6BcQ6Mc2CcA+McGOcM3AZuA7eJ28Rt4pa/23dCFuMcGOfAOAfGybrXSxZRZd3rJQdyIgVZjHNgnAPjHBgn614vWUSVda+XHMiJFGQxzoFxDoxzYJyse71kEVXWvV5yICdSkMU4B8Y5MM6BcbLu9ZJFVFn3esmBnEhBxrppSEXGusUaR5ZEVmfda1BS1r0GJWXda1BS1r0GJWXda1BS1r0GJWXdq2WzODXKZnFqlM3i1CibxalRXGRkSVBS1r0GJWXda9xoZd1rUFLWvQYlZd3rzmaxbtks1i3GFlkSlJR1r0FJWfcalJR1r0FJWfcalJR1r0FJWfcalJR1r0FJ+b7XoKR832tQ0oFxDoxzinHOqxjnvIpxzqsY57yKcc6rGOe8inHOqxjnvIpxzqsY57xeuA3cBm4Dt4HbwG3gNnAbuA3cBm4Tt4nbxG3iNnGbuE3cJm4Tt4mb4Ca4CW6Cm+AmuAlugpvgJrgt3BZuC7eF28Jt4bZwW7gt3BZuipviprgpboqb4qa4KW6Km+JmuBluhpvhZrgZboab4Wa4BeO8Kem8inHOqxjnvIpxzqsY57x8IRVpSEdu5ClZjHNexTjnVYxzXsU4J+teL6lIQzpyI0/JYpzzKsY5r2Kc8yrGOVn3eklFGtKRG3kT1RnFOGcU45xRjHNGMc7JutdLKtKQjtzIUzIZZ4SMdZshY90kZKzbChnrpiFj3eJ68+8Je8hYtx0yZjKbxUxGs8iSGc0iS2Y0iyyZ0SyyZMaVRZa8Kelk3avERUaWSDaLmcxmMZPZLMYWzSJLVjSLLFkxtsiSFWOLLFlxkck42SwYJ5vFqVE2i1OjbBZElc2CqGJskSUaY4ss0bjIdZ8anXzf6yUX8j41+iUN6cggquzsvsM7oxjnjGKcM4pxzijGOaMY54xinDOKcc4oxjmjGOcMxc1wM9wMN8PNcDPcDDfDzXAz3Bw3x81xc9wcN8fNcXPcHDfHbeO2cdu4bdw2bhu3jdvGbeO2cTu4HdwObge3g9vB7eB2cDu4FeOcWYxzZjHOmcU4ZxbjnFmMc2YxzpnFOGcW45xZjHPmC7eB28Bt4DZwG7gN3AZuA7eB28Bt4jZxm7hN3CZuE7eJ28Rt4pa/2/eOlVmMc2YxzpnFOGcW45yse72kIg3pyI08JYtxzizGObMY58xinJN1r5dUpCEduZGnZDHOmcU4ZxbjnFmMc7Lu9ZKKNKQjN/KULMY5sxjnzGKcM4txTta9XlKRhnTkRp6SkSUR0Fn3eslYt1jjyJLI6qx7fVPSybpXjZWPLLG49MiSNyWdrHt9U9LJuleLZpElFs0iSzyaRZZ4NIss8WgWWeJxkZElHisfWeJxkck42SxmMpvFTEazyJIdzSJLdjSLLNkxtsiSHWOLLNlxkZElJ5vFTGazmMlsFjOZzWIm382y7vVNSSff9/qmpJPve31T0hEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcgXEExhEYR2AcMdwcN8fNcXPcHLdgnKAkgXEExhEYR2Ac2S/kQE6kIBdSkcU4AuMIjCMwTta9XnIgJ1KQC6nIYhyBcQTGERgn614vOZATKciFVGQxzoJxFoyzYJyse73kQE6kIBdSkbFuI2Ss2wwZ6yYhY93emZp1r3Fvn3WvcRefda9xF591r0FJWfc6s1nMZDaLdctmsW7ZLNYtm8W6xZVFlgQlZd1rUFLWvQYlZd1rUFLWvUo2i7Fls5jJbBYzGWOLLAlKyrrXoKSsew1KyrrXoKSsew1KyrrXoKSse9VsFkQVY4ssiW/erHuNb96r7jX/6ymZWZJyICdSkAupSEM6EjfFzXAz3Aw3w81wM9wMN8PNcDPcHDfHzXFz3Bw3x81xc9wcN8dt47Zxy98Tjo9G/p5wyoUMt/jAZA19Skdu5CmZNfTRQ9aXpMQt60vy3y4kbge3g9vB7ZTb9b7XHXIgJ1KQC6n0YEhHbiRueV+SciAnUpC45X1JSkM6ciNxm7hN3CZuE7e5kIxtMrbJ2CZueV8SUphJYSaFmRTcBDfBTXAT3ISZFMa2GNtibAu3xbotZnIxk4uZXLgt3BZuipvipsykMjZlbMrYFDdl3ZSZVGbSmEnDzXAz3Aw3w82YSWNsxtiMsTluzro5M+nMpDOTjpvj5rg5bo7bZiY3Y9uMbTM2siTf93pJZnIzk5uZJEvyfa+XxO3gRpYoWaJkiZIlSpbk+17T7dS6GVliZImRJfm+1+gh3/d6SUUa0pEbWWMzssTIEhu4DUEupCINidvAjSwxssTIEiNLjCwxssTIEpu4TUduJDNJlpjgJriRJUaWGFliZImRJUaWGFliC7fFupElRpYYWWILt4UbWWJkiZElRpYYWWJkiZElprgp60aWGFliZIkpboYbWWJkiZElRpYYWWJkiZElZrgZ60aWGFliZIk5bo4bWWJkiZElRpYYWWJkiZElxn2JcV9iZImRJUaWGPclxn2JkSVGlhhZYmSJkSVGlhhZctW9htth3cgSI0ucLLnqXk/IiRTkQirSkI7cyBrbVfcabmMgJ1KQC4nbwI0scbLEyRInS5wscbLEyZKr7jXcpiIN6ciNxE1wI0ucLHGyxMkSJ0ucLHGy5Kp7DTdh3cgSJ0ucLLnqXqOHhRtZ4mSJkyVOljhZ4mSJkyVX3Wu4KetGljhZ4mTJVfeaPeBGljhZ4mSJkyVOljhZ4mRJ1r2mm7FuZImTJU6WZN1r9uC4kSVOljhZ4mSJkyVOljhZcr3vNdw260aWOFniZInDOA7jOFniZImTJU6WOFniZImTJdf7XsPtsG5kiZMlTpY4jHO97zXlQE6kIBdSkYZ0ZLld73sNSZZssmSTJRvGud73mhI3smSTJZss2WTJJks2WXK97zXcpiAXUpGGxG3iRpZssmSTJZss2WTJJks2WXK97zXcxJHMJFmyyZIN41zve02JG1myyZJNlmyyZJMlmyzJ972mm7JuZMkmSzZZsmGcfN/rJXEjSzZZssmSTZZssmSTJfm+13Qz1o0s2WTJJks2jJPve70kbmTJJks2WbLJkk2WbLIk3/eabs66kSWbLNlkyYZxNlmyuS/Z3JdssmTDOPm+15Q8L9lkySZLNlmyuS/J972eEfKX26/zjJCO3Mhzy6h7veVATqQgf7n9OgYJqW/pIQ3pyI08Jd9ZcsuBnEhBLuTbLZ5PRt3rLR25kafkO0tuOZATKciFfLvFU8uoe72lIzfylHxnyS0HciIFuZBvN7OQhnTkRp6S7yy55UBOpCAX8u0WJ69R93pLR27kKfnOklsO5EQKciFxU9wUN8VNcTPcDDfDzXAz3Aw3w81wM9wMN8fNcXPcHDfHzXFz3Bw3x83DLTbOfiEHMtzi87AFuZCKNKTTw0bidl71b89A4nZwO7gd3A5uB7eD27ndxisKX0uPpm/Dt5amV9PatDXtTe+mD3q8mm6+ESy3lqZX09p08x3NdzTf0Xxn852j6Tbe2cY723hn842YubU3vZtu8yzNV5qvNF9pvtJ8pc2ztPFKG6+08UrzXW19V5vn1eZ5tXlezXc139V8V/NdzXe1edY2Xm3j1TZebb7a1lfbPGubZ23zrM1Xm681X2u+1nytzbO18Vobr7XxWvO1tr7W5tnbPHubZ2++3ny9+Xrz9ebrbZ69jdfbeHcb726+u63vbvO82zzvNs+7+e7mu5vvbr6n+Z42z6eN97Txnjbe03xPW9/T5vm0eW55NV74jtdoejYtTa+mtWlr2pveTTff8Wp6ND2blqab72i+La9Gy6vR8mq0vBotr0bLq9HyaszmO1fT2rQ17U0339l8W16Nllej5dVoeTVaXo2WV6Pl1ZDmK7vpNs8tr0bLq7Ga72q+La9Gy6vR8mq0vBotr0bLq9Hyamjz1ba+La9Gy6vR8mpo89Xm2/JqtLwaLa9Gy6vR8mq0vBotr4Y1X2vr2/JqtLwaLa+GN19vvi2vRsur0fJqtLwaLa9Gy6vR8mp4891tfVtejZZXo+XV2M13N9+WV6Pl1Wh5NVpejZZXo+XVaHk1TvM9bX1bXo2WV6Pl1TjN9+A7W17Nllez5dVseTVbXs2WV7Pl1XzhO1+7aeZ5tryaLa/maL6j+ba8mi2vZsur2fJqtryaLa9my6s5m++cTUvTq2ltuvnO5tvyara8mi2vZsur2fJqtryaLa+mNF+xpts8t7yaLa/mar6r+ba8mi2vZsur2fJqtryaLa9my6u5mq+29W15NVtezZZXU5uvNt+WV7Pl1Wx5NVtezZZXs+XVbHk1rflaW9+WV7Pl1Wx5Na35WvNteTVbXs2WV7Pl1Wx5NVtezZZX05uvt/VteTVbXs2WV3M33918W17Nllez5dVseTVbXs2WV7Pl1TzN97T1bXk1W17NllfzNN/TfFtezZZX0vJKWl5JyytpeSUtr+SFr7ysaW96N808S+NBGc235ZW0vJKWV9LySlpeScsraXklo/nOV9Oj6dm0NN18Z/NteSUtr6TllbS8kpZX0vJKWl6JNF9ZTbd5bnklLa+k8aBI8215JS2vpOWVtLySllfS8kpaXslqvqutb8sraXklLa+k8aBo8215JS2vpOWVtLySllfS8kpaXok1X2vr2/JKWl5JyytpPCjWfFteScsraXklLa+k5ZW0vJKWV+LN19v6trySllfS8koaD0rLK2n3V9Lur6TllTQelN18d/NteSUtr6TllbT7K8m80tThe1KvprVpa9qb3k2f0ivz6tKj6dm0NL2a1qataW96N918R/MdzXc039F8R/MdzXc039F8R/MdzXc239l8Z/OdzXc239l8Z/ONvHqfQ7z1bvqgI6/OTD2ank1L06tpbf1Y08038ur+9we9mu9qvqv5rua7mu9qvqv5rua72nhXG682X22+2ny1+Wrzjby6tTXtTbfxavONvLr1aHo2LU03X2u+1nyt+VrztTbP3sbrbbzexuvNN/Lq1m2evc2zt3n25uvNdzff3Xx3891tnncb727j3W28u/nutr67zfNp83zaPJ/me5rvab6n+Z7me9o8nzbew3ij2Lk0vlHuXFqaXk1r09b68aZ30813NN8xmp5NS9Or6eY7rGlvejfNPEcB9N3PbL6z+c7mO5vv1KbbeGcb72zjbXml8mq6zbO0eZY2zy2vVJqvNF9pvi2vtOWVtrzSllfa8kpX811tfVteacsrbXmlq/mu5tvySlteacsrbXmlLa+05ZW2vFJtvtrWt+WVtrzSlldqzdeab8srbXmlLa+05ZW2vNKWV9rySr35elvfllfa8kpbXqk3X2++La+05ZW2vNKWV9rySlteacsr3c13t/VteaUtr7TllZ7me5pvyytteaUtr7Tllba80pZX2vJKD772ejU9mp5NS9P42kubtqa96d0082wtr6zllbW8stF8x2pam7amvenmO5pvyytreWUtr6zllbW8spZX1vLK2v2Vtfsra3llLa+s5ZW1+ytr91fW8spaXlnLK2t5ZS2vrOWVtbyy1XxXW9+WV9byylpe2Wq+q/m2vLKWV9byylpeWcsra3llLa9Mm6+29W15ZS2vrOWVWfO15tvyylpeWcsra3llLa+s5ZW1vDJrvt7Wt+WVtbyyllfmzdebb8sra3llLa+s5ZW1vLKWV9byynbz3W19W15ZyytreWW7+e7m2/LKWl5ZyytreWUtr6zllbW8stN8T1vfllfe8spbXvkLX39J06tpbdqa9qZ304zXW175aL5jNi1Nr6a16eY7mm/LK2955S2vvOWVt7zyllfe8spn853WtDe9m27z3HjQGw96yytveeUtr7zllbe88pZX3vLKpfmutr4tr7zllbe88saDvppvyytveeUtr7zllbe88pZX3vLKtflqW9+WV97yylteeeNB1+bb8spbXnnLK2955S2vvOWVt7xya77W1rfllbe88pZX3njQvfm2vPKWV97yylteecsrb3nlLa98N9/d1rfllbe88pZX3njQd/NteeUtr7zllbe88pZX3vLKW175ab6nrW/LK2955S2vduPB/RpNz6al6dW0Nm1Ne9O76eY7Xk2PpmfT0nTzHc235dVuebVbXu2WV7vl1W55tVte7dl852pam7amvenm2/Jqt/ur3e6vdsur3XhwS/Ntz692y6vd8mq3vNrt/mpnXq3U4btTz6al6dW0Nm1Ne9O76YPOvLp089Xmq81Xm682X22+2ny1+WrzteZrzdearzVfa77WfK35WvO15mvN15uvN19vvt58vfm+82q934bz1ta0N73fOj8D77y69TuvSo+mZ9NCP++8Kt18t7V/70033918T/M9zfc039N8T/M9zfe08Z423tN8D75RfF56ND2blqZX09q0NY1vFKGXPujxano03XxH8x3NdzTf0XyHN72bbuOdbbyz+c7ZtDS9mtamm+9svrP5zuYrzVfaPEsbr7TxShuvNF+xpts8S5tnafO8mu9qvqv5rua7mu9q87zaeFcb72rjXc1X2/pqm2dt86xtnrX5avPV5qvNV5uvtnm2Nl5r47U2Xmu+1tbX2jxbm2dr82zN15qvN19vvt58vc2zt/F6G6+38ba8Ot7W19s87zbPu81zy6uzm+9uvrv5trw6La9Oy6vT8uq0vDqn+Z62vi2vTsur0/LqnOZ7mm/Lq0NejRd5NV7k1XiRV+NFXo0XeTVer/Idr5c17U3vpg96NN/RfEfzHc13NF/yarzIq/Eir8aLvBqv0Xznq+nR9Gxamm6+s/nO5jub72y+s82ztPFKG6+08UrzldV0m2dp8yxtnqX5SvNdzXc139V8V5vn1ca72nhXG+9qvqut72rzrG2etc2zNl9tvtp8tflq89U2z9rGq2281sZrzdfa+lqbZ2vzbG2erfla87Xma83Xm6+3efY2Xm/j9TZeb77e1tfbPHubZ2/zvJvvbr67+e7mu5vvbvO823h3G+9u493N97T1PW2eT5vn0+b5NN/TfE/zPc33NN+WV6Pl1Wh5NVpejRe+47Wa1qataW96t36ab8ur0fJqtLwaLa9Gy6vR8mq0vBqj+Y7dNPM8Wl6NlldjNt/ZfFtejZZXo+XVaHk1Wl6Nllej5dWQ5iuz6TbPLa9Gy6shzVeab8ur0fJqtLwaLa9Gy6vR8mq0vBqr+a62vi2vRsur0fJqaPPV5tvyarS8Gi2vRsur0fJqtLwaLa+GNl9r69vyarS8Gi2vhjVfa74tr0bLq9HyarS8Gi2vRsur0fJqePP1tr4tr0bLq9Hyanjz9ebb8mq0vBotr0bLq9HyarS8Gi2vxm6+u61vy6vR8mq0vBqn+Z7m2/JqtLwaLa9Gy6vR8mq0vJotr+YL3/maTUvTq2lt2lo/3vRuuvm2vJotr2bLq9nyara8mqP5Dmvam95NM89zNt/ZfFtezZZXs+XVbHk1W17Nllez5dWczVdeTbd5bnk1W15Nab7SfFtezZZXs+XVbHk1W17Nllez5dVczXe19W15NVtezZZXczXf1XxbXs2WV7Pl1Wx5NVtezZZXs+XV1OarbX1bXs2WV7Pl1bTma8235dVseTVbXs2WV7Pl1Wx5NVteTW++3ta35dVseTVbXk1vvi2vZru/mu3+ara8mrv57ua7m2/Lq9nyara8mu3+amZeSeq3r+R/j7y69Wh6Ni1Nr6a1aWvam95N4xv17aVH07NpaXo1rU1b0970brr5juY7mu9ovpFXslKH70mtTVvT3vRu+qAjr249mp5NS9Nv3/erYN9am7amvend9EFHXt16ND2blqbfvqaptWlr2pveTR905NWtR9OzaWn67es7tTZtTXvTu+mDjry69Wh6Ni1Nv333pbXpt++R1N70bvqgI69uPZqeTUvTq2ltuvla87Xma83Xm683X2++3ny9+Xrz9ebrzdebrzff3Xx3893Ndzff3Xx3893Ndzff3Xx38428OvmZiby69Ww6fC31alqbtqa96d36OaXX69X0qH8f9e2lpenVtDZtTXvTu/XffEfzHaPp2XTzHc13NN/RfEfzjby69UFHXt26jXc238irW6+mtWlruvnO5jubrzRfab7S5lnaeKWNV9p4pflGXt26zbO0eV5tnlfzXc13Nd/VfFfzXW2eVxvvauNdbbzafLWtr7Z51jbP2uZZm682X22+2ny1+VqbZ2vjtTZea+O15mttfa3Ns7V5tjbP1ny9+Xrz9ebrzdfbPHsbr7fxehuvN19v67vbPO82z7vN826+u/nu5rub726+u83zbuM9bbynjbfl1TptfU+b59Pm+bR5bnm1TvM9+Orr1fRoejYtTa+mtWl89eVN76aZZ215paP5jubb8kpbXmnLK215pS2vtOWVtrzS2XznaHo2LU2vppvvbL4tr7Tllba80pZX2vJKW15pyyuV5ivadJvnllfa8kql+a7m2/JKW15pyytteaUtr7Tllba80tV8V1vfllfa8kpbXqk2X22+La+05ZW2vNKWV9rySlteacsrteZrbX1bXmnLK215pdZ8rfm2vNKWV9rySlteacsrbXmlLa/Um6+39W15pS2vtOWV7ua7m2/LK215pS2vtOWVtrzSllfa8krb/ZW2+ytteaUtr7Tllbb7K233V9rySlteacsra3llLa+s5ZW1vLIXvvbSpq1pb3o33XxH8215ZS2vrOWVtbyyllfW8spaXtlovoP1tZZX1vLKWl7ZbL6z+ba8spZX1vLKWl5ZyytreWUtr0yar0jTbZ5bXlnLK5PmK8235ZW1vLKWV9byylpeWcsra3llq/mutr4tr6zllbW8Mm2+2nxbXlnLK2t5ZS2vrOWVtbyylldmzdfa+ra8spZX1vLKrPla8215ZS2vrOWVtbyyllfW8spaXpk3X2/r2/LKWl5Zyyvz5rubb8sra3llLa+s5ZW1vLKWV9byynbz3W19W15ZyytreWWNB63xoLW8spZX1vLKWl5ZyytveeUtr/yFr7+k6dW0Nm1Ne+tnN918W155yytveeUtr7zllbe88tF8hze9m2aeveWVNx702XxbXnnLK2955S2vvOWVt7zyllcuzVdG022eW155yytvPOjSfFteecsrb3nlLa+85ZW3vPKWV76a72rr2/LKW155yytvPOjafFteecsrb3nlLa+85ZW3vPKWV67NV9v6trzyllfe8sobD7o135ZX3vLKW155yytveeUtr7zllXvz9ba+La+85ZW3vPLGg+7Nt+WVt7zyllfe8spbXnnLK2955bv57ra+La+85ZW3vPLGg97yytv9lbf7K2955Y0H/TTf9vzKW17tlle75dVu91c782qn/uX7CxZTa9PWtDe9mz7od16VHk3PpqXp5jua72i+o/mO5jua72y+s/nO5jub72y+s/nO5jub72y+s/lK85XmK81Xmq80X2m+0nyl+Ur4rtQHvV5Nh6+mnk1L06tpbdpaP950812Hf6+vppuvNl9tvtp8tflq89Xmq81X23itjdearzVfa77WfK35mjXtTe+m23i9+fpoejYtTa+mm683X2++3ny9+e42z7uNd7fx7jbe3Xy3Nt3mebd53m2ed/M9zfc039N8T/M9bZ5PG+9p4z1tvKf5HtY36ttLj6Zn0/ie12pam7amvendNOM949X0aLr5Dml6Na1NW9PNdzTf0Xxn853Nd86m23hnG+9s453Nd3rTu+k2z9LmWZqvNF9pvtJ8pflKm2dp45U2XmnjbXl1Vlvf1eZ5tXlebZ5bXp3VfFfzXc235dVpeXVaXp2WV6fl1dHmq219W16dllen5dXR5mvNt+XVaXl1Wl6dllen5dVpeXVaXh1rvtbWt+XVaXl1Wl4db77efFtenZZXp+XVaXl1Wl6dllen5dXZzXe39W15dVpenZZXZzff3XxbXp2WV6fl1Wl5dVpenZZXp+XVOc33tPVteXXIq/kir+brVb7z9ZpNS9OraW3amvamd9MHPZrvGE3PpqXp1XTzHc13NN/RfEfzJa/ma7bxzjbe2cY7m+/Upq1pb3o33Xyl+UrzleYrzVfaPEsbr7TxShuvNF9p67vaPK82z6vN82q+q/mu5rua72q+q83zauPVNl5t49Xmq219tc2ztnnWNs/afLX5avO15mvN19o8WxuvtfFaG681X2vra22erc2zt3n25uvN15uvN19vvt7m2dt4vY3X23h3891tfXeb593mebd53s13N9/dfHfz3c33tHk+bbynjfe08Z7me9r6njbPp83zafN88B2vV9Oj6dm0NL2a1qataW8a3/FifUfLq9HyarS8GqP5jubb8mq0vBotr0bLq9HyarS8Gi2vxmy+U5peTWvT1nTznc235dVoeTVaXo2WV6Pl1Wh5NVpeDWm+4k23eW55NVpejdV8V/NteTVaXo2WV6Pl1Wh5NVpejZZXQ5uvtvVteTVaXo2WV0Obrzbfllej5dVoeTVaXo2WV6Pl1Wh5Naz5Wlvfllej5dVoeTWs+XrzbXk1Wl6Nllej5dVoeTVaXo2WV8Obr7f1bXk1Wl6NlldjN9/dfFtejZZXo+XVaHk1Wl6Nllej5dU4zfe09W15NVpejZZX4zTf03xbXs2WV7Pl1Wx5NVtezZZXs+XVfOE7X970bpp5ni2v5mi+o/m2vJotr2bLq9nyara8mi2vZsurOZvvHE3PpqXp1XTznc235dVseTVbXs2WV7Pl1Wx5NVteTWm+ok23eW55NVteTWm+La9mu7+a7f5qtryaq/mu5ruab8ur2fJqtrya7f5qZl556rfvGKml6dW0Nm1Ne9O76YOOvLr1aLr5WvO15mvN15qvNV9rvtZ8vfl68/Xm683Xm683X2++3ny9+Xrz3c13N9/dfHfz3c13N9/IqyGpvenddPjmZyDy6taj6dm0NL3oJ/Lq1s038ur+97tpfKO+vfRoejYtTeMb9e2lrWlvejfdfEfzHc13NN/RfCOvbq1NW9PedPONvLp05NWtR9Oz6eY7m+9svrP5zuY7d9NtvNLGK2280nwjr27d5lnaPEubZ2m+0nyl+a7mu5rvavO82nhXG+9q413Nd7X1XW2eV5tnbfOszVebrzZfbb7afLXNs7bxahuvtvFa87W2vtbm2do8W5tna77WfK35WvO15uttnr2N19t4vY3Xm6+39fU2z97m2ds8e/PdzXc33918d/PdbZ53G+9u491tvC2vZLf1PW2eT5vn0+a55ZWc5nua72m+La+k5ZW0vFotr1bLq/XCd72k6dW0Nm1Ne+tnN918W16tller5dVqebVaXq2WV2s03+FN76aZ59Xyas3mO5tvy6vV8mq1vFotr1bLq9XyarW8WtJ8ZTTd5rnl1Wp5taT5SvNtebVaXq2WV6vl1Wp5tVperZZXazXf1da35dVqebVaXq3VfLX5trxaLa9Wy6vV8mq1vFotr1bLq6XNV9v6trxaLa9Wy6tlzdeab8ur1fJqtbxaLa9Wy6vV8mq1vFrefL2tb8ur1fJqtbxa3ny9+ba8Wi2vVsur1fJqtbxaLa9Wy6vV7q9Wu79aLa9Wy6vV8mq1+6vV7q9Wy6vV8mq1vFotr1bLq9XyarW80he++hpNz6al6dW0tn6saW96N918W15pyytteaUtr3Q036FNW9Pe9G66+c7m2/JKW15pyytteaUtr7Tllba80tl8J+urLa+05ZW2vFJpvtJ8W15pyytteaUtr7Tllba80pZXuprvauvb8kpbXmnLK13NdzXfllfa8kpbXmnLK215pS2vtOWVavPVtr4tr7Tllba8Umu+1nxbXmnLK215pS2vtOWVtrzSllfqzdfb+ra80pZX2vJKvfl68215pS2vtOWVtrzSllfa8kpbXuluvrutb8srbXmlLa+08aA2HtSWV9rySlteacsrbXmlLa+05ZWe5ntYX2t5ZS2vrOWVNR6012pam7amvendNOO1llfW8spG8x3S9Gpam7amm+9ovi2vrOWVtbyyllfW8spaXlnLK5vNd3rTu+k2zy2vrPGgSfNteWUtr6zllbW8spZX1vLKWl7Zar6rrW/LK2t5ZS2vrPGgrebb8spaXlnLK2t5ZS2vrOWVtbwybb7a1rfllbW8spZX1njQrPm2vLKWV9byylpeWcsra3llLa/Mmq+19W15ZS2vrOWVNR40b74tr6zllbW8spZX1vLKWl5ZyyvbzXe39W15ZS2vrOWVNR60llfW7q+s3V9ZyytrPGin+bbnV9byylpeWcsra/dXlnn1rgWdUd/+60s19Wh6Ni1Nr6a1aWvam95NH/RovqP5juY7mu9ovqP5juY7mu9ovqP5zuY7m+9svrP5Rl4tT/32jfcnzKhvL+1N76YPOvLq1qPp2bQ0vZp++8b7E2bUt5f2pnfTBx15devR9Gxaml5Nv33j/Qkz6ttLe9O76YOOvLr1aHo2LU2vpt++8f7nGfXtpb3p3fRBR17dejQ9m5amV9O/fE1y3d95Vdqb3k0f9DuvSo+mZ9PS9Gq6+Xrz9ebrzdeb726+O3zzs/rOq19fSqml6dW0Nm1Ne9O76YN+51Xp0fTbV/Pz886r0qtpbdqa9qZ306d01LeXHk2/fW2nlqZX09q0Ne1N76YP+p1XpUfTb989UkvTq2lt2pr2pnfTB/3Oq9Ij9H/+w1/+33/697/+03/927/8r7/8l//z63/+9//9r//8H3/9t3+9/ud//H//5/3//Nd//+vf/vbX//GP//Pf/+2f/+W//e9//5d//Nu//XP8f//5//zn/w8=",
147
+ "file_map": {
148
+ "18": {
149
+ "source": "pub mod bn254;\nuse crate::{runtime::is_unconstrained, static_assert};\nuse bn254::lt as bn254_lt;\n\nimpl Field {\n /// Asserts that `self` can be represented in `bit_size` bits.\n ///\n /// # Failures\n /// Causes a constraint failure for `Field` values exceeding `2^{bit_size}`.\n // docs:start:assert_max_bit_size\n pub fn assert_max_bit_size<let BIT_SIZE: u32>(self) {\n // docs:end:assert_max_bit_size\n static_assert(\n BIT_SIZE < modulus_num_bits() as u32,\n \"BIT_SIZE must be less than modulus_num_bits\",\n );\n __assert_max_bit_size(self, BIT_SIZE);\n }\n\n /// Decomposes `self` into its little endian bit decomposition as a `[u1; N]` array.\n /// This array will be zero padded should not all bits be necessary to represent `self`.\n ///\n /// # Failures\n /// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting array will not\n /// be able to represent the original `Field`.\n ///\n /// # Safety\n /// The bit decomposition returned is canonical and is guaranteed to not overflow the modulus.\n // docs:start:to_le_bits\n pub fn to_le_bits<let N: u32>(self: Self) -> [u1; N] {\n // docs:end:to_le_bits\n let bits = __to_le_bits(self);\n\n if !is_unconstrained() {\n // Ensure that the byte decomposition does not overflow the modulus\n let p = modulus_le_bits();\n assert(bits.len() <= p.len());\n let mut ok = bits.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bits[N - 1 - i] != p[N - 1 - i]) {\n assert(p[N - 1 - i] == 1);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bits\n }\n\n /// Decomposes `self` into its big endian bit decomposition as a `[u1; N]` array.\n /// This array will be zero padded should not all bits be necessary to represent `self`.\n ///\n /// # Failures\n /// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting array will not\n /// be able to represent the original `Field`.\n ///\n /// # Safety\n /// The bit decomposition returned is canonical and is guaranteed to not overflow the modulus.\n // docs:start:to_be_bits\n pub fn to_be_bits<let N: u32>(self: Self) -> [u1; N] {\n // docs:end:to_be_bits\n let bits = __to_be_bits(self);\n\n if !is_unconstrained() {\n // Ensure that the decomposition does not overflow the modulus\n let p = modulus_be_bits();\n assert(bits.len() <= p.len());\n let mut ok = bits.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bits[i] != p[i]) {\n assert(p[i] == 1);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bits\n }\n\n /// Decomposes `self` into its little endian byte decomposition as a `[u8;N]` array\n /// This array will be zero padded should not all bytes be necessary to represent `self`.\n ///\n /// # Failures\n /// The length N of the array must be big enough to contain all the bytes of the 'self',\n /// and no more than the number of bytes required to represent the field modulus\n ///\n /// # Safety\n /// The result is ensured to be the canonical decomposition of the field element\n // docs:start:to_le_bytes\n pub fn to_le_bytes<let N: u32>(self: Self) -> [u8; N] {\n // docs:end:to_le_bytes\n static_assert(\n N <= modulus_le_bytes().len(),\n \"N must be less than or equal to modulus_le_bytes().len()\",\n );\n // Compute the byte decomposition\n let bytes = self.to_le_radix(256);\n\n if !is_unconstrained() {\n // Ensure that the byte decomposition does not overflow the modulus\n let p = modulus_le_bytes();\n assert(bytes.len() <= p.len());\n let mut ok = bytes.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bytes[N - 1 - i] != p[N - 1 - i]) {\n assert(bytes[N - 1 - i] < p[N - 1 - i]);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bytes\n }\n\n /// Decomposes `self` into its big endian byte decomposition as a `[u8;N]` array of length required to represent the field modulus\n /// This array will be zero padded should not all bytes be necessary to represent `self`.\n ///\n /// # Failures\n /// The length N of the array must be big enough to contain all the bytes of the 'self',\n /// and no more than the number of bytes required to represent the field modulus\n ///\n /// # Safety\n /// The result is ensured to be the canonical decomposition of the field element\n // docs:start:to_be_bytes\n pub fn to_be_bytes<let N: u32>(self: Self) -> [u8; N] {\n // docs:end:to_be_bytes\n static_assert(\n N <= modulus_le_bytes().len(),\n \"N must be less than or equal to modulus_le_bytes().len()\",\n );\n // Compute the byte decomposition\n let bytes = self.to_be_radix(256);\n\n if !is_unconstrained() {\n // Ensure that the byte decomposition does not overflow the modulus\n let p = modulus_be_bytes();\n assert(bytes.len() <= p.len());\n let mut ok = bytes.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bytes[i] != p[i]) {\n assert(bytes[i] < p[i]);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bytes\n }\n\n fn to_le_radix<let N: u32>(self: Self, radix: u32) -> [u8; N] {\n // Brillig does not need an immediate radix\n if !crate::runtime::is_unconstrained() {\n static_assert(1 < radix, \"radix must be greater than 1\");\n static_assert(radix <= 256, \"radix must be less than or equal to 256\");\n static_assert(radix & (radix - 1) == 0, \"radix must be a power of 2\");\n }\n __to_le_radix(self, radix)\n }\n\n fn to_be_radix<let N: u32>(self: Self, radix: u32) -> [u8; N] {\n // Brillig does not need an immediate radix\n if !crate::runtime::is_unconstrained() {\n static_assert(1 < radix, \"radix must be greater than 1\");\n static_assert(radix <= 256, \"radix must be less than or equal to 256\");\n static_assert(radix & (radix - 1) == 0, \"radix must be a power of 2\");\n }\n __to_be_radix(self, radix)\n }\n\n // Returns self to the power of the given exponent value.\n // Caution: we assume the exponent fits into 32 bits\n // using a bigger bit size impacts negatively the performance and should be done only if the exponent does not fit in 32 bits\n pub fn pow_32(self, exponent: Field) -> Field {\n let mut r: Field = 1;\n let b: [u1; 32] = exponent.to_le_bits();\n\n for i in 1..33 {\n r *= r;\n r = (b[32 - i] as Field) * (r * self) + (1 - b[32 - i] as Field) * r;\n }\n r\n }\n\n // Parity of (prime) Field element, i.e. sgn0(x mod p) = 0 if x `elem` {0, ..., p-1} is even, otherwise sgn0(x mod p) = 1.\n pub fn sgn0(self) -> u1 {\n self as u1\n }\n\n pub fn lt(self, another: Field) -> bool {\n if crate::compat::is_bn254() {\n bn254_lt(self, another)\n } else {\n lt_fallback(self, another)\n }\n }\n\n /// Convert a little endian byte array to a field element.\n /// If the provided byte array overflows the field modulus then the Field will silently wrap around.\n pub fn from_le_bytes<let N: u32>(bytes: [u8; N]) -> Field {\n static_assert(\n N <= modulus_le_bytes().len(),\n \"N must be less than or equal to modulus_le_bytes().len()\",\n );\n let mut v = 1;\n let mut result = 0;\n\n for i in 0..N {\n result += (bytes[i] as Field) * v;\n v = v * 256;\n }\n result\n }\n\n /// Convert a big endian byte array to a field element.\n /// If the provided byte array overflows the field modulus then the Field will silently wrap around.\n pub fn from_be_bytes<let N: u32>(bytes: [u8; N]) -> Field {\n let mut v = 1;\n let mut result = 0;\n\n for i in 0..N {\n result += (bytes[N - 1 - i] as Field) * v;\n v = v * 256;\n }\n result\n }\n}\n\n#[builtin(apply_range_constraint)]\nfn __assert_max_bit_size(value: Field, bit_size: u32) {}\n\n// `_radix` must be less than 256\n#[builtin(to_le_radix)]\nfn __to_le_radix<let N: u32>(value: Field, radix: u32) -> [u8; N] {}\n\n// `_radix` must be less than 256\n#[builtin(to_be_radix)]\nfn __to_be_radix<let N: u32>(value: Field, radix: u32) -> [u8; N] {}\n\n/// Decomposes `self` into its little endian bit decomposition as a `[u1; N]` array.\n/// This array will be zero padded should not all bits be necessary to represent `self`.\n///\n/// # Failures\n/// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting array will not\n/// be able to represent the original `Field`.\n///\n/// # Safety\n/// Values of `N` equal to or greater than the number of bits necessary to represent the `Field` modulus\n/// (e.g. 254 for the BN254 field) allow for multiple bit decompositions. This is due to how the `Field` will\n/// wrap around due to overflow when verifying the decomposition.\n#[builtin(to_le_bits)]\nfn __to_le_bits<let N: u32>(value: Field) -> [u1; N] {}\n\n/// Decomposes `self` into its big endian bit decomposition as a `[u1; N]` array.\n/// This array will be zero padded should not all bits be necessary to represent `self`.\n///\n/// # Failures\n/// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting array will not\n/// be able to represent the original `Field`.\n///\n/// # Safety\n/// Values of `N` equal to or greater than the number of bits necessary to represent the `Field` modulus\n/// (e.g. 254 for the BN254 field) allow for multiple bit decompositions. This is due to how the `Field` will\n/// wrap around due to overflow when verifying the decomposition.\n#[builtin(to_be_bits)]\nfn __to_be_bits<let N: u32>(value: Field) -> [u1; N] {}\n\n#[builtin(modulus_num_bits)]\npub comptime fn modulus_num_bits() -> u64 {}\n\n#[builtin(modulus_be_bits)]\npub comptime fn modulus_be_bits() -> [u1] {}\n\n#[builtin(modulus_le_bits)]\npub comptime fn modulus_le_bits() -> [u1] {}\n\n#[builtin(modulus_be_bytes)]\npub comptime fn modulus_be_bytes() -> [u8] {}\n\n#[builtin(modulus_le_bytes)]\npub comptime fn modulus_le_bytes() -> [u8] {}\n\n/// An unconstrained only built in to efficiently compare fields.\n#[builtin(field_less_than)]\nunconstrained fn __field_less_than(x: Field, y: Field) -> bool {}\n\npub(crate) unconstrained fn field_less_than(x: Field, y: Field) -> bool {\n __field_less_than(x, y)\n}\n\n// Convert a 32 byte array to a field element by modding\npub fn bytes32_to_field(bytes32: [u8; 32]) -> Field {\n // Convert it to a field element\n let mut v = 1;\n let mut high = 0 as Field;\n let mut low = 0 as Field;\n\n for i in 0..16 {\n high = high + (bytes32[15 - i] as Field) * v;\n low = low + (bytes32[16 + 15 - i] as Field) * v;\n v = v * 256;\n }\n // Abuse that a % p + b % p = (a + b) % p and that low < p\n low + high * v\n}\n\nfn lt_fallback(x: Field, y: Field) -> bool {\n if is_unconstrained() {\n // Safety: unconstrained context\n unsafe {\n field_less_than(x, y)\n }\n } else {\n let x_bytes: [u8; 32] = x.to_le_bytes();\n let y_bytes: [u8; 32] = y.to_le_bytes();\n let mut x_is_lt = false;\n let mut done = false;\n for i in 0..32 {\n if (!done) {\n let x_byte = x_bytes[32 - 1 - i] as u8;\n let y_byte = y_bytes[32 - 1 - i] as u8;\n let bytes_match = x_byte == y_byte;\n if !bytes_match {\n x_is_lt = x_byte < y_byte;\n done = true;\n }\n }\n }\n x_is_lt\n }\n}\n\nmod tests {\n use crate::{panic::panic, runtime, static_assert};\n use super::{\n field_less_than, modulus_be_bits, modulus_be_bytes, modulus_le_bits, modulus_le_bytes,\n };\n\n #[test]\n // docs:start:to_be_bits_example\n fn test_to_be_bits() {\n let field = 2;\n let bits: [u1; 8] = field.to_be_bits();\n assert_eq(bits, [0, 0, 0, 0, 0, 0, 1, 0]);\n }\n // docs:end:to_be_bits_example\n\n #[test]\n // docs:start:to_le_bits_example\n fn test_to_le_bits() {\n let field = 2;\n let bits: [u1; 8] = field.to_le_bits();\n assert_eq(bits, [0, 1, 0, 0, 0, 0, 0, 0]);\n }\n // docs:end:to_le_bits_example\n\n #[test]\n // docs:start:to_be_bytes_example\n fn test_to_be_bytes() {\n let field = 2;\n let bytes: [u8; 8] = field.to_be_bytes();\n assert_eq(bytes, [0, 0, 0, 0, 0, 0, 0, 2]);\n assert_eq(Field::from_be_bytes::<8>(bytes), field);\n }\n // docs:end:to_be_bytes_example\n\n #[test]\n // docs:start:to_le_bytes_example\n fn test_to_le_bytes() {\n let field = 2;\n let bytes: [u8; 8] = field.to_le_bytes();\n assert_eq(bytes, [2, 0, 0, 0, 0, 0, 0, 0]);\n assert_eq(Field::from_le_bytes::<8>(bytes), field);\n }\n // docs:end:to_le_bytes_example\n\n #[test]\n // docs:start:to_be_radix_example\n fn test_to_be_radix() {\n // 259, in base 256, big endian, is [1, 3].\n // i.e. 3 * 256^0 + 1 * 256^1\n let field = 259;\n\n // The radix (in this example, 256) must be a power of 2.\n // The length of the returned byte array can be specified to be\n // >= the amount of space needed.\n let bytes: [u8; 8] = field.to_be_radix(256);\n assert_eq(bytes, [0, 0, 0, 0, 0, 0, 1, 3]);\n assert_eq(Field::from_be_bytes::<8>(bytes), field);\n }\n // docs:end:to_be_radix_example\n\n #[test]\n // docs:start:to_le_radix_example\n fn test_to_le_radix() {\n // 259, in base 256, little endian, is [3, 1].\n // i.e. 3 * 256^0 + 1 * 256^1\n let field = 259;\n\n // The radix (in this example, 256) must be a power of 2.\n // The length of the returned byte array can be specified to be\n // >= the amount of space needed.\n let bytes: [u8; 8] = field.to_le_radix(256);\n assert_eq(bytes, [3, 1, 0, 0, 0, 0, 0, 0]);\n assert_eq(Field::from_le_bytes::<8>(bytes), field);\n }\n // docs:end:to_le_radix_example\n\n #[test(should_fail_with = \"radix must be greater than 1\")]\n fn test_to_le_radix_1() {\n // this test should only fail in constrained mode\n if !runtime::is_unconstrained() {\n let field = 2;\n let _: [u8; 8] = field.to_le_radix(1);\n } else {\n panic(\"radix must be greater than 1\");\n }\n }\n\n // Updated test to account for Brillig restriction that radix must be greater than 2\n #[test(should_fail_with = \"radix must be greater than 1\")]\n fn test_to_le_radix_brillig_1() {\n // this test should only fail in constrained mode\n if !runtime::is_unconstrained() {\n let field = 1;\n let _: [u8; 8] = field.to_le_radix(1);\n } else {\n panic(\"radix must be greater than 1\");\n }\n }\n\n #[test(should_fail_with = \"radix must be a power of 2\")]\n fn test_to_le_radix_3() {\n // this test should only fail in constrained mode\n if !runtime::is_unconstrained() {\n let field = 2;\n let _: [u8; 8] = field.to_le_radix(3);\n } else {\n panic(\"radix must be a power of 2\");\n }\n }\n\n #[test]\n fn test_to_le_radix_brillig_3() {\n // this test should only fail in constrained mode\n if runtime::is_unconstrained() {\n let field = 1;\n let out: [u8; 8] = field.to_le_radix(3);\n let mut expected = [0; 8];\n expected[0] = 1;\n assert(out == expected, \"unexpected result\");\n }\n }\n\n #[test(should_fail_with = \"radix must be less than or equal to 256\")]\n fn test_to_le_radix_512() {\n // this test should only fail in constrained mode\n if !runtime::is_unconstrained() {\n let field = 2;\n let _: [u8; 8] = field.to_le_radix(512);\n } else {\n panic(\"radix must be less than or equal to 256\")\n }\n }\n\n #[test(should_fail_with = \"Field failed to decompose into specified 16 limbs\")]\n unconstrained fn not_enough_limbs_brillig() {\n let _: [u8; 16] = 0x100000000000000000000000000000000.to_le_bytes();\n }\n\n #[test(should_fail_with = \"Field failed to decompose into specified 16 limbs\")]\n fn not_enough_limbs() {\n let _: [u8; 16] = 0x100000000000000000000000000000000.to_le_bytes();\n }\n\n #[test]\n unconstrained fn test_field_less_than() {\n assert(field_less_than(0, 1));\n assert(field_less_than(0, 0x100));\n assert(field_less_than(0x100, 0 - 1));\n assert(!field_less_than(0 - 1, 0));\n }\n\n #[test]\n unconstrained fn test_large_field_values_unconstrained() {\n let large_field = 0xffffffffffffffff;\n\n let bits: [u1; 64] = large_field.to_le_bits();\n assert_eq(bits[0], 1);\n\n let bytes: [u8; 8] = large_field.to_le_bytes();\n assert_eq(Field::from_le_bytes::<8>(bytes), large_field);\n\n let radix_bytes: [u8; 8] = large_field.to_le_radix(256);\n assert_eq(Field::from_le_bytes::<8>(radix_bytes), large_field);\n }\n\n #[test]\n fn test_large_field_values() {\n let large_val = 0xffffffffffffffff;\n\n let bits: [u1; 64] = large_val.to_le_bits();\n assert_eq(bits[0], 1);\n\n let bytes: [u8; 8] = large_val.to_le_bytes();\n assert_eq(Field::from_le_bytes::<8>(bytes), large_val);\n\n let radix_bytes: [u8; 8] = large_val.to_le_radix(256);\n assert_eq(Field::from_le_bytes::<8>(radix_bytes), large_val);\n }\n\n #[test]\n fn test_decomposition_edge_cases() {\n let zero_bits: [u1; 8] = 0.to_le_bits();\n assert_eq(zero_bits, [0; 8]);\n\n let zero_bytes: [u8; 8] = 0.to_le_bytes();\n assert_eq(zero_bytes, [0; 8]);\n\n let one_bits: [u1; 8] = 1.to_le_bits();\n let expected: [u1; 8] = [1, 0, 0, 0, 0, 0, 0, 0];\n assert_eq(one_bits, expected);\n\n let pow2_bits: [u1; 8] = 4.to_le_bits();\n let expected: [u1; 8] = [0, 0, 1, 0, 0, 0, 0, 0];\n assert_eq(pow2_bits, expected);\n }\n\n #[test]\n fn test_pow_32() {\n assert_eq(2.pow_32(3), 8);\n assert_eq(3.pow_32(2), 9);\n assert_eq(5.pow_32(0), 1);\n assert_eq(7.pow_32(1), 7);\n\n assert_eq(2.pow_32(10), 1024);\n\n assert_eq(0.pow_32(5), 0);\n assert_eq(0.pow_32(0), 1);\n\n assert_eq(1.pow_32(100), 1);\n }\n\n #[test]\n fn test_sgn0() {\n assert_eq(0.sgn0(), 0);\n assert_eq(2.sgn0(), 0);\n assert_eq(4.sgn0(), 0);\n assert_eq(100.sgn0(), 0);\n\n assert_eq(1.sgn0(), 1);\n assert_eq(3.sgn0(), 1);\n assert_eq(5.sgn0(), 1);\n assert_eq(101.sgn0(), 1);\n }\n\n #[test(should_fail_with = \"Field failed to decompose into specified 8 limbs\")]\n fn test_bit_decomposition_overflow() {\n // 8 bits can't represent large field values\n let large_val = 0x1000000000000000;\n let _: [u1; 8] = large_val.to_le_bits();\n }\n\n #[test(should_fail_with = \"Field failed to decompose into specified 4 limbs\")]\n fn test_byte_decomposition_overflow() {\n // 4 bytes can't represent large field values\n let large_val = 0x1000000000000000;\n let _: [u8; 4] = large_val.to_le_bytes();\n }\n\n #[test]\n fn test_to_from_be_bytes_bn254_edge_cases() {\n if crate::compat::is_bn254() {\n // checking that decrementing this byte produces the expected 32 BE bytes for (modulus - 1)\n let mut p_minus_1_bytes: [u8; 32] = modulus_be_bytes().as_array();\n assert(p_minus_1_bytes[32 - 1] > 0);\n p_minus_1_bytes[32 - 1] -= 1;\n\n let p_minus_1 = Field::from_be_bytes::<32>(p_minus_1_bytes);\n assert_eq(p_minus_1 + 1, 0);\n\n // checking that converting (modulus - 1) from and then to 32 BE bytes produces the same bytes\n let p_minus_1_converted_bytes: [u8; 32] = p_minus_1.to_be_bytes();\n assert_eq(p_minus_1_converted_bytes, p_minus_1_bytes);\n\n // checking that incrementing this byte produces 32 BE bytes for (modulus + 1)\n let mut p_plus_1_bytes: [u8; 32] = modulus_be_bytes().as_array();\n assert(p_plus_1_bytes[32 - 1] < 255);\n p_plus_1_bytes[32 - 1] += 1;\n\n let p_plus_1 = Field::from_be_bytes::<32>(p_plus_1_bytes);\n assert_eq(p_plus_1, 1);\n\n // checking that converting p_plus_1 to 32 BE bytes produces the same\n // byte set to 1 as p_plus_1_bytes and otherwise zeroes\n let mut p_plus_1_converted_bytes: [u8; 32] = p_plus_1.to_be_bytes();\n assert_eq(p_plus_1_converted_bytes[32 - 1], 1);\n p_plus_1_converted_bytes[32 - 1] = 0;\n assert_eq(p_plus_1_converted_bytes, [0; 32]);\n\n // checking that Field::from_be_bytes::<32> on the Field modulus produces 0\n assert_eq(modulus_be_bytes().len(), 32);\n let p = Field::from_be_bytes::<32>(modulus_be_bytes().as_array());\n assert_eq(p, 0);\n\n // checking that converting 0 to 32 BE bytes produces 32 zeroes\n let p_bytes: [u8; 32] = 0.to_be_bytes();\n assert_eq(p_bytes, [0; 32]);\n }\n }\n\n #[test]\n fn test_to_from_le_bytes_bn254_edge_cases() {\n if crate::compat::is_bn254() {\n // checking that decrementing this byte produces the expected 32 LE bytes for (modulus - 1)\n let mut p_minus_1_bytes: [u8; 32] = modulus_le_bytes().as_array();\n assert(p_minus_1_bytes[0] > 0);\n p_minus_1_bytes[0] -= 1;\n\n let p_minus_1 = Field::from_le_bytes::<32>(p_minus_1_bytes);\n assert_eq(p_minus_1 + 1, 0);\n\n // checking that converting (modulus - 1) from and then to 32 BE bytes produces the same bytes\n let p_minus_1_converted_bytes: [u8; 32] = p_minus_1.to_le_bytes();\n assert_eq(p_minus_1_converted_bytes, p_minus_1_bytes);\n\n // checking that incrementing this byte produces 32 LE bytes for (modulus + 1)\n let mut p_plus_1_bytes: [u8; 32] = modulus_le_bytes().as_array();\n assert(p_plus_1_bytes[0] < 255);\n p_plus_1_bytes[0] += 1;\n\n let p_plus_1 = Field::from_le_bytes::<32>(p_plus_1_bytes);\n assert_eq(p_plus_1, 1);\n\n // checking that converting p_plus_1 to 32 LE bytes produces the same\n // byte set to 1 as p_plus_1_bytes and otherwise zeroes\n let mut p_plus_1_converted_bytes: [u8; 32] = p_plus_1.to_le_bytes();\n assert_eq(p_plus_1_converted_bytes[0], 1);\n p_plus_1_converted_bytes[0] = 0;\n assert_eq(p_plus_1_converted_bytes, [0; 32]);\n\n // checking that Field::from_le_bytes::<32> on the Field modulus produces 0\n assert_eq(modulus_le_bytes().len(), 32);\n let p = Field::from_le_bytes::<32>(modulus_le_bytes().as_array());\n assert_eq(p, 0);\n\n // checking that converting 0 to 32 LE bytes produces 32 zeroes\n let p_bytes: [u8; 32] = 0.to_le_bytes();\n assert_eq(p_bytes, [0; 32]);\n }\n }\n\n /// Convert a little endian bit array to a field element.\n /// If the provided bit array overflows the field modulus then the Field will silently wrap around.\n fn from_le_bits<let N: u32>(bits: [u1; N]) -> Field {\n static_assert(\n N <= modulus_le_bits().len(),\n \"N must be less than or equal to modulus_le_bits().len()\",\n );\n let mut v = 1;\n let mut result = 0;\n\n for i in 0..N {\n result += (bits[i] as Field) * v;\n v = v * 2;\n }\n result\n }\n\n /// Convert a big endian bit array to a field element.\n /// If the provided bit array overflows the field modulus then the Field will silently wrap around.\n fn from_be_bits<let N: u32>(bits: [u1; N]) -> Field {\n let mut v = 1;\n let mut result = 0;\n\n for i in 0..N {\n result += (bits[N - 1 - i] as Field) * v;\n v = v * 2;\n }\n result\n }\n\n #[test]\n fn test_to_from_be_bits_bn254_edge_cases() {\n if crate::compat::is_bn254() {\n // checking that decrementing this bit produces the expected 254 BE bits for (modulus - 1)\n let mut p_minus_1_bits: [u1; 254] = modulus_be_bits().as_array();\n assert(p_minus_1_bits[254 - 1] > 0);\n p_minus_1_bits[254 - 1] -= 1;\n\n let p_minus_1 = from_be_bits::<254>(p_minus_1_bits);\n assert_eq(p_minus_1 + 1, 0);\n\n // checking that converting (modulus - 1) from and then to 254 BE bits produces the same bits\n let p_minus_1_converted_bits: [u1; 254] = p_minus_1.to_be_bits();\n assert_eq(p_minus_1_converted_bits, p_minus_1_bits);\n\n // checking that incrementing this bit produces 254 BE bits for (modulus + 4)\n let mut p_plus_4_bits: [u1; 254] = modulus_be_bits().as_array();\n assert(p_plus_4_bits[254 - 3] < 1);\n p_plus_4_bits[254 - 3] += 1;\n\n let p_plus_4 = from_be_bits::<254>(p_plus_4_bits);\n assert_eq(p_plus_4, 4);\n\n // checking that converting p_plus_4 to 254 BE bits produces the same\n // bit set to 1 as p_plus_4_bits and otherwise zeroes\n let mut p_plus_4_converted_bits: [u1; 254] = p_plus_4.to_be_bits();\n assert_eq(p_plus_4_converted_bits[254 - 3], 1);\n p_plus_4_converted_bits[254 - 3] = 0;\n assert_eq(p_plus_4_converted_bits, [0; 254]);\n\n // checking that Field::from_be_bits::<254> on the Field modulus produces 0\n assert_eq(modulus_be_bits().len(), 254);\n let p = from_be_bits::<254>(modulus_be_bits().as_array());\n assert_eq(p, 0);\n\n // checking that converting 0 to 254 BE bytes produces 254 zeroes\n let p_bits: [u1; 254] = 0.to_be_bits();\n assert_eq(p_bits, [0; 254]);\n }\n }\n\n #[test]\n fn test_to_from_le_bits_bn254_edge_cases() {\n if crate::compat::is_bn254() {\n // checking that decrementing this bit produces the expected 254 LE bits for (modulus - 1)\n let mut p_minus_1_bits: [u1; 254] = modulus_le_bits().as_array();\n assert(p_minus_1_bits[0] > 0);\n p_minus_1_bits[0] -= 1;\n\n let p_minus_1 = from_le_bits::<254>(p_minus_1_bits);\n assert_eq(p_minus_1 + 1, 0);\n\n // checking that converting (modulus - 1) from and then to 254 BE bits produces the same bits\n let p_minus_1_converted_bits: [u1; 254] = p_minus_1.to_le_bits();\n assert_eq(p_minus_1_converted_bits, p_minus_1_bits);\n\n // checking that incrementing this bit produces 254 LE bits for (modulus + 4)\n let mut p_plus_4_bits: [u1; 254] = modulus_le_bits().as_array();\n assert(p_plus_4_bits[2] < 1);\n p_plus_4_bits[2] += 1;\n\n let p_plus_4 = from_le_bits::<254>(p_plus_4_bits);\n assert_eq(p_plus_4, 4);\n\n // checking that converting p_plus_4 to 254 LE bits produces the same\n // bit set to 1 as p_plus_4_bits and otherwise zeroes\n let mut p_plus_4_converted_bits: [u1; 254] = p_plus_4.to_le_bits();\n assert_eq(p_plus_4_converted_bits[2], 1);\n p_plus_4_converted_bits[2] = 0;\n assert_eq(p_plus_4_converted_bits, [0; 254]);\n\n // checking that Field::from_le_bits::<254> on the Field modulus produces 0\n assert_eq(modulus_le_bits().len(), 254);\n let p = from_le_bits::<254>(modulus_le_bits().as_array());\n assert_eq(p, 0);\n\n // checking that converting 0 to 254 LE bytes produces 254 zeroes\n let p_bits: [u1; 254] = 0.to_le_bits();\n assert_eq(p_bits, [0; 254]);\n }\n }\n}\n",
150
+ "path": "std/field/mod.nr"
151
+ },
152
+ "51": {
153
+ "source": "use dep::keccak256::keccak256;\n\nfn field_to_bytes32(x: Field) -> [u8; 32] {\n x.to_be_bytes()\n}\n\nfn concat2(a: [u8; 32], b: [u8; 32]) -> [u8; 64] {\n let mut preimage: [u8; 64] = [0; 64];\n for i in 0..32 {\n preimage[i] = a[i];\n preimage[32 + i] = b[i];\n }\n preimage\n}\n\nfn concat3(a: [u8; 32], b: [u8; 32], c: [u8; 32]) -> [u8; 96] {\n let mut preimage: [u8; 96] = [0; 96];\n for i in 0..32 {\n preimage[i] = a[i];\n preimage[32 + i] = b[i];\n preimage[64 + i] = c[i];\n }\n preimage\n}\n\nfn concat4(a: [u8; 32], b: [u8; 32], c: [u8; 32], d: [u8; 32]) -> [u8; 128] {\n let mut preimage: [u8; 128] = [0; 128];\n for i in 0..32 {\n preimage[i] = a[i];\n preimage[32 + i] = b[i];\n preimage[64 + i] = c[i];\n preimage[96 + i] = d[i];\n }\n preimage\n}\n\nfn keccak2(a: [u8; 32], b: [u8; 32]) -> [u8; 32] {\n let preimage = concat2(a, b);\n keccak256(preimage, 64)\n}\n\nfn keccak3(a: [u8; 32], b: [u8; 32], c: [u8; 32]) -> [u8; 32] {\n let preimage = concat3(a, b, c);\n keccak256(preimage, 96)\n}\n\nfn keccak4(a: [u8; 32], b: [u8; 32], c: [u8; 32], d: [u8; 32]) -> [u8; 32] {\n let preimage = concat4(a, b, c, d);\n keccak256(preimage, 128)\n}\n\nfn merkle_root_from_path(\n leaf: [u8; 32],\n path: [[u8; 32]; 24],\n index_bits: [u8; 24]\n) -> [u8; 32] {\n let mut cur = leaf;\n for i in 0..24 {\n assert((index_bits[i] == 0) | (index_bits[i] == 1));\n if index_bits[i] == 0 {\n cur = keccak2(cur, path[i]);\n } else {\n cur = keccak2(path[i], cur);\n }\n }\n cur\n}\n\nfn main(\n note_amount: u128,\n note_rho: Field,\n note_pk_hash: Field,\n nullifier_secret: Field,\n merkle_path: [[u8; 32]; 24],\n index_bits: [u8; 24],\n merchant_pk_hash: Field,\n merchant_rho: Field,\n change_pk_hash: Field,\n change_rho: Field,\n pay_amount: u128,\n challenge_nonce: [u8; 32],\n merchant_address_word: [u8; 32]\n) -> pub ([u8; 32], [u8; 32], [u8; 32], [u8; 32], [u8; 32], Field) {\n assert(pay_amount <= note_amount);\n\n let note_commitment = keccak3(\n field_to_bytes32(note_amount as Field),\n field_to_bytes32(note_rho),\n field_to_bytes32(note_pk_hash)\n );\n\n let computed_root = merkle_root_from_path(note_commitment, merkle_path, index_bits);\n\n let nullifier = keccak2(field_to_bytes32(nullifier_secret), note_commitment);\n\n let merchant_commitment = keccak3(\n field_to_bytes32(pay_amount as Field),\n field_to_bytes32(merchant_rho),\n field_to_bytes32(merchant_pk_hash)\n );\n\n let change_amount = note_amount - pay_amount;\n let change_commitment = keccak3(\n field_to_bytes32(change_amount as Field),\n field_to_bytes32(change_rho),\n field_to_bytes32(change_pk_hash)\n );\n\n let challenge_domain_hash: [u8; 32] = [\n 227, 46, 36, 165, 28, 53, 16, 147, 211, 57, 192, 3, 81, 119, 220, 45,\n 165, 193, 184, 185, 86, 62, 65, 67, 147, 237, 215, 85, 6, 220, 192, 85\n ];\n let challenge_hash = keccak4(\n challenge_domain_hash,\n challenge_nonce,\n field_to_bytes32(pay_amount as Field),\n merchant_address_word\n );\n\n (\n nullifier,\n computed_root,\n merchant_commitment,\n change_commitment,\n challenge_hash,\n pay_amount as Field\n )\n}\n",
154
+ "path": "shielded-402/circuits/spend_change/src/main.nr"
160
155
  },
161
- "expression_width": { "Bounded": { "width": 4 } }
156
+ "55": {
157
+ "source": "mod tests;\nmod oracle_tests;\nmod benchmarks;\n\nuse std::hash::keccakf1600;\nuse std::runtime::is_unconstrained;\n\nglobal BLOCK_SIZE_IN_BYTES: u32 = 136; //(1600 - BITS * 2) / WORD_SIZE;\nglobal WORD_SIZE: u32 = 8; // Limbs are made up of u64s so 8 bytes each.\nglobal LIMBS_PER_BLOCK: u32 = BLOCK_SIZE_IN_BYTES / WORD_SIZE;\nglobal NUM_KECCAK_LANES: u32 = 25;\n\n#[no_predicates]\npub fn keccak256<let N: u32>(input: [u8; N], message_size: u32) -> [u8; 32] {\n assert(N >= message_size);\n\n // Copy input to block bytes. For that we'll need at least input bytes (N)\n // but we want it to be padded to a multiple of BLOCK_SIZE_IN_BYTES.\n let mut block_bytes = [0; ((N / BLOCK_SIZE_IN_BYTES) + 1) * BLOCK_SIZE_IN_BYTES];\n if is_unconstrained() {\n for i in 0..message_size {\n block_bytes[i] = input[i];\n }\n } else {\n for i in 0..N {\n if i < message_size {\n block_bytes[i] = input[i];\n }\n }\n }\n\n //1. format_input_lanes and apply padding\n let max_blocks = (N + BLOCK_SIZE_IN_BYTES) / BLOCK_SIZE_IN_BYTES;\n let real_max_blocks = (message_size + BLOCK_SIZE_IN_BYTES) / BLOCK_SIZE_IN_BYTES;\n\n // Apply Keccak padding (0x01 after message, 0x80 at block end)\n apply_keccak_padding(&mut block_bytes, message_size, real_max_blocks);\n\n // populate a vector of 64-bit limbs from our byte array\n let mut sliced_buffer =\n [0; (((N / BLOCK_SIZE_IN_BYTES) + 1) * BLOCK_SIZE_IN_BYTES) / WORD_SIZE];\n for i in 0..sliced_buffer.len() {\n let limb_start = WORD_SIZE * i;\n\n let mut sliced = 0;\n let mut v = 1;\n sliced += v * (block_bytes[limb_start] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 1] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 2] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 3] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 4] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 5] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 6] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 7] as Field);\n sliced.assert_max_bit_size::<64>();\n sliced_buffer[i] = sliced as u64;\n }\n\n //2. sponge_absorb\n let mut state: [u64; NUM_KECCAK_LANES] = [0; NUM_KECCAK_LANES];\n // `real_max_blocks` is guaranteed to at least be `1`\n // We peel out the first block as to avoid a conditional inside of the loop.\n // Otherwise, a dynamic predicate can cause a blowup in a constrained runtime.\n state[0] = sliced_buffer[0];\n state[1] = sliced_buffer[1];\n state[2] = sliced_buffer[2];\n state[3] = sliced_buffer[3];\n state[4] = sliced_buffer[4];\n state[5] = sliced_buffer[5];\n state[6] = sliced_buffer[6];\n state[7] = sliced_buffer[7];\n state[8] = sliced_buffer[8];\n state[9] = sliced_buffer[9];\n state[10] = sliced_buffer[10];\n state[11] = sliced_buffer[11];\n state[12] = sliced_buffer[12];\n state[13] = sliced_buffer[13];\n state[14] = sliced_buffer[14];\n state[15] = sliced_buffer[15];\n state[16] = sliced_buffer[16];\n state = keccakf1600(state);\n\n let state = if is_unconstrained() {\n // When in an unconstrained runtime we can take advantage of runtime loop bounds,\n // thus allowing us to simplify the loop body.\n for i in 1..real_max_blocks {\n for j in 0..LIMBS_PER_BLOCK {\n state[j] = state[j] ^ sliced_buffer[i * LIMBS_PER_BLOCK + j];\n }\n state = keccakf1600(state);\n }\n\n state\n } else {\n // We store the intermediate states in an array to avoid having a dynamic predicate\n // inside the loop, which can cause a blowup in a constrained runtime.\n let mut intermediate_states = [state; (N + BLOCK_SIZE_IN_BYTES) / BLOCK_SIZE_IN_BYTES + 1];\n for i in 1..max_blocks {\n let mut previous_state = intermediate_states[i - 1];\n for j in 0..LIMBS_PER_BLOCK {\n previous_state[j] = previous_state[j] ^ sliced_buffer[i * LIMBS_PER_BLOCK + j];\n }\n intermediate_states[i] = keccakf1600(previous_state);\n }\n\n // We can then take the state as of `real_max_blocks`, ignoring later permutations.\n intermediate_states[real_max_blocks - 1]\n };\n\n //3. sponge_squeeze\n let mut result = [0; 32];\n let lane = state[0] as Field;\n let lane_le: [u8; 8] = lane.to_le_bytes();\n result[0] = lane_le[0];\n result[1] = lane_le[1];\n result[2] = lane_le[2];\n result[3] = lane_le[3];\n result[4] = lane_le[4];\n result[5] = lane_le[5];\n result[6] = lane_le[6];\n result[7] = lane_le[7];\n\n let lane = state[1] as Field;\n let lane_le: [u8; 8] = lane.to_le_bytes();\n result[8 * 1] = lane_le[0];\n result[8 * 1 + 1] = lane_le[1];\n result[8 * 1 + 2] = lane_le[2];\n result[8 * 1 + 3] = lane_le[3];\n result[8 * 1 + 4] = lane_le[4];\n result[8 * 1 + 5] = lane_le[5];\n result[8 * 1 + 6] = lane_le[6];\n result[8 * 1 + 7] = lane_le[7];\n\n let lane = state[2] as Field;\n let lane_le: [u8; 8] = lane.to_le_bytes();\n result[8 * 2] = lane_le[0];\n result[8 * 2 + 1] = lane_le[1];\n result[8 * 2 + 2] = lane_le[2];\n result[8 * 2 + 3] = lane_le[3];\n result[8 * 2 + 4] = lane_le[4];\n result[8 * 2 + 5] = lane_le[5];\n result[8 * 2 + 6] = lane_le[6];\n result[8 * 2 + 7] = lane_le[7];\n\n let lane = state[3] as Field;\n let lane_le: [u8; 8] = lane.to_le_bytes();\n result[8 * 3] = lane_le[0];\n result[8 * 3 + 1] = lane_le[1];\n result[8 * 3 + 2] = lane_le[2];\n result[8 * 3 + 3] = lane_le[3];\n result[8 * 3 + 4] = lane_le[4];\n result[8 * 3 + 5] = lane_le[5];\n result[8 * 3 + 6] = lane_le[6];\n result[8 * 3 + 7] = lane_le[7];\n\n result\n}\n\n// Apply Keccak padding to the block_bytes array\n// Append 0x01 after message, then 0x80 at end of block\n// If both padding bytes collide at the same byte, combine them as 0x81\n#[inline_always]\npub(crate) fn apply_keccak_padding<let BLOCK_BYTES: u32>(\n block_bytes: &mut [u8; BLOCK_BYTES],\n message_size: u32,\n real_max_blocks: u32,\n) {\n let real_blocks_bytes = real_max_blocks * BLOCK_SIZE_IN_BYTES;\n\n if message_size == real_blocks_bytes - 1 {\n // Combine both padding bits: 0x01 | 0x80 = 0x81\n block_bytes[message_size] = 0x81;\n } else {\n block_bytes[message_size] = 0x01;\n block_bytes[real_blocks_bytes - 1] = 0x80;\n }\n}\n",
158
+ "path": "nargo/github.com/noir-lang/keccak256/v0.1.3/src/keccak256.nr"
159
+ }
160
+ },
161
+ "expression_width": { "Bounded": { "width": 4 } }
162
162
  }