@shielded-x402/client 0.1.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/circuits/spend_change.json +162 -0
- package/dist/client.d.ts +24 -0
- package/dist/client.d.ts.map +1 -0
- package/dist/client.js +155 -0
- package/dist/client.js.map +1 -0
- package/dist/crypto.d.ts +5 -0
- package/dist/crypto.d.ts.map +1 -0
- package/dist/crypto.js +15 -0
- package/dist/crypto.js.map +1 -0
- package/dist/index.d.ts +9 -0
- package/dist/index.d.ts.map +1 -0
- package/dist/index.js +9 -0
- package/dist/index.js.map +1 -0
- package/dist/indexer.d.ts +22 -0
- package/dist/indexer.d.ts.map +1 -0
- package/dist/indexer.js +20 -0
- package/dist/indexer.js.map +1 -0
- package/dist/merkle.d.ts +11 -0
- package/dist/merkle.d.ts.map +1 -0
- package/dist/merkle.js +63 -0
- package/dist/merkle.js.map +1 -0
- package/dist/notes.d.ts +19 -0
- package/dist/notes.d.ts.map +1 -0
- package/dist/notes.js +105 -0
- package/dist/notes.js.map +1 -0
- package/dist/proofProvider.d.ts +33 -0
- package/dist/proofProvider.d.ts.map +1 -0
- package/dist/proofProvider.js +177 -0
- package/dist/proofProvider.js.map +1 -0
- package/dist/shieldedFetch.d.ts +29 -0
- package/dist/shieldedFetch.d.ts.map +1 -0
- package/dist/shieldedFetch.js +35 -0
- package/dist/shieldedFetch.js.map +1 -0
- package/dist/types.d.ts +52 -0
- package/dist/types.d.ts.map +1 -0
- package/dist/types.js +2 -0
- package/dist/types.js.map +1 -0
- package/package.json +42 -0
|
@@ -0,0 +1,162 @@
|
|
|
1
|
+
{
|
|
2
|
+
"noir_version": "1.0.0-beta.18+99bb8b5cf33d7669adbdef096b12d80f30b4c0c9",
|
|
3
|
+
"hash": "10252091495937422632",
|
|
4
|
+
"abi": {
|
|
5
|
+
"parameters": [
|
|
6
|
+
{
|
|
7
|
+
"name": "note_amount",
|
|
8
|
+
"type": { "kind": "integer", "sign": "unsigned", "width": 128 },
|
|
9
|
+
"visibility": "private"
|
|
10
|
+
},
|
|
11
|
+
{
|
|
12
|
+
"name": "note_rho",
|
|
13
|
+
"type": { "kind": "field" },
|
|
14
|
+
"visibility": "private"
|
|
15
|
+
},
|
|
16
|
+
{
|
|
17
|
+
"name": "note_pk_hash",
|
|
18
|
+
"type": { "kind": "field" },
|
|
19
|
+
"visibility": "private"
|
|
20
|
+
},
|
|
21
|
+
{
|
|
22
|
+
"name": "nullifier_secret",
|
|
23
|
+
"type": { "kind": "field" },
|
|
24
|
+
"visibility": "private"
|
|
25
|
+
},
|
|
26
|
+
{
|
|
27
|
+
"name": "merkle_path",
|
|
28
|
+
"type": {
|
|
29
|
+
"kind": "array",
|
|
30
|
+
"length": 32,
|
|
31
|
+
"type": {
|
|
32
|
+
"kind": "array",
|
|
33
|
+
"length": 32,
|
|
34
|
+
"type": { "kind": "integer", "sign": "unsigned", "width": 8 }
|
|
35
|
+
}
|
|
36
|
+
},
|
|
37
|
+
"visibility": "private"
|
|
38
|
+
},
|
|
39
|
+
{
|
|
40
|
+
"name": "index_bits",
|
|
41
|
+
"type": {
|
|
42
|
+
"kind": "array",
|
|
43
|
+
"length": 32,
|
|
44
|
+
"type": { "kind": "integer", "sign": "unsigned", "width": 8 }
|
|
45
|
+
},
|
|
46
|
+
"visibility": "private"
|
|
47
|
+
},
|
|
48
|
+
{
|
|
49
|
+
"name": "merchant_pk_hash",
|
|
50
|
+
"type": { "kind": "field" },
|
|
51
|
+
"visibility": "private"
|
|
52
|
+
},
|
|
53
|
+
{
|
|
54
|
+
"name": "merchant_rho",
|
|
55
|
+
"type": { "kind": "field" },
|
|
56
|
+
"visibility": "private"
|
|
57
|
+
},
|
|
58
|
+
{
|
|
59
|
+
"name": "change_pk_hash",
|
|
60
|
+
"type": { "kind": "field" },
|
|
61
|
+
"visibility": "private"
|
|
62
|
+
},
|
|
63
|
+
{
|
|
64
|
+
"name": "change_rho",
|
|
65
|
+
"type": { "kind": "field" },
|
|
66
|
+
"visibility": "private"
|
|
67
|
+
},
|
|
68
|
+
{
|
|
69
|
+
"name": "pay_amount",
|
|
70
|
+
"type": { "kind": "integer", "sign": "unsigned", "width": 128 },
|
|
71
|
+
"visibility": "private"
|
|
72
|
+
},
|
|
73
|
+
{
|
|
74
|
+
"name": "challenge_nonce",
|
|
75
|
+
"type": {
|
|
76
|
+
"kind": "array",
|
|
77
|
+
"length": 32,
|
|
78
|
+
"type": { "kind": "integer", "sign": "unsigned", "width": 8 }
|
|
79
|
+
},
|
|
80
|
+
"visibility": "private"
|
|
81
|
+
},
|
|
82
|
+
{
|
|
83
|
+
"name": "merchant_address_word",
|
|
84
|
+
"type": {
|
|
85
|
+
"kind": "array",
|
|
86
|
+
"length": 32,
|
|
87
|
+
"type": { "kind": "integer", "sign": "unsigned", "width": 8 }
|
|
88
|
+
},
|
|
89
|
+
"visibility": "private"
|
|
90
|
+
}
|
|
91
|
+
],
|
|
92
|
+
"return_type": {
|
|
93
|
+
"abi_type": {
|
|
94
|
+
"kind": "tuple",
|
|
95
|
+
"fields": [
|
|
96
|
+
{
|
|
97
|
+
"kind": "array",
|
|
98
|
+
"length": 32,
|
|
99
|
+
"type": { "kind": "integer", "sign": "unsigned", "width": 8 }
|
|
100
|
+
},
|
|
101
|
+
{
|
|
102
|
+
"kind": "array",
|
|
103
|
+
"length": 32,
|
|
104
|
+
"type": { "kind": "integer", "sign": "unsigned", "width": 8 }
|
|
105
|
+
},
|
|
106
|
+
{
|
|
107
|
+
"kind": "array",
|
|
108
|
+
"length": 32,
|
|
109
|
+
"type": { "kind": "integer", "sign": "unsigned", "width": 8 }
|
|
110
|
+
},
|
|
111
|
+
{
|
|
112
|
+
"kind": "array",
|
|
113
|
+
"length": 32,
|
|
114
|
+
"type": { "kind": "integer", "sign": "unsigned", "width": 8 }
|
|
115
|
+
},
|
|
116
|
+
{
|
|
117
|
+
"kind": "array",
|
|
118
|
+
"length": 32,
|
|
119
|
+
"type": { "kind": "integer", "sign": "unsigned", "width": 8 }
|
|
120
|
+
},
|
|
121
|
+
{ "kind": "field" }
|
|
122
|
+
]
|
|
123
|
+
},
|
|
124
|
+
"visibility": "public"
|
|
125
|
+
},
|
|
126
|
+
"error_types": {
|
|
127
|
+
"819864067177566446": {
|
|
128
|
+
"error_kind": "string",
|
|
129
|
+
"string": "Field failed to decompose into specified 8 limbs"
|
|
130
|
+
},
|
|
131
|
+
"1998584279744703196": {
|
|
132
|
+
"error_kind": "string",
|
|
133
|
+
"string": "attempt to subtract with overflow"
|
|
134
|
+
},
|
|
135
|
+
"12469291177396340830": {
|
|
136
|
+
"error_kind": "string",
|
|
137
|
+
"string": "call to assert_max_bit_size"
|
|
138
|
+
},
|
|
139
|
+
"15835548349546956319": {
|
|
140
|
+
"error_kind": "string",
|
|
141
|
+
"string": "Field failed to decompose into specified 32 limbs"
|
|
142
|
+
}
|
|
143
|
+
}
|
|
144
|
+
},
|
|
145
|
+
"bytecode": "H4sIAAAAAAAA/+x9B5gURdd1l8DuknNOQw4iyQSSc0ZAckZyBnMmieQcVTAAkkSyAoqYMSMgChgx56yYQP4qmHnpGe/Sde5O3fl5Pvt57sf3Hmu2TvXtc+pedrpQ3pkrffjPkf2GjnqwqeddWefM/1Y60oX/NNf4GMx8LiUGy0BgSQSWTGApBJaRwDIRWGYCy0JgWQksG4FlJ7AcBJaTwHIRWG4Cy0NgeQksH4HlJ7ACBFaQwAoRWGECK0JgRQmsGIEVJ7AQgZUgsJIEVorAShNYGQIrS2DlCKw8gVUgsIoEdiGBVSKwiwisMoFVIbCqBFaNwKoT2MUEdgmBXUpglxHY5QRWg8BqEtgVBFaLwGoTWB0Cq0tg9QisPoE1ILCGBNaIwBoTWBMCa0pgzQisOYG1ILCWBNaKwFoTWBsCa0tgVxJYOwJrT2AdCOwqAutIYJ0IrDOBdSGwrgTWjcC6E1gPAutJYL0IrDeB9SGwvgTWj8CuJrD+BDaAwAYS2CACG0xgQwhsKIENI7DhBDaCwEYS2CgCG01gYwhsLIFdQ2DXEth1BHY9gd1AYDcS2E0EdjOB3UJgtxLYbQR2O4HdQWDjCGw8gU0gsIkENonA7iSwyQR2F4FNIbCpBDaNwKYT2AwCm0lgswhsNoHNIbC5BDaPwOYT2AICW0hgiwhsMYEtIbClBHY3gd1DYPcS2DICW05g9xHY/QT2AIE9SGArCGwlga0isIcIbDWBrSGwtQS2jsDWE9jDBLaBwB4hsI0EtonANhPYFgLbSmDbCGw7gT1KYI8R2A4C20lguwjscQJ7gsB2E9iTBLaHwJ4isKcJ7BkCe5bAniOw5wnsBQLbS2AvEthLBPYygb1CYK8S2GsE9jqB7SOwNwhsP4EdILCDBPYmgR0isLcI7G0CO0xgRwjsKIG9Q2DvEth7BPY+gX1AYB8S2DEC+4jAPiawTwjsUwL7jMA+J7AvCOxLAvuKwL4msG8I7FsC+47AviewHwjsRwL7icB+JrBfCOxXAvuNwI4T2O8E9geB/UlgfxHY3wR2gsBOEtg/BHaKwMz/icUUgV1AYOkILD2BZSCwJAJLJrAUAstIYJkILDOBZSGwrASWjcCyE1gOAstJYLkILDeB5SGwvASWj8DyE1gBAitIYIUIrDCBFSGwogRWjMCKE1iIwEoQWEkCK0VgpQmsDIGVJbByBFaewCoQWEUCu5DAKhHYRQRWmcCqEFhVAqtGYNUJ7GICu4TALiWwywjscgKrQWA1CewKAqtFYLUJrA6B1SWwegRWn8AaEFhDAmtEYI0JrAmBNSWwZgTWnMBaEFhLAmtFYK0JrA2BtSWwKwmsHYG1J7AOBHYVgXUksE4E1pnAuhBYVwLrRmDdCawHgfUksF4E1pvA+hBYXwLrR2BXE1h/AhtAYAMJbBCBDSawIQQ2lMCGEdhwAhtBYCMJbBSBjSawMQQ2lsCuIbBrCew6AruewG4gsBsJ7CYCu5nAbiGwWwnsNgK7ncDuILBxBDaewCYQ2EQCm0RgdxLYZAK7i8CmENhUAptGYNMJbAaBzSSwWQQ2m8DmENhcAptHYPMJbAGBLSSwRQS2mMCWENhSArubwO4hsHsJbBmBLSew+wjsfgJ7gMAeJLAVBLaSwFYR2EMEtprA1hDYWgJbR2DrCexhAttAYI8Q2EYC20RgmwlsC4FtJbBtBLadwB4lsMcIbAeB7SSwXQT2OIE9QWC7CexJAttDYE8R2NME9gyBPUtgzxHY8wT2AoHtJbAXCewlAnuZwF4hsFcJ7DUCe53A9hHYGwS2n8AOENhBAnuTwA4R2FsE9jaBHSawIwR2lMDeIbB3Cew9AnufwD4gsA8J7BiBfURgHxPYJwT2KYF9RmCfE9gXBPYlgX1FYF8T2DcE9i2BfUdg3xPYDwT2I4H9RGA/E9gvBPYrgf1GYMcJ7HcC+4PA/iSwvwjsbwI7QWAnCewfAjtFYN4F/8YUgV1AYOkILD2BZSCwJAJLJrAUAstIYJkILDOBZSGwrASWjcCyE1gOAstJYLkILDeB5SGwvASWj8DyE1gBAitIYIUIrDCBFSGwogRWjMCKE1iIwEoQWEkCK0VgpQmsDIGVJbByBFaewCoQWEUCu5DAKhHYRQRWmcCqEFhVAqtGYNUJ7GICu4TALiWwywjscgKrQWA1CewKAqtFYLUJrA6B1SWwegRWn8AaEFhDAmtEYI0JrAmBNSWwZgTWnMBaEFhLAmtFYK0JrA2BtSWwKwmsHYG1J7AOBHYVgXUksE4E1pnAuhBYVwLrRmDdCawHgfUksF4E1pvA+hBYXwLrR2BXE1h/AhtAYAMJbBCBDSawIQQ2lMCGEdhwAhtBYCMJbBSBjSawMQQ2lsCuIbBrCew6AruewG4gsBsJ7CYCu5nAbiGwWwnsNgK7ncDuILBxBDaewCYQ2EQCm0RgdxLYZAK7i8CmENhUAptGYNMJbAaBzSSwWQQ2m8DmENhcAptHYPMJbAGBLSSwRQS2mMCWENhSArubwO4hsHsJbBmBLSew+wjsfgJ7gMAeJLAVBLaSwFYR2EMEtprA1hDYWgJbR2DrCexhAttAYI8Q2EYC20RgmwlsC4FtJbBtBLadwB4lsMcIbAeB7SSwXQT2OIE9QWC7CexJAttDYE8R2NME9gyBPUtgzxHY8wT2AoHtJbAXCewlAnuZwF4hsFcJ7DUCe53A9hHYGwS2n8AOENhBAnuTwA4R2FsE9jaBHSawIwR2lMDeIbB3Cew9AnufwD4gsA8J7BiBfURgHxPYJwT2KYF9RmCfE9gXBPYlgX1FYF8T2DcE9i2BfUdg3xPYDwT2I4H9RGA/E9gvBPYrgf1GYMcJ7HcC+4PA/iSwvwjsbwI7QWAnCewfAjtFYOb/icUUgV1AYOkILD2BZSCwJAJLJrAUAstIYJkILDOBZSGwrASWjcCyE1gOAstJYLkILDeB5SGwvASWj8DyE1gBAitIYIUIrDCBFSGwogRWjMCKE1iIwEoQWEkCK0VgpQmsDIGVJbByBFaewCoQWEUCu5DAKhHYRQRWmcCqEFhVAqtGYNUJ7GICu4TALiWwywjscgKrQWA1CewKAqtFYLUJrA6B1SWwegRWn8AaEFhDAmtEYI0JrAmBNSWwZgTWnMBaEFhLAmtFYK0JrA2BtSWwKwmsHYG1J7AOBHYVgXUksE4E1pnAuhBYVwLrRmDdCawHgfUksF4E1pvA+hBYXwLrR2BXE1h/AhtAYAMJbBCBDSawIQQ2lMCGEdhwAhtBYCMJbBSBjSawMQQ2lsCuIbBrCew6AruewG4gsBsJ7CYCu5nAbiGwWwnsNgK7ncDuILBxBDaewCYQ2EQCm0RgdxLYZAK7i8CmENhUAptGYNMJbAaBzSSwWQQ2m8DmENhcAptHYPMJbAGBLSSwRQS2mMCWENhSArubwO4hsHsJbBmBLSew+wjsfgJ7gMAeJLAVBLaSwFYR2EMEtprA1hDYWgJbR2DrCexhAttAYI8Q2EYC20RgmwlsC4FtJbBtBLadwB4lsMcIbAeB7SSwXQT2OIE9QWC7CexJAttDYE8R2NME9gyBPUtgzxHY8wT2AoHtJbAXCewlAnuZwF4hsFcJ7DUCe53A9hHYGwS2n8AOENhBAnuTwA4R2FsE9jaBHSawIwR2lMDeIbB3Cew9AnufwD4gsA8J7BiBfURgHxPYJwT2KYF9RmCfE9gXBPYlgX1FYF8T2DcE9i2BfUdg3xPYDwT2I4H9RGA/E9gvBPYrgf1GYMcJ7HcC+4PA/iSwvwjsbwI7QWAnCewfAjtFYObAvlhMEdgFBJaOwNITWAYCSyKwZAJLIbCMBJaJwDITWBYCy0pg2QgsO4HlILCcBJaLwHITWB4Cy0tg+QgsP4EVILCCBFaIwAoTWBECK0pgxQisOIGFCKwEgZUksFIEVj79v8+krECMq0hgFxJYJQK7iMAqE1gVAqtKYNUIrDqBXUxglxDYpQR2GYFdTmA1CKwmgV1BYLUIrDaB1SGwugRWj8DqE1gDAmtIYI0IrDGBNSGwpgTWjMCaE1gLAmtJYK0IrDWBtSGwtgR2JYG1I7D2BNaBwK4isI4E1onAOhNYFwLrSmDdCKw7gfUgsJ4E1ovAehNYHwLrS2D9COxqAutPYAMIbCCBDSKwwQQ2JIzpP05fF3j/viJYyLO6lH9s1QFtr/mo2gMVdrZr8tiECV17lb/4y+Y37xozr9FHvy0wZ7EY/w2d4+cEXSHLz/rXlSnDmT8zZ/Cib4YBxqfywVD4z6AFmZ9hOzZLhtRv6qmYy88zC8EzfQzPgIudpJixPWPGqkwZePeK4ndO8gD/TBns70t67+wzETRv0M8CxpJXKA3DQp7Npf63JuX7TFZ9v7LpyK4jh46cOnLpyK0jj468OvLpyK+jgI6COgrpKKyjiI6iOorpKG7uu44SOkrqKKWjtI4yOsrqKKejvI4KOirquFBHpVhRGjL/qrYJLDuB5SCwnASWi8ByE1geAstLYPkILD+BFSCwggRWiMAKE1gRAitKYMUIrDiBhQisBIGVJLBSBFaawMoQWFkCK0dg5QmsAoFVJLALCaxSGPNfJcJ/hjyrCzLWrJZm+YP2/2zWYz2V3Xas5pvDbux8Y+45rcb+enojyGUz9tiZTSO3xdiG4Q0mT/DYuZHNKG/g2NH/27jyBY3deXaTyx8w9ibfhljg3GOb+TfPgucc+0XURlvoXGOrR2/Khc8xtlzMBl4kg/1mXzTVsV1in3VVLLWx4/+lC1U8lbHj/60hFaLHPkroTZUgxzamtKlKUmOvJHWsShFjd9CaV6X/PbZ8Kv6gyvxr7P2peYkqGzu2aqq+o8rFjD2Wukep8tFjx57Dz1SFqLFtzuV9qqJ/bP9z+qS60De2yrk9VVWyL/ZOF82mwFfEf0OLvUr2Xn7AP99FGdIwofkw0qGYyS+yv0GqsuWifkzDGswcSEVv1lAZTLK5qNY2LUkOuPZTYMizmiaKa5XwA1I1tjKuEr5xfqwqUcGkgyaHnmRVBXhAqoI3D02OeSiqgA+T4VUlQY5xof19Xu6frxrXMcyE1XDHWF4NcIzqjh3DrKE67hjLqyfIMS60n3cZBYY8q2miuF4cfkAuiXWMiwnHuCQOjgE8yepi4AG5hHnz0L+0QzhdCojhf/8H4FI5/ICjf+uKbNWXAWKg1hA03NyjyxhOfFmCnLii/fO7zT/f5VwnNhNejjvxtsuBh6+GYyc2a6iBO/G2Gml8+GwEdJljAdUE1xC5UGNCcngF8GzEc4eraD/vVgoMeVbTRHGtFRZe7dgdrhaxw9WOww4HOISqBSStNvPmoQ8SwqlOGne4oM8Y8VzB2B3qOt61zLrrCvCKXGgO6wI5rOc4h6mZrI05246tDxpavKqBCvZan+OfrwG3GjATNsCrgTkNgBvU0HE1YNbQEK8G5jR0XA0YIdTP4FZsjUCxRS6UE5LDxgmqBirYzzubAkOe1TRRXJuEhdc0thpoQlQDTeNQDQAOoZoASWvKvHnog4RwauZ4JzHiaczYdZs7rgbMupsL8IpcaA6bAzls4TiHqZls0OcQk22ZoL8bKG+v9ZB/vlbcasBM2AqvBkKtgCS3dlwNmDW0xquBUGvH1YARQssMbsXWRqgaQHLYNkHVQHn7eYtTYMizmiaK65Vh4bWLrQauJKqBdnGoBgCHUFcCSWvHvHnog4Rwau94JzHiacvYdTs4rgbMujsI8IpcaA47ADm8ynEOUzPZoM8hJtsxQdVAOXut7/fP14lbDZgJO+HVwP5OQJI7O64GzBo649XA/s6OqwEjhI4Z3Iqti1A1gOSwa4KqgXL2875BgSHPapoort3CwuseWw10I6qB7nGoBgCHUN2ApHVn3jz0QUI49XC8kxjxdGXsuj0dVwNm3T0FeEUuNIc9gRz2cpzD1Ew26HOIyfZOUDVQ1l7r/fzz9eFWA2bCPng10K8PkOS+jqsBs4a+eDXQr6/jasAIoXcGt2LrJ1QNIDm8OkHVQFn7eftSYMizmiaKa/+w8AbEVgP9iWpgQByqAcAhVH8gaQOYNw99kBBOAx3vJEY8VzN23UGOqwGz7kECvCIXmsNBQA4HO85haiYb9DnEZIckqBooY6/1I/75hnKrATPhULwaODIUSPIwx9WAWcMwvBo4MsxxNWCEMCSDW7ENF6oGkByOSFA1UMZ+3sMUGPKsponiOjIsvFGx1cBIohoYFYdqAHAINRJI2ijmzUMfJITTaMc7iRHPCMauO8ZxNWDWPUaAV+RCczgGyOFYxzlMzWSDPoeY7DUJqgZK22u9hX++a7nVgJnwWrwaaHEtkOTrHFcDZg3X4dVAi+scVwNGCNdkcCu264WqASSHNySoGihtP29zCgx5VtNEcb0xLLybYquBG4lq4KY4VAOAQ6gbgaTdxLx56IOEcLrZ8U5ixHMDY9e9xXE1YNZ9iwCvyIXm8BYgh7c6zmFqJhv0OcRkb0tQNVDKXutb/PPdzq0GzIS349XAltuBJN/huBowa7gDrwa23OG4GjBCuC2DW7GNE6oGkByOT1A1UMp+3s0UGPKsponiOiEsvImx1cAEohqYGIdqAHAINQFI2kTmzUMfJITTJMc7iRHPeMaue6fjasCs+04BXpELzeGdQA4nO85haiYb9DnEZO9KUDVQ0l7ru/3zTeFWA2bCKXg1sHsKkOSpjqsBs4apeDWwe6rjasAI4a4MbsU2TagaQHI4PUHVQEn7eZ+gwJBnNU0U1xlh4c2MrQZmENXAzDhUA4BDqBlA0mYybx76ICGcZjneSYx4pjN23dmOqwGz7tkCvCIXmsPZQA7nOM5haiYb9DnEZOcmqBooYa/1Vv755nGrATPhPLwaaDUPSPJ8x9WAWcN8vBpoNd9xNWCEMDeDW7EtEKoGkBwuTFA1UMJ+3pYUGPKsponiuigsvMWx1cAiohpYHIdqAHAItQhI2mLmzUMfJITTEsc7iRHPQsauu9RxNWDWvVSAV+RCc7gUyOHdjnOYmskGfQ4x2XsSVA2E7LU+3j/fvdxqwEx4L14NjL8XSPIyx9WAWcMyvBoYv8xxNWCEcE8Gt2JbLlQNIDm8L0HVQMh+3nEUGPKsponien9YeA/EVgP3E9XAA3GoBgCHUPcDSXuAefPQBwnh9KDjncSI5z7GrrvCcTVg1r1CgFfkQnO4AsjhSsc5TM1kgz6HmOyqBFUDxZnVwEPcasBM+BCjGngISPJqx9WAWcNqRjWw2nE1YISwKoNbsa0RqgaQHK5NUDVQPAHVwLqw8NbHVgPriGpgfRyqAcAh1DogaeuFqgGE08OOdxIjnrWMXXeD42rArHuDAK/IheZwA5DDRxznMDWTDfocYrIbE1QNFLPX+jr/fJu41YCZcBNeDazbBCR5s+NqwKxhM14NrNvsuBowQtiYwa3YtghVA0gOtyaoGihmP+9aCgx5VtNEcd0WFt722GpgG1ENbI9DNQA4hNoGJG078+ahDxLC6VHHO4kRz1bGrvuY42rArPsxAV6RC83hY0AOdzjOYWomG/Q5xGR3JqgaKGqv9VX++XZxqwEz4S68Gli1C0jy446rAbOGx/FqYNXjjqsBI4SdGdyK7QmhagDJ4e4EVQNF7eddSYEhz2qaKK5PhoW3J7YaeJKoBvbEoRoAHEI9CSRtD/PmoQ8SwukpxzuJEc9uxq77tONqwKz7aQFekQvN4dNADp9xnMPUTDboc4jJPpugaqCIvdaP+ud7jlsNmAmfw6uBo88BSX7ecTVg1vA8Xg0cfd5xNWCE8GwGt2J7QagaQHK4N0HVQBH7eY9QYMizmiaK64th4b0UWw28SFQDL8WhGgAcQr0IJO0l5s1DHySE08uOdxIjnr2MXfcVx9WAWfcrArwiF5rDV4Acvuo4h6mZbNDnEJN9LUHVQGF7re/zz/c6txowE76OVwP7XgeSvM9xNWDWsA+vBvbtc1wNGCG8lsGt2N4QqgaQHO5PUDVQ2H7e1ykw5FlNE8X1QFh4B2OrgQNENXAwDtUA4BDqAJC0g8ybhz5ICKc3He8kRjz7GbvuIcfVgFn3IQFekQvN4SEgh285zmFqJhv0OcRk305QNVDIXusF/fMd5lYDZsLDeDVQ8DCQ5COOqwGzhiN4NVDwiONqwAjh7QxuxXZUqBpAcvhOgqqBQvbzFqDAkGc1TRTXd8PCey+2GniXqAbei0M1ADiEehdI2nvMm4c+SAin9x3vJEY87zB23Q8cVwNm3R8I8IpcaA4/AHL4oeMcpmayQZ9DTPZYgqqBgvZa3+Wf7yNuNWAm/AivBnZ9BCT5Y8fVgFnDx3g1sOtjx9WAEcKxDG7F9olQNYDk8NMEVQMF7efdSYEhz2qaKK6fhYX3eWw18BlRDXweh2oAcAj1GZC0z5k3D32QEE5fON5JjHg+Zey6XzquBsy6vxTgFbnQHH4J5PArxzlMzWSDPoeY7NcJqgYK2Gt9qn++b7jVgJnwG7wamPoNkORvHVcDZg3f4tXA1G8dVwNGCF9ncCu274SqASSH3yeoGihgP+8UCgx5VtNEcf0hLLwfY6uBH4hq4Mc4VAOAQ6gfgKT9yLx56IOEcPrJ8U5ixPM9Y9f92XE1YNb9swCvyIXm8Gcgh784zmFqJhv0OcRkf01QNZDfXuvN/fP9xq0GzIS/4dVA89+AJB93XA2YNRzHq4Hmxx1XA0YIv2ZwK7bfhaoBJId/JKgayG8/bzMKDHlW00Rx/TMsvL9iq4E/iWrgrzhUA4BDqD+BpP3FvHnog4Rw+tvxTmLE8wdj1z3huBow6z4hwCtyoTk8AeTwpOMcpmayQZ9DTPafBFUD+ey1Ps8/3yluNWAmPIVXA/NOIUlOclsNmDWYOcBqYJ6fl91C7H9+RAj/ZHArNpWEiS1yoZyQHF4AcIpnNZDP/pmcS4Ehz2qaKK7pks78mT7Ji9750yX9uxowg9JaDQAOodIBSUufxLt56IOEcMoAPtzoA2PEc0ESLuykNBpH0HCz7iQBXpELzWESkMNkxzlMzWSDPoeYbApwX+NZDeS11/oY/3wZk9IwofkwWA2MyQgkOZPjasCsIRNeDYzJ5LgaMEJISXIrtsxC1QCSwywJqgby2lcDoykw5FlNE8U1a1h42WKrgaxENZAtDtUA4BAqK5C0bEm8m4c+SAin7I53EiOeLIxdN4fjasCsO4cAr8iF5jAHkMOcjnOYmskGfQ4x2VwJqgby2Gt9j3++3NxqwEyYG68G9uQGkpzHcTVg1pAHrwb25HFcDRgh5EpyK7a8QtUAksN8CaoG8thXA09SYMizmiaKa/6w8ArEVgP5iWqgQByqAcAhVH4gaQWSeDcPfZAQTgUd7yRGPPkYu24hx9WAWXchAV6RC81hISCHhR3nMDWTDfocYrJFElQN5LbXesg/X1FuNWAmLIpXA6GiQJKLOa4GzBqK4dVAqJjjasAIoUiSW7EVF6oGkByGElQN5LavBopTYMizmiaKa4mw8ErGVgMliGqgZByqAcAhVAkgaSWTeDcPfZAQTqUc7ySnxcPYdUs7rgbMuksL8IpcaA5LAzks4ziHqZls0OcQky2boGogl73Ws/jnK8etBsyE5fBqIEs5IMnlHVcDZg3l8WogS3nH1YARQtkkt2KrIFQNIDmsmKBqIJd9NZCZAkOe1TRRXC8MC69SbDVwIVENVIpDNQA4hLoQSFqlJN7NQx8khNNFjncSI56KjF23suNqwKy7sgCvyIXmsDKQwyqOc5iayQZ9DjHZqgmqBnLaa32Uf75q3GrATFgNrwZGVQOSXN1xNWDWUB2vBkZVd1wNGCFUTXIrtouFqgEkh5ckqBrIaV8NjKTAkGc1TRTXS8PCuyy2GriUqAYui0M1ADiEuhRI2mVJvJuHPkgIp8sd7yRGPJcwdt0ajqsBs+4aArwiF5rDGkAOazrOYWomG/Q5xGSvSFA1kMNe6zn989XiVgNmwlp4NZCzFpDk2o6rAbOG2ng1kLO242rACOGKJLdiqyNUDSA5rJugaiCHfTWQgwJDntU0UVzrhYVXP7YaqEdUA/XjUA0ADqHqAUmrn8S7eeiDhHBq4HgnMeKpy9h1GzquBsy6GwrwilxoDhsCOWzkOIepmWzQ5xCTbZygaiA78Gajf74m3GrATNgkCf9cU8c7vOHVNOksEPLsL1RE5oFtnORWFM2Edm0kL83TKFSbNTdn5DCegsrGFFQLrqDMhC0YgmrpWFCGV8s4CSpouEl8yyTeAxOymyOuD0lW5JVe3wdbcR8SM2ErhuO0AhTb2vEDZdbQmpHk1o57MPMQtWaUB82A+9XGcTlo7m0bplgjF/pstQHW39ZxiZfajhz0OWRHvtJxDs09upKxESB5SO+dbTfTyld5vOfMw+YJWYP/utT/1uTn2k7fr/Y6Oui4SkdHHZ10dNbRRUdXHd10dNfRQ0dPHb109NbRR0dfHf10XK2jv44BOgbqGKRjsI4hOobqGKZjuI4ROkbqGKVjdOzfAbQL9/t+rD2BdSCwqwisI4F1IrDOBNaFwLoSWDcC605gPQisJ4H1IrDeBNaHwPoSWD8Cu5rA+hPYAAIbSGCDCGwwgQ0hsKEENozAhhPYCAIbSWCjCGx00r//bqlE+M+QZ3VFiT7IbNpZGpP5e6j21mM91cF2rOZ7ld3Y+Zqv6mg19lezNtXJZuyx0/dBdbYY2/DMPVNdgsfODd9f1TVw7OhILlS3oLE7/5c31T1g7E1nc6x6nHtsM9/zoHqec+wX/mdH9TrX2OpRz5nqfY6x5aKfSdUn9bE9Y55f1TfVsV1in3XVL7Wx4/+lC3V1KmPH/1tDqj899lFCb2oAObYxpU01kBp7JaljNYgYu4PWvBr877HlU/EHNeRfY+9PzUvU0NixVVP1HTUsZuyx1D1KDY8eO/YcfqZGRI1tcy7vUyP9Y/uf0yfVKN/YKuf2VDU6QR3vaHsvP+Cfbwy34zUTjkmCf+t4YIz9DVJjLRfF7XjNGsaCHa9Zw1gwyeaKx2/HgIdrPwWGPKtporheE35Aro2tjK8J3zg/dm1S2n87BjzJ6hrgAbkWvHlocsxDcQ34MBle1yTIMUbZ3+fl/vmu4zqGmfA63DGWXwc4xvWOHcOs4XrcMZZfnyDHGGU/7zIKDHlW00RxvSH8gNwY6xg3EI5xYxwcA3iS1Q3AA3Ij8+ahf1GHcLoJEMP//g/AZWz4AUf/og7Zqm8GxECtIWi4uUc3M5z45gQ58Uj753ebf75buE5sJrwFd+JttwAP362Ondis4VbcibfdmsaHz0ZANzsW0G3gGiIXakxIDm8Hno147nAj7efdSoEhz2qaKK53hIU3LnaHu4PY4cbFYYcDHELdASRtHPPmoQ8Swml8Gne4oM8Y8dzO2B0mON61zLonCPCKXGgOJwA5nOg4h6mZrI05246dBBpavKqBEfZan+Of705uNWAmvBOvBubcCdygyY6rAbOGyXg1MGey42rACGFSklux3QWKLXKhnJAcTklQNTDCft7ZFBjyrKaJ4jo1LLxpsdXAVKIamBaHagBwCDUVSNo05s1DHySE03THO4kRzxTGrjvDcTVg1j1DgFfkQnM4A8jhTMc5TM1kgz6HmOysBP3dwHB7rYf8883mVgNmwtl4NRCaDSR5juNqwKxhDl4NhOY4rgaMEGYluRXbXKFqAMnhvARVA8Pt543buXPzw8JbEFsNzCeqgQVxqAYAh1DzgaQtYN489EFCOC10vJMY8cxj7LqLHFcDZt2LBHhFLjSHi4AcLnacw9RMNuhziMkuSVA1MMxe6/v98y3lVgNmwqV4NbB/KZDkux1XA2YNd+PVwP67HVcDRghLktyK7R6hagDJ4b0JqgaG2c/7BgWGPKtporguCwtveWw1sIyoBpbHoRoAHEItA5K2nHnz0AcJ4XSf453EiOdexq57v+NqwKz7fgFekQvN4f1ADh9wnMPUTDboc4jJPpigamCovdb7+edbwa0GzIQr8Gqg3wogySsdVwNmDSvxaqDfSsfVgBHCg0luxbZKqBpAcvhQgqqBofbz9qXAkGc1TRTX1WHhrYmtBlYT1cCaOFQDgEOo1UDS1jBvHvogIZzWOt5JjHgeYuy66xxXA2bd6wR4RS40h+uAHK53nMPUTDboc4jJPpygamCIvdaP+OfbwK0GzIQb8GrgyAYgyY84rgbMGh7Bq4EjjziuBowQHk5yK7aNQtUAksNNCaoGhtjPe5gCQ57VNFFcN4eFtyW2GthMVANb4lANAA6hNgNJ28K8eeiDhHDa6ngnMeLZxNh1tzmuBsy6twnwilxoDrcBOdzuOIepmWzQ5xCTfTRB1cBge6238M/3GLcaMBM+hlcDLR4DkrzDcTVg1rADrwZa7HBcDRghPJrkVmw7haoBJIe7ElQNDLaftzkFhjyraaK4Ph4W3hOx1cDjRDXwRByqAcAh1ONA0p5g3jz0QUI47Xa8kxjx7GLsuk86rgbMup8U4BW50Bw+CeRwj+McpmayQZ9DTPapBFUDg+y1vsU/39PcasBM+DReDWx5GkjyM46rAbOGZ/BqYMszjqsBI4SnktyK7VmhagDJ4XMJqgYG2c+7mQJDntU0UVyfDwvvhdhq4HmiGnghDtUA4BDqeSBpLzBvHvogIZz2Ot5JjHieY+y6LzquBsy6XxTgFbnQHL4I5PAlxzlMzWSDPoeY7MsJqgYG2mt9t3++V7jVgJnwFbwa2P0KkORXHVcDZg2v4tXA7lcdVwNGCC8nuRXba0LVAJLD1xNUDQy0n/cJCgx5VtNEcd0XFt4bsdXAPqIaeCMO1QDgEGofkLQ3mDcPfZAQTvsd7yRGPK8zdt0DjqsBs+4DArwiF5rDA0AODzrOYWomG/Q5xGTfTFA1MMBe66388x3iVgNmwkN4NdDqEJDktxxXA2YNb+HVQKu3HFcDRghvJrkV29tC1QCSw8MJqgYG2M/bkgJDntU0UVyPhIV3NLYaOEJUA0fjUA0ADqGOAEk7yrx56IOEcHrH8U5ixHOYseu+67gaMOt+V4BX5EJz+C6Qw/cc5zA1kw36HGKy7yeoGuhvr/Xx/vk+4FYDZsIP8Gpg/AdAkj90XA2YNXyIVwPjP3RcDRghvJ/kVmzHhKoBJIcfJaga6G8/7zgKDHlW00Rx/TgsvE9iq4GPiWrgkzhUA4BDqI+BpH3CvHnog4Rw+tTxTmLE8xFj1/3McTVg1v2ZAK/IhebwMyCHnzvOYWomG/Q5xGS/SFA1cDWzGviSWw2YCb9kVANfAkn+ynE1YNbwFaMa+MpxNWCE8EWSW7F9LVQNIDn8JkHVwNUJqAa+DQvvu9hq4FuiGvguDtUA4BDqWyBp3wlVAwin7x3vJEY83zB23R8cVwNm3T8I8IpcaA5/AHL4o+McpmayQZ9DTPanBFUD/ey1vs4/38/casBM+DNeDaz7GUjyL46rAbOGX/BqYN0vjqsBI4SfktyK7VehagDJ4W8Jqgb62c+7lgJDntU0UVyPh4X3e2w1cJyoBn6PQzUAOIQ6DiTtd+bNQx8khNMfjncSI57fGLvun46rAbPuPwV4RS40h38COfzLcQ5TM9mgzyEm+3eCqoG+9lpf5Z/vBLcaMBOewKuBVSeAJJ90XA2YNZzEq4FVJx1XA0YIfye5Fds/QtUAksNTCaoG+trPu5ICQ57VNNFck8Noshe985v/EFsNmEFprQYAh1CGg83YH8PcLDlE3Tz0QUI4XZCMPdzoA2PEc4qx66az53WWnGfPy6w7XbJ7XpELzWE6IIfpHecwNZMN+hxishmA+xrPaqCPvdaP+udLSk7DhObDYDVwNAlIcjLw8HDXkAyKx6whOY2ithFChmS3YksBxRa5UE5IDjMCnOJZDfSxrwaOUGDIs5omimumsPAyx1YDmYhqIHMcqgHAIVQmIGmZk3k3D32QEE5ZHO8kRjwZGbtuVsfVgFl3VgFekQvNYVYgh9kc5zA1kw36HGKy2RNUDfS21/o+/3w5uNWAmTAHXg3sywEkOafjasCsISdeDezL6bgaMELInuxWbLmEqgEkh7kTVA30tq8GXqfAkGc1TRTXPGHh5Y2tBvIQ1UDeOFQDgEOoPEDS8ibzbh76ICGc8jneSYx4cjN23fyOqwGz7vwCvCIXmsP8QA4LOM5haiYb9DnEZAsmqBroZa/1gv75CnGrATNhIbwaKFgISHJhx9WAWUNhvBooWNhxNWCEUDDZrdiKCFUDSA6LJqga6GVfDRSgwJBnNU0U12Jh4RWPrQaKEdVA8ThUA4BDqGJA0oon824e+iAhnEKOdxIjnqKMXbeE42rArLuEAK/IheawBJDDko5zmJrJBn0OMdlSCaoGetprfZd/vtLcasBMWBqvBnaVBpJcxnE1YNZQBq8GdpVxXA0YIZRKdiu2skLVAJLDcgmqBnraVwM7KTDkWU0TxbV8WHgVYquB8kQ1UCEO1QDgEKo8kLQKybybhz5ICKeKjncSI55yjF33QsfVgFn3hQK8IheawwuBHFZynMPUTDboc4jJXpSgaqCHvdan+uerzK0GzISV8WpgamUgyVUcVwNmDVXwamBqFcfVgBHCRcluxVZVqBpAclgtQdVAD/tqYAoFhjyraaK4Vg8L7+LYaqA6UQ1cHIdqAHAIVR1I2sXJvJuHPkgIp0sc7yRGPNUYu+6ljqsBs+5LBXhFLjSHlwI5vMxxDlMz2aDPISZ7eYKqge72Wm/un68GtxowE9bAq4HmNYAk13RcDZg11MSrgeY1HVcDRgiXJ7sV2xVC1QCSw1oJqga621cDzSgw5FlNE8W1dlh4dWKrgdpENVAnDtUA4BCqNpC0Osm8m4c+SAinuo53EiOeWoxdt57jasCsu54Ar8iF5rAekMP6jnOYmskGfQ4x2QYJqga62Wt9nn++htxqwEzYEK8G5jUEktzIcTVg1tAIrwbmNXJcDRghNEh2K7bGQtUAksMmCaoGutlXA3MpMORZTRPFtWlYeM1iq4GmRDXQLA7VAOAQqimQtGbJvJuHPkgIp+aOdxIjniaMXbeF42rArLuFAK/IheawBZDDlo5zmJrJBn0OMdlWCaoGutprfYx/vtbcasBM2BqvBsa0BpLcxnE1YNbQBq8GxrRxXA0YIbRKdiu2tkLVAJLDKxNUDXS1rwZGU2DIs5omimu7sPDax1YD7YhqoH0cqgHAIVQ7IGntk3k3D32QEE4dHO8kRjxXMnbdqxxXA2bdVwnwilxoDq8CctjRcQ5TM9mgzyEm2ylB1UAXe63v8c/XmVsNmAk749XAns5Akrs4rgbMGrrg1cCeLo6rASOETsluxdZVqBpActgtQdVAF/tq4EkKDHlW00Rx7R4WXo/YaqA7UQ30iEM1ADiE6g4krUcy7+ahDxLCqafjncSIpxtj1+3luBow6+4lwCtyoTnsBeSwt+McpmayQZ9DTLZPgqqBzvZaD/nn68utBsyEffFqINQXSHI/x9WAWUM/vBoI9XNcDRgh9El2K7arhaoBJIf9E1QNdLavBopTYMizmiaK64Cw8AbGVgMDiGpgYByqAcAh1AAgaQOTeTcPfZAQToMc7yRGPP0Zu+5gx9WAWfdgAV6RC83hYCCHQxznMDWTDfocYrJDE1QNdLLXehb/fMO41YCZcBheDWQZBiR5uONqwKxhOF4NZBnuuBowQhia7FZsI4SqASSHIxNUDXSyrwYyU2DIs5omiuuosPBGx1YDo4hqYHQcqgHAIdQoIGmjk3k3D32QEE5jHO8kRjwjGbvuWMfVgFn3WAFekQvN4Vggh9c4zmFqJhv0OcRkr01QNdDRXuuj/PNdx60GzITX4dXAqOuAJF/vuBowa7gerwZGXe+4GjBCuDbZrdhuEKoGkBzemKBqoKN9NTCSAkOe1TRRXG8KC+/m2GrgJqIauDkO1QDgEOomIGk3J/NuHvogIZxucbyTGPHcyNh1b3VcDZh13yrAK3KhObwVyOFtjnOYmskGfQ4x2dsTVA1cZa/1nP757uBWA2bCO/BqIOcdQJLHOa4GzBrG4dVAznGOqwEjhNuT3YptvFA1gORwQoKqgavsq4EcFBjyrKaJ4joxLLxJsdXARKIamBSHagBwCDURSNqkZN7NQx8khNOdjncSI54JjF13suNqwKx7sgCvyIXmcDKQw7sc5zA1kw36HGKyUxJUDXQA/lk9/3xTudWAmXBqMv65aY53eMNrWvJZIOTZX6iIzAM7JdmtKKYL7dpIXmakUag2a57ByGE8BdWeKaiZXEGZCWcyBDXLsaAMr1lxElTQcJP4Wcm8ByZkN0dcH5J2wL9n559vNvchMRPOZjjObECxcxw/UGYNcxhJnuO4BzMP0RxGeTAduF9zHZeD5t7OZYo1cqHP1lxg/fMcl3ip7chBn0N25PmOc2ju0XzGRoDkIb13tt1MK98LPN5z5mHzhKzBf13qf2tSvs8s0PdroY5FOhbrWKJjqY67ddyj414dy3Qs13Gfjvt1PKDjQR0rdKzUsUrHQzpW61ijY62OdTrW63hYxwYdj+jYqGOTjs06tujYGvt3AAvC/b4fW0hgiwhsMYEtIbClBHY3gd1DYPcS2DICW05g9xHY/QT2AIE9SGArCGwlga0isIcIbDWBrSGwtQS2jsDWE9jDBLaBwB4hsI0EtonANhPYFgLbmvzvv1sqEf4z5FldUaIPMpsFlsZk/h5qofVYTy2yHav5LrYbO1/zVUusxv5q1qaW2ow9dvo+qLstxjY8c8/UPcFj54bvr7o3cOzoSC7UsqCxO/+XN7U8YOxNZ3Os7jv32Ga+50Hdf86xX/ifHfXAucZWj3rO1IPnGFsu+plUK1If2zPm+VUrUx3bJfZZV6tSGzv+X7pQD6Uydvy/NaRW02MfJfSm1pBjG1PaVGupsVeSOlbriLE7aM2r9f8eWz4Vf1AP/2vs/al5idoQO7Zqqr6jHokZeyx1j1Ibo8eOPYefqU1RY9ucy/vUZv/Y/uf0SbXFN7bKuT1VbU1Qx7vV3ssP+Ofbxu14zYTbkuHfOh7YZn+D1HbLRXE7XrOG7WDHa9awHUyyueLx2zHg4dpPgSHPapooro+GH5DHYivjR8M3zo89lpz2344BT7J6FHhAHgNvHpoc81A8Cj5MhtejCXKMLfb3ebl/vh1cxzAT7sAdY/kOwDF2OnYMs4aduGMs35kgx9hiP+8yCgx5VtNEcd0VfkAej3WMXYRjPB4HxwCeZLULeEAeZ9489C/qEE5PAGL43/8BuGwPP+DoX9QhW/VuQAzUGoKGm3u0m+HEuxPkxJvtn99t/vme5DqxmfBJ3Im3PQk8fHscO7FZwx7cibftSePDZyOg3Y4F9BS4hsiFGhOSw6eBZyOeO9xm+3m3UmDIs5omiuszYeE9G7vDPUPscM/GYYcDHEI9AyTtWebNQx8khNNzadzhgj5jxPM0Y3d43vGuZdb9vACvyIXm8Hkghy84zmFqJmtjzrZj94KGFq9qYJO91uf453uRWw2YCV/Eq4E5LwI36CXH1YBZw0t4NTDnJcfVgBHC3mS3YnsZFFvkQjkhOXwlQdXAJvt5Z1NgyLOaJorrq2HhvRZbDbxKVAOvxaEaABxCvQok7TXmzUMfJITT6453EiOeVxi77j7H1YBZ9z4BXpELzeE+IIdvOM5haiYb9DnEZPcn6O8GNtprPeSf7wC3GjATHsCrgdABIMkHHVcDZg0H8WogdNBxNWCEsD/ZrdjeFKoGkBweSlA1sNF+3ridO/dWWHhvx1YDbxHVwNtxqAYAh1BvAUl7m3nz0AcJ4XTY8U5ixHOIsesecVwNmHUfEeAVudAcHgFyeNRxDlMz2aDPISb7ToKqgUfstb7fP9+73GrATPguXg3sfxdI8nuOqwGzhvfwamD/e46rASOEd5Ldiu19oWoAyeEHCaoGHrGf9w0KDHlW00Rx/TAsvGOx1cCHRDVwLA7VAOAQ6kMgaceYNw99kBBOHzneSYx4PmDsuh87rgbMuj8W4BW50Bx+DOTwE8c5TM1kgz6HmOynCaoGNthrvZ9/vs+41YCZ8DO8Guj3GZDkzx1XA2YNn+PVQL/PHVcDRgifJrsV2xdC1QCSwy8TVA1ssJ+3LwWGPKtporh+FRbe17HVwFdENfB1HKoBwCHUV0DSvmbePPRBQjh943gnMeL5krHrfuu4GjDr/laAV+RCc/gtkMPvHOcwNZMN+hxist8nqBp42F7rR/zz/cCtBsyEP+DVwJEfgCT/6LgaMGv4Ea8GjvzouBowQvg+2a3YfhKqBpAc/pygauBh+3kPU2DIs5omiusvYeH9GlsN/EJUA7/GoRoAHEL9AiTtV+bNQx8khNNvjncSI56fGbvuccfVgFn3cQFekQvN4XEgh787zmFqJhv0OcRk/0hQNbDeXust/PP9ya0GzIR/4tVAiz+BJP/luBowa/gLrwZa/OW4GjBC+CPZrdj+FqoGkByeSFA1sN5+3uYUGPKsponiejIsvH9iq4GTRDXwTxyqAcAh1Ekgaf8wbx76ICGcTjneSYx4TjB2XZPEkGd/obzMus0crnlFLjSH/nmCxqoUtzlMzWSDPoeY7AXAfY1nNbDOXutb/POlS0nDhObDYDWwJR2Q5PTAw8NdQ/oUuBrYkj6NorYRwgUpbsWWARRb5EI5ITlMQp6NGD4U4ZBn97PW2W8emykw5FlNE8U1OSy8lNgzwpJT/l0NmEFprQYAh1DJQNJSUng3D32QEE4ZHe8kRjxJjF03k+NqwKw7kwCvyIXmMBOQw8yOc5iayQbOBawhS4KqgbX2Wt/tny8rtxowE2bFq4HdWYEkZ3NcDZg1ZMOrgd3ZHFcDRghZUtyKLbtQNYDkMEeCqoG19tXAExQY8qymieKaMyy8XLHVQE6iGsgVh2oAcAiVE0harhTezUMfJIRTbsc7iRFPDsaum8dxNWDWnUeAV+RCc5gHyGFexzlMzWSDPoeYbL4EVQNr7LXeyj9ffm41YCbMj1cDrfIDSS7guBowayiAVwOtCjiuBowQ8qW4FVtBoWoAyWGhBFUDa+yrgZYUGPKsponiWjgsvCKx1UBhohooEodqAHAIVRhIWpEU3s1DHySEU1HHO4kRTyHGrlvMcTVg1l1MgFfkQnNYDMhhccc5TM1kgz6HmGwoQdXAanutj/fPV4JbDZgJS+DVwPgSQJJLOq4GzBpK4tXA+JKOq4HTQkhxK7ZSQtUAksPSCaoGVttXA+MoMORZTRPFtUxYeGVjq4EyRDVQNg7VAOAQqgyQtLIpvJuHPkgIp3KOdxIjntKMXbe842rArLu8AK/IheawPJDDCo5zmJrJBn0OMdmKCaoGHmJWAxdyqwEz4YWMauBCIMmVHFcDZg2VGNVAJcfVgBFCxRS3YrtIqBpAclg5QdXAQwmoBqqEhVc1thqoQlQDVeNQDQAOoaoASasqVA0gnKo53kmMeCozdt3qjqsBs+7qArwiF5rD6kAOL3acw9RMNuhziMlekqBqYJW91tf557uUWw2YCS/Fq4F1lwJJvsxxNWDWcBleDay7zHE1YIRwSYpbsV0uVA0gOayRoGpglX01sJYCQ57VNFFca4aFd0VsNVCTqAauiEM1ADiEqgkk7YoU3s1DHySEUy3HO4kRTw3GrlvbcTVg1l1bgFfkQnNYG8hhHcc5TM1kgz6HmGzdBFUDK+21vso/Xz1uNWAmrIdXA6vqAUmu77gaMGuoj1cDq+o7rgaMEOqmuBVbA6FqAMlhwwRVAyvtq4GVFBjyrKaJ4tooLLzGsdVAI6IaaByHagBwCNUISFrjFN7NQx8khFMTxzuJEU9Dxq7b1HE1YNbdVIBX5EJz2BTIYTPHOUzNZIM+h5hs8wRVAyvstX7UP18LbjVgJmyBVwNHWwBJbum4GjBraIlXA0dbOq4GjBCap7gVWyuhagDJYesEVQMr7KuBIxQY8qymieLaJiy8trHVQBuiGmgbh2oAcAjVBkha2xTezUMfJITTlY53EiOe1oxdt53jasCsu50Ar8iF5rAdkMP2jnOYmskGfQ4x2Q4JqgYetNf6Pv98V3GrATPhVXg1sO8qIMkdHVcDZg0d8WpgX0fH1YARQocUt2LrJFQNIDnsnKBq4EH7auB1Cgx5VtNEce0SFl7X2GqgC1ENdI1DNQA4hOoCJK1rCu/moQ8Swqmb453EiKczY9ft7rgaMOvuLsArcqE57A7ksIfjHKZmskGfQ0y2Z4KqgQfstV7QP18vbjVgJuyFVwMFewFJ7u24GjBr6I1XAwV7O64GjBB6prgVWx+hagDJYd8EVQMP2FcDBSgw5FlNE8W1X1h4V8dWA/2IauDqOFQDgEOofkDSrk7h3Tz0QUI49Xe8kxjx9GXsugMcVwNm3QMEeEUuNIcDgBwOdJzD1Ew26HOIyQ5KUDVwv73Wd/nnG8ytBsyEg/FqYNdgIMlDHFcDZg1D8Gpg1xDH1YARwqAUt2IbKlQNIDkclqBq4H77amAnBYY8q2miuA4PC29EbDUwnKgGRsShGgAcQg0HkjYihXfz0AcJ4TTS8U5ixDOMseuOclwNmHWPEuAVudAcjgJyONpxDlMz2aDPISY7JkHVwH32Wp/qn28stxowE47Fq4GpY4EkX+O4GjBruAavBqZe47gaMEIYk+JWbNcKVQNIDq9LUDVwn301MIUCQ57VNFFcrw8L74bYauB6ohq4IQ7VAOAQ6nogaTek8G4e+iAhnG50vJMY8VzH2HVvclwNmHXfJMArcqE5vAnI4c2Oc5iayQZ9DjHZWxJUDSy313pz/3y3cqsBM+GteDXQ/FYgybc5rgbMGm7Dq4HmtzmuBowQbklxK7bbhaoBJId3JKgaWG5fDTSjwJBnNU0U13Fh4Y2PrQbGEdXA+DhUA4BDqHFA0san8G4e+iAhnCY43kmMeO5g7LoTHVcDZt0TBXhFLjSHE4EcTnKcw9RMNuhziMnemaBqYJm91uf555vMrQbMhJPxamDeZCDJdzmuBswa7sKrgXl3Oa4GjBDuTHErtilC1QCSw6kJqgaW2VcDcykw5FlNE8V1Wlh402OrgWlENTA9DtUA4BBqGpC06Sm8m4c+SAinGY53EiOeqYxdd6bjasCse6YAr8iF5nAmkMNZjnOYmskGfQ4x2dkJqgbutdf6GP98c7jVgJlwDl4NjJkDJHmu42rArGEuXg2Mmeu4GjBCmJ3iVmzzhKoBJIfzE1QN3GtfDYymwJBnNU0U1wVh4S2MrQYWENXAwjhUA4BDqAVA0ham8G4e+iAhnBY53kmMeOYzdt3FjqsBs+7FArwiF5rDxUAOlzjOYWomG/Q5xGSXJqgauMde63v8893NrQbMhHfj1cCeu4Ek3+O4GjBruAevBvbc47gaMEJYmuJWbPcKVQNIDpclqBq4x74aeJICQ57VNFFcl4eFd19sNbCcqAbui0M1ADiEWg4k7b4U3s1DHySE0/2OdxIjnmWMXfcBx9WAWfcDArwiF5rDB4AcPug4h6mZbNDnEJNdkaBq4G57rYf8863kVgNmwpV4NRBaCSR5leNqwKxhFV4NhFY5rgaMEFakuBXbQ0LVAJLD1QmqBu62rwaKU2DIs5omiuuasPDWxlYDa4hqYG0cqgHAIdQaIGlrU3g3D32QEE7rHO8kRjyrGbvuesfVgFn3egFekQvN4Xoghw87zmFqJhv0OcRkNySoGlhqr/Us/vke4VYDZsJH8GogyyNAkjc6rgbMGjbi1UCWjY6rASOEDSluxbZJqBpAcrg5QdXAUvtqIDMFhjyraaK4bgkLb2tsNbCFqAa2xqEaABxCbQGStjWFd/PQBwnhtM3xTmLEs5mx6253XA2YdW8X4BW50BxuB3L4qOMcpmayQZ9DTPaxBFUDS+y1Pso/3w5uNWAm3IFXA6N2AEne6bgaMGvYiVcDo3Y6rgaMEB5LcSu2XULVAJLDxxNUDSyxrwZGUmDIs5omiusTYeHtjq0GniCqgd1xqAYAh1BPAEnbncK7eeiDhHB60vFOYsTzOGPX3eO4GjDr3iPAK3KhOdwD5PApxzlMzWSDPoeY7NMJqgYW22s9p3++Z7jVgJnwGbwayPkMkORnHVcDZg3P4tVAzmcdVwNGCE+nuBXbc0LVAJLD5xNUDSy2rwZyUGDIs5omiusLYeHtja0GXiCqgb1xqAYAh1AvAEnbm8K7eeiDhHB60fFOYsTzPGPXfclxNWDW/ZIAr8iF5vAlIIcvO85haiYb9DnEZF9JUDWwyN7QouZ7lVsNmAlfTcE/95rjHd7wes3nnCHP/kJFZB7YV1LciuJ1oV0bycu+NArVZs37GDmMp6AWMgX1BldQZsI3GILa71hQhtf+OAkqaLhJ/P4U3gMTspsjrg/JgmR7jv75DnAfEjPhAYbjHAAUe9DxA2XWcJCR5IOOezDzEB1klAevA/frTcfloLm3bzLFGrnQZ+tNYP2HHJd4qe3IQZ9DduS3HOfQ3KO3GBsBkgf/ldFyngifMhksOIUHl7UZGx5czmrsmcHl7caeHlzBcqwZXNF2rB58YQb73FTKYJ+bt4Hny6wv8lcG5nP1Y/47mtuiQG6LAbktDuQ2BOS2BJDbkkBuSwG5LQ3k9jAzt4fjkNu8QG7zAbnND+S2AJDbgkBuCwG5LQzktgiQ2yPM3B6JQ26zArnNBuQ2O5DbHEBucwK5zQXkNjeQ2zxAbo8yc3s0DrkdkmSf26FJ9rkdlmSf2+FJ9rkdkWSf25FJ9rkdlWSf29FJ9rl9h5nbd+KQ275AbvsBub0ayG1/ILcDgNwOBHI7CMjtYCC37zJz+24cctsVyG03ILfdgdz2AHLbE8htLyC3vYHc9gFy+x4zt+/FIbftgNy2B3LbAcjtVUBuOwK57QTktjOQ2y5Abt9n5vb9OOT24WT73G5Its/tI8n2ud2YbJ/bTcn2ud2cbJ/bLfZ/A662An8R+gEztx/EIbcrgdyuAnL7EJDb1UBu1wC5XQvkdh2Q2/VAbj9k5vbDOOT2XiC3y4DcLgdyex+Q2/uB3D4A5Bb4V7fVCiC3x5i5PRaH3C4AcrsQyO0iILeLgdwuAXK7FMgt8Iaz9bEhJrcfMXP7UTi35v/P5J39e0jz5+GUs3+/Yf48mnK2b4rU2JF6LLJ3R3w+4gmR5ycyl7lCnjVN6zUlcux4YCzyc/8bG319rJ+fT3R8quMzHZ/r+ELHlzq+0vG1jm90fKvjOx3f6/hBx486ftLxs45fdPyq4zcdx3X8ruMPHX/q+CvlzC+XI/qIvRTGV30M/p4p9grZDUvhf1b9b03K94P+1v/PCR0ndfyj45T5D9rwlY4LMnrRBvJ3+HuOfuwEgZ0ksH8I7BSBmcljMUVgF2T8992w3agi9+Fj4Jdwf1uONd/PPGE91lMnbcdqvv/YjZ2v+apTVmN/NWtT5sYFjj12+j4oZTG24Zl7pi7IaC+KeIrxk/NUjOn0/UqvI4OOJB3J5hnXkVFHplgxpiNEkZ7AMhBYEoElE1gKgWUksExxEOMngBjTZfQsBXZKpbce66kMtmM13yS7safFmGw19owYUwAxZgTEmClBYvz0PBVjZn2/sujIqiObjuw6cujIqSNXrBgzE6LIQmBZCSwbgWUnsBwElpPAcsVBjJ8CYswMiDELIMasgBizAWLMDogxByDGnIAYcyVIjJ+dp2LMre9XHh15deTTkV9HAR0FdRSKFWNuQhR5CCwvgeUjsPwEVoDAChJYoTiI8TNAjLkBMeYBxJgXEGM+QIz5ATEWAMRYEBBjIVCM8fpCcvr09vP65yucMQ0Tmg+jnyuS0f4B5PIqkvEsELL7nLNkIN8OL5qWZJgPo9/gLWr/tKpiAokrRjxQQXMVAxRH8Qr6+eZhKpYR/2ZxEYf3NnKh7v+39ZatvBO2Y9WZv6SxGWvu/T92Y0+n6ZTV2HBGbe53eKiyGBt5Ti4AclMceBb9O7v5XP2Y/47mNl1G+9ymz2if2wwZ7XOblNE+t8kZ7XObAuQ2I5DbTEBuQ8zchuKQ28xAbrMAuc0K5DYbkNvsQG5zALnNCeQ2F5DbEszclohDbnMDuc0D5DYvkNt8QG7zA7ktAOS2IJDbQkBuSzJzWzIOuU3v2ec2g2ef2yTPPrfJnn1uUzz73Gb07HObybPPbWbPPrelmLktFYfcZvHsc5vVs89tNs8+t9k9+9zm8Oxzm9Ozz20uzz63uT373JZm5rZ0HHKbx7PPbV7PPrf5PPvc5vfsc1vAs89tQc8+t4U8+9wW9uxzW4aZ2zJxyG0Rzz63RT373Bbz7HNb3LPPbcizz20Jzz63JT373Jby7HNblpnbshn//Y2i4hnP1tCReiuyN0d8PKL5yPMR+VmeZ/9MAGORn/t/fux4YCzyc/8bG32V0897eR0VdFTUcaGOSjou0lFZRxUdVXVU01Fdx8U6LtFxqY7LdFyuo4aOmjqu0FFLR20ddXTU1VEvY3x/dVQO/Du72CtkNyzuvzqqr3k30NFQRyMdjXU00dFUR7PYXx3VJ36F04DAGhJYIwJrTGBNCKwpgTXLmPZfHZUDmq761r8OOqUaAL86agj86qgR8KujxsCvjpoAvzpqCvzqqBkginiKsfx5KsbmmncLHS11tNLRWkcbHW11XBkrxuaEKFoQWEsCa0VgrQmsDYG1JbAr4yDG8oAYmwNibAGIsSUgxlaAGFsDYmwDiLEtIMYrEyTGCuepGNtp3u11dNBxlY6OOjrp6KyjS6wY2xGiaE9gHQjsKgLrSGCdCKwzgXWJgxgrAGJsB4ixPSDGDoAYrwLE2BEQYydAjJ0BMXZJkBgrnqdi7Kp5d9PRXUcPHT119NLRW0efWDF2JUTRjcC6E1gPAutJYL0IrDeB9YmDGCsCYuwKiLEbIMbugBh7AGLsCYixFyDG3oAY+wCiMDmN/F3Ouf6uxvx5rr/rMVfIs7oUMBb5uf/nx44HxiI/97+x0Vdf/bz303G1jv46BugYqGOQjsE6hugYqmOYjuE6RugYqWOUjtE6xugYq+MaHdfquE7H9Tpu0HGjjpsyxneT7HuebpI3a9636LhVx206btdxh45xOsbHbpI3E5vVLQR2K4HdRmC3E9gdBDaOwMbHYZPsC2ySNwOb5C3AJnkrsEneBmyStwOb5B3AJjkO2CTHJ6hi7XeeinGC5j1RxyQdd+qYrOMuHVN0TI0V4wRCFBMJbBKB3UlgkwnsLgKbQmBT4yDGfoAYJwBinAiIcRIgxjsBMU4GxHgXIMYpgBinJkiMV5+nYpymeU/XMUPHTB2zdMzWMUfH3FgxTiNEMZ3AZhDYTAKbRWCzCWwOgc2NgxivBsQ4DRDjdECMMwAxzgTEOAsQ42xAjHMAMc5NkBj7n6dinKd5z9exQMdCHYt0LNaxRMfSWDHOI0Qxn8AWENhCAltEYIsJbAmBLY2DGPsDYpwHiHE+IMYFgBgXAmJcBIhxMSDGJYAYl4KiQN8vMu+bIO/BmLHmV8fouza2B2oYTnc7XvMJxpobMNZ8AljzPY7XfJKx5oaMNZ8E1nyv4zX/w1hzI8aa/wHWvMzxmk8x1tyYseZTwJqXO16z2bTQNTdhrNnLaM/pPsdrVow1N2WsWQFrvt/xmi9grLkZY83I+4QPOF5zOsaamzPWnA5Y84OO15yeseYWjDWnB9a8wvGaMzDW3JKx5gzAmlc6XnMSY82tGGtOAta8yvGakxlrbs1YczKw5occrzmFseY2jDWnAGte7XjNGRlrbstYc0ZgzWscrzkTY81XMtaMvBO+1vGaMzPW3I6x5szAmtc5XnMWxprbM9acBVjzesdrzspYcwfGmrMCa37Y8ZqzMdZ8FWPN2YA1b3C85uyMNXdkrDk7sOZHHK85B2PNnRhrzgGseaPjNedkrLkzY805gTVvcrzmXIw1d2GsGTnXY7PjNedmrLkrY825gTVvcbzmPIw1d2OsOQ+w5q2O15yXsebujDXnBda8zfGa8zHW3IOx5nzAmrc7XnN+xpp7MtacH1jzo47XXICx5l6MNRcA1vyY4zUXZKy5N2PNBYE173C85kKMNfdhrBk5m2knsOZ4HtCZgXla6q6MaZjQfBj93OPAzeTyejzjWSBk9zlnyQj8xZTvg0+kJRlPZMQV9ASgnt0CidtNPFBBc+0GXQb9+eZh2s1wjccF723QZ4zz3cy4t6qSu3trvrVkeN3C4HWBU15ndopbGbzSueQV3sFuY/BK747X6W9+GV63M3hlcMbrzLfMDK87GLySXPEKf6PN8BrH4JXsiFfk23OG13gGr5Q08goabnjdzeCV0SkvddpX72HwyuSSlzrj9/cyeGV2yMuMNbyWMXhlccfr9FDDazmDV1ZnvM6MNLzuY/DK5opXeKDhdT+DV3ZHvCLjDK8HGLxygLwiV8GYeYJo3mxdEyrvFtux6kytYjPW3JfbMtrr4vaM9s/qHRntn59xGe1zOh6ojZ8Eam6gtlVAvamAGlABdZkCaiUF1C8KqCkUsM8rYO9VwH6ogD1KAfuGArxcAf6qAM9TiA8ZfUTeTDHPfX0fbq5Q+E+b3nACwzOLCPSGExm8igr0hpMYvIoJ9IZ3MngVF+gNJzN4hQR6w7sYvEoI9IZTGLxKCvSGUxm8Sgn0hg8yeJUW6A1XMHiVEegNVzJ4lRXoDVcxeJUT6A0fYvAqL9AbrmbwqiDQG65h8Koo0BuuZfC6UKg3nAD0hhOB3nAS0BveCfSGk4He8C6gN5wC9IZTgd5wD/KbYqBmB+pNBdSACqjLFFArKaB+UUBNoYB9XgF7rwL2QwXsUQrYNxTg5QrwVwV4nrqQ2RvuSWNvOI3hmZcL9IbTGbxqCPSGMxi8agr0hjMZvK4Q6A1nMXjVEugNZzN41RboDecweNUR6A3nMnjVFegN1zF41RPoDdczeNUX6A0fZvBqINAbbmDwaijQGz7C4NVIoDfcyODVWKA33MTg1USgN9zM4NVUqDecBvSG04HecAbQG84EesNZQG84G+gN5wC94VygN3wK6A2B2lYB9aYCakAF1GUKqJUUUL8ooKZQwD6vgL1XAfuhAvYoBewbCvByBfirAjxPNWX2hk+lsTecx/DMDgK94XwGr6sEesMFDF4dBXrDhQxenQR6w0UMXp0FesPFDF5dBHrDJQxeXQV6w6UMXt0EesMtDF7dBXrDrQxePQR6w20MXj0FesPtDF69BHrDRxm8egv0ho8xePUR6A13MHj1FegNdzJ49RPqDecBveF8oDdcAPSGC4HecBHQGy4GesMlQG+4FOgNnwZ6Q6C2VUC9qYAaUAF1mQJqJQXULwqoKRSwzytg71XAfqiAPUoB+4YCvFwB/qoAz1P9mL3h077eMHJlDP8Z8qwuVdp6rPLK2I7V5MpajjXrKGc39rQ1lLcae8ZFKtiMDRtORYuxEW+60LP3pmcy8nL7TBxyW8mzz+1Fnn1uK3v2ua3i2ee2qmef22qefW6re/a5vdizz+2zzNw+G4fcXuLZ5/ZSzz63l3n2ub3cs89tDc8+tzU9+9xe4dnntpZnn9vnmLl9Lg65re3Z57aOZ5/bup59but59rmt79nntoFnn9uGnn1uG3n2uX2emdvnw7k1/3/kXxh9Mtx37Ml49u9rzZ9PZzzr4+bPZzOefT4iP8vz7J8JYCzyc//Pjx0PjEV+7n9jo68X9PO+V8eLOl7S8bKOV3S8quM1Ha/r2KfjDR37dRzQcVDHmzoO6XhLx9s6Dus4ouOojnd0vKvjPR3vZ4zvP930QkbsPsReIbthcf+nmz7QvD/UcUzHRzo+1vGJjk91fJbRizY0Mzj2n1D6kMCOEdhHBPYxgX1CYJ8S2GcZ0/5PN70A/KXBB5ZjzS+sPrQe66ljtmM134/sxp7+ZcvHVmPP/ALkE5ux4V9KfGoxNvKLgs8AUcRTjHvPUzF+rnl/oeNLHV/p+FrHNzq+1fFdrBg/J0TxBYF9SWBfEdjXBPYNgX1LYN/FQYx7ATF+DojxC0CMXwJi/AoQ49eAGL8BxPgtIMbvEiTGF89TMX6vef+g40cdP+n4WccvOn7V8VusGL8nRPEDgf1IYD8R2M8E9guB/Upgv8VBjC8CYvweEOMPgBh/BMT4EyDGnwEx/gKI8VdAjL8lSIwvnadiPK55/67jDx1/6vhLx986Tug4GSvG44QofiewPwjsTwL7i8D+JrATBHYyDmJ8CRDjcUCMvwNi/AMQ45+AGP8CxPg3IMYTgBhPMkWBns2JHJT6jz0n5f8f6WM4BX32ZoDTKYATchZPRubv1dG13gKs1fyF3f/GXvx16VHtRk2bveS3Ma+cOpz+1czb+1artyO09b7c9/XMEX2WUNDYTEJrvRVYq/KvdUCxbPP37PmjQNlZg2q98va7b7z9dJ55Y44ffrPdli1/jcgRdRZS0NjMQmu9DVjrBVFrbdvwtk8uan7X5sL/VKv14Lur350RanKgfP7pYwe0y5ZpRM70lezHZhFa6+3AWtP51npR74wzJj5++fZadz9YrV+Bk6FDVdoPevmrn+o9+vXAdSOLZRrpP4sqaGxWobXeAaw1vW+thY//nnfiwZpV1uXcsvbknt6P3/fVyW3pNw1cuG7z+qHL6hTL7D9LK2hsNqG1jgPWmsG31srDj2dOTm43oWjWT4d2+H7KDx8XWNIq+6TyoXse+HHzP63rFPefBRY0NrvQWpHz35J8a6342MKvLvjlobyVCt9b4UCZ5dX2X75jzz+Zx+V/vXHNFx/7vnVd/1lmQWNzCK11ArDW5Ez2Pxc5z6C00FonAmtNAfbXosD+WkZorZOAtWYE9tdiwP5aVmitdwJrzQTsr8WB/bWc0FonA2vNDOyvIWB/LS+01ruAtWYB9tcSwP5aQWitU4C1ZgX215LA/lpRaK3IGTrZgP21FLC/Xii01mnAWrMD+yvyTmg9obVOB9aaA9hfawD7a32htc4A1poT2F9rAvtrA6G1zgTWmgvYX68A9teGQmudBaw1N7C/1gL210ZCa50NrDUPsL/WBvbXxkJrnQOsNS+wv9YB9tcmQmtFziHIB+yvdYH9tanQWucBa80P7K/IezXdhdY6H1hrAWB/vQrYX3sIrXUBsNaCwP7aEdhfewqtdSGw1kLA/toJ2F97Ca11EbDWwsD+2hnYX3sLrXUxsNYiwP7aBdhf+witdQmw1qLA/toV2F/7Cq0VeZezGLC/dgP2V/RdXwWu0fwu2HylNPZzQeud7PisAsPrQwavuxyfVWB4HWPwmuL4rALD6yMGr6mOzyowvD5m8Jrm+KwCw+sTBq/pjs8qMLw+ZfCa4fisAsPrMwavmY79y3w/5RSD1yzH/mV4me9uoLxmO/Yvw0sxeM1x7F+G1wUMXnMd+5fhlY7Ba55j/zK80jN4zXfsX4ZXBgavBY79y/BKYvBayKw1c4LzFAf+zgKovRRQDymgRlFA3aCAvVwB+6sC9jwF7EMK2BsU4NcK8FAF+JoCvEYB+leAJhWiE6PByPeSzXNf34ebK2T1U870Lp8z9v5lAr3LFwxeywV6ly8ZvO4T6F2+YvC6X6B3+ZrB6wGB3uUbBq8HBXqXbxm8Vgj0Lt8xeK0U6F2SGTXJKoHeJYXB6yGB3iUjg9dqgd4lE4PXGoHeJTOD11qB3iULg9c6gd4lK4PXeoHeJRuD18NCvUsI6F2A2ksB9ZACahQF1A0K2MsVsL8qYM9TwD6kgL1BAX6tAA9VgK8pwGsUoH8FaFI9zOxdQmnsXb5n1CTbBHqXHxi8tgv0Lj8yeD0q0Lv8xOD1mEDv8jOD1w6B3uUXBq+dAr3LrwxeuwR6l98YvB4X6F2yM2qSJwR6lxwMXrsFepecDF5PCvQuuRi89gj0LrkZvJ4S6F3yMHg9LdC75GXwekagd8nH4PWsUO9SAuhdgNpLAfWQAmoUBdQNCtjLFbC/KmDPU8A+pIC9QQF+rQAPVYCvKcBrFKB/BWhSPcvsXUqksXc5zqhJXhHoXX5n8HpVoHf5g8HrNYHe5U8Gr9cFepe/GLz2CfQufzN4vSHQu5xg8Nov0LucZPA6INC75GfUJAcFepcCDF5vCvQuBRm8Dgn0LoUYvN4S6F0KM3i9LdC7FGHwOizQuxRl8Doi0LsUY/A6KtS7lAR6F6D2UkA9pIAaRQF1gwL2cgXsrwrY8xSwDylgb1CAXyvAQxXgawrwGgXoXwGaVEeZvUvJTP/+9yzO9e9VmD+Lh3UcynS2/4n8LHOFPGsakLb/G2s3djwwFvm5/42Nvkrp5720jjI6yuoop6O8jgo6Kuq4UEclHRfpqKyjio6qOqrpqK7jYh2X6LhUx2U6LtdRQ0dNHVfoqJUpvgcFl8qE3YfYK2Q3LO4HBdfWvOvoqKujnvErHQ10NNTRKGJaEUMzg2MP7K1DYHUJrB6B1SewBgTWkMAaZUr7QcGlMtkXMbUtx5qDgutYj/VUXduxmm89u7GnDwqubzX2zEHBDWzGhg8KbmgxNnJQcCNAFPEUY+nzVIyNNe8mOprqaKajuY4WOlrqaBUrxsaEKJoQWFMCa0ZgzQmsBYG1JLBWcRBjaUCMjQExNgHE2BQQYzNAjM0BMbYAxNgSEGOrBImxzHkqxtaadxsdbXVcqaOdjvY6Oui4KlaMrQlRtCGwtgR2JYG1I7D2BNaBwK6KgxjLAGJsDYixDSDGtoAYrwTE2A4QY3tAjB0AMV6VIDGWPU/F2FHz7qSjs44uOrrq6Kaju44esWLsSIiiE4F1JrAuBNaVwLoRWHcC6xEHMZYFxNgREGMnQIydATF2AcTYFRBjN0CM3QEx9mCKIiLIkGVuetrPA707O6uSDP9e/nsacC6X/33eoLGzhfj3jnomzn3Wlv8d46Cxc4T494l+ps95ftbUSvZj5wrx7+vjH3Qmlv9d7KCx84T49/PxDzrnyv9+eNDY+UL8r/bxDzq7yv/OetDYBUL8+/v4B51H5X+PPmjsQiH+AwD/R94/WiXEfyDg/8sB/39IiP8gwP/vA/x/tRD/wYD/3w/4/xoh/kMA/38A8P+1QvyHAv7/IOD/64T4DwP8fwXg/+uF+A8H/H8l4P8PC/EfAfg/8h3uJ4T4jwT8fzvg/7uF+I8C/P9RwP+fFOI/GvD/xwD/3yPEfwzg/zsA/39KiP9YwP93Av7/tBD/awD/3wX4/zNC/K8F/P9xwP+fFeJ/HeD/yPfgDgrxvx7w/1cB/39TiP8NgP+/Bvj/ISH+NwL+/zrg/28J8b8J8P99gP+/LcT/ZsD/3wD8/7AQ/1sA/98P+P8RIf63Av5/APB/5Pud5pdx5t+xVsR/UzHrCbhUUnr7ef3z3ZYpDROaD6Ofux34BRSX1+2ZzgIhu885S0bQGv3z3ZGWZJgPo/8q+h1AFTFOIHHjiAcqaK5x4G/c0J9vHqZxxL0Nmub2/4/urXkrrSfj3n4n8PZqLwav7wXeXu3N4PWDwNurfRi8fhR4e7Uvg9dPAm+v9mPw+lng7dWrGbx+EXh7tT+D169OfeLM26u1Gbx+E3h7tQ6D13GBt1frMnj9LvD2aj0Grz8E3l6tz+D1p8Dbqw0YvP4SeHu1IYPX3wJvrzZi8Doh9PbqeKAmBGovBdRDCqhRFFA3KGAvV8D+qoA9TwH7kAL2BgX4tQI8VAG+pgCvUYD+FaBJhejEaDDyzVXz3Nf34eYKWf2UM73LAIam01/kdu83vAYyeGVwySvcuwxi8EpyyCvSuwxm8Ep2x+t/vcsQBq8UZ7zO9i5DGbwyuuLl612GMXhlcsTL37sMZ/DK7NQnzvQujRm8sjj2L8OrCYNXVsf+ZXg1ZfDK5ti/DK9mDF7ZHfuX4dWcwSuHY/8yvFoweOV07F+GV0sGr1yO/cvwasXglRvkFbnQ3mUC0LsAtZcC6iEF1CgKqBsUsJcrYH9VwJ6ngH1IAXuDAvxaAR6qAF9TgNcoQP8K0KRCdOLvXSaksXcZwdB0YYHeZSSDVxGB3mUUg1dRgd5lNINXMYHeZQyDV3GB3mUsg1dIoHe5hsGrhEDvci2DV0mB3qU1g1cpgd6lDYNXaYHepS2DVxmB3uVKBq+yAr1LOwavcgK9S3sGr/ICvUsHBq8KAr3LVQxeFYV6l4lA7wLUXgqohxRQoyigblDAXq6A/VUBe54C9iEF7A0K8GsFeKgCfE0BXqMA/StAk6ois3eZmMbe5TqGpqsL9C7XM3hdLNC73MDgdYlA73Ijg9elAr3LTQxelwn0LjczeF0u0LvcwuBVQ6B3uZXBq6ZA79KRwesKgd6lE4NXLYHepTODV22B3qULg1cdgd6lK4NXXYHepRuDVz2B3qU7g1d9gd6lB4NXA6HeZRLQuwC1lwLqIQXUKAqoGxSwlytgf1XAnqeAfUgBe4MC/FoBHqoAX1OA1yhA/wrQpGrA7F0m+XqXyIWedtjYeqzymtiO1eSaWo4162hmN/a0/TS3GnvGqVrYjA2bWkuLsRH/a+XZe9OdmXi5vTMOuW3t2ee2jWef27aefW6v9Oxz286zz217zz63HTz73F7l2ed2MjO3k+OQ246efW47efa57ezZ57aLZ5/brp59brt59rnt7tnntodnn9u7mLm9Kw657enZ57aXZ5/b3p59bvt49rnt69nntp9nn9urPfvc9vfsczuFmdspmf79LwyND9fFEzKd/fvEyN4c8fGI5iPPR+RneZ79MwGMRX7u//mx44GxyM/9b2z0NVU/79N0TNcxQ8dMHbN0zNYxR8dcHfN0zNexQMdCHYt0LNaxRMdSHXfruEfHvTqW6Viu4z4d9+t4IFN8j26fmgm7D7FXyG5Y3I9uf1DzXqFjpY5VOh7SsVrHGh1rI6YVMTQzOPYI9RUEtpLAVhHYQwS2msDWENjaTGk/ut2ftKBN4EHLsebo9hXWYz210nas5rvKbuzpo9sfshp75uj21TZjw0e3r7EYGzm6fS0giniKcdp5KsZ1mvd6HQ/r2KDjER0bdWzSsTlWjOsIUawnsIcJbAOBPUJgGwlsE4FtjoMYpwFiXAeIcT0gxocBMW4AxPgIIMaNgBg3AWLcnCAxTj9PxbhF896qY5uO7Toe1fGYjh06dsaKcQshiq0Eto3AthPYowT2GIHtILCdcRDjdECMWwAxbgXEuA0Q43ZAjI8CYnwMEOMOQIw7EyTGGeepGHdp3o/reELHbh1P6tij4ykdT8eKcRchiscJ7AkC201gTxLYHgJ7isCejoMYZwBi3AWI8XFAjE8AYtwNiPFJQIx7ADE+BYjxaaYo0LPhkIP6nrHnpPz/Az218Vlgnu/cnAURdaH8n/Pf04CTbL8HTr09LsT/+ahn4twn2f4AnHr7uxD/F6Kf6XOeZPsjcOrtH0L89/r4B51k+xNw6u2fQvxf9PEPOsn2Z+DU27+E+L/k4x90ku0vwKm3fwvxf9nHP+gk21+BU29PCPF/BfB/5B3kLBfJ8H8V8H//e9FBY7MK8X8N8H//u9pBY7MJ8X8d8P/ki+zHZhfivw/wf/877UFjcwjxfwPwf/979kFjcwrx3w/4v//d/6CxuYT4HwD8338eQdDY3EL8DwL+j7zHVUqI/5uA/xcB/L+0EP9DgP8XBfy/jBD/twD/Lwb4f1kh/m8D/l8c8P9yQvwPA/4fAvy/vBD/I4D/lwD8v4IQ/6OA/5cE/L+iEP93AP9Hvgt/hRD/dwH/vxjw/1pC/N8D/P8SwP9rC/F/H/D/SwH/ryPE/wPA/y8D/L+uEP8PAf+/HPD/ekL8jwH+XwPw//pC/D8C/L8m4P/ou1AqhnfQcPO7CPOVJgWut5/jdzkNrxUMXlc7fpfT8FrJ4NXf8buchtcqBq8Bjt/lNLweYvAa6PhdTsNrNYPXIMfvchpeaxi8Bjt+l9PwWsvgNcSxf5nfjz7L4DXUsX8ZXs8xeA1z7F+G1/MMXsMd+5fh9QKD1wjH/mV47WXwGunYvwyvFxm8Rjn2L8PrJQav0Y79y/B6mcFrjNC76B8D/TdQeymgHlJAjaKAukEBe7kC9lcF7HkK2IcUsDcowK8V4KEK8DUFeI0C9K8ATSpEJ0aDke/Fmee+vg83V8jqp5zpXdYxNH2TQO+ynsHrZoHe5WEGr1sEepcNDF63CvQujzB43SbQu2xk8LpdoHfZxOB1h0DvspnBa5xA7/IKg9d4gd7lVQavCQK9y2sMXhMFepfXGbwmCfQu+xi87hToXd5g8Jos0LvsZ/C6S6B3OcDgNUWod/kE6F2A2ksB9ZACahQF1A0K2MsVsL8qYM9TwD6kgL1BAX6tAA9VgK8pwGsUoH8FaFJNYfYun6Sxd9nC0PQcgd5lK4PXXIHeZRuD1zyB3mU7g9d8gd7lUQavBQK9y2MMXgsFepcdDF6LBHqXnQxeiwV6l4MMXksEepc3GbyWCvQuhxi87hboXd5i8LpHoHd5m8HrXoHe5TCD1zKB3uUIg9dygd7lKIPXfUK9y6dA7wLUXgqohxRQoyigblDAXq6A/VUBe54C9iEF7A0K8GsFeKgCfE0BXqMA/StAk+o+Zu/yaRp7l10MTa8W6F0eZ/BaI9C7PMHgtVagd9nN4LVOoHd5ksFrvUDvsofB62GB3uUpBq8NAr3L0wxejwj0Lu8weG0U6F3eZfDaJNC7vMfgtVmgd3mfwWuLQO/yAYPXVoHe5UMGr20CvcsxBq/tAr3LRwxejwr1Lp8BvQtQeymgHlJAjaKAukEBe7kC9lcF7HkK2IcUsDcowK8V4KEK8DUFeI0C9K8ATapHmb3LZ5n+fZ76uc5LN39+HP7zk0xn+5/IzzJXyLOmAWn7v7F2Y8cDY5Gf+9/Y6Otz/bx/oeNLHV/p+FrHNzq+1fGdju91/KDjRx0/6fhZxy86ftXxm47jOn7X8YeOP3X8peNvHSd0nNTxT6b4HlT5eSbsPsReIbthcT+o8pTxlcwa03GBjnQ60uvIoCMpsxdtaGZw7IGR5sOxmCKwCwgsHYGlJ7AMBJaUOe0HVfqTFlTEnLIcaw6qNPfEbqynlO1YzfcCu7GnD6pMZzX2zEGV6W3Ghg+qzGAxNnJQZVJme1HEU4xfnKdiTDbPtI6MOjLpyKwji46sOrLFijGZEEUKgWUksEwElpnAshBYVgLLFgcxfgGIMdlaYKdUCiDGjIAYMwFizAyIMQsgxqyAGLMlSIxfnqdizK7vVw4dOXXk0pFbRx4deXXkixVjdkIUOQgsJ4HlIrDcBJaHwPISWL44iPFLQIzZATHmAMSYExBjLkCMuQEx5gHEmBcQY74EifGr81SM+fX9KqCjoI5COgrrKKKjqI5isWLMT4iiAIEVJLBCBFaYwIoQWFECKxYHMX4FiDE/IMYCgBgLAmIsBIixMCDGIoAYiwJiLAaI0X+hZ68Ut58Hend26EUy/EP+expwHpX/fd6gscOE+JeIeibOfR6V/x3joLHDhfiXjH6mz3ke1YCL7MeOEOJfysc/6Dwq/7vYQWNHCvEv7eMfdB6V//3woLGjhPiX8fEPOo/K/8560NjRQvzL+vgHnUflf48+aOwYIf7lAP9H3j8aL8S/POD/NwP+P0GIfwXA/28B/H+iEP+KgP/fCvj/JCH+FwL+fxvg/3cK8a8E+P/tgP9PFuJ/EeD/dwD+f5cQ/8qA/48D/H+KEP8qgP8j3+FeIsS/KuD/cwH/XyrEvxrg//MA/79biH91wP/nA/5/jxD/iwH/XwD4/71C/C8B/H8h4P/LhPhfCvj/IsD/lwvxvwzw/8WA/98nxP9ywP+R78FtFOJfA/D/NYD/bxLiXxPw/7WA/28W4n8F4P/rAP/fIsS/FuD/6wH/3yrEvzbg/w8D/r9NiH8dwP83AP6/XYh/XcD/HwH8H/l+p/llnPl3VBXx31TMegIulZzefl7/fPUyp2FC82H0c/Uz2yeJy6t+5rNAyO5zzpIRtEb/fA3SkgzzYfRf5W0AVBENBRLXkHigguZqCP7GDf355mFqSNzboGnq/390b81bacUZ9/ZlgbdXQwxerwi8vVqCwetVgbdXSzJ4vSbw9mopBq/XBd5eLc3gtU/g7dUyDF5vCLy9WpbBa79Tnzjz9uopxltpBwTeXvUY9+ugwNurisHrTYG3Vy9g8Dok8PZqOgavtwTeXk3P4PW2wNurGRi8Dgu8vZrE4HVE6O3VRkBNCNReCqiHFFCjKKBuUMBeroD9VQF7ngL2IQXsDQrwawV4qAJ8TQFeowD9K0CTCtGJ0WDkm6vmua/vw80VsvopZ3qXcgxNHxPoXcozeH0k0LtUYPD6WKB3qcjg9YlA73Ihg9enAr1LJQavzwR6l4sYvD4X6F0qM3h9IdC7JDN4fSnQu6QweH0l0LtkZPD6WqB3ycTg9Y1A75KZwetbgd4lC4PXdwK9S1YGr+8FepdsDF4/CPUujYHeBai9FFAPKaBGUUDdoIC9XAH7qwL2PAXsQwrYGxTg1wrwUAX4mgK8RgH6V4Am1Q/M3qVxGnuXKgxN/y7Qu1Rl8PpDoHepxuD1p0DvUp3B6y+B3uViBq+/BXqXSxi8Tgj0LpcyeJ0U6F0uY/D6R6B3yc7gdUqgd8nB4OVVdt+75GTwUg55RXqXXAxeF7jj9b/eJTeDVzpnvM72LnkYvNK74uXrXfIyeGVwxMvfu+Rj8EoCeUUutHdpAvQuQO2lgHpIATWKAuoGBezlCthfFbDnKWAfUsDeoAC/VoCHKsDXFOA1CtC/AjSpEJ34e5cmaexdLmdoOpvLPTbcu9Rg8MrueO83vGoyeOVwvPcbXlcweOV0vPcbXrUYvHI53vsNr9oMXrkd7/2GVx0GrzyO937Dqy6DV16nPnGmd8nP4JXPsX8ZXgUYvPIL9C4FGbwKCPQuhRi8Cgr0LoUZvAoJ9C5FGLwKC/QuRRm8igj0LsUYvIoK9S5Ngd4FqL0UUA8poEZRQN2ggL1cAfurAvY8BexDCtgbFODXCvBQBfiaArxGAfpXgCZVUWbv0tTXu0Qu9LTDAdZjlTfQdqwmN8hyrFnHYLuxp+1niNXYM0411GZs2NSGWYyN+N9wz96bmmXm5bZZHHI7wrPP7UjPPrejPPvcjvbsczvGs8/tWM8+t9d49rm91rPPbXNmbpvHIbfXefa5vd6zz+0Nnn1ub/Tsc3uTZ5/bmz373N7i2ef2Vs8+ty2YuW0Rh9ze5tnn9nbPPrd3ePa5HefZ53a8Z5/bCZ59bid69rmd5NnntiUzty0z//tfGGoUrosbZz7794mRvTni4xHNR56PyM/yPPtnAhiL/Nz/82PHA2ORn/vf2OirlX7eW+too6Otjit1tNPRXkcHHVfp6Kijk47OOrro6Kqjm47uOnro6Kmjl47eOvro6Kujn46rdfTPHN+j21tlxu5D7BWyGxb3o9sHaN4DdQzSMVjHEB1DdQzTMTyzF21oZnDsEeoDCWwQgQ0msCEENpTAhhHY8MxpP7rdn7SgTWCA5VhzdPtA67GeGmQ7VvMdbDf29NHtQ6zGnjm6fajN2PDR7cMsxkaObh8OiCKeYmx9nopxhOY9UscoHaN1jNExVsc1Oq6NFeMIQhQjCWwUgY0msDEENpbAriGwa+MgxtaAGEcAYhwJiHEUIMbRgBjHAGIcC4jxGkCM1yZIjG3OUzFep3lfr+MGHTfquEnHzTpu0XFrrBivI0RxPYHdQGA3EthNBHYzgd1CYLfGQYxtADFeB4jxekCMNwBivBEQ402AGG8GxHgLIMZbEyTGtuepGG/TvG/XcYeOcTrG65igY6KOSbFivI0Qxe0EdgeBjSOw8QQ2gcAmEtikOIixLSDG2wAx3g6I8Q5AjOMAMY4HxDgBEONEQIyTmKJAz4ZDDuq7056T8v8P9NTGycA8yPkZ6DlBkQvlf5f/ngacZPsKcOrtQSH+U6KeiXOfZPsqcOrtm0L8p0Y/0+c8yfY14NTbQ0L8p/n4B51k+zpw6u1bQvyn+/gHnWS7Dzj19m0h/jN8/INOsn0DOPX2sBD/mT7+QSfZ7gdOvT0ixH8W4P/IO8hfCvGfDfj/R4D/fyXEfw7g/x8D/v+1EP+5gP9/Avj/N0L85wH+/yng/98K8Z8P+P9ngP9/J8R/AeD/nwP+/70Q/4WA/38B+P8PQvwXAf6PvMd1Soj/YsD//wD836ssw38J4P9/Av6vhPgvBfz/L8D/LxDifzfg/38D/p9OiP89gP+fAPw/vRD/ewH/Pwn4fwYh/ssA//8H8P8kIf7LAf/P5uZ73VEXyv8+wP/9388PGptfiP/9gP/73xkIGltAiP8DgP/nrGw/tqAQ/wcB//e/WxE0tpAQ/xWA//vf9wgaW1iI/0rA//3voASNLSLEfxXg//73YoLGou9CqRjeQcPN7yLMV5oUuN46jt/lNLwGMnjVdfwup+E1iMGrnuN3OQ2vwQxe9R2/y2l4DWHwauD4XU7DayiDV0PH73IaXsMYvBo5fpfT8BrO4NXYsX+Z349OZvBq4ti/DK+7GLyaOvYvw2sKg1czx/5leE1l8Gru2L8Mr2kMXi0c+5fhNZ3Bq6Vj/zK8ZjB4tXLsX4bXTAav1kLvoj8E9N9A7aWAekgBNYoC6gYF7OUK2F8VsOcpYB9SwN6gAL9WgIcqwNcU4DUK0L8CNKkQnRgNRr4XZ577+j7cXCGrn3KmdxnB0HRHgd5lJINXJ4HeZRSDV2eB3mU0g1cXgd5lDINXV4HeZSyDVzeB3uUaBq/uAr3LtQxePQR6l1kMXj0FepfZDF69BHqXOQxevQV6l7kMXn0Eepd5DF59BXqX+Qxe/QR6lwUMXlcL9C4LGbz6C/Uuq4HeBai9FFAPKaBGUUDdoIC9XAH7qwL2PAXsQwrYGxTg1wrwUAX4mgK8RgH6V4AmVX9m77I6jb3LdQxNDxfoXa5n8Boh0LvcwOA1UqB3uZHBa5RA73ITg9dogd7lZgavMQK9yy0MXmMFepdbGbyuEehdFjF4XSvQuyxm8LpOoHdZwuB1vUDvspTB6waB3uVuBq8bBXqXexi8bhLoXe5l8LpZoHdZxuB1i1DvsgboXYDaSwH1kAJqFAXUDQrYyxWwvypgz1PAPqSAvUEBfq0AD1WArynAaxSgfwVoUt3C7F3WpLF3uY2h6YkCvcvtDF6TBHqXOxi87hToXcYxeE0W6F3GM3jdJdC7TGDwmiLQu0xk8Joq0LtMYvCaJtC7LGfwmi7Qu9zH4DVDoHe5n8FrpkDv8gCD1yyB3uVBBq/ZAr3LCgavOQK9y0oGr7kCvcsqBq95Qr3LWqB3AWovBdRDCqhRFFA3KGAvV8D+qoA9TwH7kAL2BgX4tQI8VAG+pgCvUYD+FaBJNY/Zu6zN/O/z1M91Xrr586Hwn6szn+1/Ij/LXCHPmgak7f/G2o0dD4xFfu5/Y6Ovdfp5X6/jYR0bdDyiY6OOTTo269iiY6uObTq263hUx2M6dujYqWOXjsd1PKFjt44ndezR8ZSOp3U8kzm+B1Wuy4zdh9grZDcs7gdVPqt5P6fjeR0v6Nir40UdL+l4ObMXbWhmcOyBkc8R2PME9gKB7SWwFwnsJQJ7OXPaD6r0Jy2oiHnWcqw5qPI567Geet52rOb7gt3Y0wdV7rUae+agyhdtxoYPqnzJYmzkoMqXAVHEU4zrz1MxvqJ5v6rjNR2v69in4w0d+3UciBXjK4QoXiWw1wjsdQLbR2BvENh+AjsQBzGuB8T4CiDGVwExvgaI8XVAjPsAMb4BiHE/IMYDCRLjw+epGA9q3m/qOKTjLR1v6zis44iOo7FiPEiI4k0CO0RgbxHY2wR2mMCOENjROIjxYUCMBwExvgmI8RAgxrcAMb4NiPEwIMYjgBiPJkiMG85TMb6jeb+r4z0d7+v4QMeHOo7p+ChWjO8QoniXwN4jsPcJ7AMC+5DAjhHYR3EQ4wZAjO8AYnwXEON7gBjfB8T4ASDGDwExHgPE+BFTFOjZKx/bzwO9O9uksgz/T/z3NOA8Kv/7vEFjmwrx/zTqmTj3eVT+d4yDxjYT4v9Z9DN9zvOo6le2H9tciP/nPv5B51H538UOGttCiP8XPv5B51H53w8PGttSiP+XPv5B51H531kPGttKiP9XPv5B51H536MPGttaiP/XgP8j7x/1FOL/DeD/nQD/7yXE/1vA/zsD/t9biP93gP93Afy/jxD/7wH/7wr4f18h/j8A/t8N8P9+Qvx/BPy/O+D/Vwvx/wnw/x6A//cX4v8z4P/Id7ivFeL/C+D/IwD/v06I/6+A/48E/P96If6/Af4/CvD/G4T4Hwf8fzTg/zcK8f8d8P8xgP/fJMT/D8D/xwL+f7MQ/z8B/78G8P9bhPj/Bfg/8j246UL8/wb8fxLg/zOE+J8A/P9OwP9nCvE/Cfj/ZMD/Zwnx/wfw/7sA/58txP8U4P9TAP+fI8Tfy2Lv6VMB/58rxF9lsff0aYD/I9/vNL+MM/+OqiL+m4pZT8ClUtLbz+uf74IsaZjQfBj9XLoswEPG5JUuy1kgZPc5Z8kIfBD9HNKSDPNh9F/lTZ/Ffo4MAonLQDxQQXNlsF8DySvo55uHKQNxb4OmSff/0b01b6WZ3xiia39I4O3VTxi8Vgu8vfopg9cagbdXP2PwWivw9urnDF7rBN5e/YLBa73A26tfMng9LPD26lcMXhuc+sSZt1efZfB6RODt1ecYvDYKvL36PIPXJoG3V19g8Nos8PbqXgavLQJvr77I4LVV4O3Vlxi8tgm8vfoyg9d2obdXk4CaEKi9FFAPKaBGUUDdoIC9XAH7qwL2PAXsQwrYGxTg1wrwUAX4mgK8RgH6V4AmFaITo8HIN1fNc1/fh5srZPVTzvQuXzM0vVugd/mGwetJgd7lWwavPQK9y3cMXk8J9C7fM3g9LdC7/MDg9YxA7/Ijg9ezAr3LTwxezwn0Lq8weD0v0Lu8yuD1gkDv8hqD116B3uV1Bq8XBXqXfQxeLwn0Lm8weL0s0LvsZ/B6RaB3OcDg9apQ75IM9C5A7aWAekgBNYoC6gYF7OUK2F8VsOcpYB9SwN6gAL9WgIcqwNcU4DUK0L8CNKleZfYuyWnsXX5maPpNgd7lFwavQwK9y68MXm8J9C6/MXi9LdC7HGfwOizQu/zO4HVEoHf5g8HrqEDv8ieD1zsCvctBBq93BXqXNxm83hPoXQ4xeL0v0Lu8xeD1gUDv8jaD14cCvcthBq9jAr3LEQavjwR6l6MMXh8L9S4pQO8C1F4KqIcUUKMooG5QwF6ugP1VAXueAvYhBewNCvBrBXioAnxNAV6jAP0rQJPqY2bvkpLG3uUvhqa/Fuhd/mbw+kagdznB4PWtQO9yksHrO4He5R8Gr+8FepdTDF4/CPQuHuP7sT8K9C6Kwesngd7lHUYefxboXd5l8PpFoHd5j8HrV4He5X0Gr98EepcPGLyOC/QuHzJ4/S7Quxxj8PpDoHf5iMHrT6HeJSPQuwC1lwLqIQXUKAqoGxSwlytgf1XAnqeAfUgBe4MC/FoBHqoAX1OA1yhA/wrQpPqT2btk9PUukQs97fBO67HKm2w7VpO7y3KsWccUu7Gn7Weq1dgzTjXNZmzY1KZbjI343wzP3psyZeHlNlMccjvTs8/tLM8+t7M9+9zO8exzO9ezz+08zz638z373C7w7HObmZnbzHHI7ULPPreLPPvcLvbsc7vEs8/tUs8+t3d79rm9x7PP7b2efW6zMHObJQ65XebZ53a5Z5/b+zz73N7v2ef2Ac8+tw969rld4dnndqVnn9uszNxmzfLvf2EoKdzXJ2c5+/eJkb054uMRzUeej8jP8jz7ZwIYi/zc//NjxwNjkZ/739joK5t+3rPryKEjp45cOnLryKMjr458OvLrKKCjoI5COgrrKKKjqI5iOoob3eoooaOkjlI6Susoo6Nslvge3Z4NfGc+9grZDYv70e3lNO/yOiroqKjjQh2VdFyko3IWL9rQzODYI9TLE1gFAqtIYBcSWCUCu4jAKmdJ+9Ht2YBDAspZjjVHt5e3HuupCrZjNd+KdmNPH91+odXYM0e3V7IZGz66/SKLsZGj2ysDooinGLOfp2KsonlX1VFNR3UdF+u4RMelOi6LFWMVQhRVCawagVUnsIsJ7BICu5TALouDGLMDYqwCiLEqIMZqgBirA2K8GBDjJYAYLwXEeFmCxJjjPBXj5Zp3DR01dVyho5aO2jrq6KgbK8bLCVHUILCaBHYFgdUisNoEVofA6sZBjDkAMV4OiLEGIMaagBivAMRYCxBjbUCMdQAx1k2QGHOep2KsZ1ppHQ10NNTRSEdjHU10NI0VYz1CFPUJrAGBNSSwRgTWmMCaEFjTOIgxJyDGeoAY6wNibACIsSEgxkaAGBsDYmwCiLEpUxTo2XDIQX3N7Dkp//9AT21sDsyDnJ/xCPN3uSj/Fv57GnCSrf9Mj6CxG4X4t4x6Js59kq3/nJGgsZuE+LeKfqbPeZLt2sr2YzcL8W/t4x90kq3/PJagsVuE+Lfx8Q86ydZ/RkzQ2K1C/Nv6+AedZOs/tyZo7DYh/lf6+AedZOs/Sydo7HYh/u0A/0feQX5eiH97wP+fBPz/BSH+HQD/3wP4/14h/lcB/v8U4P8vCvHvCPj/04D/vyTEvxPg/88A/v+yEP/OgP8/C/j/K0L8uwD+/xzg/68K8e8K+D/yHte7Qvy7Af5/CPD/94T4dwf8/y3A/98X4t8D8P+3Af//QIh/T8D/DwP+/6EQ/16A/x8B/P+YEP/egP8fBfz/IyH+fQD/fwfw/4+F+PcF/B/5LvzPQvz7Af7/DeD/vwjxvxrw/28B//9ViH9/wP+/A/z/NyH+AwD//x7w/+NC/AcC/v8D4P+/C/EfBPj/j4D//yHEfzDg/z8B/o++C6VieAcNN7+LMF9pUuB6C1ZxyUud/h1JeQavQi55qTO/u6nA4FXYIS8z1vCqyOBVxB2v00MNrwsZvIo643VmpOFVicGrmCte4YGG10UMXsUd8YqMM7wqM3iFnPqEp8zvR5szeJVw7F+GVwsGr5KO/cvwasngVcqxfxlerRi8Sjv2L8OrNYNXGcf+ZXi1YfAq69i/DK+2DF7lHPuX4XUlg1d5kFfkQt9FHwL030DtpYB6SAE1igLqBgXs5QrYXxWw5ylgH1LA3qAAv1aAhyrA1xTgNQrQvwI0qRCdnK5Xw3+a576+DzdXyOqnnOldqjA0XVWgd6nK4FVNoHepxuBVXaB3qc7gdbFA73Ixg9clAr3LJQxelwr0LpcyeF0m0LtcxuB1uUDv0o7Bq4ZA79KewaumQO/SgcHrCoHe5SoGr1oCvUtHBq/aAr1LJwavOgK9S2cGr7oCvUsXBq96Qr3LUKB3AWovBdRDCqhRFFA3KGAvV8D+qoA9TwH7kAL2BgX4tQI8VAG+pgCvUYD+FaBJVY/ZuwxNY+9yOUPTzQR6lxoMXs0FepeaDF4tBHqXKxi8Wgr0LrUYvFoJ9C61GbxaC/QudRi82gj0LnUZvNoK9C5dGbyuFOhdujF4tRPoXbozeLUX6F16MHh1EOhdejJ4XSXQu/Ri8Ooo0Lv0ZvDqJNC79GHw6izUuwwDeheg9lJAPaSAGkUBdYMC9nIF7K8K2PMUsA8pYG9QgF8rwEMV4GsK8BoF6F8BmlSdmb3LsDT2LvUYmu4t0LvUZ/DqI9C7NGDw6ivQuzRk8Oon0Ls0YvC6WqB3aczg1V+gd2nC4DVAoHdpyuA1UKB36cvgNUigd+nH4DVYoHe5msFriEDv0p/Ba6hA7zKAwWuYQO8ykMFruEDvMojBa4RA7zKYwWukUO8yHOhdgNpLAfWQAmoUBdQNCtjLFbC/KmDPU8A+pIC9QQF+rQAPVYCvKcBrFKB/BWhSjWT2LsOz/Ps89XOdl27+HBL+c2iWs/1P5GeZK+RZ04C0/d9Yu7HjgbHIz/1vbPQ1Qj/vI3WM0jFaxxgdY3Vco+NaHdfpuF7HDTpu1HGTjpt13KLjVh236bhdxx06xukYr2OCjok6Jum4M0t8D6ockQW7D7FXyG5Y3A+qnKx536Vjio6pOqbpmK5jho6ZWbxoQzODYw+MvIvAphDYVAKbRmDTCWwGgc3MkvaDKv1JCypiJluONQdV3mU91lNTbMdqvlPtxp4+qHKa1dgzB1VOtxkbPqhyhsXYyEGVMwFRxFOMI89TMc7SvGfrmKNjro55OubrWKBjYawYZxGimE1gcwhsLoHNI7D5BLaAwBbGQYwjATHOAsQ4GxDjHECMcwExzgPEOB8Q4wJAjAsTJMZR56kYF2nei3Us0bFUx9067tFxr45lsWJcRIhiMYEtIbClBHY3gd1DYPcS2LI4iHEUIMZFgBgXA2JcAohxKSDGuwEx3gOI8V5AjMsSJMbR56kYl2ve9+m4X8cDOh7UsULHSh2rYsW4nBDFfQR2P4E9QGAPEtgKAltJYKviIMbRgBiXA2K8DxDj/YAYHwDE+CAgxhWAGFcCYlzFFAV69spD9vNA786WqCLDf7X/ngacR+V/nzdobEkh/muinolzn0flf8c4aGwpIf5ro5/pc55HVaSK/djSQvzX+fgHnUflfxc7aGwZIf7rffyDzqPyvx8eNLasEP+HffyDzqPyv7MeNLacEP8NPv5B51H536MPGlteiP8jgP8j7x/VEOK/EfD/aoD/1xTivwnw/+qA/18hxH8z4P8XA/5fS4j/FsD/LwH8v7YQ/62A/18K+H8dIf7bAP+/DPD/ukL8twP+fzng//WE+D8K+D/yHe4rhfg/Bvh/c8D/2wnx3wH4fwvA/9sL8d8J+H9LwP87CPHfBfh/K8D/rxLi/zjg/60B/+8oxP8JwP/bAP7fSYj/bsD/2wL+31mI/5OA/yPfgxskxH8P4P99AP8fLMT/KcD/+wL+P0SI/9OA//cD/H+oEP9nAP+/GvD/YUL8nwX8vz/g/8OF+D8H+P8AwP9HCPF/HvD/gYD/I9/vNL+MM/+OqiL+m4pZT8ClMqa3n9c/3wtZ0jCh+TD6ub3AL6C4vPZmOQuE7D7nLBlBa/TP92JakmE+jP6rvC8CVcRLAol7iXigguZ6CfyNG/rzzcP0EnFvg6bZ+//RvTVvpT3EuLcTHL/9ZXitZvCaKPD26hoGr0kCb6+uZfC6U+Dt1XUMXpMF3l5dz+B1l8Dbqw8zeE0ReHt1A4PXVKc+cebt1ckMXtME3l69i8FrusDbq1MYvGYIvL06lcFrpsDbq9MYvGYJvL06ncFrtsDbqzMYvOYIvL06k8FrrtDbqy8DNSFQeymgHlJAjaKAukEBe7kC9lcF7HkK2IcUsDcowK8V4KEK8DUFeI0C9K8ATSpEJ6fr1fCf5rmv78PNFbL6KWd6l0cYml4q0LtsZPC6W6B32cTgdY9A77KZwetegd5lC4PXMoHeZSuD13KB3mUbg9d9Ar3Ldgav+wV6l1kMXg8I9C6zGbweFOhd5jB4rRDoXeYyeK0U6F3mMXitEuhd5jN4PSTQuyxg8Fot0LssZPBaI9S7vAL0LkDtpYB6SAE1igLqBgXs5QrYXxWw5ylgH1LA3qAAv1aAhyrA1xTgNQrQvwI0qdYwe5dX0ti7PMrQ9CaB3uUxBq/NAr3LDgavLQK9y04Gr60CvcsuBq9tAr3L4wxe2wV6lycYvB4V6F12M3g9JtC7LGLw2iHQuyxm8Nop0LssYfDaJdC7LGXwelygd7mbwesJgd7lHgav3QK9y70MXk8K9C7LGLz2CPUurwK9C1B7KaAeUkCNooC6QQF7uQL2VwXseQrYhxSwNyjArxXgoQrwNQV4jQL0rwBNqj3M3uXVNPYuTzI0vVegd9nD4PWiQO/yFOf7iwK9y9MMXi8L9C7PMHi9ItC7PMvg9apA7/Icg9drAr3L8wxerwv0LssZvPYJ9C73MXi9IdC73M/gtV+gd3mAweuAQO/yIIPXQYHeZQWD15sCvctKBq9DAr3LKgavt4R6l9eA3gWovRRQDymgRlFA3aCAvVwB+6sC9jwF7EMK2BsU4NcK8FAF+JoCvEYB+leAJtVbzN7lNV/vErnQ0w5XWY9V3kO2YzW51ZZjzTrW2I09bT9rrcaecap1NmPDprbeYmzE/x72gBouCy+3r8chtxs8+9w+4tnndqNnn9tNnn1uN3v2ud3i2ed2q2ef220eUAczc7svDrnd7tnn9lHPPrePefa53eHZ53anZ5/bXZ59bh/37HP7hAf0EszcvhGH3O727HP7pGef2z2efW6f8uxz+7Rnn9tnPPvcPuvZ5/Y5D+jHmLndn+Xf/8LQy+G6+JUsZ/8+MbI3R3w8ovnI8xH5WZ5n/0wAY5Gf+39+7HhgLPJz/xsbfR3Qz/tBHW/qOKTjLR1v6zis44iOozre0fGujvd0vK/jAx0f6jim4yMdH+v4RMenOj7T8bmOL3R8qeOrLPE9uv1AFuw+xF4hu2FxP7r9a837Gx3f6vhOx/c6ftDxo46fsnjRhmYGxx6h/g2BfUtg3xHY9wT2A4H9SGA/ZUn70e3+pAVtAl9bjjVHt39jPdZT39qO1Xy/sxt7+uj2763Gnjm6/QebseGj23+0GBs5uv0nQBTxFOPB81SMP2vev+j4VcdvOo7r+F3HHzr+jBXjz4QofiGwXwnsNwI7TmC/E9gfBPZnHMR4EBDjz4AYfwHE+Csgxt8AMR4HxPg7IMY/ADH+mSAxvnmeivEvzftvHSd0nNTxj45TRoRZ9bisXrQA/iJE8TeBnSCwkwT2D4GdIjBDJhZTWdMuxjcBMf4FiPFvQIwnADGeBMT4DyDGU4AYTS6CxkbEqLImRoyHzlMxXqDvVzod6XVk0JGkI9k85zoyxorxAkIU6QgsPYFlILAkAksmsBQCyxgHMR4CxHhBVs9SYKdUOuuxnkpvO1bzzWA39rQYk6zGnhFjss3YsBhTADFmBMTov9Cz4ZCD+jLZc1L+/4Ge2pgZmAc5P2Ma83e5KP8s/jwHnGTrP9MjaOx0If5Zo57Tc59k6z9nJGjsDCH+2aJ1ds6TbO+sYj92phD/7D7+QSfZ+s9jCRo7S4h/Dh//oJNs/WfEBI2dLcQ/p49/0Em2/nNrgsbOEeKfy8c/6CRb/1k6QWPnCvHPDfg/8g7yA0L88wD+fzfg/w8K8c8L+P89gP+vEOKfD/D/ewH/XynEPz/g/8sA/18lxL8A4P/LAf9/SIh/QcD/7wP8f7UQ/0KA/98P+P8aIf6FAf9H3uPaIcS/COD/mwH/3ynEvyjg/1sA/98lxL8Y4P9bAf9/XIh/ccD/twH+/4QQ/xDg/9sB/98txL8E4P+PAv7/pBD/koD/Pwb4/x4h/qUA/0e+C79PiH9pwP9fBPz/DSH+ZQD/fwnw//1C/MsC/v8y4P8HhPiXA/z/FcD/DwrxLw/4/6uA/78pxL8C4P+vAf5/SIh/RcD/Xwf8H30XSsXwDhpufhfxdZZ/fy5ovb85fpdzb/j7aCiv447f5dwb/o4cyut3x+9y7g1/bw/l9Yfjdzn3hr9LiPL60/G7nHvD329Eef3l+F3OveHvXKK8/nb8Lufe8PdAUV4nHPuX+f2o+d0lyuukY/8yvLIweP3j2L8Mr6wMXqcc+5fhlY3By6vq1r8Mr+wMXsoZrzMjDa8cDF4XuOIVHmh45WTwSueIV2Sc4ZWLwSs9yCtyoe+iXwj030DtpYB6SAE1igLqBgXs5QrYXxWw5ylgH1LA3qAAv1aAhyrA1xTgNQrQvwI0qRCdGA1Gvhdnnvv6PtxcIaufcqZ3+ZlRk2Rxt2d4kd7lFwavrC55hXuXXxm8sjnkFeldfmPwyu54798bfvUC5ZXD8d6/N/w6CMorp+O9f2/4FRWUVy7He//e8GszKK/cTn3iTO+Sm1GT5HHsX4ZXHgavvI79y/DKy+CVz7F/GV75GLzyC/Qu+Rm8Cgj0LgUYvAoK9C4FGbwKCfQuhRi8Cgv1LpWA3gWovRRQDymgRlFA3aCAvVwB+6sC9jwF7EMK2BsU4NcK8FAF+JoCvEYB+leAJhWiE3/vUimNvctfjJqklEDv8jeDV2mB3uUEg1cZgd7lJINXWYHe5R8Gr3ICvcspBq/yAr2Lx9hjKwj0LorBq6JA71KYwetCgd6lCINXJYHepSiD10UCvUsxBq/KAr1LcQavKgK9S4jBq6pA71KCwauaQO9SksGrulDvchHQuwC1lwLqIQXUKAqoGxSwlytgf1XAnqeAfUgBe4MC/FoBHqoAX1OA1yhA/wrQpEJ04u9dLkpj73IBQ9NXCPQu6Ri8agn0LukZvGoL9C4ZGLzqCPQuSQxedQV6l2QGr3oCvUsKg1d9gd4lI4NXA4HepRSDV0OB3qU0g1cjgd6lDINXY4HepSyDVxOB3qUcg1dTgd6lPINXM4HepQKDV3OB3qUig1cLod6lMtC7ALWXAuohBdQoCqgbFLCXK2B/VcCep4B9SAF7gwL8WgEeqgBfU4DXKED/CtCkQnTi710qZ/33eernOi/d/HlhWMeVsp7tfyI/y1whz5oGpO3/xtqNHQ+MRX7uf2Ojryr6ea+qo5qO6jou1nGJjkt1XKbjch01dNTUcYWOWjpq66ijo66OekZ7OhroaKijkY7GOproaKqjWdb4HlRZJSt2H2KvkN2wuB9U2VzzbqGjpY5WOlrraKOjrY4rs3rRhmYGxx4Y2YLAWhJYKwJrTWBtCKwtgV2ZNe0HVfqTFljEWY41B1W2sB7rqZa2YzXfVnZjTx9U2dpq7JmDKtvYjA0fVNnWYmzkoMorAVHEU4xVz1MxttO82+vooOMqHR11dNLRWUeXWDG2I0TRnsA6ENhVBNaRwDoRWGcC6xIHMVYFxNgOEGN7QIwdADFeBYixIyDGToAYOwNi7JIgMVY7T8XYVfPupqO7jh46europaO3jj6xYuxKiKIbgXUnsB4E1pPAehFYbwLrEwcxVgPE2BUQYzdAjN0BMfYAxNgTEGMvQIy9ATH2SZAYq5+nYuyreffTcbWO/joG6BioY5COwbFi7EuIoh+BXU1g/QlsAIENJLBBBDY4DmKsDoixLyDGfoAYrwbE2B8Q4wBAjAMBMQ4CxDiYKQr07JUh9vNA786eFDo7Zqj/ngacR3UcOLvqHyH+w6KeiXOfR/U7cHbVKSH+w6Of6XOeR/UHcHYVejYBl/8IH/+g86j+BM6uUkL8R/r4B51H9RdwdtUFQvxH+fgHnUf1N3B2VToh/qN9/IPOozoBnF2VXoj/GMD/kfeP8gjxHwv4v/+dqKCxeYX4XwP4v/89raCx+YT4Xwv4f/aq9mPzC/G/DvB///tsQWMLCPG/HvB//zt2QWMLCvG/AfB//3t/QWMLCfG/EfB//7uIQWMLC/G/CfB/5DvcFwrxvxnw/9KA/1cS4n8L4P9lAP+/SIj/rYD/lwX8v7IQ/9sA/y8H+H8VIf63A/5fHvD/qkL87wD8vwLg/9WE+I8D/L8i4P/VhfiPB/wf+R5cQyH+EwD/rwX4fyMh/hMB/68N+H9jIf6TAP+vA/h/EyH+dwL+Xxfw/6ZC/CcD/l8P8P9mQvzvAvy/PuD/zYX4TwH8vwHg/8j3O80v48y/o6qI/6Zi1hNwqUzp7ef1zzc1axomNB9GPzcN+AUUl9e0rGeBkN3nnCUjaI3++aanJRnmw+i/yjsdqCJmCCRuBvFABc01A/yNG/rzzcM0g7i3QdNM+//o3pq30oYw7m2vqmm7t0GjDa+hDF69XfJSZ97iG8bg1cchLzPW8BrO4NXXHa/TQw2vEQxe/ZzxOjPS8BrJ4HW1K17hgYbXKAav/o54RcYZXqMZvAY49Ykzb682Z/Aa6Ni/DK8WDF6DHPuX4dWSwWuwY/8yvFoxeA1x7F+GV2sGr6GO/cvwasPgNcyxfxlebRm8hjv2L8PrSgavEcyuE317dSZQEwK1lwLqIQXUKAqoGxSwlytgf1XAnqeAfUgBe4MC/FoBHqoAX1OA1yhA/wrQpEJ0YjQY+eaqee7r+3Bzhax+ypneZQxD09cJ9C5jGbyuF+hdrmHwukGgd7mWwetGgd7lOgavmwR6l+sZvG4W6F1uYPC6RaB3uZHB61aB3qUdg9dtAr1Lewav2wV6lw4MXncI9C5XMXiNE+hdOjJ4jRfoXToxeE0Q6F06M3hNFOhdujB4TRLqXWYBvQtQeymgHlJAjaKAukEBe7kC9lcF7HkK2IcUsDcowK8V4KEK8DUFeI0C9K8ATSpEJ/7eZVYae5ebOL/TEuhdbmbwminQu9zC4DVLoHe5lcFrtkDvchuD1xyB3uV2Bq+5Ar3LHQxe8wR6l3EMXvMFepeuDF4LBHqXbgxeCwV6l+4MXosEepceDF6LBXqXngxeSwR6l14MXksFepfeDF53C/QufRi87hHqXWYj38UBakqgHlJAjaKAukEBe7kC9lcF7HkK2IcUsDcowK8V4KEK8DUFeI0C9K8ATSpEJ/7eZXYae5fxDE2vEOhdJjB4rRToXSYyeK0S6F0mMXg9JNC73MngtVqgd5nM4LVGoHe5i8FrrUDvMoXBa51A79KXwWu9QO/Sj8HrYYHe5WoGrw0CvUt/Bq9HBHqXAQxeGwV6l4EMXpsEepdBDF6bBXqXwQxeW4R6lzlA7wLUXgqohxRQoyigblDAXq6A/VUBe54C9iEF7A0K8GsFeKgCfE0BXqMA/StAkwrRib93mePrXSIXetrh89ZjlfeC7VhT61uONet40W7saft5yWrsGad62WZs2NResRgb8b9XPXtvmpuVl9u5ccjta559bl/37HO7z7PP7RuefW73e/a5PeDZ5/agZ5/bNz373M5j5nZeHHJ7yLPP7VuefW7f9uxze9izz+0Rzz63Rz373L7j2ef2Xc8+t/OZuZ0fh9y+59nn9n3PPrcfePa5/dCzz+0xzz63H3n2uf3Ys8/tJ559bhcwc7sg67//haGZ4bp4Vtazf58Y2ZsjPh7RfOT5iPwsz7N/JoCxyM/9Pz92PDAW+bn/jY2+FurnfZGOxTqW6Fiq424d9+i4V8cyHct13Kfjfh0P6HhQxwodK3Ws0vGQjtU61uhYq2OdjvU6HtaxIWt8j25fmBW7D7FXyG5Y3I9uf0Tz3qhjk47NOrbo2Kpjm47tWb1oQzODY49Q30hgmwhsM4FtIbCtBLaNwLZnTfvR7f6kBf7ll+VYc3T7Ruuxukm0HWuaRLuxp49u32I19szR7VttxoaPbt9mMTZydPt2QBTxFOOi81SMj2rej+nYoWOnjl06HtfxhI7dsWJ8lBDFYwS2g8B2EtguAnucwJ4gsN1xEOMiQIyPAmJ8DBDjDkCMOwEx7gLE+DggxicAMe5OkBgXn6difFLz3qPjKR1P63hGx7M6ntPxfKwYnyREsYfAniKwpwnsGQJ7lsCeI7Dn4yDGxYAYnwTEuAcQ41OAGJ8GxPgMIMZnATE+B4jx+QSJccl5KsYXNO+9Ol7U8ZKOl3W8ouNVHa/FivEFQhR7CexFAnuJwF4msFcI7FUCey0OYlwCiPEFQIx7ATG+CIjxJUCMLwNifAUQ46uAGF9jigI9Gw45qO91e07K/z/QUxv3AfMg52eg5wRFLpT/G/57GnCSrf9Mj6Cxg4T47496Js59kq3/nJGgsYOF+B+IfqbPeZJt36r2Y4cI8T/o4x90kq3/PJagsUOF+L/p4x90kq3/jJigscOE+B/y8Q86ydZ/bk3Q2OFC/N/y8Q86ydZ/lk7Q2BFC/N8G/B95B/k2If6HAf+/HvD/24X4HwH8/wbA/+8Q4n8U8P8bAf8fJ8T/HcD/bwL8f7wQ/3cB/78Z8P8JQvzfA/z/FsD/Jwrxfx/w/1sB/58kxP8DwP+R97gWCPH/EPD/mYD/LxTifwzw/1mA/y8S4v8R4P+zAf9fLMT/Y8D/5wD+v0SI/yeA/88F/H+pEP9PAf+fB/j/3UL8PwP8fz7g//cI8f8c8H/ku/Drhfh/Afj/SsD/Hxbi/yXg/6sA/98gxP8rwP8fAvz/ESH+XwP+vxrw/41C/L8B/H8N4P+bhPh/C/j/WsD/Nwvx/w7w/3WA/6PvQqkY3kHDze8izFeaFLjeA055qdO/I9nI4HXQJS915nc3mxi83nTIy4w1vDYzeB1yx+v0UMNrC4PXW854nRlpeG1l8HrbFa/wQMNrG4PXYUe8IuMMr+0MXkcc+5f5/eg+Bq+jjv3L8HqDwesdx/5leO1n8HrXsX8ZXgcYvN5z7F+G10EGr/cd+5fh9SaD1weO/cvwOsTg9aFj/zK83mLwOsasH9F30b8H+m+g9lJAPaSAGkUBdYMC9nIF7K8K2PMUsA8pYG9QgF8rwEMV4GsK8BoF6F8BmlSITowGI9+LM899fR9urpDVTznTuzzK0PSXAr3LYwxeXwn0LjsYvL4W6F12Mnh9I9C77GLw+lagd3mcwes7gd7lCQav7wV6l90MXj8I9C5vM3j9KNC7HGbw+kmgdznC4PWzQO9ylMHrF4He5R0Gr18Fepd3Gbx+E+hd3mPwOi7Qu7zP4PW7UO/yA9C7ALWXAuohBdQoCqgbFLCXK2B/VcCep4B9SAF7gwL8WgEeqgBfU4DXKED/CtCkQnTi711+SGPv8iRD06cEepc9DF5eNfe9y1MMXsohr0jv8jSD1wXueP2vd3mGwSudM15ne5dnGbzSu+Ll612eY/DK4IiXv3d5nsEryaUew73LBwxeyU55neldPmTwSnHsX4bXMQavjI79y/D6iMErk2P/Mrw+ZvDK7Ni/DK9PGLyyOPYvw+tTBq+sjv3L8PqMwSsbyCtyob3Lj0DvAtReCqiHFFCjKKBuUMBeroD9VQF7ngL2IQXsDQrwawV4qAJ8TQFeowD9K0CTCtGJv3f5MY29ywsMTedzvPcbXnsZvPIL9C4vMngVEOhdXmLwKijQu7zM4FVIoHd5hcGrsEDv8iqDVxGB3uU1Bq+iAr3L5wxexQR6ly8YvIoL9C5fMniFBHqXrxi8Sgj0Ll8zeJUU6F2+YfAqJdC7fMvgVVqgd/mOwauMUO/yE9C7ALWXAuohBdQoCqgbFLCXK2B/VcCep4B9SAF7gwL8WgEeqgBfU4DXKED/CtCkKsPsXX7K+u/z1M91Xrr58/vwnz9kPdv/RH6WuUKeNQ1I2/+NtRs7HhiL/Nz/xkZfP+vn/Rcdv+r4TcdxHb/r+EPHnzr+0vG3jhM6Tur4R8cpo5Fs5i8b9O+tdKTTkV5HBh1JOpJ1pOjIqCNTtvgeVPlzVuw+xF4hu2FxP6gys74PWXRk1ZFNR3YdOXTk1JErmxdtaGZw7IGRWQgsK4FlI7DsBJaDwHISWK5saT+o0p+0wL+wz2Y31hxUmcV6rP5LNNux5rm2G3v6oMrsVmPPHFSZw2Zs+KDKnBZjIwdV5spmL4p4ivGX81SMufX9yqMjr458OvLrKKCjoI5CsWLMTYgiD4HlJbB8BJafwAoQWEECKxQHMf4CiDE3IMY8gBjzAmLMB4gxPyDGAoAYCwJiLJQgMf56noqxsL5fRXQU1VFMR3Fz/3SU0FEyVoyFCVEUIbCiBFaMwIoTWIjAShBYyTiI8VdAjIUBMRYBxFgUEGMxQIzFATGGADGWAMRYMkFi/O08FWMpfb9K6yijo6yOcjrK66igo2KsGEsRoihNYGUIrCyBlSOw8gRWgcAqxkGMvwFiLAWIsTQgxjKAGMsCYiwHiLE8IMYKgBgrAmL0X+jZKxfazwO9O4ueERC5UP6V/Pc04Dwq//u8QWPfEeJ/UdQzce7zqPzvGAeNfVeIf+XoZ/qc51Edqmo/9j0h/lV8/IPOo/K/ix009n0h/lV9/IPOo/K/Hx409gMh/tV8/IPOo/K/sx409kMh/tV9/IPOo/K/Rx809pgQ/4sB/0feP/pRiP8lgP9/Bfj/T0L8LwX8/2vA/38W4n8Z4P/fAP7/ixD/ywH//xbw/1+F+NcA/P87wP9/E+JfE/D/7wH/Py7E/wrA/38A/P93If61AP9HvsOdXE2Gf23A//3fKw8amyLEvw7g//7vugeNzSjEvy7g/xdUsx+bSYh/PcD//e8EBI3NLMS/PuD//vcUgsZmEeLfAPB//7sTQWOzCvFvCPi//32OoLHZhPg3Avw/n5vvdEVdKP/GgP/nB/y/uBD/JoD/FwD8PyTEvyng/wUB/y8hxL8Z4P+FAP8vKcS/OeD/hQH/LyXEvwXg/0UA/y8txL8l4P9FAf9Hvt9pfhln/h1VRfw3FbOegEtlTm8/r3++VtnSMKH5MPq51tnsk8Tl1TrbWSBk9zlnyQg8rMP3wTZpSYb5MPqv8rYBqoi2AolrSzxQQXO1BX/jhv588zC1Je5t0DSt/z+6t+attAsZ97amwNurlRi8rhB4e/UiBq9aAm+vVmbwqi3w9moVBq86Am+vVmXwqivw9mo1Bq96Am+vVmfwqu/UJ868vZqZwauBwNurWRi8Ggq8vZqVwauRwNur2Ri8Ggu8vZqdwauJwNurORi8mgq8vZqTwauZwNuruRi8mgu9vXolUBMCtZcC6iEF1CgKqBsUsJcrYH9VwJ6ngH1IAXuDAvxaAR6qAF9TgNcoQP8K0KRCdGI0GPnmqnnu6/twc4WsfsqZ3uVihqbbCfQulzB4tRfoXS5l8Oog0LtcxuB1lUDvcjmDV0eB3qUGg1cngd6lJoNXZ4He5QoGry4CvUtuBq+uAr1LHgavbgK9S14Gr+4CvUs+Bq8eAr1LfgavngK9SwEGr14CvUtBBq/eAr1LIQavPkK9SzugdwFqLwXUQwqoURRQNyhgL1fA/qqAPU8B+5AC9gYF+LUCPFQBvqYAr1GA/hWgSdWH2bu0S2PvUouh6cECvUttBq8hAr1LHQavoQK9S10Gr2ECvUs9Bq/hAr1LfQavEQK9SwMGr5ECvUtDBq9RAr1LYQav0QK9SxEGrzECvUtRBq+xAr1LMQavawR6l+IMXtcK9C4hBq/rBHqXEgxe1wv0LiUZvG4Q6l3aA70LUHspoB5SQI2igLpBAXu5AvZXBex5CtiHFLA3KMCvFeChCvA1BXiNAvSvAE2qG5i9S/s09i6NGJq+Q6B3aczgNU6gd2nC4DVeoHdpyuA1QaB3acbgNVGgd2nO4DVJoHdpweB1p0Dv0pLBa7JA71KKwesugd6lNIPXFIHepQyD11SB3qUsg9c0gd6lHIPXdIHepTyD1wyB3qUCg9dMgd6lIoPXLKHepQPQuwC1lwLqIQXUKAqoGxSwlytgf1XAnqeAfUgBe4MC/FoBHqoAX1OA1yhA/wrQpJrF7F06+HqXyIWedvip9VjlfWY7VpP73HKsWccXdmNP28+XVmPPONVXNmPDpva1xdiI/33j2XvTVdl4ub0qDrn91rPP7XeefW6/9+xz+4Nnn9sfPfvc/uTZ5/Znzz63v3j2ue3IzG3HOOT2V88+t7959rk97tnn9nfPPrd/ePa5/dOzz+1fnn1u//bsc9uJmdtOccjtCc8+tyc9+9z+49nn9pRnn1vzf4PHhocq+9xeoOxzm07Z57YzM7eds/37Xxi6MlwXt8t29u8TI3tzxMcjmo88H5GfZa6QZ03DmvN/Y+3HjgfGIj/3v7HRVxf9vHfV0U1Hdx09dPTU0UtHbx19dPTV0U/H1Tr66xigY6COQToG6xiiY6iOYTqG6xihY6SOUTpGZ4vv0e1dsmH3IfYK2Q2L+9HtYzTvsTqu0XGtjut0XK/jBh03ZvOiDc0Mjj1CfSyBXUNg1xLYdQR2PYHdQGA3Zkv70e3+pAV+0cFyrDm6faz1WP2LM9uxmu+1dmNPH91+ndXYM0e3X28zNnx0+w0WYyNHt98IiCKeYux6norxJs37Zh236LhVx206btdxh45xsWK8iRDFzQR2C4HdSmC3EdjtBHYHgY2Lgxi7AmK8CRDjzYAYbwHEeCsgxtsAMd4OiPEOQIzjEiTGbuepGMdr3hN0TNQxScedOibruEvHlFgxjidEMYHAJhLYJAK7k8AmE9hdBDYlDmLsBohxPCDGCYAYJwJinASI8U5AjJMBMd4FiHFKgsTY/TwV41TNe5qO6Tpm6JipY5aO2TrmxIpxKiGKaQQ2ncBmENhMAptFYLMJbE4cxNgdEONUQIzTADFOB8Q4AxDjTECMswAxzgbEOIcpCvRsOOSgvrn2nJT/f6CnNs4D5kHOz2jA/F0uyn++/54GnGTrP9MjaGxDIf4Lop6Jc59k6z9nJGhsIyH+C6Of6XOeZFu7mv3YxkL8F/n4B51k6z+PJWhsEyH+i338g06y9Z8REzS2qRD/JT7+QSfZ+s+tCRrbTIj/Uh//oJNs/WfpBI1tLsT/bsD/kXeQuwrxvwfw//aA/3cT4n8v4P8dAP/vLsR/GeD/VwH+30OI/3LA/zsC/t9TiP99gP93Avy/lxD/+wH/7wz4f28h/g8A/t8F8P8+QvwfBPwfeY9rtBD/FYD/DwH8f4wQ/5WA/w8F/H+sEP9VgP8PA/z/GiH+DwH+Pxzw/2uF+K8G/H8E4P/XCfFfA/j/SMD/rxfivxbw/1GA/98gxH8d4P/Id+HvEuK/HvD/cYD/TxHi/zDg/+MB/58qxH8D4P8TAP+fJsT/EcD/JwL+P12I/0bA/ycB/j9DiP8mwP/vBPx/phD/zYD/Twb8H30XSsXwDhpufhdhvtKkwPU+4vhdTsNrLIPXRsfvchpe1zB4bXL8LqfhdS2D12bH73IaXtcxeG1x/C6n4XU9g9dWx+9yGl43MHhtc/wup+F1I4PXdsf+ZX4/Oo/B61HH/mV4zWfwesyxfxleCxi8djj2L8NrIYPXTsf+ZXgtYvDa5di/DK/FDF6PO/Yvw2sJg9cTjv3L8FrK4LVb6F30LUD/DdReCqiHFFCjKKBuUMBeroD9VQF7ngL2IQXsDQrwawV4qAJ8TQFeowD9K0CTCtGJ0WDke3Hmua/vw80VsvopZ3qXmxiafl6gd7mZwesFgd7lFgavvQK9y60MXi8K9C63MXi9JNC73M7g9bJA73IHg9crAr3LOAavVwV6l7sZvF4T6F3uYfB6XaB3uZfBa59A77KMwesNgd5lOYPXfoHe5T4GrwMCvcv9DF4HBXqXBxi83hTqXbYCvQtQeymgHlJAjaKAukEBe7kC9lcF7HkK2IcUsDcowK8V4KEK8DUFeI0C9K8ATao3mb3L1jT2LuMZmn5XoHeZwOD1nkDvMpHB632B3mUSg9cHAr3LnQxeHwr0LpMZvI4J9C53MXh9JNC7TGHw+ligd3mQwesTgd5lBYPXpwK9y0oGr88EepdVDF6fC/QuDzF4fSHQu6xm8PpSoHdZw+D1lUDvspbB62uh3mUb0LsAtZcC6iEF1CgKqBsUsJcrYH9VwJ6ngH1IAXuDAvxaAR6qAF9TgNcoQP8K0KT6mtm7bEtj7zKVoemfBXqXaQxevwj0LtMZvH4V6F1mMHj9JtC7zGTwOi7Qu8xi8PpdoHeZzeD1h0DvMofB60+B3mUdg9dfAr3LegavvwV6l4cZvE4I9C4bGLxOCvQujzB4/SPQu2xk8Dol0LtsYvDyqrvvXTYzeCmQV+RCe5ftQO8C1F4KqIcUUKMooG5QwF6ugP1VAXueAvYhBewNCvBrBXioAnxNAV6jAP0rQJMK0Ym/d9me7d/nqZ/rvHTz55bwn1uzne1/Ij/LXCHPmgak7f/G2o0dD4xFfu5/Y6OvR/Xz/piOHTp26til43EdT+jYreNJHXt0PKXjaR3P6HhWx3M6ntfxgo69Ol7U8ZKOl3W8ouNVHa/peD1bfA+qfDQbdh9ir5DdsLgfVLlP835Dx34dB3Qc1PGmjkM63srmRRuaGRx7YOQbBLafwA4Q2EECe5PADhHYW9nSflClP2mBX86yHGsOqnzDeqyn9tuO1XwP2I09fVDlQauxZw6qfNNmbPigykMWYyMHVb4FiCKeYnzsPBXj25r3YR1HdBzV8Y6Od3W8p+P9WDG+TYjiMIEdIbCjBPYOgb1LYO8R2PtxEONjgBjfBsR4GBDjEUCMRwExvgOI8V1AjO8BYnw/QWLccZ6K8QPN+0Mdx3R8pONjHZ/o+FTHZ7Fi/IAQxYcEdozAPiKwjwnsEwL7lMA+i4MYdwBi/AAQ44eAGI8BYvwIEOPHgBg/AcT4KSDGzxIkxp3nqRg/17y/0PGljq90fK3jGx3f6vguVoyfE6L4gsC+JLCvCOxrAvuGwL4lsO/iIMadgBg/B8T4BSDGLwExfgWI8WtAjN8AYvwWEON3TFGgZ698bz8P9O4sekZA5EL5/+C/pwHnUfnf5w0a+5gQ/x+jnolzn0flf8c4aOwOIf4/RT/T5zyPanM1+7E7hfj/7OMfdB6V/13soLG7hPj/4uMfdB6V//3woLGPC/H/1cc/6Dwq/zvrQWOfEOL/m49/0HlU/vfog8buFuJ/HPB/5P2j14T4/w74/wuA/78uxP8PwP/3Av6/T4j/n4D/vwj4/xtC/P8C/P8lwP/3C/H/G/D/lwH/PyDE/wTg/68A/n9QiP9JwP9fBfz/TSH+/wD+j3yH+xMh/qcA/38P8P9Phfh72e09/X3A/z8T4q+y23v6B4D/fy7E/4Ls9p7+IeD/XwjxT5fd3tOPAf7/pRD/9NntPf0jwP+/EuKfIbu9p38M+P/XQvyTstt7OvI9uL+E+Cdnt/f0XwD//1uIfwrg/78C/n9CiH9GwP9/A/z/pBD/TID/Hwf8/x8h/pkB//8d8P9TQvyzAP7/B+D/XnUZ/lkB//8T8H/k+53ml3Hm31FVxH9TMesJuFSW9Pbz+ufLlj0NE5oPo5/Lnh0ospm8smc/C4TsPucsGYGFuO+DOdKSDPNh9F/lzQFUETkFEpeTeKCC5sppvwaSV9DPNw9TTuLeBk2T/f+je2veSjO/MUTXntfR2yaR0YbXDwxe+VzyUmfe4vuRwSu/Q15mrOH1E4NXAXe8Tg81vH5m8CrojNeZkYbXLwxehVzxCg80vH5l8Crs+O0vw+s3Bq8iTn3izNur+xi8ijr2L8PrDQavYo79y/Daz+BV3LF/GV4HGLxCjv3L8DrI4FXCsX8ZXm8yeJV07F+G1yEGr1ICb6++xeBVWujt1VxATQjUXgqohxRQoyigblDAXq6A/VUBe54C9iEF7A0K8GsFeKgCfE0BXqMA/StAkwrRidFg5Jur5rmv78PNFbL6KWd6l+MMTVcS6F1+Z/C6SKB3+YPBq7JA7/Ing1cVgd7lLwavqgK9y98MXtUEepcTDF7VBXqXkwxeFwv0Lm8zeF0i0LscZvC6VKB3OcLgdZlA73KUwetygd7lHQavGgK9y7sMXjUFepf3GLyuEOhd3mfwqiXUu+QGeheg9lJAPaSAGkUBdYMC9nIF7K8K2PMUsA8pYG9QgF8rwEMV4GsK8BoF6F8BmlS1mL1L7jT2Lv8wNN1IoHc5xeDVWKB38Ri/A2wi0LsoBq+mAr3LBQxezQR6l3QMXs0Fepf0DF4tBHqXDAxeLQV6lw8YPtFKoHf5kMGrtUDvcozBq41A7/IRg1dbgd7lYwavKwV6l08YvNoJ9C6fMni1F+hdPmPw6iDUu+QBeheg9lJAPaSAGkUBdYMC9nIF7K8K2PMUsA8pYG9QgF8rwEMV4GsK8BoF6F8BmlQdmL1LnjT2LkmMmqS7QO+SzODVQ6B3SWHw6inQu2Rk8Ool0LtkYvDqLdC7ZGbw6iPQu2Rh8Oor0LtkZfDqJ9C7fM6oSa4W6F2+YPDqL9C7fMngNUCgd/mKwWugQO/yNYPXIIHe5RsGr8ECvcu3DF5DBHqX7xi8hgr1LnmB3gWovRRQDymgRlFA3aCAvVwB+6sC9jwF7EMK2BsU4NcK8FAF+JoCvEYB+leAJtVQZu+S19e7RC70tMP0yn5fzmA7Vo9Lshxr1pFsN/a0/aRYjT3jVBltxoZNLZPF2Ij/ZVb23pQvOy+3+eKQ2yxAbrMCuc0G5DY7kNscQG5zArnNBeQ2N5Db/Mzc5o9DbvMAuc0L5DYfkNv8QG4LALktCOS2EJDbwkBuCzBzWyAOuS0C5LYokNtiQG6LA7kNAbktAeS2JJDbUkBuCzJzWzD7v/+FoVzhvj539rN/nxjZmyM+HtF85PmI/CxzhTxrGtac/xtrP3Y8MBb5uf+Njb4K6ee9sI4iOorqKKajuNGhjhI6SuoopaO0jjI6yuoop6O8jgo6Kuq4UEclHRfpqKyjio6qOqrpqJ49vke3FwLfmY+9QnbD4n50+8Wa9yU6LtVxmY7LddTQUVPHFdm9aEMzg2OPUL+EwC4lsMsI7HICq0FgNQnsiuxpP7q9EHBIwMWWY83R7ZdYj/XUpbZjNd/L7MaePrr9cquxZ45ur2EzNnx0e02LsZGj268ARBFPMRY+T8VYS/OuraOOjro66pkCQkcDHQ1jxViLEEVtAqtDYHUJrB6B1SewBgTWMA5iLAyIsRYgxtqAGOsAYqwLiLEeIMb6gBgbAGJsmCAxFjlPxdhI826so4mOpjqa6Wiuo4WOlrFibESIojGBNSGwpgTWjMCaE1gLAmsZBzEWAcTYCBBjY0CMTQAxNgXE2AwQY3NAjC0AMbZMkBiLnqdibKV5t9bRRkdbHVfqaKejvY4OsWJsRYiiNYG1IbC2BHYlgbUjsPYE1iEOYiwKiLEVIMbWgBjbAGJsC4jxSkCM7QAxtgfE2IEpCvRsOOSgvqvsOSn//0BPbewIzIOcn1GU+btclH8n/z0NOMnWf6ZH0NhiQvw7Rz0T5z7J1n/OSNDY4kL8u0Q/0+c8ybZAdfuxISH+XX38g06y9Z/HEjS2hBD/bj7+QSfZ+s+ICRpbUoh/dx//oJNs/efWBI0tJcS/h49/0Em2/rN0gsaWFuLfE/B/5B3kS4T49wL8/yLA/y8V4t8b8P/KgP9fJsS/D+D/VQD/v1yIf1/A/6sC/l9DiH8/wP+rAf5fU4j/1YD/Vwf8/woh/v0B/78Y8P9aQvwHAP6PvMfVSoj/QMD/GwP+31qI/yDA/5sA/t9GiP9gwP+bAv7fVoj/EMD/mwH+f6UQ/6GA/zcH/L+dEP9hgP+3APy/vRD/4YD/twT8v4MQ/xGA/yPfhb9aiP9IwP97AP7fX4j/KMD/ewL+P0CI/2jA/3sB/j9QiP8YwP97A/4/SIj/WMD/+wD+P1iI/zWA//cF/H+IEP9rAf/vB/g/+i6UiuEdNNz8LsJ8pUmB653m+F1Ow+sSBq/pjt/lNLwuZfCa4fhdTsPrMgavmY7f5TS8LmfwmuX4XU7DqwaD12zH73IaXjUZvOY4fpfT8LqCwWuuY/8yvx/tyOA1z7F/GV6dGLzmO/Yvw6szg9cCx/5leHVh8Fro2L8Mr64MXosc+5fh1Y3Ba7Fj/zK8ujN4LXHsX4ZXDwavpULvol8H9N9A7aWAekgBNYoC6gYF7OUK2F8VsOcpYB9SwN6gAL9WgIcqwNcU4DUK0L8CNKkQnRgNRr4XZ577+j7cXCGrn3Kmd6nF0PQDAr1LbQavBwV6lzoMXisEepe6DF4rBXqXegxeqwR6l/oMXg8J9C4NGLxWC/QuDRm81gj0Lj0ZvNYK9C69GLzWCfQuvRm81gv0Ln0YvB4W6F36MnhtEOhd+jF4PSLQu1zN4LVRoHfpz+C1Sah3uR7oXYDaSwH1kAJqFAXUDQrYyxWwvypgz1PAPqSAvUEBfq0AD1WArynAaxSgfwVoUm1i9i7Xp7F3acTQ9A6B3qUxg9dOgd6lCYPXLoHepSmD1+MCvUszBq8nBHqX5gxeuwV6lxYMXk8K9C4tGbz2CPQuAxi8nhLoXQYyeD0t0LsMYvB6RqB3Gczg9axA7zKEwes5gd5lKIPX8wK9yzAGrxcEepfhDF57hXqXG4DeBai9FFAPKaBGUUDdoIC9XAH7qwL2PAXsQwrYGxTg1wrwUAX4mgK8RgH6V4Am1V5m73JDGnuXVgxN7xPoXVozeL0h0Lu0YfDaL9C7tGXwOiDQu1zJ4HVQoHdpx+D1pkDv0p7B65BA79KBwestgd5lBIPX2wK9y0gGr8MCvcsoBq8jAr3LaAavowK9yxgGr3cEepexDF7vCvQu1zB4vSfQu1zL4PW+UO9yI9C7ALWXAuohBdQoCqgbFLCXK2B/VcCep4B9SAF7gwL8WgEeqgBfU4DXKED/CtCkep/Zu9yY/d/nqZ/rvHTz53XhP6/Pfrb/ifwsc4U8axqQtv8bazd2PDAW+bn/jY2+btLP+806btFxq47bdNyu4w4d43SM1zFBx0Qdk3TcqWOyjrt0TNExVcc0HdN1zNAxU8csHbN1zNExN3t8D6q8KTt2H2KvkN2wuB9UOU/znq9jgY6FOhbpWKxjiY6l2b1oQzODYw+MnE9gCwhsIYEtIrDFBLaEwJZmT/tBlf6kBb6IYznWHFQ533qspxbYjtV8F9qNPX1Q5SKrsWcOqlxsMzZ8UOUSi7GRgyqXAqKIpxhvPk/FeLfmfY+Oe3Us07Fcx3067tfxQKwY7yZEcQ+B3UtgywhsOYHdR2D3E9gDcRDjzYAY7wbEeA8gxnsBMS4DxLgcEON9gBjvB8T4QILEeMt5KsYHNe8VOlbqWKXjIR2rdazRsTZWjA8SolhBYCsJbBWBPURgqwlsDYGtjYMYbwHE+CAgxhWAGFcCYlwFiPEhQIyrATGuAcS4NkFivPU8FeM6zXu9jod1bNDxiI6NOjbp2BwrxnWEKNYT2MMEtoHAHiGwjQS2icA2x0GMtwJiXAeIcT0gxocBMW4AxPgIIMaNgBg3AWLczBQFevbKFvt5oHdn51WX4b/Vf08DzqPyv88bNHa+EP9tUc/Euc+j8r9jHDR2gRD/7dHP9DnPo5pZ3X7sQiH+j/r4B51H5X8XO2jsIiH+j/n4B51H5X8/PGjsYiH+O3z8g86j8r+zHjR2iRD/nT7+QedR+d+jDxq7VIj/LsD/kfeP1grxfxzw/wcB/18nxP8JwP9XAP6/Xoj/bsD/VwL+/7AQ/ycB/18F+P8GIf57AP9/CPD/R4T4PwX4/2rA/zcK8X8a8P81gP9vEuL/DOD/yHe4nxLi/yzg/zsB/39aiP9zgP/vAvz/GSH+zwP+/zjg/88K8X8B8P8nAP9/Toj/XsD/dwP+/7wQ/xcB/38S8P8XhPi/BPj/HsD/9wrxfxnwf+R7cG8L8X8F8P83AP8/LMT/VcD/9wP+f0SI/2uA/x8A/P+oEP/XAf8/CPj/O0L89wH+/ybg/+8K8X8D8P9DgP+/J8R/P+D/bwH+j3y/0/wyzvw7qor4bypmPQGXyprefl7/fAeyp2FC82H0cweBX0BxeR3MfhYI2X3OWTKC1uif7820JMN8GP1Xed8EqohDAok7RDxQgW90gb9xQ3++eZgOEfc2aJqD/x/dW/NW2hbGvf1J4O3VrQxePwu8vbqNwesXgbdXtzN4/Srw9uqjDF6/Cby9+hiD13GBt1d3MHj9LvD26k4Grz+c+sSZt1fnMXj9KfD26nwGr78E3l5dwOD1t8DbqwsZvE4IvL26iMHrpMDbq4sZvP4ReHt1CYPXKYG3V5cyeHkXY7wiF/r26ltATQjUXgqohxRQoyigblDAXq6A/VUBe54C9iEF7A0K8GsFeKgCfE0BXqMA/StAkwrRidFg5Jur5rmv78PNFbL6KWd6l10MTadc7MZrIqMNr8cZvDK65BXuXZ5g8MrkkFekd9nN4JXZHa//9S5PMnhlccbrbO+yh8Erqytevt7lKQavbI54+XuXpxm8sjv1iTO9y90MXjkc+5fhdQ+DV07H/mV43cvglcuxfxleyxi8cjv2L8NrOYNXHsf+ZXjdx+CV17F/GV73M3jlc+xfhtcDDF75hXqXt4HeBai9FFAPKaBGUUDdoIC9XAH7qwL2PAXsQwrYGxTg1wrwUAX4mgK8RgH6V4AmVX5m7/J2GnuXZxiaLi7QuzzL4BUS6F2eY/AqIdC7PM/gVVKgd3mBwauUQO+yl8GrtEDv8iKDVxmB3uUlBq+yAr3Lgwxe5QR6lxUMXuUFepeVDF4VBHqXVQxeFQV6l4cYvC4U6F1WM3hVEuhd1jB4XSTQu6xl8Kos1LscBnoXoPZSQD2kgBpFAXWDAvZyBeyvCtjzFLAPKWBvUIBfK8BDFeBrCvAaBehfAZpUlZm9y+E09i4vMzR9mUDv8gqD1+UCvcurDF41BHqX1xi8agr0Lq8zeF0h0LvsY/CqJdC7vMHgVVugd9nP4FVHoHdZx+BVV6B3Wc/gVU+gd3mYwau+QO+ygcGrgUDv8giDV0OB3mUjg1cjgd5lE4NXY4HeZTODVxOh3uUI0LsAtZcC6iEF1CgKqBsUsJcrYH9VwJ6ngH1IAXuDAvxaAR6qAF9TgNcoQP8K0KRqwuxdjvh6l8iFnnZYWtnvy2Vsx+pxZS3HmnWUsxt72n7KW40941QVbMaGTa2ixdiI/12o7L3paHZebo/GIbeVgNxeBOS2MpDbKkBuqwK5rQbktjqQ24uB3L7DzO07ccjtJUBuLwVyexmQ28uB3NYAclsTyO0VQG5rAbl9l5nbd+OQ29pAbusAua0L5LYekNv6QG4bALltCOS2EZDb95i5fS/7v/+FobfCdfHb2c/+fWJkb474eETzkecj8rPMFfKsaVhz/m+s/djxwFjk5/43Nvp6Xz/vH+j4UMcxHR/p+FjHJzo+1fGZjs91fKHjSx1f6fhaxzc6vtXxnY7vdfyg40cdP+n4WccvOn7V8Vv2+B7d/n527D7EXiG7YXE/uv245v27jj90/KnjLx1/6zih42R2L9rQzODYI9R/J7A/COxPAvuLwP4msBMEdjJ72o9u9yct8AVmy7Hm6Pbfrcd66g/bsZrvn3ZjTx/d/pfV2DNHt/9tMzZ8dPsJi7GRo9tPAqKIpxg/OE/F+I/mfcqILofGdVygI52O9Doy5PCiBfAPIYpTBGZ+WCymCOwCAktHYOkJLEOOtIvxA0CM/wBiPAWI0dwrq7Gar7Ibe1qMF1iNPSPGdDZjw2JMbzE2IsYMORIjxg/PUzEm6fuVbJ5rHRl1ZNKRWUcWHVljxZhEiCKZwFIILCOBZSKwzASWhcCyxkGMHwJiTLIVjRZjsvVYT6UAYswIiDETIMbMgBizAGLMmiAxHjtPxZhN36/sOnLoyKkjl47cOvLoyBsrxmyEKLITWA4Cy0lguQgsN4HlIbC8cRDjMUCM2QAxZgfEmAMQY05AjLkAMeYGxJgHEGNeQIz+Cz0bDjmoL589J+X/H+ipjfmBeX5ycxZE1IXyL+DPc8BJtj8Dp97+JcS/YNRzeu6TbH8BTr39W4h/oWidnfMk21+BU29PCPEv7OMfdJLtb8CptyeF+Bfx8Q86yfY4cOrtP0L8i/r4B51k+ztw6u0pIf7FfPyDTrL9Azj1lnt+Esq/OOD/yDvIOYT4hwD/978XHTQ2pxD/EoD/+9/VDhqbS4h/ScD/M19sPza3EP9SgP/732kPGptHiH9pwP/979kHjc0rxL8M4P/+d/+DxuYT4l8W8H//eQRBY/ML8S8H+D/yHlc5If7lAf8PAf5fXoh/BcD/SwD+X0GIf0XA/0sC/l9RiP+FgP+XAvz/QiH+lQD/Lw34fyUh/hcB/l8G8P+LhPhXBvy/LOD/lYX4VwH8H/kufF0h/lUB/78c8P96QvyrAf5fA/D/+kL8qwP+XxPw/wZC/C8G/P8KwP8bCvG/BPD/WoD/NxLifyng/7UB/28sxP8ywP/rAP6PvgulYngHDTe/izjOeEdroON3OQ+Gv4+G8hrk+F3Og+HvyKG8Bjt+l/Ng+Ht7KK8hjt/lPBj+LiHKa6jjdzkPhr/fiPIa5vhdzoPh71yivIY7fpfzYPh7oCivEY79y/x+1PzuEuU10rF/GV4FGLxGOfYvw6sgg9dox/5leBVi8Brj2L8Mr8IMXmMd+5fhVYTB6xrH/mV4FWXwutaxfxlexRi8rhN6F/1yoP8Gai8F1EMKqFEUUDcoYC9XwP6qgD1PAfuQAvYGBfi1AjxUAb6mAK9RgP4VoEmF6MRoMPK9OPPc1/fh5gpZ/ZQzvcs/jJrkNoHe5RSD1+0CvYvH8MA7BHoXxeA1TqB3uYDBa7xA75KOwWuCQO+SnsFrokDvkoHBa5JA71KcwetOgd4lxOA1WaB3KcHgdZdA71KSwWuKQO9SisFrqkDvUprBa5pA71KGwWu6QO9SlsFrhlDvUgPoXYDaSwH1kAJqFAXUDQrYyxWwvypgz1PAPqSAvUEBfq0AD1WArynAaxSgfwVoUs1g9i410ti7JDE0vUCgd0lm8Foo0LukMHgtEuhdMjJ4LRboXTIxeC0R6F0yM3gtFehdsjB43S3Qu2Rl8LpHoHcpx+B1r0DvUp7Ba5lA71KBwWu5QO9SkcHrPoHe5UIGr/sFepdKDF4PCPQuFzF4PSjQu1Rm8Foh1LvUBHoXoPZSQD2kgBpFAXWDAvZyBeyvCtjzFLAPKWBvUIBfK8BDFeBrCvAaBehfAZpUK5i9S8009i7ZGJpeL9C7ZGfweligd8nB4LVBoHfJyeD1iEDvkovBa6NA75KbwWuTQO+Sh8Frs0DvkpfBa4tA71KFwWurQO9SlcFrm0DvUo3Ba7tA71KdwetRgd7lYgavxwR6l0sYvHYI9C6XMnjtFOhdLmPw2iXUu1wB9C5A7aWAekgBNYoC6gYF7OUK2F8VsOcpYB9SwN6gAL9WgIcqwNcU4DUK0L8CNKl2MXuXK3L8+zz1c52Xbv68PKzjGjnO9j+Rn2WukGdNA9L2f2Ptxo4HxiI/97+x0Vct/bzX1lFHR10d9YyWdDTQ0VBHIx2NdTTR0VRHMx3NdbTQ0VJHKx2tdbTR0VbHlTra6Wivo4OOq3LE96DKWjmw+xB7heyGxf2gyo6adycdnXV00dFVRzcd3XX0yOFFG5oZHHtgZCcC60xgXQisK4F1I7DuBNYjR9oPqvQnLaiI6Wg51hxU2cl6rKc6247VfLvYjT19UGVXq7FnDqrsZjM2fFBld4uxkYMqewCiiKcYa5+nYuypeffS0VtHHx19dfTTcbWO/rFi7EmIoheB9SawPgTWl8D6EdjVBNY/DmKsDYixJyDGXoAYewNi7AOIsS8gxn6AGK8GxNg/QWKsc56KcYDmPVDHIB2DdQzRMVTHMB3DY8U4gBDFQAIbRGCDCWwIgQ0lsGEENjwOYqwDiHEAIMaBgBgHAWIcDIhxCCDGoYAYhwFiHJ4gMdY9T8U4QvMeqWOUjtE6xugYq+MaHdfGinEEIYqRBDaKwEYT2BgCG0tg1xDYtXEQY11AjCMAMY4ExDgKEONoQIxjADGOBcR4DSDGa5miQM9euc5+Hujd2ZEXy/C/3n9PA86j8r/PGzR2lBD/G6KeiXOfR+V/xzho7Ggh/jdGP9PnPI9qyMX2Y8cI8b/Jxz/oPCr/u9hBY8cK8b/Zxz/oPCr/++FBY68R4n+Lj3/QeVT+d9aDxl4rxP9WH/+g86j879EHjb1OiP9tgP8j7x/dKcT/dsD/bwf8f7IQ/zsA/78D8P+7hPiPA/x/HOD/U4T4jwf8fzzg/1OF+E8A/H8C4P/ThPhPBPx/IuD/04X4TwL8fxLg/zOE+N8J+D/yHe57hfhP/n/snQWUVMfWheeg8eAug2sciCGNu8SBKO4uAQKEkODu7sHd3TUEd3cLIYRAcPvPZaZ/7nRqce8+0/fwZi16rbPyXuXM9DddvXfVznTVAP7fH/D/4Ur8HQH/HwD4/wgl/k6A/w8E/H+kEn9nwP8HAf4/Som/C+D/gwH/H63E3xXw/yGA/49R4u8G+P9QwP/HKvF3B/wf+RzcHCX+HoD/TwX8f64Sf0/A/6cB/j9Pib8X4P/TAf+fr8TfG/D/GYD/L1Di7wP4/0zA/xcq8fcF/H8W4P+LlPj7Af4/G/B/5POd1i/jrL+jSoZ/RwE/j8ODXonh/nntz9c/TiSe0Ppi9OsGAL+AknINiPN4INTd13k2GU4/o/35BkZmMqwvRv8q70BgFzFIYeIGGd5Qjrd3gL9xQ7+/9WYaZHhtnZ5mwP/Qa2udSmsqeG23KpxebSbg2qZwerW5gGu7wunV7wVcOxROr7YQcO1UOL3aUsC1S+H0aisB126F06s/CLj2eOoTYadXPxVw7VU4vfqZgGufwunVzwVc+xVOr34h4DqgcHq1vIDroMLp1QoCrkMKp1crCrgOK5xe/VLAdUTp9OpgYE8I7L0I2A8RsEchYN9AwFpOwPpKwJpHwDpEwNpAgF8T4KEE+BoBXkOA/gnQJCE6sTTo/+Sq9b732catR6ir7xKWXVoLNH1GIbu0EXCdVcgubQVc5xSyy48CrvMK2aWdgOuCQnb5ScD1h0J2aS/guqiQXX4WcP2pkF2+EnBdUsguXwu4/lLILt8IuC4rZJdvBVx/K2SX7wRcVxSySyUB1z8K2aWygOuqQnapIuC6ppRdhgDZBdh7EbAfImCPQsC+gYC1nID1lYA1j4B1iIC1gQC/JsBDCfA1AryGAP0ToEm6JswuQyKZXX4RaPquQnbpIOC6p5BdOgq47itkl04CrgcK2aWzgOuhQnbpIuAKyeF9dukq4CKPuOzZpZuAK5pXr1d4u7UnqSrgiu4pV1h2qSbgiuElV3h2qS7giukhlz+71BBwxfKO6/+zS00BV2zPuB5nl1oCruc89i+Lq7aA63mP/cviqiPgegHk8j/Q7DIUyC7A3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNEqITe3YZGsns0l2g6Xger/0WVw8BV3yP136Lq6eAK4HHa7/F1UvAldDjtd/i6i3gSuTx2m9x9RFwJVbILn0FXEkUsks/AVdShexSV8CVTCG71BNwJVfILvUFXCkUsksDAVdKhezSUMCVSiG7NBJwpVbILo0FXKEK2aWJgCuNUnYZBmQXYO9FwH6IgD0KAfsGAtZyAtZXAtY8AtYhAtYGAvyaAA8lwNcI8BoC9E+AJimNMLsMs2UX/wO97bAQuV+XC7vt5b4iLnutn6Oou95H9lPMVW+YUxV30xtuaiVc9Pr9ryS596bhcWRzOzwIc1sKmNvSwNyWAea2LDC35YC5/QiY24+Buf0EmNsRwrkdEYS5/RSY28+Auf0cmNsvgLktD8xtBWBuKwJz+yUwtyOFczsyCHP7FTC3XwNz+w0wt98Cc/sdMLeVgLmtDMxtFWBuRwnndlSc//6FocHh++IhcR7/90T/2uz3cb/m/e8P//eyHqEhrjFcMz/rdd/bDuhFvu+z3oiP0fx+H8M1lmsc169c47kmcE3kmsQ1mWsK11SuaVzTuWZwzeSaxTWbaw7XXK55XPO5FnAt5FoUJ7hXt4+Og70OgY9Qd21Bv7p9MXMv4VrKtYxrOdcKrpVcq+KERDQ0qznwCvUlhrGlhrFlhrHlhrEVhrGVhrFVcSJ/dbt90pwWgcUue62r25e47g2hpW57mXeZu95HV7cvd9UbdnX7Cje94Ve3r3TR67+6fRUgimCKcUwUFeNq5l7DtZZrHdd6rg1cG7k2BYpxtUEUawxjaw1j6wxj6w1jGwxjGw1jm4IgxjGAGFcDYlwDiHEtIMZ1gBjXA2LcAIhxIyDGTU9JjGOjqBh/Y+7NXL9zbeHayrWNazvXjkAx/mYQxWbD2O+GsS2Gsa2GsW2Gse2GsR1BEONYQIy/AWLcDIjxd0CMWwAxbgXEuA0Q43ZAjDuekhjHRVEx7mTuXVy7ufZw7eXax7Wf60CgGHcaRLHLMLbbMLbHMLbXMLbPMLbfMHYgCGIcB4hxJyDGXYAYdwNi3AOIcS8gxn2AGPcDYjwgFAV6NxxyUd9B90xk/z/orY2HgOdB7s/YKzxDh/Iftr+mDjfZbgNuvd2nxH8kwnviyTfZbgduvd2vxH804nv6iTfZ7gBuvT2gxH/Mxu90k+1O4Nbbg0r8x238TjfZ7gJuvT2kxH/Cxu90k+1u4Nbbw0r8J238TjfZ7gFuvT2ixH8K8H/kDPIlJf7TgP+fBfz/LyX+M4D/nwP8/7IS/1nA/88D/v+3Ev85wP8vAP5/RYn/POD/fwD+/48S/wXA/y8C/n9Vif8PwP//BPz/mhL/RcD/kXNc0XPo8P8J+P89wP9jKPFfAvz/PuD/MZX4/wL8/wHg/7GU+C8D/v8Q8P/YSvx/A/5vP6vo1PucEv8VwP/t5yedep9X4v8H8H/7mU6n3heU+K8C/h/Pm891R3ig/NcA/7d/Pt+pN7kS/7+A/9vPDDj1plDivw74f8Ic7ntTKvHfAPzffrbCqTeVEv9NwP8TA/6fWon/FuD/SQD/D1Xivw34f1LA/9GzUBTA7dRu/S7C+kgTgT9vfo/PclpcSwRcBTw+y2lxLRVwFfT4LKfFtUzAVcjjs5wW13IBV2GPz3JaXCsEXEU8Pstpca0UcBX1+CynxbVKwFXMY/+yfj96SMBV3GP/srgOC7hKeOxfFtcRAVdJj/3L4joq4CrlsX9ZXMcEXKU99i+L67iAq4zH/mVxnRBwlfXYvyyukwKuckpn0e8A+RvYexGwHyJgj0LAvoGAtZyA9ZWANY+AdYiAtYEAvybAQwnwNQK8hgD9E6BJQnRiadD/uTjrfe+zjVuPUFffJSy7rBZourxCdlkj4KqgkF3WCrgqKmSXdQKuLxWyy3oB11cK2WWDgOtrheyyUcD1jUJ22STg+lYhu5wScH2nkF1OC7gqKWSXMwKuygrZ5ayAq4pCdjkn4KqqkF3OC7iqKWSXCwKu6grZ5Q8BVw2l7HIXyC7A3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNUg1hdrkbyezym0DTDRSyy2YBV0OF7PK7gKuRQnbZIuBqrJBdtgq4mihkl20CrqYK2WW7gKuZQnbZIeBqrpBdLgq4vlfILn8KuFooZJdLAq6WCtnlLwFXK4XsclnA9YNCdvlbwNVaIbtcEXC1Ucgu/wi42ipll3tAdgH2XgTshwjYoxCwbyBgLSdgfSVgzSNgHSJgbSDArwnwUAJ8jQCvIUD/BGiS2gqzy71IZpedAk13VMguuwRcnRSyy24BV2eF7LJHwNVFIbvsFXB1Vcgu+wRc3RSyy34BV3eF7HJAwNVDIbtcFXD1VMgu1wRcvRSyy78Crt4K2eW6gKuPQna5IeDqq5Bdbgq4+ilkl1sCrv4K2eW2gGuAUna5D2QXYO9FwH6IgD0KAfsGAtZyAtZXAtY8AtYhAtYGAvyaAA8lwNcI8BoC9E+AJmmAMLvcj/Pf+9SfdF+69c874f+8G+dx/vF/L+sRGuIaA9L2s153ve2AXuT7PuuN+HjA7/eH1nueFxviisYVnSsGV0yuWFyxuZ7jep7rBa4XuV7iepnrFa5XueJwxeWKxxWfKwFXQq5EcYN7UeWDONjrEPgIddcW9IsqE/PrkIQrKVcyruRcKbhScqWKGxLR0KzmwAsjkxjGkhrGkhnGkhvGUhjGUhrGUsWN/EWV9klz2sRYP7ubXuuiyiSue0Moqdte5k3mrvfRRZXJXfWGXVSZwk1v+EWVKV30+i+qTBXXvSiCKcaHUVSMqa3XiysNV1qudFzpuTJwZQwUY2qDKEINY2kMY2kNY+kMY+kNYxkMYxmDIMaHgBhTA2IMBcSYBhBjWkCM6QAxpgfEmAEQY8anJMYQ4HlNj1B3bUEXYybmzsyVhSsrVzau7Fyvcb0eKMZMBlFkNoxlMYxlNYxlM4xlN4y9Zhh7PQhiDHEphCvhP7ubXkuMmQExZgHEmBUQYzZAjNkBMb4GiPH1pyRGiqJifIO53+R6i+ttrne4cnDl5MoVKMY3DKJ40zD2lmHsbcPYO4axHIaxnIaxXEEQIwFifAMQ45uAGN8CxPg2IMZ3ADHmAMSYExBjLqEo0LtX3nX/PNDZ2eI5dPjfs7+mDvdR2c/zOvWWUOJ/P8J74sn3UdnPGDv1llTi/yDie/qJ91EVyuG+t5QS/4c2fqf7qOxnsZ16Syvx57bxO91HZT8f7tRbRok/j43f6T4q+5l1p96ySvx5bfxO91HZz9E79ZZT4s8H+D9y/ug7JX4f4P8VAP+vpMSfH/D/ioD/V1biLwD4/5eA/1dR4i8I+P9XgP9XVeIvBPj/14D/V1PiLwz4/zeA/1dX4i8C+P+3gP/XUOIvCvg/8hnu75X4iwH+3xDw/xZK/MUB/28E+H9LJf4SgP83Bvy/lRJ/ScD/mwD+/4MSfynA/5sC/t9aib804P/NAP9vo8RfBvD/5oD/t1XiLwv4P/I5uJ5K/OUA/+8E+H8vJf6PAP/vDPh/byX+jwH/7wL4fx8l/k8A/+8K+H9fJf5PAf/vBvh/PyX+zwD/7w74f38l/s8B/+8B+D/y+U7rl3HW31Elw7+jgJ/H4UGvxnD/vPbn+yJuJJ7Q+mL068oDv4CScpWP+3gg1N3XeTYZTj+j/fkqRGYyrC9G/ypvBWAXUVFh4ioa3lCONzWCv3FDv7/1ZqpoeG2dnqb8/9Bra51Ke1fw2k5WOL36noBrisLp1fcFXFMVTq9+IOCapnB69UMB13SF06u5BVwzFE6v5hFwzVQ4vZpXwDXLU58IO72aWMA1W+H0ahIB1xyF06tJBVxzFU6vJhNwzVM4vZpcwDVf4fRqCgHXAoXTqykFXAsVTq+mEnAtUjq9+iWwJwT2XgTshwjYoxCwbyBgLSdgfSVgzSNgHSJgbSDArwnwUAJ8jQCvIUD/BGiSEJ1YGvR/ctV63/ts49Yj1NV3Ccsu+QSaXqWQXXwCrtUK2SW/gGuNQnYpIOBaq5BdCgq41ilkl0ICrvUK2aWwgGuDQnYpIuDaqJBdUgu4Nilkl1AB128K2SWNgGuzQnZJK+D6XSG7pBNwbVHILukFXFsVsksGAdc2heySUcC1XSm7fAVkF2DvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCZpuzC7fBXJ7FJUoOn9CtmlmIDrgEJ2KS7gOqiQXUoIuA4pZJeSAq7DCtmllIDriEJ2KS3gOqqQXcoIuI4pZJdMAq7jCtkls4DrhEJ2ySLgOqmQXbIKuE4pZJdsAq7TCtklu4DrjEJ2eU3AdVYhu7wu4DqnlF2+BrILsPciYD9EwB6FgH0DAWs5AesrAWseAesQAWsDAX5NgIcS4GsEeA0B+idAk3ROmF2+jmR2KSvQ9GWF7FJOwPW3Qnb5SMB1RSG7fCzg+kchu3wi4LqqkF0+FXBdU8gunwm4/lXILp8LuK4rZJc3BFw3FLLLmwKumwrZ5S0B1y2F7PK2gOu2QnZ5R8B1RyG75BBw3VXILjkFXPcUsksuAdd9pezyDZBdgL0XAfshAvYoBOwbCFjLCVhfCVjzCFiHCFgbCPBrAjyUAF8jwGsI0D8BmqT7wuzyjS27+B/obYdVyf26XM1tL/dVd9lr/Rw13PU+sp+arnrDnKqWm95wU6vtotfvf3XIvTd9G1c2t98GYW7rAnNbD5jb+sDcNgDmtiEwt42AuW0MzG0TYG6/E87td0GY26bA3DYD5rY5MLffA3PbApjblsDctgLm9gdgbisJ57ZSEOa2NTC3bYC5bQvM7Y/A3LYD5vYnYG7bA3P7MzC3lYVzWznuf//C0Jfh++Kv4j7+74n+tdnv437N+98f/u9lPUJDXGO4Zn7W6763HdCLfN9nvREfVfj9XpWrGld1rhpcNblqcdXmqsNVl6seV32uBlwNuRpxNeZqwtWUqxlXc67vuVpwteRqxfVD3OBe3V4lLvY6BD5C3bUF/er21szdhqst149c7bh+4mrP9XPckIiGZjUHXqHexjDW1jD2o2GsnWHsJ8NYe8PYz3Ejf3W7fdKcFoHWLnutq9vbuO4NobZue5n3R3e9j65ub+eqN+zq9p/c9IZf3d7eRa//6vafAVEEU4xVo6gYf2HuDlwduTpxdebqwtWVq1ugGH8xiKKDYayjYayTYayzYayLYayrYaxbEMRYFRDjL4AYOwBi7AiIsRMgxs6AGLsAYuwKiLHbUxJjtSgqxu7M3YOrJ1cvrt5cfbj6cvULFGN3gyh6GMZ6GsZ6GcZ6G8b6GMb6Gsb6BUGM1QAxdgfE2AMQY09AjL0AMfYGxNgHEGNfQIz9npIYq0dRMfZn7gFcA7kGcQ3mGsI1lGtYoBj7G0QxwDA20DA2yDA22DA2xDA21DA2LAhirA6IsT8gxgGAGAcCYhwEiHEwIMYhgBiHAmIcJhQFejccclHfcPdMZP8/6K2NI4DnQe7PmC38XS7KP9L+mjrcZGu/08Opd44S/6gI74kn32Rrv2fEqXeuEv/oiO/pJ95kOy2H+955SvxjbPxON9na72Nx6p2vxD/Wxu90k639jhin3gVK/ONs/E432drvrXHqXajE/6uN3+kmW/tdOk69i5T4xwP+j5xB3qTEPwHw/9WA//+mxD8R8P81gP9vVuKfBPj/WsD/f1finwz4/zrA/7co8U8B/H894P9blfinAv6/AfD/bUr80wD/3wj4/3Yl/umA/yPnuI4r8c8A/P8A4P8nlPhnAv5/EPD/k0r8swD/PwT4/ykl/tmA/x8G/P+0Ev8cwP+PAP5/Rol/LuD/RwH/P6vEPw/w/2OA/59T4p8P+D/yWfgbSvwLAP//G/D/m0r8CwH/vwL4/y0l/kWA//8D+P9tJf7FgP9fBfz/jhL/EsD/rwH+f1eJfyng//8C/n9PiX8Z4P/XAf9Hz0JRALdTu/W7COsjTQT+vClzeslFj35H0kbAlcpLLgr73U1bAVdqD7msXovrRwFXqHdcj1otrnYCrjSecYV1Wlw/CbjSesUV3mhxtRdwpfOIy99ncf0s4ErvqU+EkPX70RECrgwe+5fFNVLAldFj/7K4Rgm4MnnsXxbXaAFXZo/9y+IaI+DK4rF/WVxjBVxZPfYvi2ucgCubx/5lcf0q4MoOcvkfccHnWQ7kb2DvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCYJ0YmlQf/n4qz3vc82bj1CXX2XsOzyi0DTORSySwcBV06F7NJRwJVLIbt0EnC9q5BdOgu43lPILl0EXO8rZJeuAq4PFLJLNwHXhwrZZbyAK7dCdpkg4MqjkF0mCrjyKmSXSQKufArZZbKAy6eQXaYIuPIrZJepAq4CCtllmoCroFJ2WQFkF2DvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCapoDC7rIhkduku0HRJhezSQ8BVSiG79BRwlVbILr0EXGUUsktvAVdZhezSR8BVTiG79BVwfaSQXfoJuD5WyC7TBVyfKGSXGQKuTxWyy0wB12cK2WWWgOtzhewyW8D1hUJ2mSPgKq+QXeYKuCooZJd5Aq6KStllJZBdgL0XAfshAvYoBOwbCFjLCVhfCVjzCFiHCFgbCPBrAjyUAF8jwGsI0D8BmqSKwuyyMpLZpb9A05UVsssAAVcVhewyUMBVVSG7DBJwVVPILoMFXNUVsssQAVcNhewyVMBVUyG7DBNw1VLILvMFXLUVsssCAVcdheyyUMBVVyG7LBJw1VPILosFXPUVsssSAVcDheyyVMDVUCG7LBNwNVLKLquA7ALsvQjYDxGwRyFg30DAWk7A+krAmkfAOkTA2kCAXxPgoQT4GgFeQ4D+CdAkNRJml1Vx/3uf+pPuS7f+uTz8nyviPs4//u9lPUJDXGNA2n7W6663HdCLfN9nvREfq/n9voZrLdc6rvVcG7g2cm3i+o1rM9fvXFu4tnJt49rOtYNrJ9curt1ce7j2cu3j2s91gOtg3OBeVLk6LvY6BD5C3bUF/aLKQ8x9mOsI11GuY1zHuU5wnYwbEtHQrObACyMPG8aOGMaOGsaOGcaOG8ZOGMZOxo38RZX2SXPaxBxy2WtdVHnYdW8IHXHby7xH3fU+uqjymKvesIsqj7vpDb+o8oSLXv9FlScBUQRTjGuiqBhPMfdprjNcZ7nOcZ3nusD1R6AYTxlEcdowdsYwdtYwds4wdt4wdsEw9kcQxLgGEOMpQIynATGeAcR4FhDjOUCM5wExXgDE+MdTEuPaKCrGi8z9J9clrr+4LnP9zXWF659AMV40iOJPw9glw9hfhrHLhrG/DWNXDGP/BEGMawExXgTE+CcgxkuAGP8CxHgZEOPfgBivAGL85ymJcV0UFeNV5r7G9S/Xda4bXDe5bnHdDhTjVYMorhnG/jWMXTeM3TCM3TSM3TKM3Q6CGNcBYrwKiPEaIMZ/ATFeB8R4AxDjTUCMtwAx3haKAr175Y7754HOzmbIqcN/1/6aOtxHZT/P69SbUYn/XoT3xJPvo7KfMXbqzaTEfz/ie/qJ91GF5nTfm1mJ/4GN3+k+KvtZbKfeLEr8D238TvdR2c+HO/VmVeIPife41+k+KvuZdafebEr8ZON3uo/Kfo7eqTe7En+0eO49HTl/lFuJP3o8956eE/D/PEr8MeK59/RcgP/nVeKPGc+9p78L+H8+Jf5Y8dx7+nuA//uU+GPHc+/p7wP+n1+J/znA/z8A/L+AEv/zgP9/CPh/QSX+FwD/Rz7D/YkS/4uA/5cC/P9TJf6XAP8vDfj/Z0r8LwP+Xwbw/8+V+F8B/L8s4P9fKPG/Cvh/OcD/yyvxxwH8/yPA/yso8ccF/P9jwP8rKvHHA/wf+RxcbSX++ID/VwH8v44SfwLA/6sC/l9XiT8h4P/VAP+vp8SfCPD/6oD/11fiTwz4fw3A/xso8ScB/L8m4P8NlfiTAv5fC/B/5POd1i/jrL+jSoZ/RwE/j8OD4sRw/7z250sWLxJPaH0x+nXJ47mfJClX8niPB0LdfZ1nk+H4HyJtX5giMpNhfTH6V3lTALuIlAoTl9LwhnJ6rpTufwYjl9P3t95MKQ2vrdPTJP8fem2tU2nWbwzRn72DwunVuwKujgqnV+8JuDopnF69L+DqrHB69YGAq4vC6dWHAq6uCqdXQwRe103h9CoJuLp76hNhp1cPCeaxh8Lp1cMCrp4Kp1ePCLh6KZxePSrg6q1wevWYgKuPwunV4wKuvgqnV08IuPopnF49KeDqr3R6NRWwJwT2XgTshwjYoxCwbyBgLSdgfSVgzSNgHSJgbSDArwnwUAJ8jQCvIUD/BGiSEJ1YGvR/ctV63/ts49Yj1NV3Ccsu0QR7kuEK2SW6gGuEQnaJIeAaqZBdYgq4Rilkl1gCrtEK2SW2gGuMQnZ5TsA1ViG7PC/gGqeQXU4J9iS/KmSX0wKu8QrZ5YyAa4JCdjkr4JqokF3OCbgmKWSX8wKuyQrZ5YKAa4pCdvlDwDVVKbukBrILsPciYD9EwB6FgH0DAWs5AesrAWseAesQAWsDAX5NgIcS4GsEeA0B+idAkzRVmF1SRzK7vCDYk8xVyC4vCrjmKWSXlwRc8xWyy8sCrgUK2eUVAddChezyqoBrkUJ2iSPgWqyQXeIKuJYoZJeLgj3JUoXs8qeAa5lCdrkk4FqukF3+EnCtUMgulwVcKxWyy98CrlUK2eWKgGu1Qnb5R8C1Rim7hALZBdh7EbAfImCPQsC+gYC1nID1lYA1j4B1iIC1gQC/JsBDCfA1AryGAP0ToElaI8wuoZHMLvEEe5LNCtklvoDrd4XskkDAtUUhuyQUcG1VyC6JBFzbFLJLYgHXdoXskkTAtUMhuyQVcO1UyC5XBXuSXQrZ5ZqAa7dCdvlXwLVHIbtcF3DtVcguNwRc+xSyy00B136F7HJLwHVAIbvcFnAdVMouaYDsAuy9CNgPEbBHIWDfQMBaTsD6SsCaR8A6RMDaQIBfE+ChBPgaAV5DgP4J0CQdFGaXNLbs4n+gtx3+Qu7X5Q5ue7mvo8te6+fo5K73kf10dtUb5lRd3PSGm1pXF71+/+tG7r0pbTzZ3KYNwtx2B+a2BzC3PYG57QXMbW9gbvsAc9sXmNt+wNymE85tuiDMbX9gbgcAczsQmNtBwNwOBuZ2CDC3Q4G5HQbMbXrh3KYPwtwOB+Z2BDC3I4G5HQXM7WhgbscAczsWmNtxwNxmEM5thnj//QtDqcJzfep4j/97on9t9vu4X/P+94f/e1mP0BDXGK6Zn/W6720H9CLf91lvxEdGfr9n4srMlYUrK1c2ruxcr3G9zvUG15tcb3G9zfUOVw6unFy5uN7leo/rfa4PuD7kys2VhytvvOBe3Z4RPDMf+Ah11xb0q9vzWR7FlZ+rAFdBrkJchbmKxAuJaGhWc+AV6j7DWH7DWAHDWEHDWCHDWGHDWJF4kb+6PSNwSUA+l73W1e0+170hlN9tL/MWcNf76Or2gq56w65uL+SmN/zq9sIuev1XtxcBRBFMMWaKomIsytzFuIpzleAqyVWKqzRXmUAxFjWIophhrLhhrIRhrKRhrJRhrLRhrEwQxJgJEGNRQIzFADEWB8RYAhBjSUCMpQAxlgbEWOYpiTFzFBVjWeYux/UR18dcn3B9yvUZ1+eBYixrEEU5w9hHhrGPDWOfGMY+NYx9Zhj7PAhizAyIsSwgxnKAGD8CxPgxIMZPADF+CojxM0CMnz8lMWaJomL8grnLc1Xgqsj1JddXXF9zfRMoxi8MoihvGKtgGKtoGPvSMPaVYexrw9g3QRBjFkCMXwBiLA+IsQIgxoqAGL8ExPgVIMavATF+IxQFejccclHft+6ZyP5/0FsbvwOeB7k/o4fwd7kofyX7a+pwk639Tg+n3p5K/JUjvCeefJOt/Z4Rp95eSvxVIr6nn3iTbeec7nt7K/FXtfE73WRrv4/FqbePEn81G7/TTbb2O2Kcevsq8Ve38TvdZGu/t8apt58Sfw0bv9NNtva7dJx6+yvx1wT8HzmD/KsSfy3A/0cA/j9eib824P8jAf+foMRfB/D/UYD/T1Tirwv4/2jA/ycp8dcD/H8M4P+TlfjrA/4/FvD/KUr8DQD/Hwf4/1Ql/oaA/yPnuJYq8TcC/H8e4P/LlPgbA/4/H/D/5Ur8TQD/XwD4/wol/qaA/y8E/H+lEn8zwP8XAf6/Som/OeD/iwH/X63E/z3g/0sA/1+jxN8C8H/ks/C7lPhbAv7/O+D/u5X4WwH+vwXw/z1K/D8A/r8V8P+9SvytAf/fBvj/PiX+NoD/bwf8f78Sf1vA/3cA/n9Aif9HwP93Av6PnoWiAG6ndut3EdZHmgj8eW97fJbT4vIJuO54fJbT4sov4Lrr8VlOi6uAgOuex2c5La6CAq77Hp/ltLgKCbgeeHyW0+IqLOB66PFZTouriIArJJe3/mX9fvQ7ARd5ykWPfm9bScAVzUsuCvt9cmUBV3QPuaxei6uKgCuGd1yPWi2uqgKumJ5xhXVaXNUEXLG84gpvtLiqC7hie8Tl77O4agi4ngO5/A/0LHo7IH8Dey8C9kME7FEI2DcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0SYhOLA36Pxdnve99tnHrEerqu4Rll6ICTcfxeO23uIoJuOJ6vPZbXMUFXPE8XvstrhICrvger/0WV0kBVwKP136Lq5SAK6HHa7/FVVrAlcjjtd/iKiPgSqyQXWoKuJIoZJdaAq6kCtmltoArmUJ2qSPgSq6QXeoKuFIoZJd6Aq6UCtmlvoArlUJ2aSDgSq2UXX4Csguw9yJgP0TAHoWAfQMBazkB6ysBax4B6xABawMBfk2AhxLgawR4DQH6J0CTlFqYXX6KZHYpK9B0JoXsUk7AlVkhu3wk4MqikF0+FnBlVcgunwi4silkl08FXNkVsstnAq7XFLLL5wKu1xWyS0MB1xsK2aWRgOtNhezSWMD1lkJ2aSLgelshuzQVcL2jkF2aCbhyKGSX5gKunArZ5XsBVy6l7NIeyC7A3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNUi5hdmkfyezyhUDTeRWyS3kBVz6F7FJBwOVTyC4VBVz5FbLLlwKuAgrZ5SsBV0GF7PK1gKuQQnb5RsBVWCG7tBBwFVHILi0FXEUVsksrAVcxhezyg4CruEJ2aS3gKqGQXdoIuEoqZJe2Aq5SCtnlRwFXaaXs8jOQXYC9FwH7IQL2KATsGwhYywlYXwlY8whYhwhYGwjwawI8lABfI8BrCNA/AZqk0sLs8nO8/96n/qT70q1/tgv/50/xHucf//eyHqEhrjEgbT/rddfbDuhFvu+z3oiPX/j93oGrI1cnrs5cXbi6cnXj6s7Vg6snVy+u3lx9uPpy9ePqzzWAayDXIK7BXEO4hnIN4xoeL7gXVf4SD3sdAh+h7tqCflHlCOYeyTWKazTXGK6xXOO4fo0XEtHQrObACyNHGsZGGcZGG8bGGMbGGsbGGcZ+jRf5iyrtk+a0iRnhste6qHKk694QGuW2l3lHu+t9dFHlGFe9YRdVjnXTG35R5TgXvf6LKn8FRBFMMXaIomIcz9wTuCZyTeKazDWFayrXtEAxjjeIYoJhbKJhbJJhbLJhbIphbKphbFoQxNgBEON4QIwTADFOBMQ4CRDjZECMUwAxTgXEOO0pibFjFBXjdOaewTWTaxbXbK45XHO55gWKcbpBFDMMYzMNY7MMY7MNY3MMY3MNY/OCIMaOgBinA2KcAYhxJiDGWYAYZwNinAOIcS4gxnlPSYydoqgY5zP3Aq6FXIu4FnMt4VrKtSxQjPMNolhgGFtoGFtkGFtsGFtiGFtqGFsWBDF2AsQ4HxDjAkCMCwExLgLEuBgQ4xJAjEsBMS4TigK9e2W5++eBzs5SLh3+FfbX1OE+qjvA3VXRlPhXRnhPPPk+qrvA3VXRlfhXRXxPP/E+qnvA3VUxlPhX2/id7qO6D9xdFVOJf42N3+k+qgfA3VWxlPjX2vid7qN6CNxdFVuJf52N3+k+Kvs5eqfe55T41wP+j5w/SqLEvwHwf/uZKKfepEr8GwH/t5/TcupNpsS/CfD/+Lnc9yZX4v8N8H/7eTan3hRK/JsB/7efsXPqTanE/zvg//Zzf069qZT4twD+nxjw/9RK/FsB/0c+w/2GEv82wP8zA/7/phL/dsD/swD+/5YS/w7A/7MC/v+2Ev9OwP+zAf7/jhL/LsD/swP+n0OJfzfg/68B/p9TiX8P4P+vA/6fS4l/L+D/yOfgiijx7wP8Px/g/0WV+PcD/u8D/L+YEv8BwP/zA/5fXIn/IOD/BQD/L6HEfwjw/4KA/5dU4j8M+H8hwP9LKfEfAfy/MOD/yOc7rV/GWX9HlQz/jgJ+HocHxY3h/nntz3c0XiSe0Ppi9OuOAb+AknIdi/d4INTd13k2GU4/o/35jkdmMqwvRv8q73FgF3FCYeJOGN5QTs91AvyNG/r9rTfTCcNr6/Q0x/6HXlvrVNpywWtbSeH06goBV2WF06srBVxVFE6vrhJwVVU4vbpawFVN4fTqGgFXdYXTq2sFXDUUTq+uE3DV9NQnwk6vjhBw1VI4vTpSwFVb4fTqKAFXHYXTq6MFXHUVTq+OEXDVUzi9OlbAVV/h9Oo4AVcDhdOrvwq4GiqdXj0J7AmBvRcB+yEC9igE7BsIWMsJWF8JWPMIWIcIWBsI8GsCPJQAXyPAawjQPwGaJEQnlgb9n1y13vc+27j1CHX1XcKyy3qBplsoZJcNAq6WCtllo4CrlUJ22STg+kEhu/wm4GqtkF02C7jaKGSX3wVcbRWyyxYB148K2WW8gKudQnaZIOD6SSG7TBRwtVfILpMEXD8rZJfJAq5fFLLLFAFXB4XsMlXA1VEhu0wTcHVSyi6ngOwC7L0I2A8RsEchYN9AwFpOwPpKwJpHwDpEwNpAgF8T4KEE+BoBXkOA/gnQJHUSZpdTkcwuWwWa7qWQXbYJuHorZJftAq4+Ctllh4Crr0J22Sng6qeQXXYJuPorZJfdAq4BCtllj4BroEJ2mS7gGqSQXWYIuAYrZJeZAq4hCtllloBrqEJ2mS3gGqaQXeYIuIYrZJe5Aq4RCtllnoBrpFJ2OQ1kF2DvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCZppDC7nI5kdtkr0PQEheyyT8A1USG77BdwTVLILgcEXJMVsstBAdcUhexySMA1VSG7HBZwTVPILkcEXNMVsst8AdcMheyyQMA1UyG7LBRwzVLILosEXLMVsstiAdccheyyRMA1VyG7LBVwzVPILssEXPOVsssZILsAey8C9kME7FEI2DcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0SfOF2eWMLbv4H+hth7+S+3V5vNte7pvgstf6OSa6631kP5Nc9YY51WQ3veGmNsVFr9//ppJ7bzobTza3Z4Mwt9OAuZ0OzO0MYG5nAnM7C5jb2cDczgHmdi4wt+eEc3suCHM7D5jb+cDcLgDmdiEwt4uAuV0MzO0SYG6XAnN7Xji354Mwt8uAuV0OzO0KYG5XAnO7Cpjb1cDcrgHmdi0wtxeEc3sh3n//wtDJ8H3xqXiP/3uif232+7hf8/73h/97WY/QENcYrpmf9brvbQf0It/3WW/Exx/8fr/I9SfXJa6/uC5z/c11hesfrqtc17j+5brOdYPrJtctrttcd7juct3jus/1gOuhpaP4LJD4wb26/Y942OsQ+Ah11xb0q9uj8esQ3XotuGJyxeKKzfUc1/PxQyIamtUceIV6dMNYDMNYTMNYLMNYbMPYc4ax5+NH/up2+6Q5LQLWz+6m17q6Pbrr3hCK4baXeWO66310dXssV71hV7fHdtMbfnX7cy56/Ve3Px/fvSiCKcaLUVSML/Dr9SLXS1wvc73C9SpXHK64gWJ8wSCKFw1jLxnGXjaMvWIYe9UwFscwFjcIYrwIiPEFQIwvAmJ8CRDjy4AYXwHE+CogxjiAGOM+JTH+GUXFGI9fr/hcCbgSciXiSsyVhCtpoBjjGUQR3zCWwDCW0DCWyDCW2DCWxDCWNAhi/BMQYzxAjPEBMSYAxJgQEGMiQIyJATEmAcSY9CmJ8VIUFWMyfr2Sc6XgSsmViiu19RpypQkUYzKDKJIbxlIYxlIaxlIZxlIbxkINY2mCIMZLgBiTAWJMDogxBSDGlIAYUwFiTA2IMRQQYxpAjPYHejccclFfWvdMZP8/6K2N6YDnQe7PqCX8XS7Kn94+zw432drv9HDqra3EnyHC+/TJN9na7xlx6q2jxJ8xos6eeJNt1Vzue+sq8Wey8TvdZGu/j8Wpt54Sf2Ybv9NNtvY7Ypx66yvxZ7HxO91ka7+3xqm3gRJ/Vhu/00229rt0nHobKvFnA/wfOYPcTok/O+D/LQH//0mJ/zXA/1sB/t9eif91wP9/APz/ZyX+NwD/bw34/y9K/G8C/t8G8P8OSvxvAf7fFvD/jkr8bwP+/yPg/52U+N8B/B85xzVIiT8H4P+9Af8frMSfE/D/PoD/D1HizwX4f1/A/4cq8b8L+H8/wP+HKfG/B/h/f8D/hyvxvw/4/wDA/0co8X8A+P9AwP9HKvF/CPg/8ln4GUr8uQH/nwj4/0wl/jyA/08C/H+WEn9ewP8nA/4/W4k/H+D/UwD/n6PE7wP8fyrg/3OV+PMD/j8N8P95SvwFAP+fDvg/ehaKArid2q3fRVgfaSLw593r8VlOiyu6gGufx2c5La4YAq79Hp/ltLhiCrgOeHyW0+KKJeA66PFZTosrtoDrkMdnOS2u5wRchz0+y2lxPS/gOuKxf1m/H00n4DrqsX9ZXOkFXMc89i+LK4OA67jH/mVxZRRwnfDYvyyuTAKukx77l8WVWcB1ymP/sriyCLhOe+xfFldWAdcZpbPoBYH8Dey9CNgPEbBHIWDfQMBaTsD6SsCaR8A6RMDaQIBfE+ChBPgaAV5DgP4J0CQhOrE06P9cnPW+99nGrUeoq+8Sll1eEGj6kkJ2eVHA9ZdCdnlJwHVZIbu8LOD6WyG7vCLguqKQXV4VcP2jkF3iCLiuKmSXuAKuawrZJZuA61+F7JJdwHVdIbu8JuC6oZBdXhdw3VTILm8IuG4pZJc3BVy3FbLLWwKuOwrZ5W0B112l7FIIyC7A3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBN0l1hdikUyewST6Dp6O96u/ZbXPEFXDG85ArPLgkEXDE95PJnl4QCrljecf1/dkkk4IrtGdfj7JJYwPWcV1y27JJEwPW8R1z27JJUwPWCpz4Rll3eEXC96LF/WVw5BFwveexfFldOAdfLHvuXxZVLwPWKx/5lcb0r4HrVY/+yuN4TcMXx2L8srvcFXHE99i+L6wMBVzyQy/9As0thILsAey8C9kME7FEI2DcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0SYhO7NmlcCSzSzKBppMpZJfkAq7kCtklhYArhUJ2SSngSqmQXVIJuFIpZJfUAq7UCtklVMAVqpBd0gi40ihklw8FXGkVsktuAVc6heySR8CVXiG75BVwZVDILvkEXBkVsotPwJVJIbvkF3BlVsguBQRcWZSySxEguwB7LwL2QwTsUQjYNxCwlhOwvhKw5hGwDhGwNhDg1wR4KAG+RoDXEKB/AjRJWYTZpUj8/96n/qT70q1/FgzXcaH4j/OP/3tZj9AQ1xiQtp/1uuttB/Qi3/dZb8RHUX6/F+MqzlWCqyRXKa7SXGW4ynKV4/qI62OuT7g+5fqM63OuL7jKc1Xgqsj1JddXXF9zfcP1bfzgXlRZND72OgQ+Qt21Bf2iyu+YuxJXZa4qXFW5qnFV56oRPySioVnNgRdGVjKMVTaMVTGMVTWMVTOMVTeM1Ygf+Ysq7ZPmtIn5zmWvdVFlJde9IVTZbS/zVnHX++iiyqquesMuqqzmpjf8osrqLnr9F1XWAEQRTDEWi6JirMnctbhqc9XhqstVj6s+V4NAMdY0iKKWYay2YayOYayuYayeYay+YaxBEMRYDBBjTUCMtQAx1gbEWAcQY11AjPUAMdYHxNjgKYmxeBQVY0PmbsTVmKsJV1OuZlzNub4PFGNDgygaGcYaG8aaGMaaGsaaGcaaG8a+D4IYiwNibAiIsREgxsaAGJsAYmwKiLEZIMbmgBi/f0piLBFFxdiCuVtyteL6gas1Vxuutlw/BoqxhUEULQ1jrQxjPxjGWhvG2hjG2hrGfgyCGEsAYmwBiLElIMZWgBh/AMTYGhBjG0CMbQEx/igUBXr3Sjv3zwOdnT2aS4f/J/tr6nAf1T7g7qpjSvztI7wnnnwf1X7g7qrjSvw/R3xPP/E+qgPA3VUnlPh/sfE73Ud1ELi76qQSfwcbv9N9VIeAu6tOKfF3tPE73Ud1GLi76rQSfycbv9N9VEeAu6vOKPF3Bvz/kjdnaSI8UP4ugP//Bfj/dSX+roD/Xwb8/4YSfzfA//8G/P+mEn93wP+vAP5/S4m/B+D//wD+f1uJvyfg/1cB/7+jxN8L8P9rgP/fVeLvDfg/8hnuF9/V4e8D+L/9c+VOvS8p8fcF/N/+WXen3peV+PsB/h/rXfe9ryjx9wf8334mwKn3VSX+AYD/288pOPXGUeIfCPi//eyEU29cJf5BgP/bz3M49cZT4h8M+H8ybz7TFeGB8g8B/D854P/plPiHAv6fAvD/9Er8wwD/Twn4fwYl/uGA/6cC/D+jEv8IwP9TA/6fSYl/JOD/oYD/Z1biHwX4fxrA/5HPd1q/jLP+jioZ/h0F/DwOD4oXw/3z2p9vdPxIPKH1xejXjQF+ASXlGhP/8UCou6/zbDKcfkb7842NzGRYX4z+Vd6xwC5inMLEjTO8oZyeaxz4Gzf0+1tvpnGG19bpacb8D7221qm0doLXNo/C6dWfBFx5FU6vthdw5VM4vfqzgMuncHr1FwFXfoXTqx0EXAUUTq92FHAVVDi92knAVchTnwg7vfqdgKuwwunVSgKuIgqnVysLuIoqnF6tIuAqpnB6taqAq7jC6dVqAq4SCqdXqwu4SiqcXq0h4CqldHr1V2BPCOy9CNgPEbBHIWDfQMBaTsD6SsCaR8A6RMDaQIBfE+ChBPgaAV5DgP4J0CQhOrE06P/kqvW+99nGrUeoq+8Sll06CzT9qUJ26SLg+kwhu3QVcH2ukF26Cbi+UMgu3QVc5RWySw8BVwWF7NJTwFVRIbv0EnB9qZBdagq4vlLILrUEXF8rZJfaAq5vFLJLHQHXtwrZpa6A6zuF7FJPwFVJIbvUF3BVVsguDQRcVZSyy3gguwB7LwL2QwTsUQjYNxCwlhOwvhKw5hGwDhGwNhDg1wR4KAG+RoDXEKB/AjRJVYTZZXwks0tvgabrKGSXPgKuugrZpa+Aq55Cdukn4KqvkF36C7gaKGSXAQKuhgrZZaCAq5FCdhkk4GqskF0aCriaKGSXRgKupgrZpbGAq5lCdmki4GqukF2aCri+V8guzQRcLRSyS3MBV0uF7PK9gKuVUnaZAGQXYO9FwH6IgD0KAfsGAtZyAtZXAtY8AtYhAtYGAvyaAA8lwNcI8BoC9E+AJqmVMLtMiGR2GSzQdHuF7DJEwPWzQnYZKuD6RSG7DBNwdVDILsMFXB0VsssIAVcnhewyUsDVWSG7jBJwdVHILi0EXF0VsktLAVc3hezSSsDVXSG7/CDg6qGQXVoLuHoqZJc2Aq5eCtmlrYCrt0J2+VHA1Ucpu0wEsguw9yJgP0TAHoWAfQMBazkB6ysBax4B6xABawMBfk2AhxLgawR4DQH6J0CT1EeYXSbasov/gd52uI7cr8vr3fZy3waXvdbPsdFd7yP72eSqN8ypfnPTG25qm130+v3vd3LvTZPiy+Z2UhDmdgswt1uBud0GzO12YG53AHO7E5jbXcDc7gbmdrJwbicHYW73AHO7F5jbfcDc7gfm9gAwtweBuT0EzO1hYG6nCOd2ShDm9ggwt0eBuT0GzO1xYG5PAHN7EpjbU8DcngbmdqpwbqfG/+9fGPo1fF88Pv7j/57oX5v9Pu7XvP/94f9e1iM0xDWGa+Znve572wG9yPd91hvxMY3f79O5ZnDN5JrFNZtrDtdcrnlc87kWcC3kWsS1mGsJ11KuZVzLuVZwreRaxbWaaw3XWq518YN7dfu0+NjrEPgIddcW9Kvb1zP3Bq6NXJu4fuPazPU715b4IRENzWoOvEJ9g2Fso2Fsk2HsN8PYZsPY74axLfEjf3W7fdKcFoH1Lnutq9s3uO4NoY1ue5l3k7veR1e3/+aqN+zq9s1uesOvbv/dRa//6vYtgCiCKcbpUVSMW5l7G9d2rh1cO7l2ce3m2hMoxq0GUWwzjG03jO0wjO00jO0yjO02jO0JghinA2LcCohxGyDG7YAYdwBi3AmIcRcgxt2AGPc8JTHOiKJi3Mvc+7j2cx3gOsh1iOsw15FAMe41iGKfYWy/YeyAYeygYeyQYeywYexIEMQ4AxDjXkCM+wAx7gfEeAAQ40FAjIcAMR4GxHjkKYlxZhQV41HmPsZ1nOsE10muU1ynuc4EivGoQRTHDGPHDWMnDGMnDWOnDGOnDWNngiDGmYAYjwJiPAaI8TggxhOAGE8CYjwFiPE0IMYzQlGgd8MhF/Wddc9E9v+D3tp4Dnge5P6MwsLf5aL85+2vqcNNtvY7PZx6iyjxX4jwnnjyTbb2e0aceosq8f8R8T39xJtsfe+67y2mxH/Rxu90k639Phan3uJK/H/a+J1usrXfEePUW0KJ/5KN3+kmW/u9NU69JZX4/7LxO91ka79Lx6m3lBL/ZcD/kTPIXynx/w34/2eA/3+txH8F8P/PAf//Ron/H8D/vwD8/1sl/quA/5cH/P87Jf5rgP9XAPy/khL/v4D/VwT8v7IS/3XA/78E/L+KEv8NwP+Rc1xNlPhvAv5fF/D/pkr8twD/rwf4fzMl/tuA/9cH/L+5Ev8dwP8bAP7/vRL/XcD/GwL+30KJ/x7g/40A/2+pxH8f8P/GgP+3UuJ/APg/8ln4rkr8DwH//xnw/25K/CEJ3Hv6L4D/d1fipwTuPb0D4P89lPijJXDv6R0B/++pxB89gXtP7wT4fy8l/hgJ3Ht6Z8D/eyvxx0zg3tO7AP6PnoWiAG6ndut3EdZHmgj8eWd7fJbT4tog4Jrj8VlOi2ujgGuux2c5La5NAq55Hp/ltLh+E3DN9/gsp8W1WcC1wOOznBbX7wKuhR6f5bS4tgi4FnnsX9bvR88JuBZ77F8W13kB1xKP/cviuiDgWuqxf1lcfwi4lnnsXxbXRQHXco/9y+L6U8C1wmP/srguCbhWeuxfFtdfAq5VSmfRYyVw73nA3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNEqITS4P+z8VZ73ufbdx6hLr6LmHZZatA05sUsss2AddvCtllu4Brs0J22SHg+l0hu+wUcG1RyC67BFxbFbLLbgHXNoXsskfAtV0hu1wWcO1QyC5/C7h2KmSXKwKuXQrZ5R8B126F7HJVwLVHIbtcE3DtVcgu/wq49ilkl+sCrv1K2SU2kF2AvRcB+yEC9igE7BsIWMsJWF8JWPMIWIcIWBsI8GsCPJQAXyPAawjQPwGapP3C7BI7ktllr0DTxxWyyz4B1wmF7LJfwHVSIbscEHCdUsguBwVcpxWyyyEB1xmF7HJYwHVWIbscEXCdU8guNwRc5xWyy00B1wWF7HJLwPWHQna5LeC6qJBd7gi4/lTILncFXJcUsss9AddfCtnlvoDrslJ2eQ7ILsDei4D9EAF7FAL2DQSs5QSsrwSseQSsQwSsDQT4NQEeSoCvEeA1BOifAE3SZWF2eS6S2eWoQNM3FLLLMQHXTYXsclzAdUshu5wQcN1WyC4nBVx3FLLLKQHXXYXsclrAdU8hu5wRcN1XyC4PBFwPFLLLQwHXQ4XsYp1PQLlC3vM+u5CAi7zj+v/sEk3AFc0zrsfZJbqAK7pXXLbsEkPAFcMjLnt2iSngigly+R9odnkeyC7A3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNEqITe3Z5PsF/71N/0n3p1j9jhes4doLH+cf/vaxHaIhrDEjbz3rd9bYDepHv+6w34uMFfr+/yPUS18tcr3C9yhWHKy5XPK74XAm4EnIl4krMlYQrKVcyruRcKbhScqXiSm2tQ1xpuNImCO5FlS8kwF6HwEeou7agX1SZjrnTc2XgysiViSszVxaurAlCIhqa1Rx4YWR6w1gGw1hGw1gmw1hmw1gWw1jWBJG/qPKFBO43Melc9loXVaZ33RtCGdz2Mm9Gd72PLqrM5Ko37KLKzG56wy+qzOKi139RZVZAFMEU44tRVIzZmDs712tcr3O9wfUm11tcbweKMZtBFNkNY68Zxl43jL1hGHvTMPaWYeztIIjxRUCM2QAxZgfE+BogxtcBMb4BiPFNQIxvAWJ8+ymJ8aUoKsZ3mDsHV06uXFzvcr3H9T7XB4FifMcgihyGsZyGsVyGsXcNY+8Zxt43jH0QBDG+BIjxHUCMOQAx5gTEmAsQ47uAGN8DxPg+IMYPnpIYX46iYvyQuXNz5eHKy5XPitZc+bkKBIrxQ4MochvG8hjG8hrG8hnGfIax/IaxAkEQ48uAGD8ExJgbEGMeQIx5ATHmA8ToA8SYHxBjAaEo0LtXCrp/HujsLHpHgP+B8heyv6YO91HZz/M69S5R4i8c4T3x5Puo7GeMnXqXKvEXifiefuJ9VPPedd+7TIm/qI3f6T4q+1lsp97lSvzFbPxO91HZz4c79a5Q4i9u43e6j8p+Zt2pd6USfwkbv9N9VPZz9E69q5T4SwL+j5w/2qHEXwrw/98A/9+pxF8a8P/NgP/vUuIvA/j/74D/71biLwv4/xbA//co8ZcD/H8r4P97lfg/Avx/G+D/+5T4Pwb8fzvg//uV+D8B/B/5DPd5Jf5PAf8/Afj/BSX+zwD/Pwn4/x9K/J8D/n8K8P+LSvxfAP5/GvD/P5X4ywP+fwbw/0tK/BUA/z8L+P9fSvwVAf8/B/j/ZSX+LwH/Rz4H90CJ/yvA/28C/v9Qif9rwP9vAf4f8p4O/zeA/98G/J+U+L8F/P8O4P/RlPi/A/z/LuD/0ZX4KwH+fw/w/xhK/JUB/78P+D/y+U7rl3HW31Elw7+jgJ/H4UHxY7h/XvvzVUkQiSe0vhj9uqrAL6CkXFUTPB4Idfd1nk2G48EM2xdWi8xkWF+M/lXeasAuorrCxFU3vKGcnqs6+Bs39Ptbb6bqhtfW6Wmq/g+9ttaptIKC1zaph6eZrG6Lq5CAK5mXXBR2iq+wgCu5x6e/LK4iAq4UHp/+sriKCrhSenz6y+IqJuBK5fHpL4uruIArtcenvyyuEgKuUE99Iuz0ajoBVxqP/cviSi/gSuuxf1lcGQRc6RROr2YUcKVXOL2aScCVQeH0amYBV0aF06tZBFyZFE6vZhVwZVY6vVoD2BMCey8C9kME7FEI2DcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0SYhOLA36P7lqve99tnHrEerqu4Rll5ICTb+pkF1KCbjeUsgupQVcbytklzICrncUsktZAVcOhexSTsCVUyG7fCTgyqWQXT4WcL2rkF2yCbjeU8gu2QVc7ytkl9cEXB8oZJfXBVwfKmSXNwRcuRWyy5sCrjwK2eUtAVdehezytoArn1J2qQlkF2DvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCYpnzC71IxkdvlEoOmiCtnlUwFXMYXs8pmAq7hCdvlcwFVCIbt8IeAqqZBdygu4SilklwoCrtIK2aWigKuMQnZ5R8BVViG75BBwlVPILjkFXB8pZJdcAq6PFbLLuwKuTxSyy3sCrk8Vssv7Aq7PFLLLBwKuz5WySy0guwB7LwL2QwTsUQjYNxCwlhOwvhKw5hGwDhGwNhDg1wR4KAG+RoDXEKB/AjRJnwuzS61IZpcvBZr+RiG7fCXg+lYhu3wt4PpOIbt8I+CqpJBdvhVwVVbILt8JuKooZJdKAq6qCtmlsoCrmkJ2+VDyeWKF7JJbwFVDIbvkEXDVVMgueQVctRSySz4BV22F7OITcNVRyC75BVx1FbJLAQFXPaXsUhvILsDei4D9EAF7FAL2DQSs5QSsrwSseQSsQwSsDQT4NQEeSoCvEeA1BOifAE1SPWF2qW3LLv4HetvhGQLWZbe93HfOZa/1c5x31/vIfi646g1zqj/c9Iab2kUXvX7/+5OANSOBbG7rBGFuLwFz+xcwt5eBuf0bmNsrwNz+A8ztVWBurwFzW1c4t3WDMLf/AnN7HZjbG8Dc3gTm9hYwt7eBub0DzO1dYG7rCee2XhDm9h4wt/eBuX0AzO1DYG6tg5/OvWGtFM393EaL5n5uo0dzP7f1hXNbP8F//8JQjfB9cc0Ej/97on9t9vu4X/P+94f/e1mP0BDXGK6Zn/W6720H9CLf91lvxEcDfr835GrE1ZirCVdTrmZczbm+52rB1ZKrFdcPXK252nC15fqRqx3XT1ztuX7m+oWrA1dHrk4Jgnt1ewPwzHzgI9RdW9Cvbu/M3F24unJ14+rO1YOrJ1evBCERDc1qDrxCvYthrKthrJthrLthrIdhrKdhrFeCyF/dbp80p0Wgs8te6+r2Lq57Q6ir217m7eau99HV7d1d9YZd3d7DTW/41e09XfT6r27vBYgimGJsGEXF2Ju5+3D15erH1Z9rANdArkGBYuxtEEUfw1hfw1g/w1h/w9gAw9hAw9igIIixISDG3oAY+wBi7AuIsR8gxv6AGAcAYhwIiHHQUxJjoygqxsHMPYRrKNcwruFcI7hGco0KFONggyiGGMaGGsaGGcaGG8ZGGMZGGsZGBUGMjQAxDgbEOAQQ41BAjMMAMQ4HxDgCEONIQIyjnpIYG0dRMY5m7jFcY7nGcf3KNZ5rAtfEQDGONohijGFsrGFsnGHsV8PYeMPYBMPYxCCIsTEgxtGAGMcAYhwLiHEcIMZfATGOB8Q4ARDjRKEo0LvhkIv6JrlnIvv/QW9tnAw8D3J/Rhrh73JR/in219ThJlv7nR5OvWmV+KdGeE88+SZb+z0jTr3plPinRXxPP/Em2xTvue9Nr8Q/3cbvdJOt/T4Wp94MSvwzbPxON9na74hx6s2oxD/Txu90k6393hqn3kxK/LNs/E432drv0nHqzazEPxvwf+QM8ntK/HMA/38L8P/3lfjnAv7/NuD/HyjxzwP8/x3A/z9U4p8P+H8OwP9zK/EvAPw/J+D/eZT4FwL+nwvw/7xK/IsA/38X8P98SvyLAf9HznGVVeJfAvh/McD/yynxLwX8vzjg/x8p8S8D/L8E4P8fK/EvB/y/JOD/nyjxrwD8vxTg/58q8a8E/L804P+fKfGvAvy/DOD/nyvxrwb8H/ksfHUl/jWA/38L+H8NJf61gP9/B/h/TSX+dYD/VwL8v5YS/3rA/ysD/l9biX8D4P9VAP+vo8S/EfD/qoD/11Xi3wT4fzXA/9GzUBTA7dRu/S7C+kgTgT9vD4/PclpcXQRcPT0+y2lxdRVw9fL4LKfF1U3A1dvjs5wWV3cBVx+Pz3JaXD0EXH09PstpcfUUcPXz+CynxdVLwNXfY/+yfj86WcA1wGP/srimCLgGeuxfFtdUAdcgj/3L4pom4BrssX9ZXNMFXEM89i+La4aAa6jH/mVxzRRwDfPYvyyuWQKu4Upn0X8D8jew9yJgP0TAHoWAfQMBazkB6ysBax4B6xABawMBfk2AhxLgawR4DQH6J0CThOjE0qD/c3HW+95nG7ceoa6+S1h26S3Q9K8K2aWPgGu8QnbpK+CaoJBd+gm4Jipkl/4CrkkK2WWAgGuyQnYZKOCaopBdBgm4pipkl9kCrmkK2WWOgGu6QnaZK+CaoZBd5gm4Zipkl/kCrlkK2WWBgGu2QnZZKOCao5BdFgm45ipll81AdgH2XgTshwjYoxCwbyBgLSdgfSVgzSNgHSJgbSDArwnwUAJ8jQCvIUD/BGiS5gqzy+ZIZpfBAk0vVcguQwRcyxSyy1AB13KF7DJMwLVCIbsMF3CtVMguIwRcqxSyy0gB12qF7DJKwLVGIbssFnCtVcguSwRc6xSyy1IB13qF7LJMwLVBIbssF3BtVMguKwRcmxSyy0oB128K2WWVgGuzUnb5HcguwN6LgP0QAXsUAvYNBKzlBKyvBKx5BKxDBKwNBPg1AR5KgK8R4DUE6J8ATdJmYXb5PZLZZbRA07sUsssYAdduhewyVsC1RyG7jBNw7VXILr8KuPYpZJfxAq79CtllgoDrgEJ2mSjgOqiQXVYLuA4pZJc1Aq7DCtllrYDriEJ2WSfgOqqQXdYLuI4pZJcNAq7jCtllo4DrhEJ22STgOqmUXbYA2QXYexGwHyJgj0LAvoGAtZyA9ZWANY+AdYiAtYEAvybAQwnwNQK8hgD9E6BJOinMLlsS/Pc+9Sfdl27987fwf25O8Dj/+L+X9QgNcY0BaftZr7vedkAv8n2f9UZ8bOX3+zau7Vw7uHZy7eLazbWHay/XPq79XAe4DnId4jrMdYTrKNcxruNcJ7hOcp3iOs11hutsguBeVLk1AfY6BD5C3bUF/aLKc8x9nusC1x9cF7n+5LrE9VeCkIiGZjUHXhh53jB2wTD2h2HsomHsT8PYJcPYXwkif1GlfdKcNjHnXPZaF1Wed90bQhfc9jLvH+56H11UedFVb9hFlX+66Q2/qPKSi17/RZV/AaIIphi3RVExXmbuv7mucP3DdZXrGte/XNcDxXjZIIq/DWNXDGP/GMauGsauGcb+NYxdD4IYtwFivAyI8W9AjFcAMf4DiPEqIMZrgBj/BcR4/SmJcXsUFeMN5r7JdYvrNtcdrrtc97juB4rxhkEUNw1jtwxjtw1jdwxjdw1j9wxj94Mgxu2AGG8AYrwJiPEWIMbbgBjvAGK8C4jxHiDG+09JjDuiqBgfMPdDS3QJeZwrGld0rhhcMROGRBTAA4MoHhrGrG8WOEaGsWiGseiGsRiGsZgJIy/GHYAYHwBifAiI0XqtXPUyL7nrfSTGaK56w8QY3U1vuBhjuOj1izFmQpko0LtXYrl/Hujs7ID3dPhj219Th/uo7Od5nXoHKvE/F+E98eT7qOxnjJ16BynxPx/xPf3E+6h6v+e+d7AS/ws2fqf7qOxnsZ16hyjxv2jjd7qPyn4+3Kl3qBL/SzZ+p/uo7GfWnXqHKfG/bON3uo/Kfo7eqXe4Ev8rgP8j54+mKfG/Cvj/eMD/pyvxxwH8fwLg/zOU+OMC/j8R8P+ZSvzxAP+fBPj/LCX++ID/Twb8f7YSfwLA/6cA/j9HiT8h4P9TAf+fq8SfCPB/5DPca5X4EwP+vwzw/3VK/EkA/18O+P96Jf6kgP+vAPx/gxJ/MsD/VwL+v1GJPzng/6sA/9+kxJ8C8P/VgP//psSfEvD/NYD/b1biTwX4P/I5uENK/KkB/98N+P9hJf5QwP/3AP5/RIk/DeD/ewH/P6rEnxbw/32A/x9T4k8H+P9+wP+PK/GnB/z/AOD/J5T4MwD+fxDwf+TzndYv46y/o0qGf0cBP4/DgxLEcP+89ufLmDAST2h9Mfp1mRK6nyQpV6aEjwdC3X2dZ5Ph9DPany9zZCbD+mL0r/JmBnYRWRQmLovhDeX0XFnA37ih3996M2UxvLZOT5Ppf+i1tU6lxRK8ttcVTq/GFnDdUDi9+pyA66bC6dXnBVy3FE6vviDguq1wevVFAdcdhdOrLwm47iqcXn1ZwHXPU58IO716LgHOdV/h9Op5AdcDhdOrFwRcDxVOr/4h4Ap531v/mhR+WgHlIs+4wjonhZ+gQLmiecUV3jgp/FQHyhXdIy5/36TwkyYoVwyQy/9AT69mBfaEwN6LgP0QAXsUAvYNBKzlBKyvBKx5BKxDBKwNBPg1AR5KgK8R4DUE6J8ATRKiE0uD/k+uWu97n23ceoS6+i5h2eUVwZ7kJe/WjBB/dnlVwPWyl1zh2SWOgOsVD7n82SWugOtVj9d+iyuegCuOx2u/xRVfwBXX47Xf4kog4Irn8dpvcSUUcMX31CfCsstlwZ4kgcf+NSn8gCDKldBj/5oUfmgR5UrksX9NCj9IiXIlVsguVwVcSRSyyzUBV1KF7PKvgCuZQna5LuBKrpRdsgHZBdh7EbAfImCPQsC+gYC1nID1lYA1j4B1iIC1gQC/JsBDCfA1AryGAP0ToElKLswu2SKZXRIJ9iTpFLJLYgFXeoXskkTAlUEhuyQVcGVUyC7JBFyZFLJLcgFXZoXskkLyO2aF7JJSwJVVIbvcEOxJsilkl5sCruwK2eWWgOs1hexyW8D1ukJ2uSPgekMhu9wVcL2pkF3uCbjeUsgu9wVcbytll+xAdgH2XgTshwjYoxCwbyBgLSdgfSVgzSNgHSJgbSDArwnwUAJ8jQCvIUD/BGiS3hZml+yRzC6pBHuSDxSyS2oB14cK2SVUwJVbIbukEXDlUcguaQVceRWySzoBVz6F7JJewOVTyC4ZBFz5FbLLA8GepIBCdnko4CqokF1CBPNYSCG7kICrsEJ2iSbgKqKQXaILuIoqZJcYAq5iCtklpoCruFJ2eQ3ILsDei4D9EAF7FAL2DQSs5QSsrwSseQSsQwSsDQT4NQEeSoCvEeA1BOifAE1ScWF2ec2WXfwP9LbDGNHcr8sx3fYyXCyXvdbPEdtd7yP7ec5Vb5hTPe+mN9zUXnDR6/e/F6O596bXE8rm9vUgzO1LwNy+DMztK8DcvgrMbRxgbuMCcxsPmNv4wNy+IZzbN4IwtwmAuU0IzG0iYG4TA3ObBJjbpMDcJgPmNjkwt28K5/bNIMxtCmBuUwJzmwqY29TA3IYCc5sGmNu0wNymA+b2LeHcvpXwv39hKGv4vjhbwsf/PdG/Nvt93K95//vD/72sR2iIawzXzM963fe2A3qR7/usN+LjbX6/v8OVgysnVy6ud7ne43qf6wOuD7lyc+XhysuVz9IbV36uAlwFuQpxFeYqwlWUqxhXca4SCYN7dfvb4Jn5wEeou7agX91ekrlLcZXmKsNVlqsc10dcHycMiWhoVnPgFeqlDGOlDWNlDGNlDWPlDGMfGcY+Thj5q9vfBi4JKOmy17q6vZTr3hAq7baXecu46310dXtZV71hV7eXc9MbfnX7Ry56/Ve3fwyIIphifCeKivET5v6U6zOuz7m+4CrPVYGrYqAYPzGI4lPD2GeGsc8NY18YxsobxioYxioGQYzvAGL8BBDjp4AYPwPE+Dkgxi8AMZYHxFgBEGPFpyTGHFFUjF8y91dcX3N9w/Ut13dclbgqB4rxS4MovjKMfW0Y+8Yw9q1h7DvDWCXDWOUgiDEHIMYvATF+BYjxa0CM3wBi/BYQ43eAGCsBYqz8lMSYM4qKsQpzV+WqxlWdqwZXTa5aXLUDxVjFIIqqhrFqhrHqhrEahrGahrFahrHaQRBjTkCMVQAxVgXEWA0QY3VAjDUAMdYExFgLEGNtoSjQu+GQi/rquGci+/9Bb22sCzzPdW/ugojwQPnr2V9Th5tsbwC33j5Q4q8f4T3x5JtsbwK33j5U4m8Q8T39xJtsbwG33oa8r8Pf0MbvdJPtbeDWW1Lib2Tjd7rJ9g5w6200Jf7GNn6nm2zvArfeRlfib2Ljd7rJ9h5w620MJf6mgP8jZ5ATKPE3A/zffi7aqTehEn9zwP/tZ7WdehMp8X8P+P+r77vvTazE3wLwf/uZdqfeJEr8LQH/t5+zd+pNqsTfCvB/+9l/p95kSvw/AP5vv4/AqTe5En9rwP+Rc1zZlPjbAP6fHvD/7Er8bQH/zwD4/2tK/D8C/p8R8P/XlfjbAf6fCfD/N5T4fwL8PzPg/28q8bcH/D8L4P9vKfH/DPh/VsD/31bi/wXwf+Sz8AWU+DsA/v8h4P8Flfg7Av6fG/D/Qkr8nQD/zwP4f2El/s6A/+cF/L+IEn8XwP/zAf5fVIm/K+D/PsD/iynxdwP8Pz/g/+hZKArgdmq3fhdhfaSJwJ+3lsdnOS2uUgKu2h6f5bS4Sgu46nh8ltPiKiPgquvxWU6Lq6yAq57HZzktrnICrvoen+W0uD4ScDXw+CynxfWxgKuhx/5l/X60roCrkcf+ZXHVE3A19ti/LK76Aq4mHvuXxdVAwNXUY/+yuBoKuJp57F8WVyMBV3OP/cviaizg+t5j/7K4mgi4WiidRe8O5G9g70XAfoiAPQoB+wYC1nIC1lcC1jwC1iEC1gYC/JoADyXA1wjwGgL0T4AmCdGJpUH/5+Ks973PNm49Ql19l7Ds8olA0+0UssunAq6fFLLLZwKu9grZ5XMB188K2eULAdcvCtmlvICrg0J2qSDg6qiQXSoKuDopZJemAq7OCtmlmYCri0J2aS7g6qqQXb4XcHVTyC4tBFzdFbJLSwFXD4Xs0krA1VMhu/wg4OqllF16ANkF2HsRsB8iYI9CwL6BgLWcgPWVgDWPgHWIgLWBAL8mwEMJ8DUCvIYA/ROgSeolzC49IpldvhRoepBCdvlKwDVYIbt8LeAaopBdvhFwDVXILt8KuIYpZJfvBFzDFbJLJQHXCIXsUlnANVIhu7QWcI1SyC5tBFyjFbJLWwHXGIXs8qOAa6xCdmkn4BqnkF1+EnD9qpBd2gu4xitkl58FXBOUsktPILsAey8C9kME7FEI2DcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0SROE2aVnJLNLFYGmZyhkl6oCrpkK2aWagGuWQnapLuCarZBdagi45ihkl5oCrrkK2aWWgGueQnapLeCar5BdfhFwLVDILh0EXAsVsktHAdcihezSScC1WCG7dBZwLVHILl0EXEsVsktXAdcyhezSTcC1XCm79AKyC7D3ImA/RMAehYB9AwFrOQHrKwFrHgHrEAFrAwF+TYCHEuBrBHgNAfonQJO0XJhdeiX8733qT7ov3fpn9/B/9kj4OP/4v5f1CA1xjQFp+1mvu952QC/yfZ/1Rnz05vd7H66+XP24+nMN4BrINYhrMNcQrqFcw7iGc43gGsk1ims01xiusVzjuH7lGs81gWsi16SEwb2osndC7HUIfIS6awv6RZWTmXsK11SuaVzTuWZwzeSalTAkoqFZzYEXRk4xjE01jE0zjE03jM0wjM00jM1KGPmLKu2T5rSJmeyy17qocorr3hCa6raXeae56310UeV0V71hF1XOcNMbflHlTBe9/osqZwGiCKYY+0RRMc5m7jlcc7nmcc3nWsC1kGtRoBhnG0QxxzA21zA2zzA23zC2wDC20DC2KAhi7AOIcTYgxjmAGOcCYpwHiHE+IMYFgBgXAmJc9JTE2DeKinExcy/hWsq1jGs51wqulVyrAsW42CCKJYaxpYaxZYax5YaxFYaxlYaxVUEQY19AjIsBMS4BxLgUEOMyQIzLATGuAMS4EhDjqqckxn5RVIyrmXsN11qudVzruTZwbeTaFCjG1QZRrDGMrTWMrTOMrTeMbTCMbTSMbQqCGPsBYlwNiHENIMa1gBjXAWJcD4hxAyDGjYAYNwlFgd698pv754HOzjZ6X4d/s/01dbiPyn6e16m3sRL/7xHeE0++j8p+xtipt4kS/5aI7+kn3kdV9333vU2V+Lfa+J3uo7KfxXbqbabEv83G73Qflf18uFNvcyX+7TZ+p/uo7GfWnXq/V+LfYeN3uo/Kfo7eqbeFEv9OwP+R80edlfh3Af7/E+D/XZT4dwP+3x7w/65K/HsA//8Z8P9uSvx7Af//BfD/7kr8+wD/7wD4fw8l/v2A/3cE/L+nEv8BwP87Af7fS4n/IOD/yGe4RynxHwL8fzDg/6OV+A8D/j8E8P8xSvxHAP8fCvj/WCX+o4D/DwP8f5wS/zHA/4cD/v+rEv9xwP9HAP4/Xon/BOD/IwH/n6DEfxLwf+RzcAuU+E8B/j8T8P+FSvynAf+fBfj/IiX+M4D/zwb8f7ES/1nA/+cA/r9Eif8c4P9zAf9fqsR/HvD/eYD/L1PivwD4/3zA/5HPd1q/jLP+jioZ/h0F/DwOD0oYw/3z2p/vj4SReELri9Gvuwj8AkrKdTHh44FQd1/n2WQ4/Yz25/szMpNhfTH6V3n/BHYRlxQm7pLhDeX0XJfA37ih3996M10yvLZOT3Pxf+i1tU6l/SZ4bXcqnF7dLODapXB69XcB126F06tbBFx7FE6vbhVw7VU4vbpNwLVP4fTqdgHXfoXTqzsEXAc89Ymw06uTBVwHFU6vThFwHVI4vTpVwHVY4fTqNAHXEYXTq9MFXEcVTq/OEHAdUzi9OlPAdVzh9OosAdcJpdOrfwF7QmDvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCYJ0YmlQf8nV633vc82bj1CXX2XsOyyU6DpCwrZZZeA6w+F7LJbwHVRIbvsEXD9qZBd9kr+u4NCdtkn4PpLIbvsF3BdVsguBwRcfytkl9kCrisK2WWOgOsfhewyV8B1VSG7zBNwXVPILvMFXP8qZJcFAq7rCtlloYDrhkJ2WSTguqmUXS4D2QXYexGwHyJgj0LAvoGAtZyA9ZWANY+AdYiAtYEAvybAQwnwNQK8hgD9E6BJuinMLpcjmV0OCjT9UCG7HBJwhXzgfXY5LOAiD7n82eWIgCuad1z/n12OCriie8b1OLscE3DF8IrLll2OC7hiesRlzy4nBFyxvNRjeHZZLOCK7SlXWHZZIuB6zmP/sriWCrie99i/LK5lAq4XPPYvi2u5gOtFj/3L4loh4HrJY/+yuFYKuF722L8srlUCrldALv8DzS5/A9kF2HsRsB8iYI9CwL6BgLWcgPWVgDWPgHWIgLWBAL8mwEMJ8DUCvIYA/ROgSUJ0Ys8uf0cyu5wUaDqRx2u/xXVKwJVYIbucFnAlUcguZwRcSRWyy1kBVzKF7HJOwJVcIbucF3ClUMguFwRcKRWyy2oBVyqF7LJGwJVaIbusFXCFKmSXdQKuNArZZb2AK61Cdtkg4EqnkF02CrjSK2SXTQKuDErZ5QqQXYC9FwH7IQL2KATsGwhYywlYXwlY8whYhwhYGwjwawI8lABfI8BrCNA/AZqkDMLscsWWXfwP9LbD9NHcr8sZ3PYyXEaXvY/23+56H9lPZle9YU6VxU1vuKllddHr979s0dx70z8JZXP7TxDmNjswt68Bc/s6MLdvAHP7JjC3bwFz+zYwt+8Ac3tVOLdXgzC3OYC5zQnMbS5gbt8F5vY9YG7fB+b2A2BuPwTm9ppwbq8FYW5zA3ObB5jbvMDc5gPm1gfMbX5gbgsAc1sQmNt/hXP7b8L//oWhv8L3xZcTPv7vif612e/jfs373x/+72U9QkNcY7hmftbrvrcd0It832e9ER/X+f1+g+sm1y2u21x3uO5y3eO6z/WA66Gli0RWUAsJicYVnSsGV0yuWFyxuZ7jep7rBa4XuV7iejlRcK9uv54Qex0CH6Hu2oJ+dfsr/Dq8yhWHKy5XPK74XAm4EiYKiWhoVnPgFeqvGsbiGMbiGsbiGcbiG8YSGMYSJor81e32SXP8xWoid73W1e2vuu4NoThue5k3rrveR1e3x3PVG3Z1e3w3veFXtydw0eu/uj1hIveiCKYYb0RRMSbi1ysxVxKupFzJuJJzpeBKGSjGRAZRJDaMJTGMJTWMJTOMJTeMpTCMpQyCGG8AYkwEiDExIMYkgBiTAmJMBogxOSDGFIAYUz4lMd6MomJMxa9Xaus140rDlZYrHVd6rgyBYkxlEEVqw1ioYSyNYSytYSydYSy9YSxDEMR4ExBjKkCMqQExhgJiTAOIMS0gxnSAGNMDYszwlMR4K4qKMSO/Xpm4MnNl4crKlY0rO9drgWLMaBBFJsNYZsNYFsNYVsNYNsNYdsPYa0EQ4y1AjBkBMWYCxJgZEGMWQIxZATFmA8SYHRDja4AY7Q/0bjjkor7X3TOR/f+gtza+ATwPcn/GQeEZOpT/Tfs8O9xkuwu49faQEv9bEd6nT77Jdjdw6+1hJf63I+rsiTfZ7gFuvT2ixP+Ojd/pJtu9wK23R5X4c9j4nW6y3QfcentMiT+njd/pJtv9wK23x5X4c9n4nW6yPQDcentCif9dwP8veHOeNsID5X8P8P8/AP//R4n/fcD/LwL+f1WJ/wPA//8E/P+aEv+HgP9fAvz/XyX+3ID//wX4/3Ul/jyA/18G/P+GEn9ewP//Bvz/phJ/PsD/kXNcsT/Q4fcB/m8/W+bU+5wSf37A/+3n3Zx6n1fiLwD4f7QP3Pe+oMRfEPB/+7lAp94XlfgLAf5vP6vo1PuSEn9hwP/t5yedel9W4i8C+L/9TKdT7ytK/EUB/0/kzee6IzxQ/mKA/ycG/D+1En9xwP+TAP4fqsRfAvD/pID/p1HiLwn4fzLA/9Mq8ZcC/D854P/plPhLA/6fAvD/9Er8ZQD/Twn4P3oWigK4ndqt30VYH2ki8Oct7PFZTovrVQFXEY/PclpccQRcRT0+y2lxxRVwFfP4LKfFFU/AVdzjs5wWV3wBVwmPz3JaXAkEXCU9PstpcSUUcJXy2L+s34++IeAq7bF/WVxvCrjKeOxfFtdbAq6yHvuXxfW2gKucx/5lcb0j4PrIY/+yuHIIuD722L8srpwCrk889i+LK5eA61Ols+hlgfwN7L0I2A8RsEchYN9AwFpOwPpKwJpHwDpEwNpAgF8T4KEE+BoBXkOA/gnQJCE6sTTo/1yc9b732catR6ir7xKWXRIJNP2VQnZJLOD6WiG7JBFwfaOQXZIKuL5VyC7JBFzfKWSX5AKuSgrZJYWAq7JCdkkp4KqikF3eFXBVVcgu7wm4qilkl/cFXNUVsssHAq4aCtnlQwFXTYXsklvAVUshu+QRcNVWyC55BVx1lLJLOSC7AHsvAvZDBOxRCNg3ELCWE7C+ErDmEbAOEbA2EODXBHgoAb5GgNcQoH8CNEl1hNmlXCSzSyqBppsoZJfUAq6mCtklVMDVTCG7pBFwNVfILmkFXN8rZJd0Aq4WCtklvYCrpUJ2ySDgaqWQXfIJuH5QyC4+AVdrheySX8DVRiG7FBBwtVXILgUFXD8qZJdCAq52CtmlsIDrJ4XsUkTA1V4pu3wEZBdg70XAfoiAPQoB+wYC1nIC1lcC1jwC1iEC1gYC/JoADyXA1wjwGgL0T4Amqb0wu3wUyeySUaDprgrZJZOAq5tCdsks4OqukF2yCLh6KGSXrAKungrZJZuAq5dCdsku4OqtkF1eE3D1UcguRQVcfRWySzEBVz+F7FJcwNVfIbuUEHANUMguJQVcAxWySykB1yCF7FJawDVYIbuUEXANUcouHwPZBdh7EbAfImCPQsC+gYC1nID1lYA1j4B1iIC1gQC/JsBDCfA1AryGAP0ToEkaIswuHyf6733qT7ov3fpn2XAdl0v0OP/4v5f1CA1xjQFp+1mvu952QC/yfZ/1Rnx8wu/3T7k+4/qc6wuu8lwVuCpyfcn1FdfXXN9wfcv1HVclrspcVbiqclXjqs5Vg6smVy2u2lx1EgX3ospPEmGvQ+Aj1F1b0C+qrMvc9bjqczXgasjViKsxV5NEIRENzWoOvDCynmGsvmGsgWGsoWGskWGssWGsSaLIX1RpnzSnTUxdl73WRZX1XPeGUH23vczbwF3vo4sqG7rqDbuospGb3vCLKhu76PVfVNkEEEUwxfhpFBVjU+ZuxtWc63uuFlwtuVpx/RAoxqYGUTQzjDU3jH1vGGthGGtpGGtlGPshCGL8FBBjU0CMzQAxNgfE+D0gxhaAGFsCYmwFiPGHpyTGz6KoGFszdxuutlw/crXj+omrPdfPgWJsbRBFG8NYW8PYj4axdoaxnwxj7Q1jPwdBjJ8BYmwNiLENIMa2gBh/BMTYDhDjT4AY2wNi/PkpifHzKCrGX5i7A1dHrk5cnbm6cHXl6hYoxl8MouhgGOtoGOtkGOtsGOtiGOtqGOsWBDF+DojxF0CMHQAxdgTE2AkQY2dAjF0AMXYFxNhNKAr07pXu7p8HOjtb+gMd/h7219ThPir7eV6n3jJK/D0jvCeefB+V/YyxU29ZJf5eEd/TT7yPqtgH7nvLKfH3tvE73UdlP4vt1PuREn8fG7/TfVT28+FOvR8r8fe18TvdR2U/s+7U+4kSfz8bv9N9VPZz9E69nyrx9wf8Hzl/VFWJfwDg/18D/l9NiX8g4P/fAP5fXYl/EOD/3wL+X0OJfzDg/98B/l9TiX8I4P+VAP+vpcQ/FPD/yoD/11biHwb4fxXA/+so8Q8H/B/5DPcPSvwjAP9vCvh/ayX+kYD/NwP8v40S/yjA/5sD/t9WiX804P/fA/7/oxL/GMD/WwD+306Jfyzg/y0B//9JiX8c4P+tAP9vr8T/K+D/yOfg+irxjwf8vxvg//2U+CcA/t8d8P/+SvwTAf/vAfj/ACX+SYD/9wT8f6AS/2TA/3sB/j9IiX8K4P+9Af8frMQ/FfD/PoD/I5/vtH4ZZ/0dVTL8Owr4eRwelCiG++e1P9+0RJF4QuuL0a+bDvwCSso1PdHjgVB3X+fZZDj9jPbnmxGZybC+GP2rvDOAXcRMhYmbaXhDOT3XTPA3buj3t95MMw2vrdPTTP8fem2tU2ndBa/tdIXTqz0EXDMUTq/2lLwXFU6v9hJwzVI4vdpbwDVb4fRqHwHXHIXTq30FXHMVTq/2E3DN89Qnwk6v1hVwzVc4vVpPwLVA4fRqfQHXQoXTqw0EXIsUTq82FHAtVji92kjAtUTh9GpjAddShdOrTQRcy5ROr84C9oTA3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNEqITS4P+T65a73ufbdx6hLr6LmHZpb9A0+sUsssAAdd6hewyUMC1QSG7DBJwbVTILoMFXJsUsssQAddvCtllqIBrs0J2GSbg+l0huzQVcG1RyC7NBFxbFbJLcwHXNoXs8r2Aa7tCdmkh4NqhkF1aCrh2KmSXVgKuXQrZ5QcB126l7DIbyC7A3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBN0m5hdpkdyewyXKDpwwrZZYSA64hCdhkp4DqqkF1GCbiOKWSX0QKu4wrZZYyA64RCdhkr4DqpkF3GCbhOKWSX1gKu0wrZpY2A64xCdmkr4DqrkF1+FHCdU8gu7QRc5xWyy08CrgsK2aW9gOsPhezys4DrolJ2mQNkF2DvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCbpojC7zIlkdvlVoOmrCtllvIDrmkJ2mSDg+lchu0wUcF1XyC6TBFw3FLLLZAHXTYXsMkXAdUshu0wVcN1WyC6/CLjuKGSXDgKuuwrZpaOA655Cdukk4LqvkF06C7geKGSXLgKuhwrZpauAK+RD77NLNwEXgVz+B5pd5gLZBdh7EbAfImCPQsC+gYC1nID1lYA1j4B1iIC1gQC/JsBDCfA1AryGAP0ToElCdGLPLnNt2cX/QG87LBTN/bpc2G0vwxVx2Wv9HEXd9T6yn2KuesOcqrib3nBTK+Gi1+9/JaO596Z5iWRzOy8Ic1sKmNvSwNyWAea2LDC35YC5/QiY24+Buf0EmNv5wrmdH4S5/RSY28+Auf0cmNsvgLktD8xtBWBuKwJz+yUwtwuEc7sgCHP7FTC3XwNz+w0wt98Cc/sdMLeVgLmtDMxtFWBuFwrndmGi//6FoVnh++LZiR7/90T/2uz3cb/m/e8P//eyHqEhrjFcMz/rdd/bDuhFvu+z3oiPRfx+X8y1hGsp1zKu5VwruFZyreJazbWGay3XOq71XBu4NnJt4vqNazPX71xbuLZybePazrUjUXCvbl+UCHsdAh+h7tqCfnX7TubexbWbaw/XXq59XPu5DiQKiWhoVnPgFeq7DGO7DWN7DGN7DWP7DGP7DWMHEkX+6nb7pDl+iNZlr3V1+y7XvSG0220v8+5x1/vo6va9rnrDrm7f56Y3/Or2/S56/Ve3HwBEEUwxLo6iYjzI3Ie4DnMd4TrKdYzrONeJQDEeNIjikGHssGHsiGHsqGHsmGHsuGHsRBDEuBgQ40FAjIcAMR4GxHgEEONRQIzHADEeB8R44imJcUkUFeNJ5j7FdZrrDNdZrnNc57kuBIrxpEEUpwxjpw1jZwxjZw1j5wxj5w1jF4IgxiWAGE8CYjwFiPE0IMYzgBjPAmI8B4jxPCDGC09JjEujqBj/YO6LXH9yXeL6i+sy199cVwLF+IdBFBcNY38axi4Zxv4yjF02jP1tGLsSBDEuBcT4ByDGi4AY/wTEeAkQ41+AGC8DYvwbEOMVoSjQu+GQi/r+cc9E9v+D3tp4FXge5P4M9J4g/wPlv2Z/TR1usrXf6eHUu0CJ/98I74kn32Rrv2fEqXehEv/1iO/pJ95kO+sD972LlPhv2PidbrK138fi1LtYif+mjd/pJlv7HTFOvUuU+G/Z+J1usrXfW+PUu1SJ/7aN3+kmW/tdOk69y5T47wD+j5xB3qLEfxfw//WA/29V4r8H+P8GwP+3KfHfB/x/I+D/25X4HwD+vwnw/x1K/A8B//8N8P+dSvwhid17+mbA/3cp8VNi957+O+D/u5X4oyV27+nIOa7TSvzRE7v39COA/59R4o+R2L2nHwX8/6wSf8zE7j39GOD/55T4YyV27+nHAf8/r8QfO7F7Tz8B+P8FJf7nAP8/Cfj/H0r8zwP+fwrw/4tK/C8A/o98Fv6OEv+LgP9fA/z/rhL/S4D//wv4/z0l/pcB/78O+P99Jf5XAP+/Afj/AyX+VwH/vwn4/0Ml/jiA/98C/D/kQx3+uID/3wb8nzw6o+Vvt34XYX2kicCfN42nXPTodyS7BFxpveSisN/d7BZwpfOQy+qdHv65PZQrvXdcj1qnh3+WEOXK4BlXWOf08M83olwZveIKb5we/plLlCuTx2c5p4d/DhTlyuyxf1m/H70q4MrisX9ZXNcEXFk99i+L618BVzaP/cviui7gyu6xf1lcNwRcr3nsXxbXTQHX6x77l8V1S8D1hsf+ZXHdFnC9qXQWPR6Qv4G9FwH7IQL2KATsGwhYywlYXwlY8whYhwhYGwjwawI8lABfI8BrCNA/AZokRCeWBv2fi7Pe9z7buPUIdfVdwrLLQYGm31PILocEXO8rZJfDAq4PFLLLEQHXhwrZ5aiAK7dCdjkm4MqjkF2OC7jyKmSXEwKufArZ5Y6Ay6eQXe4KuPIrZJd7Aq4CCtnlvoCroEJ2eSDgKqSQXR4KuAorZBfrcygoVxGF7EICrqJK2SU+kF2AvRcB+yEC9igE7BsIWMsJWF8JWPMIWIcIWBsI8GsCPJQAXyPAawjQPwGapKLC7BI/ktnlpMADyypkl1MCrnIK2eW0gOsjhexyRsD1sUJ2OSvg+kQhu5wTcH2qkF3OC7g+U8guFwRcnytkl2iCPckXCtkluoCrvEJ2iSHgqqCQXWIKuCoqZJdYAq4vFbJLbAHXVwrZ5TkB19cK2eV5Adc3StklAZBdgL0XAfshAvYoBOwbCFjLCVhfCVjzCFiHCFgbCPBrAjyUAF8jwGsI0D8BmqRvhNklQSSzyx+CPUl1hexyUcBVQyG7/CngqqmQXS4JuGopZJe/BFy1FbLLZQFXHYXs8reAq65Cdrki4KqnkF1eEOxJ6itklxcFXA0UsstLAq6GCtnlZQFXI4Xs8oqAq7FCdnlVwNVEIbvEEXA1VcgucQVczZSyS0IguwB7LwL2QwTsUQjYNxCwlhOwvhKw5hGwDhGwNhDg1wR4KAG+RoDXEKB/AjRJzYTZJWHi/96n/qT70q1/xgvXcfzEj/OP/3tZj9AQ1xiQtp/1uuttB/Qi3/dZb8RHIn6/J+ZKwpWUKxlXcq4UXCm5UnGlttYVrjRcabnScaXnysCVkSsTV2auLFxZubJxZed6jev1xMG9qDJRYux1CHyEumsL+kWVbzD3m1xvcb3N9Q5XDq6cXLkSh0Q0NKs58MLINw1jbxnG3jaMvWMYy2EYy2kYy5U48hdVJkrsfhPzhste66LKN133htBbbnuZ9213vY8uqnzHVW/YRZU53PSGX1SZ00Wv/6LKXIAoginGxFFUjO8y93tc73N9wPUhV26uPFx5A8X4rkEU7xnG3jeMfWAY+9AwltswlscwljcIYkwMiPFdQIzvAWJ8HxDjB4AYPwTEmBsQYx5AjHmfkhiTRFEx5rN271z5uQpwFeQqxFWYq0igGPMZROEzjOU3jBUwjBU0jBUyjBU2jBUJghiTAGLMB4jRB4gxPyDGAoAYCwJiLASIsTAgxiJPSYxJo6gYizJ3Ma7iXCW4SnKV4irNVSZQjEUNoihmGCtuGCthGCtpGCtlGCttGCsTBDEmBcRYFBBjMUCMxQExlgDEWBIQYylAjKUBMZYRigK9e6Ws++eBzs5m+VCHv5z9NXW4j8p+ntepN6sS/0cR3hNPvo/KfsbYqTebEv/HEd/TT7yPKv2H7nuzK/F/YuN3uo/Kfhbbqfc1Jf5PbfxO91HZz4c79b6uxP+Zjd/pPir7mXWn3jeU+D+38TvdR2U/R+/U+6YS/xeA/yPnj3xK/OUB/38f8P/8SvwVAP//APD/Akr8FQH//xDw/4JK/F8C/p8b8P9CSvxfAf6fB/D/wkr8XwP+nxfw/yJK/N8A/p8P8P+iSvzfAv6PfIb7CyX+7wD/Lwf4f3kl/kqA/38E+H8FJf7KgP9/DPh/RSX+KoD/fwL4/5dK/FUB//8U8P+vlPirAf7/GeD/XyvxVwf8/3PA/79R4q8B+D/yObj6Svw1Af+vAfh/AyX+WoD/1wT8v6ESf23A/2sB/t9Iib8O4P+1Af9vrMRfF/D/OoD/N1Hirwf4f13A/5sq8dcH/L8e4P/I5zutX8ZZf0eVDP+OAn4ehwcljuH+ee3P1yBxJJ7Q+mL06xoCv4CScjVM/Hgg1N3XeTYZTj+j/fkaRWYyrC9G/ypvI2AX0Vhh4hob3lCOJ0jA37ih3996MzU2vLZOT9Pwf+i1tU6llRW8tl0UTq+WE3B1VTi9+pGAq5vC6dWPBVzdFU6vfiLg6qFwevVTAVdPhdOrnwm4eimcXv1cwNXbU58IO736hoCrj8Lp1TcFXH0VTq++JeDqp3B69W0BV3+F06vvCLgGKJxezSHgGqhwejWngGuQwunVXAKuwUqnV5sAe0Jg70XAfoiAPQoB+wYC1nIC1lcC1jwC1iEC1gYC/JoADyXA1wjwGgL0T4AmCdGJpUH/J1et973PNm49Ql19l7Ds8oVA06MVskt5AdcYhexSQcA1ViG7VBRwjVPILl8KuH5VyC5fCbjGK2SXrwVcExSyyzcCrokK2eVdAdckhezynoBrskJ2eV/ANUUhu3wg4JqqkF0+FHBNU8guuQVc0xWySx4B1wyF7JJXwDVTKbs0BbILsPciYD9EwB6FgH0DAWs5AesrAWseAesQAWsDAX5NgIcS4GsEeA0B+idAkzRTmF2aRjK7fCvQ9EKF7PKdgGuRQnapJOBarJBdKgu4lihklyoCrqUK2aWqgGuZQnapJuBarpBdqgu4Vihkl3wCrpUK2cUn4FqlkF3yC7hWK2SXAgKuNQrZpaCAa61Cdikk4FqnkF0KC7jWK2SXIgKuDUrZpRmQXYC9FwH7IQL2KATsGwhYywlYXwlY8whYhwhYGwjwawI8lABfI8BrCNA/AZqkDcLs0iyS2aWGQNPbFLJLTQHXdoXsUkvAtUMhu9QWcO1UyC51BFy7FLJLXQHXboXsUk/AtUchu9QXcO1VyC5FBVz7FLJLMQHXfoXsUlzAdUAhu5QQcB1UyC4lBVyHFLJLKQHXYYXsUlrAdUQhu5QRcB1Vyi7NgewC7L0I2A8RsEchYN9AwFpOwPpKwJpHwDpEwNpAgF8T4KEE+BoBXkOA/gnQJB0VZpfmtuzif6C3HVaN5n5drua2l+Gqu+y1fo4a7nof2U9NV71hTlXLTW+4qdV20ev3vzrR3HvT94llc/t9EOa2LjC39YC5rQ/MbQNgbhsCc9sImNvGwNw2Aea2hXBuWwRhbpsCc9sMmNvmwNx+D8xtC2BuWwJz2wqY2x+AuW0pnNuWQZjb1sDctgHmti0wtz8Cc9sOmNufgLltD8ztz8DcthLObavE//0LQ03C98VNEz/+74n+tdnv437N+98f/u9lPUJDXGO4Zn7W6763HdCLfN9nvREfP/D7vTVXG662XD9yteP6ias9189cv3B14OrI1YmrM1cXrq5c3bi6c/Xg6snVi6s3Vx+uvlz9Egf36vYfwDPzgY9Qd21Bv7q9P3MP4BrINYhrMNcQrqFcwxKHRDQ0qznwCvUBhrGBhrFBhrHBhrEhhrGhhrFhiSN/dbt90hwPTLrsta5uH+C6N4QGuu1l3kHueh9d3T7YVW/Y1e1D3PSGX90+1EWv/+r2YYAoginG1lFUjMOZewTXSK5RXKO5xnCN5RoXKMbhBlGMMIyNNIyNMoyNNoyNMYyNNYyNC4IYWwNiHA6IcQQgxpGAGEcBYhwNiHEMIMaxgBjHPSUxtomiYvyVucdzTeCayDWJazLXFK6pgWL81SCK8YaxCYaxiYaxSYaxyYaxKYaxqUEQYxtAjL8CYhwPiHECIMaJgBgnAWKcDIhxCiDGqU9JjG2jqBinMfd0rhlcM7lmcc3mmsM1N1CM0wyimG4Ym2EYm2kYm2UYm20Ym2MYmxsEMbYFxDgNEON0QIwzADHOBMQ4CxDjbECMcwAxzhWKAr0bDrmob557JrL/H/TWxvnA8yD3Z/QR/i4X5V9gf00dbrK13+nh1NtXiX9hhPfEk2+ytd8z4tTbT4l/UcT39BNvsu3+ofve/kr8i238TjfZ2u9jceodoMS/xMbvdJOt/Y4Yp96BSvxLbfxON9na761x6h2kxL/Mxu90k639Lh2n3sFK/MsB/0fOIE9S4l8B+P8YwP8nK/GvBPx/LOD/U5T4VwH+Pw7w/6lK/KsB//8V8P9pSvxrAP8fD/j/dCX+tYD/TwD8f4YS/zrA/ycC/j9TiX894P/IOa6VSvwbAP9fBPj/KiX+jYD/Lwb8f7US/ybA/5cA/r9Gif83wP+XAv6/Vol/M+D/ywD/X6fE/zvg/8sB/1+vxL8F8P8VgP9vUOLfCvg/8ln4fUr82wD/3w74/34l/u2A/+8A/P+AEv8OwP93Av5/UIl/J+D/uwD/P6TEvwvw/92A/x9W4t8N+P8ewP+PKPHvAfx/L+D/6FkoCuB2ard+F2F9pInAn/e+x2c5La4BAq4HHp/ltLgGCrgeenyW0+IaJOAKye0Z16NWi2uwgIs84wrrtLiGCLiiecUV3mhxDRVwRfeIy99ncQ0TcMXw7v31qN36/eh8AVdMT7no0e9tFwi4YnnJRWG/T14o4IrtIZfVa3EtEnA957F/WVyLBVzPe+xfFtcSAdcLHvuXxbVUwPWix/5lcS0TcL0Ecvkf6Fn0vUD+BvZeBOyHCNijELBvIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJIQnVga9H8uznrf+2zj1iPU1XcJyy7DBZpO4PHab3GNEHAl9Hjtt7hGCrgSebz2W1yjBFyJFbLLaAFXEoXsMkbAlVQhu4wVcCVTyC7jBFzJFbLLcgFXCoXsskLAlVIhu6wUcKVSyC6rBFypFbLLagFXqEJ2WSPgSqOQXdYKuNIqZJd1Aq50StllH5BdgL0XAfshAvYoBOwbCFjLCVhfCVjzCFiHCFgbCPBrAjyUAF8jwGsI0D8BmqR0wuyyL5LZ5VeBprMpZJfxAq7sCtllgoDrNYXsMlHA9bpCdpkk4HpDIbtMFnC9qZBdpgi43lLILlMFXG8rZJf1Aq53FLLLBgFXDoXsslHAlVMhu2wScOVSyC6/CbjeVcgumwVc7ylkl98FXO8rZJctAq4PlLLLfiC7AHsvAvZDBOxRCNg3ELCWE7C+ErDmEbAOEbA2EODXBHgoAb5GgNcQoH8CNEkfCLPL/khml2kCTRdQyC7TBVwFFbLLDAFXIYXsMlPAVVghu8wScBVRyC6zBVxFFbLLHAFXMYXsMlfAVVwhu2wVcJVQyC7bBFwlFbLLdgFXKYXsskPAVVohu+wUcJVRyC67BFxlFbLLbgFXOYXsskfA9ZFSdjkAZBdg70XAfoiAPQoB+wYC1nIC1lcC1jwC1iEC1gYC/JoADyXA1wjwGgL0T4Am6SNhdjmQ+L/3qT/pvnTrn3vD/7kv8eP84/9e1iM0xDUGpO1nve562wG9yPd91hvxcZDf74e4DnMd4TrKdYzrONcJrpNcp7hOc53hOst1jus81wWuP7gucv3JdYnrL67LXH9zXeH6J3FwL6o8mBh7HQIfoe7agn5R5VXmvsb1L9d1rhtcN7lucd1OHBLR0KzmwAsjrxnG/jWMXTeM3TCM3TSM3TKM3U4c+Ysq7ZPmtIm56rLXuqjymuveEPrXbS/zXnfX++iiyhuuesMuqrzppjf8ospbLnr9F1XeBkQRTDEeiqJivMPcd7nucd3nesD10BJhEu5LEhJRAHcMorhrGLtnGLtvGHtgGHtoGLNgAscoSeTFeAgQ4x1AjHcBMd4DxHgfEOMDQIwPATFac+HU6xcjJXk6YjwcRcUYjV+v6FwxuGJyxeKKbb3PuZ4PFGM0gyiiG8ZiGMZiGsZiGcZiG8aeM4w9HwQxHgbEGC1JiEuBPaTorntDKIbbXuaN6a73kRhjueoNE2NsN73hYnwOEOPzT0mMR6KoGF/g1+tFrpe4XuZ6hetVrjhccQPF+IJBFC8axl4yjL1sGHvFMPaqYSyOYSxuEMR4BBDjC4AYXwTE+BIgxpcBMb4CiPFVQIxxADHGBcRof6B3r8Rz/zzQ2dmYuXX449tfU4f7qB4Ad1fFUuJPEOE98eT7qB4Cd1fFVuJPGPE9/cT7qOznnp16n1PiT2Tjd7qPyn4W26n3eSX+xDZ+p/uo7OfDnXpfUOJPYuN3uo/KfmbdqfdFJf6kNn6n+6js5+idel9S4k8G+D9y/iiFEn9ywP/tZ6KcelMq8acA/D9Rbve9qZT4UwL+nxjw/9RK/KkA/08C+H+oEn9qwP+TAv6fRok/FPD/ZID/p1XiTwP4f3LA/9Mp8acF/B/5DPc7SvzpAP/PDvh/DiX+9ID/vwb4f04l/gyA/78O+H8uJf6MgP+/Afj/u0r8mQD/fxPw//eU+DMD/v8W4P/vK/FnAfz/bcD/P1Dizwr4P/I5uBJK/NkA/y8I+H9JJf7sgP8XAvy/lBL/a4D/Fwb8v7QS/+uA/xcB/L+MEv8bgP8XBfy/rBL/m4D/FwP8v5wS/1uA/xcH/B/5fKf1yzjr76iS4d9RwM/j8KAkMdw/r/353k4SiSe0vhj9uneSuJ8kKdc7SR4PhLr7Os8mw+lntD9fjshMhvXF6F/lzQHsInIqTFxOwxvK8bYA8Ddu6Pe33kw5Da+t09O88z/02lqn0uIJXttqCqdX4wu4qiucXk0g4KqhcHo1oYCrpsLp1UQCrloKp1cTC7hqK5xeTSLgqqNwejWpgKuupz4Rdnr1quBUWj2F06vXBFz1FU6v/ivgaqBwevW6gKuhwunVGwKuRgqnV28KuBornF69JeBqonB69baAq6nS6dVcwJ4Q2HsRsB8iYI9CwL6BgLWcgPWVgDWPgHWIgLWBAL8mwEMJ8DUCvIYA/ROgSUJ0YmnQ/8lV633vs41bj1BX3yUsuyQT7ElaK2SX5AKuNgrZJYWAq61Cdkkp4PpRIbukEnC1U8guqQVcPylkl1ABV3uF7JJGwPWzQna5I9iT/KKQXe4KuDooZJd7Aq6OCtnlvoCrk0J2eSDg6qyQXR4KuLooZJcQgU90VcguJODqppRd3gWyC7D3ImA/RMAehYB9AwFrOQHrKwFrHgHrEAFrAwF+TYCHEuBrBHgNAfonQJPUTZhd3o1kdkkr0HQ/heySTsDVXyG7pBdwDVDILhkEXAMVsktGAdcgheySScA1WCG7ZBZwDVHILlkEXEMVsks0AdcwhewSXcA1XCG7xBBwjVDILjEFXCMVskssAdcohewSW8A1WiG7PCfgGqOQXZ4XcI1Vyi7vAdkF2HsRsB8iYI9CwL6BgLWcgPWVgDWPgHWIgLWBAL8mwEMJ8DUCvIYA/ROgSRorzC7vRTK7ZBVoeopCdskm4JqqkF2yC7imKWSX1wRc0xWyy+sCrhkK2eUNAddMhezypoBrlkJ2eUvANVshu7wg4JqjkF1eFHDNVcguLwm45ilkl5cFXPMVsssrAq4FCtnlVQHXQoXsEkfAtUghu8QVcC1Wyi7vA9kF2HsRsB8iYI9CwL6BgLWcgPWVgDWPgHWIgLWBAL8mwEMJ8DUCvIYA/ROgSVoszC7v27KL/4HedvhLNPfrcge3vQzX0WWv9XN0ctf7yH46u+oNc6oubnrDTa2ri16//3WL5t6bPkgim9sPgjC33YG57QHMbU9gbnsBc9sbmNs+wNz2Bea2HzC3Hwrn9sMgzG1/YG4HAHM7EJjbQcDcDgbmdggwt0OBuR0GzG1u4dzmDsLcDgfmdgQwtyOBuR0FzO1oYG7HAHM7FpjbccDc5hHObZ4k//0LQ7nC98XvJnn83xP9a7Pfx/2a978//N/LeoSGuMZwzfys131vO6AX+b7PeiM+8vL7PZ+lH678XAW4CnIV4irMVYSrKFcxruJcJbhKcpXiKs1VhqssVzmuj7g+5vqE61Ouz7g+TxLcq9vzgmfmAx+h7tqCfnX7F8xdnqsCV0WuL7m+4vqa65skIRENzWoOvEK9vGGsgmGsomHsS8PYV4axrw1j3ySJ/NXteYFLAr5w2Wtd3V7edW8IVXDby7wV3fU+urr9S1e9YVe3f+WmN/zq9q9d9Pqvbv8GEEUwxZgviorxW+b+jqsSV2WuKlxVuapxVQ8U47cGUXxnGKtkGKtsGKtiGKtqGKtmGKseBDHmA8T4LSDG7wAxVgLEWBkQYxVAjFUBMVYDxFj9KYnRF0XFWIO5a3LV4qrNVYerLlc9rvqBYqxhEEVNw1gtw1htw1gdw1hdw1g9w1j9IIjRB4ixBiDGmoAYawFirA2IsQ4gxrqAGOsBYqz/lMSYP4qKsQFzN+RqxNWYqwlXU65mXM0DxdjAIIqGhrFGhrHGhrEmhrGmhrFmhrHmQRBjfkCMDQAxNgTE2AgQY2NAjE0AMTYFxNgMEGNzoSjQu+GQi/q+d89E9v+D3trYAnge5P6MesLf5aL8Le2vqcNNtvY7PZx66yvxt4rwnnjyTbb2e0acehso8f8Q8T39xJtsa+Z239tQib+1jd/pJlv7fSxOvY2U+NvY+J1usrXfEePU21iJv62N3+kmW/u9NU69TZT4f7TxO91ka79Lx6m3qRJ/O8D/kTPIvyjx/wT4fxvA/zso8bcH/L8t4P8dlfh/Bvz/R8D/Oynx/wL4fzvA/zsr8XcA/P8nwP+7KPF3BPy/PeD/XZX4OwH+/zPg/92U+DsD/o+c4xqmxN8F8P/+gP8PV+LvCvj/AMD/RyjxdwP8fyDg/yOV+LsD/j8I8P9RSvw9AP8fDPj/aCX+noD/DwH8f4wSfy/A/4cC/j9Wib834P/IZ+HnKPH3Afx/KuD/c5X4+wL+Pw3w/3lK/P0A/58O+P98Jf7+gP/PAPx/gRL/AMD/ZwL+v1CJfyDg/7MA/1+kxD8I8P/ZgP+jZ6EogNup3fpdhPWRJgJ/3oMen+W0uMoLuA55fJbT4qog4Drs8VlOi6uigOuIx2c5La4vBVxHPT7LaXF9JeA65vFZTovrawHXcY/Pclpc3wi4TnjsX9bvR1sIuE567F8WV0sB1ymP/cviaiXgOu2xf1lcPwi4znjsXxZXawHXWY/9y+JqI+A657F/WVxtBVznPfYvi+tHAdcFpbPog4H8Dey9CNgPEbBHIWDfQMBaTsD6SsCaR8A6RMDaQIBfE+ChBPgaAV5DgP4J0CQhOrE06P9cnPW+99nGrUeoq+8Sll2+FWj6ikJ2+U7A9Y9Cdqkk4LqqkF0qC7iuKWSXKgKufxWyS1UB13WF7FJNwHVDIbtUF3DdVMgu7QRctxSyy08CrtsK2aW9gOuOQnb5WcB1VyG7/CLguqeQXToIuO4rZJeOAq4HCtmlk4DroVJ2GQJkF2DvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCbpoTC7DIlkdqkh0HTsPN6u/RZXTQHXc15yhWeXWgKu5z3k8meX2gKuF7zj+v/sUkfA9aJnXI+zS10B10tecdmySz0B18secdmzS30B1yue+kRYduks4HrVY/+yuLoIuOJ47F8WV1cBV1yP/cvi6ibgiuexf1lc3QVc8T32L4urh4Argcf+ZXH1FHAl9Ni/LK5eAq5EIJf/gWaXoUB2AfZeBOyHCNijELBvIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJIQndizy9BIZpcGAk2nUsguDQVcqRWySyMBV6hCdmks4EqjkF2aCLjSKmSXpgKudArZpZmAK71Cdmku4MqgkF16C7gyKmSXPgKuTArZpa+AK7NCdukn4MqikF36C7iyKmSXAQKubArZZaCAK7tCdhkk4HpNKbsMA7ILsPciYD9EwB6FgH0DAWs5AesrAWseAesQAWsDAX5NgIcS4GsEeA0B+idAk/SaMLsMS/Lf+9SfdF+69c/B4f8ckuRx/vF/L+sRGuIaA9L2s153ve2AXuT7PuuN+BjO7/cRXCO5RnGN5hrDNZZrHNevXOO5JnBN5JrENZlrCtdUrmlc07lmcM3kmsU1m2sO11yueUmCe1Hl8CTY6xD4CHXXFvSLKucz9wKuhVyLuBZzLeFayrUsSUhEQ7OaAy+MXGAYW2gYW2QYW2wYW2IYW2oYW5Yk8hdV2ifNaRMz32WvdVHlAte9IbTQbS/zLnLX++iiysWuesMuqlzipjf8osqlLnr9F1UuA0QRTDGOiKJiXM7cK7hWcq3iWs21hmst17pAMS43iGKFYWylYWyVYWy1YWyNYWytYWxdEMQ4AhDjckCMKwAxrgTEuAoQ42pAjGsAMa4FxLjuKYlxZBQV43rm3sC1kWsT129cm7l+59oSKMb1BlFsMIxtNIxtMoz9ZhjbbBj73TC2JQhiHAmIcT0gxg2AGDcCYtwEiPE3QIybATH+Dohxy1MS46goKsatzL2NazvXDq6dXLu4dnPtCRTjVoMothnGthvGdhjGdhrGdhnGdhvG9gRBjKMAMW4FxLgNEON2QIw7ADHuBMS4CxDjbkCMe4SiQO9e2ev+eaCzsydz6/Dvs7+mDvdRHQLurjqlxL8/wnviyfdRHQburjqtxH8g4nv6ifdRHQHurjqjxH/Qxu90H9VR4O6qs0r8h2z8TvdRHQPurjqnxH/Yxu90H9Vx4O6q80r8R2z8TvdRnQDurrqgxH8U8P8r3pylifBA+Y8B/v8P4P+3lfiPA/5/FfD/O0r8JwD/vwb4/10l/pOA//8L+P89Jf5TgP9fB/z/vhL/acD/bwD+/0CJ/wzg/zcB/3+oxH8W8H/kM9yv5tHhPwf4v/1z5U69cZT4zwP+b/+su1NvXCX+C4D/v5DHfW88Jf4/AP+3nwlw6o2vxH8R8H/7OQWn3gRK/H8C/m8/O+HUm1CJ/xLg//bzHE69iZT4/wL8P5U3n+mK8ED5LwP+nxrw/0xK/H8D/h8K+H9mJf4rgP+nAfw/ixL/P4D/pwX8P6sS/1XA/9MB/p9Nif8a4P/pAf/PrsT/L+D/GQD/Rz7faf0yzvo7qmT4dxTw8zg8KGkM989rf77rSSLxhNYXo193A/gFlJTrRpLHA6Huvs6zyXD6Ge3PdzMyk2F9MfpXeW8Cu4hbChN3y/CGcrwZDvyNG/r9rTfTLcNr6/Q0N/6HXlvrVNpewWubX+H06j4BVwGF06v7BVwFFU6vHhBwFVI4vXpQwFVY4fTqIQFXEYXTq4cFXEUVTq8eEXAV89Qnwk6vzhdwFVc4vbpAwFVC4fTqQgFXSYXTq4sEXKUUTq8uFnCVVji9ukTAVUbh9OpSAVdZhdOrywRc5ZROr94G9oTA3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNEqITS4P+T65a73ufbdx6hLr6LmHZ5ahA0+UVsssxAVcFhexyXMBVUSG7nBBwfamQXU4KuL5SyC6nBFxfK2SX0wKubxSyyxkB17cK2WW5gOs7heyyQsBVSSG7rBRwVVbILqsEXFUUsstqAVdVheyyRsBVTSG7rBVwVVfILusEXDWUsssdILsAey8C9kME7FEI2DcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0STWE2eVOJLPLWYGmGyhkl3MCroYK2eW8gKuRQna5IOBqrJBd/hBwNVHILhcFXE0VssufAq5mCtnlkoCruUJ2WS/g+l4hu2wQcLVQyC4bBVwtFbLLJgFXK4Xs8puA6weF7LJZwNVaIbv8LuBqo5Bdtgi42ipll7tAdgH2XgTshwjYoxCwbyBgLSdgfSVgzSNgHSJgbSDArwnwUAJ8jQCvIUD/BGiS2gqzy91IZpe/BJruqJBdLgu4Oilkl78FXJ0VsssVAVcXhezyj4Crq0J2uSrg6qaQXa4JuLorZJd/BVw9FLLLVgFXT4Xssk3A1Ushu2wXcPVWyC47BFx9FLLLTgFXX4XsskvA1U8hu+wWcPVXyC57BFwDlLLLPSC7AHsvAvZDBOxRCNg3ELCWE7C+ErDmEbAOEbA2EODXBHgoAb5GgNcQoH8CNEkDhNnlni27+B/obYe/RnO/Lo9328twE1z2Wj/HRHe9j+xnkqveMKea7KY33NSmuOj1+9/UaO696X4S2dzeD8LcTgPmdjowtzOAuZ0JzO0sYG5nA3M7B5jbucDcPhDO7YMgzO08YG7nA3O7AJjbhcDcLgLmdjEwt0uAuV0KzO1D4dw+DMLcLgPmdjkwtyuAuV0JzO0qYG5XA3O7BpjbtcDchiSVza31db7w/+3/C0O3w/fFd5I8/u+J/rXZ7+N+zfvfH/7vZT1CQ1xjuGZ+1uu+tx3Qi3zfZ70RH8Tv92hc0blicMXkisUVm+s5rue5XuB6keslrpe5XuF6lSsOV1yueFzxuRJwJeRKxJWYKwlX0qTBvbqdkmKvQ+Aj1F1b0K9uT8bcyblScKXkSsWV2vpZuNIkDYloaFZz4BXqyQ1jKQxjKQ1jqQxjqQ1joYaxNEkjf3W7fdKcFoFkLnutq9uTu+4NoRRue5k3pbveR1e3p3LVG3Z1e2o3veFXt4e66PVf3Z4GEEUwxRgtiooxLXOn40rPlYErI1cmrsxcWQLFmNYginSGsfSGsQyGsYyGsUyGscyGsSxBEGM0QIxpATGmA8SYHhBjBkCMGQExZgLEmBkQY5anJMboUVSMWZk7G1d2rte4Xud6g+tNrrcCxZjVIIpshrHshrHXDGOvG8beMIy9aRh7KwhijA6IMSsgxmyAGLMDYnwNEOPrgBjfAMT4JiDGt56SGGNEUTG+zdzvcOXgysmVi+tdrve43g8U49sGUbxjGMthGMtpGMtlGHvXMPaeYez9IIgxBiDGtwExvgOIMQcgxpyAGHMBYnwXEON7gBjfF4oCvRsOuajvA/dMZP8/6K2NHwLPg9yfUVz4u1yUP7d9nh1usrXf6eHUW0KJP0+E9+mTb7K13zPi1FtSiT9vRJ098SbbQnnc95ZS4s9n43e6ydZ+H4tTb2klfp+N3+kmW/sdMU69ZZT489v4nW6ytd9b49RbVom/gI3f6SZb+106Tr3llPgLAv6PnEH+Tom/EOD/FQD/r6TEXxjw/4qA/1dW4i8C+P+XgP9XUeIvCvj/V4D/V1XiLwb4/9eA/1dT4i8O+P83gP9XV+IvAfj/t4D/11DiLwn4P3KO63sl/lKA/zcE/L+FEn9pwP8bAf7fUom/DOD/jQH/b6XEXxbw/yaA//+gxF8O8P+mgP+3VuL/CPD/ZoD/t1Hi/xjw/+aA/7dV4v8E8H/ks/A9lfg/Bfy/E+D/vZT4PwP8vzPg/72V+D8H/L8L4P99lPi/APy/K+D/fZX4ywP+3w3w/35K/BUA/+8O+H9/Jf6KgP/3APwfPQtFAdxO7dbvIqyPNBH48873+CynxZVcwLXA47OcFlcKAddCj89yWlwpBVyLPD7LaXGlEnAt9vgsp8WVWsC1xOOznI9+NyjgWurxWU6LK42Aa5nH/mX9fvRDAddyj/3L4sot4FrhsX9ZXHkEXCs99i+LK6+Aa5XH/mVx5RNwrfbYvywun4Brjcf+ZXHlF3Ct9di/LK4CAq51SmfRvwTyN7D3ImA/RMAehYB9AwFrOQHrKwFrHgHrEAFrAwF+TYCHEuBrBHgNAfonQJOE6MTSoP9zcdb73mcbtx6hrr5LWHZJK9D0FoXskk7AtVUhu6QXcG1TyC4ZBFzbFbJLRgHXDoXskknAtVMhu2QWcO1SyC5ZBFy7FbJLQQHXHoXsUkjAtVchuxQWcO1TyC5FBFz7FbJLUQHXAYXsUkzAdVAhuxQXcB1SyC4lBFyHlbLLV0B2AfZeBOyHCNijELBvIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJIOC7PLV5HMLlkFmj6tkF2yCbjOKGSX7AKuswrZ5TUB1zmF7PK6gOu8QnZ5Q8B1QSG7vCng+kMhu7wl4LqokF1KCrj+VMgupQRclxSyS2kB118K2aWMgOuyQnYpK+D6WyG7lBNwXVHILh8JuP5RyC4fC7iuKmWXr4HsAuy9CNgPEbBHIWDfQMBaTsD6SsCaR8A6RMDaQIBfE+ChBPgaAV5DgP4J0CRdFWaXryOZXd4WaPqOQnZ5R8B1VyG75BBw3VPILjkFXPcVsksuAdcDhezyroDroUJ2eU/AFZLX++zyvoCLPOLyt1t7kk8EXNE85QrLLp8KuKJ7yRWeXT4TcMXwkMufXT4XcMX0juv/s8sXAq5YnnE9zi7lBVyxveKyZZcKAq7nPPYvi6uigOt5kMv/QLPLN0B2AfZeBOyHCNijELBvIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJIQndizyzdJ/3uf+pPuS7f++WX4P79K+jj/+L+X9QgNcY0BaftZr7vedkAv8n2f9UZ8fMvv9++4KnFV5qrCVZWrGld1rhpcNblqcdXmqsNVl6seV32uBlwNuRpxNeZqwtWUqxlXc67vkwb3ospvk2KvQ+Aj1F1b0C+qbMHcLblacf3A1ZqrDVdbrh+ThkQ0NKs58MLIloaxVoaxHwxjrQ1jbQxjbQ1jPyaN/EWV9klz2sS0cNlrXVTZ0nVvCLVy28u8P7jrfXRRZWtXvWEXVbZx0xt+UWVbF73+iyp/BEQRTDF+F0XF2I65f+Jqz/Uz1y9cHbg6cnUKFGM7gyh+Moy1N4z9bBj7xTDWwTDW0TDWKQhi/A4QYztAjD8BYmwPiPFnQIy/AGLsAIixIyDGTk9JjJWiqBg7M3cXrq5c3bi6c/Xg6snVK1CMnQ2i6GIY62oY62YY624Y62EY62kY6xUEMVYCxNgZEGMXQIxdATF2A8TYHRBjD0CMPQEx9npKYqwcRcXYm7n7cPXl6sfVn2sA10CuQYFi7G0QRR/DWF/DWD/DWH/D2ADD2EDD2KAgiLEyIMbegBj7AGLsC4ixHyDG/oAYBwBiHAiIcZBQFOjdK4PdPw90dnZ5Hh3+IfbX1OE+qgXA3VUrlPiHRnhPPPk+qoXA3VUrlfiHRXxPP/E+qkXA3VWrlPiH2/id7qNaDNxdtVqJf4SN3+k+qiXA3VVrlPhH2vid7qNaCtxdtVaJf5SN3+k+qmXA3VXrlPhHA/6PnD/ao8Q/BvD/rYD/71XiHwv4/zbA//cp8Y8D/H874P/7lfh/Bfx/B+D/B5T4xwP+vxPw/4NK/BMA/98F+P8hJf6JgP/vBvz/sBL/JMD/kc9w/6nEPxnw/zOA/19S4p8C+P9ZwP//UuKfCvj/OcD/LyvxTwP8/zzg/38r8U8H/P8C4P9XlPhnAP7/B+D//yjxzwT8/yLg/1eV+GcB/o98Di5aXh3+2YD/3wX8P7oS/xzA/+8B/h9DiX8u4P/3Af+PqcQ/D/D/B4D/x1Linw/4/0PA/2Mr8S8A/N/++VOn3ueU+BcC/m//TKxTL/L5TuuXcdbfUSXDv6OAn8fhQcliuH9e+/MtShqJJ7S+GP26xcAvoKRci5M+Hgh193WeTYbjwR/bFy6JzGRYX4z+Vd4lwC5iqcLELTW8oZyeayn4Gzf0+1tvpqWG19bpaRb/D7221qm0wYLXNqXHp78sriECrlQen/6yuIYKuFJ7fPrL4hom4Ar1+PSXxTVcwJXG49NfFtcIAVdaj09/WVwjBVzpFE6vjhJwpVc4vdpCwJVB4fRqSwFXRoXTq60EXJkUTq/+IODKrHB6tbWAK4vC6dU2Aq6sCqdX2wq4simcXv1RwJVd6fTqMmBPCOy9CNgPEbBHIWDfQMBaTsD6SsCaR8A6RMDaQIBfE+ChBPgaAV5DgP4J0CQhOrE06P/kqvW+99nGrUeoq+8Sll1GCzSdQyG7jBFw5VTILmMFXLkUsss4Ade7CtnlVwHXewrZZbyA632F7DJBwPWBQnaZKOD6UCG7tBNw5VbILj8JuPIoZJf2Aq68CtnlZwFXPoXs8ouAy6eQXToIuPIrZJeOAq4CCtmlk4CroFJ2WQ5kF2DvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCapoDC7LI9kdpkk0HRJhewyWcBVSiG7TBFwlVbILlMFXGUUsss0AVdZhewyXcBVTiG7zBBwfaSQXWYKuD5WyC6dBVyfKGSXLgKuTxWyS1cB12cK2aWbgOtzhezSXcD1hUJ26SHgKq+QXXoKuCooZJdeAq6KStllBZBdgL0XAfshAvYoBOwbCFjLCVhfCVjzCFiHCFgbCPBrAjyUAF8jwGsI0D8BmqSKwuyyIpLZZZZA05UVsstsAVcVhewyR8BVVSG7zBVwVVPILvMEXNUVsst8AVcNheyyQMBVUyG7LBRw1VLILr0FXLUVsksfAVcdhezSV8BVVyG79BNw1VPILv0FXPUVsssAAVcDhewyUMDVUCG7DBJwNVLKLiuB7ALsvQjYDxGwRyFg30DAWk7A+krAmkfAOkTA2kCAXxPgoQT4GgFeQ4D+CdAkNRJml5W27OJ/oLcdrovmfl1e77aX4Ta47LV+jo3ueh/ZzyZXvWFO9Zub3nBT2+yi1+9/v0dz702rksrmdlUQ5nYLMLdbgbndBsztdmBudwBzuxOY213A3O4G5na1cG5XB2Fu9wBzuxeY233A3O4H5vYAMLcHgbk9BMztYWBu1wjndk0Q5vYIMLdHgbk9BsztcWBuTwBzexKY21PA3J4G5natcG7XJv3vXxhaFr4vXp708X9P9K/Nfh/3a97//vB/L+sRGuIawzXzs173ve2AXuT7PuuN+FjH7/f1XBu4NnJt4vqNazPX71xbuLZybePazrWDayfXLq7dXHu49nLt49rPdYDrINchrsNcR5IG9+r2dUmx1yHwEequLehXtx9l7mNcx7lOcJ3kOsV1mutM0pCIhmY1B16hfswwdtwwdsIwdtIwdsowdtowdiZp5K9ut0+a0yJw1GWvdXX7Mde9IXTcbS/znnDX++jq9pOuesOubj/lpjf86vbTLnr9V7efAUQRTDGuj6JiPMvc57jOc13g+oPrItefXJcCxXjWIIpzhrHzhrELhrE/DGMXDWN/GsYuBUGM6wExngXEeA4Q43lAjBcAMf4BiPEiIMY/ATFeekpi3BBFxfgXc1/m+pvrCtc/XFe5rnH9GyjGvwyiuGwY+9swdsUw9o9h7Kph7Jph7N8giHEDIMa/ADFeBsT4NyDGK4AY/wHEeBUQ4zVAjP8+JTFujKJivM7cN7huct3ius11h+su171AMV43iOKGYeymYeyWYey2YeyOYeyuYexeEMS4ERDjdUCMNwAx3gTEeAsQ421AjHcAMd4FxHhPKAr0bjjkor777pnI/n/QWxsfAM+D3J+RQfi7XJT/of01dbjJ1n6nh1NvRiX+kGT23iffZGu/Z8SpN5MSP0Xgf/JNtqF53fdmVuKPZuN3usnWfh+LU28WJf7oNn6nm2ztd8Q49WZV4o9h43e6ydZ+b41TbzYl/pg2fqebbO136Tj1Zlfij5XMvacjZ5BzK/HHTube03MC/p9Hif85wP9zAf6fV4n/ecD/3wX8P58S/wuA/78H+L9Pif9FwP/fB/w/vxL/S4D/fwD4fwEl/pcB//8Q8P+CSvyvAP6PnOP6RIn/VcD/SwH+/6kSfxzA/0sD/v+ZEn9cwP/LAP7/uRJ/PMD/ywL+/4USf3zA/8sB/l9eiT8B4P8fAf5fQYk/IeD/HwP+X1GJPxHg/8hn4Wsr8ScG/L8K4P91lPiTAP5fFfD/ukr8SQH/rwb4fz0l/mSA/1cH/L++En9ywP9rAP7fQIk/BeD/NQH/b6jEnxLw/1qA/6NnoSiA26nd+l2E9ZEmAn/ePh6f5Vwc/nk0lKuvx2c5F4d/Rg7l6ufxWc7F4Z/bQ7n6e3yWc3H4ZwlRrgEen+VcHP75RpRroMdnOReHf+YS5Rrk8VnOxeGfA0W5BnvsX9bvRx8IuIZ47F8W10MB11CP/cvisn7XiHIN89i/LC4ScA332L8srmgCrhEe+5fFFV3ANdJj/7K4Ygi4RnnsXxZXTAHXaKWz6KmA/A3svQjYDxGwRyFg30DAWk7A+krAmkfAOkTA2kCAXxPgoQT4GgFeQ4D+CdAkITqxNOj/XJz1vvfZxq1HqKvvEpZdzgrW2EkK2eWcgGuyQnY5L+CaopBdLgi4pipklz8EXNMUsstFAdd0hezyp4BrhkJ2uSTgmqmQXWIJ9iSzFLJLbAHXbIXs8pyAa45CdnlewDVXIbu8IOCap5BdXhRwzVfILi8JuBYoZJeXBVwLlbJLaiC7AHsvAvZDBOxRCNg3ELCWE7C+ErDmEbAOEbA2EODXBHgoAb5GgNcQoH8CNEkLhdkldSSzy1+CPclKhexyWcC1SiG7/C3gWq2QXa4IuNYoZJd/BFxrFbLLVQHXOoXsck3AtV4hu/wr4NqgkF1eEexJNipkl1cFXJsUskscAddvCtklroBrs0J2iSfg+l0hu8QXcG1RyC4JBFxbFbJLQgHXNqXsEgpkF2DvRcB+iIA9CgH7BgLWcgLWVwLWPALWIQLWBgL8mgAPJcDXCPAaAvRPgCZpmzC7hEYyu1wX7En2KWSXGwKu/QrZ5aaA64BCdrkl4DqokF1uC7gOKWSXOwKuwwrZ5a6A64hCdrkn4DqqkF0SCfYkxxSyS2IB13GF7JJEwHVCIbskFXCdVMguyQRcpxSyS3IB12mF7JJCwHVGIbukFHCdVcouaYDsAuy9CNgPEbBHIWDfQMBaTsD6SsCaR8A6RMDaQIBfE+ChBPgaAV5DgP4J0CSdFWaXNMn+e5/6k+5Lt/6ZKlzHqZM9zj/+72U9QkNcY0Daftbrrrcd0It832e9ER9p+f2ejis9VwaujFyZuDJzZeHKypWNKzvXa1yvc73B9SbXW1xvc73DlYMrJ1curne53uN6n+uDZMG9qDJtMux1CHyEumsL+kWVHzJ3bq48XHm58lmexZWfq0CykIiGZjUHXhiZ2zCWxzCW1zCWzzDmM4zlN4wVSBb5iyrTJnO/ifnQZa91UWVu170hlMdtL/Pmddf76KLKfK56wy6q9LnpDb+oMr+LXv9FlQUAUQRTjOmiqBgLMnchrsJcRbiKchXjKs5VIlCMBQ2iKGQYK2wYK2IYK2oYK2YYK24YKxEEMaYDxFgQEGMhQIyFATEWAcRYFBBjMUCMxQExlnhKYkwfRcVYkrlLcZXmKsNVlqsc10dcHweKsaRBFKUMY6UNY2UMY2UNY+UMYx8Zxj4OghjTA2IsCYixFCDG0oAYywBiLAuIsRwgxo8AMX78lMSYIYqK8RPm/pTrM67Pub7gKs9VgatioBg/MYjiU8PYZ4axzw1jXxjGyhvGKhjGKgZBjBkAMX4CiPFTQIyfAWL8HBDjF4AYywNirACIsaJQFOjdK1+6fx7o7OyQvDr8X9lfU4f7qOzneZ16hyrxfx3hPfHk+6jsZ4ydeocp8X8T8T39xPuo+ud13ztcif9bG7/TfVT2s9hOvSOU+L+z8TvdR2U/H+7UO1KJv5KN3+k+KvuZdafeUUr8lW38TvdR2c/RO/WOVuKvAvg/cv5olhJ/VcD/JwP+P1uJvxrg/1MA/5+jxF8d8P+pgP/PVeKvAfj/NMD/5ynx1wT8fzrg//OV+GsB/j8D8P8FSvy1Af+fCfj/QiX+OoD/I5/h3qjEXxfw/1WA/29S4q8H+P9qwP9/U+KvD/j/GsD/NyvxNwD8fy3g/78r8TcE/H8d4P9blPgbAf6/HvD/rUr8jQH/3wD4/zYl/iaA/yOfgzumxN8U8P/9gP8fV+JvBvj/AcD/TyjxNwf8/yDg/yeV+L8H/P8Q4P+nlPhbAP5/GPD/00r8LQH/PwL4/xkl/laA/x8F/B/5fKf1yzjr76iS4d9RwM/j8KDkMdw/r/35fkgWiSe0vhj9utbAL6CkXK2TPR4Idfd1nk2G089of742kZkM64vRv8rbBthFtFWYuLaGN5TTc7UFf+OGfn/rzdTW8No6PU3r/6HX1jqV9qXgtb2tcHr1KwHXHYXTq18LuO4qnF79RsB1T+H06rcCrvsKp1e/E3A9UDi9WknA9VDh9GplAVdIPi99Iuz06ocCLvKUK+z0am4BVzQvuSjsFF8eAVd0D7msXosrr4Arhndcj1otrnwCrpiecYV1Wlw+AVcsr7jCGy2u/AKu2B5x+fssrgICrudALv8DPb36I7AnBPZeBOyHCNijELBvIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJIQnVga9H9y1Xrf+2zj1iPU1XcJyy5VBJqO4/Hab3FVFXDF9Xjtt7iqCbjiebz2W1zVBVzxPV77La4aAq4EHq/9FldNAVdCj9d+i6uWgCuRx2u/xVVbwJVYIbsUFHAlUcguhQRcSRWyS2EBVzKF7FJEwJVcIbsUFXClUMguxQRcKRWyS3EBVyqF7FJCwJVaKbu0A7ILsPciYD9EwB6FgH0DAWs5AesrAWseAesQAWsDAX5NgIcS4GsEeA0B+idAk5RamF3aRTK71BFoOpNCdqkr4MqskF3qCbiyKGSX+gKurArZpYGAK5tCdmko4MqukF0aCbheU8gujQVcrytkl5ICrjcUskspAdebCtmltIDrLYXsUkbA9bZCdikr4HpHIbuUE3DlUMguHwm4cipkl48FXLmUsstPQHYB9l4E7IcI2KMQsG8gYC0nYH0lYM0jYB0iYG0gwK8J8FACfI0AryFA/wRoknIJs8tPkcwuTQSazquQXZoKuPIpZJdmAi6fQnZpLuDKr5BdvhdwFVDILi0EXAUVsktLAVchhezSSsBVWCG7fCLgKqKQXT4VcBVVyC6fCbiKKWSXzwVcxRWyyxcCrhIK2aW8gKukQnapIOAqpZBdKgq4Sitll/ZAdgH2XgTshwjYoxCwbyBgLSdgfSVgzSNgHSJgbSDArwnwUAJ8jQCvIUD/BGiSSguzS3tbdvE/0NsOz0Rzvy6fddvLcOdc9lo/x3l3vY/s54Kr3jCn+sNNb7ipXXTR6/e/P6O596afk8nm9ucgzO0lYG7/Aub2MjC3fwNzewWY23+Aub0KzO01YG5/Ec7tL0GY23+Bub0OzO0NYG5vAnN7C5jb28Dc3gHm9i4wtx2Ec9shCHN7D5jb+8DcPgDm9iEwt9YP79wb1krR3c9ttOju5zZ6dPdz21E4tx2T/fcvDP0Yvi9ul+zxf0/0r81+H/dr3v/+8H8v6xEa4hrDNfOzXve97YBe5Ps+64346MTv985cXbi6cnXj6s7Vg6snVy+u3lx9uPpy9ePqzzWAayDXIK7BXEO4hnIN4xrONYJrJNeoZMG9ur0TeGY+8BHqri3oV7ePZu4xXGO5xnH9yjWeawLXxGQhEQ3Nag68Qn2MYWysYWycYexXw9h4w9gEw9jEZJG/ut0+aU6LwGiXvdbV7WNc94bQWLe9zDvOXe+jq9t/ddUbdnX7eDe94Ve3T3DR67+6fSIgimCKsXMUFeMk5p7MNYVrKtc0rulcM7hmBopxkkEUkw1jUwxjUw1j0wxj0w1jMwxjM4Mgxs6AGCcBYpwMiHEKIMapgBinAWKcDohxBiDGmU9JjF2iqBhnMfdsrjlcc7nmcc3nWsC1MFCMswyimG0Ym2MYm2sYm2cYm28YW2AYWxgEMXYBxDgLEONsQIxzADHOBcQ4DxDjfECMCwAxLnxKYuwaRcW4iLkXcy3hWsq1jGs51wqulYFiXGQQxWLD2BLD2FLD2DLD2HLD2ArD2MogiLErIMZFgBgXA2JcAohxKSDGZYAYlwNiXAGIcaVQFOjdcMhFfavcM5H9/6C3Nq4Gnge5P4OEv8tF+dfYX1OHm2zvALfeRlPiXxvhPfHkm2zvArfeRlfiXxfxPf3Em2zvAbfexlDiX2/jd7rJ9j5w621MJf4NNn6nm2wfALfexlLi32jjd7rJ9iFw621sJf5NNn6nm2ztd+k49T6nxP8b4P/IGeQkSvybAf+3n4t26k2qxP874P/2s9pOvcmU+LcA/h8/n/ve5Er8WwH/t59pd+pNocS/DfB/+zl7p96USvzbAf+3n/136k2lxL8D8P/EgP+nVuLfCfg/co7rDSX+XYD/Zwb8/00l/t2A/2cB/P8tJf49gP9nBfz/bSX+vYD/ZwP8/x0l/n2A/2cH/D+HEv9+wP9fA/w/pxL/AcD/Xwf8P5cS/0HA/5HPwhdR4j8E+H8+wP+LKvEfBvzfB/h/MSX+I4D/5wf8v7gS/1HA/wsA/l9Cif8Y4P8FAf8vqcR/HPD/QoD/l1LiPwH4f2HA/9GzUBTA7dRu/S7C+kgTgT9vPY/PclpcYwRc9T0+y2lxjRVwNfD4LKfFNU7A1dDjs5wW168CrkYen+W0uMYLuBp7fJbT4pog4Gri8VlOi2uigKupx/5l/X50tYCrmcf+ZXGtEXA199i/LK61Aq7vPfYvi2udgKuFx/5lca0XcLX02L8srg0CrlYe+5fFtVHA9YPH/mVxbRJwtVY6i34SyN/A3ouA/RABexQC9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNEqITS4P+z8VZ73ufbdx6hLr6LmHZZZJA078oZJfJAq4OCtllioCro0J2mSrg6qSQXaYJuDorZJfpAq4uCtllhoCrq0J2mSng6qaQXX4TcHVXyC6bBVw9FLLL7wKungrZZYuAq5dCdtkq4OqtkF22Cbj6KGSX7QKuvgrZZYeAq59SdjkFZBdg70XAfoiAPQoB+wYC1nIC1lcC1jwC1iEC1gYC/JoADyXA1wjwGgL0T4AmqZ8wu5yKZHaZJdD0MIXsMlvANVwhu8wRcI1QyC5zBVwjFbLLPAHXKIXsMl/ANVohuywQcI1RyC4LBVxjFbLLTgHXOIXsskvA9atCdtkt4BqvkF32CLgmKGSXvQKuiQrZZZ+Aa5JCdtkv4JqskF0OCLimKGWX00B2AfZeBOyHCNijELBvIGAtJ2B9JWDNI2AdImBtIMCvCfBQAnyNAK8hQP8EaJKmCLPL6Uhml0UCTc9RyC6LBVxzFbLLEgHXPIXsslTANV8huywTcC1QyC7LBVwLFbLLCgHXIoXsslLAtVghuxwUcC1RyC6HBFxLFbLLYQHXMoXsckTAtVwhuxwVcK1QyC7HBFwrFbLLcQHXKoXsckLAtVopu5wBsguw9yJgP0TAHoWAfQMBazkB6ysBax4B6xABawMBfk2AhxLgawR4DQH6J0CTtFqYXc4k++996k+6L93658nwf55K9jj/+L+X9QgNcY0BaftZr7vedkAv8n2f9UZ8nOX3+zmu81wXuP7gusj1J9clrr+4LnP9zXWF6x+uq1zXuP7lus51g+sm1y2u21x3uO5y3eO6nyy4F1WeTYa9DoGPUHdtQb+o8gFzP7S8JTmPc0Xjis4Vgytm8pCIhmY1B14Y+dAwZn2zwDEyjEUzjEU3jMUwjMVMHvmLKu2T5rSJeeCy17qo8qHrXv5RkrvsZV5y1/voospornrDLqqM7qY3/KLKGC56/RdVxkzuXhTBFOO5KCrGWPx6xbbe11zPc73A9SLXS1wvB4oxlkEUsQ1jzxnGnjeMvWAYe9Ew9pJh7OUgiPEcIMZYbkXDYoztujeEngPE+DwgxhcAMb4IiPElQIwvPyUxno+iYnyFX69XueJwxeWKxxWfKwFXwkAxvmIQxauGsTiGsbiGsXiGsfiGsQSGsYRBEON5QIyvAGJ8FRBjHECMcQExxgPEGB8QYwJAjAmfkhgvRFExJuLXKzFXEq6kXMm4knOl4EoZKMZEBlEkNowlMYwlNYwlM4wlN4ylMIylDIIYLwBiTASIMTEgxiSAGJMCYkwGiDE5IMYUgBhTAmK0P9C7V1K5fx7o7GyzfDr8qe2vqcN9VPbzvE69zZX4QyO8J558H5X9jLFT7/dK/GkivqefeB9Vw3zue1so8ae18TvdR2U/i+3U21KJP52N3+k+Kvv5cKfeVkr86W38TvdR2c+sO/X+oMSfwcbvdB+V/Ry9U29rJf6MgP8j54+6K/FnAvy/A+D/PZT4MwP+3xHw/55K/FkA/+8E+H8vJf6sgP93Bvy/txJ/NsD/uwD+30eJPzvg/10B/++rxP8a4P/dAP/vp8T/OuD/yGe4xynxvwH4/3DA/39V4n8T8P8RgP+PV+J/C/D/kYD/T1Difxvw/1GA/09U4n8H8P/RgP9PUuLPAfj/GMD/Jyvx5wT8fyzg/1OU+HMB/o98Dm6JEv+7gP/PBfx/qRL/e4D/zwP8f5kS//uA/88H/H+5Ev8HgP8vAPx/hRL/h4D/LwT8f6USf27A/xcB/r9KiT8P4P+LAf9HPt9p/TLO+juqZPh3FPDzODwoRQz3z2t/vrzJI/GE1hejX5cvuftJknLlS/54INTd13k2GU4/o/35fJGZDOuL0b/K6wN2EfkVJi6/4Q3l9Fz5wd+4od/fejPlN7y2Tk+T73/otbVOpaUSvLZ7FU6vphZw7VM4vRoq4NqvcHo1jYDrgMLp1bQCroMKp1fTCbgOKZxeTS/gOqxwejWDgOuIpz4Rdnr1geBU2lGF06sPBVzHFE6vhgjm8bjC6VUScJ1QOL0aTcB1UuH0anQB1ymF06sxBFynFU6vxhRwnVE6vVoA2BMCey8C9kME7FEI2DcQsJYTsL4SsOYRsA4RsDYQ4NcEeCgBvkaA1xCgfwI0SYhOLA36P7lqve99tnHrEerqu4Rll4wCTV9SyC6ZBFx/KWSXzAKuywrZJYuA62+F7JJVwHVFIbtkE3D9o5Bdsgu4ripkl9cEXNcUskssAde/CtkltoDrukJ2eU7AdUMhuzwv4LqpkF1eEHDdUsguLwq4bitkl5cEXHcUssvLAq67StmlIJBdgL0XAfshAvYoBOwbCFjLCVhfCVjzCFiHCFgbCPBrAjyUAF8jwGsI0D8BmqS7wuxSMJLZ5XWBpqP7vF37La43BFwxfN5nlzcFXDF93meXtwRcsXzeZ5e3BVyxfd5nl3cEXM/5vM8uOQRcz/u8zy45BVwv+Lz0ibDs8oqA60Wf99nlVQHXSz7vs0scAdfLPu+zS1wB1ys+77NLPAHXqz7vs0t8AVccn/fZJYGAK67P++ySUMAVz4dx+R9odikEZBdg70XAfoiAPQoB+wYC1nIC1lcC1jwC1iEC1gYC/JoADyXA1wjwGgL0T4AmCdGJPbsUimR2ySXQdDKft2u/xfWugCu5z/vs8p6AK4XP++zyvoArpc/77PKBgCuVz/vs8qGAK7XP++ySW8AV6vM+u+QRcKXxeekTYdklkYArrc/77JJYwJXO5312SSLgSu/zPrskFXBl8HmfXZIJuDL6vM8uyQVcmXzeZ5cUAq7MPu+zS0oBVxYfxuV/oNmlMJBdgL0XAfshAvYoBOwbCFjLCVhfCVjzCFiHKC3QC/g1AR5KgK8R4DUE6J8ATRKiE3t2KWzLLv4HetthjOju1+WYbnsZLpbLXuvniO2u95H9POeqN8ypnnfTG25qL7jo9fvfi9Hde1OR5LK5LRKEuX0JmNuXgbl9BZjbV4G5jQPMbVxgbuMBcxsfmNuiwrktGoS5TQDMbUJgbhMBc5sYmNskwNwmBeY2GTC3yYG5LSac22JBmNsUwNymBOY2FTC3qYG5DQXmNg0wt2mBuU0HzG1x4dwWT/7fvzBUIHxfXDD54/+e6F+b/T7u17z//eH/XtYjNMQ1hmvmZ73ue9sBvcj3fdYb8VGC3+8luUpxleYqw1WWqxzXR1wfc33C9SnXZ1yfc33BVZ6rAldFri+5vuL6musbrm+5vuOqxFU5eXCvbi8BnpkPfIS6awv61e1VmLsqVzWu6lw1uGpy1eKqnTwkoqFZzYFXqFc1jFUzjFU3jNUwjNU0jNUyjNVOHvmr20sAlwRUcdlrXd1e1XVvCFVz28u81d31Prq6vYar3rCr22u66Q2/ur2Wi17/1e21AVEEU4wlo6gY6zB3Xa56XPW5GnA15GrE1ThQjHUMoqhrGKtnGKtvGGtgGGtoGGtkGGscBDGWBMRYBxBjXUCM9QAx1gfE2AAQY0NAjI0AMTZ+SmIsFUXF2IS5m3I142rO9T1XC66WXK0CxdjEIIqmhrFmhrHmhrHvDWMtDGMtDWOtgiDGUoAYmwBibAqIsRkgxuaAGL8HxNgCEGNLQIytnpIYS0dRMf7A3K252nC15fqRqx3XT1ztA8X4g0EUrQ1jbQxjbQ1jPxrG2hnGfjKMtQ+CGEsDYvwBEGNrQIxtADG2BcT4IyDGdoAYfwLE2F4oCvRuOOSivp/dM5H9/6C3Nv4CPA9yf8ZR4Rk6lL+D/TV1uMl2H3Dr7TEl/o4R3hNPvsl2P3Dr7XEl/k4R39NPvMn2AHDr7Qkl/s42fqebbA8Ct96eVOLvYuN3usn2EHDr7Skl/q42fqebbA8Dt96eVuLvZuN3usn2CHDr7Rkl/u6A/1/y5jxthAfK3wPw/78A/7+uxN8T8P/LgP/fUOLvBfj/34D/31Ti7w34/xXA/28p8fcB/P8fwP9vK/H3Bfz/KuD/d5T4+wH+fw3w/7tK/P0B/4/uc9+Lnlf1P1D+AYD/28+WOfWi51ql/AMB/7efd3PqRc+/SvkHAf4fy+e+Fz0nK+UfDPi//VygUy96nlbKPwTwf/tZRade9NytlH8o4P/285NOvej5XCn/MMD/7Wc6nXql53hR/uGA/yOfhU/r0+EfAfi//fP5Tr3pfDr8IwH/t58ZcOpFzxBJ+UcB/p/S574XPWsk5R8N+L/9bIVTL3omSco/BvB/+3kPp1707JKUfyzg//YzKE696BknKf84wP/t52KcetGzUBTA7dRu/S7C+kgTgT9vcZ+XXPTodyRVBVwlfB5yUdjvbqoJuEr6vOOyei2u6gKuUj7PuB61Wlw1BFylfV5xhXVaXDUFXGV8HnGFN1pctQRcZX3ecPn7LK7aAq5yPm/9y/r96C8Cro983vqXxdVBwPWxz1v/srg6Crg+8XnrXxZXJwHXpz5v/cvi6izg+sznrX9ZXF0EXJ/7vPUvi6urgOsLn7f+ZXF1E3CV98n2j+hZ9F+B/A3svQjYDxGwRyFg30DAWk7A+krAmkfAOkTA2kCAXxPgoQT4GgFeQ4D+CdAkITqxNOj/XJz1vvfZxq1HqKvvEpZd6gg0/Z3P27Xf4qor4Krk8z671BNwVfZ5n13qC7iq+LzPLg0EXFV93meXhgKuaj7vs0sjAVd1n/fZpbGAq4bPS58Iyy7dBVw1fd5nlx4Crlo+77NLTwFXbZ/32aWXgKuOz/vs0lvAVdfnfXbpI+Cq5/M+u/QVcNX3eZ9d+gm4Gvh0sst4ILsAey8C9kNUGegF9g0ErOUErK8ErHkErEMErA0E+DUBHkqArxHgNQTonwBNEqITe3YZH8ns0kSg6e993q79FldTAVcLn/fZpZmAq6XP++zSXMDVyud9dvlewPWDz/vs0kLA1drnfXZpKeBq4/M+u7QScLX1eekTYdmlv4DrR5/32WWAgKudz/vsMlDA9ZPP++wySMDV3ud9dhks4PrZ5312GSLg+sXnfXYZKuDq4PM+uwwTcHX06WSXCUB2AfZeBOyHCNijELBvIGAtJ2B9JWDNI2AdImBtIMCvCfBQag/0Al5DgP4J0CQhOrFnlwmRzC4/CDTd0+ft2m9xtRZw9fJ5n13aCLh6+7zPLm0FXH183meXHwVcfX3eZ5d2Aq5+Pu+zy08Crv4+77NLewHXAJ+XPhGWXYYLuAb6vM8uIwRcg3zeZ5eRAq7BPu+zyygB1xCf99lltIBrqM/77DJGwDXM5312GSvgGu7zPruME3CN8Olkl4lAdgH2XgTshwjYoxCwbyBgLSdgfSVgzSNgHSJgbSDArwnwUAJ8jQCvIUD/BGiSEJ3Ys8vE5P+9T/1J96Vb//w1/J/jkz/OP/7vZT1CQ1xjQNp+1uuutx3Qi3zfZ70RH5P4/T6ZawrXVK5pXNO5ZnDN5JrFNZtrDtdcrnlc87kWcC3kWsS1mGsJ11KuZVzLuVZwreRalTy4F1VOSo69DoGPUHdtQb+ocjVzr+Fay7WOaz3XBq6NXJuSh0Q0NKs58MLINYaxtYaxdYax9YaxDYaxjYaxTckjf1GlfdKcNjGrXfZaF1Wucd0bQmvd9jLvOne9jy6qXO+qN+yiyg1uesMvqtzootd/UeUmQBTBFOPkKCrG35h7M9fvXFu4tnJt49rOtSNQjL8ZRLHZMPa7YWyLYWyrYWybYWy7YWxHEMQ4GRDjb4AYNwNi/B0Q4xZAjFsBMW4DxLgdEOOOpyTGKVFUjDuZexfXbq49XHu59nHt5zoQKMadBlHsMoztNoztMYztNYztM4ztN4wdCIIYpwBi3AmIcRcgxt2AGPcAYtwLiHEfIMb9gBgPPCUxTo2iYjzI3Ie4DnMd4TrKdYzrONeJQDEeNIjikGHssGHsiGHsqGHsmGHsuGHsRBDEOBUQ40FAjIcAMR4GxHgEEONRQIzHADEeB8R4QigK9O6Vk+6fBzo7i94R4H+g/Kfsr6nDfVT287xOvehdAlL+0xHeE0++j8p+xtipF71zQMp/JuJ7+on3UZXyue9F7yaQ8p+18TvdR2U/i+3Ui95hIOU/Z+N3uo/Kfj7cqRe960DKf97G73Qflf3MulMveieClP+Cjd/pPir7OXqn3v9j7zvApSiW77cAI6hgBglzMzkrRrwkSSJiApQoknOSYAAjmAgKigJiwIAZMYAEI2aSqCRJJpIJBAUD/Lu4O4/ZpZfpU3e798f3d76vHu/Vq719eqrP6dPcnUH67gQU/xZA/5Hnj9DnLP0Lxb8V0P/gM1FhtejzmFL82wD9vzbXvBZ9blOK/ydA/zvlmteiz3dK8f8M6H/webawWvQ5UCn+XwD9Dz5jF1aLPi8qxf8roP/B5/7CatHnSqX4fwP0P/gsYlit9PlTFP92QP+R73Cjz6r4F4p/B6D/we+Vh9Wiz7RI8f8O6P+wXPNa9NkXKf6dgP4PzzWvvTXXDf5dgP4HnwkIq70t1w3+PwD9Dz6nEFaLPnMjxf8noP/BZyfCatFnc6T4dwP6H3yeI6xW+gwPin8PoP/I9+DQ7/v6F4r/L0D/g9/NC6tFvxcsxf83oP/B7wuG1aLfH5bi/wfQ//G55rUP57rB/y+g/8HvVYbVot9HluLfC+h/8LueYbXo95al+PcB+h/8/mlYLfr9Zin+SElzTQ9+JzasFvl+J/8yjv8dVdL8fxQ3n5CLShUyHzc4HpXMx4D8YfRzBUoCTRLiKlDyQMIz+5y1ZoTNMThewfw0gz+M/qu8BUuaj1HIQeMKaRZU2FiFzOegxRX283kxFdLc27BhCvwfurf8VBr/xhCd+8zc/N3bsGrG9a0A16u5FnFR3lN83wlwzcq1h4trGdf3Alyv5VrDtb+Ucf0gwPV6ri1ceZWM60cBrjdyLeGKFjKuTQJcb+baweXXMa7NAlyzc23qRN7Tq+8KcM3JtatfjOs9Aa63cu3qF+N6X4Brbq5d/WJcHwhwzcu1q1+Ma6EA1/xcu/rFuD4U4FqQa1e/GNdHAlxv59rVL8b1sQDXO7kYLv9Cn149AvCEgPciwA8R4FEI8A0E7OUE7K8E7HkE7EME7A0E6DUBGkqArhGgNQTwnwBOEsIT5qD/zVVe97mBPF+e0U/JO7tsEXD641y7ez/j2irA9Umu/bPLNgGuT3Ptn11+EuD6LNf+2eVnAa7Pc+2fXX4R4FqUa//s8qsA1+Jc+2eX3wS4luTa1Im8s8snAlxLc+2fXT4V4FqWa//s8pkA1xe59s8unwtwLc+1f3ZZJMD1Za79s8tiAa6vcu2fXZYIcH2da//sslSAa0Wum7PLkcDZBfBeBPghAjwKAb6BgL2cgP2VgD2PgH2IgL2BAL0mQEMJ0DUCtIYA/hPASUJ4Ejy7HJnPs8t2AafX59rd+xnXDgGuDbn2zy6/C3BtzLV/dtkpwPVtrv2zyy4Bru9y7Z9d/hDg+j7X/tnlTwGuH3Ltn112C3D9mGtTJ/LOLssEuDbl2j+7fCHAtTnX/tlluQDXllz7Z5cvBbi25to/u3wlwLUt1/7Z5WsBrp9y7Z9dVghw/Zxr/+yyUoDrl1w3Z5ejgLML4L0I8EMEeBT6FqgF9nIC9lcC9jwC9iEC9gYC9JoADSVA1wjQGgL4TwAnCeFJ8OxyVD7PLnsEnP4j1+7ez7j+EuD6M9f+2eVvAa7dufbPLv8IcO3JtX92+VeA669c+2eXvQJcf+faP7vsE+D6J9f+2SUi+N7uv7k2dSLv7LJKcL/25to/u6wW4NqXa//sskaAK1LH/tnlGwEusofrf2eXtQJcBazhOnB2WSfAVdAWrsDZZb0AVyFLuIJnlw0CXEeAuPwLPbscDZxdAO9FgB8iwKMQ4BsI2MsJ2F8J2PMI2IcI2BsI0GsCNJQAXSNAawjgPwGcJIQnzEH/7HJ04OziX+jbDjMLmu/LWaa1Cly2YS3PI8esdr/8lDWqzVOqcia1UVErb1Dr61+FgubadExJWW+PSUJvKwK9rQT0tjLQ2ypAb6sCva0G9LY60NsaQG+PFfb22CT0tibQ2zOB3p4F9LYW0Nuzgd6eA/T2XKC35wG9LSzsbeEk9PZ8oLcXAL2tDfT2QqC3uUBv6wC9rQv0th7Q2yLC3hYpefC/MHRE9Fx/ZMkDf5/o782+jvuc99eH/7P48iLGMIwx/1drXjsSqEV+7n+1sddxar0fr+IEFUVVFFNxooqTVJys4hQVp6o4TcXpKoqrKKHiDBUlVZRSUVpFGeauijQV6SoyVGSqyCqZ3Fe3Hwc+Mx9/eWZlSX91e7bCnaOirIpyKsqrqKCioopKJSOxgsbF8a9Qz9Hkympy5TS58ppcBU2uoiZXqWT+X91+HPCSgGzDWn51e45xbYTKmtYqvOXMave/ur28UW3eq9srmNRGX91e0aDWf3V7JYAUySTj8YcpGSsr3FVUVFVRTUV1FTVU1FRxZjwZK2tIUUWTq6rJVdPkqmtyNTS5mprcmUkg4/EAGSsDZKwCkLEqQMZqABmrA2SsAZCxJkDGM1NExhMOUzKepXDXUnG2inNUnKviPBXnq7ggnoxnaUhRS5M7W5M7R5M7V5M7T5M7X5O7IAlkPAEg41kAGWsBZDwbIOM5ABnPBch4HkDG8wEyXpAiMhY9TMlYW+G+kI/TKuqoqKuinor6KhrEk7G2hhQXanK5mlwdTa6uJldPk6uvyTVIAhmLAmSsDZDxQoCMuQAZ6wBkrAuQsR5AxvoAGRsISYG+Gw55Ud9F5pgo+D/QtzY2BMZB3p+BvifIv1D8jYL3NORNtsF3eoTVou8TkuJvHLMmDv0m2+B7RsJq0fcOSfE3iV3Th3yT7Wu55rXo+4mk+JsG8Ie9yTb4PpawWvQ9RlL8Fwfwh73JNviOmLDaBblu8DcL4A97k23wvTVhteh7kaT4LwngD3uTbfBdOmG10vcnofibA/qPPIOMvmvBv1D8lwL6H3wuOqwWfSeDFH8LQP+Dz2qH1aLvbpDivwzQ/89yzWvRdzxI8V8O6H/wmfawWvRdEFL8VwD6H3zOPqwWfWeEFP+VgP4Hn/0Pq0XfLSHFfxWg/8H3EYTVSt9BgeJvCeg/8hwX+ryqf6H4WwH6H3y2LKwWfa5Vir81oP/B593CatHnX6X4rwb0/9tc81r0OVkp/msA/f8u17wWfZ5Wir8NoP/BZxXDatHnbqX42wL6H3x+MqwWfT5Xir8doP/BZzrDaqXP8aL42wP6j3wXfm+uG/wdAP0Pfj8/rBZ9NkiKvyOg/8FnBsJq0WeIpPivBfR/T655LTnC3wnQ/+CzFWG1BRzhvw7Q/+DzHmG1BR3h7wzof/AZlLDaQo7wdwH0P/hcTFgt+iwUxeEOK+ffRfBXmgicb5ZVXLT/dyQ5AlzZNnFR3u9uygpw5VjExbWMq5wAV1l7uPaXMq7yAlzlrOHKq2RcFQS4ytvCFS1kXBUFuCpYwuXXMa5KAlwVLesX/360oQBXJcv6xbgaCXBVtqxfjKuxAFcVy/rFuJoIcFW1rF+Mq6kAVzXL+sW4Lhbgqm5ZvxhXMwGuGpb1i3FdIsBVE8TlX+iz6F2B8zfgvQjwQwR4FAJ8AwF7OQH7KwF7HgH7EAF7AwF6TYCGEqBrBGgNAfwngJOE8IQ56H8vjtd9biDPl2f0U/LOLpUFnD7f5h4bPbtUEeC6wPLez7iqCnDVtrz3M65qAlwXWt77GVd1Aa5cy3s/46ohwFXH8t7PuGoKcNW1vPczrjMFuOpZ1Ym8s0tzAa76lvWLcV0qwNXAsn4xrhYCXBdZ1i/GdZkAV0PL+sW4LhfgamRZvxjXFQJcjS3rF+O6UoCriWX9YlxXCXA1BXH5F3p26QacXQDvRYAfIsCjEOAbCNjLCdhfCdjzCNiHCNgbCNBrAjSUAF0jQGsI4D8BnCSEJ8xB/+zSLZ9nl7MEnL7c5h4bPbvUEuC6wvLez7jOFuC60vLez7jOEeC6yvLez7jOFeBqaXnvZ1znCXC1srz3M67zBbhaW977GdcFAlxXW9WJvLNLSwGuayzrF+NqJcDVxrJ+Ma7WAlxtLesX47pagKudZf1iXNcIcLW3rF+Mq40AVwfL+sW42gpwdbSsX4yrnQDXtSAu/0LPLt2BswvgvQjwQwR4FAJ8AwF7OQH7KwF7HgH7EAF7AwF6TYCGEqBrBGgNAfwngJOE8IQ56J9duufz7FJbwOkeNvfY6NnlQgGunpb3fsaVK8DVy/Lez7jqCHD1trz3M666Alx9LO/9jKueAFdfy3s/46ovwNXP8t7PuBoIcPW3qhN5Z5f2AlwDLOsX4+ogwDXQsn4xro4CXIMs6xfjulaAa7Bl/WJcnQS4rresX4zrOgGuIZb1i3F1FuAaalm/GFcXAa5hIC7/Qs8uPYCzC+C9CPBDBHgUAnwDAXs5AfsrAXseAfsQAXsDAXpNgIYSoGsEaA0B/CeAk4TwhDnon116lDz4feqHel86/9k1+me3kgfOP/7P4suLGMOAuP1frVntSKAW+bn/1cZePdV676Wit4o+Kvqq6Keiv4oBKgaqGKRisIrrVQxRMVTFMBXDVdyg4kYVN6m4WcUIFSNV3KLiVhW3lUzuiyp7lsTuQ/zlmZUl/UWVtyvcd6i4U8UoFaNV3KXibhX3lIzEChoXx78w8g5N7k5NbpQmN1qTu0uTu1uTu6dk/l9UGWxamIm53bCWX1R5h3FthO40rVV4R5nV7n9R5Wij2rwXVd5lUht9UeXdBrX+iyrvAUiRTDL2OkzJeK/CfZ+KMSrGqhinYryK+1U8EE/GezWkuE+TG6PJjdXkxmly4zW5+zW5B5JAxl4AGe8FyHgfQMYxABnHAmQcB5BxPEDG+wEyPpAiMvY+TMk4QeGeqOJBFQ+pmKTiYRWPqJgcT8YJGlJM1OQe1OQe0uQmaXIPa3KPaHKTk0DG3gAZJwBknAiQ8UGAjA8BZJwEkPFhgIyPAGScnCIy9jlMyThF4Z6q4lEV01Q8puJxFU+oeDKejFM0pJiqyT2qyU3T5B7T5B7X5J7Q5J5MAhn7AGScApBxKkDGRwEyTgPI+BhAxscBMj4BkPFJISnQd69MNx8HenYWfUeAf6H4nwre05D3UQWf5w2rrewI/9Mxa+LQ76MKPmMcVlvFEf5nYtf0Id9HVbaOeW1VR/ifDeAPex9V8FnssNpqjvDPCOAPex9V8PnwsNrqjvA/F8Af9j6q4DPrYbU1HOF/PoA/7H1Uwefow2prOsL/AqD/yPNH9R3hfxHQ/wsA/W/gCP9LgP7XBvT/Ikf4Xwb0/0JA/xs6wv8KoP+5gP43coR/JqD/dQD9b+wI/6uA/tcF9L+JI/yzAP2vB+h/U0f4XwP0H/kO9zWO8L8O6P8VgP63cYT/DUD/rwT0v60j/G8C+n8VoP/tHOGfDeh/S0D/2zvCPwfQ/1aA/ndwhP8tQP9bA/rf0RH+uYD+Xw3o/7WO8M8D9B/5HtwAR/jnA/rfE9D/gY7wLwD0vxeg/4Mc4X8b0P/egP4PdoT/HUD/+wD6f70j/O8C+t8X0P8hjvC/B+h/P0D/hzrC/z6g//0B/Ue+38m/jON/R5U0/x/FzSfkotKFzMcNjvdByXwMyB9GP7cQ+AWUFNfCkgcSntnnrDUjbI7B8T7MTzP4w+i/yvsh4CI+ctC4jzQLKmysj8DfuKE/nxfTR5p7GzbMwv9D95afSpsuuLf31cnfvQ2rZlxPCXCNsYmL8p7ie1qAa6xFXFzLuJ4R4BpnD9f+Usb1rADXeGu48ioZ1wwBrvtt4YoWMq7nBLgesITLr2NczwtwTbCqE3lPr94uwDXRsn4xrjsEuB60rF+M604Brocs6xfjGiXANcmyfjGu0QJcD1vWL8Z1lwDXI5b1i3HdLcA12bJ+Ma57BLimgLj8C3169WPAEwLeiwA/RIBHIcA3ELCXE7C/ErDnEbAPEbA3EKDXBGgoAbpGgNYQwH8COEkIT5iD/jdXed3nBvJ8eUY/Je/s8oKA09Nt7rHRs8uLAlxPWd77GddLAlxPW977GdfLAlzPWN77GdcrAlzPWt77GddMAa4Zlvd+xvWqANdzlvd+xjVLgOt5qzqRd3a5V4DrBcv6xbjuE+B60bJ+Ma4xAlwvWdYvxjVWgOtly/rFuMYJcL1iWb8Y13gBrpmW9Ytx3S/A9apl/WJcDwhwzQJx+Rd6dvkEOLsA3osAP0SARyHANxCwlxOwvxKw5xGwDxGwNxCg1wRoKAG6RoDWEMB/AjhJCE+Yg/7Z5ZN8nl1eE3B6rs09Nnp2eV2Aa57lvZ9xvSHANd/y3s+43hTgWmB572dcswW43ra89zOuOQJc71je+xnXWwJc71re+xnXXAGu96zqRN7ZZYIA1/uW9YtxTRTg+sCyfjGuBwW4FlrWL8b1kADXh5b1i3FNknznw7J+Ma6HBbg+tqxfjOsRAa5PLOsX45oswPUpiMu/0LPLp8DZBfBeBPghAjwKAb6BgL2cgP2VgD2PgH2IgL2BAL0mQEMJ0DUCtIYA/hPASUJ4whz0zy6f5vPsMk/A6S9s7rHRs8t8Aa7llvd+xrVAgOtLy3s/43pbgOsry3s/43pHgOtry3s/43pXgGuF5b2fcb0nwLXS8t7PuN4X4FplVSfyzi5TBLhWW9YvxjVVgGuNZf1iXI8KcH1jWb8Y1zQBrrWW9YtxPSbAtc6yfjGuxwW41lvWL8b1hADXBsv6xbieFODaCOLyL/Ts8hlwdgG8FwF+iACPQoBvIGAvJ2B/JWDPI2AfImBvIECvCdBQAnSNAK0hgP8EcJIQnjAH/bPLZ4Gzi3+hbzusX9B8X25gWst7pWEtz6OhWe1++WlkVLu/NNLYpDavNNLEoDZaGmla0FybPi8p6+3nSejtxUBvmwG9vQTobXOgt5cCvW0B9PYyoLeXA71dJOztoiT09gqgt1cCvb0K6G1LoLetgN62Bnp7NdDba4DeLhb2dnESetsG6G1boLftgN62B3rbAehtR6C31wK97QT0domwt0tKHvwvDH0c9cWflDzw94n+3uzruM95f334P4svL2IMwxjzf7XmtSOBWuTn/lcbey1V632Zii9ULFfxpYqvVHytYoWKlSpWqVitYo2Kb1SsVbFOxXoVG1RsVPGtiu9UfK/iBxU/qtikYnPJ5L66fWlJ7D7EX55ZWdJf3b5F4d6qYpuKn1T8rOIXFb+q+K1kJFbQuDj+FepbNbltmtxPmtzPmtwvmtyvmtxvJfP/6vZg08I2gS2Gtfzq9q3GtRHaZlqr8P5kVrv/1e0/G9Xmvbr9F5Pa6KvbfzWo9V/d/htAimSScdlhSsbtCvcOFb+r2Klil4o/VPypYnc8GbdrSLFDk/tdk9upye3S5P7Q5P7U5HYngYzLADJuB8i4AyDj7wAZdwJk3AWQ8Q+AjH8CZNydIjJ+cZiScY/C/ZeKv1X8o+JfFXtV7GMilorEEmCPhhR/aXJ/a3L/aHL/anJ7Nbl9mhyDyy8ZvwDIuAcg418AGf8GyPgPQMZ/ATLuBci4DyAj98iLmF3JJOPyw5SMpO5XARUFVRRScYSKI1UcxWs9noxU6mBSFNDkCmpyhTS5IzS5IzW5ozS5o5NAxuUAGamUORkLGNdGqKBprYJQyKx2PxmPMKrNI+ORJrVRMh5lUOuT8WiAjMELfTcc8qK+Y8wxUfB/oG9tPBYYB3l/BvqeIP9C8RcO9jnkTbbBd3qE1T7oCH+RmHV66DfZBt8zElb7kCP8x8Xy7JBvsh1Xx7x2kiP8xwfwh73JNvg+lrDahx3hPyGAP+xNtsF3xITVPuIIf9EA/rA32QbfWxNWO9kR/mIB/GFvsg2+Syesdooj/CcC+o88g/yCI/wnAfr/FKD/LzrCfzKg/08D+v+SI/ynAPr/DKD/LzvCfyqg/88C+v+KI/ynAfo/A9D/mY7wnw7o/3OA/r/qCH9xQP+fB/R/liP8JQD9R57jet8R/jMA/Z8H6P8HjvCXBPR/PqD/Cx3hLwXo/wJA/z90hL80oP9vA/r/kSP8ZQD9fwfQ/48d4fcA/X8X0P9PHOFPA/T/PUD/P3WEPx3Qf+S78Ksd4c8A9H85oP9rHOHPBPT/S0D/v3GEPwvQ/68A/V/rCH82oP9fA/q/zhH+HED/VwD6v94R/rKA/q8E9H+DI/zlAP1fBeg/+iwUxeEOK+ffRWwpefDnQn+/VNcmLtr/O5KtAlwFbOKivN/dbBPgKmgRF9cujH5vD8VVyB6u/aULo98lRHEdYQ1XXuXC6PcbUVxH2sIVLVwY/c4liusoS7j8uoXR74GiuI62qhMR4t+P8u8uUVzHWNYvxlVYgOtYy/rFuIoIcBW2rF+M6zgBriKW9YtxHS/AdZxl/WJcJwhwHW9ZvxhXUQGuEyzrF+MqJsBVFMTlX+iz6OWB8zfgvQjwQwR4FAJ8AwF7OQH7KwF7HgH7EAF7AwF6TYCGEqBrBGgNAfwngJOE8IQ56H8vjtd9biDPl2f0U/LOLtsFnuR0B2eXHQJcxR2cXX4X4Crh4OyyU4DrDAdnl10CXCUdnF3+EOAq5eDs8qcAV2kHZ5fdAlxlHJxdThR4Es/B2eUkAa40B2eXkwW40h2cXU4R4MpwcHY5VYAr08HZ5TQBriwHZ5fTBbiyHZxdigtw5Tg6u1QAzi6A9yLADxHgUQjwDQTs5QTsrwTseQTsQwTsDQToNQEaSoCuEaA1BPCfAE5SjvDsUiGfZ5c9Ak9SxcHZ5S8BrqoOzi5/C3BVc3B2+UeAq7qDs8u/Alw1HJxd9gpw1XRwdtknwHWmg7NLRLD3n+Xg7FJCgKuWg7PLGQJcZzs4u5QU4DrHwdmllADXuQ7OLqUFuM5zcHYpI8B1voOziyfAdYGDs0uaAFdtR2eXisDZBfBeBPghAjwKAb6BgL2cgP2VgD2PgH2IgL2BAL0mQEMJ0DUCtIYA/hPASaotPLtUzOfZhQScvsjB2aWAAFdDB2eXggJcjRycXQoJcDV2cHY5QoCriYOzy5ECXE0dnF2OEuC62MHZ5WgBrmYOzi7pAlyXODi7ZAhwNXdwdskU4LrUwdklS4CrhYOzS7YA12UOzi45AlyXOzi7lBXgusLB2aWcANeVjs4ulYCzC+C9CPBDBHgUAnwDAXs5AfsrAXseAfsQAXsDAXpNgIYSoGsEaA0B/CeAk3Sl8OxSqdTB71M/1PvS+c/yUR5XKHXg/OP/LL68iDEMiNv/1ZrVjgRqkZ/7X23sVVmt9yoqqqqopqK6ihoqaqo4U8VZKmqpOFvFOSrOVXGeivNVXKCitooLmX8q6qioq6KeivoqGqi4qFRyX1RZuRR2H+Ivz6ws6S+qbKhwN1LRWEUTFU1VXKyimYpLSkViBY2L418Y2UiTa6zJNdHkmmpyF2tyzTS5S0rl/0WVwaaF/uWLYS2/qLKRca0yG6a1bDbMave/qLKpUW3eiyovNqmNvqiymUGt/6LKSwBSJJOMVQ5TMjZXuC9V0ULFZSouV3GFiitVXBVPxuYaUlyqybXQ5C7T5C7X5K7Q5K7U5K5KAhmrAGRsDpDxUoCMLQAyXgaQ8XKAjFcAZLwSIONVKSJj1cOUjC0V7lYqWqu4WsU1KtqoaKuiXTwZW2pI0UqTa63JXa3JXaPJtdHk2mpy7ZJAxqoAGVsCZGwFkLE1QMarATJeA5CxDUDGtgAZ26WIjNUOUzK2V7g7qOio4loVnVRcp6Kzii7xZGyvIUUHTa6jJnetJtdJk7tOk+usyXVJAhmrAWRsD5CxA0DGjgAZrwXI2Akg43UAGTsDZOwiJAX67pWu5uNAz84eU9cN/m7BexryPqrg87xhtcc6wt89Zk0c+n1UwWeMw2oLO8LfI3ZNH/J9VIXqmtcWcYS/ZwB/2Puogs9ih9Ue5wh/rwD+sPdRBZ8PD6s93hH+3gH8Ye+jCj6zHlZ7giP8fQL4w95HFXyOPqy2qCP8fQH9R54/8hzh7wfof3FA/9Mc4e8P6H8JQP/THeEfAOj/GYD+ZzjCPxDQ/5KA/mc6wj8I0P9SgP5nOcI/GND/0oD+ZzvCfz2g/2UA/c9xhH8IoP/Id7hrOcI/FND/qoD+n+0I/zBA/6sB+n+OI/zDAf2vDuj/uY7w3wDofw1A/89zhP9GQP9rAvp/viP8NwH6fyag/xc4wn8zoP9nAfpf2xH+EYD+I9+Du8QR/pGA/jcE9L+5I/y3APrfCND/Sx3hvxXQ/8aA/rdwhP82QP+bAPp/mSP8twP63xTQ/8sd4b8D0P+LAf2/whH+OwH9bwboP/L9Tv5lXIHIgV+8BS+Km0/IRWUKmY8bHG9UqXwMyB9GPzca+AWUFNfoUgcSntnnrDUjbI7B8e7KTzP4wwXiPhc2+F2Ai7jbQePu1iyosLHuBn/jhv58Xkx3a+5t2DCj/w/dW34qravg3na3/PQX4+omwNXDwdOr3QW4ejp4erWHAFcvB0+v9hTg6u3g6dVeAlx9HDy92luAq6+Dp1f7CHD1s6oTeU+vNhTg6u/g6dVGAlwDHDy92liAa6CDp1ebCHANcvD0alMBrsEOnl69WIDregdPrzYT4Bri4OnVSwS4hjp6evUewBMC3osAP0SARyHANxCwlxOwvxKw5xGwDxGwNxCg1wRoKAG6RoDWEMB/AjhJCE+Yg/43V3nd5wbyfHlGPyXv7NJXwOmRDs4u/QS4bnFwdukvwHWrg7PLAAGu2xycXQYKcN3u4OwySIDrDgdnl8ECXHc6OLtcL8A1ysHZpbkA12gHZ5dLBbjucnB2aSH5e0AHZ5fLBLjucXB2uVyA614HZ5crBLjuc3B2uVKAa4yDs8tVAlxjHZ1d7gXOLoD3IsAPEeBRCPANBOzlBOyvBOx5BOxDBOwNBOg1ARpKgK4RoDUE8J8ATtJY4dnl3nyeXYYIOP2Qg7PLUAGuSQ7OLsMEuB52cHYZLsD1iIOzyw0CXJMdnF1uFOCa4uDscpMA11QHZ5ebBbgedXB2aSnANc3B2aWVANdjDs4urQW4HndwdrlagOsJB2eXawS4nnRwdmkjwDXdwdmlrQDXUw7OLu0EuJ52dHa5Dzi7AN6LAD9EgEchwDcQsJcTsL8SsOcRsA8RsDcQoNcEaCgBukaA1hDAfwI4SU8Lzy735fPsMkLA6ZccnF1GCnC97ODscosA1ysOzi63CnDNdHB2uU2A61UHZ5fbBbhmOTi73CHA9ZqDs8udAlyvOzi7tBfgesPB2aWDANebDs4uHQW4Zjs4u1wrwDXHwdmlkwDXWw7OLtcJcM11cHbpLMA1z8HZpYsA13xHZ5cxwNkF8F4E+CECPAoBvoGAvZyA/ZWAPY+AfYiAvYEAvSZAQwnQNQK0hgD+E8BJmi88u4wJnF38C33b4XUFzfflzqa1ClwXw1qeR1ez2v3y082oNk+pupvURkWth0Gtr389C5pr09hSst6OTUJvewG97Q30tg/Q275Ab/sBve0P9HYA0NuBQG/HCXs7Lgm9HQT0djDQ2+uB3g4BejsU6O0woLfDgd7eAPR2vLC345PQ2xuB3t4E9PZmoLcjgN6OBHp7C9DbW4He3gb09n5hb+8vdfC/MHRP1BffW+rA3yf6e7Ov4z7n/fXh/yy+vIgxDGPM/9Wa144EapGf+19t7PWAWu8TVExU8aCKh1RMUvGwikdUTFYxRcVUFY+qmKbiMRWPq3hCxZMqpqt4SsXTKp5R8ayKGSqeU/F8qeS+uv2BUth9iL88s7Kkv7r9BYX7RRUvqXhZxSsqZqp4VcWsUpFYQePi+Feov6jJvaTJvazJvaLJzdTkXtXkZpXK/6vbg00L2wReMKzlV7e/aFyr/oLBtJb/gsGsdv+r218xqs17dftMk9roq9tfNaj1X90+CyBFMsk44TAl42sK9+sq3lDxporZKuaoeEvF3HgyvqYhxeua3Bua3Jua3GxNbo4m95YmNzcJZJwAkPE1gIyvA2R8AyDjmwAZZwNknAOQ8S2AjHNTRMaJhykZ5ync81UsUPG2indUvKviPRXvx5NxnoYU8zW5BZrc25rcO5rcu5rce5rc+0kg40SAjPMAMs4HyLgAIOPbABnfAcj4LkDG9wAyvp8iMj54mJLxA4V7oYoPVXyk4mMVn6j4VMVn8WT8QEOKhZrch5rcR5rcx5rcJ5rcp5rcZ0kg44MAGT8AyLgQIOOHABk/Asj4MUDGTwAyfgqQ8TMhKQpE//QMe4O8qO9zc0wU/B/oWxsXAeMg78/oL/xdLop/cfCehrzJNvhOj7DaAY7wL4lZE4d+k23wPSNhtQMd4V8au6YP+SbbXnXNawc5wr8sgD/sTbbB97GE1Q52hP+LAP6wN9kG3xETVnu9I/zLA/jD3mQbfG9NWO0QR/i/DOAPe5Nt8F06YbVDHeH/CtB/5Bnk0Y7wfw3o/y2A/t/lCP8KQP9vBfT/bkf4VwL6fxug//c4wr8K0P/bAf2/1xH+1YD+3wHo/32O8K8B9P9OQP/HOML/DaD/owD9H+sI/1pA/5HnuKY5wr8O0P9JgP4/5gj/ekD/Hwb0/3FH+DcA+v8IoP9POMK/EdD/yYD+P+kI/7eA/k8B9H+6I/zfAfo/FdD/pxzh/x7Q/0cB/X/aEf4fAP1Hvgv/hiP8PwL6/zKg/286wr8J0P9XAP2f7Qj/ZkD/ZwL6P8cR/i2A/r8K6P9bjvBvBfR/FqD/cx3h3wbo/2uA/s9zhP8nQP9fB/QffRaK4nCHlfPvIvgrTQTOd63lZzkZ14sCXOssP8vJuF4S4Fpv+VlOxvWyANcGy89yMq5XBLg2Wn6Wk3HNFOD61vKznIzrVQGu7yw/y8m4ZglwfW9Zv/j3o4sEuH6wrF+Ma7EA14+W9YtxLRHg2mRZvxjXUgGuzZb1i3EtE+DaYlm/GNcXAlxbLesX41ouwLXNsn4xri8FuH5y9Cz6z8D5G/BeBPghAjwKAb6BgL2cgP2VgD2PgH2IgL2BAL0mQEMJ0DUCtIYA/hPASUJ4whz0vxfH6z43kOfLM/opeWeX1wSc3ung7PK6ANcuB2eXNwS4/nBwdnlTgOtPB2eX2QJcux2cXeYIcO1xcHZ5S4DrLwdnl7kCXH87OLt8JcD1j4Ozy9cCXP86OLusEODa6+DsslKAa5+Ds8sqAa5IPftnl9UCXGQLV+DsskaAq4AlXMGzyzcCXAVBXP6Fnl1+Ac4ugPciwA8R4FEI8A0E7OUE7K8E7HkE7EME7A0E6DUBGkqArhGgNQTwnwBOEsKT4Nnll3yeXeYJOF3YmjbnVTOu+QJcRWziip5dFghwHWcRl392eVuA63h7uP53dnlHgOsEy3s/43pXgKuo5b2fcb0nwFXM8t7PuN4X4DrRqk7knV3WCnCdZFm/GNc6Aa6TLesX41ovwHWKZf1iXBsEuE61rF+Ma6MA12kOzi7fCnCd7uDs8p0AV3EHZ5fvBbhKODq7/AqcXQDvRYAfIsCjEOAbCNjLCdhfCdjzCNiHCNgbCNBrAjSUAF0jQGsI4D8BnKQSwrPLr/k8u3wg4HS6g7PLQgGuDAdnlw8FuDIdnF0+EuDKcnB2+ViAK9vB2eUTAa4cB2eXTwW4yjo4u3wmwFXOwdnlBwGu8g7OLj8KcFVwcHbZJMBV0cHZZbMAVyUHZ5ctAlyVHZxdtgpwVXFwdtkmwFXVwdnlJwGuao7OLr8BZxfAexHghwjwKAT4BgL2cgL2VwL2PAL2IQL2BgL0mgANJUDXCNAaAvhPACepmvDs8lupg9+nfqj3pfOfP0f//KXUgfOP/7P48iLGMCBu/1drVjsSqEV+7n+1sdd2td53qPhdxU4Vu1T8oeJPFbtV7FHxl4q/Vfyj4l8Ve1XsY56UVgRQUUBFQRWFVByh4kgVR6k4WsUxpZP7osrtpbD7EH95ZmVJf1Hlseo+FFZRRMVxKo5XcYKKoiqKlY7EChoXx78wsrAmV0STO06TO16TO0GTK6rJFSud/xdVBpsWZmJ47ia1/KLKwsa16i9gTWv5L2DNave/qPJ4o9q8F1WeYFIbfVFlUYNa/0WVxUqbkyKZZNxxmJLxRHW/TlJxsopTVJyq4jQVp6soHk/GEzWkOEmTO1mTO0WTO1WTO02TO12TK54EMu4AyHgiQMaTADKeDJDxFICMpwJkPA0g4+kAGYuniIy/H6ZkLKHu1xkqSqoopaK0ijJ8D1WkxZOxhIYUZ2hyJTW5UppcaU2ujCbnaXJpSSDj7wAZSwBkPAMgY0mAjKUAMpYGyFgGIKMHkDEtRWTceZiSMV3drwwVmSqyVGSryFFRVkW5eDKma0iRocllanJZmly2JpejyZXV5MolgYw7ATKmA2TMAMiYCZAxCyBjNkDGHICMZQEylgPIGLzQd6+UNx8HenYWfUeAf6H4KwTvacj7qNYB76760RH+ijFr4tDvo1oPvLtqkyP8lWLX9CHfR7UBeHfVZkf4Kwfwh72PaiPw7qotjvBXCeAPex/Vt8C7q7Y6wl81gD/sfVTfAe+u2uYIf7UA/rD3UX0PvLvqJ0f4qwP6v9POszQxF4q/BqD/uwD9/9cR/pqA/v8B6P9eR/jPBPT/T0D/9znCfxag/7sB/UefA5XirwXo/x5A/8kR/rMB/f8L0P8CjvCfA+j/34D+F3SE/1xA/5HvcJ/kCP95gP4Hv1ceVnuyI/znA/of/K57WO0pjvBfAOj/8fXMa091hL82oP/BZwLCak9zhP9CQP+DzymE1Z7uCH8uoP/BZyfCaos7wl8H0P/g8xxhtSUc4a8L6D/yPbjyjvDXA/Q/A9D/Co7w1wf0PxPQ/4qO8DcA9D8L0P9KjvBfBOh/NqD/lR3hbwjofw6g/1Uc4W8E6H9ZQP+rOsLfGND/coD+I9/v5F/GFYgc+MVb8KK4+YRc5BUyHzc4XpPS+RiQP4x+rmlp8yZJcTUtfSDhmX3OWjNCX/AU+ODF+WkGf7hA3OfCBr8YcBHNHDSumWZBhY3VDPyNG/rzeTE109zbsGGa/h+6t/xUWnnBvW1g6ymYaDXjqiDAdZFNXJT3FF9FAa6GFnFxLeOqJMDVyB6u/aWMq7IAV2NruPIqGVcVAa4mtnBFCxlXVQGuppZw+XWMq5oA18VWdSLv6dVjJXuDZf1iXIUFuC6xrF+Mq4gAV3PL+sW4jhPgutSyfjGu4wW4WljWL8Z1ggDXZZb1i3EVFeC63LJ+Ma5iAlxXCE+d6NOrlwCeEPBeBPghAjwKAb6BgL2cgP2VgD2PgH2IgL2BAL0mQEMJ0DUCtIYA/hPASUJ4whwsGP2T131uIM+XZ/RT8s4u1QWcbuPg7FJDgKutg7NLTQGudg7OLmcKcLV3cHY5S4Crg4OzSy0Bro4Ozi5nC3Bd6+Dsco4AVycHZ5cTBbiuc3B2OUmAq7ODs8vJAlxdHJxdThHg6urg7HKqAFc3B2eX0wS4ujs4u5wuwNXDwdmluABXT0dnl+bA2QXwXgT4IQI8CgG+gYC9nID9lYA9j4B9iIC9gQC9JkBDCdA1ArSGAP4TwEnqKTy7NM/n2eVcAacHOji7nCfANcjB2eV8Aa7BDs4uFwhwXe/g7FJbgGuIg7PLhQJcQx2cXXIFuIY5OLvUEeAa7uDsUkKA6wYHZ5czBLhudHB2KSnAdZODs0spAa6bHZxdSgtwjXBwdikjwDXSwdnFE+C6xcHZJU2A61ZHZ5dLgbML4L0I8EMEeBQCfAMBezkB+ysBex4B+xABewMBek2AhhKgawRoDQH8J4CTdKvw7HJpPs8udQWcvtvB2aWeANc9Ds4u9QW47nVwdmkgwHWfg7PLRQJcYxycXRoKcI11cHZpJMA1zsHZpbEA13gHZ5d0Aa77HZxdMgS4HnBwdskU4Jrg4OySJcA10cHZJVuA60EHZ5ccAa6HHJxdygpwTXJwdiknwPWwo7NLC+DsAngvAvwQAR6FAN9AwF5OwP5KwJ5HwD5EwN5AgF4ToKEE6BoBWkMA/wngJD0sPLu0CJxd/At92+HtBc335TtMaxW4Ow1reR6jzGr3y89oo9o8pbrLpDYqancb1Pr6d09Bc226rLSst5clobf3Ar29D+jtGKC3Y4HejgN6Ox7o7f1Abx8Aenu5sLeXJ6G3E4DeTgR6+yDQ24eA3k4Cevsw0NtHgN5OBnp7hbC3VySht1OA3k4Fevso0NtpQG8fA3r7ONDbJ4DePgn09kphb68sffC/MHRJ1Bc3L33g7xP9vdnXcZ/z/vrwfxZfXsQYhjHm/2rNa0cCtcjP/a829rpKrfeWKlqpaK3iahXXqGijoq2Kdiraq+igoqOKa1V0UnGdis4quqjoqqKbiu4qeqjoqaKXit4q+pRO7qvbrwKfmY+/PLOypL+6va/C3U9FfxUDVAxUMUjFYBXXl47EChoXx79CvZ8m11+TG6DJDdTkBmlygzW560vn/9XtwaaFbQJ9DWv51e39jGsj1N+0VuEdYFa7/9XtA41q817dPsikNvrq9sEGtf6r268HSJFMMrY8TMk4ROEeqmKYiuEqblBxo4qbVNwcT8YhGlIM1eSGaXLDNbkbNLkbNbmbNLmbk0DGlgAZhwBkHAqQcRhAxuEAGW8AyHgjQMabADLenCIytjpMyThC4R6p4hYVt6q4TcXtKu5QcWc8GUdoSDFSk7tFk7tVk7tNk7tdk7tDk7szCWRsBZBxBEDGkQAZbwHIeCtAxtsAMt4OkPEOgIx3poiMrQ9TMo5SuEeruEvF3SruUXGvivtUjIkn4ygNKUZrcndpcndrcvdocvdqcvdpcmOSQMbWABlHAWQcDZDxLoCMdwNkvAcg470AGe8DyDhGSAr03XDIi/rGmmOi4P8oCGIaB4yDvD8DfU+Qf6H4xwfvacibbIPv9AirvcQR/vtj1sSh32QbfM9IWG1zR/gfiF3Th3yTbaN65rWXOsI/IYA/7E22wfexhNW2cIR/YgB/2Jtsg++ICau9zBH+BwP4w95kG3xvTVjt5Y7wPxTAH/Ym2+C7dMJqr3CEfxKg/8gzyNc5wv8woP9tAf3v7Aj/I4D+twP0v4sj/JMB/W8P6H9XR/inAPrfAdD/bo7wTwX0vyOg/90d4X8U0P9rAf3v4Qj/NED/OwH639MR/scA/Uee47rBEf7HAf0fBOj/jY7wPwHo/2BA/29yhP9JQP+vB/T/Zkf4pwP6PwTQ/xGO8D8F6P9QQP9HOsL/NKD/wwD9v8UR/mcA/R8O6P+tjvA/C+g/8l34+x3hnwHo/z2A/j/gCP9zgP7fC+j/BEf4nwf0/z5A/yc6wv8CoP9jAP1/0BH+FwH9Hwvo/0OO8L8E6P84QP8nOcL/MqD/4wH9R5+FojjcYeX8uwj+ShOB851jFRft/x1JPwGut2ziorzf3fQX4JprERfXMq4BAlzz7OHaX8q4BgpwzbeGK6+ScQ0S4FpgC1e0kHENFuB62xIuv45xXS/A9Y5l/eLfj44T4HrXsn4xrvECXO9Z1i/Gdb8A1/uW9YtxPSDA9YFl/WJcEwS4FlrWL8Y1UYDrQ8v6xbgeFOD6yLJ+Ma6HBLg+FvpH9Fn0V4DzN+C9CPBDBHgUAnwDAXs5AfsrAXseAfsQAXsDAXpNgIYSoGsEaA0B/CeAk4TwhDlYMPonr/vcQJ4vz+in5J1dhgg4vdTB2WWoANcyB2eXYQJcXzg4uwwX4Fru4OxygwDXlw7OLjcKcH3l4OxykwDX1w7OLjcLcK1wcHaZJMC10sHZ5WEBrlUOzi6PCHCtdnB2mSzAtcbB2WWKANc3Ds4uUwW41jo4uzwqwLXOwdllmgDXekdnl5nA2QXwXgT4IQI8CgG+gYC9nID9lYA9j4B9iIC9gQC9JkBDCdA1ArSGAP4TwElaLzy7zMzn2WWEgNObHJxdRgpwbXZwdrlFgGuLg7PLrQJcWx2cXW4T4Nrm4OxyuwDXTw7OLncIcP3s4OxypwDXLw7OLo8JcP3q4OzyuADXbw7OLk8IcG13cHZ5UoBrh4Ozy3QBrt8dnF2eEuDa6eDs8rQA1y4HZ5dnBLj+cHR2eRU4uwDeiwA/RIBHIcA3ELCXE7C/ErDnEbAPEbA3EKDXBGgoAbpGgNYQwH8COEl/CM8ur+bz7DJKwOm9Ds4uowW49jk4u9wlwBWpb//scrcAF9nD9b+zyz0CXAWs4TpwdrlXgKugLVyBs8t9AlyFLOEKnl3GCHAdYXHdR6Jnl2cFuI60iivv7DJDgOsom7iiZ5fnBLiOtqxfjOt5Aa5jLOsX43pBgOtYy/rFuF4U4CpsWb8Y10sCXEUs6xfjelmA6zgQl3+hZ5dZwNkF8F4E+CECPAoBvoGAvZyA/ZWAPY+AfYiAvYEAvSZAQwnQNQK0hgD+E8BJQngSPLvMKn3w+9QP9b50/vOV6J8zSx84//g/iy8vYgwD4vZ/tWa1I4Fa5Of+Vxt7vabW++sq3lDxporZKuaoeEvFXBXzVMxXsUDF2yreUfGuivdUvK/iAxULVXyo4iMVH6v4RMWnKj5T8Xnp5L6o8rXS2H2IvzyzsqS/qHKRwr1YxRIVS1UsU/GFiuUqviwdiRU0Lo5/YeRiTW6JJrdUk1umyX2hyS3X5L4snf8XVQabFmZiFhnW8osqFxvXRmiJaa3Cu9Ssdv+LKpcZ1ea9qPILk9roiyqXG9T6L6r8EiBFMsn4+mFKxq8U7q9VrFCxUsUqFatVrFHxTTwZv9KQ4mtNboUmt1KTW6XJrdbk1mhy3ySBjK8DZPwKIOPXABlXAGRcCZBxFUDG1QAZ1wBk/CZFZHzjMCXjWoV7nYr1Kjao2KjiWxXfqfg+noxrNaRYp8mt1+Q2aHIbNblvNbnvNLnvk0DGNwAyrgXIuA4g43qAjBsAMm4EyPgtQMbvADJ+nyIyvnmYkvEHhftHFZtUbFaxRcVWFdtU/BRPxh80pPhRk9ukyW3W5LZocls1uW2a3E9JIOObABl/AMj4I0DGTQAZNwNk3AKQcStAxm0AGX8SksInpGfYm5/Nx4GenUXfEeBfKP5fgvc05H1Uwed5w2rfc4T/15g1cej3UQWfMQ6rfd8R/t9i1/Qh30c1r5557QeO8G8P4A97H1XwWeyw2oWO8O8I4A97H1Xw+fCw2g8d4f89gD/sfVTBZ9bDaj9yhH9nAH/Y+6iCz9GH1X7sCP8uQP+R549WOsL/B6D/ywD9X+UI/5+A/n8B6P9qR/h3A/q/HND/NY7w7wH0/0tA/79xhP8vQP+/AvR/rSP8fwP6/zWg/+sc4f8H0P8VgP6vd4T/X0D/ke9w/+oI/15A/zcD+v+bI/z7AP3fAuj/dkf4I2XMNX0roP87HOGnMuaavg3Q/98d4S9QxlzTfwL0f6cj/AXLmGv6z4D+73KEv1AZc03/BdD/PxzhP6KMuaYj34M7sr4b/EeWMdf0fYD+H+UI/1FlzDU9+H3BsNqjHeE/GtB/qm9ee4wj/McA+h/8XmVY7bGO8B8L6H/wu55htYUd4S8M6H/w+6dhtUUc4S8C6H/wO7Fhtcj3O/mXcfzvqJLm/6O4+YRclFbIfNzgeMeVyceA/GH0c8eXAUyqENfxZQ4kPLPPWWtGqJENfPCE/DSDP4z+q7wnAC6iqIPGFdUsqLCxiprPQYsr7OfzYiqqubdhwxz/f+je8lNp/BtDdO5plp/+Yly/CHClW376i3H9KsCV4eDp1d8EuDIdPL26XYAry8HTqzsEuLIdPL36uwBXjoOnV3cKcJW1qhN5T68uEuAq5+Dp1cUCXOUdPL26RICrgoOnV5cKcFV08PTqMgGuSg6eXv1CgKuyg6dXlwtwVXHw9OqXAlxVHT29WgzwhID3IsAPEeBRCPANBOzlBOyvBOx5BOxDBOwNBOg1ARpKgK4RoDUE8J8AThLCE+ag/81VXve5gTxfntFPyTu77BJw+mwHZ5c/BLjOcXB2+VOA61wHZ5fdAlznOTi77BHgOt/B2eUvAa4LHJxd/hbgqu3g7PKPANeFDs4uXwlw5To4u3wtwFXHwdllhQBXXQdnl5UCXPUcnF1WCXDVd3B2WS3A1cDB2WWNANdFDs4u3whwNXR0djkROLsA3osAP0SARyHANxCwlxOwvxKw5xGwDxGwNxCg1wRoKAG6RoDWEMB/AjhJDYVnlxPzeXb5V8Dp5g7OLnsFuC51cHbZJ8DVwsHZJSL43eRlDs4uJMB1uYOzSwEBriscnF0KCnBd6eDsUkiA6yoHZ5e1Aj62dHB2WSfA1crB2WW9AFdrB2eXDQJcVzs4u2wU4LrGwdnlWwGuNg7OLt8JcLV1cHb5XoCrnaOzy0nA2QXwXgT4IQI8CgG+gYC9nID9lYA9j4B9iIC9gQC9JkBDCdA1ArSGAP4TwElqJzy7nJTPs8sRAk/SxcHZ5UgBrq4Ozi5HCXB1c3B2OVqAq7uDs8sxAlw9HJxdjhXg6ung7FJYgKuXg7NLEQGu3g7OLj8IPEkfB2eXHwW4+jo4u2wS4Orn4OyyWYCrv4OzyxYBrgEOzi5bBbgGOji7bBPgGuTg7PKTANdgR2eXk4GzC+C9CPBDBHgUAnwDAXs5AfsrAXseAfsQAXsDAXpNgIYSoGsEaA0B/CeAkzRYeHY5OXB28S/0bYfTC5rvy0+Z1ipwTxvW8jyeMavdLz/PGtXmKdUMk9qoqD1nUOvr3/MFzbXplDKy3p6ShN6+APT2RaC3LwG9fRno7StAb2cCvX0V6O0soLenCnt7ahJ6+xrQ29eB3r4B9PZNoLezgd7OAXr7FtDbuUBvTxP29rQk9HYe0Nv5QG8XAL19G+jtO0Bv3wV6+x7Q2/eB3p4u7O3pZQ7+F4aKRc/1J5Y58PeJ/t7s67jPeX99+D+LLy9iDMMY83+15rUjgVrk5/5XG3sVV+u9hIozVJRUUUpFaRVlmIsq0lSkq8hQkakiS0W2ihwVZVWUU1FeRQUVFVVUUlFZRRUVVVVUK5PcV7cXB5+Zj788s7Kkv7q9usJdQ0VNFWeqOEtFLRVnqzinTCRW0Lg4/hXqNTS5mprcmZrcWZpcLU3ubE3unDL5f3V7ceAlAdUNa/nV7TWMayNU07RW4T3TrHb/q9vPMqrNe3V7LZPa6Kvbzzao9V/dfg5AimSSscRhSsZzFe7zVJyv4gIVtVVcyCZCRZ14Mp6rIcV5mtz5mtwFmlxtTe5CTS5Xk6uTBDKWAMh4LkDG8wAyng+Q8QKAjLUBMl4IkDEXIGOdFJHxjMOUjHUV7noq6qtooOIiFQ1VNFLROJ6MdTWkqKfJ1dfkGmhyF2lyDTW5Rppc4ySQ8QyAjHUBMtYDyFgfIGMDgIwXAWRsCJCxEUDGxikiY8nDlIxNFO6mKi5W0UzFJSqaq7hURYt4MjbRkKKpJnexJtdMk7tEk2uuyV2qybVIAhlLAmRsApCxKUDGiwEyNgPIeAlAxuYAGS8FyNhCSAr03XDIi/ouM8dEwf+BvrXxcmAc5P0Z5YS/y0XxXxG8pyFvsg2+0yOstrwj/FfGrIlDv8k2+J6RsNoKjvBfFbumD/km28z65rUVHeFvGcAf9ibb4PtYwmorOcLfKoA/7E22wXfEhNVWdoS/dQB/2Jtsg++tCaut4gj/1QH8YW+yDb5LJ6y2qiP81wD6jzyDnOsIfxtA/88B9L+OI/xtAf0/F9D/uo7wtwP0/zxA/+s5wt8e0P/zAf2v7wh/B0D/LwD0v4Ej/B0B/a8N6P9FjvBfC+j/hYD+N3SEvxOg/8hzXC0d4b8O0P9LAf1v5Qh/Z0D/WwD639oR/i6A/l8G6P/VjvB3BfT/ckD/r3GEvxug/1cA+t/GEf7ugP5fCeh/W0f4ewD6fxWg/+0c4e8J6D/yXfg+jvD3AvS/K6D/fR3h7w3ofzdA//s5wt8H0P/ugP73d4S/L6D/PQD9H+AIfz9A/3sC+j/QEf7+gP73AvR/kCP8AwD97w3oP/osFMXhDivn30XwV5oInO9Ey89yMq4aAlwPWn6Wk3HVFOB6yPKznIzrTAGuSZaf5WRcZwlwPWz5WU7GVUuA6xHLz3IyrrMFuCZbfpaTcZ0jwDXFsn7x70cvF+Caalm/GNcVAlyPWtYvxnWlANc0y/rFuK4S4HrMsn4xrpYCXI9b1i/G1UqA6wnL+sW4WgtwPWlZvxjX1QJc0x09iz4QOH8D3osAP0SARyHANxCwlxOwvxKw5xGwDxGwNxCg1wRoKAG6RoDWEMB/AjhJCE+Yg/734njd5wbyfHlGPyXv7HKugNMvODi7nCfA9aKDs8v5AlwvOTi7XCDA9bKDs0ttAa5XHJxdLhTgmung7JIrwPWqg7NLHQGuWQ7OLtcIcL3m4OzSRoDrdQdnl7YCXG84OLu0E+B608HZpb0A12wHZ5cOAlxzHJxdOgpwveXg7HKtANdcR2eXQcDZBfBeBPghAjwKAb6BgL2cgP2VgD2PgH2IgL2BAL0mQEMJ0DUCtIYA/hPASZorPLsMyufZpa6A0+87OLvUE+D6wMHZpb4A10IHZ5cGAlwfOji7XCTA9ZGDs0tDAa6PHZxdGglwfeLg7NJYgOtTB2eXTgJcnzk4u1wnwPW5g7NLZwGuRQ7OLl0EuBY7OLt0FeBa4uDs0k2Aa6mDs0t3Aa5lDs4uPQS4vnB0dhkMnF0A70WAHyLAoxDgGwjYywnYXwnY8wjYhwjYGwjQawI0lABdI0BrCOA/AZykL4Rnl8H5PLs0EXB6tYOzS1MBrjUOzi4XC3B94+Ds0kyAa62Ds8slAlzrHJxdmgtwrXdwdrlUgGuDg7NLCwGujQ7OLj0FuL51cHbpJcD1nYOzS28Bru8dnF36CHD94ODs0leA60cHZ5d+AlybHJxd+gtwbXZwdhkgwLXF0dnleuDsAngvAvwQAR6FAN9AwF5OwP5KwJ5HwD5EwN5AgF4ToKEE6BoBWkMA/wngJG0Rnl2uL3Pw+9QP9b50/nNg9M9BZQ6cf/yfxZcXMYYBcfu/WrPakUAt8nP/q429hqj1PlTFMBXDVdyg4kYVN6m4WcUIFSNV3KLiVhW3qbhdxR0q7lQxSsVoFXepuFvFPSruVXGfijEqxpZJ7osqh5TB7kP85ZmVJf1FleMU7vEq7lfxgIoJKiaqeFDFQ2UisYLGxfEvjByvyd2vyT2gyU3Q5CZqcg9qcg+Vyf+LKoNNCzMx4wxr+UWV441rI3S/aa3C+4BZ7f4XVU4wqs17UeVEk9roiyofNKj1X1T5EECKZJJx6GFKxkkK98MqHlExWcUUFVNVPKpiWjwZJ2lI8bAm94gmN1mTm6LJTdXkHtXkpiWBjEMBMk4CyPgwQMZHADJOBsg4BSDjVICMjwJknJYiMg47TMn4mML9uIonVDypYrqKp1Q8reKZeDI+piHF45rcE5rck5rcdE3uKU3uaU3umSSQcRhAxscAMj4OkPEJgIxPAmScDpDxKYCMTwNkfCZFZBx+mJLxWYV7hornVDyv4gUVL6p4ScXL8WR8VkOKGZrcc5rc85rcC5rci5rcS5rcy0kg43CAjM8CZJwBkPE5gIzPA2R8ASDjiwAZXwLI+LKQFOi7V14xHwd6dnZqfTf4Zwbvacj7qILP84bVPuoI/6sxa+LQ76MKPmMcVjvNEf5ZsWv6kO+jmlTfvPYxR/hfC+APex9V8FnssNrHHeF/PYA/7H1UwefDw2qfcIT/jQD+sPdRBZ9ZD6t90hH+NwP4w95HFXyOPqx2uiP8swH9R54/es0R/jmA/r8I6P/rjvC/Bej/S4D+v+EI/1xA/18G9P9NR/jnAfr/CqD/sx3hnw/o/0xA/+c4wr8A0P9XAf1/yxH+twH9nwXo/1xH+N8B9B/5DvdnjvC/C+j/B4D+f+4I/3uA/i8E9H+RI/zvA/r/IaD/ix3h/wDQ/48A/V/iCP9CQP8/BvR/qSP8HwL6/wmg/8sc4f8I0P9PAf3/whH+jwH9R74H960j/J8A+r8G0P/vHOH/FND/bwD9/94R/s8A/V8L6P8PjvB/Duj/OkD/f3SEfxGg/+sB/d/kCP9iQP83APq/2RH+JYD+bwT0H/l+Z6FI3r+jSpr/j+LmE3JReiHzcYPjLS2TjwH5w+jnlgG/gJLiWlbmQMIz+5y1ZoTNMTjeF/lpBn8Y/Vd5vwBcxHIHjVuuWVBhYy0Hf+OG/nxeTMs19zZsmGX/h+4tP5X2iuDe/mvzKatI3tOrMwW49jp4evVVAa59Dp5enSXAFWlgDdf+Usb1mgAXWcOVV8m4XhfgKmALV7SQcb0hwFXQEi6/jnG9KcBVyN762l/OT6WNE+A6wiquvKdXxwtwHWkTF+U9xXe/ANdRFnFxLeN6QIDraMv6xbgmCHAdY1m/GNdEAa5jLesX43pQgKuwZf1iXA8JcBUBcfkX+vTql4AnBLwXAX6IAI9CgG8gYC8nYH8lYM8jYB8iYG8gQK8J0FACdI0ArSGA/wRwkhCeMAf9b67yus8N5PnyjH5K3tlltoDTJ1ve+xnXHAGuUyzv/YzrLQGuUy3v/YxrrgDXaQ7OLvMEuE53cHaZL8BV3MHZZYEAVwkHZ5e3BbjOcHB2mSTAVdLB2eVhAa5SDs4ujwhwlXZwdpkswFXGwdlligCX5+DsMlWAK83B2eVRAa50B2eXaQJcGY7OLl8BZxfAexHghwjwKAT4BgL2cgL2VwL2PAL2IQL2BgL0mgANJUDXCNAaAvhPACcpQ3h2+SqfZ5d3BJyu4ODs8q4AV0UHZ5f3BLgqOTi7vC/AVdnB2eUDAa4qDs4uCwW4qjo4u3wowFXNwdnlIwGu6g7OLo8JcNVwcHZ5XICrpoOzyxMCXGc6OLs8KcB1loOzy3QBrloOzi5PCXCd7eDs8rQA1zkOzi7PCHCd6+js8jVwdgG8FwF+iACPQoBvIGAvJ2B/JWDPI2AfImBvIECvCdBQAnSNAK0hgP8EcJLOFZ5dvs7n2eVjAafrOji7fCLAVc/B2eVTAa76Ds4unwlwNXBwdvlcgOsiB2eXRQJcDR2cXRYLcDVycHZZIsDV2MHZ5VkBriYOzi4zBLiaOji7PCfAdbGDs8vzAlzNHJxdXhDgusTB2eVFAa7mDs4uLwlwXerg7PKyAFcLR2eXFcDZBfBeBPghAjwKAb6BgL2cgP2VgD2PgH2IgL2BAL0mQEMJ0DUCtIYA/hPASWohPLusCJxd/At92+EHBc335YWmtQrch4a1PI+PzGr3y8/HRrV5SvWJSW1U1D41qPX177OC5tq0soystyuT0NvPgd4uAnq7GOjtEqC3S4HeLgN6+wXQ2+VAb1cJe7sqCb39EujtV0BvvwZ6uwLo7Uqgt6uA3q4GersG6O1qYW9XJ6G33wC9XQv0dh3Q2/VAbzcAvd0I9PZboLffAb1dI+ztmjIH/wtDX0Z98VdlDvx9or83+zruc95fH/7P4suLGMMwxvxfrXntSKAW+bn/1cZe36j1vlbFOhXrVWxQsVHFtyq+U/G9ih9U/Khik4rNKrao2Kpim4qfVPys4hcVv6r4TcV2FTtU/K5iZ5nkvrr9mzLYfYi/PLOypL+6fZfC/YeKP1XsVrFHxV8q/lbxT5lIrKBxcfwr1P/Q5P7U5HZrcns0ub80ub81uX/K5P/V7cGmhW0Cuwxr+dXtfxjXRuhP01qFd7dZ7f5Xt+8xqs17dftfJrXRV7f/bVDrv7r9H4AUySTj2sOUjP8q3HtV7CuT94NIRQEVBVUU8iKxBPhXQ4q9mtw+TY5/eHyONLkCmlxBTa6Ql38yrgXI+C9Axr0AGfcBZORCg9r9ZCSj2jwyFjCpjZKxoEGtT8ZCXmrIuO4wJeMRXiRypIqjVByt4hgVx6oorKKIF4klABfHk+JITe4oTe5oTe4YTe5YTa6wJlfEyz8Z1wFk5Lmb1DIZjzSujdBRprUK79FmtfvJeIxRbR4ZjzWpjZKxsEGtT8YiXmrIuP4wJeNxnvq1uIoTVBRVUUzFiSpOUnGyF4klABfHk+J4Te4ETa6oJldMkztRkztJkzvZyz8Z1wNk5Lmb1DIZjzeujdAJprUKb1Gz2v1kLGZUm0fGE01qo2Q8yaDWJ+PJnowU6LvhkBf1nWKOiYL/A31r46nAOMj7M44Q/i4XxX+aF6gNeZPtXuCtt0c6wn96EH/Im2z3AW+9PcoR/uIx+A/9Jtvgu0/Cao92hL9EAH/Ym2yD72MJqz3GEf4zAvjD3mQbfEdMWO2xjvCXDOAPe5Nt8L01YbWFHeEvFcAf9ibb4Lt0wmqLOMJf2jPXdOQZ5JKO8JfxzDU9+Fx0WG0pR/g9z1zTT21gXlvaEf40z1zTTwP0v4wj/OmeuaafDui/5wh/hmeu6cUB/U9zhD/TM9f0EoD+pzvCn+WZa/oZgP5nOMKf7ZlrOvIcVw1H+HM8c02vCOh/TUf4y3rmml4J0P8zHeEv55lremVA/89yhL+8Z67pVQD9r+UIfwXPXNOrAvp/tiP8FT1zTa8G6P85jvBX8sw1vTqg/+c6wl/ZM9d05LvwTRzhr+KZa3o9QP+bOsJf1TPX9PqA/l/sCH81z1zTGwD638wR/uqeuaZfBOj/JY7w1/DMNb0hoP/NHeGv6ZlreiNA/y91hP9Mz1zTGwP6jz4LRXG4w8r5dxG7BM9o9bf8LOey6PfRUFwDLD/LuSz6HTkU10DLz3Iui35vD8U1yPKznMui3yVEcQ22/Cznsuj3G1Fc11t+lnNZ9DuXKK4hlp/lXBb9HiiKa6hl/eLfj/LvLlFcwyzrF+M6TYBruGX9YlynC3DdYFm/GFdxAa4bLesX4yohwHWTZf1iXGcIcN1sWb8YV0kBrhGW9YtxlRLgGunoWfSzPHPNA7wXAX6IAI9CgG8gYC8nYH8lYM8jYB8iYG8gQK8J0FACdI0ArSGA/wRwkhCeMAf978Xxus8N5PnyjH5K3tnlX4EnGe3g7LJXgOsuB2eXfQJcdzs4u3AxiuseB2cX8nBc9zo4uxQQ4LrPwdmloADXGAdnl0ICXGMdnF1KC3CNc3B2KSPANd7B2cUT4LrfwdklTYDrAQdnl3QBrgkOzi4ZAlwTHZxdMgW4HnRwdskS4HrI0dmllmeueYD3IsAPEeBRCPANBOzlBOyvBOx5BOxDBOwNBOg1ARpKgK4RoDUE8J8AThLCk+DZhdd9biDPl2f0U/LOLvzAHMrpaQ7OLkcKcD3m4OxylADX4w7OLkcLcD3h4OxyjADXkw7OLscKcE13cHYpLMD1lIOzSxEBrqcdnF2yBbiecXB2yRHgetbB2aWsANcMB2eXcgJczzk4u5QX4HrewdmlggDXCw7OLhUFuF50cHapJMD1kqOzy9meueYB3osAP0SARyHANxCwlxOwvxKw5xGwDxGwNxCg1wRoKAG6RoDWEMB/AjhJLwnPLrzucwN5vjyjn5J3duH3C6CcfsPB2eV4Aa43HZxdThDgmu3g7FJUgGuOg7NLMQGutxycXU4U4Jrr4OxykgDXPAdnl5MFuOY7OLtUFuBa4ODsUkWA620HZ5eqAlzvODi7VBPgetfB2aW6ANd7Ds4uNQS43ndwdqkpwPWBg7PLmQJcCx2dXc7xzDUP8F4E+CECPAoBvoGAvZyA/ZWAPY+AfYiAvYEAvSZAQwnQNQK0hgD+E8BJWig8u/C6z43+d/996od6Xzr/yd8z4z9reQfOP/7P4sszQpEnBYa1yM/9/752JFCL/Nz/amOvc1XheSrOV3GBitoqLlSRq6KOiroq6qmor6KBiotUNFTRSEVjFU1UNFVxsYpmKi5R0VzFpSpaqLjMS+6LKhmvYa328szKkv6iysu9SOQKFVequEpFSxWtVLRWcbUXiRU0Lo5/YeQVmtyVmtxVmlxLTa6VJtdak7vay/+LKoNNCzMxlxvW8osqrzCujdCVprUK71VmtftfVNnSqDbvRZWtTGqjL6psbVDrv6jyas+cFMkk43nAuLrLMytLOhmv8SKRNiraqminor2KDio6qrjWi8QSgIvjSdFGk2urybXT5Nprch00uY6a3LVe/skYbFoYGa8xrGUytjGujVBb01qFt51Z7X4ytjeqzSNjB5PaKBk7GtT6ZLzWSw0ZzwfG1V2eWVnSydjJi0SuU9FZRRcVXVV0U9FdRQ8vEksALo4nxXWaXGdNrosm11WT66bJddfkenj5J2OwaWFk7GRYy2S8zrg2Qp1NaxXeLma1+8nY1ag2j4zdTGqjZOxuUOuTsYeXGjJeAIyruzyzsqSTsacXifRS0VtFHxV9VfRT0V/FAC8SSwAujidFL02utybXR5Prq8n10+T6a3IDvPyTMdi0MDL2NKxlMvYyro1Qb9NahbePWe1+MvY1qs0jYz+T2igZ+xvU+mQc4MlIgb57ZaD5ONCzs8MauME/yAvUhryPKvg8b1jtcEf4Bwfxh7yPKviMcVjtDY7wXx+D/9DvoxrUwLz2Rkf4hwTwh72PKvgsdljtTY7wDw3gD3sfVfD58LDamx3hHxbAH/Y+quAz62G1IxzhHx7AH/Y+quBz9GG1Ix3hv8Ez13Tk+aNxjvDf6Jlr+l2A/o93hP8mz1zT7wb0/35H+G/2zDX9HkD/H3CEf4Rnrun3Avo/wRH+kZ65pt8H6P9ER/hv8cw1fQyg/w86wn+rZ67pYwH9f8gR/ts8c01HvsP9jCP8t3vmmv4YoP/POsJ/h2eu6Y8D+j/DEf47PXNNfwLQ/+cc4R/lmWv6k4D+P+8I/2jPXNOnA/r/giP8d3nmmv4UoP8vOsJ/t2eu6U8D+v+SI/z3eOaajnwPboEj/Pd65pr+JqD/bzvCf59nrumzAf1/xxH+MZ65ps8B9P9dR/jHeuaa/hag/+85wj/OM9f0uYD+v+8I/3jPXNPnAfr/gSP893vmmj4f0H/k+538yzj+d1RJ8/9R3HxCLsooZD5ucLwHvHwMyB9GPzfBM2+SFNeEQLHh56w1I2yOwfEmevkYkD+M/qu8/BnPcIwHPfuN4zEInEMQl9FA4M/nxcRjxN/bsGGCCz2s1va95afS+DeG6NxXOXh6dZAA12oHT68OFuBa4+Dp1esFuL5x8PTqEAGutQ6eXh0qwLXOwdOrwwS41jt4enW4ANcGqzqR9/Tq5QJcGx08vXqFANe3Dp5evVKA6zsHT69eJcD1vYOnV1sKcP3g4OlV/kI9iutHB0+vthbg2uTg6dWrBbg2O3p69SHPXPMA70WAHyLAoxDgGwjYywnYXwnY8wjYhwjYGwjQawI0lABdI0BrCOA/AZwkhCfMQf+bq7zucwN5vjyjn5J3duFvu6Cc/s3B2eVGAa7tDs4uNwlw7XBwdrlZgOt3B2eXEQJcOx2cXUZ6OK5dDs4ut3g4rj8cnF1uFeD608HZ5RoBrt0Ozi5tBLj2ODi7tBXg+svB2aWdANffDs4u7QW4/nFwdukgwPWvg7NLRwGuvQ7OLtcKcO1zdHaZ5JlrHuC9CPBDBHgUAnwDAXs5AfsrAXseAfsQAXsDAXpNgIYSoGsEaA0B/CeAk7RPeHbhdZ8byPPlGf2UvLMLf1MT5fRRF9nd+xnX7QJcR9vEFT273CHAdYxFXP7Z5U4BrmPt4frf2WWUAFdha7gOnF1GC3AVsYUrcHa5S4DrOEu4gmeXuwW4jreqE3lnl04CXCdY1i/GdZ0AV1HL+sW4OgtwFbOsX4yriwDXiZb1i3F1FeA6ybJ+Ma5uAlwnW9YvxtVdgOsUy/rFuHoIcJ0K4vIv9OzysGeueYD3IsAPEeBRCPANBOzlBOyvBOx5BOxDBOwNBOg1ARpKgK4RoDUE8J8AThLCk+DZhdd9biDPl2f0U/LOLvyUAcrp0g7OLvcKcJVxcHa5T4DLc3B2GSPAlebg7DJWgCvdwdllnABXhoOzy3gBrkwHZ5f7BbiyHJxdegpwZTs4u/QS4MpxcHbpLcBV1sHZpY8AVzkHZ5e+AlzlHZxd+glwVXBwdukvwFXRwdllgABXJUdnl0c8c80DvBcBfogAj0KAbyBgLydgfyVgzyNgHyJgbyBArwnQUAJ0jQCtIYD/BHCSKgnPLrzuc+P+f/Rth98XNN+XfzCtVeB+NKzleWwyq90vP5uNavOUaotJbVTUthrU+vq3raC5Nk32ZL3lz+XG/f9ob38Cevsz0NtfgN7+CvT2N6C324He7gB6+zvQ2ymerLf8udy4/x/t7U6gt7uA3v4B9PZPoLe7gd7uAXr7F9Dbv4HeTvVkveXP5cb9/2hv/wF6+y/Q271Ab/cBvY0UMu8tFTLvbYFC5r0tCDxQ/Kgn6y1/Ljf63/1/YYi/t81/TvIO/H2ivzf7Ou5z3l8f/s/iy4sYXQTUIj/3//vakUAt8nP/q429pqnCx1Q8ruIJFU+qmK7iKRVPq3hGxbMqZqh4TsXzKl5Q8aKKl1S8rOIVFTNVvKpilorXVLyu4g0Vb3rJfXU74zWs1V6eWVnSX90+24tE5qh4S8VcFfNUzFexQMXbXiRW0Lg4/hXqczS5tzS5uZrcPE1uvia3QJN728v/q9uDTQvbBGYb1vKr2+cY10boLdNahXeuWe3+V7fPM6rNe3X7fJPa6KvbFxjU+q9uf9szJ0UyyfgYMK7u8szKkk7Gd7xI5F0V76l4X8UHKhaq+FDFR14klgBcHE+KdzW59zS59zW5DzS5hZrch5rcR17+yRhsWhgZ3zGsZTK+a1wbofdMaxXe981q95PxA6PaPDIuNKmNkvFDg1qfjB95qSHj497hScaPvUjkExWfqvhMxecqFqlYrGKJF4klABfHk+ITTe5TTe4zTe5zTW6RJrdYk1vi5Z+Mj3vmZPzYsJbJ+IlxbYQ+Na1VeD8zq91Pxs+NavPIuMikNkrGxQa1PhmXeKkh4xPAuLrLMytLOhmXeurX4iq+ULFcxZcqvlLxtYoVXiSWAFwcT4plmtwXmtxyTe5LTe4rTe5rTW6Fl38yBpsWRsalhrVMxmXGtRH6wrRW4V1uVrufjF8a1eaR8SuT2igZvzao9cm4wpORAn03HPKivpWe+foI/g/0rY2rgHGQ92dsFD5Dh+Jf7QVqQ95kuxp46+23jvCvCeIPeZPtGuCtt985wv9NDP5Dv8n2G+Ctt987wr82gD/sTbZrgbfe/uAI/7oA/rA32a4D3nr7oyP86wP4w95kux546+0mR/g3BPCHvcl2A/DW282O8G/0zDX9NzvP08ZcKP5vPXNN3w7o/x5H+L/zzDV9B6D/fznC/71nrum/A/r/tyP8P3jmmr4T0P9/HOH/0TPX9F2A/v/rCP8mz1zT/wD0f68j/Js9c03/E9D/fY7wb/HMNR15juuEi9zg3+qZa3rw2bKw2qKO8G/zzDU9+LxbWG0xR/h/8sw1/diLzGtPdIT/Z89c04PPBYbVnuQI/y+euaYHn1UMqz3ZEf5fPXNNDz4/GVZ7iiP8v3nmmh58pjOs9lRH+Ld75ppe2s73umMuFP8Oz1zTywD6n+MI/++euaZ7gP6XdYR/p2eu6WmA/pdzhH+XZ67p6YD+l3eE/w/PXNMzAP2v4Aj/n565pmcC+l/REf7dnrmmZwH6jz4LRXG4w8r5dxH8lSYC59vM8rOcjGuOANcllp/lZFxvCXA1t/wsJ+OaK8B1qeVnORnXPAGuFpaf5WRc8wW4LrP8LCfjWiDAdbnlZzkZ19sCXFdY1i/+/egqAa4rLesX41otwHWVZf1iXGsEuFpa1i/G9Y0AVyvL+sW41gpwtbasX4xrnQDX1Zb1i3GtF+C6xrJ+Ma4NAlxtHD2Lvscz1zzAexHghwjwKAT4BgL2cgL2VwL2PAL2IQL2BgL0mgANJUDXCNAaAvhPACcJ4Qlz0P9eHK/73ECeL8/op+SdXd7xcE5f5+Ds8q4AV2cHZ5f3BLi6ODi7vC/A1dXB2eUDAa5uDs4uCwW4ujs4u3wowNXDwdnlIwGung7OLhsFuHo5OLt8K8DV28HZ5TsBrj4Ozi7fC3D1dXB2+UGAq5+Ds8uPAlz9HZxdNglwDXBwdtkswDXQ0dnlL89c8wDvRYAfIsCjEOAbCNjLCdhfCdjzCNiHCNgbCNBrAjSUAF0jQGsI4D8BnCSEJ8GzC6/73ECeL8/op+SdXfiBOZTTNzg4u3wiwHWjg7PLpwJcNzk4u3wmwHWzg7PL5wJcIxycXRYJcI10cHZZLMB1i4OzyxIBrlsdnF22CHDd5uDsslWA63YHZ5dtAlx3ODi7/CTAdaeDs8vPAlyjHJxdfhHgGu3g7PKrANddDs4uvwlw3e3o7PK3Z655gPciwA8R4FEI8A0E7OUE7K8E7HkE7EME7A0E6DUBGkqArhGgNQTwnwBO0t3Cswuv+9xAni/P6KfknV34/QIop+93cHZZJsD1gIOzyxcCXBMcnF2WC3BNdHB2+VKA60EHZ5evBLgecnB2+VqAa5KDs8sKAa6HHZxdtgtwPeLg7LJDgGuyg7PL7wJcUxycXXYKcE11cHbZJcD1qIOzyx8CXNMcnF3+FOB6zMHZZbcA1+OOzi7/eOaaB3gvAvwQAR6FAN9AwF5OwP5KwJ5HwD5EwN5AgF4ToKEE6BoBWkMA/wngJD0uPLvwus+N/nf/feqHel86/7kn+udf3oHzj/+z+PIiRhcBtcjP/f++diRQi/zc/2pjr39V4V4V+/gDaWpBqyigoqCKQiqOUHGkiqNUHK3iGBXHqiisooiK41Qcr+IEFUVVFFNxooqTVJys4pS05L6okvEa1movz6ws6S+qPFXdh9NUnK6iuIoSKs5QUVJFqbRIrKBxcfwLI0/T5E7X5IprciU0uTM0uZKaXKm0/L+oMti0MBPDczep5RdVnmZcG6HTTWsV3uJmtftfVFnCqDbvRZVnmNRGX1RZ0qDWf1FlqTRzUiSTjCwchrXayzMrSzoZS6v7VYbvmYo0FekqMlRkqsiKJ2NpDSnKaHKeJpemyaVrchmaXKYml5WWfzIGmxZGxtIAGcsAZPQAMqYBZEwHyJgBkDETIGNWisjIO7hhrfbyzMqSTsZsdb9yVJRVUU5FeRUVVFRUUSmejNkaUuRocmU1uXKaXHlNroImV1GTq5SWfzIGmxZGxmyAjDkAGcsCZCwHkLE8QMYKABkrAmSslCIyRoBxdZdnVpZ0MlZWuKuoqKqimorqKmqoqKnizHgyVtaQooomV1WTq6bJVdfkamhyNTW5M9PyT8aIIRF+i87dpJbJWAUgY1WAjNUAMlYHyFgDIGNNgIxnCkmBvnvlLPNxoGdnr7zIDf5awXsa8j6q4PO8YbVXOcJ/dsyaOPT7qILPGIfVtnSE/5zYNX3I91FdepF5bStH+M8N4A97H1XwWeyw2taO8J8XwB/2Pqrg8+FhtVc7wn9+AH/Y+6iCz6yH1V7jCP8FAfxh76MKPkcfVtvGEf7agP4jzx/1coT/QkD/OwP639sR/lxA/7sA+t/HEf46gP53BfS/ryP8dQH97wbofz9H+OsB+t8d0P/+jvDXB/S/B6D/AxzhbwDof09A/wc6wn8RoP/Id7hvc4S/IaD/NwL6f7sj/I0A/b8J0P87HOFvDOj/zYD+3+kIfxNA/0cA+j/KEf6mgP6PBPR/tCP8FwP6fwug/3c5wt8M0P9bAf2/2xH+SwD9R74H94gj/M0B/X8A0P/JjvBfCuj/BED/pzjC3wLQ/4mA/k91hP8yQP8fBPT/UUf4Lwf0/yFA/6c5wn8FoP+TAP1/zBH+KwH9fxjQf+T7ncn8ZVzBiOy+RbBxPOPkQVfsL+P8z1yl+tBSRSsVrVVcreIaFW1UtFXRTkV7FR1UdFRxrYpOKq5T0VlFFxVdVXRT0V1FDxU9VfRS0VtFHxV9VfRT0V/FABUDVQxSMTgtEvsLNgYT/0u3lppcK02utSZ3tSZ3jSbXRpNrq8m10+Taa3IdNLmOmty1mlwnTe46Ta6zJtdFk+uqyXXT5Lprcj00uZ6aXC9Nrrcm10eT66vJ9dPk+mtyAzS5gZrcIE1ucNrBv8xNi/7pRYyuGNKHCR6vbZNa/mVuS+PaCLUyrVV4W5vV7v9l7tVGtXm/zL3GpDb6y9w2BrX+L3PbhteOi95fahda29fvBbUPq539v75Rh5DaoQd6TB0PXdswsB7o2kPWbgquHep0qNrqMeuMrjtEbU7smqTOiWvbxK1f6pKwtmX8WqeuiWpHHsQL6pagduTBHKLu+trXNXyjHtra+jpuUk9dbXMtj6mXpvZNPeep98G1ZRPoA/U5qHZaIi2hvvG1VRPqDvWLq92QWKOof2xt/0PoGQ2IqW12KO2jgcHaTofUSRoUqK1yaE2lwWmY2SsQOWDsgpef8yJGV8y4IVq+LDje9Wn5GJA/XCDuc2GDX29+g2iI4aR+y8cceAwC5zAEbDJfBXQA4sY1wWtYu1SX9CJGw8RgHRpdIMPSIrFuZWj0xgVzwzQOJv4YFjY6sJJpKLBAhoE3D20OL4qh4GJiXENTpBiDzO/z1OB4w6WKwQMOxxVj6nBAMW6wrBg8hxtwxZh6Q4oUY5D5uFN0SS9iNEwM1hujC+SmeMW4UaMYNyVBMYCVTDcCC+Qm4c1DFvj+l4YCmG4GyPC//wCwDIku8Pg5hI2FbNUjADLo5hBWzvdohECJEVzJVOKB5ut3VnC8kWn5GHAkrsSzRgKL7xbLSsxzuAVX4lm35HPxmRBohGUC3QrOwb9QYUJ6eBuwNpK5ww00H/dVXdKLGA0Tg/X2KPHuiN/hbtfscHckYYcDFIJuB5p2h/DmoQsJwXRnPne4sM8weW4T7A6j8ikcYeU871EOcPkX2sNRQA9HW+5hIpE1EWfT2rtAQUuWGxhgzvWxwfHuTsvHgHfjbmDs3cANuge48dI53IO7gbH3WHYDTIS70uyS7V6QbP6FYkJ6eB9IniAeHWAvYvazBpiPO0aX9CJGw8RgHRMl3th4NzBG4wbGJsENAApBY4CmjRXePHQhIZjGWd5JmDz3peHEHp9P4Qgr53mPd4DLv9Aejgd6eL/lHiYS2bDPISL7AHBfk+kG+ptz3QuONyEtHwNOwN2ANwFo8kTgxkvnMBF3A95Ey26AifBAml2yPQiSzb9QTEgPH0qRG+hvPm4ZXdKLGA0Tg3VSlHgPx7uBSRo38HAS3ACgEDQJaNrDwpuHLiQE0yOWdxImz0NpOLEn51M4wsp53pMd4PIvtIeTgR5OsdzDRCIb9jlEZKemyA30M+f60uB4j6blY8BHcTew9FGgydOAGy+dwzTcDSydZtkNMBGmptkl22Mg2fwLxYT08PEUuYF+5uMu0SW9iNEwMVifiBLvyXg38ITGDTyZBDcAKAQ9ATTtSeHNQxcSgmm65Z2EyfN4Gk7sp/IpHGHlPO+nHODyL7SHTwE9fNpyDxOJbNjnEJF9JkVuoK851zsGx3s2LR8DPou7gY7PAk2eAdx46Rxm4G6g4wzLboCJ8EyaXbI9B5LNv1BMSA+fT5Eb6Gs+bgdd0osYDROD9YUo8V6MdwMvaNzAi0lwA4BC0AtA014U3jx0ISGYXrK8kzB5nk/Dif1yPoUjrJzn/bIDXP6F9vBloIevWO5hIpEN+xwisjNT5Ab6mHN9ZXC8V9PyMeCruBtY+SrQ5FnAjZfOYRbuBlbOsuwGmAgz0+yS7TWQbP6FYkJ6+HqK3EAf83FX6JJexGiYGKxvRIn3ZrwbeEPjBt5MghsAFILeAJr2pvDmoQsJwTTb8k7C5Hk9DSf2nHwKR1g5z3uOA1z+hfZwDtDDtyz3MJHIhn0OEdm5KXIDvc253jg43ry0fAw4D3cDjecBTZ4P3HjpHObjbqDxfMtugIkwN80u2RaAZPMvFBPSw7dT5AZ6m4/bSJf0IkbDxGB9J0q8d+PdwDsaN/BuEtwAoBD0DtC0d4U3D11ICKb3LO8kTJ6303Biv59P4Qgr53m/7wCXf6E9fB/o4QeWe5hIZMM+h4jswhS5gV7mXJ8ZHO/DtHwM+CHuBmZ+CDT5I+DGS+fwEe4GZn5k2Q0wERam2SXbxyDZ/AvFhPTwkxS5gV7m476iS3oRo2FisH4aJd5n8W7gU40b+CwJbgBQCPoUaNpnwpuHLiQE0+eWdxImzydpOLEX5VM4wsp53osc4PIvtIeLgB4uttzDRCIb9jlEZJekyA30NOf6vOB4S9PyMeBS3A3MWwo0eRlw46VzWIa7gXnLLLsBJsKSNLtk+wIkm3+hmJAeLk+RG+hpPu5cXdKLGA0Tg/XLKPG+incDX2rcwFdJcAOAQtCXQNO+Et48dCEhmL62vJMweZan4cRekU/hCCvnea9wgMu/0B6uAHq40nIPE4ls2OcQkV2VIjfQw5zrTYPjrU7Lx4CrcTfQdDXQ5DXAjZfOYQ3uBpqusewGmAir0uyS7RuQbP6FYkJ6uDZFbqCH+bhNdEkvYjRMDNZ1UeKtj3cD6zRuYH0S3ACgELQOaNp64c1DFxKCaYPlnYTJszYNJ/bGfApHWDnPe6MDXP6F9nAj0MNvLfcwkciGfQ4R2e9S5Aa6m3N9ZHC879PyMeD3uBsY+T3Q5B+AGy+dww+4Gxj5g2U3wET4Ls0u2X4EyeZfKCakh5tS5Aa6m487Qpf0IkbDxGDdHCXelng3sFnjBrYkwQ0ACkGbgaZtEd48dCEhmLZa3kmYPJvScGJvy6dwhJXzvLc5wOVfaA+3AT38yXIPE4ls2OcQkf05RW6gm9AN/JKWjwF/EbiBX4Am/wrceOkcfhW4gV8tuwEmws9pdsn2G0g2/0IxIT3cniI30E24oUWgcWLdwI4o8X6PdwM7NG7g9yS4AUAhaAfQtN8duQEE007LOwmTZ3saTuxd+RSOsHKe9y4HuPwL7eEuoId/WO5hIpEN+xwisn+myA10Nef6jOB4u9PyMeBu3A3M2A00eQ9w46Vz2IO7gRl7LLsBJsKfaXbJ9hdINv9CMSE9/DtFbqCr+bjP6pJexGiYGKz/RIn3b7wb+EfjBv5NghsAFIL+AZr2r/DmoQsJwbTX8k7C5Pk7DSf2vnwKR1g5z3ufA1z+hfZwHyLo6XZ7mEhkwz6HiCyZzyGpbqCLOdenB8crkJ6PAfnDoBuYXgBocsF0u26A58BjgG5gekGgyTpcJkSgdLtkKwSSzb9QTEgPjwAwJdMNdDEXwyd1SS9iNEwM1iOjxDsqPRK78x+ZfrAb4KL8ugFAIehIoGlHpctuHrqQEExHW95JmDxHpOPEPiafwhFWzvM+xgEu/0J7eAzQw2Mt9zCRyIZ9DhHZwilyA53Nub4qOF4RqRvgAYvgbmBVEaDJx1l2AzyH43A3sOo4y26AiVA43S7ZjnfkBpAenpAiNxAkT8i1Upf0IkbDxGAtGiVesXg3UFTjBoolwQ0ACkFFgaYVS5fdPHQhIZhOtLyTMHlOEOy6J1l2Azzvkxzg8i+0hycBPTzZcg8TiWzY5xCRPSVFbuA6c64vDo53qtQN8ICn4m5g8alAk0+z7AZ4DqfhbmDxaZbdABPhlHS7ZDvdkRtAelg8RW4gSJ6Qa5Eu6UWMhonBWiJKvDPi3UAJjRs4IwluAFAIKgE07Yx02c1DFxKCqaTlnYTJU1yw65ay7AZ43qUc4PIvtIelgB6WttzDRCIb9jlEZMukyA10Mud68eB4ntQN7B8QdwPFPaDJaZbdAM8hDXcDxdMsuwEmQpl0u2RLd+QGkB5mpMgNBMkTcp2uS3oRo2FisGZGiZcV7wYyNW4gKwluAFAIygSalpUuu3noQkIwZVveSZg8GYJdN8eyG+B55zjA5V9oD3OAHpa13MNEIhv2OURky6XIDVxrzvU5wfHKS90AD1gedwNzygNNrmDZDfAcKuBuYE4Fy26AiVAu3S7ZKjpyA0gPK6XIDQTJE3LN1iW9iNEwMVgrR4lXJd4NVNa4gSpJcAOAQlBloGlV0mU3D11ICKaqlncSJk8lwa5bzbIb4HlXc4DLv9AeVgN6WN1yDxOJbNjnEJGtkSI30NGc66OD49WUugEesCbuBkbXBJp8pmU3wHM4E3cDo8+07AaYCDXS7ZLtLEduAOlhrRS5gSB5Qq5RuqQXMRomBuvZUeKdE+8Gzta4gXOS4AYAhaCzgaadky67eehCQjCda3knYfLUEuy651l2Azzv8xzg8i+0h+cBPTzfcg8TiWzY5xCRvSBFbqCDOdcbBcerLXUDPGBt3A00qg00+ULLboDncCHuBhpdaNkNMBEuSLdLtlxHbgDpYZ0UuYEgeUKuhrqkFzEaJgZr3Sjx6sW7gboaN1AvCW4AUAiqCzStXrrs5qELCcFU3/JOwuSpI9h1G1h2AzzvBg5w+RfawwZADy+y3MNEIhv2OURkG6bIDbQ35/r44HiNpG6AB2yEu4HxjYAmN7bsBngOjXE3ML6xZTfARGiYbpdsTRy5AaSHTVPkBoLkCbnG6ZJexGiYGKwXR4nXLN4NXKxxA82S4AYAhaCLgaY1S5fdPHQhIZgusbyTMHmaCnbd5pbdAM+7uQNc/oX2sDnQw0st9zCRyIZ9DhHZFilyA+3Mud4vON5lUjfAA16Gu4F+lwFNvtyyG+A5XI67gX6XW3YDTIQW6XbJdoUjN4D08MoUuYEgeUKuvrqkFzEaJgbrVVHitYx3A1dp3EDLJLgBQCHoKqBpLdNlNw9dSAimVpZ3EibPlYJdt7VlN8Dzbu0Al3+hPWwN9PBqyz1MJLJhn0NE9poUuYG25lxfEByvjdQN8IBtcDewoA3Q5LaW3QDPoS3uBha0tewGmAjXpNslWztHbgDpYfsUuYEgeUKu+bqkFzEaJgZrhyjxOsa7gQ4aN9AxCW4AUAjqADStY7rs5qELCcF0reWdhMnTXrDrdrLsBnjenRzg8i+0h52AHl5nuYeJRDbsc4jIdk6RG2hjznUvOF4XqRvgAbvgbsDrAjS5q2U3wHPoirsBr6tlN8BE6Jxul2zdHLkBpIfdU+QGguQJucrokl7EaJgYrD2ixOsZ7wZ6aNxAzyS4AUAhqAfQtJ7pspuHLiQEUy/LOwmTp7tg1+1t2Q3wvHs7wOVfaA97Az3sY7mHiUQ27HOIyPZNkRu4xpzrRYLj9ZO6AR6wH+4GivQDmtzfshvgOfTH3UCR/pbdABOhb7pdsg1w5AaQHg5MkRsIkifkKqxLehGjYWKwDooSb3C8GxikcQODk+AGAIWgQUDTBqfLbh66kBBM11veSZg8AwW77hDLboDnPcQBLv9CezgE6OFQyz1MJLJhn0NEdliK3MDV5lzvExxvuNQN8IDDcTfQZzjQ5BssuwGeww24G+hzg2U3wEQYlm6XbDc6cgNID29KkRsIkifk6q1LehGjYWKw3hwl3oh4N3Czxg2MSIIbABSCbgaaNiJddvPQhYRgGml5J2Hy3CTYdW+x7AZ43rc4wOVfaA9vAXp4q+UeJhLZsM8hIntbitxAa3OuFwuOd7vUDfCAt+NuoNjtQJPvsOwGeA534G6g2B2W3QAT4bZ0u2S705EbQHo4KkVuIEiekKuoLulFjIaJwTo6Sry74t3AaI0buCsJbgBQCBoNNO2udNnNQxcSguluyzsJk2eUYNe9x7Ib4Hnf4wCXf6E9vAfo4b2We5hIZMM+h4jsfSlyA63MBS1mvDFSN8ADjknHPzfW8g7PuMamH0h4EfMLJREv2PvS7ZJinKNdG+nL+HwS1WTO4wU9TCahWgoJdb+UUDzg/QJCPWCZUIzrgSQRKqycG/9AumzBeGZjJHWRXJVmjjE43gTpIuEBJwgUZwLA2ImWFxTPYaKgyRMtn8F4EU0U2INxwP160LId5Hv7oJCs/oWurQeB+T9k2eIl2pHDPofsyJMs95Dv0STBRoD0IXgdYziOj6ePyc4YLe5rUhst7mdUm1fc36x2f/EAw1ouHmhaq4oHpZn3ZjCwUTwMrC+en/9XBvy53Lj/H+1tF6C3XYHedgN62x3obQ+gtz2B3vYCetsb6O0jwt4+koTetgN62x7obQegtx2B3l4L9LYT0FvgXyUz/qc+ubeThb2dnITeXgX0tiXQ21ZAb1sDvb0a6O01QG+Bb4AbP1bFvZ0i7O2UaG/5vx8bOaDTPqf9/vu1/GeZY/L+9KJ/pkX/TI8uCi9iDMMY83+15rUjgVrk5/5XG3tNVXx4VMU0FY+peFzFEyqeVDFdxVMqnlbxjIpnVcxQ8ZyK51W8oOJFFS+peFnFKypmqnhVxSwVr6l4PT3vLwN8vsZfhOGlqeC5IP7yzMqOln+W/jcnCvygNxTuN1XMVjFHxVsq5qqYp2J+eiRW0N6I/l4qmHtTk5utyc3R5N7S5OZqcvM0ufnpB98N043Tvw9TgUPTG4a1/Pu0N41rIzTbtFbhnWNWe7/CS28Z1e7kudFck9oN++8DzTOorZt3z2g++DdzySLjo4cpGRco3G+reEfFuyreU/G+ig9ULIwn4wINKd7W5N7R5N7V5N7T5N7X5D7Q5BYmgYyPAmRcAJDxbYCM7wBkfBcg43sAGd8HyPgBQMaFKSLjtMOUjB8q3B+p+FjFJyo+VfGZis9VLIon44caUnykyX2syX2iyX2qyX2myX2uyS1KAhmnAWT8ECDjRwAZPwbI+AlAxk8BMn4GkPFzgIyLUkTGxw5TMi5WuJeoWKpimYovVCxX8aWKr+LJuFhDiiWa3FJNbpkm94Umt1yT+1KT+yoJZHwMIONigIxLADIuBci4DCDjFwAZlwNk/BIg41cpImPZQk7I6BknD7piyeh/5mt1v1aoWKlilYrVKtao+EbFWhXrVKxXsUHFRhXfqvhOxfcqflDxo4pNKjar2KJiq4ptKn5S8bOKX1T8quI3FdtV7FDxu4qdKnbFk/1rDelWaHIrNblVmtxqTW6NJveNJrdWk1unya3X5DZochs1uW81ue80ue81uR80uR81uU2a3GZNbosmt1WT26bJ/aTJ/azJ/aLJ/arJ/abJbdfkdmhyv2tyOzW5XRoxT4v+6UWMrhjSh4n514CYrwDEfCUg5qsAMV8NiPkaQMy/AcR8bXjtuOj9pXWhtX39XtD6sNrZ/+sbbQipHXqgx7Tx0LUNA+uBvj1k7abg2qHvDlVbPWad0feHqM2JXZP0Q+LaNnHrl35MWNsyfq3TpkS1Iw/iBW1OUDvyYA7RFn3t6xq+0VZtbX0dN2mbrra5lsf0k6b2TT3n6eeDa8sm0Af65aDaaYm0hH6Nr62aUHfot7jaDYk1irbH1vY/hJ7RjpjaZofSPvo9WNvpkDpJOwO1VQ6tqbQLNHsFIgeMXfBCzd4ucy1fFhzvj/R8DMgfLhD3ubDB/zC/QfSn4aSk3xbkOfAYBM7hT7DJfBXQAYgb1wSvYe1SXdKLGA0Tg3V3dIHsiXfGu6M3Lpjbk57/J4uAlUy7gQWyB7x5aHN4UewGFxPj2p0ixdhpfp+nBsf7S6oYPOBfuGJM/QtQjL8tKwbP4W9cMab+nSLF2Gk+7hRd0osYDROD9Z/oAvk3XjH+0SjGv0lQDGAl0z/AAvlXePOQBc7jIJj2AmT4338AWP6MLvD4OYSNhWzV+wAy6OYQVs73aJ9AifelSIl/N1+/s2LGy8jHgPxhUIln8Wc8wzEow64S8xx4DFCJZ1FG/hafCYH2WSZQAXAO/oUKE9LDgsDaSOYO97s5aV/VJb2I0TAxWAtFiXdERiR2NyuUcfAOx0X53eEAhaBCQNOOyJDdPHQhIZiOBBbS//4jYv4ZJk/BDJzYR+VTOMLKed5HOcDlX2gPjwJ6eLTlHiYSWRNxNq09BhS0ZLmBHeZcHxsc71ipG+ABj8XdwNhjgRtU2LIb4DkUxt3A2MKW3QAT4ZgMu2QrApLNv1BMSA+PS5Eb2GHuBsbokl7EaJgYrMdHiXdCvBs4XuMGTkiCGwAUgo4HmnZChuzmoQsJwVTU8k7C5DlOsOsWs+wGeN7FHODyL7SHxYAenmi5h4lENuxziMieBNzXZLqB7eZc94LjnSx1Azzgybgb8E4GmnyKZTfAczgFdwPeKZbdABPhpAy7ZDvVkRtAenhaitzAdnM3kLR/s+f0KPGKx7uB0zVuoHgS3ACgEHQ60LTiGbKbhy4kBFMJyzsJk+c0wa57hmU3wPM+wwEu/0J7eAbQw5KWe5hIZMM+h4hsqRS5gd/Mub40OF5pqRvgAUvjbmBpaaDJZSy7AZ5DGdwNLC1j2Q0wEUpl2CWb58gNID1MS5Eb+M3cDSzRJb2I0TAxWNOjxMuIdwPpGjeQkQQ3ACgEpQNNy8iQ3Tx0ISGYMi3vJEyeNMGum2XZDfC8sxzg8i+0h1lAD7Mt9zCRyIZ9DhHZnBS5gV/Nud4xOF5ZqRvgAcvibqBjWaDJ5Sy7AZ5DOdwNdCxn2Q0wEXIy7JKtvCM3gPSwQorcwK/mbqCDLulFjIaJwVoxSrxK8W6gosYNVEqCGwAUgioCTauUIbt56EJCMFW2vJMweSoIdt0qlt0Az7uKA1z+hfawCtDDqpZ7mEhkwz6HiGy1FLmBX8y5vjI4XnWpG+ABq+NuYGV1oMk1LLsBnkMN3A2srGHZDTARqmXYJVtNR24A6eGZKXIDv5i7gRW6pBcxGiYG61lR4tWKdwNnadxArSS4AUAh6CygabUyZDcPXUgIprMt7yRMnjMFu+45lt0Az/scB7j8C+3hOUAPz7Xcw0QiG/Y5RGTPS5Eb+Nmc642D450vdQM84Pm4G2h8PtDkCyy7AZ7DBbgbaHyBZTfARDgvwy7ZajtyA0gPL0yRG/jZ3A000iW9iNEwMVhzo8SrE+8GcjVuoE4S3ACgEJQLNK1OhuzmoQsJwVTX8k7C5LlQsOvWs+wGeN71HODyL7SH9YAe1rfcw0QiG/Y5RGQbpMgN/GTO9ZnB8S6SugEe8CLcDcy8CGhyQ8tugOfQEHcDMxtadgNMhAYZdsnWyJEbQHrYOEVu4CdzN/CKLulFjIaJwdokSrym8W6gicYNNE2CGwAUgpoATWuaIbt56EJCMF1seSdh8jQW7LrNLLsBnnczB7j8C+1hM6CHl1juYSKRDfscIrLNU+QGtplzfV5wvEulboAHvBR3A/MuBZrcwrIb4Dm0wN3AvBaW3QAToXmGXbJd5sgNID28PEVuYJu5G5irS3oRo2FisF4RJd6V8W7gCo0buDIJbgBQCLoCaNqVGbKbhy4kBNNVlncSJs/lgl23pWU3wPNu6QCXf6E9bAn0sJXlHiYS2bDPISLbOkVuYKs515sGx7ta6gZ4wKtxN9D0aqDJ11h2AzyHa3A30PQay26AidA6wy7Z2jhyA0gP26bIDWw1dwNNdEkvYjRMDNZ2UeK1j3cD7TRuoH0S3ACgENQOaFr7DNnNQxcSgqmD5Z2EydNWsOt2tOwGeN4dHeDyL7SHHYEeXmu5h4lENuxziMh2SpEb2GLO9ZHB8a6TugEe8DrcDYy8DmhyZ8tugOfQGXcDIztbdgNMhE4ZdsnWxZEbQHrYNUVuYIu5GxihS3oRo2FisHaLEq97vBvopnED3ZPgBgCFoG5A07pnyG4eupAQTD0s7yRMnq6CXbenZTfA8+7pAJd/oT3sCfSwl+UeJhLZsM8hIts7RW5gs9AN9JG6AR6wj8AN9AGa3NeyG+A59BW4gb6W3QAToXeGXbL1c+QGkB72T5Eb2JwCNzAgSryB8W5ggMYNDEyCGwAUggYATRvoyA0gmAZZ3kmYPP0Fu+5gy26A5z3YAS7/Qns4GOjh9ZZ7mEhkwz6HiOyQFLmBTeZcnxEcb6jUDfCAQ3E3MGMo0ORhlt0Az2EY7gZmDLPsBpgIQzLskm24IzeA9PCGFLmBTeZu4Fld0osYDROD9cYo8W6KdwM3atzATUlwA4BC0I1A027KkN08dCEhmG62vJMweW4Q7LojLLsBnvcIB7j8C+3hCKCHIy33MJHIhn0OEdlbUuQGfjTn+vTgeLdK3QAPeCvuBqbfCjT5NstugOdwG+4Gpt9m2Q0wEW7JsEu22x25AaSHd6TIDfxo7gae1CW9iNEwMVjvjBJvVLwbuFPjBkYlwQ0ACkF3Ak0blSG7eehCQjCNtryTMHnuEOy6d1l2Azzvuxzg8i+0h3cBPbzbcg8TiWzY5xCRvSdFbuAHc66vCo53r9QN8ID34m5g1b1Ak++z7AZ4DvfhbmDVfZbdABPhngy7ZBvjyA0gPRybIjfwg7kbWKlLehGjYWKwjosSb3y8GxincQPjk+AGAIWgcUDTxmfIbh66kBBM91veSZg8YwW77gOW3QDP+wEHuPwL7eEDQA8nWO5hIpEN+xwishNT5Aa+N+f64uB4D0rdAA/4IO4GFj8INPkhy26A5/AQ7gYWP2TZDTARJmbYJdskR24A6eHDKXID35u7gUW6pBcxGiYG6yNR4k2OdwOPaNzA5CS4AUAh6BGgaZMzZDcPXUgIpimWdxImz8OCXXeqZTfA857qAJd/oT2cCvTwUcs9TCSyYZ9DRHZaitzAd+ZcLx4c7zGpG+ABH8PdQPHHgCY/btkN8Bwex91A8cctuwEmwrQMu2R7wpEbQHr4ZIrcwHfmbuB0XdKLGA0Tg3V6lHhPxbuB6Ro38FQS3ACgEDQdaNpTGbKbhy4kBNPTlncSJs+Tgl33GctugOf9jANc/oX28Bmgh89a7mEikQ37HCKyM1LkBr415/qc4HjPSd0AD/gc7gbmPAc0+XnLboDn8DzuBuY8b9kNMBFmZNgl2wuO3ADSwxdT5Aa+NXcDs3VJL2I0TAzWl6LEezneDbykcQMvJ8ENAApBLwFNezlDdvPQhYRgesXyTsLkeVGw68607AZ43jMd4PIvtIczgR6+armHiUQ27HOIyM5KkRvYaM710cHxXpO6AR7wNdwNjH4NaPLrlt0Az+F13A2Mft2yG2AizMqwS7Y3HLkBpIdvpsgNbDR3A6N0SS9iNEwM1tlR4s2JdwOzNW5gThLcAKAQNBto2pwM2c1DFxKC6S3LOwmT503BrjvXshvgec91gMu/0B7OBXo4z3IPE4ls2OcQkZ2fIjewwZzrjYLjLZC6AR5wAe4GGi0Amvy2ZTfAc3gbdwON3rbsBpgI8zPsku0dR24A6eG7KXIDG8zdQENd0osYDROD9b0o8d6PdwPvadzA+0lwA4BC0HtA097PkN08dCEhmD6wvJMwed4V7LoLLbsBnvdCB7j8C+3hQqCHH1ruYSKRDfscIrIfpcgNrDfn+vjgeB9L3QAP+DHuBsZ/DDT5E8tugOfwCe4Gxn9i2Q0wET7KsEu2Tx25AaSHn6XIDaw3dwPjdEkvYjRMDNbPo8RbFO8GPte4gUVJcAOAQtDnQNMWZchuHrqQEEyLLe8kTJ7PBLvuEstugOe9xAEu/0J7uATo4VLLPUwksmGfQ0R2WYrcwDpzrvcLjveF1A3wgF/gbqDfF0CTl1t2AzyH5bgb6LfcshtgIizLsEu2Lx25AaSHX6XIDawzdwN9dUkvYjRMDNavo8RbEe8Gvta4gRVJcAOAQtDXQNNWZMhuHrqQEEwrLe8kTJ6vBLvuKstugOe9ygEu/0J7uAro4WrLPUwksmGfQ0R2TYrcwFpzri8IjveN1A3wgN/gbmDBN0CT11p2AzyHtbgbWLDWshtgIqzJsEu2dY7cANLD9SlyA2vN3cB8XdKLGA0Tg3VDlHgb493ABo0b2JgENwAoBG0AmrYxQ3bz0IWEYPrW8k7C5Fkv2HW/s+wGeN7fOcDlX2gPvwN6+L3lHiYS2bDPISL7Q4rcwDfmXPeC4/0odQM84I+4G/B+BJq8ybIb4Dlswt2At8myG2Ai/JBhl2ybHbkBpIdbUuQGvjF3A2V0SS9iNEwM1q1R4m2LdwNbNW5gWxLcAKAQtBVo2rYM2c1DFxKC6SfLOwmTZ4tg1/3Zshvgef/sAJd/oT38GejhL5Z7mEhkwz6HiOyvKXIDa8y5XiQ43m9SN8AD/oa7gSK/AU3ebtkN8By2426gyHbLboCJ8GuGXbLtcOQGkB7+niI3sMbcDRTWJb2I0TAxWHdGibcr3g3s1LiBXUlwA4BC0E6gabsyZDcPXUgIpj8s7yRMnt8Fu+6flt0Az/tPB7j8C+3hn0APd1vuYSKRDfscIrJ7UuQGVptzvU9wvL+kboAH/At3A33+Apr8t2U3wHP4G3cDff627AaYCHsy7JLtH0duAOnhvylyA6vN3UBvXdKLGA0Tg3VvlHj74t3AXo0b2JcENwAoBO0FmrYvQ3bz0IWEYIpk2t1JmDz/CnZdMsd1AFwEmEtm3hi2cfkX2sPgOGG1BSz3MJHIhn0OEdmCwH1NphtYZc71YsHxCmXmY0D+MOgGihUCmnwEsHikczgCJA/P4Yh8ktqECAUz7ZLtSJBs/oViQnp4FIApmW5glbkbKKpLehGjYWKwHh0l3jGZkdid/+jMg90AF+XXDQAKQUcDTTsmU3bz0IWEYDrW8k7C5DlKsOsWtuwGeN6FHeDyL7SHhYEeFrHcw0QiG/Y5RGSPS5EbWGkuaDHjHS91Azzg8Zn4506wvMMzrhMyDyS8iPmFkogX7HGZdklR1NGujfSlWD6JajLnYoIeJpNQK4SEOlFKKB7wRAGhTrJMKMZ1UpIIFVbOjT8pU7ZgPLMxkrpIvk43xxgc72TpIuEBTxYozskAY0+xvKB4DqcImnyK5TMYL6JTBPagKHC/TrVsB/neniokq3+ha+tUYP6nWbZ4iXbksM8hO/LplnvI9+h0wUaA9KFQ5MBxM794swrJ1lkEG8czTh500f/mRIHPFFf3q4SKM1SUVFFKRWkVZfg+qkhTka4iQ0WmiiwV2SpyVJRVUU5FeRUVVFRUUUlFZRVVVFRVUU1FdRU1VNRUcaaKs1TUUnF2/N8BFI+e94O5EprcGZpcSU2ulCZXWpMro8l5mlyaJpeuyWVocpmaXJYml63J5WhyZTW5cppceU2ugiZXUZOrpMlV1uSqaHJVNblqmlx1Ta6GJldTkztTkztLk6ulyZ2defDfLaVF//QiRlcM6cPEprihMPHfQ5Uwro3QGaa1Cm9Js9r7FV4qZVS7k+dGpU1qN+y/D1TGoLZu3j0jL7x2XPT+UlpobV+/F5QeVjv7f32jjJDaoQd6TJmHrm0YWA+UdcjaTcG1Q9mHqq0es84o5xC1ObFrksomrm0Tt36pXMLalvFrnconqh15EC+oQoLakQdziCrqa1/X8I0qaWvr67hJlXW1zbU8piqa2jf1nKeqB9eWTaAPVO2g2mmJtISqx9dWTag7VCOudkNijaKasbX9D6FndGZMbbNDaR+dFaztdEidpFqB2iqH1lQ6GzChSqqTduI921zLlwXHO0d64uUBz8mEf+u47BzzG0TnGk5KeuLlOZwLnnh5DueCTeYrGb8dAxbXUl3SixgNE4P1vOgCOT/eGZ8XvXHB3PmZ+f/tGLCS6TxggZwP3jy0ObwozgMXE+M6L0WKUcv8Pk8NjneBVDF4wAtwxZh6AaAYtS0rBs+hNq4YU2unSDFqmY87RZf0IkbDxGC9MLpAcuMV40KNYuQmQTGAlUwXAgskV3jz0L+oQzDVAcjwv/8AsJwbXeDoX9QhW3VdgAy6OYSV8z2qK1DiuilS4rPM1++s4Hj1pErMA9bDlXhWPWDx1besxDyH+rgSz6qfz8VnQqC6lgnUAJyDf6HChPTwImBtJHOHO8t83Fd1SS9iNEwM1oZR4jWK3+Eaana4RknY4QCFoIZA0xoJbx66kBBMjfO5w4V9hslzkWB3aGJ51+J5N3GAy7/QHjYBetjUcg8TiayJOJvWXgwKWrLcwJnmXB8bHK+Z1A3wgM1wNzC2GXCDLrHsBngOl+BuYOwllt0AE+HiTLtkaw6Szb9QTEgPL02RGzjTfNwxuqQXMRomBmuLKPEui3cDLTRu4LIkuAFAIagF0LTLhDcPXUgIpsst7yRMnksFu+4Vlt0Az/sKB7j8C+3hFUAPr7Tcw0QiG/Y5RGSvStHfDdQ057oXHK+l1A3wgC1xN+C1BJrcyrIb4Dm0wt2A18qyG2AiXJVpl2ytHbkBpIdXp8gN1DQfN2nvnbsmSrw28W7gGo0baJMENwAoBF0DNK2N8OahCwnB1NbyTsLkuVqw67az7AZ43u0c4PIvtIftgB62t9zDRCIb9jlEZDukyA3UMOf60uB4HaVugAfsiLuBpR2BJl9r2Q3wHK7F3cDSay27ASZCh0y7ZOvkyA0gPbwuRW6ghvm4S3RJL2I0TAzWzlHidYl3A501bqBLEtwAoBDUGWhaF+HNQxcSgqmr5Z2EyXOdYNftZtkN8Ly7OcDlX2gPuwE97G65h4lENuxziMj2SJEbqG7O9Y7B8XpK3QAP2BN3Ax17Ak3uZdkN8Bx64W6gYy/LboCJ0CPTLtl6O3IDSA/7pMgNVDcft4Mu6UWMhonB2jdKvH7xbqCvxg30S4IbABSC+gJN6ye8eehCQjD1t7yTMHn6CHbdAZbdAM97gANc/oX2cADQw4GWe5hIZMM+h4jsoBS5gWrmXF8ZHG+w1A3wgINxN7ByMNDk6y27AZ7D9bgbWHm9ZTfARBiUaZdsQxy5AaSHQ1PkBqqZj7tCl/QiRsPEYB0WJd7weDcwTOMGhifBDQAKQcOApg0X3jx0ISGYbrC8kzB5hgp23RstuwGe940OcPkX2sMbgR7eZLmHiUQ27HOIyN6cIjdQ1ZzrjYPjjZC6AR5wBO4GGo8AmjzSshvgOYzE3UDjkZbdABPh5ky7ZLvFkRtAenhritxAVfNxG+mSXsRomBist0WJd3u8G7hN4wZuT4IbABSCbgOadrvw5qELCcF0h+WdhMlzq2DXvdOyG+B53+kAl3+hPbwT6OEoyz1MJLJhn0NEdnSK3EAVc67PDI53l9QN8IB34W5g5l1Ak++27AZ4DnfjbmDm3ZbdABNhdKZdst3jyA0gPbw3RW6givm4r+iSXsRomBis90WJNybeDdyncQNjkuAGAIWg+4CmjRHePHQhIZjGWt5JmDz3CnbdcZbdAM97nANc/oX2cBzQw/GWe5hIZMM+h4js/SlyA5XNuT4vON4DUjfAAz6Au4F5DwBNnmDZDfAcJuBuYN4Ey26AiXB/pl2yTXTkBpAePpgiN1DZfNy5uqQXMRomButDUeJNincDD2ncwKQkuAFAIeghoGmThDcPXUgIpoct7yRMngcFu+4jlt0Az/sRB7j8C+3hI0APJ1vuYSKRDfscIrJTUuQGKplzvWlwvKlSN8ADTsXdQNOpQJMftewGeA6P4m6g6aOW3QATYUqmXbJNc+QGkB4+liI3UMl83Ca6pBcxGiYG6+NR4j0R7wYe17iBJ5LgBgCFoMeBpj0hvHnoQkIwPWl5J2HyPCbYdadbdgM87+kOcPkX2sPpQA+fstzDRCIb9jlEZJ9OkRuoaM71kcHxnpG6AR7wGdwNjHwGaPKzlt0Az+FZ3A2MfNayG2AiPJ1pl2wzHLkBpIfPpcgNVDQfd4Qu6UWMhonB+nyUeC/Eu4HnNW7ghSS4AUAh6HmgaS8Ibx66kBBML1reSZg8zwl23ZcsuwGe90sOcPkX2sOXgB6+bLmHiUQ27HOIyL6SIjdQQegGZkrdAA84U+AGZgJNftWyG+A5vCpwA69adgNMhFcy7ZJtliM3gPTwtRS5gQopcAOvR4n3RrwbeF3jBt5IghsAFIJeB5r2hiM3gGB60/JOwuR5TbDrzrbsBnjesx3g8i+0h7OBHs6x3MNEIhv2OURk30qRGyhvzvUZwfHmSt0ADzgXdwMz5gJNnmfZDfAc5uFuYMY8y26AifBWpl2yzXfkBpAeLkiRGyhvPu6zuqQXMRomBuvbUeK9E+8G3ta4gXeS4AYAhaC3gaa9I7x56EJCML1reSdh8iwQ7LrvWXYDPO/3HODyL7SH7wE9fN9yDxOJbNjnEJH9IEVuoJw516cHx1sodQM84ELcDUxfCDT5Q8tugOfwIe4Gpn9o2Q0wET7ItEu2jxy5AaSHH6fIDZQzH/dJXdKLGA0Tg/WTKPE+jXcDn2jcwKdJcAOAQtAnQNM+Fd48dCEhmD6zvJMweT4W7LqfW3YDPO/PHeDyL7SHnwM9XGS5h4lENuxziMguTpEbKGvO9VXB8ZZI3QAPuAR3A6uWAE1eatkN8ByW4m5g1VLLboCJsDjTLtmWOXIDSA+/SJEbKGs+7kpd0osYDRODdXmUeF/Gu4HlGjfwZRLcAKAQtBxo2pfCm4cuJATTV5Z3EibPF4Jd92vLboDn/bUDXP6F9vBroIcrLPcwkciGfQ4R2ZUpcgM55lxfHBxvldQN8ICrcDeweBXQ5NWW3QDPYTXuBhavtuwGmAgrM+2SbY0jN4D08JsUuYEc83EX6ZJexGiYGKxro8RbF+8G1mrcwLokuAFAIWgt0LR1wpuHLiQE03rLOwmT5xvBrrvBshvgeW9wgMu/0B5uAHq40XIPE4ls2OcQkf02RW4g25zrxYPjfSd1Azzgd7gbKP4d0OTvLbsBnsP3uBso/r1lN8BE+DbTLtl+cOQGkB7+mCI3kG0+7um6pBcxGiYG66Yo8TbHu4FNGjewOQluAFAI2gQ0bbPw5qELCcG0xfJOwuT5UbDrbrXsBnjeWx3g8i+0h1uBHm6z3MNEIhv2OURkf0qRG8gy5/qc4Hg/S90AD/gz7gbm/Aw0+RfLboDn8AvuBub8YtkNMBF+yrRLtl8duQGkh7+lyA1kmY87W5f0IkbDxGDdHiXejng3sF3jBnYkwQ0ACkHbgabtEN48dCEhmH63vJMweX4T7Lo7LbsBnvdOB7j8C+3hTqCHuyz3MJHIhn0OEdk/UuQGMs25Pjo43p9SN8AD/om7gdF/Ak3ebdkN8Bx2425g9G7LboCJ8EemXbLtceQGkB7+lSI3kGk+7ihd0osYDROD9e8o8f6JdwN/a9zAP0lwA4BC0N9A0/4R3jx0ISGY/rW8kzB5/hLsunstuwGe914HuPwL7eFeoIf7LPcwkciGfQ4R2UhWatxAhjnXGwXHo6x8DMgfBt1AIzK/QVQgy64b4DnwGKAbaFQAaLIOlwkRIll2yVYQ6EPwf6CYkB4WAjAl0w1kmAtPQ13SixgNE4P1iCjxjsyKxO78R2Qd7Aa4KL9uAFAIOgJo2pFZspuHLiQE01Hg4kYXDJOnUBZO7KPzKRxh5Tzvox3g8i+0h0cDPTzGcg8TiWzY5xCRPTZFbiDdnOvjg+MVlroBHrAw7gbGFwaaXMSyG+A5FMHdwPgilt0AE+HYLLtkO86RG0B6eHyK3EC6uRsYp0t6EaNhYrCeECVe0Xg3cILGDRRNghsAFIJOAJpWNEt289CFhGAqZnknYfIcL9h1T7TsBnjeJzrA5V9oD08EeniS5R4mEtmwzyEie3KK3ECaOdf7Bcc7ReoGeMBTcDfQ7xSgyadadgM8h1NxN9DvVMtugIlwcpZdsp3myA0gPTw9RW4gzdwN9NUlvYjRMDFYi0eJVyLeDRTXuIESSXADgEJQcaBpJbJkNw9dSAimMyzvJEye0wW7bknLboDnXdIBLv9Ce1gS6GEpyz1MJLJhn0NEtnSK3IBnzvUFwfHKSN0AD1gGdwMLygBN9iy7gf03DXcDCzzLboCJUDrLLtnSHLkBpIfpKXIDnrkbmK9LehGjYWKwZkSJlxnvBjI0biAzCW4AUAjKAJqWmSW7eehCQjBlWd5JmDzpgl0327Ib4HlnO8DlX2gPs4Ee5ljuYSKRDfscIrJlU+QGyphz3QuOV07qBnjAcrgb8MoBTS5v2Q3wHMrjbsArb9kNMBHKZtklWwVHbgDpYcUUuYEy5m6gjC7pRYyGicFaKUq8yvFuoJLGDVROghsAFIIqAU2rnCW7eehCQjBVsbyTMHkqCnbdqpbdAM+7qgNc/oX2sCrQw2qWe5hIZMM+h4hs9RS5gdLmXC8SHK+G1A3wgDVwN1CkBtDkmpbdAM+hJu4GitS07AaYCNWz7JLtTEduAOnhWSlyA6XN3UBhXdKLGA0Tg7VWlHhnx7uBWho3cHYS3ACgEFQLaNrZWbKbhy4kBNM5lncSJs9Zgl33XMtugOd9rgNc/oX28Fygh+dZ7mEikQ37HCKy56fIDZQy53qf4HgXSN0AD3gB7gb6XAA0ubZlN8BzqI27gT61LbsBJsL5WXbJdqEjN4D0MDdFbqCUuRvorUt6EaNhYrDWiRKvbrwbqKNxA3WT4AYAhaA6QNPqZsluHrqQEEz1LO8kTJ5cwa5b37Ib4HnXd4DLv9Ae1gd62MByDxOJbNjnEJG9KEVuoKQ514sFx2sodQM8YEPcDRRrCDS5kWU3wHNohLuBYo0suwEmwkVZdsnW2JEbQHrYJEVuoKS5GyiqS3oRo2FisDaNEu/ieDfQVOMGLk6CGwAUgpoCTbs4S3bz0IWEYGpmeSdh8jQR7LqXWHYDPO9LHODyL7SHlwA9bG65h4lENuxziMhemiI3cAbw/ojgeC2kboAHbJGFf+4yyzs847os60DCi5hfKIl4wV6aZZcUlzvatZG+XJFPoprM+QpBD5NJqBJCQl0pJRQPeKWAUFdZJhTjuipJhAor58ZflSVbMJ7ZGEldJMWBZ8+D47WULhIesKVAcVoCjG1leUHxHFoJmtzK8hmMF1ErgT24HLhfrS3bQb63rYVk9S90bbUG5n+1ZYuXaEcO+xyyI19juYd8j64RbARIHwpFDhw384s3s5BsnUWwcTzj5EEX/W9OFPhMG3W/2qpop6K9ig4qOqq4VkUnFdep6Kyii4quKrqp6K6ih4qeKnqp6K2ij4q+Kvqp6K9igIqBKgapGKziehVDVAxVMUzFcBU3xP8dQJvoeT+Ya6vJtdPk2mtyHTS5jprctZpcJ03uOk2usybXRZPrqsl10+S6a3I9NLmemlwvTa63JtdHk+uryfXT5PprcgM0uYGa3CBNbrAmd70mN0STG6rJDdPkhmtyN2Qd/HdLadE/vYjRFUP6MLFpYyhM/PdQbY1rI9TOtFbhbW9We7/CSx2Manfy3KijSe2G/feBrjWorZt3z6hTeO246P2l60Jr+/q9oM5htbP/1zfqElI79ECPqeuhaxsG1gN1O2TtpuDaoe6Hqq0es86oxyFqc2LXJPVMXNsmbv1Sr4S1LePXOvVOVDvyIF5QnwS1Iw/mEPXV176u4Rv109bW13GT+utqm2t5TAM0tW/qOU8DD64tm0AfaNBBtdMSaQkNjq+tmlB36Pq42g2JNYqGxNb2P4Se0dCY2maH0j4aFqztdEidpOGB2iqH1lS6IUUn3hvMtXxZcLwbpSdeHvDGLPi3jstuNL9BdJPhpKQnXp7DTeCJl+dwE9hkvpLx2zFgcS3VJb2I0TAxWG+OLpAR8c745uiNC+ZGZOX/t2PASqabgQUyArx5aHN4UdwMLibGdXOKFGO4+X2eGhxvpFQxeMCRuGJMHQkoxi2WFYPncAuuGFNvSZFiDDcfd4ou6UWMhonBemt0gdwWrxi3ahTjtiQoBrCS6VZggdwmvHnoX9QhmG4HyPC//wCw3BRd4Ohf1CFb9R0AGXRzCCvne3SHQInvSJESDzNfv7OC490pVWIe8E5ciWfdCSy+UZaVmOcwClfiWaPyufhMCHSHZQKNBufgX6gwIT28C1gbydzhhpmP+6ou6UWMhonBeneUePfE73B3a3a4e5KwwwEKQXcDTbtHePPQhYRgujefO1zYZ5g8dwl2h/ss71o87/sc4PIvtIf3AT0cY7mHiUTWRJxNa8eCgpYsNzDUnOtjg+ONk7oBHnAc7gbGjgNu0HjLboDnMB53A2PHW3YDTISxWXbJdj9INv9CMSE9fCBFbmCo+bhjdEkvYjRMDNYJUeJNjHcDEzRuYGIS3ACgEDQBaNpE4c1DFxKC6UHLOwmT5wHBrvuQZTfA837IAS7/Qnv4ENDDSZZ7mEhkwz6HiOzDKfq7gSHmXPeC4z0idQM84CO4G/AeAZo82bIb4DlMxt2AN9myG2AiPJxll2xTHLkBpIdTU+QGhpiPm7T3zj0aJd60eDfwqMYNTEuCGwAUgh4FmjZNePPQhYRgeszyTsLkmSrYdR+37AZ43o87wOVfaA8fB3r4hOUeJhLZsM8hIvtkitzA9eZcXxocb7rUDfCA03E3sHQ60OSnLLsBnsNTuBtY+pRlN8BEeDLLLtmeduQGkB4+kyI3cL35uEt0SS9iNEwM1mejxJsR7wae1biBGUlwA4BC0LNA02YIbx66kBBMz1neSZg8zwh23ectuwGe9/MOcPkX2sPngR6+YLmHiUQ27HOIyL6YIjcw2JzrHYPjvSR1AzzgS7gb6PgS0OSXLbsBnsPLuBvo+LJlN8BEeDHLLtleceQGkB7OTJEbGGw+bgdd0osYDROD9dUo8WbFu4FXNW5gVhLcAKAQ9CrQtFnCm4cuJATTa5Z3EibPTMGu+7plN8Dzft0BLv9Ce/g60MM3LPcwkciGfQ4R2TdT5AYGmXN9ZXC82VI3wAPOxt3AytlAk+dYdgM8hzm4G1g5x7IbYCK8mWWXbG85cgNID+emyA0MMh93hS7pRYyGicE6L0q8+fFuYJ7GDcxPghsAFILmAU2bL7x56EJCMC2wvJMweeYKdt23LbsBnvfbDnD5F9rDt4EevmO5h4lENuxziMi+myI3MNCc642D470ndQM84Hu4G2j8HtDk9y27AZ7D+7gbaPy+ZTfARHg3yy7ZPnDkBpAeLkyRGxhoPm4jXdKLGA0Tg/XDKPE+incDH2rcwEdJcAOAQtCHQNM+Et48dCEhmD62vJMweRYKdt1PLLsBnvcnDnD5F9rDT4Aefmq5h4lENuxziMh+liI3MMCc6zOD430udQM84Oe4G5j5OdDkRZbdAM9hEe4GZi6y7AaYCJ9l2SXbYkduAOnhkhS5gQHm476iS3oRo2FisC6NEm9ZvBtYqnEDy5LgBgCFoKVA05YJbx66kBBMX1jeSZg8SwS77nLLboDnvdwBLv9Ce7gc6OGXlnuYSGTDPoeI7FcpcgP9zbk+Lzje11I3wAN+jbuBeV8DTV5h2Q3wHFbgbmDeCstugInwVZZdsq105AaQHq5KkRvobz7uXF3SixgNE4N1dZR4a+LdwGqNG1iTBDcAKAStBpq2Rnjz0IWEYPrG8k7C5Fkl2HXXWnYDPO+1DnD5F9rDtUAP11nuYSKRDfscIrLrU+QG+plzvWlwvA1SN8ADbsDdQNMNQJM3WnYDPIeNuBtoutGyG2AirM+yS7ZvHbkBpIffpcgN9DMft4ku6UWMhonB+n2UeD/Eu4HvNW7ghyS4AUAh6HugaT8Ibx66kBBMP1reSZg83wl23U2W3QDPe5MDXP6F9nAT0MPNlnuYSGTDPoeI7JYUuYG+5lwfGRxvq9QN8IBbcTcwcivQ5G2W3QDPYRvuBkZus+wGmAhbsuyS7SdHbgDp4c8pcgN9zccdoUt6EaNhYrD+EiXer/Fu4BeNG/g1CW4AUAj6BWjar8Kbhy4kBNNvlncSJs/Pgl13u2U3wPPe7gCXf6E93A70cIflHiYS2bDPISL7e4rcQB+hG9gpdQM84E6BG9gJNHmXZTfAc9glcAO7LLsBJsLvWXbJ9ocjN4D08M8UuYE+KXADu6PE2xPvBnZr3MCeJLgBQCFoN9C0PY7cAILpL8s7CZPnT8Gu+7dlN8Dz/tsBLv9Ce/g30MN/LPcwkciGfQ4R2X9T5AZ6m3N9RnC8vVI3wAPuxd3AjL1Ak/dZdgM8h324G5ixz7IbYCL8m2WXbJFsN24A6SEBmJLpBnqb9/NZXdKLGA0Tg7VAdt6fBbMjsTs//x/xboCL8usGAIWgAtnmTSuYLbt56EJCMBUCFze6YJg8lI0T+whzXNGBYn9+WDnP+wgHuPwL7eERQA+PtNzDRCIb9jlEZI8C7msy3UAvc65PD453dHY+BuQPg25g+tFAk48BFo90DseA5OE5HJNPUpsQ4ahsu2Q71pEbQHpYOEVuoJe5G3hSl/QiRsPEYC0SJd5x8W6giMYNHJcENwAoBBUBmnZctuzmoQsJwXS85Z2EyVNYsOueYNkN8LxPcIDLv9AengD0sKjlHiYS2bDPISJbLEVuoKc511cFxztR6gZ4wBNxN7DqRKDJJ1l2AzyHk3A3sOoky26AiVAs2y7ZTnbkBpAenpIiN9DT3A2s1CW9iNEwMVhPjRLvtHg3cKrGDZyWBDcAKASdCjTttGzZzUMXEoLpdMs7CZPnFMGuW9yyG+B5F3eAy7/QHhYHeljCcg8TiWzY5xCRPSNFbqCHOdcXB8crKXUDPGBJ3A0sLgk0uZRlN8BzKIW7gcWlLLsBJsIZ2XbJVtqRG0B6WCZFbqCHuRtYpEt6EaNhYrB6UeKlxbsBT+MG0pLgBgCFIA9oWlq27OahCwnBlG55J2HylBHsuhmW3QDPO8MBLv9Ce5gB9DDTcg8TiWzY5xCRzUqRG+huzvXiwfGypW6AB8zG3UDxbKDJOZbdAM8hB3cDxXMsuwEmQla2XbKVdeQGkB6WS5Eb6G7uBk7XJb2I0TAxWMtHiVch3g2U17iBCklwA4BCUHmgaRWyZTcPXUgIpoqWdxImTznBrlvJshvgeVdygMu/0B5WAnpY2XIPE4ls2OcQka2SIjfQzZzrc4LjVZW6AR6wKu4G5lQFmlzNshvgOVTD3cCcapbdABOhSrZdslV35AaQHtZIkRvoZu4GZuuSXsRomBisNaPEOzPeDdTUuIEzk+AGAIWgmkDTzsyW3Tx0ISGYzrK8kzB5agh23VqW3QDPu5YDXP6F9rAW0MOzLfcwkciGfQ4R2XNS5Aa6mnN9dHC8c6VugAc8F3cDo88FmnyeZTfAczgPdwOjz7PsBpgI52TbJdv5jtwA0sMLUuQGupq7gVG6pBcxGiYGa+0o8S6MdwO1NW7gwiS4AUAhqDbQtAuzZTcPXUgIplzLOwmT5wLBrlvHshvgeddxgMu/0B7WAXpY13IPE4ls2OcQka2XIjfQxZzrjYLj1Ze6AR6wPu4GGtUHmtzAshvgOTTA3UCjBpbdABOhXrZdsl3kyA0gPWyYIjfQxdwNNNQlvYjRMDFYG0WJ1zjeDTTSuIHGSXADgEJQI6BpjbNlNw9dSAimJpZ3EiZPQ8Gu29SyG+B5N3WAy7/QHjYFenix5R4mEtmwzyEi2yxFbqCzOdfHB8e7ROoGeMBLcDcw/hKgyc0tuwGeQ3PcDYxvbtkNMBGaZdsl26WO3ADSwxYpcgOdzd3AOF3SixgNE4P1sijxLo93A5dp3MDlSXADgELQZUDTLs+W3Tx0ISGYrrC8kzB5Wgh23SstuwGe95UOcPkX2sMrgR5eZbmHiUQ27HOIyLZMkRu4zpzr/YLjtZK6AR6wFe4G+rUCmtzashvgObTG3UC/1pbdABOhZbZdsl3tyA0gPbwmRW7gOnM30FeX9CJGw8RgbRMlXtt4N9BG4wbaJsENAApBbYCmtc2W3Tx0ISGY2lneSZg81wh23faW3QDPu70DXP6F9rA90MMOlnuYSGTDPoeIbMcUuYFO5lxfEBzvWqkb4AGvxd3AgmuBJney7AZ4Dp1wN7Cgk2U3wETomG2XbNc5cgNIDzunyA10MncD83VJL2I0TAzWLlHidY13A100bqBrEtwAoBDUBWha12zZzUMXEoKpm+WdhMnTWbDrdrfsBnje3R3g8i+0h92BHvaw3MNEIhv2OURke6bIDVxrznUvOF4vqRvgAXvhbsDrBTS5t2U3wHPojbsBr7dlN8BE6Jltl2x9HLkBpId9U+QGrjV3A2V0SS9iNEwM1n5R4vWPdwP9NG6gfxLcAKAQ1A9oWv9s2c1DFxKCaYDlnYTJ01ew6w607AZ43gMd4PIvtIcDgR4OstzDRCIb9jlEZAenyA10NOd6keB410vdAA94Pe4GilwPNHmIZTfAcxiCu4EiQyy7ASbC4Gy7ZBvqyA0gPRyWIjfQ0dwNFNYlvYjRMDFYh0eJd0O8GxiucQM3JMENAApBw4Gm3ZAtu3noQkIw3Wh5J2HyDBPsujdZdgM875sc4PIvtIc3AT282XIPE4ls2OcQkR2RIjfQwZzrfYLjjZS6AR5wJO4G+owEmnyLZTfAc7gFdwN9brHsBpgII7Ltku1WR24A6eFtKXIDHczdQG9d0osYDROD9fYo8e6IdwO3a9zAHUlwA4BC0O1A0+7Ilt08dCEhmO60vJMweW4T7LqjLLsBnvcoB7j8C+3hKKCHoy33MJHIhn0OEdm7UuQG2ptzvVhwvLulboAHvBt3A8XuBpp8j2U3wHO4B3cDxe6x7AaYCHdl2yXbvY7cANLD+1LkBtqbu4GiuqQXMRomBuuYKPHGxruBMRo3MDYJbgBQCBoDNG1stuzmoQsJwTTO8k7C5LlPsOuOt+wGeN7jHeDyL7SH44Ee3m+5h4lENuxziMg+kCI30A74R3aD402QugEecEI2/rmJlnd4xjUx+0DCi5hfKIl4wT6QbZcUDzratZG+PJRPoprM+SFBD5NJqLZCQk2SEooHnCQg1MOWCcW4Hk4SocLKufEPZ8sWjGc2RlIXSRvkn+sOfPAR6SLhAR8RKM4jAGMnW15QPIfJgiZPtnwG40U0WWAPHgTu1xTLdpDv7RQhWf0LXVtTgPlPtWzxEu3IYZ9DduRHLfeQ79Gjgo0A6UPwOsZwHB/PL+kGmKLFv5rURot/M6rNK95uVru/eIdhLRf/blqrinemm/dmV7p5b6YB64vn5/+VAX8uN+7/R3v7I9DbTUBvNwO93QL0divQ221Ab38Cevsz0NvHhL19LAm9XQf0dj3Q2w1AbzcCvf0W6O13QG+/B3r7A9Dbx4W9fTwJvf0a6O0KoLcrgd6uAnq7GujtGqC33wC9XQv09glhb59IQm+rZZr3tnqmeW9rZJr3tmameW/PzDTv7VmZ5r2tlWne27MzzXv7pLC3Tyaht+WA3pYHelsB6G1FoLeVgN5WBnpbBehtVaC304W9nZ6E3qYBvU0HepsB9DYT6G0W0NtsoLc5QG/LAr19Stjbp5LQ2+JAb0sAvT0D6G1JoLelgN6WBnpbBuitB/T2aWFvn05Cbwdlmfd2cJZ5b6/PMu/tkCzz3g7NMu/tsCzz3g43/xtwugH4i9BnhL19Jgm97QX0tjfQ2z5Ab/sCve0H9LY/0NsBQG8HAr19VtjbZ5PQ2+uA3nYGetsF6G1XoLfdgN52B3oL/Kvb1BPo7Qxhb2ckobdtgN62BXrbDuhte6C3HYDedgR6CzzhbPzaEO7tc8LePhftLf/3YyMH/h6S/3ws+8Dfb/CfT2QfODf5Htv3Y/7e7eu8rwn++vHH4suLGMM0nlMqa0cCtcjP/a829nperZ8XVLyo4iUVL6t4RcVMFa+qmKXiNRWvq3hDxZsqZquYo+ItFXNVzFMxX8UCFW+reEfFuyreU/F+dt4vl31+xF+E4aXnwd8zxV+eWdnR8s/S/+ZEgR/0gcK9UMWHKj5S8bGKT1R8quKz+O8+fhD9nmMwt1CT+1CT+0iT+1iT+0ST+1ST+yz74LthulH59+F54JdwHxjW8vczFxrXRuhD01qF9yOz2vsVXvrYqHYnz40+MandsP8+0KcGtXXz7hl9Bn7TI1lkfOEwJePnCvciFYtVLFGxVMUyFV+oWB5Pxs81pFikyS3W5JZocks1uWWa3Bea3PIkkPEFgIyfA2RcBJBxMUDGJQAZlwJkXAaQ8QuAjMtTRMYXD1Myfqlwf6XiaxUrVKxUsUrFahVr4sn4pYYUX2lyX2tyKzS5lZrcKk1utSa3JglkfBEg45cAGb8CyPg1QMYVABlXAmRcBZBxNUDGNSki40uHKRm/UbjXqlinYr2KDSo2qvhWxXfxZPxGQ4q1mtw6TW69JrdBk9uoyX2ryX2XBDK+BJDxG4CMawEyrgPIuB4g4waAjBsBMn4LkPE7ISnQR7yCtWF9LFvIvPZ7AH9wbfLnRkaSKzDfC+9lBBvHM04edMUKjP+ZHxTuH1VsUrFZxRYVW1VsU/GTip9V/KLiVxW/qdiuYoeK31XsVLFLxR8q/lSxW8UeFX+p+FvFPyr+VbFXxT4Wqxw1tooCKgqqKJQTiW3MDxoh+VGT26TJbdbktmhyWzW5bZrcT5rcz5rcL5rcr5rcb5rcdk1uhyb3uya3U5Pbpcn9ocn9qcnt1uT2aHJ/aXJ/a3L/aHL/anJ7Nbl9mhwvnvgcaXIFNLmCmlyhnIM3qLTon17E6IohfZhY/QBsUD8CG9QmYIPaDGxQW4ANaiuwQW0DNqifwmvHRe8v/Rxa29fvBf0SVjv7f32jX0Nqhx7oMf126NqGgfVA2w9Zuym4dmjHoWqrx6wz+v0QtTmxa5J2Jq5tE7d+aVfC2pbxa53+SFQ78iBe0J8JakcezCHara99XcM32qOtra/jJv2lq22u5TH9ral9U895+ufg2rIJ9IH+Pah2WiItob3xtVUT6g7ti6vdkFijiDU2UNv/EHpGFFPb7FDaRwWCtZ0OqZNUMFBb5dCaSoVyzE1XMp+oK5RjrOXLguMdkZOPAfnD4FtNlh1hfoPoSMNJSZ+o4znwGATO4UiwyXwV0AGIG9cEr2HtUl3SixgNE4P1qOgCOTreGR8VvXHB3NE5+X/7BrCS6ShggRwN3jy0ObwojgIXE+M6KkWKUdD8Pk8NjneMVDF4wGNwxZh6DKAYx1pWDJ7DsbhiTD02RYpR0HzcKbqkFzEaJgZr4egCKRKvGIU1ilEkCYoBrGQqDCyQIsKbhz4IjGA6DiDD//4DwHJkdIHHzyFsLGSrPh4gg24OYeV8j44XKPHxKVLiAubrd1ZwvBOkSswDnoAr8awTgMVX1LIS8xyK4ko8q2g+F58JgY63TKBi4Bz8CxUmpIcnAmsjmTtcAfNxX9UlvYjRMDFYT4oS7+T4He4kzQ53chJ2OEAh6CSgaScLbx66kBBMp+Rzhwv7DJPnRMHucKrlXYvnfaoDXP6F9vBUoIenWe5hIpE1EWfT2tNBQUuWGyBzro8Njldc6gZ4wOK4GxhbHLhBJSy7AZ5DCdwNjC1h2Q0wEU7PsUu2M0Cy+ReKCelhyRS5ATIfd4wu6UWMhonBWipKvNLxbqCUxg2UToIbABSCSgFNKy28eehCQjCVsbyTMHlKCnZdz7Ib2D9vB7j8C+2hB/QwzXIPE4ls2OcQkU1P0d8NRMy57gXHy5C6AR4wA3cDXgbQ5EzLboDnkIm7AS/TshtgIqTn2CVbliM3gPQwO0VuIGI+btL+XducKPHKxruBHI0bKJsENwAoBOUATSsrvHnoQkIwlbO8kzB5sgW7bnnLboDnXd4BLv9Ce1ge6GEFyz1MJLJhn0NEtmKK3MA+82/sLQ2OV0nqBnjASrgbWFoJaHJly26A51AZdwNLK1t2A0yEijl2yVbFkRtAelg1RW5gn/n34Zfokl7EaJgYrNWixKse7waqadxA9SS4AUAhqBrQtOo5spuHLiQEUw3LOwmTp6pg161p2Q3wvGs6wOVfaA9rAj0803IPE4ls2OcQkT0rRW5grznXOwbHqyV1AzxgLdwNdKwFNPlsy26A53A27gY6nm3ZDTARzsqxS7ZzHLkBpIfnpsgN7DV3Ax10SS9iNEwM1vOixDs/3g2cp3ED5yfBDQAKQecBTTs/R3bz0IWEYLrA8k7C5DlXsOvWtuwGeN61HeDyL7SHtYEeXmi5h4lENuxziMjmpsgN/GvO9ZXB8epI3QAPWAd3AyvrAE2ua9kN8Bzq4m5gZV3LboCJkJtjl2z1HLkBpIf1U+QG/jV3Ayt0SS9iNEwM1gZR4l0U7wYaaNzARUlwA4BCUAOgaRflyG4eupAQTA0t7yRMnvqCXbeRZTfA827kAJd/oT1sBPSwseUeJhLZsM8hItskRW7gH3OuNw6O11TqBnjAprgbaNwUaPLFlt0Az+Fi3A00vtiyG2AiNMmxS7ZmjtwA0sNLUuQG/jF3A410SS9iNEwM1uZR4l0a7waaa9zApUlwA4BCUHOgaZfmyG4eupAQTC0s7yRMnksEu+5llt0Az/syB7j8C+3hZUAPL7fcw0QiG/Y5RGSvSJEb+Nuc6zOD410pdQM84JW4G5h5JdDkqyy7AZ7DVbgbmHmVZTfARLgixy7ZWjpyA0gPW6XIDfxt7gZe0SW9iNEwMVhbR4l3dbwbaK1xA1cnwQ0ACkGtgaZdnSO7eehCQjBdY3knYfK0Euy6bSy7AZ53Gwe4/AvtYRugh20t9zCRyIZ9DhHZdilyA3+Zc31ecLz2UjfAA7bH3cC89kCTO1h2AzyHDrgbmNfBshtgIrTLsUu2jo7cANLDa1PkBv4ydwNzdUkvYjRMDNZOUeJdF+8GOmncwHVJcAOAQlAnoGnX5chuHrqQEEydLe8kTJ5rBbtuF8tugOfdxQEu/0J72AXoYVfLPUwksmGfQ0S2W4rcwB5zrjcNjtdd6gZ4wO64G2jaHWhyD8tugOfQA3cDTXtYdgNMhG45dsnW05EbQHrYK0VuYI+5G2iiS3oRo2FisPaOEq9PvBvorXEDfZLgBgCFoN5A0/rkyG4eupAQTH0t7yRMnl6CXbefZTfA8+7nAJd/oT3sB/Swv+UeJhLZsM8hIjsgRW5gtznXRwbHGyh1AzzgQNwNjBwINHmQZTfAcxiEu4GRgyy7ASbCgBy7ZBvsyA0gPbw+RW5gt7kbGKFLehGjYWKwDokSb2i8GxiicQNDk+AGAIWgIUDThubIbh66kBBMwyzvJEye6wW77nDLboDnPdwBLv9Cezgc6OENlnuYSGTDPoeI7I0pcgN/Ct3ATVI3wAPeJHADNwFNvtmyG+A53CxwAzdbdgNMhBtz7JJthCM3gPRwZIrcwJ8pcAO3RIl3a7wbuEXjBm5NghsAFIJuAZp2qyM3gGC6zfJOwuQZKdh1b7fsBnjetzvA5V9oD28HeniH5R4mEtmwzyEie2eK3MAf5lyfERxvlNQN8ICjcDcwYxTQ5NGW3QDPYTTuBmaMtuwGmAh35tgl212O3ADSw7tT5Ab+MHcDz+qSXsRomBis90SJd2+8G7hH4wbuTYIbABSC7gGadm+O7OahCwnBdJ/lnYTJc7dg1x1j2Q3wvMc4wOVfaA/HAD0ca7mHiUQ27HOIyI5LkRvYZc716cHxxkvdAA84HncD08cDTb7fshvgOdyPu4Hp91t2A0yEcTl2yfaAIzeA9HBCitzALnM38KQu6UWMhonBOjFKvAfj3cBEjRt4MAluAFAImgg07cEc2c1DFxKC6SHLOwmTZ4Jg151k2Q3wvCc5wOVfaA8nAT182HIPE4ls2OcQkX0kRW5gpznXVwXHmyx1AzzgZNwNrJoMNHmKZTfAc5iCu4FVUyy7ASbCIzl2yTbVkRtAevhoitzATnM3sFKX9CJGw8RgnRYl3mPxbmCaxg08lgQ3ACgETQOa9liO7OahCwnB9LjlnYTJ86hg133CshvgeT/hAJd/oT18Aujhk5Z7mEhkwz6HiOz0FLmB3825vjg43lNSN8ADPoW7gcVPAU1+2rIb4Dk8jbuBxU9bdgNMhOk5dsn2jCM3gPTw2RS5gd/N3cAiXdKLGA0Tg3VGlHjPxbuBGRo38FwS3ACgEDQDaNpzObKbhy4kBNPzlncSJs+zgl33BctugOf9ggNc/oX28AWghy9a7mEikQ37HCKyL6XIDeww53rx4HgvS90AD/gy7gaKvww0+RXLboDn8AruBoq/YtkNMBFeyrFLtpmO3ADSw1dT5AZ2mLuB03VJL2I0TAzWWVHivRbvBmZp3MBrSXADgELQLKBpr+XIbh66kBBMr1veSZg8rwp23TcsuwGe9xsOcPkX2sM3gB6+abmHiUQ27HOIyM5OkRvYbs71OcHx5kjdAA84B3cDc+YATX7LshvgObyFu4E5b1l2A0yE2Tl2yTbXkRtAejgvRW5gu7kbmK1LehGjYWKwzo8Sb0G8G5ivcQMLkuAGAIWg+UDTFuTIbh66kBBMb1veSZg88wS77juW3QDP+x0HuPwL7eE7QA/ftdzDRCIb9jlEZN9LkRv4zZzro4PjvS91Azzg+7gbGP0+0OQPLLsBnsMHuBsY/YFlN8BEeC/HLtkWOnIDSA8/TJEb+M3cDYzSJb2I0TAxWD+KEu/jeDfwkcYNfJwENwAoBH0ENO3jHNnNQxcSgukTyzsJk+dDwa77qWU3wPP+1AEu/0J7+CnQw88s9zCRyIZ9DhHZz1PkBn4153qj4HiLpG6AB1yEu4FGi4AmL7bsBngOi3E30GixZTfARPg8xy7ZljhyA0gPl6bIDfxq7gYa6pJexGiYGKzLosT7It4NLNO4gS+S4AYAhaBlQNO+yJHdPHQhIZiWW95JmDxLBbvul5bdAM/7Swe4/Avt4ZdAD7+y3MNEIhv2OURkv06RG/jFnOvjg+OtkLoBHnAF7gbGrwCavNKyG+A5rMTdwPiVlt0AE+HrHLtkW+XIDSA9XJ0iN/CLuRsYp0t6EaNhYrCuiRLvm3g3sEbjBr5JghsAFILWAE37Jkd289CFhGBaa3knYfKsFuy66yy7AZ73Oge4/Avt4Tqgh+st9zCRyIZ9DhHZDSlyAz+bc71fcLyNUjfAA27E3UC/jUCTv7XsBngO3+JuoN+3lt0AE2FDjl2yfefIDSA9/D5FbuBnczfQV5f0IkbDxGD9IUq8H+PdwA8aN/BjEtwAoBD0A9C0H3NkNw9dSAimTZZ3EibP94Jdd7NlN8Dz3uwAl3+hPdwM9HCL5R4mEtmwzyEiuzVFbuAnc64vCI63TeoGeMBtuBtYsA1o8k+W3QDP4SfcDSz4ybIbYCJszbFLtp8duQGkh7+kyA38ZO4G5uuSXsRomBisv0aJ91u8G/hV4wZ+S4IbABSCfgWa9luO7OahCwnBtN3yTsLk+UWw6+6w7AZ43jsc4PIvtIc7gB7+brmHiUQ27HOIyO5MkRvYZs51LzjeLqkb4AF34W7A2wU0+Q/LboDn8AfuBrw/LLsBJsLOHLtk+9ORG0B6uDtFbmCbuRsoo0t6EaNhYrDuiRLvr3g3sEfjBv5KghsAFIL2AE37K0d289CFhGD62/JOwuTZLdh1/7HsBnje/zjA5V9oD/8Beviv5R4mEtmwzyEiuzdFbmCrOdeLBMfbJ3UDPOA+3A0U2Yc0uaxdN8Bz4DFAN1AkiMtsIuY/3yfC3hy7ZKOyGNn8C8WE9LAAgCmZbmCruRsorEt6EaNhYrAWLJv3Z6Gykdidv2DZg90AF+XXDQAKQQWBphUqK7t56EJCMB0BLm50wTB5CpTFiX1kPoUjrJznfaQDXP6F9vBIoIdHWe5hIpEN+xwiskcD9zWZbmCLOdf7BMc7pmw+BuQPg26gzzFAk4+17AZ4DsfibqDPsZbdABPh6LJ2yVbYkRtAelgkRW5gi7kb6K1LehGjYWKwHhcl3vHxbuA4jRs4PgluAFAIOg5o2vFlZTcPXUgIphMs7yRMniKCXbeoZTfA8y7qAJd/oT0sCvSwmOUeJhLZsM8hIntiitzAZnOuFwuOd5LUDfCAJ+FuoNhJQJNPtuwGeA4n426g2MmW3QAT4cSydsl2iiM3gPTw1BS5gc3mbqCoLulFjIaJwXpalHinx7uB0zRu4PQkuAFAIeg0oGmnl5XdPHQhIZiKW95JmDynCnbdEpbdAM+7hANc/oX2sATQwzMs9zCRyIZ9DhHZkilyA5vMBS1mvFJSN8ADliqLf6605R2ecZUueyDhRcwvlES8YEuWtUuKMo52baQvXj6JajRnQQ+TSagfhYRKkxKKB0wTECrdMqEYV3qSCBVWzo1PLytcMGZjJHWR/JBtjjE4XoZ0kfCAGQLFyQAYm2l5QfEcMgVNzrR8BuNFlCmwB2WA+5Vl2Q7yvc0SktW/0LWVBcw/27LFS7Qjh30O2ZFzLPeQ71GOYCNA+lAocuC4mV+8OYVk6yyCjeMZJw+66H9zosBnyqr7VU5FeRUVVFRUUUlFZRVVVFRVUU1FdRU1VNRUcaaKs1TUUnG2inNUnKviPBXnq7hARW0VF6rIVVFHRV0V9VTUV9FAxUUqGsb/HUDZ6Hk/mCunyZXX5CpochU1uUqaXGVNroomV1WTq6bJVdfkamhyNTW5MzW5szS5Wprc2ZrcOZrcuZrceZrc+ZrcBZpcbU3uQk0uV5Oro8nV1eTqaXL1NbkGmtxFmlzDsgf/3VJa9E8vYnTFkD5MbMoaChP/PVQ549oIlTetVXgrmNXer/BSRaPanTw3qmRSu2H/faDKBrV18+4ZVQmvHRe9v1Q1tLav3wuqFlY7+399o+ohtUMP9JhqHLq2YWA9UM1D1m4Krh0681C11WPWGZ11iNqc2DVJtRLXtolbv3R2wtqW8WudzklUO/IgXtC5CWpHHswhOk9f+7qGb3S+tra+jpt0ga62uZbHVFtT+6ae83ThwbVlE+gD5R5UOy2RllCd+NqqCXWH6sbVbkisUVQvtrb/IfSM6sfUNjuU9lGDYG2nQ+okXRSorXJoTaWGZc1NVzJPvA3NtXxZcLxGZfMxIH8Y/K3jskbmN4gaG05KeuLlOfAYBM6hMdhkvpLx2zFgcS3VJb2I0TAxWJtEF0jTspFYt9IkeuOCuaZl8//bMWAlUxNggTQFbx7aHF4UTcDFxLiapEgxLjK/z1OD410sVQwe8GJcMaZeDChGM8uKwXNohivG1GYpUoyLzMedokt6EaNhYrBeEl0gzeMV4xKNYjRPgmIAK5kuARZIc+HNQ/+iDsF0KUCG//0HgKVxdIGjf1GHbNUtADLo5hBWzveohUCJW6RIiRuYr99ZwfEukyoxD3gZrsSzLgMW3+WWlZjncDmuxLMuz+fiMyFQC8sEugKcg3+hwoT08EpgbSRzh2tgPu6ruqQXMRomButVUeK1jN/hrtLscC2TsMMBCkFXAU1rKbx56EJCMLXK5w4X9hkmz5WC3aG15V2L593aAS7/QnvYGujh1ZZ7mEhkTcTZtPYaUNCS5Qbqm3N9bHC8NlI3wAO2wd3A2DbADWpr2Q3wHNribmBsW8tugIlwTVm7ZGsHks2/UExID9unyA3UNx93jC7pRYyGicHaIUq8jvFuoIPGDXRMghsAFII6AE3rKLx56EJCMF1reSdh8rQX7LqdLLsBnncnB7j8C+1hJ6CH11nuYSKRDfscIrKdU/R3A/XMue4Fx+sidQM8YBfcDXhdgCZ3tewGeA5dcTfgdbXsBpgIncvaJVs3R24A6WH3FLmBeubjJu29cz2ixOsZ7wZ6aNxAzyS4AUAhqAfQtJ7Cm4cuJARTL8s7CZOnu2DX7W3ZDfC8ezvA5V9oD3sDPexjuYeJRDbsc4jI9k2RG6hrzvWlwfH6Sd0AD9gPdwNL+wFN7m/ZDfAc+uNuYGl/y26AidC3rF2yDXDkBpAeDkyRG6hrPu4SXdKLGA0Tg3VQlHiD493AII0bGJwENwAoBA0CmjZYePPQhYRgut7yTsLkGSjYdYdYdgM87yEOcPkX2sMhQA+HWu5hIpEN+xwissNS5AbqmHO9Y3C84VI3wAMOx91Ax+FAk2+w7AZ4DjfgbqDjDZbdABNhWFm7ZLvRkRtAenhTitxAHfNxO+iSXsRomBisN0eJNyLeDdyscQMjkuAGAIWgm4GmjRDePHQhIZhGWt5JmDw3CXbdWyy7AZ73LQ5w+Rfaw1uAHt5quYeJRDbsc4jI3pYiN5BrzvWVwfFul7oBHvB23A2svB1o8h2W3QDP4Q7cDay8w7IbYCLcVtYu2e505AaQHo5KkRvINR93hS7pRYyGicE6Okq8u+LdwGiNG7grCW4AUAgaDTTtLuHNQxcSguluyzsJk2eUYNe9x7Ib4Hnf4wCXf6E9vAfo4b2We5hIZMM+h4jsfSlyAxeac71xcLwxUjfAA47B3UDjMUCTx1p2AzyHsbgbaDzWshtgItxX1i7ZxjlyA0gPx6fIDVxoPm4jXdKLGA0Tg/X+KPEeiHcD92vcwANJcAOAQtD9QNMeEN48dCEhmCZY3kmYPOMFu+5Ey26A5z3RAS7/Qns4Eejhg5Z7mEhkwz6HiOxDKXIDtc25PjM43iSpG+ABJ+FuYOYkoMkPW3YDPIeHcTcw82HLboCJ8FBZu2R7xJEbQHo4OUVuoLb5uK/okl7EaJgYrFOixJsa7wamaNzA1CS4AUAhaArQtKnCm4cuJATTo5Z3EibPZMGuO82yG+B5T3OAy7/QHk4DeviY5R4mEtmwzyEi+3iK3MAF5lyfFxzvCakb4AGfwN3AvCeAJj9p2Q3wHJ7E3cC8Jy27ASbC42Xtkm26IzeA9PCpFLmBC8zHnatLehGjYWKwPh0l3jPxbuBpjRt4JgluAFAIehpo2jPCm4cuJATTs5Z3EibPU4Jdd4ZlN8DznuEAl3+hPZwB9PA5yz1MJLJhn0NE9vkUuYHzzbneNDjeC1I3wAO+gLuBpi8ATX7RshvgObyIu4GmL1p2A0yE58vaJdtLjtzA/2vvPKCdqLo2nEiTXqTX0C43uXSk994VUMCOKIhKR5p06WABFDsqCipgAaRXAVFQpPfeey/Swf/dmmgSZ3bOHnJO1rfWP2s93/U77wxn79mzz7w3N5lIajg9Rm6gkvq8DawGPS6laUJineFvvJnhbmCGhRuYGQU3IFgh3DMERZvp8ORJLyRJTD9ovpNQ80x3cNedpdkNUN6zDMQV2KQ1nCWo4WzNNbRbZCMdJ1lk58TIDVRU7/VBwfPNdeoGaMK5cjcwaK6gyPM0uwHKYZ7cDQyap9kNUCPMidfbbPMNuQFJDRfEyA1UVJ93oNWgx6U0TUisC/2NtyjcDSy0cAOLouAGBCuEe6GgaIscnjzphSSJabHmOwk1zwIHd90lmt0A5b3EQFyBTVrDJYIaLtVcQ7tFNtJxkkX2xxi5gQoO3cAyp26AJlzmwA0sExR5uWY3QDksd+AGlmt2A9QIP8brbbYVhtyApIY/xcgNVIiBG1jpb7yfw93ASgs38HMU3IBghXCvFBTtZ0NuQBLTL5rvJNQ8Pzm4667S7AYo71UG4gps0hquEtRwteYa2i2ykY6TLLK/xsgNlFfv9anB8/3m1A3QhL/J3cDU3wRFXqPZDVAOa+RuYOoazW6AGuHXeL3N9rshNyCp4doYuYHy6vNOsRr0uJSmCYl1nb/x1oe7gXUWbmB9FNyAYIVwrxMUbb3Dkye9kCQxbdB8J6HmWevgrrtRsxugvDcaiCuwSWu4UVDDTZpraLfIRjpOsshujpEbKKfe65OD59vi1A3QhFvkbmDyFkGRt2p2A5TDVrkbmLxVsxugRtgcr7fZthlyA5Iabo+RGyinPu8kq0GPS2makFh3+BtvZ7gb2GHhBnZGwQ0IVgj3DkHRdjo8edILSRLTLs13Emqe7Q7uurs1uwHKe7eBuAKbtIa7BTXco7mGdotspOMki+zeGLmBsuq9vjN4vn1O3QBNuE/uBnbuExR5v2Y3QDnsl7uBnfs1uwFqhL3xepvtgCE3IKnhwRi5gbLq8+6wGvS4lKYJifWQv/EOh7uBQxZu4HAU3IBghXAfEhTtsMOTJ72QJDEd0XwnoeY56OCue1SzG6C8jxqIK7BJa3hUUMNjmmtot8hGOk6yyB6PkRsoo97r64LnO+HUDdCEJ+RuYN0JQZFPanYDlMNJuRtYd1KzG6BGOB6vt9lOGXIDkhqejpEbKKM+71qrQY9LaZqQWM/4G+9suBs4Y+EGzkbBDQhWCPcZQdHOOjx50gtJEtM5zXcSap7TDu665zW7Acr7vIG4Apu0hucFNbyguYZ2i2yk4ySL7MUYuYHS6r2eLXi+S07dAE14Se4Gsl0SFPmyZjdAOVyWu4FslzW7AWqEi/F6m+2KITcgqeEfMXIDpdXnzWo16HEpTRMS61V/410LdwNXLdzAtSi4AcEK4b4qKNo1hydPeiFJYrqu+U5CzfOHg7vuDc1ugPK+YSCuwCat4Q1BDW9qrqHdIhvpOMkieytGbuBB9V5fEDzfbadugCa8LXcDC24LinxHsxugHO7I3cCCO5rdADXCrXi9zXbXkBuQ1PDPGLmBB9XnnW816HEpTRMaq9c/6nWF3vlJCHcDtNO9ugHBCuGmGFT2veCPTTGGkJMnvZAkMd3nlV3c0guGmudPB3fdROpx/RucSz0uyjuRV39cgU1aw0SCGibWXEO7RTbScZJFNongvEbTDZRS7/WRwfMl9d7DhHSw0A2MTCoocjLBxeM0h2TC5qEckt1jU6s0QhKv3ma7X9hsgU0ak6SGyQUxRdMNlFJ3AyOsBj0upWlCYk3hb7yU4W4ghYUbSBkFNyBYIdwpBEVL6XV28qQXkiSmVJrvJNQ8yR3cdVNrdgOUd2oDcQU2aQ1TC2qYRnMN7RbZSMdJFtm0MXIDJdV7vV7wfOmcugGaMJ3cDdRLJyhyes1ugHJIL3cD9dJrdgPUCGm9epstgyE3IKnhAzFyAyXV3UBdq0GPS2makFgz+hsvU7gbyGjhBjJFwQ0IVgh3RkHRMnmdnTzphSSJKbPmOwk1zwMO7rpZNLsByjuLgbgCm7SGWQQ1zKq5hnaLbKTjJItsthi5gRLqvT4ueL7sTt0ATZhd7gbGZRcUOYdmN0A55JC7gXE5NLsBaoRsXr3NltOQG5DUMFeM3EAJdTcw1mrQ41KaJiTW3P7GyxPuBnJbuIE8UXADghXCnVtQtDxeZydPeiFJYvJovpNQ8+RycNfNq9kNUN55DcQV2KQ1zCuoYT7NNbRbZCMdJ1lk88fIDRRX7/UuwfMVcOoGaMICcjfQpYCgyAU1uwHKoaDcDXQpqNkNUCPk9+pttjhDbkBSw0IxcgPF1d1AZ6tBj0tpmpBY4/2N5w13A/EWbsAbBTcgWCHc8YKieb3OTp70QpLE5NN8J6HmKeTgrpug2Q1Q3gkG4gps0homCGpYWHMN7RbZSMdJFtkiMXIDxdR7fWnwfEWdugGasKjcDSwtKihyMc1ugHIoJncDS4tpdgPUCEW8eputuCE3IKlhiRi5gWLqbmCJ1aDHpTRNSKwl/Y1XKtwNlLRwA6Wi4AYEK4S7pKBopbzOTp70QpLE9KDmOwk1TwkHd93Smt0A5V3aQFyBTVrD0oIaltFcQ7tFNtJxkkW2bIzcQFH1XvcEz1fOqRugCcvJ3YCnnKDI5TW7AcqhvNwNeMprdgPUCGW9eputgiE3IKlhxRi5gaLqbiCP1aDHpTRNSKyV/I1XOdwNVLJwA5Wj4AYEK4S7kqBolb3OTp70QpLEVEXznYSap6KDu25VzW6A8q5qIK7AJq1hVUENq2muod0iG+k4ySJbPUZuoIh6r6cKnq+GUzdAE9aQu4FUNQRFrqnZDVAONeVuIFVNzW6AGqG6V2+z1TLkBiQ1rB0jN1BE3Q2ktBr0uJSmCYm1jr/x6oa7gToWbqBuFNyAYIVw1xEUra7X2cmTXkiSmOppvpNQ89R2cNetr9kNUN71DcQV2KQ1rC+oYQPNNbRbZCMdJ1lkG8bIDRRW7/VOwfM1cuoGaMJGcjfQqZGgyI01uwHKobHcDXRqrNkNUCM09OpttocMuQFJDR+OkRsorO4GOloNelxK04TE2sTfeE3D3UATCzfQNApuQLBCuJsIitbU6+zkSS8kSUzNNN9JqHkednDXfUSzG6C8HzEQV2CT1vARQQ0f1VxDu0U20nGSRbZ5jNxAgnqvpw+er4VTN0ATtpC7gfQtBEVuqdkNUA4t5W4gfUvNboAaoblXb7M9ZsgNSGr4eIzcQIK6G0hnNehxKU0TEusT/sZ7MtwNPGHhBp6MghsQrBDuJwRFe9Lr7ORJLyRJTE9pvpNQ8zzu4K77tGY3QHk/bSCuwCat4dOCGj6juYZ2i2yk4ySLbKsYuQGf4PF4wfM969QN0ITPeuXHtdZ8h6e4Wnv/HfC41DdpE9EF28qrtymeM3TXltTl+XtsVJWcn3dQw2g2lNdhQ7Vx2lA0YRsHDdVWc0NRXG2j1FCRdqfCt/U6u2A8anNE9SKJFzyXLni+F5xeJDThCw5WnBcEHdtO8wVFObRzUOR2mn8Ho4uonQN78JzgfL2o2Q7SuX3RYbMGNum19aIg/5c0Wzy7O3Kk4yR35Jc115DO0csObgSSOiR2/fvr5r3GG5fY2XXmks3jUR78z+b+Jyd30DHtcb46gI6gE+gMuoCuoBt4BXQHPUBP0Av0Bq+CPqAv6Af6gwFgIBgEXgODwRAwFAwDw8EIMBKMAqPDXwNo7/99P3isg8VYR4uxThZjnS3GuliMdbUY62Yx9orFWHeLsR4WYz0txnpZjPW2GHvVYqyPxVhfi7F+FmP9LcYGWIwNtBgbZDH2msXYYIuxIRZjQy3GhlmMDbcYG2ExNtJibJTF2Gjvf19byuv/6XEpbSFNH2mxaa+4MNHrUB2U93W5O6rui3g7qe37NuJ1d1ba9wrl5u6isu+Bv86Du6vCvjX+PmfubpH3Hes/v+5XIu7bOVALd/dI+87/p27uHhH27f1vjd09+X3rBl0P7l7svseDrx13b27fkiHXmftVZt9Codeku4/9vk+FXb/uvrb7tgy/1t397PYd9J++cPe32XfQf3vIPcB63zkW/eYeaLlvLavedA+y2vdhyz52v2ax7zzrnncP/u++8Tbrg3vIf/b9zG4tcQ8N37e47brjHha27wH7Nco9PHTfrsx65h4Rsm9jbu1zjwze93l2nXSPCtq3GL+mukfH6Dfe0epr+cbg+V53+hsvTfi6V/xXx42vq58g9xuKSTn9jZdyeEP4Gy/l8IawyLRF469jgotrg9Wgx6U0TUisb/ovkLfCnfGb/hMXPPaW997/Oia4kt1vCi6Qt4QnT1ocuijeFF5MFNebMVoxRqmf50+C5xvjdMWgCcfIV4xPxghWjLGaVwzKYax8xfhkbIxWjFHq806wGvS4lKYJiXWc/wJ5O3zFGGexYrwdhRVDcCW7xwkukLcdnjzpC3WSmN4RNMM//yOI5Q3/BS59oU5yqx4vaAarHCLtTudovIOVeHyMVuKR6tfvrOD53nW6EtOE78pX4lnvCi6+9zSvxJTDe/KVeNZ793jxqTTQeM0N9L4wh8AmXZgkNfxAcG1E8w43Un3eH6wGPS6laUJi/dDfeB+F3+E+tLjDfRSFO5xghXB/KCjaRw5PnvRCksT08T3e4SIdQ83zgYO7wwTNdy3Ke4KBuAKbtIYTBDX8RHMN7RZZlcVZdd9PhQtatNzACPVeHxM832dO3QBN+JncDYz5THCCJmp2A5TDRLkbGDNRsxugRvjUq7fZPhc2W2CTxiSp4RcxcgMj1Od9y2rQ41KaJiTWSf7GmxzuBiZZuIHJUXADghXCPUlQtMkOT570QpLE9KXmOwk1zxcO7rpfaXYDlPdXBuIKbNIafiWo4deaa2i3yEY6TrLITonRawPD1XvdEzzfVKdugCacKncDnqmCIk/T7AYoh2lyN+CZptkNUCNM8epttm8MuQFJDb+NkRsYrj5v1J47952/8b4PdwPfWbiB76PgBgQrhPs7QdG+d3jypBeSJKbpmu8k1DzfOrjrztDsBijvGQbiCmzSGs4Q1HCm5hraLbKRjpMssj/EyA0MU+/1DcHzzXLqBmjCWXI3sGGWoMizNbsBymG23A1smK3ZDVAj/ODV22xzDLkBSQ3nxsgNDFOfd73VoMelNE1IrPP8jTc/3A3Ms3AD86PgBgQrhHueoGjzHZ486YUkiWmB5jsJNc9cB3fdhZrdAOW90EBcgU1aw4WCGi7SXEO7RTbScZJFdnGM3MBQ9V5vHTzfEqdugCZcIncDrZcIirxUsxugHJbK3UDrpZrdADXCYq/eZvvRkBuQ1HBZjNzAUPV5n7Ua9LiUpgmJdbm/8VaEu4HlFm5gRRTcgGCFcC8XFG2Fw5MnvZAkMf2k+U5CzbPMwV13pWY3QHmvNBBXYJPWcKWghj9rrqHdIhvpOMki+0uM3MAQ9V7fETzfKqdugCZcJXcDO1YJirxasxugHFbL3cCO1ZrdADXCL169zfarITcgqeFvMXIDQ9Tn3W416HEpTRMS6xp/4/0e7gbWWLiB36PgBgQrhHuNoGi/Ozx50gtJEtNazXcSap7fHNx112l2A5T3OgNxBTZpDdcJarhecw3tFtlIx0kW2Q0xcgOD1Xu9fvB8G526AZpwo9wN1N8oKPImzW6ActgkdwP1N2l2A9QIG7x6m22zITcgqeGWGLmBwerz1rMa9LiUpgmJdau/8baFu4GtFm5gWxTcgGCFcG8VFG2bw5MnvZAkMW3XfCeh5tni4K67Q7MboLx3GIgrsElruENQw52aa2i3yEY6TrLI7oqRG3hNvddnBs+326kboAl3y93AzN2CIu/R7AYohz1yNzBzj2Y3QI2wy6u32fYacgOSGu6LkRt4TX3eGVaDHpfSNCGx7vc33oFwN7Dfwg0ciIIbEKwQ7v2Coh1wePKkF5IkpoOa7yTUPPsc3HUPaXYDlPchA3EFNmkNDwlqeFhzDe0W2UjHSRbZIzFyA4PUe31x8HxHnboBmvCo3A0sPioo8jHNboByOCZ3A4uPaXYD1AhHvHqb7bghNyCp4YkYuYFB6vMushr0uJSmCYn1pL/xToW7gZMWbuBUFNyAYIVwnxQU7ZTDkye9kCQxndZ8J6HmOeHgrntGsxugvM8YiCuwSWt4RlDDs5praLfIRjpOssiei5EbGKje6w2D5zvv1A3QhOflbqDheUGRL2h2A5TDBbkbaHhBsxugRjjn1dtsFw25AUkNL8XIDQxUn7eB1aDHpTRNSKyX/Y13JdwNXLZwA1ei4AYEK4T7sqBoVxyePOmFJInpD813EmqeSw7uulc1uwHK+6qBuAKbtIZXBTW8prmGdotspOMki+z1GLmBAeq9Pih4vhtO3QBNeEPuBgbdEBT5pmY3QDnclLuBQTc1uwFqhOtevc12y5AbkNTwdozcwAD1eQdaDXpcStOExHrH33h3w93AHQs3cDcKbkCwQrjvCIp21+HJk15Ikpj+1Hwnoea57eCu6/LpdQOUN82hO67AJq1h8DyR9nX79NbQbpGNdJxkkb1PcF6j6Qb6O3QDiXz3MCEdLHUDiQRFTiy4eJzmkNgndwOJ77GpVRrhPp/eZksibLbAJo1JUsOkkmsjLB6rgD0utX+rfwzcQDJ/493vc4Xe+ZP5/usGaKd7dQOCFcKdTFC0+33OTp70QpLElFzznYSaJ6mDu24KzW6A8k5hIK7AJq1hCkENU2quod0iG3EuQQ6pYuQG+qn3+tTg+VI7dQM0YWq5G5iaWlDkNJrdAOWQRu4GpqbR7AaoEVL59DZbWkNuQFLDdDFyA/3U3cAUq0GPS2makFjT+xsvQ7gbSG/hBjJEwQ0IVgh3ekHRMvicnTzphSSJ6QHNdxJqnnQO7roZNbsByjujgbgCm7SGGQU1zKS5hnaLbKTjJIts5hi5gb7qvT45eL4sTt0ATZhF7gYmZxEUOatmN0A5ZJW7gclZNbsBaoTMPr3Nls2QG5DUMHuM3EBfdTcwyWrQ41KaJiTWHP7GyxnuBnJYuIGcUXADghXCnUNQtJw+ZydPeiFJYsql+U5CzZPdwV03t2Y3QHnnNhBXYJPWMLeghnk019BukY10nGSR9cTIDfRR7/WdwfPldeoGaMK8cjewM6+gyPk0uwHKIZ/cDezMp9kN/NUIPr3Nlt+QG5DUsECM3EAfdTeww2rQ41KaJiTWgv7Giwt3AwUt3EBcFNyAYIVwFxQULc7n7ORJLyRJTIU030moeQo4uOvGa3YDlHe8gbgCm7SG8YIaejXX0G6RjXScZJH1xcgNvKre6+uC50tw6gZowgS5G1iXIChyYc1ugHIoLHcD6wprdgPUCD6f3mYrYsgNSGpYNEZu4FV1N7DWatDjUpomJNZi/sYrHu4Gilm4geJRcAOCFcJdTFC04j5nJ096IUliKqH5TkLNU9TBXbekZjdAeZc0EFdgk9awpKCGpTTX0G6RjXScZJF9MEZuoLd6r2cLnq+0UzdAE5aWu4FspQVFLqPZDVAOZeRuIFsZzW6AGuFBn95mK2vIDUhqWC5GbqC3uhvIajXocSlNExJreX/jVQh3A+Ut3ECFKLgBwQrhLi8oWgWfs5MnvZAkMVXUfCeh5inn4K5bSbMboLwrGYgrsElrWElQw8qaa2i3yEY6TrLIVomRG+il3usLguer6tQN0IRV5W5gQVVBkatpdgOUQzW5G1hQTbMboEao4tPbbNUNuQFJDWvEyA30UncD860GPS6laUJirelvvFrhbqCmhRuoFQU3IFgh3DUFRavlc3bypBeSJKbamu8k1Dw1HNx162h2A5R3HQNxBTZpDesIalhXcw3tFtlIx0kW2XoxcgM91Xt9ZPB89Z26AZqwvtwNjKwvKHIDzW6AcmggdwMjG2h2A9QI9Xx6m62hITcgqWGjGLmBnupuYITVoMelNE1IrI39jfdQuBtobOEGHoqCGxCsEO7GgqI95HN28qQXkiSmhzXfSah5Gjm46zbR7AYo7yYG4gps0ho2EdSwqeYa2i2ykY6TLLLNYuQGeqj3er3g+R5x6gZowkfkbqDeI4IiP6rZDVAOj8rdQL1HNbsBaoRmPr3N1tyQG5DUsEWM3EAPdTdQ12rQ41KaJiTWlv7GeyzcDbS0cAOPRcENCFYId0tB0R7zOTt50gtJEtPjmu8k1DwtHNx1n9DsBijvJwzEFdikNXxCUMMnNdfQbpGNdJxkkX0qRm6gu3qvjwue72mnboAmfFruBsY9LSjyM5rdAOXwjNwNjHtGsxugRnjKp7fZWhlyA5IaPhsjN9Bd3Q2MtRr0uJSmCYm1tb/xngt3A60t3MBzUXADghXC3VpQtOd8zk6e9EKSxPS85jsJNc+zDu66bTS7Acq7jYG4Apu0hm0ENWyruYZ2i2yk4ySL7AsxcgOvqPd6l+D52jl1AzRhO7kb6NJOUOQXNbsByuFFuRvo8qJmN0CN8IJPb7O9ZMgNSGr4cozcwCvqbqCz1aDHpTRNSKzt/Y3XIdwNtLdwAx2i4AYEK4S7vaBoHXzOTp70QpLE1FHznYSa52UHd91Omt0A5d3JQFyBTVrDToIadtZcQ7tFNtJxkkW2S4zcQDf1Xl8aPF9Xp26AJuwqdwNLuwqK3E2zG6AcusndwNJumt0ANUIXn95me8WQG5DUsHuM3EA3dTewxGrQ41KaJiTWHv7G6xnuBnpYuIGeUXADghXC3UNQtJ4+ZydPeiFJYuql+U5CzdPdwV23t2Y3QHn3NhBXYJPWsLeghq9qrqHdIhvpOMki2ydGbqCreq97gufr69QN0IR95W7A01dQ5H6a3QDl0E/uBjz9NLsBaoQ+Pr3N1t+QG5DUcECM3EBXdTeQx2rQ41KaJiTWgf7GGxTuBgZauIFBUXADghXCPVBQtEE+ZydPeiFJYnpN852EmmeAg7vuYM1ugPIebCCuwCat4WBBDYdorqHdIhvpOMkiOzRGbqCLeq+nCp5vmFM3QBMOk7uBVMMERR6u2Q1QDsPlbiDVcM1ugBphqE9vs40w5AYkNRwZIzfQRd0NpLQa9LiUpgmJdZS/8UaHu4FRFm5gdBTcgGCFcI8SFG20z9nJk15Ikphe13wnoeYZ6eCu+4ZmN0B5v2EgrsAmreEbghq+qbmGdotspOMki+xbMXIDndV7vVPwfGOcugGacIzcDXQaIyjyWM1ugHIYK3cDncZqdgPUCG/59DbbOENuQFLDt2PkBjqru4GOVoMel9I0IbG+42+88eFu4B0LNzA+Cm5AsEK43xEUbbzP2cmTXkiSmN7VfCeh5nnbwV33Pc1ugPJ+z0BcgU1aw/cENXxfcw3tFtlIx0kW2Q9i5AY6qfd6+uD5PnTqBmjCD+VuIP2HgiJ/pNkNUA4fyd1A+o80uwFqhA98epvtY0NuQFLDCTFyA53U3UA6q0GPS2makFg/8Tfep+Fu4BMLN/BpFNyAYIVwfyIo2qc+ZydPeiFJYvpM852EmmeCg7vuRM1ugPKeaCCuwCat4URBDT/XXEO7RTbScZJF9osYuYGO6gtayHyTnLoBmnCST37cZM13eIprsu/fAY9LfZM2EV2wX/j0NsWXhu7akrp8dY+NqpLzVw5qGM2G6uCwob522lA04dcOGmqK5oaiuKZEqaEi7U6Fn+JzdsF41OaI6kXS3qseY/B8U51eJDThVAcrzlRBx07TfEFRDtMcFHma5t/B6CKa5sAefCk4X99otoN0br9x2KyBTXptfSPI/1vNFs/ujhzpOMkd+TvNNaRz9J2DG4GkDsFbcsV5AvHciVOIyb/zXZV9/Tv/qbSvf+dCauflr1+rFfelne9T3Rc7JyqkXpvEhdRr873g+qL8Ai8Z0HHVwnRpbf8Q1PaqoLbXBLW9Hqde2xtx6rW9Gade21tx6rW9Hade2+kOazs9CrU9K6jtOUFtzwtqe0FQ24uC2l4S1PayoLZXBLWd4bC2M6JQ26OC2h4T1Pa4oLYnBLU9KajtKUFtTwtqe0ZQ25kOazszCrWtFq9e2+rx6rWtEa9e25rx6rWtFa9e29rx6rWtE69e27rx6rX9wWFtf4hCbcsJalteUNsKgtpWFNS2kqC2lQW1rSKobVVBbWc5rO2sKNS2uKC2JQS1LSmobSlBbR8U1La0oLZlBLUtK6jtbIe1nR2F2sYLausV1NYnqG2CoLaFBbUtIqhtUUFtiwlqO8dhbedEobZDvOq1HepVr+0wr3pth3vVazvCq17bkV712o5SfwXcPVrwQuhch7WdG4Xa9hXUtp+gtv0FtR0gqO1AQW0HCWr7mqC2gwW1neewtvOiUNtXBLXtLqhtD0Ftewpq20tQ296C2gq+ddvdR1Db+Q5rOz8KtW0vqG0HQW07CmrbSVDbzoLadhHUVvAJZ+XHhlBtFzis7QJ/bem/U7j+fR2Sfk73/fv6Bv2c6fv396aAxw74scC9O7DOB9aEwPUTmIs2j0s5TOWcYrnvIMG+kn/3//cN3Rbi+lkEFoMlYCn4ESwDy8EK8BNYCX4Gv4BVYDX4FfwG1oDfwVqwDqwHG8BGsMn39x+XA/0Rvrll8boXCv/OFL551Ha73/mx7n9ycgf9Q5sR9xawFWwD28EOsBPs8rlCF5DN/vc5Bo9tsRjbajG2zWJsu8XYDouxnRZju3z/PRuqN6rAeVgo+CPcZsV96f2ZW5T3dbm3qu6LeLep7fs24nVvV9r3CuXm3qGy74G/zoN7p8K+Nf4+Z+5dwnd6RKsZF/2PNuNuxL0H7AX7wH5wABwEh8KbcbdFU+yxGNtrMbbPYmy/xdgBi7GDFmOHotCMiwTNuFvQjHsEzbhX0Iz7BM24X9CMBwTNeFDQjIdi1IyL/0eb8TDiPgKOgmPgODgBToJT4c142KIpjliMHbUYO2Yxdtxi7ITF2EmLsVNRaMbFgmY8LGjGI4JmPCpoxmOCZjwuaMYTgmY8KWjGUzFqxiX/o814GnGfAWfBOXAeXAAXwaXwZjxt0RRnLMbOWoydsxg7bzF2wWLsosXYpSg04xJBM54WNOMZQTOeFTTjOUEznhc04wVBM14UNOMlh00hraM3sXoT+FT3xUWWoLgvXY+F1fb9qweLKO37d7sWVdnX39nFFPYNLALFE6tf+5cFdQzuUTquWpgurW0JQW1LCmpbSlDbBwW1LS2obRlBbcsKaltOUNsrDmt7JQq1LS+obQVBbSsKaltJUNvKgtpWEdS2qqC21QS1/cNhbf+IQm2rC2pbQ1DbmoLa1hLUtragtnUEta0rqG09QW2vOqzt1SjUtr6gtg0EtW0oqG0jQW0bC2r7kKC2Dwtq20RQ22sOa3stCrVtKqhtM0FtHxHU9lFBbZsLattCUNuWgto+JqjtdYe1vR6F2j4uqO0Tgto+KajtU4LaPi2o7TOC2rYS1PZZQW1vOKztjSjUtrWgts8Javu8oLZtBLVtK6jtC4LathPU9kVBbW86rO1NX+h7A2jzRDj+nXSlc35ZoOhhlX2L7OnVNNGy8ptV9q1ZvUqLBfOXf6myb/Nle5I23372HYqbfo8LeP6APwx4Cfr5WdzfPyf6f37u//lF3L/3pcAaFrjeA+dGJZZBf/9wq+wbvP3/vrJ9b6Eet8EdcBf8SfVJwIkH94FEIDFIApKCZOB+kBykAClBKpAapAFpQTqQHmQADyRE90XXW/+jL7pmxHnIBDKDLCAryAaygxwJrtAFhHYOf/Ezk8VYZouxLBZjWS3GslmMZbcYy5Fw7y+63hK86Eq5q+xLL7pmUt7X5c6sui/izaK2718vumZV2vfvF12zqezrf9E1u8K+gRddcySoN0U0m/H2/2gz5sT5ygVygzx07kBekA/kD2/GnBZNkctiLLfFWB6LMY/FWF6LsXwWY/mj0Iy3Bc2YU9CMuQTNmFvQjHkEzegRNGNeQTPmEzRj/hg1453/0WYsgPNVEMSBQiAeeIEPJIQ3YwGLpihoMRZnMVbIYizeYsxrMeazGEuIQjPeETRjAUEzFhQ0Y5ygGQsJmjFe0IxeQTP6BM2YEKNmvPs/2oyFcb6KgKKgGCgOSoCSoFR4Mxa2aIoiFmNFLcaKWYwVtxgrYTFW0mKsVBSa8a6gGQsLmrGIoBmLCpqxmKAZiwuasYSgGUsKmrGUoBmDN+kzjV4SvMYzN5+ZmF4WxDTPUEztBTHNNxRTB0FMCwzF1FEQ00JDMXUSxLTIUEydBTEtNhRTF0FMSwzF1FUQ01JDMXUTxPSjoZheEcS0zFBM3QUxLTcUUw9BTCsMxdRTENNPhmLqJYhppaGYegti+tlQTK8KYvrFUEx9BDGtMhRTX0FMqw3F1E8Q06+GYuoviOk3QzENEMS0xlBMAwUx/W4opkGCmNYaiuk1QUzrDMU0WBDTekMxDRHEtMFQTEMFMW00FNMwQUybDMU0XBDTZkMxjRDEtMVQTCMFMW0VxiR9Hvh47Fgmr/r+O7Bj5rzyF5dHJdafR1lhHlkc5DHaQB7lhHlkdZDH6wbyKC/MI5uDPN4wkEcFYR7ZHeTxpoE8KgrzyOEgj7cM5FFJmEdOB3mMMZBHZWEeuRzkMdZAHlWEeeR2kMc4A3lUFeaRx0EebxvIo5owD4+DPN4xkEd1YR55HeQx3kAeNYR55HOQx7sG8qgpzCO/gzzeM5BHLWEeBRzk8b6BPGoL8yjoII8PDORRR5hHnIM8PjSQR11hHoUc5PGRgTzqCfOId5DHxwbyqC/Mw+sgjwkG8mggzMPnII9PDOTRUJhHgoM8PjWQRyNhHoUd5PGZgTwaC/Mo4iCPiQbyeEiYR1EHeXxuII+HhXkUc5DHFwbyaCLMo7iDPCYZyKOpMI8SDvKYbCCPZsI8SjrI40sDeTwizKOUgzy+MpDHo8I8HnSQx9cG8mguzKO0gzymCPOwyyfSPFMl77OJMxPTNMn7bAzF9I3kfTaGYvpW8j4bQzF9J3mfjaGYvpe8z8ZQTNMl77MxFNMMyftsDMU0U/I+G0Mx/SB5n42hmGZJ3mdjKKbZkvfZGIppjuR9NoZimit5n42hmOZJ3mdjKKb5kvfZGIppgeR9NoZiWih5n42hmBYJYtpmKKbFgpi2G4ppiSCmHYZiWiqIaaehmH4UxLTLUEzLBDHtNhTTckFMewzFtEIQ015DMf0kiGmfoZhWCmLabyimnwUxHTAU0y+CmA4aimmVIKZDhmJaLYjpsKGYfpV4Op+ZmH6TeDpDMa2ReDpDMf0u8XSGYlor8XSGYlon8XSGYlov8XSGYtog8XSGYtoo8XSGYtok8XSGYtos8XSGYtoi8XSGYtoq8XSGYtom8XSGYtou8XSGYtoh8XSGYtop8XSGYtoliOmIoZh2C2I6aiimPYKYjhmKaa8gpuOGYtoniOmEoZj2C2I6aSimA4KYThmK6aAgptOGYjokiOmMoZgOC2I6ayimI4KYzhmK6aggpvOGYjomiOmCoZiOC2K6aCimE4KYLhmK6aQgpoyGnol4ShBTJkMxnRbElNlQTGcEMWUxFNNZQUxZDcV0ThBTNkMxnRfElN1QTBcEMeUwFNNFQUw5DcV0SRBTLkMxXRbElNtQTFcEMeUxFNMfgpg8hmK6Kogpr6GYrgliymcopuuCmPIbiumGIKYChmK6KYipoKGYbgliijMU021BTIUMxXRHEFO8oZjuCmLyGorpT0FMPkMxuZKox5RgKCa3IKbChmK6TxBTEUMxJRLEVNRQTIkFMRUzFFMSQUzFDcWUVBBTCUMxJRPEVNJQTPcLYorW919EvIepf87PnTyJekz0vRr/HOiPi75/hYbxz7iSgmSuv7+Hhb57JQVICVKB1CANSAvSgfQgA3gAZASZQGaQBWQF2UB2kAPkBLlAbpDHfx7ygnwgPygACoI4UIjyB17g/ypLV2FQBBQFxUBxUAKUBKXAg6A0KAPKgnKgPKgAKoJKoDKoAqqCaqA6qAFqglqgNqgD6oJ6oD5oABqCRqAxeAg8DJqApqAZeAQ8CpqDFqAleAw8Dp4AT4KnwNPgGdAKPAtag+fA86ANaAteAO3Ai1Qr8DJoDzqAjqAT6Ay6gK6gG3gFdAc9QE/QC/QGr4I+oC/oB/qDAWCg6+/vZn0NDAZDwFAwDAwHI8BIMAqMBq+DN8Cb4C0wBowF48Db4B0wHrwL3gPvgw/Ah+Aj8DGYAD4Bn4LPwETwOfgCTAKTAX3B7VfgazAFTAXTwDfgW/Ad+B5MBzPATPADmAVmgzlgLpgH5oMFYCFYBBaDJWAp+BEsA8vBCvATWAl+Br+AVWA1+BX8BtaA38FasA6sBxvARrAJ0Jf4bgFbwTawHewAO8EusBvsAXvBPrAfHAAHwSFwGBwBR8ExcBycACfBKXAanAFnwTlwHvz1+jy4BC6DK+APcBVcA9fBDXAT3AK3wR1wF/wJqPnd4D6QCCQGSUBSkAzcD5KDFCAlSAVSgzQgLUgH0oMM4AGQEWQCmUEWkBVkA9lBDpAT5AK5QR7gAXlBPpAfFAAFQRwoBOKBF/hAAigMioCioBgoDkqAkqAUeBCUBmVAWVAOlAcVQEVQCVQGVUBVUA1UBzVATVAL1AZ1QF1QD9QHDUBD0Ag0Bg+Bh0ET0BQ0A4+AR0Fz0AK0BI+Bx8ET4EnwFHgaPANagWdBa/AceB60AW3BC6AdeBG8BF4G7UEH0BF0Ap1BF9AVdAOvgO6gB+gJeoHe4FXQB/QF/UB/MAAMBIPAa2AwGAKGgmFgOBgBRoJRYDR4HbwB3gRvgTFgLBgH3gb0ZdPjwbvgPfA++AB8CD4CH4MJ4BPwKfgMTASfgy/AJDAZfAm+Al+DKWAqmAa+Ad+C78D3YDqYAWaCH8AsMBvMAXPBPDAfLAALwSKwGCwBS8GPYBlYDlaAn8BK8DP4BawCq8Gv4DewBvwO1oJ1YD3YADaCTWAz2AK2gm1gO9gBdoJdYDfYA/aCfWA/OAAOgkPgMDgCjoJj4Dg4AU6CU+A0OAPOgnPgPLgALoJL4DK4Av4AV8E1cB3cADfBLXAb3AF3wZ+AbvxucB9IBBKDJCApSAbuB8lBCpASpAKpQRqQFqQD6UEG8ADICDKBzCALyAqygewgB8gJcoHcIA/wgLwgH8gPCoCCIA4UAvHAC3wgARQGRUBRUAwUByVASVAKPAhKgzKgLCgHyoMKoCKoBCqDKqAqqAaqgxqgJqgFaoM6oC6oB+qDBqAhaAQag4fAw6AJaAqagUfAo6A5aAFagsfA4+AJ8CR4CjwNngGtwLOgNXgOPA/agLbgBdAOvAheAi+D9qAD6Ag6gc6gC+gKuoFXQHfQA/QEvUBv8CroA/qCfqA/GAAGgkHgNTAYDAFDwTAwHIwAI8EoMBq8Dt4Ab4K3wBgwFowDb4N3wHjwLngPvA8+AB+Cj8DHYAL4BHwKPgMTwefgCzAJTAZfgq/A12AKmAqmgW/At+A78D2YDmaAmeAHMAvMBnPAXDAPzAcLwEKwCCwGS8BS8CNYBpaDFeAnsBL8DH4Bq8Bq8Cv4DawBv4O1YB1YDzaAjWAT2Ay2gK1gG9gOdoCdYBfYDfaAvWAf2A8OgIPgEDgMjoCj4Bg4Dk6Ak+AUOA3OgLPgHDgPLoCL4BK4DK6AP8BVcA1cBzfATXAL3AZ3wF3wJyDT7wb3gUQgMUgCkoJk4H6QHKQAKUEqkBqkAWlBOpAeZAAPgIwgE8gMsoCsIBvIDnKAnCAXyA3yAA/IC/KB/KAAKAjiQCEQD7zABxJAYVAEFAXFQHFQApQEpcCDoDQoA8qCcqA8qAAqgkqgMqgCqoJqoDqoAWqCWqA2qAPqgnqgPmgAGoJGoDF4CDwMmoCmoBl4BDwKmoMWoCV4DDwOngBPgqfA0+AZ0Ao8C1qD58DzoA1oC14A7cCL4CXwMmgPOoCOoBPoDLqArqAbeAV0Bz1AT9AL9Aavgj6gL+gH+oMBYCAYBF4Dg8EQMBQMA8PBCDASjAKjwevgDfAmeAuMAWPBOPA2eAeMB++C98D74APwIfgIfAwmgE/Ap+AzMBF8Dr4Ak8Bk8CX4CnwNpoCpYBr4BnwLvgPfg+lgBpgJfgCzwGwwB8wF88B8sAAsBIvAYrAELAU/gmVgOVgBfgIrwc/gF7AKrAa/gt/AGvA7WAvWgfVgA9gINoHNYAvYCraB7WAH2Al2gd1gD9gL9oH94AA4CA6Bw+AIOAqOgePgBDgJToHT4Aw4C86B8+ACuAgugcvgCvgDXAXXwHVwA9wEt8BtcAfcBX8C+oXfDe4DiUBikAQkBcnA/SA5SAFSglQgNUgD0oJ0ID3IAB4AGUEmkBlkAVlBNpAd5AA5QS6QG+Sh1zZAXpAP5AcFQEEQBwol/vv1Dy/wgQRQGBQBRUExUByUACVBKfAgKA3KgLKgHCgPKoCKoBKoDKqAqqAaqA5qgJqgFqgN6oC6oB6oDxqAhqARaAweAg+DJqApaAYeAY+C5qAFaAkeA4+DJ8CT4CnwNHgGtALPgtbgOfA8aAPaghdAO/BiYtc/2+f+n/TaDX0HKX3nJ33HJn2nJX2HJH1nI31HIn0nIX0HIH3nHn3HHX2nHH2HG31nGn1HGX0nGH0HF33nFX3HFH2nE32HEn1nEX1HEH0nD30HDn3nDH3HC32nCn2HCX1nCH1HB31nBX3fA31XAn3PAD2jn55vT8+Gp+eq0zPJ6Xne9Cxseo40PYOZnl9Mz/6l5+bSM2fpea30rFN6Tig9Y5OeT0nPdqTnItIzBel5fPQsO3oOHD1DjZ4/Rs/uoude0TOp6BlQ9MwlesYRPVOInuFDz8yhZ9TQM2HoGSz0zBN6xgg904OeoUHPrKBnRNAzGegZCPTMAfqMP32mnj7DTp8Zp89o02ei6TPI9Jlf+owtfaaVPkNKn9mkz0jSZxLpM4D0mTv6jBt9pow+w0WfmaLPKNFngugzOPSZF/qMCX2mgz5DQZ9ZoM8I0Hvy6T3w9J5zeo83vaea3sNM7xmm9+jSe2LpPaj0nk96jyW9p5HeQ0jv2aP3yNF70ug9YPSeK3qPE72niN7DQ++Zofeo0HtC6D0Y9J4Heo8B/U2f/oZOf7OmvxHT32Tpb6D0N0f6Gx/9TY3+hkV/M6IX/+hvIvQ3CHrNn15jp9e06TVkes2WXiOl1xnJCwU2uh5oy5O09rZmCT/tdgVt9ZPaa8nvt9em+r/w+Zn7P1tSY1PK74K1bxjtO0abzmgzGW0Wo81htHmMtoDRFjHaEkb7kdF+82vnNpTvnXTpsymDtS2Mto/RTjDaRSaWy4z2B6NdY7QbjHaL0e4w2p+MliKFfe4ZGS03o8UzWilGq8xodRmtKaONTmGf+wRG+57RljHaCkZbyWi/MNpqRtvM5L6X0Y4z2kVGK5DSPpYyjFaP0Z5gtLYp7WPpzGivMtoQRlvMxLKO0Q4w2iVGu8JoVxntOqPdZLQkqexzT8to2RgtP6O1SGUfy4uM1ofR3mC095lYPme0bxhtDqOdY2L56w+MNloGRivAaHGMFs9oPkYrzGhlU9vnXp3RGjJac0YbycTyEaN9y2hLGe1XJpbNjLaX0Y4zmieNfSwlGa0Wo7VgtMcY7QlGe4rRnmG0l9LY5/4Ko/VntBGMtpCJ5XdG28doFxjtFhNLkrT2WlpGy8ZozdLax9KG0Xoy2khGG81obzDaW4w2ltE+ZnL/ktGmM9oCRjvDxHKX0dKls9fyMVqRdPaxlGW06ozWkNGGMrG8x2hTGG0hoy1mtKWMtozRVjDaWib37Yx2kNFOM1ru9PaxFGe0Goz2KKO1Sm8fy0uM9gqj9We0uUwsqxltF6OdYbRzjHaB0S4x2hVG+5PJPXkGe+0BRsvFaE0y2MfyHKN1Z7ThjDaOieVjRvuS0aYz2gkmlpuMluoBey03o3kYLR+jFWC0OEYr8YB97hUZrTajPcxog5lYxjPaV4w2n9F+YmJZy2jbGe0go2XPaB9LYUarwmhNGK0Zoz3KaC0Y7TFGez6jfe4dGa0Xo73GaLOZWH5htB2MdorR/mBi+ZPRkmey1x5gtEaZ7GN5htG6MNpgRhvKaMMZbSSjjWa0d5ncP2O0qYw2i9GOMbFcZ7QUme21nIxWKLN9LCUYrSKj1Wa0AUwsYxntC0abzWhzGW0+oy1ktMWMtorJfSOj7Wa0o4yWNYt9LD5Gq8RoDzHa41nsY3me0ToyWi9Gm8HEsoLRtjDaMUY7wWinGO0Mo51jtBtM7omy2mupGS0LozXIah/LU4zWidEGMdrrTCzvMtpnjDaV0Q4xsVxhtKTZ7LWsjJad0XIyWm5G8zBaQjb73EszWlVGq89o/ZhY3mK0iYz2A6MtYWJZxWgbGW03o2XMbh9LHKOVY7QGjNaI0R5itCaM1ozRns5un3s7RuvKaH0Z7XsmlmWMtonRjjDaeSaWG4yWKIe9lprR6uSwj+UxRnuZ0fox2gBGG8RogxltKKONYXL/kNEmMdp3jHaAieUSoyXOaa9lZrS8Oe1jSWC00oxWldF6M7GMZrQJjPY9o81gtB8YbTajzWW05UzuaxhtK6PtZ7QMuexjKcBoZRitHqM9kss+lqcZrR2jdWW0aUwsixltHaMdYLRDjHaE0Y4x2glGu8zkfofRkuW219IzWq3c9rG0YLQXGa0Pow1jYhnDaB8y2iRG28PEco7R/voQtI2WgdEyMlpmRsvKaNkZrWAe+9yLMVp5RqvJaD2ZWEYy2keM9i2jzWNiWc5oaxhtK6Ol8djH4mG0koxWi9HqMFo9RmvAaI0YraVfs8q9NaO1Z7QejDaFiWUho/3OaPsY7SQTy2VGu8NoyfLaa9Xy2sfSjNHaMFpPRuvNaH0YrR+jDWC0UUzu7zDaJ4z2NaPtYmI5w2h3GS1dPnstRz77WAoyWjFGK89o3ZhYhjLae4w2hdGmMdq3jPY9o81gtEVM7j8z2npG28loqfLbx5Kb0YozWg1Ga5zfPpaWjNaa0doz2mQmlrmMtprRdjHaHkbbx2gHGO0Qo51lcr/GaO4C9lpKRqtSwD6WJoz2HKN1Z7SBTCyjGO0dRvuE0bYxsZxgtJuMlqqgvZaG0dIxWgZGy8hoeQra5+5ltFKMVpnRujCxDGa08Yz2FaPNZGJZxGg/M9p6Rrs/zj6W7IxWmNGqMFo1RqvBaLUYrQ6jNY2zz/1JRmvLaJ0Z7QsmltmM9guj7WC0w0wsZxntGqO5C9lrFQrZx9KI0Z5htC6M1o3RujNaT0brzWhDmNzfZLT3Ge1zRtvCxHKM0a4zWop4ey1TvH0seRjNy2ilGK0DE8sARhvLaF8w2mRG+4rRpjDaNEabw+T+I6P9ymibGS2p1z6WrIzmY7RKjFbXax9LU0Z7ktHaMtqnTCwzGG0Fo21htG2MtoPRdjHaHkY7zuR+kdFuMVoSn71WzmcfSwNGe4rROjHaq0wsQxjtTUZ7n9E2MLEcYrQrjJY0wV67n9FSMFoqRkvDaNkS7HPPz2hFGK0so73MxNKP0d5itImM9g0TyxxG+5HRfmW0+wrbx5KR0eIYrRyjVWC0SoxWhdGqMVrDwva5N2e0Voz2EqNNYGL5ntGWMdomRtvLxHKc0S4y2i1Ge7CIfSx1GO0xRnuZ0TowWidG68Jo3RitfxH73Ecw2jhG+5jR1jGxHGC0S4yWuKi9lraofSzZGC0/oxVhtBeYWHoz2mhGm8BonzLaREb7gtEmM9p0JvcFjPYTo61ltL8eJm0TSwZGK8BoZRitejH7WBoyWnNGa8Von/s1q2ftVC9hH2dNRqvNaHUZrVkJ+zifYrQXGK0Lo71dwj73ZqXstQyl7bUfytjnN5vR5jLafEZbyGiLGW0poy1jtBWMtpLRfmG01Yy22a9Z1W8vox1ntIuMdtmv7Tm1p+qGtotzBGuZyv7906ruW8vZa+9WsNdKV7LPvSyjlWe0ioxWmdGqMlp1RqvJaLUZrS6j1We0hozWwq9Z1fZZRnuZ0bozWk8mlt6M1ofR+jHaAEYbxGiDGW0oo41hcv+Q0SYx2nc2WiL/T//bgl1tXurW9vnuL/Vs2+qlTt3btmvbrVXXHp27v9S2U3f/A+JcgZ/+Byz99Y0V9K94XErbfYHjUzo73pXUYixF0H+nDJ/Q/zOxxXFum/9/X9hPbt/w8eCxVBZa4N/0f9A4JN4UYdq/1ejeuVW31m1e6u3/KPg/VUgSNKPkLAaOT+rseHfg+GTOjk9kVcVkQf8dyCtR0L/vCvvvwJyBWJI7iyWF22L+RGH/ZngMwftYXVn3hf3/xGHjiRT2tbqyAlpai/jCj0tuEWvwWKAGVldp+HkPvt6s/q1kYTGEXx/3WqMMFnMGYvM/+iJk7erZtlv35GFzZ3I29z/XekZnx1uuWJmC/jvw7wbmCb4ePC7ZFqhNEgstfCVMFDZv4KdbPr/bLg6razhQy4xBY4Hz8X+iidKBKdUjAA==",
|
|
146
|
+
"debug_symbols": "tP3BriXNjpyJvkuNNQh3kk6yX+XiQqhWVzcKKJQaUulOhH73m5uMoJkayL0CufOMZDr1022F+3Ku+MJtR/7Pf/o//uV//x//13/+13//P//rf/+n/+3/8z//6X//b//6b//2r//Xf/63//pf/vk//vW//vuv//V//j//6Z+e/+9//o//9i//8ut/+if6v/+q+r//+b/9y7//xz/9b//+P/7t3/7TP/3//vnf/kf9R//9//7nf6//9z/++b/9+r9e/+mf/uXf/49f/++vAf/Pf/23f/lS/89/QvX1+9J9qd7V+zo5A9h6PcISeUZYJn80wjoYQX83gvx+hHhmIH/rr7+vtj31tvPMCCv+lxHs9yMc3/se4bjG70b47jOc7c9nOGI/HUHlj0bwmBHyj0Ywf75Nv+QfXUVcM0Jcv12Lb79NZ77RK6/ffR/W/tHXacmPv09Lf/yF+vZTvPtGvR7i91+p74d49Z36doh3X6pvh/j5t2pfz5ruLb/9Vu31o2/V3j/+Vm358bfq20/x7lv1eojff6u+H+LVt+rbId59q74d4uffqisT36rz21++b4ZYlz1rui66jv/3EN98MdfGELIXhrD/dYhvpuLXOj5revTs3w7x3ac4+qzpOnH90RC+nwVZfv5wiJUYYv3ZENePh8A3a4X+4YXMV+vXEH94IfHjISLmQnL/2YWEJ4b4w09xfjxE4q7iuv7sQtISQ/zhp9CfDvG/3PD/2Tbbl+BTxB9+iv3jIdbGfd6fbfZf4JEY4g8/xfXjIfZs9r31Dy+Efkf0Dy8kfjzEtjVDuP9uCDvf/KT6w5JnXb/7Qf32M8iayZTtf3IZsvL5EPLre/pHQ/z6MZ8hmGjfD6F2PT+Hauv8eIhtfzaE6Qzhv/1unm9uOiVmh0js395one9oaE/zPTv/6Huhls/ds54/69961kzn2fFnQ+iZIezPFvXMfaue+LOvll/P/Z762n82hMx0+p/1LHWb6fTzZ9PpMdPp+WfTGdMvNPb+8RCy/myIM9MZ/tsL8fPjbeb+j91mOZisuf7se5HTOzX1zxY1fb7gGX+0qHZN77RrxZ8NMXdadv3Zj8CvBj7Mf+UfTafh4aqtff5siOHDX79EfzadCxfyiwl+PET+0S+77T1zsfW3F/J1I/TDbZbXP3Sb2T64EP+zRZX5ETD5sx8BE5k9Ivpniyp4CiN/9mtmuuZ7oX+GmKbzs2z6Zz/L9uvXY4bIP5tOm/sLsz+7v/h1tzYXYn/YcniII382RM5cnOu3F7Ku/eN9ti75x260I7gU/bNlPQfPKv3PltXxoNHXny3rr7u0GcL+bJe4zzfj143XHw0Ra6bzD++2LOYxoYX92XTioZRF/nY6vz0NOALK/O1z2/XdmcTSacBLl/18jH394RjbZgyVP/0cC2Pon41h08d/Sf/Dz5GOMeL3Y3zzC59zKbl+fyX7u2/HbPjt+88+w56zom9W5LuziZdP078f493j9A9jvHqe/mGM6+djvHui/uFzvHqk/mGM+PkY7x6qfxjj1VP1D2Ocn4/x7rn6hzFePVj/MIb+eIyXj9Y/jPHq2fqHMfbPx3j3dP3DGK8er38Y4/r5GO8esH/4HK+esH8YI34+xrtn7Evthw/Zv/8U756yfzvGy8fs34/x7jn7t2O8fND+fozfP2n/MMarR+31LOan1GQ/p6YP1/Lqafv3Y7x73P5hjFfP2z+M8eqB+/djvHvi/mGMV4/cP4zx6pn7hzFePXT/fox3T93fjyHrD8d49dx9Hfv5njvnH7zn3j16/zDGq2fvH8Z49fD92zFePn3/MMarx+8fxnj1/P37Md49gP8wxqsn8B/GePUI/v0Y+We/+y8fwq+vhN9P95znP3bPvXwO//0Y7x7Efxjj1ZP4D2O8ehT//RjvnsV/GOPVw/gPY7x6Gv/9GO8ex38Y49Xz+Pdj/P6B/Icx3j2Rz/XzPZf7H7zn3j2S/zDGq2fy34/x7qH8hzFePZX/MMarx/Lfj/HuufyHMV49mP8wxqsn8x+eI9s8zzb/7bP5/d3p06vnr/u7s6eXdPv9GO/o9tsxXtLt+zF+T7cfxnhFt/v6+a/+vn7+q//hWl7R7fdjvKPbD2O8otsPY7yi2+/HeEe3H8Z4RbcfxnhFtx/GeEW334/xjm7fj/F7uv0wxiu63fvnv/p773/wnntHtx/GeEW3H8Z4RbffjvGSbj+M8YpuP4zxim6/H+Md3X4Y4xXdfhjjFd2+H+P3dPv9GO/odov+fM+J/WP33Eu6/X6Md3T7YYxXdPthjFd0+/0Y7+j2wxiv6PbDGK/o9vsx3tHthzFe0e37MX5Ptx/GeEW3W/3ne07jH7zn3tHthzFe0e33Y7yj2w9jvKLbD2O8otvvx3hHtx/GeEW3H8Z4RbffjvEy1/P9GO9yPR/GeJXr+TDG9fMx3uV6PnyOV7meD2PEz8d4l+v5MMarXM+HMc7Px3iX6/kwxqtcz4cx9MdjvMz1fBjjVa7nwxj752O8y/V8GONVrufDGNfPx3iX6/nwOV7lej6MET8f412up94B8vvfyhe5nu8/xbtcz3fZVzGfEXL99tlp/OxtTjt+/j6nHT9/o9P3n+Plu1Jej/HNy1Li5+91+n6Ml69LiX/su50E3Vyv376tbOePn+3nd78p796XsvO7P2l+98KU7z/Hy3vB/Av3gvkX7gXzL9wL5l+4F8y/cC+Yf+FeMP/CvWD+hXvB/Av3gvkX7gXzL9wL5l+4F8y/cC+Yf+FeMP/CvWD+hXvB/Av3gvkX7gXzL9wL5l+4F8y/cC+YP78XlBU/vRfMn98LfjvG21Pw/Aun4PkXTsFfj/HNKXj+/BRc9s/zprJ/njf9cC3vTsHzL5yC5184Bc+/cAqef+EUPP/CKXj+hVPw/Aun4PkXTsFfjyHrD8d4dQpeZ0w/3XOS/+A99/IUPP/CKXj+hVPw/Aun4PkXTsHzL5yC5184Bc+/cAqef+EU/PUY+We/+y9PwcV+njwR2//YPff2FDz/wil4/oVT8PwLp+D5F07B8y+cgudfOAXPv3AKnn/hFPz1GN+cgufPT8Hl/Dx5Isf+wXvu5Sl4/oVT8PwLp+D5F07B8y+cgudfOAXPv3AKnn/hFPz7MQ7G+P3Tj++eJOvM6Nb87dtXvh0BT6Q0f//u7u/euPfipEO++zuolycd8u3fQb076fj+c7w76Xg/xu9POj6M8eqk4/sx3p10fD/Gz0867Jrvp33zZvg4P/t2hf/82xXx82/Xt5/j5bfr9RjffLu+H+Pdt+vbMV5+u74d4y98uxTfrvjte6Mk7Wffrjw//3al//zb9e3nePntej3GN9+u78d49+36doyX365vx/j5t0t149v1296l1zd3oi//WQu97MfntHqdH5/Tfv853p3Tfj/Gu3PaD2O8Oqf9MMb18zHendN++Byvzmk/jBE/H+PdOe2HMV6d034Y4/x8jHfntB/GeHVO+2EM/fEYL89pP4zx6pz2wxj752O8O6f9MMarc9oPY1w/H+PdOe2Hz/HqnPbDGPHzMd6d06r8NLP3/ad4d0777Rgvz2m/H+PdOe23Y7w8p30/xu/PaT+M8eqctu4NfvgsTeXnf1Hy4VpendN+P8a7c9oPY7w6p/0wxqtz2u/HeHdO+2GMV+e0H8Z4dU77YYxX57Tfj/HunPb9GLL+cIxX57S/tvfP99x3505/Zc+9O6f9MMarc9oPY7w6p/12jJfntB/GeHVO+2GMV+e034/x7pz2wxivzmk/jPHqnPb9GPlnv/svz2n1L/z7TvoX/oGnD9fy6pz2+zHendN+GOPVOe2HMV6d034/xrtz2g9jvDqn/TDGq3Pa78d4d077YYxX57Tvx/j9Oe2HMV6d0+pf+Mee9C/8a0/fX8u7c9oPY7w6p/1+jHfntB/GeHVO+2GMV+e034/x7pz2wxivzmk/jPHqnPbDGD8+pz3rIdN9xP/knNbnH3TYvuVPRjgzE79G+O2/CaHf/aNPL05LNNePT0v027fvvTst+f5zvDsteT/G709LPozx6rTk+zHenZZ8P8bPT0tc8O06+/ffjvzRt8uu68ffLrvWj79d33+Od9+u92P8/tv1YYxX367vx3j37fp+jL/w7RoC/LXG+vtvR/zw25U//3at6y98u/IvfLvyL3y78i98u/IvfLvyH/rtOmf+2jvWb3MEtvzHJ7323V87vTzpte/+zaWXJ73ff453J73fj/HupPfDGK9Oej+Mcf18jHcnvR8+x6uT3g9jxM/HeHfS+2GMVye9H8Y4Px/j3UnvhzFenfR+GEN/PMbLk94PY7w66f0wxv75GO9Oej+M8eqk98MY18/HeHfS++FzvDrp/TBG/HyMdye9pvLDk97vP8W7k95vx3h50vv9GO9Oer8d4+VJ7/sxfn/S+2GMVye99hdOnewvnDp9uJZXJ73fj/HupPfDGK9Oej+M8eqk9/sx3p30fhjj1UnvhzFenfR+GOPVSe/3Y7w76X0/hqw/HOPVSa/9hVMn+wunTt9fy7uT3g9jvDrp/TDGq5Peb8d4edL7YYxXJ70fxnh10vv9GO9Oej+M8eqk98MYr05634+Rf/a7//Kk1/7CqZP9hVOnD9fy6qT3+zHenfR+GOPVSe+HMV6d9H4/xruT3g9jvDrp/TDGq5Pe78d4d9L7YYxXJ73vx/j9Se+HMV6d9Frkz/fcd2dPf2XPvTvp/TDGq5Pe78d4d9L7YYxXJ70fxnh10vv9GO9Oej+M8eqk98MYr056P4zx05NewXMLWfbbvxo6351BvTipONf+8dP9767imr7xhdq//xTf/e3T8vkXrFbq78f45uTd52G26/qjEeJ6HhTE5X92HXvujdfe31zHz5/sn+vnT/a//xzvnux/P8a7J/sfxnj1ZP/DGNfPx3j3ZP/D53j1ZP/DGPHzMd492f8wxqsn+x/GOD8f492T/Q9jvHqy/2EM/fEYL5/sfxjj1ZP9D2Psn4/x7sn+hzFePdn/MMb18zHePdn/8DlePdn/MEb8fIx3T/aP/PTJ/vef4t2T/W/HePlk//sx3j3Z/3aMl0/234/x+yf7H8Z49WT/6M+f7B/9+ZP9D9fy6sn+92O8e7L/YYxXT/Y/jPHqyf73Y7x7sv9hjFdP9j+M8erJ/ocxXj3Z/36Md0/2348h6w/HePVk/9jPn+wf03/wnnv3ZP/DGK+e7H8Y49WT/W/HePlk/8MYr57sfxjj1ZP978d492T/wxivnux/GOPVk/33Y+Sf/e6/fLJ/zs+f7Ffa7x+5514+2f9+jHdP9j+M8erJ/ocxXj3Z/36Md0/2P4zx6sn+hzFePdn/fox3T/Y/jPHqyf77MX7/ZP/DGK+e7B//+ZP9E9c/eM+9e7L/YYxXT/a/H+Pdk/0PY7x6sv9hjFdP9r8f492T/Q9jvHqy/2GMV0/2P4zx+yf7/99f/79//i//+t/+87/91//yz//xr//13//7V+H69bT313fwP30JeYQ+wh5xHuGPiF8fpUTeQq5HrEfsR8gj9BH2iPMIf8Qzsjwj6zOyPiPrM7I+I+szsj4j6zOyPiPrM7I+I9szsj0j2zOyPSPbM7I9I9szsj0j2zOyPSOfZ+TzjHx+jRwl5BH6iF8jZ4nzCH9EPCJv4ddd5esRz8guz3+jj3hG9mdkf0b2Z2R/Ro5n5HhGjmfkeD5zPJ85npHjGTmekeMZOZ6R83rEesR+xPOZ8xk57RHnEf6IeMQ98q/nlY9Yj9iPkEfoI+wR5xH+iHvkfeUt1vWI9Yj9iGfk9Yy8npHXM/J6Rl7xiOcz7+cz7+cz72fkLY/QR9gjziOekfcz8n5GlmdkeUaWZzbk+czyfGZ5PrM8I4s/4pkNeWZDn9nQZ2R9RtZnZH1G1mdkfWZDn8+sz2fW5zPbM7I982zPbNgzG/bMhj0j2zOyPSPbM7I9I59nNs7zmc/zmc/zmZ89uM8zz+eZjfPMxnlm49mD25+R/RnZn5GfPbifPbifPbifPbifPbj9GdmfeX724H724H724I5n5HhGfvbgfvbgfvbgfvbgfvbgfvbgfvbgzmfkfOb52YP72YP72YM7n5HzGfnZg/LsQXn2oDx7UJ49KM8elGcPynWPLJc/Ih5xz4Y8e1DWM/J6Rn72oDx7UJ49KM8elGcPyrMH5dmDsp+R93rEfoQ8Qh/xjLyfkZ89KM8elGcPyrMH5dmD8uxBefagyDOy2COe2Xj2oDx7UOQZWZ+Rnz0ozx6UZw/Kswfl2YPy7EF59qDoM7I+8/zsQXn2oDx7UOwZ2Z6Rnz0ozx6UZw/Kswfl2YPy7EF59qA8v4Py/A7Kswfl2YPy7EF5fgfl+R2UZw/Kswfl2YPy7EF59qA8e1CePSj+jOzPPD97UJ49KM8elHhGjmfkZw/Kswfl2YPy7EF59qA8e1CePSj5jJzPPD97UJ49KM8elHxGzmfkZw/Kswfl2YP67EF99qA+e1CfPajXPbJe9ojzCH9EPOIZeT0jP3tQnz2ozx7UZw/qswf12YP67EFdz8jrnmd99qA+e1CfPaj7GXk/Iz97UJ89qM8e1GcP6rMH9dmD+uxBlWdkkUc8s/HsQX32oMozsjwjP3tQnz2ozx7UZw/qswf12YP67EHVZ2R95vnZg/rsQX32oNozsj0jP3tQnz2ozx7UZw/qswf12YP67EE9z8jnmednD+qzB/XZg/rci+pzL6rPHtRnD+qzB/XZg/rsQX32oD57UP0Z2Z95fvagPntQnz2oz72oxjPyswf12YP67EF99qA+e1CfPajPHtR4Ro5nnp89qM8e1GcP6nMvqvmM/OxBffagPntQnz2ozx60Zw/aswftuke2Sx6hj7BHnEf4UxWPeEZ+9qA9e9CePWjPHrRnD9qzB209Iy9/RDzing179qA996K2n5GfPWjPHrRnD9qzB+3Zg/bsQXv2oMkzsqxHPLPx7EF79qA996Imz8jPHrRnD9qzB+3Zg/bsQXv2oD170PQZWZ95fvagPXvQnj1oz72o2TPyswft2YP27EF79qA9e9CePWjPHjR7RrZnnp89aM8etGcP2nMvas8etOd30J7fQXv2oD33onaekR8etGcP2rMH7dmD9vwO2tceXKvUF9JbKR8Vo/JRXxvxVmvUHiWjdJSNGo8YjxiPGI8cjxyPHI8cjxyPHI8cjxyPHI98PM51jVqj9igZpaNs1Bnlo2LUeHxt068/n/+l1qg96ssjSukoG3VG+aiY2nzUHo+vHdv/XT3CaTUeezz2eOzx2OOxx2OPh4yHzHXIXIeMh4yHjIeMh4zH1xa+VT7qaxPfaq5Dx+NrH99KR9moM2o8dDx0PGw8bDxs5srmOmyuw+Y6bDy+dvWtZq5s5urMXJ3xOONxxuOMxxmPM3N15jrOXMeZ6/Dx8FkPn7nymSufufLx8PHw8fDx8PGImauY64i5jpjriPGIWY+YuYqZq5i5ivHI8cjxyPHI8ciZq5zryLmOnOvI8chnPfy6Rq1Re9Tj4ZeOslFnlI+KUc91+LpGrVHjsWSUjrJRZ9R4rPFY47HHY/a5zz732ec++9xnn/sej+2jYtTM1exzl/GQ8Zh97rPPffa5zz732ec++9xnn7uOh856zD732ec++9x1PHQ8Zp/77HOffe6zz332uc8+99nnbuNhsx6zz332uc8+dxuPMx6zz332uc8+99nnPvvcZ5/77HM/43FmPWaf++xzn33uPh4+HrPPffa5zz732ec++9xnn/vsc4/xiFmP2ec++9xnn3uMR4zH7HOffe6zz332uc8+99nnPvvcczxy1mP2uc8+j9nncT0ece1RMkpH2agzykfFqOc6Yn7PY37PY/Z5zD6P2ecxv+cxv+cx+zxmn8fs85h9HrPPY/Z5zD6PPR7bRp1RPipGjYeMx+zzmH0es89j9nnMPo/Z5zH7PGQ8ZNZj9nnMPo/Z56HjoeMx+zxmn8fs85h9HrPPY/Z5zD4PGw+b9Zh9HrPPY/Z52HjYeMw+j9nnMfs8Zp/H7POYfR6zz+OMx5n1mH0es89j9nn4ePh4zD6P2ecx+zxmn8fs85h9HrPPI8YjZj1mn8fs85h9HjEeMR6zz2P2ecw+j9nnMfs8Zp/H7PPI8chZj9nnMfs8Zp9HPh55XaPWqD1KRukoG3VG+ajHI69nPXL2ec4+z9nnOfftOfftOfs8Z5/n7POcfZ6zz3P2ec4+zz0eW0bpKBt1Ro3HHo/Z5zn7PGef5+zznH2es89z9nnKeIiPmrmafZ6zz3Pu21PHY/Z5zj7P2ec5+zxnn+fs85x9njYeNusx+zxnn+fs85z79rTxmH2es89z9nnOPs/Z5zn7PGef5xmPM+sx+zxnn+fs85z79vTxmH2es89z9nnOPs/Z5zn7PGefp4+Hz3rMPs/Z5zn7POe+PWM8Zp/n7POcfZ6zz3P2ec4+z9nnmeORsx6zz3P2ec4+z7lvzxyPZ59//f3LqDVqj5JROspG3R6/lI+KUfmoZ5//UuPx7PNfSkbpqPFY47HGY43HmuvYcx17PPZcx9c+31cp/frH10rZqDPKR8WofNTXPr/VGrVHyajxkPGQ8ZDxkPGQ8dDx0PHQ8dDx0PHQ8dDx0PHQ8dDxsPGw8bDxsPGw8bDxsPGw8fja518By18qH/W1z2/15VGr9bXPbyWjdJSNOlPro8bja5/3f/e1z281Hj4ePh4+Hj4ePh4+Hj4ePtcRcx0xHjEeMR4xHjEeX/v8Vj4qRs115Hh87fNb7VEySkeNR45HjkeORz4e67pGrVF7lIx6PNbXPr/VGeWjYtR4rPFY47HGY43H0lE26ozyUeOxnvVY+xq1Ru1R47HHY4/HHo89HjtGzXXIXIfMdch4iIyauZKZK5m5kvGQ8ZDx0PHQ8dCZK53r0LkOnevQ8dBZD5250pkrm7my8bDxsPGw8bDxsJkrm+uwuQ6b65h9XomrW81cnZmrM3M1+7xiV7cajzMes8/X7PM1+3zNPl+zzyt+1R4+6zH7fM0+X7PPK4PVtTEes8/X7PM1+3zNPl+zz9fs8zX7vMJY7RGzHrPP1+zzNfu8Elldm+Mx+3zNPl+zz9fs8zX7fM8+37PPK5pVHpXNupWOslFnlE9tjBqP2ed79vmefb5nn+/Z53v2eQW12mP5qBj1zNWefV5pra7d4zH7fM8+37PP9+zzPft8zz7fs88rttUeskbNXM0+37PPK7t1147H7PM9+3zPPt+zz/fs8z37fM8+rxBXe+isx+zzPft8zz6vJFfX2njMPt+zz/fs8z37fM8+37PP9+zzPb/ne37P9+zzPft8zz7f83u+5/d8zz7fs8/37PM9+3zPPt+zz/fs8wp4tYfPesw+37PP9+zzSnndteMx+3zPPt+zz/fs8z37fM8+37PPK+7VHjHrMft8zz7fs88r89W1OR6zz/fs8z37fM8+37PP9+zzPfu8wl/lUemvW+1RMkpH2dSeUT4qRo3H7HOZfS6zz2X2eUXB2mPZqDPKR8Wo8djjMftcZp/L7HOZfS6zz2X2ucw+r2BYe+xnPWT2ucw+l9nnlQ7rWhmP2ecy+1xmn8vsc5l9LrPPZfZ5xcTaQ2c9Zp/L7HOZfV5Zsbt2PGafy+xzmX0us89l9rnMPpfZ5xUaaw+b9Zh9LrPPZfa5zH27zH27zD6X2ecy+1xmn8vsc5l9LrPPK0LWHj7rMftcZp/L7HOZ+/YKkt1qPGafy+xzmX0us89l9rnMPq9AWXvErMfsc5l9LrPPZe7bK1Z2q/GYfS6zz2X2ucw+l9nnMvu84mXtkc966OxznX2us8917tsrZHYrG3VG+agY9VyHzj7X2ecVNmuPJaN0lI06o8Zjjcfsc519rrPPdfa5zj7X2ec6+7yiZ+2xfVSMmrmafa5z314BtFuNx+xznX2us8919rnOPtfZ5xVEaw+d9Zh9rrPPdfa5zn17xdFuNR6zz3X2uc4+19nnOvtcZ59XLK09bNZj9rnOPtfZ5zr37Tr7XOf3XOf3XGef69y3V0LtVuMx+1xnn+vsc53f88qpfb0gZFdQzfp/k1E6ykadUT4qRuWjvvb5rdao8YjxiPGI8YjxiPGI8YjxyPHI8cjxyPHI8cjx+NrnX3/wvSvBdqxUjMpbVYjtVmvUHiWjdJSNOqN+eXz9wxm7wmy3ykd97fNbrVF7lIzSUTbqjPrKRK1SMSofVX9k0WqN2qNklI6yUWfU17O+r79125Vwe2SOrEfut1yQG1IgFdIgD+SX26oJrEfvt8yR9fD960+qd2XfHrkhv9zqkWQl4Jb2/2qQB9IhAzJH1mP4Wy7IDSmQcDO4GdwMbgY3g1s9kP96EdGujNyympJ6JH9LgVRIgzyQDhmQObIezd/yy+3UnNXD+VsKpEIa5IF0yIDMkfWQ/pb1VPgquSEFUiEN8kA6ZEDmyH5c3/LL7etdM7sDdbcUSIU0yAPpkAGZj+xg3S2/uuvXe+p2Rev21x9E78rWPVIhDfJAOmRA5si6Rbjlgvxy2/UZ6i7hlgppkAfSIQMyR9bNwi0X5Jfb18siduXtHqmQBnkgHTIgc2TdNtxyQdYD8SwpkAppkAfSIQMyR/YD/pYLstZtlax12yVr3eri6y7i6+0ju2J4uxpT5fB2taAK4u1qQZXE23XwUVG8XU/pK4v3i+hL1rpVWd1N1I90xfF+YWzJWrf6ZHVDIbXcdUch9SHrlkK6rGayyuqmQqqs7iq0yuq2Qqus7iu0rq1uLLSure4stD5k3VpYl325WZd9uVmXfblZldXtRfWSyuf96molv9ysrq1Ion6GO6LXc9ZZ3JYH0p9m3jG9W+bI6iU9vzFduaN6txRIhTTIA+mQATlduSN7t4Rbwi3hlnBLuCXcEm4Jtxy3Du/dckFuSIFUSIM8kA4ZkHBbcFtwW3BbcFtwW3BbcFtwW3BbcNtw23DbcNtw23DbcNtw23DbcNtwE7gJ3ARuAjeBm8BN4CZwE7gJ3BRuCjeFm8IN9yWO+xLHfYnjvsRxX+K4L3HclzjuSxz3JY77Esd9ieO+xHFf4rgvcdyXOO5LOvh3y/XcojjuSxz3JY77Esd9ieO+xHFf4rgvcdyXOO5LOgN4y7kvcdyXOO5LHPcljvsSx32J477EcV/iuC/pNOAt577EcV/iuC9x3Jc47ksc9yWO+xLHfYnjvuTOBbac+xLHfYnjvsRxX+K4L3HclzjuSxz3JYH7kk4I3rLWzUoKZK3bKVnr5iVr3aJkrVuWrJm8StZMfv0ydFTw7JI1k1VWveRUWacLqqzjBV1WOYkuq4BBfchOGGjJihjUh+yMQZV1yKDKOmVQZR0zqLLODVZZB4Tr2johXNfWfwpQH7J6SXZZzWSX1UxWWfWSrLLqJVll1Uuyrq3uS666trovuepD1n1Jf966L7mlQwZkjqz7klsuyA0pkAoJN4Wbwk3hpnAzuBncDG4GN4Obwc3gZnAzuBncDtwO3A7cDtwO3A7cDtwO3A7cDtwcbg43h5vDzeHmcHO4Odwcbg63gFvALeAWcAu4BdwCbgG3gFvALeGWcEu4JdwSbgm3hFvCLeGW41YhxEcuyA0pkAppkAfyy60oKcE4CcZJME6CcSqQ+EiBVEiDPJAOOYyTYJwE4yQYp6KJjxRIhTTIA+mQwzgJxkkwToJxKqT4SIFUSIM8kA45jJNgnATjJBgndUMKpEIa5IF0yFq3Ws1mnK9WXLHFpqTKLTYlVXCxKamSi01JFV1sSqrsYlNShRebkiq92JRU8cWmpMovNiVVgLEpqRKMTUkVYWxKqgxjU1KFGJuSKsXYlFQxxqakyjE2JVWQsSmpkoxNSRVlbEqqLGNTUjbjVFkzTpVVL7Eu+3KzLiui6rIiqrq26iX1y1uZxqakDjX2nNV9yS03ZD3nqrK6L7mlQRZR9WBzh5dgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ4dx5BrGkWsYR65hHLmGceQaxpFrGEeuYRy5hnHkGsaR64LbgtuC24LbgtuC24LbgtuC24LbgtuG24bbhtuG24bbhtuG24bbhtuGm8BN4CZwE7gJ3ARuAjeBm8BN4KZwU7gp3BRuCjeFm8JN4aZwU7gZ3AxuBjeDm8HN4GZwM7gZ3AxuB24HbgduB24HbgduB27FOF99Uq5hHLmGceQaxpFrGEcqMPlIgVRIgzyQDvkwjlzDOHIN48g1jCMVnXykQCqkQR5Ih3wYR65hHLmGceQaxpErN6RAKqRBHkiHfBhHrmEcWcM4soZxpOKUjxRIhTTIA+mQtW5WMkdWL/nq1VK5yqIkqWBlUZJUsrIoSSpaWZQkla0sSpIKVxYlSaUri5Kk4pVFSbL675yrrP/Qucqql3iV9Z9M1Ifsv5nQkkVU9SGbcbqsZrLLaia7rNaty2rdqqz/dKKurf92oq6t/3iiPmT1kqyy6iXZZTWTXVYz2WU1k11W61bXVvclV11b3Zdc9SGHcWQN48gaxpE1jCNrGOeXPJAOGZA5chhHlsHN4GZwM7gZ3AxuBjeDm8HtwO3A7cDtwO3A7cDtwO3A7cDtwM3h5nBzuDncHG4ON4ebw83h5nALuAXcAm4Bt4BbwC3gFnALuAXcEm4Jt4Rbwi3hlnBLuCXcEm7DOLKHcWQP48gexpE9jCN7GEf2MI7sYRzp3OYtAxJuC24LbgtuxThflCR7GEf2MI7sYRzZwzjSEc5b5sh9QS7IDSmQD+PIHsaRPYwjexhHOsx5yxwpF+SC3JAC+TCO7GEc2cM4sodxpGOdt8yRekEuyA0pkA/jyB7GkT2MI3sYRzrgecscaRfkgtyQAlnrVqvZjLNL1rrVxVcv+aIk6ajnquWuXrLq81Yv+bqLl057flGSdNxzV1n1kl1l1Ut2l9W6dVmtW5fVutUnq14itdzVS6Q+ZPUSqbLqJVJl1UukyqqXaJVVL9Euq5msa6teonVt1Uu0PmQzTpcV41RZ9RKrsuolVmXVS+p2pjOg9cvbIdD65e0UaP3y7nhOjaRyoI8MyOfUSCoK+sgFWURVgw3jyB7GkT2MI3sYR/YwjuxhHNlgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOHLgduB24OZwc7g53Ipxqk8KGEfAOALGETCOeEAOUUlckAtyQwrkMI6AcQSMI2CcCps+coiq4qaPXJAbUiCHcQSMI2AcAeNIBuQQlV4X5ILckAI5jKNgHAXjKBinAqiPHKKqCOojF+SGFMhaNytpkLVup2Stm5esdYuStW5fK19h1KakSqM2JVUctSmp8qhNSRVIbUrS/svwLqtToy6rU6Muq1Oj+pD9tpevldd+3Ut9yGacKmvGqbL+C/Eq6z8R77Jaty6rdatr67dB1LX1a1/qQ1YvKUqqgGpTUiVUm5IqotqUVBnVpqQKqTYldUq1KKljqkVJCsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcA+MYGMfAOAbGMTCOgXEMjGNgHAPjGBjHwDgGxjEwTiVdHwm3BbcFtwW3BbdinKIkA+MYGMfAOAbGqdDrIw3yQDpkQA5RGRjHwDgGxjEwTuVeH2mQB9IhA3KIysA4BsYxMI6BcSr3+kiDPJAOGZBDVAbGMTCOgXEMjGOmkAZ5IB0yIIeorBmnVrMZZ5esdauLr15SlFS516akyr02JVXutSmpcq9NSZV7bUqq3GtTUuVem5Iq99qUVLnXpqTKvTYlVe61Kalyr01JlXttSqrca1NS5V6bkir32pRUudempMq9NiVV7rUpqXKvTUnWjNNlxThdVqdGXVanRl1WRNVlRVR1bdVL6pe3cq9NSZ177Tmr+5JbKuRzaiSde72lQxZR9WBzh3fAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOP1mylvCzeHmcHO4OdyKcapPHjDOAeMcMM4B43Tu9ZYGeSAdMiCHqA4Y54BxDhjngHE693pLgzyQDhmQQ1QOxnEwjoNxHIxzv7iypUEeSIcMyCEqB+M4GMfBOA7G6dzrLQ3yQDpkQA5Rde61GnTnXm9Z63ZK1rrVPFQvKUrq3GtRUudei5I691qU1LnXoqTOvRYlde61KKlzr0VJnXstSurca1FS516Lkjr3WpTUudeipPvNll1WM9llNZNV1i+xrbJ+G1aV9euw6tr6fVh1bf1CrPqQ1Uuyy2omu6xmsstqJrusZrLKqpcUJVXutSmpcq9NSQ7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GCfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME7lXm+54bbhtuG24bbhVoxTlBRgnADjBBgnwDiVe33kgtyQAqmQBjmME2CcAOMEGKdzr7dckBtSIBXSIIdxAowTYJwA43Tu9ZYLckMKpEIa5DBOgHECjBNgnM693nJBbkiBVEiDrHWr1WzG2SVr3eriq5cUJXXute7tO/dad/Gde627+M69FiV17nV3Wc1kl9W6dVmtW5fVunVZrVt9suolRUmdey1K6txrUVLnXouSOvcqXVbX1mU1k11WM1nXVr2kKKlzr0VJnXstSurca1FS516Lkjr3WpTUuVfrsiKqurbqJfXL27nX+uXtV2/2nNV9Scl++eYt59SoX795S4EsovKSc4eXYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJx+l2fLgFvALeAWcAu49d/2ZclhnATjJBgnwTiZF+SC3JACqZAGOYyTYJwE4+Qwjnbu9ZYLckMKpEIa5MM4eg3j6DWMo9cwjnbu9ZYLckMKpEIa5MM4eg3j6DWMo9cwjnbu9ZYLckMKpEIaZK2blXTIWrdTstat5qF6yRclaedevyhJO/d66qNXL/miJO3c6xclaedeT5fVunVZnRp1WZ0adVmdGlVZv/C3PmS/2VtLFlHVh2zGqbJmnC6rmeyyWrcuq3Xrslq3urZ+829dW7/iuz5k9ZKssuolWWXVS7LKqpdkl9VMdlmtW11b3ZdcdW11X3LVhxzG0WsYR69hHL2GcfQaxtFrGEevYRy9hnH0GsbRaxhHrwM3h5vDzeHmcHO4Odwcbg43h5vDLeAWcAu4BdwCbgG3gFvALeAWcEu4JdwSbgm3hFvCLeGWcEu4DePoGsbRNYyjaxhH1zCOrmEcXcM4uoZxdA3j6BrG0XXBbcFtwW3BbcFtwW3BbcFtwW3BbcFtw23DbcNtw23DbcNtw23DbcNtw03gVozzRUm6hnF0DePoGsbRNYyj/aLRWzpkQOZIvSAX5MM4uoZxdA3j6BrG+SUPpEMGZI60C3JBPoyjaxhH1zCOrmEc7dzrLR0yIHPkuSAX5MM4uoZxdA3j6BrG0c693tIhAzJH+gW5IGvdajWbcXbJWre6+OolX5SknXtdtdzVS1Z93uolX3fx2rnXL0rSzr3uKqtesqusesmusuolu8qql+wuq3WrT1a9RGq5q5dIfcjqJdJlNZNVVr1Eqqx6iVZZ9RKtsuolWtdWvUTr2qqXaH3IZpwuK8bpsjo16rI6Nfoq69zr1+2Mdu61fnk791q/vJ17rV/efT2nRlq510ceyOfUSCv3+sgcWfclNb97GEf3MI7uYRzdwzi6h3F0D+PoHsbRPYyjexhH9zCO7g23DbcNtw23DbcNtw23DbcNN4GbwE3gJnATuAncBG4CN4GbwE3hpnBTuCncFG4KN4Wbwk3hpnAzuBncDG4GN4Obwc3gZnAzuBncDtwO3A7cDtwO3A7cDtwO3A7cDtwcbg43h5vDzeHmcHO4Odwcbg63gFvALeAWcAu4BdwCbgG3gFvALeHWf9uXJR/G0T2Mo3sYR/cwjnbu9ZYOGZAPUWnnXm+5IIdxBIwjYBwB43Tu9ZYOGZBDVJ17veWCHMYRMI6AcQSM07nXWzpkQA5Rde71lgtyGEfAOALGETBO515v6ZABOUTVuddbLshaNyspkLVup2StW81D9ZKipM69FiV17rUoqXOvRUmdey1K6txrUVLnXouSOvdalNS5V++yOjXqsjo1qg9ZvaQoqXOvRUmde60brc69FiV17rUoqXOvRUmdey1K6txrUVLnXouSOvdalNS51+yymskuq5mssuolRUmdey1K6txrUVK/S7UoqV+mWpQkYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXj9PtYbwk3gZvATeAmcCvGKUpSMI6CcRSMo2CcfjXrLQVSIQ3yQDrkMI6CcRSMo2Cczr3eUiAV0iAPpEMO4ygYR8E4Csbp3OstBVIhDfJAOuQwjoJxFIyjYJzOvd5SIBXSIA+kQ9a61Wo243y14s69FiV17rUoqXOvdW/fude6i+/ca93Fd+61KKlzr7vLaia7rNaty2rdqqx6SVFS516Lkjr3WpTUudeipM69SpfVTHZZzWSX1bV1Wc1kl9VMfl1b516Lkjr3WpTUudeipM69FiV17tW6rE6NuqyIqsuKqKxkEdUpWUT19SFtPadGWrnXR27I59RIK/f6SIMsourB5g7PwDgGxjEwjoFxDIxjYBwD4xgYx8A4BsYxMI6BcQyMY2AcA+MYGMfAOAbGMTCOgXEMjGNgHAPjGBjHwDgGxsH7XhXve1W871XxvlfF+14V73tVvO9V8b5XxfteFe97VbzvVfG+V8X7XhXve1W871Xxvlc1MI6BcQyMY2AcA+MYGMfAOAbGMTCOgXEMjGNgHAPjGBjHwDgGxjEwjoFxDIxjYBwD4xgYx8A4BsYxMI6BcQyMY2AcA+MYGMfAOJZwS7gl3BJuCbeEW/9tX5YcxjEwzgHjHDDO/U+ptxRIhTTIA+mQwzgHjHPAOAeM07nXWwqkQhrkgXTIYZwDxjlgnAPGuf959ZYCqZAGeSAdchjngHEOGOeAcTr3ekuBVEiDPJAOWetmJXNk9ZLq1Z17rV7dudeipM69FiV17rUoqXOvRUmdey1K6tzr6bJaty6rU6Mq63/Cscr633Cssv5HHOtD9r/iWCvf/4xjfchmnC6rmeyymskuq3Xrslq3Kut/zLGurf81x7q2/ucc60NWLylK6txrdlnNZJfVTHZZzWSX1brVtdV9SVFSv++1KOmAcQ4Y54BxDhjngHEOGOeAcQ4Y54BxDhjngHEOGOeAcQ4Y54BxDhjngHEOGOeAcQ4Y54BxDhjngHEOGOeAcQ4Y54BxDhjngHEcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4LnATuAncFG4KN4VbMU5RkoNxHIzjYBwH47gG5BCV2wW5IDekQA7jOBjHwTgOxunc6y2HqDr3essFuSEFchjHwTgOxnEwTudebzlE1bnXWy7IDSmQwzgOxnEwjoNxOvd6yyGqzr3eckFuSIGsdavVbMbZJWvd6uKrlxQlde617u0791p38Z17rbv4zr0WJXXutSipc69FSZ173V1W69ZltW5dVutWn6x6SVFS516Lkjr3WpTUudeipM69FiV17rUoqXOv2mU1k7tkzaSUrJnUksU4XVaMU2XVS4qSOvdalNS517qd6dxr/fJ27rV+eTv3Wr+8/b7X1f+BQwbknBr1+15vuSCLqGowME6AcQKME2CcAOMEGCfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME6AcQKME2CcAOMEGCfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME6AcQKME2CcAOMEGCfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME6AcSLhlnCbv+3TnL/t05y/7dOcv+3Tzr1Wn0wwToJxEoyTYJzOvd5yiKpzr7dckBtSIIdxEoyTYJwE43Tu9ZZDVJ17veWC3JACOYyTYJwE4yQY5/4H6VsOUd3/JH3LBbkhBXIYJ8E4CcZJME7nXm85RNW511suyA0pkLVuVtIga91qjauXVK/u3GtRUudei5I691qU1LnXoqTOvRYlde61KKlzr6fL6tSoy+rUqMvq1KjL6tSoPmT1kqKkzr0WJd3/Yn2VNeNUWf+b9VVWvSS6rNaty2rd6tqqlxQlde61KKlzr0VJnXstSurca1FS516Lkjr3WpTUudeipH7fa1FSv++1KCnBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcHMaxaxjHrmEcu4Zx7BrGsWsYx65hHLuGcewaxrFrGMeuC24LbgtuC24LbgtuC24LbgtuC24LbhtuG24bbhtuG24bbhtuG24bbhtuAjeBm8BN4CZwE7gJ3ARuAjeBm8JN4aZwU7gp3BRuCjeFm8KtGOeLkuwaxrFrGMeuYRy7hnHsMoU0yAPpkAGZI4dx7BrGsWsYx65hHOvc6y0N8kA6ZEDmyGEcu4Zx7BrGsWsYxzr3ekuDPJAOGZA5chjHrmEcu4Zx7BrGsc693tIgD6RDBmSObMap1WzG2SVr3eriq5d8UZJ17nXVclcvWfV5q5d83cVb516/KMk697q7rGbyq6xzr1+UZJ17/aIk69zrFyVZ516/KMk69/pFSda51y9Kss69SpfVTHZZzWSX1bVVWfUSrbLqJV+UZJ17/aIk69zrFyVZ516ty4pxuqxOjbqsTo26rIiqy4qo6tqql1hdW/USqw+5n1Mj6/e93lIhn1Mj6/e93tIhi6h6sOcOz9Ywjq1hHFvDOLaGcWwN49gaxrE1jGNrGMfWMI4tgZvCTeGmcFO4KdwUbgo3hZvCTeFmcDO4GdwMbgY3g5vBzeBmcDO4HbgduB24HbgduB24HbgduB24Hbg53BxuDjeHm8PN4eZwc7g53BxuAbeAW8At4BZwC7gF3AJuAbeAW8It4ZZwS7gl3BJuCbeEW8JtGMf2MI7tYRzbwzi25/0ltuf9Jbbnb/tsz9/22Z6/7bM9f9tnnXutPrmHcWwP49gexrE9jGOde72lQR5IhwzIHDmMY3sYx/Ywju1hHOvc6y0N8kA6ZEDmyGEc28M4todxbA/jWOdeb2mQB9IhAzJHDuPYHsaxPYxjexjHOvd6S4M8kA4ZkDmyekk16M693rLWrda4ekn16s69flGSde7VauWrl5z66NVLvijJOvf6RUnWuddTZdVLTpVVL/Eqq17iVVa9xKuseonXh6xe4rXy1Uu8PmQzTpfVTHZZzWSVVS+JKqteElVWvSTq2qqXRF1b9ZKoD1m9JLusZrLLaia7rGayy2omq6x6Sda11X3JVddW9yVXfchhHNvDOLaHcWwP49gexrE9jGN7GMf2MI7tYRzbwzi2E24Jt4Rbwi3hlnAD4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYRxRuBjeDm8HN4GZwK8YpShIwjoBxBIwjYBw5F+SC3JACqZAGOYwjYBwB4wgYp3Ovt1yQG1IgFdIgh3EEjCNgHAHjdO71lgtyQwqkQhrkMI6AcQSMI2Cczr3eckFuSIFUSIOsdavVbMbZJWvd6uKrlxQlde617u0791p38Z17rbv4zr0WJXXudXdZzWSX1bp1Wa1bl9W6dVmt29cn69xrUVLnXouSOvdalNS516Kkzr1Kl9W1dVnNZJfVTO6SNZNSsmayPmQzTpU141RZ9ZKipM69FiV17tW6rIiqrq16Sf3ydu61fnn7fa89Z3Vf0lIuyOfUyPp9r7cUyCKqGgyMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIxjYBwD4xgYx8A4BsYxMI6BcQyMY2Acu+C24LbgtuC24Lbg1n/blyWHcQyMY2AcA+N07vWWC3JDCqRCGuQwjoFxDIxjYJzOvd5yQW5IgVRIgxzGMTCOgXEMjNO511suyA0pkAppkMM4BsYxMI6BcTr3essFuSEFUiENstbNSjpkrVutcfWS6tWdey1K6txrUVLnXouSOvdalNS516Kkzr2eLqt167I6NeqyOjXqsjo1qrLqJUVJnXstSurca1FS517rRqtzr9FlNZNdVuvWZbVuXVbrVtdWvaQoqXOvRUmdey1K6txrUVLnXouSOveaXVYz2WW1bnVtdV9SlNTvey1KMjCOgXEMjGNgHAPjGBjHwDgGxjEwjoFxDIxzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDjH4GZwM7gZ3AxuB27FOEVJB4xzwDgHjHPAOOccSIcMyCGqzr3eckEO4xwwzgHjHDBO515v6ZABOUTVuddbLshhnAPGOWCcA8bp3OstHTIgh6g693rLBTmMc8A4B4xzwDide72lQwbkEFXnXm+5IGvdVslat12y1k1K1rppyVo3K1nrdkrWunnJWrevntq516Kkzr0WJXXutSipc69FSZ173V1W61afrHpJUVLnXouSOvcqXVYzWWXVS4qSOvdalNS516Kkzr0WJXXutSipc69FSZ17tS4rxumyOjXqsjo1qrLqJXU707nX+uXt3Gv98nbutX55+32vPWd1X3LLAzmnRv2+11vmyLov6fkF4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJxbcFtwW3BbcFtw23Ppv+7LkME6AcQKME2Cczr3e0iEDcoiqc6+3XJDDOAHGCTBOgHE693pLhwzIIarOvd5yQQ7jBBgnwDgBxunc6y0dMiCHqDr3essFOYwTYJwA4wQYp3Ovt3TIgByi6tzrLRdkrZuVFMhat1rj6iXVqzv3WpTUudeipM69FiV17rUoqXOvRUmdey1K6txrUVLnXouSOvfqXVanRl1Wp0b1IauXFCV17rUoqXOvdaPVudeipM69FiV17rUoqXOvRUmdey1K6txrUVLnXouSOveaXVYz2WU1k1VWvaQoqXOvRUmdey1K6ve9FiX1+16LkgKME2CcAOMEGCfAOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJw8cDtwO3A7cDtwO3ArxilKSjBOgnESjJNgnPQNKZAKaZAH0iGHcRKMk2CcBON07vWWAqmQBnkgHXIYJ8E4CcZJME7nXm8pkAppkAfSIYdxchjnXMM45xrGOZ17vaVAKqRBHkiHrHVbJWvd9pesXvJFSadzr1+UdDr3+nVvfzr3+nUXfzr3+nUXfzr3+kVJp3Ovu8tqJrus1q3Lat2qrHrJrrLqJbs+WfWSL0o6nXuV+pDVS6TLaia7rGayy+rauqxmsstqJuvaqpdoXVv1Eq0P2YxTZc04VVa9xLqsTo26rIiqy4qo6tqql1hdW/USqw+pz6nR6fe93nJDPqdGp9/3ekuDLKLqwZ47vHMN45xrGOdcwzjnGsY51zDOuYZxzjWMc65hnHMN45zL4GZwM7gduB24HbgduB24HbgduB24HbgduDncHG4ON4ebw83h5nBzuDncHG4Bt4BbwC3gFnALuAXcAm4Bt4Bbwi3hlnBLuCXcEm4Jt4Rbwm0Y56xhnLOGcc4axjlrGOesYZyzhnHOGsY5axjnrGGcsy64LbgtuC24LbgtuC24LbgtuC24LbhtuG24bbhtuG24bbhtuPXf9mXJh3HOGsY5axjnrGGc07nXWwqkQhrkgXTIh3HOGsY5axjnrGGc07nXWwqkQhrkgXTIh3HOGsY5axjnrGGc07nXWwqkQhrkgXTIh3HOGsY5axjnrGGc07nXWwqkQhrkgXTIWjcrmSOrl1Sv7txr9erOvX5R0uncq9XKVy859dGrl3xR0unc6xclnc69ni6rdeuyOjWqsuolXmXVS7zKqpd4fcjqJV4rX73E60M243RZzWSX1Ux2Wa1bl9W6VVn1kqhrq14SdW3VS6I+ZPWSrLLqJdllNZNdVjPZZTWTXVbrVtdW9yVflHT6fa9flHT2MM7ZwzhnD+OcPYxz9jDO2cM4Zw/jnD2Mc/YwztnDOGcvuC24LbgtuC24LbgtuC24LbhtuG24bbhtuG24bbhtuG24bbhtuAncBG4CN4GbwE3gJnATuAncBG4KN4Wbwk3hpnBTuCncFG4KN4Wbwc3gZnAzuBncDG4GN4Obwc3gduB24HbgduB24HbgduB24HbgduDmcHO4OdyKcb4o6exhnLOHcc4exjl7GOdsD8gcGRfkgtyQAvkwztnDOGcP45w9jHM693rLHJkX5ILckAL5MM7ZwzhnD+OcPYxzOvd6y4eoTudeb7kgN6RADuMIGEfAOALG6dzrLYeoOvd6ywW5IQWy1m2VrHXbJWvdpGStm5asdbOStW71efvfE/aStW5RsmayyqqXFCV17nV3Wa1bl9W6dVmtW32y6iVFSZ17LUrq3GtRUudei5I691qU1LnXoqTOvWqX1UzWtVUvKUrq3GtRUudercuKcaqseklRUudei5I691q3M517rV/ezr3WL2/nXuuXt9/32nNW9yW3DMjn1Oj0+15vuSCLqGowMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcXTDbcNtw03gJnATuPXf9mXJYRwF4ygYR8E4nXu95RBV515vuSA3pEAO4ygYR8E4Csbp3Osth6g693rLBbkhBXIYR8E4CsZRME7nXm85RNW511suyA0pkMM4CsZRMI6CcTr3esshqs693nJBbkiBrHWzkgZZ61ZrXL2kenXnXouSOvdalNS516Kkzr0WJXXutSipc69FSZ17PV1Wp0ZdVqdGXVanRl1Wp0b1IauXFCV17rUoqXOvdaPVudeipM69FiV17jW6rNaty2rd6tqqlxQlde61KKlzr0VJnXstSurca1FS516Lkjr3WpTUudeipH7fa1FSv++1KMnAOAbGMTCOgXEMjGNgHAPjGBjHwDgGxjEwjoFxDIxjYBwD4xgYx8A4BsYxMI6BcQyMY2AcA+MYGMfAOAbGMTCOgXEMjGNgHAPjGBjHwDgGxjEwjoFxDIxjYBwD4xgYx8A4BsYxMI6BcQyMY2AcA+MYGMfAOAbGMTCOgXEMjGNgHAPjGBjHwDgGxjEwjoFxDIxjYBwD4xgYx8A4BsYxh5vDzeHmcHO4OdyKcYqSDIxjYBwD4xgYx0IhDfJAOmRADlEZGMfAOAbGMTBO515vaZAH0iEDcojqgHEOGOeAcQ4Yp3OvtzTIA+mQATlEdcA4B4xzwDgHjNO511sa5IF0yIAcourca1FS516Lkjr3WpTUudeipM691r19517rLr5zr3UX37nXoqTOve4uq5mssuolRUmdey1K6txrUVLnXouSOvdalNS516Kkzr1Kl9VMdlnNZJfVtVVZ9ZKipM69FiV17rUoqXOvRUmde7UuK8bpsjo16rI6NeqyIqouK6Kqa6teUr+8nXutX95+32vPWd2X3FIh59So3/d6S4csourB5g7vgHEOGOeAcQ4Y54BxDhjngHEOGOeAcQ4Y54BxDhjngHEOGOeAcQ4Y54BxDhjngHEOGOeAcQ4Y54BxDhjngHEOGOeAcQ4Y54BxDhjngHEOGOeAcQ4Y54BxDhjngHEOGOeAcQ4Yx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOC5wE7gJ3ARuAjeBW/9t31dbcTCOg3EcjONgnM693tIgD6RDBuQQlYNxHIzjYBwH43Tu9ZYGeSAdMiCHqByM42AcB+M4GKdzr7c0yAPpkAE5ROVgHAfjOBjHwTide72lQR5IhwzIIarOvVaD7tzrLWvdao2rl1Sv7txrUVLnXouSOvdalNS516Kkzr0WJXXutSipc69FSZ17LUrq3GtRUudei5I691qU1LnXoqTOvRYlde41uqxmsstqJr/KOvdalNS516Kkzr0WJXXutSipc69FSZ17zS6rmeyymskuq5nssprJKqteUpTU73stSur3vRYlBRgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME6AcQKME2CcAOMEGCfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME6AcQKME2CcAOMEGCfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME6AcQKME2CcAOMEGCfAOOFwC7gF3AJuAbeAWzFOUVKAcQKME2CcAONEXpALckMKpEIa5DBOgHECjBNgnM693nJBbkiBVEiDHMZJME6CcRKM07nXWy7IDSmQCmmQwzgJxkkwToJxOvd6ywW5IQVSIQ2y1m2VrHXbJWvd6uKrlxQlde617u0791p38Z17rbv4zr0WJXXudXdZzWSX1bp1Wa1bl9W6dVmtW32y6iVFSZ17LUrq3GtRUudei5I69ypdVtfWZTWTXVYzWddWvaQoqXOvRUmdey1K6txrUVLnXouSOvdalNS5V+uyIqq6tuol9cvbudf65e33vfac1X1Jy3NBzqlRv+/1lgJZRFWDgXESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTwzh+DeP4NYzj1zCOX8M4fg3j+DWM49cwjl/DOH4N4/h1wW3BbcFtwW3BbcFtwW3BbcFtwW3BbcNtw23DbcNtw23DbcNtw23DbcNN4CZwE7gJ3ARuAjeBm8BN4CZwU7gp3BRuCjeFW/9tX5Z8GMevYRy/hnH8Gsbxzr3eckFuSIFUSIN8GMevYRy/hnH8Gsbxzr3eckFuSIFUSIN8GMevYRy/hnH8Gsbxzr3eckFuSIFUSIN8GMevYRy/hnH8Gsbxzr3eckFuSIFUSIOsdbOSDlnrVmtcvcRqHqqXfFGSd+7VauWrl5z66NVLvijJO/f6RUneudfTZbVuXVanRl1Wp0ZdVqdGX2Wde/2iJO/c6xcleedevyjJO/f6daPlnXuNLquZ7LJaty6rdeuyWrdTstbt69o69/pFSd6516yy6iVZZdVLssqql2SX1Ux2Wa1blqy/tLhKfv2aXvUhh3F8DeP4GsbxNYzjaxjH1zCOr2EcX8M4voZxfA3j+NpwE7gJ3ARuAjeBm8BN4CZwE7gJ3BRuCjeFm8JN4aZwU7gp3BRuCjeDm8HN4GZwM7gZ3AxuBjeDm8HtwO3A7cDtwO3A7cDtwO3A7cDtwM3h5nBzuDncHG4ON4ebw83h5nALuAXcAm4Bt4BbwC3gFnALuAXcEm7FOFdtsmEcX8M4voZxfA3j+MoD6ZAB+RCVd+71lgvyYRzfwzi+h3F8D+N4515v6ZABmSPXBbkgH8bxPYzjexjH9zCOd+71lg4ZkDlyX5AL8mEc38M4vodxfA/jeOdeb+mQAZkj5YJckLVuq2St2y5Z61YXX73ki5K8c69f9/beuddVn7f/PWEvWev21VM797qrrHrJrrLqJbvKqpfsKqtesrus1q0+WfUSqeWuXiL1IauXSJfVTFZZ9RKpsuolWmXVS7TKqpdoXVv1Eq1rq16i9SGbcbqsGKfL6tSoy+rUqMqql9TtTOde65e3c6/1y9u51/rl7fe99pzVfcktD+RzauT9vtdb5si6L+n5HcbxPYzjexjH9zCO72Ec38M4vodxfA/j+B7G8T2M80vCLeAWcAu4BdwCbgG3gFvALeGWcEu4JdwSbgm3hFvCLeEGxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjiMJN4aZwU7gp3Axu/bd9WXIYR8A4AsYRME7nXm/pkAE5RNW511suyGEcAeMIGEfAOJ17vaVDBuQQVedeb7kgh3EEjCNgHAHjdO71lg4ZkENUnXu95YIcxhEwjoBxBIzTuddbOmRADlF17vWWC7LWzUoKZK1brXH1kurVnXstSurca1FS516Lkjr3WpTUudeipM69FiV17rUoqXOvRUmde/Uuq1OjLqtTIylZRKUli6isZM1klTXjVFn1kqKkzr0WJXXutSipc69FSZ17LUrq3GtRUudes8tqJrusZrLKqpcUJXXutSipc69FSf2+16Kkft9rUZKCcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjCbeEW8It4ZZwS7gV4xQlKRhHwTgGxjEwjl0bUiAV0iAPpEMO4xgYx8A4Bsbp3OstBVIhDfJAOuQwjoFxDIxjYJzOvd5SIBXSIA+kQw7jGBjHwDgGxunc6y0FUiEN8kA6ZK3bKlnr9tWKO/dalNS516Kkzr3WvX3nXusuvnOvdRffudeipM697i6rmeyyWrcuq3WrsuolRUmdey1K6txrUVLnXouSOvcqXVYz2WU1k11W19ZlNZNdVjNZ11a9pCipc69FSZ17LUrq3GtRUudercvq1KjLiqi6rIiqrq16Sf3ydu61fnn7fa89Z3VfcssN+Zwaeb/v9ZYGWUTVg80dnoFxDIxjYBwD4xgYx8A4BsYxMI6BcQyMY2AcA+MYGMfAOAbGMTCOgXEMjGNgHAPjGBjHwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMcwxuBjeDm8HN4GZw67/ty5LDOAeMc8A4B4zTuddbCqRCGuSBdMhhnAPGOWCcA8bp3OstBVIhDfJAOuQwzgHjHDDOAeN07vWWAqmQBnkgHXIY54BxDhjngHE693pLgVRIgzyQDlnrZiXzkZ17rV7dudfq1Z17LUrq3GtRUudei5I691qU1LnXoqTOvZ4uq3Xrsjo1qrLqJUVJnXstSurca1FS516Lkjr3WpTUudfosprJLquZ7LJaty6rdauy6iVFSZ17LUrq3GtRUudei5I695pdVjPZZTWTXVYz2WW1bnVtdV9SlNTvey1KcjCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcTzhlnCbdzR6zDsaPeb9JR7z/hKv3GtTUoBxAowTYJwA48QVkENUsS7IBbkhBXIYJ8A4AcYJME7nXm85RNW511suyA0pkMM4AcYJME6AcTr3esshqs693nJBbkiBHMYJME6AcQKM07nXWw5Rde71lgtyQwpkrVutZjPOLlnrVhdfvaQoqXOvdW/fude6i+/ca93Fd+61KKlzr0VJnXstSurc6+6yWrcuq3Xrslq3+mTVS4qSOvdalNS516Kkzr0WJXXutSipc69FSZ171S6rmaxrq15SlNS516Kkzr1alxXjVFn1kqKkzr0WJXXutW5nOvdav7yde61f3s691i9vv++156zuS24ZkHNq1O97veWCLKKqwcA4AcYJME6AcQKME2CcAOMEGCfAOAHGCTBOgHECjBNgnADjBBgnwDgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJg5vBzeB24HbgduDWf9uXJYdxEoyTYJwE43Tu9ZZDVJ17veWC3JACOYyTYJwE4yQYp3Ovtxyi6tzrLRfkhhTIYZwE4yQYJ8E4nXu95RBV515vuSA3pEAO4yQYJ8E4Ccbp3OstH6KKzr3eckFuSIGsdbOSBlnrdkrWunnJWrcoWeuWX7J6yRclRedevygpOvf6RUnRuddTZdVLTpfVqVGX1alRl9WpUZfVqVF9yOolX5QUnXv1+pDNOFXWjFNl1UuiyqqXRJfVunVZrVtdW/WSqGurXhL1IauXZJVVL8kqq16SVVa9JKuseklWWfWSrGur+5Krrq3uS676kMM4cQ3jxDWME9cwTlzDOHEN48Q1jBPXME5cwzhxDePEpXBTuCncDG4GN4Obwc3gZnAzuBncDG4GtwO3A7cDtwO3A7cDtwO3A7cDtwM3h5vDzeHmcHO4Odwcbg43h5vDLeAWcAu4BdwCbgG3gFvALeAWcEu4JdwSbgm3hFvCLeGWcEu4DePEGsaJNYwTaxgn1ryjMda8ozHWvKMx1ryjMda8vyTWvL8kKvdalBRrGCfWME6sYZxYwzixlkIa5IF0yIDMkcM4sYZxYg3jxBrGic693tIgD6RDBmSOHMaJNYwTaxgn1jBOdO71lgZ5IB0yIHPkME6sYZxYwzixhnGic6+3NMgD6ZABmSObcWo1m3F2yVq3uvjqJV+UFJ17XbXc1UtWfd7+94S9ZK1blKyZ7LKaySqrXrKrrHrJrrLqJbvKqpfs+mTVS6SWu3qJ1IesXiJdVjPZZTWTXVbXVmXVS7TKqpdoXVv1Eq1rq16i9SGbcbqsGKfL6tSoy+rUqMuKqLqsiKqurXpJ/fJ27rV+eft9rz1ndV9yS4V8To2i3/d6S4csourBnju8WMM4sYZxYg3jxBrGiTWME2sYJ9YwTqxhnFjDOLGGcWIP48Qexok9jBN7GCf2ME7sYZzYwzixh3FiD+PEvuC24LbgtuC24LbgtuC24LbgtuC24LbhtuG24bbhtuG24bbhtuG24bbhJnATuAncBG4CN4GbwE3gJnATuCncFG4KN4Wbwk3hpnBTuCncFG4GN4Obwc3gZnAzuBncDG4GN4PbgduB24HbgduB24HbgduB24Fb/23fV1vZwzixh3FiD+PEHsaJzr3e0iAPpEMGZI4cxvklF+SGFEiFNMgD6ZABmSOHcWIP48Qexok9jBOde72lQR5IhwzIh6hCwDgCxhEwjoBxOvd6S4M8kA4ZkENUnXutBt2511vWup2StW5estYtSta6Zcmayfro1UuKkjr3WpTUudeipM69FiV17rUoqXOvRUmdey1K6txrUVLnXouSOvdalNS51+iymskuq5mssuolRUmdey1K6txrUVLnXouSOvdalNS51+yymskuq5nssprJLquZrLLqJUVJ/b7XoqR+32tRkoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcRSMo2AcBeMoGEfBOArGUTCOgnEUjKMX3BbcFtwW3BbcFtyKcYqSFIyjYBwF4ygYR/cFuSA3pEAqpEEO4ygYR8E4Csbp3OstF+SGFEiFNMhhHAXjKBhHwTide73lgtyQAqmQBjmMo2AcBeMoGKdzr7dckBtSIBXSIGvdajWbcXbJWre6+OolRUmde617+8691l18517rLr5zr0VJnXvdXVYz2WW1bl1W69ZltW5dVutWn6x6SVFS516Lkjr3WpTUudeipM69SpfVtXVZzWSX1UzWtVUvKUrq3GtRUudei5I691qU1LnXoqTOvRYlde7VuqyIqq6tekn98nbutX55+32vPWd1X9IyL8jn1Cj6fa+3FMgiqhoMjKNgHAXjKBhHwTgGxjEwjoFxDIxjYBwD4xgYx8A4BsYxMI6BcQyMY2AcA+MYGMfAOAbGMTCOgXEMjGNgHAPjGBjHwDgGxjEwjoFxDIxjYBwD4xgYx8A4BsYxMI6BcQyMY2AcA+MYGMfAOAbGMTCOgXEMjGNgHAPjGBjHwDgGxjEwjoFxDIxjYBwD4xgYx8A4BsYxMI6BcQyMY2AcA+MYGMfAOAbGMTCOgXEMjGNgHDtwc7g53BxuDjeHW/9tX5YcxjEwjoFxDIzTuddbLsgNKZAKaZDDOAbGMTCOgXE693rLBbkhBVIhDXIYx8A4BsYxME7nXm+5IDekQCqkQQ7jHDDOAeMcME7nXm+5IDekQCqkQda6WUmHrHU7JWvdvuahc69FSZ17LUrq3GtRUudei5I691qU1LnX02W1bl1Wp0ZdVqdGXVanRlVWvaQoqXOvRUmdey1K6txr3Wh17jW6rGayy2rduqzWrctq3eraqpcUJXXutSipc69FSZ17LUrq3GtRUudes8tqJrus1q2ure5LipL6fa9FSQeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4zjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3F8wW3BbcFtwW3BbcOtGKcoycE4DsZxMI6DcXwfSIcMyCGqzr3eckEO4zgYx8E4Dsbp3OstHTIgh6g693rLBTmM42AcB+M4GKdzr7d0yIAcourc6y0X5DCOg3EcjONgnM693tIhA3KIqnOvt1yQtW61ms04u2StW1189ZKipM691r19517rLr5zr3UX37nXoqTOvRYlde61KKlzr0VJnXstSurc6+6yWrf6ZNVLipI691qU1LlX6bKaySqrXlKU1LnXoqTOvRYlde61KKlzr0VJnXstSurcq3VZMU6X1alRl9WpUZVVL6nbmc691i9v517rl7dzr/XL2+977Tmr+5JbHsg5Ner3vd7yyeFFv++15jfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME6AcQKME2CcAOMEGCfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME6AcQKME2CcAOMEGCfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4wQYJ8A4AcYJME6AcQKME2CcAOMEGCfAOAHGCYebw83h5nBzuAXc+m/7suQwToBxAowTYJzOvd7SIQNyiKpzr7dckMM4AcYJME6AcTr3ekuHDMghqs693nJBDuMkGCfBOAnG6dzrLR0yIIeoOvd6ywU5jJNgnATjJBinc6+3dMiAHKLq3OstF2Stm5UUyFq3U7LWreaheklRUudei5I691qU1LnXoqTOvRYlde61KKlzr0VJnXstSurcq3dZnRp1WZ0a1YesXlKU1LnXoqTOvdaNVudei5I691qU1LnXoqTOvRYlde61KKlzr0VJnXstSurca3ZZzWSX1UxWWfWSoqTOvRYlde61KKnf91qU1O97LUpKME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwcxslrGCevYZy8hnHyGsbJaxgnr2GcvIZx8hrGyWsYJ68LbgtuC24LbgtuC24LbgtuC24LbgtuG24bbhtuG24bbhtuG27FOF+UlNcwTl7DOHkN4+Q1jJOXbEiBVEiDPJAO+TBOXsM4eQ3j5DWMk517vaVAKqRBHkiHfBgnr2GcvIZx8hrGyc693lIgFdIgD6RDPoyT1zBOXsM4eQ3jZOdebymQCmmQB9Iha91qNZtx9pesXrLq4quXfFFSdu511XJXL1n1efvfE/aStW5Rsmayy2omu6zWrctq3aqsesmusuoluz5Z9RKp5a5eIvUhq5dIl9VMdlnNZJfVtXVZzWSX1UzWtVUv0bq26iVaH7IZp8qacaqseol1WZ0adVkRVZcVUdW1VS+xurbqJV+/vNnve6056/e93nJDPqdG2e97vaVBFlH1YM8dXq5hnFzDOLmGcXIN4+Qaxsk1jJNrGCfXME6uYZxcC24LbgtuG24bbhtuG24bbhtuG24bbhtuG24CN4GbwE3gJnATuAncBG4CN4Gbwk3hpnBTuCncFG4KN4Wbwk3hZnAzuBncDG4GN4Obwc3gZnAzuB24HbgduB24HbgduB24HbgduB24Odwcbg43h5vDzeHmcHO4OdwcbgG3gFvALeAWcAu4Bdz6b/uy5MM4uYZxcg3j5BrGyc693lIgFdIgD6RDPoyTaxgn9zBO7mGc7NzrLQVSIQ3yQDrkwzi5h3FyD+PkHsbJzr3eUiAV0iAPpEM+jJN7GCf3ME7uYZzs3OstBVIhDfJAOmStm5XMkdVLqld37rV6dedevygpO/f6RUnZuddTH716yRclZedevygpO/d6uqzWrcvq1KjKqpd4lVUv8SqrXuL1IauXfFFSdu7V60M243RZzWSX1Ux2Wa1bl9W6VVn1kqhrq14SdW3VS6I+ZPWSrLLqJdllNZNdVjPZZTWTXVbrVtdW9yVXXVvdl1z1IYdxcg/j5B7GyT2Mk3sYJ/cwTu5hnNzDOLmHcXIP4+R2uDncHG4ON4ebw83h5nBzuAXcAm4Bt4BbwC3gFnALuAXcAm4Jt4Rbwi3hlnBLuCXcEm4JNzCOgHEEjCNgHAHjCBhHwDgCxhEwjoBxBIwjYBwB4wgYR8A4AsYRMI6AcQSMI2AcAeMIGEfAOALGETCOgHEEjCNgHNlw23DbcBO4CdwEbsU4RUkCxhEwjoBxBIwjEpBDVKIX5ILckAI5jCNgHAHjCBinc6+3HKLq3OstF+SGFMhhHAHjCBhHwDide73lEFXnXm+5IDekQA7jCBhHwDgCxunc6y2HqDr3essFuSEFstatVrMZZ5esdauLr15SlNS517q379xr3cV37rXu4jv3WpTUudeipM69FiV17nV3Wa1bl9W6dVmtW32y6iVFSZ17LUrq3GtRUudei5I691qU1LnXoqTOvWqX1UzWtVUvKUrq3GtRUudercuKcb7KOvdalNS516Kkzr3W7UznXuuXt3Ov9cvbudf65e33va7+DxwyIJ9To+z3vd5yQRZR1WBgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjKBhHwTgKxlEwjoJxFIyjYBwF4ygYR8E4CsZRMI6CcRSMo2AcBeMoGEfBOArGUTCOgnEUjKNgHAXjaMAt4BZwS7gl3BJu/bd9WXIYR8E4CsZRME7nXm85RNW511suyA0pkMM4BsYxMI6BcTr3esshqs693nJBbkiBHMYxMI6BcQyM07nXWw5Rde71lgtyQwrkMI6BcQyMY2Cczr3ecoiqc6+3XJAbUiBr3aykQda6nZK1bjUP1UuKkjr3WpTUudeipM69FiV17rUoqXOvRUmdez1dVqdGXVanRl1Wp0ZdVqdG9SGrlxQlde61KKlzr3Wj1bnXoqTOvRYlde41uqzWrctq3eraqpcUJXXutSipc69FSZ17LUrq3GtRUudei5I691qU1LnXoqR+32tRUr/vtSjJwDgGxjEwjoFxDIxjYBwD4xgYx8A4BsYxMI6BcQyMY2AcA+MYGMfAOAbGMTCOgXEMjGNgHAPjGBjHwDgGxjEwjoFxDIxjYBwD4xgYx8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHPAOAeMc8A4B4xzwDgHjHMEbgI3gZvATeAmcCvGKUo6YJwDxjlgnAPGOaqQBnkgHTIgh6gOGOeAcQ4Y54BxOvd6S4M8kA4ZkENUB4xzwDgHjHPAOJ17vaVBHkiHDMghqgPGOWCcA8Y5YJzOvd7SIA+kQwbkEFXnXouSOvdalNS516Kkzr0WJXXute7tO/dad/Gde627+M69FiV17nV3Wc1klVUvKUrq3GtRUudei5I691qU1LnXoqTOvRYlde5VuqxmsstqJrusru2rrHOvRUmdey1K6txrUVLnXouSOvdqXVaM02V1atRldWrUZUVUXVZE9XVtnXutX97OvdYvb7/vdfV/IJAKOadG/b7XWzpkEVUPNnd4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsZxMI6DcRyM42AcB+M4GMfBOA7GcTCOg3EcjONgHAfjOBjHwTgOxnEwjoNxHIzjYBwH4zgYx8E4DsbxhFvCLeGWcEu4Jdz6b/u+2kqAcQKME2CcAON07vWWBnkgHTIgh6gCjBNgnADjBBinc6+3NMgD6ZABOUQVYJwA4wQYJ8A4nXu9pUEeSIcMyCGqAOMEGCfAOAHG6dzrLQ3yQDpkQA5Rde61GnTnXm9Z63ZK1rrVPFQvKUrq3GtRUudei5I691qU1LnXoqTOvRYlde61KKlzr0VJnXstSurca1FS516Lkjr3WpTUudeipM69RpfVTHZZzWSVVS8pSurca1FS516Lkjr3WpTUudeipM69ZpfVTHZZzWSX1Ux2Wc1klVUvKUrq970WJfX7XouSAowTYJwA4wQYJ8A4AcYJME6AcQKME2CcAOMEGCfAOAHGCTBOgHECjBNgnADjBBgnwDgBxgkwToBxAowTYJwA4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnATjJBgnwTgJxkkwToJxEoyTYJwE4yQYJ8E4CcZJME6CcRKMk2CcBOMkGCfBOAnGSTBOgnESjJNgnBS4KdwUbgo3hZvCrRinKCnBOAnGSTBOgnHSLsgFuSEFUiENchgnwTgJxkkwTudeb7kgN6RAKqRBDuMkGCfBOAnG6dzrLRfkhhRIhTTIYZwE4yQYJ8E4nXu95YLckAKpkAZZ61ar2YyzS9a61cVXLylK6txr3dt37rXu4jv3WnfxnXstSurc6+6ymskuq3Xrslq3Lqt167Jat1+fbF0dfP3CpC9dc7la12R665rNaF3TedfWFd61NaF3bc3obl1TKq1rTrV0407XNu90bTUW69rqLNa11Vrsri3CstaFWKd1MVZ/5vUcJH3phN4X6ecs6Utv0kK6UKvHHPr50oe0kw7SCT0I9KUX6U1aSCtp8hXyFfIV8hXyVfJV8lXyVfJV8lXyVfJV8lXyVfI18jXyNfI18jXyNfI18jXyNfI18j3ke8j3kO8h30O+h3wP+R7yPeR7yNfJ18nXydfJ18nXydfJ18nXydfJN8g3yDfIN8g3yDfIN8g3yDfIN8g3yTfJN8k3yTfJN8k3yTfJN8k34buui/QivUkLaSVdvtn6wakv7aSDdEKvi/QivUkLaSVtpB+w+tJOOkgn9L5IL9KbtJBW0kb6Qawv7aSDdELLRXqR3qSFtJI20g9sfWknHaQTWi/Si/QmLaSVtJGu9bXWTrrWt78P1a/696LjuBata337e1L96vS1VL86q3XN825d83zX1vretXWmddfWodZdW6daXVv9yvszV7/y/p5Uv/L+zM1hXdsgdtfWPN+1tb53ba3vXVvr29db/Sr6eqtfRX/m6lfZtdWvsmurX2XXVr/Ku7bm+a6t9e3rrTupq6+3bqWu/szDZb/0gNmXXqQ3aSGtpI30Ie2kgzT5Jvkm+Sb5Jvkm+Sb5Jvkm+Sb5Jnz3dZFepDdpIa2kjfQh7aSDNPku8l3ku8h3ke8i30W+i3wX+S7yXeS7yXeT7ybfTb6bfDf5bvLd5LvJd5OvkK+Qr5CvkK+Qr5CvkK+Qr5CvkK+Sr5Kvkq+Sr5Kvkq+Sr5Kvkq+Sr5Fv8d1lrR/A+9JCWkkb6UPaSQfphD4X6UX6Qb0vLaSVtJE+pJ10kE5ov0gv0g/0fWkhraSN9CHtpIN0QsdFepF+8O9LC2klbaQPaScdpBM6L9KLdK1vr3uT4G5d69tzUv1qaeta3/5uVL9qrumIcHNNZ4RX9fMOCW9tXfNsrWt9T+taX29d63vX1vpm65rnq3XN82pd83zX1jx3bfWr5srOCzdXdmC4ubITw82VHRluruzMcHNlh4btri0evGvr0O2urVO3rq1+1fdmnRzu+4SODvd9QmeH+z6hX5q77v/GSB/Sz+nblw7SCV33Vz3/QjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPCjEg0I8KMSDQjwoxINCPKjEg0o8qMSDSjyoxIN6GelD2kkHafJd5Nt/d5mtwYNKPKjEg0o82MHkRzvpIA0O7XDyoxdp8KASDyrxoBIPdkT50U46SINDO6b86EUaPKjEg0o8qMSDHVZ+tJMO0uDQDiw/epEGDyrxoBIPKvFgx5Yf7aSDNDi0o8uPXqRrfa21kK717e9D9av+vegAc3NlJ5ibKzvC3FzZGebmyg4xN1d2irm5smPMzZWdY26u7CCz37V1DnjX1kFgf+bqV82VHWZuruw0c99Ddpy5ubLzzM2VHWhuruxEc3NlR5qbKzvT3FzZoebmyk41511b83zX1jx3bfWr5spONjdXdrS5ubLf6dtc2S/1ba5U4kElHlTiQSUeVOJBJR5U4kElHlTiQSUeVOJBJR5U4kElHlTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx40I18jXyNfI18jXyPf4sHmSiMeNOJBIx404kE7m7SQVtJG+pB20uBBIx404kEjHuzQ9KOFtJI20oe0kwYPGvGgEQ8a8WDHpx8tpJW0kT6knTR40IgHjXjQiAc7SP1oIa2kjfQh7aRrfXvdmwfrt6AD1c2VnahuruxIdfNOZ6qbazpU3VzTqermyo5V77u25vmurfW9a2t9u7b6VXNlZ6ubKztc3VzZ6ermyo5Xy11b83zX1jzftXW9d23N811b89zXW/2qubJT1s2VHbNuruycdXNlB63trq1zybu2OPSuLQ7t661+1fcJnbbu+4R+zfA9n3V/9ehNGueS/arhRxvp4tB7TNzHHuLBQzx4iAcP8eAhHjzEg4d48BAPHuLBQzx4iAcP8eAhHjzEg4d48BAPHuLBQzx4iAcP8eAhHjzEg4d48BAPHuLBQzx4iAcP8eAhHjzEg4d48BAPHuLBQzx4iAcP8eAhHjzEg4d48BAPHuLBQzx4iAcP8eAhHjzEg4d48BAPHuLBQzx4iAcP8eAhHjzEg4d48BAPHuLBQzx4iAcP8eAhHjzEg0486MSDTjzoxINOPOjEg0486MSDTjzoxINOPOiLfBf5LvJd5LvId5Fv/6VqtgYPOvGgEw868WBHuR8tpJW0kT6knTR40IkHnXjQiQc71P1oIa2kjfQh7aTBg0486MSDTjzY8e5HC2klbaQPaScNHnTiQScedOLBDno/WkgraSN9SDvpWl9rndDVr/r3ohPf/XvRke/mys58N1d26Lu5slPfzZUd+26u7Nz3uWtrfe/aOpfs2upXzZWd/W6u7PB3c2Wnv5srO/7dXNn577hra57v2prnu7bW966t9e3a6lfNlZ0Cb67sGHhzZefAmys7CJ53bc3zXVvzfNfWPN+1tb59vXV/1VzZr0FurnTiQScedOJBJx504kEnHnTiQScedOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgwjXyNfI99Dvod8D/kWDzZXBvFgEA8G8WAQD8YJ0uDQ8Iv0Ir1JC2nwYBAPBvFgEA92zPzR4NAOmj96kd6khTR4MIgHg3gwiAc7cP5ocGhHzh+9SG/SQho8GMSDQTwYxIMdPX80OLTD549epDdpIV3ru1rX+u7Wtb7SutZXW9f6Wuta3/r8HUNvrukcenNlB9GbKzuJ3lzZUfR919b63rW1vndtrW9/zupXzZWdR2+u7EB6c2Un0psrO5LeXNmZ9ObKDqXrXVvz3Ndb/aq5snPpzZUdTLe7tniwa6tfNVd2Nr25ssPpfW/W6fS+T+h4et8ndD697xP6xcz3fNb91aODNM4l++XMj16ki0N7TOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M8OC6wIPrAg+uCzy4LvDgusCD6wIPrgs8uC7w4LrAg+u6yHeR7yLfRb6LfBf5LvJd5LvId5HvIt9Nvpt8N/n23/Zm6+HBdYEH1wUeXBd4cHW+/dEJLRfpRXqTFtLDg+sCD64LPLgu8ODqfPujE1ov0ov0Ji2khwfXBR5cF3hwXeDB1fn2Rye0XaQX6U1aSA8Prgs8uC7w4LrAg6vz7Y9O6HORXqQ3aSFd62utjXStb38fql9Zz0/1q+LK1fl26+9J9avT11L9qrhydb69uHJ1vv10bfWrc9fWueRdW+eSd22dS961dS7Zn7n6lff3pPqV92duHuza5sGurX4VXVv9Ku7aWt+7tta3r7f6VfT1Vr+K/szVr7Jrq19l11a/yq6tfpVdW/0qu7b6Vfb11v3V1ddb91dXf2bw4LrAg+sCD64FHlwLPLgWeHAt8OBa4MG1wINrgQfXAg+uBR5c6yLfRb6LfBf5LvJd5LvId5HvIt9Fvot8N/lu8t3ku8l3k+8m302+m3w3+W7yFfIV8hXyFfIV8hXyFfIV8hXyFfJV8lXyVfJV8lXyVfJV8lXyVfJV8jXyNfI18jXyNfI18jXyNfI18jXyPeR7yPeQ7yHfQ76HfA/5HvI95Fs8WFy5FnhwLfDgWuDBtcCDa7mSNtKHtJMO0gkNHlwLPLgWeHAt8ODqfPujjfQh7aSDdEKDB9cCD64FHlwLPLg63/5oI31IO+kgPRy6NnhwbfDg2uDBtcGDq/PtjzbSh7STDtIJ3Ty4Wtf67ta1vtK61ldb1/pa61rf/vz9D6J761rfaF3zfNfWPHdt9avdtdWvdtdWv9pdW/1q9+esflVcuTrfLv2Zq1/JXVvzfNfWPN+1db1dW/1Ku7b6lfb1Vr/Svt7qV9qfuXnwri0evGvrXPKurXPJu7Y49K4tDu3rrX7V9wmdb+/7hH6V9T2fdX/1aCU955KrX2f9aCddHHqPifvYDR5cGzy4NnhwbfDg2uDBtcGDa4MH1wYPrg0eXNvI95DvId9Dvod8D/ke8j3ke8j3kO8hXydfJ18nXydfJ18nXydfJ18nXyffIN8g3yDfIN8g3yDfIN8g3yDfIN8k3yTfJN8k3yTfJN8k3yTfJF/iQSEeFOJBIR4U4kEhHhTiQSEeFOJBIR4U4kEhHhTiQSEeFOJBIR4U4kEhHhTiQSEeFOJBIR4U4kEhHpRNvpt8N/lu8t3ku8m3/965epcQDwrxoBAPCvFg59sfbaQPaScdpMGhQjwoxINCPCjEg51vf7SRPqSddJAGhwrxoBAPCvGgEA92vv3RRvqQdtJBGhwqxINCPCjEg0I82Pn2RxvpQ9pJB2lwaOfb+zei8+2PrvXt70P1q/696Hx7c2Xn25srO9/eXNn59ubKzrc3V3a+vbmy8+3NlZ1vb67sfHtzZefbmys7395c2fn25srOtzdXdr497tqa57u25rlrq181V3a+vbmy8+3NlZ1vb67sfHtzZefb866teb5ra57v2prnu7bmuWo7395c2W/abq7sV203VyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASDyrxoBIPKvGgEg8q8aASD+ohXydfJ18nXydfJ9/iweZKJR5U4kElHlTiQY2L9CK9SQtpJW2kwYNKPKjEg0o82Pn2Ry/Sm7SQVtJGGjyoxINKPKjEg51vf/QivUkLaSVtpMGDRjxoxINGPNj59kcv0pu0kFbSRrrWd7Wu9d2ta32lda1v9fPOtzfvdL69uabz7c01nW9vrux8+75ra57v2lrfu7bW966t9b1ra337c1a/aq7sfHtzZefbmys7395c2fl2uWvreu/amue7tua5r7f6VXNl59ubKzvf3lzZ+fbmys63N1d2vr25svPtdtcWh/b1Vr/q+4TOt/d9Qr/8+57Pur+6tV2k51xy9QvAHy2ki0N7TOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404kEjHjTiQSMeNOJBIx404sFDPHiIBw/x4CEePMSDh3jwEA8e4sFDPHiIBw/x4CEePMSDh3jwEA8e4sFDPHiIBw/x4CEePMSDh3jwEA8e4sFDPHiIBw/x4CEePMSDZ5OvkK+Qr5CvkK+Qb/+9c7YGDx7iwUM8eIgHO9/+6EV6kxbSStpIgwcP8eAhHjzEg51vf/QivUkLaSVtpMGDh3jwEA8e4sHOtz96kd6khbSSNtLgwUM8eIgHD/Fg59sfvUhv0kJaSRvpWl9r7aRrffv7UP2qfy86395c2fn25srOtzdXdr69ubLz7c2VnW8/d22t711b55J3bZ1L3rV1Ltm11a+aKzvf3lzZ+fbmys639z1k59vjrq15vmtrfe/aWt+7tta3r7f6VXNl59ubKzvf3lzZ+fbmys63N1d2vj3v2prnu7bWN1vX33ldrb9+95srnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkHnXjQiQedeNCJB5140IkH3cnXydfJ18nXyTfIt3iwudKJB5140IkHnXjQ45B20kEaHNr59kcv0uBBJx504kEnHux8+6OddJAGh3a+/dGLNHgwiAeDeDCIBzvf/mgnHaTBoZ1vf/QiDR4M4sEgHgziwc63P9pJB2lwaOfbH71I1/qu1rW+u3Wtb89J9avmys63N+90vr25pvPtzTWdb2+u7Hx7c2Xn25srO9/eXNn59ubKzrfvu7bWtz9n9avmys63N1d2vl3u2prnrq1+1VzZ+fbmys63N1d2vr25svPtzZWdb2+u7Hy73bXFg3dtnUvetXUu2bXVr/rerPPtfZ/Q+fa+T+h8e98n9OvS7/ms+6tHH9I4l+xXpj86oev+6p5/4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSAeDOLBIB4M4sEgHgziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkziwSQeTOLBJB5M4sEkHkwhXyFfIV8hXyFfJd/+e+dsDR5M4sEkHkziwc63P9pJB2lwaOfbH71IgweTeDCJB5N4sPPtj3bSQRoc2vn2Ry/S4MEkHkziwSQe7Hz7o510kAaHdr790Ys0eDCJB5N4MIkHO9/+aCcdpMGhnW9/9CJd62uthXStb38fql/170Xn25srO9/eXNn59ubKzrc3V3a+vbmy8+3NlZ1vb67sfHtzZefb/a6tc8m7ts4l+zNXv2qu7Hx7c2Xn2+secne+vbhyd769uHJ3vr24cne+vbhyd769uHJ3vr24cne+vbhyd74979qa57u25rlrq19l11a/yq6tflVcufv97cWVu9/ffvVnBg/uCzy4L/DgvsCD+wIP7gs8uC/w4L7Ag/sCD+4LPLivTb6bfDf5bvLd5CvkK+Qr5CvkK+Qr5CvkK+Qr5Cvkq+Sr5Kvkq+Sr5Kvkq+Sr5Kvkq+Rr5Gvka+Rr5Gvka+Rr5Gvka+Rr5HvI95DvId9Dvod8D/ke8j3ke8j3kK+Tr5Ovk6+Tr5Ovk6+Tr5Ovk6+Tb5BvkG+Qb5BvkG+Qb5Bv8eDVexY8uC/w4L7Ag/sCD+4rN2khraSN9CHtpIcH9wUe3As8uBd4cHe+/dFCWkkb6UPaSQ8P7gUe3As8uBd4cHe+/dFCWkkb6UPaSQ8P7gUe3As8uBd4cHe+/dFCWkkb6UPaSdf6rta1vvVb0Pn21XNS/aq4cne+vXhnd7599eevflVcszvfXly5O9++79qa57u21veurfXt2upXu2urX+3+nNWviit359ulP3P1K7lra57v2prnu7au966teb5ra577eqtfaV9v9Svtz9w82LXNg11b/cru2jqXvGuLQ+/a4tC+3upX1tdb/cr6M3e/6v+9+9WtN2khraSN9CHtpIN0Qjv5Ovk6+Tr5Ovk6+Tr5Ovk6+Tr5BvkG+Qb5BvkG+Qb5BvkG+Qb5Bvkm+Sb5Jvkm+fb7Gfq71O9nuPUhXb79Heu/x7l1jr7f337rRXrPOPf722+tpI3++0PaSQdp8l3ku8h3ke8i30W+y0gf0uS7yHeR7ybfTb59f3VrIa2k6Xo3+fb91a2DdEL3/dWtyVfIV8hXyFfIV2ieha5X6HqFrlfJt++vbk3zrDTPSvOs5Kvkq+Sr5KvkazTPRtdrdL1G12vka7S+RvNsNM9G82zke8j3kO8h30O+h+b50PUeut5D13vI99D6Os2z0zw7zbOTr5Ovk6+Tr5Ov0zw7XW/Q9QZdb5Bv0PoGzXPQPAfNc5BvkG+Qb5Jvkm/SPCddb9L1Jl0v9at+f/ujaZ4T89zvb380fPv97Y8W0kraSB/STjpI43r7/e2371qkN2khraTJd5Ev9SuhfiXUr4T6lVC/EupXQv1KNvluI31IO+kgTb5CvtSvhPqVUL8S6ldC/UqoXwn1KxHyFVpf6ldC/UqoX4mSr5Iv9SuhfiXUr4T6lVC/EupXQv1KjHyN1pf6lVC/EupXYuRr5Ev9SqhfCfUroX4l1K+E+pVQv5JDvofWl/qVUL8S6lfi5OvkS/1KqF8J9SuhfiXUr4T6lVC/kiDfoPWlfiXUr4T6lQT5BvlSvxLqV0L9SqhfCfUroX4l1K+E7q+E7q+E+pVQvxLqV0L3V0r3V0r9SqlfKfUrpX6l1K+U+pVSv7rz7dEa66vUr5T6lVK/uvPtPc4iX+pXSv1KqV8p9SulfqXUr5T61Z1vb98tpJW0kT6kyXeTL/UrpX6l1K+U+pVSv1LqV0r96s63t684aZpn6ldK/erOt/c4Sr7Ur5T6lVK/UupXSv1KqV8p9as7396+RutL/UqpXyn1qzvffo9DvtSvlPqVUr9S6ldK/UqpXyn1qzvf3r6H1pf6lVK/UupXd769x3HypX6l1K+U+pVSv1LqV0r9Sqlfdb799nVaX+pXSv1KqV91vv0eJ8iX+pVSv1LqV0r9SqlfKfUrpX51v7+9fZPWl/qVUr9S6ldKPKjEg0r9yqhfGfUro35l1K+M+pVRv7rf3x6tnXSQxjwb9SsjHrzf335r8qV+ZdSvjPqVUb8y6ldG/ep+f3v77kV6kxbSSpp8N/lSvzLqV0b9yqhfGfUro35l1K/u97e3rxhpmmfqV0b9yogH7/e335p8qV8Z9SujfmXUr4z6lVG/ut/f3r5K60v9yqhfGfUrIx68399+a/KlfmXUr4z6lVG/MupXRv2q399++x5aX+pXRv3KqF8Z8WC/v/3R5Ev9yqhfGfUro35l1K+M+lW/v/32dVpf6ldG/cqoXxnxYL+//dHkS/3KqF8Z9SujfmXUr4z6Vb+//fZNWl/qV0b9yqhfGfGgUb8yur8yur8y6leHeLDf3/7oTVrov1fSRvqQ/vLN1fqX7y8ga53QX/1q9CK9SQtpJW2kf/n+grnW/qW9dZBO6K9+NXqR3qSFtJI20of0l28/f658++iE/upXoxfpTVpIK2kjfUh/+fZz6cq3j07or341epHepIW0kjbSh/SX7zmtg3RCf/Wr0Yv0Ji2klbSRPqS/fKOv/atfjU7or341epHepIW0kjbShzT5HvI95Ovk6+Tr5Ovk6+Tr5Ovk6+Tr5OvkG+Qb5BvkG+Qb5BvkG+Qb5BvkG+Sb5Jvl23swN2khXb79/UkjfUg76SCdM07l20cv0nv++8q3j1bSRvqQdtJBmnwX+S7yXZu0kCbfRb6LfBf5LvKtfnXr6lePXqTpejf5Vr96tJE+pJ00+W7yFfIV8hXyFZpnoesVul6h6xXyrX71aJpnpXlWmmclXyVfJV8lXyVfpXlWul6l6zW6XiNfo/U1mmejeTaaZyNfI18jXyPfQ76H5vnQ9R663kPXe8j30PoemudD83xonp18nXydfJ18nXyd5tnpep2u1+l6nXyD1jdonoPmOWieg3yDfIN8g3yDfIPmOel6k6436XqpX3nS+ibNc9I8J80z9StP+MZ1kV6kN2khraSN9CEN37iCNOY5qF8F9atY5LvIl/pVUL8K6ldB/SqoXwX1q6B+FZt89yYtpJW0kSbfTb7Ur4L6VVC/CupXQf0qqF8F9asQ8pVDmuaZ+lVQvwolXyVf6ldB/SqoXwX1q6B+FdSvgvpVKPkarS/1q6B+FdSvwsjXyJf6VVC/CupXQf0qqF8F9augfhWHfA+tL/WroH4V1K/ikO8hX+pXQf0qqF8F9augfhXUr4L6VTj5Oq0v9augfhXUryLIN8iX+lVQvwrqV0H9KqhfBfWroH4VdH8VdH8V1K+C+lVQvwq6vwq6vwrqV0H9KqlfJfWrpH6V1K+S+lVe8M3rkHbSQRrznIt8F/lSv0rqV0n9KqlfJfWrpH6V1K9yke++SC/Sm7SQJt9NvtSvkvpVUr9K6ldJ/SqpXyX1qxTyFSVN80z9KqlfpZCvkC/1q6R+ldSvkvpVUr9K6ldJ/SqVfJXWl/pVUr9K6ldp5GvkS/0qqV8l9aukfpXUr5L6VVK/ykO+h9aX+lVSv0rqV3nI95Av9aukfpXUr5L6VVK/SupXSf0qnXyd1pf6VVK/SupXGeQb5Ev9KqlfJfWrpH6V1K+S+lVSv8og36T1pX6V1K+S+lUSDybxYFK/SupXSf0q0a/kQr+SC/1KLvQrua7xletS0kb6kHbSQeOQ7yLfRb6LfNGv5EK/kgv9Si70K7kW+a4gndDoV3KhX8m1yXeT7ybfTb6bfNGv5Np0vZuuV+h6hXxlk6Z5FppnoXkW8hXyFfIV8lXyVZpnpetVul6l61XyVVpfpXlWmmeleTbyNfI18jXyNfI1mmej6zW6XqPrNfI9tL6H5vnQPB+a50O+h3wP+R7yPeR7aJ6drtfpep2u18nXaX2d5tlpnp3m2cnXyTfIN8g3yDdonoOuN+h6g643yDdofYPmOWmek+Y5yTfpepOuN+l6k3yTfJN88fxKFvWrRf1qUb9auL+S1f3KWpdvtj6knXSQTujuV7depDdpIa2kyXeR7yLfRb6LfDf5bvLd5LvJd5PvJt9Nvpt8N/lu8hXyFfIV8hXyFfIV8hXyFfIV8q1+VecdUvn20Yv0l2/2d6D61aOVtJE+pJ3GCdLkW/3q/u+rXz2afI18jXyNfI18jXyNfI18D13voes95HvI95DvId9DvtWvHh2kE9rpep18q189WkgraSNNvk6+Tr5OvkG+QfMcdL1B1xt0vUG+1a8eTfMcNM9B85zkm+Sb5Jvkm+SbNM9J15t0vUnXm/CtfPvoRXqTFtLwrXz76EPaSQdpzHPl20cv0ps0+S4lbaQPaSdNvot8N/lu8t3ku4U0Xe+m6910vZt8d5CmeRaaZ6F5FvIV8hXyFfIV8hWaZ6HrFbpepeulfrWV1ldpnpXmWWmeqV9tJV8lXyVf6leb+tWmfrWpX23qV9vI12h9qV9t6leb+tU+5HvIl/rVpn61qV9t6leb+tWmfrWpX+1Dvk7rS/1qU7/a1K+2k6+TL/WrTf1qU7/a1K829atN/WpTv9pBvkHrS/1qU7/a1K92kG+QL/WrTf1qU7/a1K829atN/WpTv9pJvknrS/1KqF8J9Su54CuXkFbSRvqQdtJBGtcr1K9kke/apIW0kjbS5LvIl/qVUL8S6ldC/UqoXwn1K6F+JZt89yHtpIM0zbOQr5Av9SuhfiXUr4T6lVC/EupXQv1K6P5K6P5KqF8J9SuhfiV0fyV0fyXUr4T6lVC/EupXQv1KqF8J9Ssx8jVaX+pXQv1KqF+Jka+RL/UroX4l1K+E+pVQvxLqV0L9Sg75Hlpf6ldC/UqoX4mTr5Mv9SuhfiXUr4T6lVC/EupXQv1KgnyD1pf6lVC/EupXEuQb5Ev9SqhfCfUroX4l1K+E+pVQv5Ik36T1pX4l1K+E+pVe8NVrkd6khbSSNtKHtJMO0uS7LtKL9CYtpMl3kS/1K6V+pdSvlPqVUr9S6ldK/Uo3+W4lbaQPaSdNvpt8qV8p9SulfqXUr5T6lVK/UupXKuQrQZrmmfqVUr9S4kElHlTqV0r9SqlfKfUrpX6l1K+U+pUa+RqtL/UrpX6l1K+UeFCNfKlfKfUrpX6l1K+U+pVSv1LqV3rI99D6Ur9S6ldK/UqJB9XJl/qVUr9S6ldK/UqpXyn1K6V+pU6+QetL/UqpXyn1KyUe1CBf6ldK/UqpXyn1K6V+pdSvlPqVJvkmrS/1K6V+pdSvlHhQE75G/cqoXxn1K6N+ZdSvjPqVUb+yC752BWnMs1G/MupXRjxoi3ypXxn1K6N+ZdSvjPqVUb8y6le2yXdv0kJaSRtp8t3kS/3KqF8Z9SujfmXUr4z6lVG/MiFfOaRpnqlfGfUrIx406ldG91dG91dG/cqIB03Jl55fGfUro35l1K+M7q+s+5W2Lt9oraSN9CHtpIN0Qne/uvUivUmT7yHfQ76HfA/5HvI95Ovk6+Tr5Ovk6+Tr5Ovk6+Tr5OvkG+Qb5BvkG+Qb5BvkG+T71a+03uMklW8fndBf/Uqv/g589avRm7SQVtJG4xzS5JtB/32Ornz76EV6kxbSShq+lW8f7aSDNK638u3POIt8F/ku8l3ku4z0Ie2kgzT57ov0Ir1JC2ny3eS7yXeT7ybfTfMsdL1C1yt0vUK+oqRpnoXmWWiehXyFfJV8lXyVfJXmWel6la5X6XqVfJXWV2mejebZaJ6NfI18jXyNfI18jebZ6HqNrvfQ9R7yPbS+h+b50DwfmudDvod8D/ke8nXydZpnp+t1ul6n63XydVpfp3l2mmeneQ7yDfIN8g3yDfINmueg6w263qDrpX51ktY3aZ6T5jlpnqlfnSTfJN8kX+pXh/qVU79y6ldO/cov+PqlpI30Ie2kg8YhX+pXTv3KqV859SunfuXUr5z6lS/yXUEa8+zUr5z6lW/y3eRL/cqpXzn1K6d+5dSvnPqVU79yIV/ZpGmeqV859SsX8hXypX7l1K+c+pVTv3LqV079yqlfuZKv0vpSv3LqV079yo18jXypXzn1K6d+5dSvnPqVU79y6ldu5HtofalfOfUrp37lh3wP+VK/cupXTv3KqV859SunfuXUr9zJ12l9qV859SunfuVOvk6+1K+c+pVTv3LqV079yqlfOfUrp/srp/srp37l1K+c+pXT/ZXT/ZVTv3LqV079yqlfOfUrp34V1K/igm9cm7SQVtJG+tA4TjpIky/1q6B+FdSvgvpVUL+KRb7rkHbSQRrzHJt8N/lSvwrqV0H9KqhfBfWroH4V1K9ik69cpGmeqV8F9asQ8hXypX4V1K+C+lVQvwrqV0H9KqhfhZKv0vpSvwrqV0H9KpR8lXypXwX1q6B+FdSvgvpVUL8K6ldh5Gu0vtSvgvpVUL+KQ76HfKlfBfWroH4V1K+C+lVQvwrqV+Hk67S+1K+C+lVQvwon3/9/E3eUY8lxnGF0L3r2Q2dEZGaE92IIkiwbBAhRoCUDhsG9i113uu95+0kO5lNlUgdVRGMuXbxqvGq8arxqvGq8arzqptvcL141XjVeNd+Dzfdg41XjVeNV41XjVeNV41XPuzsfH+zFDnay39352OzDvuxmv8958GrwavBqFt1V7M0+7Mumu+ji1eDV4NXg1eDV4NXg1QTdaDbnjFeDV8P34CRdvBq8GrwavBq8GrwavJqiW9wvXg1eDV4N34NTdPFq8GrwavBq8GrwavBqNt3N/eLV4NXg1fA9OIcuXg1eDV4NXg1eDV4NXs2he7lfvBq8Grwavgfn0sWrwavBq8GrwavBq8GrabrN/eLV4NXg1fA9OHg1vF8N71eDV8P34Axd/vvV4NXg1eDVvN+v6uPlVb72Zzd//P1gJ7vYm33Yl93see/Hq69Nd9FddBfdRXfRXXQX3UU36AbdoBt0g+7jVdZrP9157ctu9rz349XXXuxgJ7vYm/3Zff7c4Hp+vv17N3ve+/Hqay92sJNd7M3+7J792pfd7Hnvx6uvvdjBTnaxN/uze/u1L7vZ896PV197sYOd7GJv9me3f+zL/uzO6/8vj1c/9uPV117sYCe72Jt92JdN99Jtuk236Tbdptt0m27TbbpNd+gO3aE7dIfu0B26Q3fozrv7/Hz7917sp7tfO9nFfrrntQ/7sps97/149eP3ebz62nQfr75+fbHpLrqL7qK76AbdoBt0g+cNnjfoBt2gG3SD7uPV117sYPO8Sffx6msf9mU3m27RLbpFt+gW51w8b/G8xfMW3cerH3tzzptz3pzzprvpbrqb7qa7OefN8x6e9/C8h+7hfg/nfDjnwzkfuofuoXvpXrqXc7487+V5L8976V7u93LOl3NuzrnpNt2m23SbbnPOzfM2z9s879Ad7nc45+Gch3MeukN36A7deXfj44O92MFO9rsbH5t92JfdbLqL7qK76OJV4FXgVeBV4FUsuut9v4FXgVeBVxF0gy5eBV4FXgVeBV4FXgVeRdLNZHPOeBV4FUk36eJV4FXgVeBV4FXgVeBVFN3ifvEq8CrwKjbdTRevAq8CrwKvAq8CrwKv4tA93C9eBV4FXsWhe+jiVeBV4FXgVeBV4FXgVVy6l/vFq8CrwKu4dJsuXgVeBV4FXgVeBV4FXkXTbe4XrwKvAq9i6A5dvAq8CrwKvAq8SrxKvErer5L3q8SrxKvEq+T9Knm/SrxKvEq8SrxKvEq8SrzKRXdddrPf55x4lUE36OJV4lXiVeJV4lXiVeJVJt1cbM4ZrxKvMukmXbxKvEq8SrxKvEq8SrzKolvcL14lXiVeZdHddPEq8SrxKvEq8SrxKvEqN93N/eJV4lXiVR66hy5eJV4lXiVeJV4lXiVe5aV7uV+8SrxKvMpL99LFq8SrxKvEq8SrxKvEq2y6zf3iVeJV4lUO3aGLV4lXiVeJV4lXiVeJV/Xx7tbHYgc72cXe/D6HfdnNpotXhVeFV4VXteiuzT7sy2423aCLV4VXhVeFV4VXhVeFVxV0432/hVeFV4VXxfdgJV28KrwqvCq8KrwqvCq8qqJb3C9eFV4VXhXfg1V08arwqvCq8KrwqvCq8Ko23c394lXhVeFV8T1Yhy5eFV4VXhVeFV4VXhVe1aV7uV+8KrwqvCq+B+vSxavCq8KrwqvCq8Krwqtqus394lXhVeFV8T1YQxevCq8KrwqvCq8KrwqvaujO+343Xm282ni1+R7ceLV5v9q8X2282nwP7g+6/PerjVcbrzZebd6v9surfu3fu7//j33ty272vPenV997sYOd7GJvNt2gG3SDbtJNukk36SbdpJt0k27STbpFt+gW3aJbdItu0S26Rbfo7qdbr73YwX66r38HdrE3+7Avu/l95r0P3bPev/4Em+6he+geuofuoXvoXrqX570876V76V66l+6le5s9790fbJ636Xayi73Zh0236TbdoTt0h3Mennd43uF5h+5cNuc873N+fr79e7+7z8+3f+9kF3uzD/uym/1+3ufn27+6a7GDnexi0110F91Fd9GNDzbPGzxv8LxBNzb7sC+72XSTbtJNukk3OefkeZPnTZ436Sb3W5xzcc7FORfdolt0i27RLc65eN7N826eF6/O5n4357w5580549XZdDfdQxevDl4dvDp4dfDqHLqH+8Wrg1cHr86le+ni1cGrg1cHrw5eHbw6eHWabnO/eHXw6uDVabpNF68OXh28Onh18Org1cGrM3SH+8Wrg1cHr868u/fjg73YwU52sTf7sC/73b0f7/u9eHXx6uLVXXQXXby6eHXx6uLVxauLVxevbtCNZBd7sw+bbtDFq4tXF68uXl28unh18eom3bxszhmvLl7dolt08eri1cWri1cXry5eXby6vF9d3q8uXl28unh1eb+6vF9dvLp4dfHq4tXFq4tXF6/uoXu4X7y6eHXx6h66ly5eXby6eHXx6uLVxauLV/fSvdwvXl28unh1m27TxauLVxevLl5dvLp4dfHqDt3hfvHq4tXFqzt0hy5eNV41XjVeNV41XjVe9ce72x+X3ez3OTde9aK76OJV41XjVeNV41XjVeNVB91Y7GAnu9h0gy5eNV41XjVeNV41XjVeddLNzeac8arxqpNu0cWrxqvGq8arxqvGq8arLrrF/eJV41XjVfM92HwPNl41XjVeNV41XjVeNV71oXu4X7xqvGq8ar4H+9DFq8arxqvGq8arxqvGq750L/eLV41XjVfN92A3XbxqvGq8arxqvGq8arzqoTvcL141XjVeNd+DPXTxqvGq8WrwavBq8Grwaj7e3fnY7MO+7GbTXXTxavBq8GrwavBq8Grwahbd9b7fwavBq8Gr4Xtwgi5eDV4NXg1eDV4NXg1eTdLNZHPOeDV4NXwPTtLFq8GrwavBq8GrwavBqym6xf3i1eDV4NXwPTh4NbxfDe9Xg1fD9+Bsuvz3q8GrwavBq+H9al5e3df+7K712pt92Jfd7Hnvx6uvvdjBTjbdS/fSvXQv3Uu36Tbdptt0m27TbbpNt+k23aE7dIfu0B26Q3foDt3Hq5WvPV97Pz/f/r2fbr12sJNd7M0+/D6X3ex5//rHq69Nd9FddBfdRXfRXXQX3cXzBs8bdINu0A26Qffx6mtfdrN53qT7ePW1g53sYtNNukk36Sbd4pyL5y2et3jeovt49bU55+Kci3Muupvuprvpbrqbc9487+Z5N8+76W7u93DOh3M+nPOhe+geuofuoXs458PzXp738ryX7uV+L+d8OefLOV+6l+6l23SbbnPOzfM2z9s8b9Nt7rc55+ach3MeukN36A7doTuc8/C8w/PO+3kXXq2PxQ52sou9+X0O+7KbTRevFl4tvFp4tRbdtdmHfdnNpht08Wrh1cKrhVcLrxZeLbxaQTfe97vwauHVwquVdJMuXi28Wni18Grh1cKrhVer6Bb3i1cLrxZeraJbdPFq4dXCq4VXC68WXi28Wpvu5n7xauHVwqt16B66eLXwauHVwquFVwuvFl6tS/dyv3i18Grh1bp0L128Wni18Grh1cKrhVcLr1bTbe4XrxZeLbxaTXfo4tXCq4VXC68WXi28Wni1hi7vV4FXgVeBV8H7VfB+FXgVeBV4FXgVeBV4FXgVi+5KdrE3+7DpLrp4FXgVeBV4FXgVeBV4FUE3LrvZnDNeRdJNungVeBV4FXgVeBV4FXgVRbe4X7wKvAq8iqJbdPEq8CrwKvAq8CrwKvAqNt3N/eJV4FXgVWy6hy5eBV4FXgVeBV4FXgVexaF7uF+8CrwKvIpL99LFq8CrwKvAq8CrwKvAq2i6zf3iVeBV4FU03aaLV4FXgVeBV4FXgVeBVzF0h/vFq8CrxKvkezD5Hky8SrxKvEq8SrxKvEq8ykV3LXawk11suosuXiVeJV4lXiVeJV4lXmXQjc0+7MtuNt2ki1eJV4lXiVeJV4lXiVeZdJP7xavEq8Sr5Hswiy5eJV4lXiVeJV4lXiVe5aa7uV+8SrxKvEq+B3PTxavEq8SrxKvEq8SrxKs8dA/3i1eJV4lXyfdgXrp4lXiVeJV4lXiVeJV4lU23uV+8SrxKvEq+B7Pp4lXiVeJV4lXiVeJV4lUO3eF+8SrxKvEq+R4svCrer4r3q8Kr4nuwPjb7sC+/vtl0eb+ql1fntT+79ePvJ7vYm33Yl93see/Hq6+92HSDbtANukE36AbdoJt0k27STbpJN+k+XtV97c/u8+cn7Ofn27/3vPfj1dde7GAnu9ibfdif3efPT9jPz7d/73nvx6uvvdjBTnaxN/uwP7vPn5+wn59v/97z3o9XX3uxg53sYm/2YX92nz//eT8/3/69570fr772Ygc72cXe7MP+vXvyde+fXn3vee9Pr773Ygc72cXe7MOm23Sb7tAdukN3nu7r39VPr069/v359Op7H/ZlN3u+9/Pz7d97sYOd7M/u3q+92Yd92c2e9/706nsvdrCT/dk9/dqbfdiX3ex570+vvvdiBzvZn91er73Zh33ZzZ73/vTqey92sPPZv/3bH/73T7/+9Kc///zX//nDv///73/5X//821/+8dMvf/vxl//4v79//ZM///rTzz//9N9//Puvv/zlr//5z1//+seff/nL889++4/f/gU=",
|
|
147
|
+
"file_map": {
|
|
148
|
+
"18": {
|
|
149
|
+
"source": "pub mod bn254;\nuse crate::{runtime::is_unconstrained, static_assert};\nuse bn254::lt as bn254_lt;\n\nimpl Field {\n /// Asserts that `self` can be represented in `bit_size` bits.\n ///\n /// # Failures\n /// Causes a constraint failure for `Field` values exceeding `2^{bit_size}`.\n // docs:start:assert_max_bit_size\n pub fn assert_max_bit_size<let BIT_SIZE: u32>(self) {\n // docs:end:assert_max_bit_size\n static_assert(\n BIT_SIZE < modulus_num_bits() as u32,\n \"BIT_SIZE must be less than modulus_num_bits\",\n );\n __assert_max_bit_size(self, BIT_SIZE);\n }\n\n /// Decomposes `self` into its little endian bit decomposition as a `[u1; N]` array.\n /// This array will be zero padded should not all bits be necessary to represent `self`.\n ///\n /// # Failures\n /// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting array will not\n /// be able to represent the original `Field`.\n ///\n /// # Safety\n /// The bit decomposition returned is canonical and is guaranteed to not overflow the modulus.\n // docs:start:to_le_bits\n pub fn to_le_bits<let N: u32>(self: Self) -> [u1; N] {\n // docs:end:to_le_bits\n let bits = __to_le_bits(self);\n\n if !is_unconstrained() {\n // Ensure that the byte decomposition does not overflow the modulus\n let p = modulus_le_bits();\n assert(bits.len() <= p.len());\n let mut ok = bits.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bits[N - 1 - i] != p[N - 1 - i]) {\n assert(p[N - 1 - i] == 1);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bits\n }\n\n /// Decomposes `self` into its big endian bit decomposition as a `[u1; N]` array.\n /// This array will be zero padded should not all bits be necessary to represent `self`.\n ///\n /// # Failures\n /// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting array will not\n /// be able to represent the original `Field`.\n ///\n /// # Safety\n /// The bit decomposition returned is canonical and is guaranteed to not overflow the modulus.\n // docs:start:to_be_bits\n pub fn to_be_bits<let N: u32>(self: Self) -> [u1; N] {\n // docs:end:to_be_bits\n let bits = __to_be_bits(self);\n\n if !is_unconstrained() {\n // Ensure that the decomposition does not overflow the modulus\n let p = modulus_be_bits();\n assert(bits.len() <= p.len());\n let mut ok = bits.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bits[i] != p[i]) {\n assert(p[i] == 1);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bits\n }\n\n /// Decomposes `self` into its little endian byte decomposition as a `[u8;N]` array\n /// This array will be zero padded should not all bytes be necessary to represent `self`.\n ///\n /// # Failures\n /// The length N of the array must be big enough to contain all the bytes of the 'self',\n /// and no more than the number of bytes required to represent the field modulus\n ///\n /// # Safety\n /// The result is ensured to be the canonical decomposition of the field element\n // docs:start:to_le_bytes\n pub fn to_le_bytes<let N: u32>(self: Self) -> [u8; N] {\n // docs:end:to_le_bytes\n static_assert(\n N <= modulus_le_bytes().len(),\n \"N must be less than or equal to modulus_le_bytes().len()\",\n );\n // Compute the byte decomposition\n let bytes = self.to_le_radix(256);\n\n if !is_unconstrained() {\n // Ensure that the byte decomposition does not overflow the modulus\n let p = modulus_le_bytes();\n assert(bytes.len() <= p.len());\n let mut ok = bytes.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bytes[N - 1 - i] != p[N - 1 - i]) {\n assert(bytes[N - 1 - i] < p[N - 1 - i]);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bytes\n }\n\n /// Decomposes `self` into its big endian byte decomposition as a `[u8;N]` array of length required to represent the field modulus\n /// This array will be zero padded should not all bytes be necessary to represent `self`.\n ///\n /// # Failures\n /// The length N of the array must be big enough to contain all the bytes of the 'self',\n /// and no more than the number of bytes required to represent the field modulus\n ///\n /// # Safety\n /// The result is ensured to be the canonical decomposition of the field element\n // docs:start:to_be_bytes\n pub fn to_be_bytes<let N: u32>(self: Self) -> [u8; N] {\n // docs:end:to_be_bytes\n static_assert(\n N <= modulus_le_bytes().len(),\n \"N must be less than or equal to modulus_le_bytes().len()\",\n );\n // Compute the byte decomposition\n let bytes = self.to_be_radix(256);\n\n if !is_unconstrained() {\n // Ensure that the byte decomposition does not overflow the modulus\n let p = modulus_be_bytes();\n assert(bytes.len() <= p.len());\n let mut ok = bytes.len() != p.len();\n for i in 0..N {\n if !ok {\n if (bytes[i] != p[i]) {\n assert(bytes[i] < p[i]);\n ok = true;\n }\n }\n }\n assert(ok);\n }\n bytes\n }\n\n fn to_le_radix<let N: u32>(self: Self, radix: u32) -> [u8; N] {\n // Brillig does not need an immediate radix\n if !crate::runtime::is_unconstrained() {\n static_assert(1 < radix, \"radix must be greater than 1\");\n static_assert(radix <= 256, \"radix must be less than or equal to 256\");\n static_assert(radix & (radix - 1) == 0, \"radix must be a power of 2\");\n }\n __to_le_radix(self, radix)\n }\n\n fn to_be_radix<let N: u32>(self: Self, radix: u32) -> [u8; N] {\n // Brillig does not need an immediate radix\n if !crate::runtime::is_unconstrained() {\n static_assert(1 < radix, \"radix must be greater than 1\");\n static_assert(radix <= 256, \"radix must be less than or equal to 256\");\n static_assert(radix & (radix - 1) == 0, \"radix must be a power of 2\");\n }\n __to_be_radix(self, radix)\n }\n\n // Returns self to the power of the given exponent value.\n // Caution: we assume the exponent fits into 32 bits\n // using a bigger bit size impacts negatively the performance and should be done only if the exponent does not fit in 32 bits\n pub fn pow_32(self, exponent: Field) -> Field {\n let mut r: Field = 1;\n let b: [u1; 32] = exponent.to_le_bits();\n\n for i in 1..33 {\n r *= r;\n r = (b[32 - i] as Field) * (r * self) + (1 - b[32 - i] as Field) * r;\n }\n r\n }\n\n // Parity of (prime) Field element, i.e. sgn0(x mod p) = 0 if x `elem` {0, ..., p-1} is even, otherwise sgn0(x mod p) = 1.\n pub fn sgn0(self) -> u1 {\n self as u1\n }\n\n pub fn lt(self, another: Field) -> bool {\n if crate::compat::is_bn254() {\n bn254_lt(self, another)\n } else {\n lt_fallback(self, another)\n }\n }\n\n /// Convert a little endian byte array to a field element.\n /// If the provided byte array overflows the field modulus then the Field will silently wrap around.\n pub fn from_le_bytes<let N: u32>(bytes: [u8; N]) -> Field {\n static_assert(\n N <= modulus_le_bytes().len(),\n \"N must be less than or equal to modulus_le_bytes().len()\",\n );\n let mut v = 1;\n let mut result = 0;\n\n for i in 0..N {\n result += (bytes[i] as Field) * v;\n v = v * 256;\n }\n result\n }\n\n /// Convert a big endian byte array to a field element.\n /// If the provided byte array overflows the field modulus then the Field will silently wrap around.\n pub fn from_be_bytes<let N: u32>(bytes: [u8; N]) -> Field {\n let mut v = 1;\n let mut result = 0;\n\n for i in 0..N {\n result += (bytes[N - 1 - i] as Field) * v;\n v = v * 256;\n }\n result\n }\n}\n\n#[builtin(apply_range_constraint)]\nfn __assert_max_bit_size(value: Field, bit_size: u32) {}\n\n// `_radix` must be less than 256\n#[builtin(to_le_radix)]\nfn __to_le_radix<let N: u32>(value: Field, radix: u32) -> [u8; N] {}\n\n// `_radix` must be less than 256\n#[builtin(to_be_radix)]\nfn __to_be_radix<let N: u32>(value: Field, radix: u32) -> [u8; N] {}\n\n/// Decomposes `self` into its little endian bit decomposition as a `[u1; N]` array.\n/// This array will be zero padded should not all bits be necessary to represent `self`.\n///\n/// # Failures\n/// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting array will not\n/// be able to represent the original `Field`.\n///\n/// # Safety\n/// Values of `N` equal to or greater than the number of bits necessary to represent the `Field` modulus\n/// (e.g. 254 for the BN254 field) allow for multiple bit decompositions. This is due to how the `Field` will\n/// wrap around due to overflow when verifying the decomposition.\n#[builtin(to_le_bits)]\nfn __to_le_bits<let N: u32>(value: Field) -> [u1; N] {}\n\n/// Decomposes `self` into its big endian bit decomposition as a `[u1; N]` array.\n/// This array will be zero padded should not all bits be necessary to represent `self`.\n///\n/// # Failures\n/// Causes a constraint failure for `Field` values exceeding `2^N` as the resulting array will not\n/// be able to represent the original `Field`.\n///\n/// # Safety\n/// Values of `N` equal to or greater than the number of bits necessary to represent the `Field` modulus\n/// (e.g. 254 for the BN254 field) allow for multiple bit decompositions. This is due to how the `Field` will\n/// wrap around due to overflow when verifying the decomposition.\n#[builtin(to_be_bits)]\nfn __to_be_bits<let N: u32>(value: Field) -> [u1; N] {}\n\n#[builtin(modulus_num_bits)]\npub comptime fn modulus_num_bits() -> u64 {}\n\n#[builtin(modulus_be_bits)]\npub comptime fn modulus_be_bits() -> [u1] {}\n\n#[builtin(modulus_le_bits)]\npub comptime fn modulus_le_bits() -> [u1] {}\n\n#[builtin(modulus_be_bytes)]\npub comptime fn modulus_be_bytes() -> [u8] {}\n\n#[builtin(modulus_le_bytes)]\npub comptime fn modulus_le_bytes() -> [u8] {}\n\n/// An unconstrained only built in to efficiently compare fields.\n#[builtin(field_less_than)]\nunconstrained fn __field_less_than(x: Field, y: Field) -> bool {}\n\npub(crate) unconstrained fn field_less_than(x: Field, y: Field) -> bool {\n __field_less_than(x, y)\n}\n\n// Convert a 32 byte array to a field element by modding\npub fn bytes32_to_field(bytes32: [u8; 32]) -> Field {\n // Convert it to a field element\n let mut v = 1;\n let mut high = 0 as Field;\n let mut low = 0 as Field;\n\n for i in 0..16 {\n high = high + (bytes32[15 - i] as Field) * v;\n low = low + (bytes32[16 + 15 - i] as Field) * v;\n v = v * 256;\n }\n // Abuse that a % p + b % p = (a + b) % p and that low < p\n low + high * v\n}\n\nfn lt_fallback(x: Field, y: Field) -> bool {\n if is_unconstrained() {\n // Safety: unconstrained context\n unsafe {\n field_less_than(x, y)\n }\n } else {\n let x_bytes: [u8; 32] = x.to_le_bytes();\n let y_bytes: [u8; 32] = y.to_le_bytes();\n let mut x_is_lt = false;\n let mut done = false;\n for i in 0..32 {\n if (!done) {\n let x_byte = x_bytes[32 - 1 - i] as u8;\n let y_byte = y_bytes[32 - 1 - i] as u8;\n let bytes_match = x_byte == y_byte;\n if !bytes_match {\n x_is_lt = x_byte < y_byte;\n done = true;\n }\n }\n }\n x_is_lt\n }\n}\n\nmod tests {\n use crate::{panic::panic, runtime, static_assert};\n use super::{\n field_less_than, modulus_be_bits, modulus_be_bytes, modulus_le_bits, modulus_le_bytes,\n };\n\n #[test]\n // docs:start:to_be_bits_example\n fn test_to_be_bits() {\n let field = 2;\n let bits: [u1; 8] = field.to_be_bits();\n assert_eq(bits, [0, 0, 0, 0, 0, 0, 1, 0]);\n }\n // docs:end:to_be_bits_example\n\n #[test]\n // docs:start:to_le_bits_example\n fn test_to_le_bits() {\n let field = 2;\n let bits: [u1; 8] = field.to_le_bits();\n assert_eq(bits, [0, 1, 0, 0, 0, 0, 0, 0]);\n }\n // docs:end:to_le_bits_example\n\n #[test]\n // docs:start:to_be_bytes_example\n fn test_to_be_bytes() {\n let field = 2;\n let bytes: [u8; 8] = field.to_be_bytes();\n assert_eq(bytes, [0, 0, 0, 0, 0, 0, 0, 2]);\n assert_eq(Field::from_be_bytes::<8>(bytes), field);\n }\n // docs:end:to_be_bytes_example\n\n #[test]\n // docs:start:to_le_bytes_example\n fn test_to_le_bytes() {\n let field = 2;\n let bytes: [u8; 8] = field.to_le_bytes();\n assert_eq(bytes, [2, 0, 0, 0, 0, 0, 0, 0]);\n assert_eq(Field::from_le_bytes::<8>(bytes), field);\n }\n // docs:end:to_le_bytes_example\n\n #[test]\n // docs:start:to_be_radix_example\n fn test_to_be_radix() {\n // 259, in base 256, big endian, is [1, 3].\n // i.e. 3 * 256^0 + 1 * 256^1\n let field = 259;\n\n // The radix (in this example, 256) must be a power of 2.\n // The length of the returned byte array can be specified to be\n // >= the amount of space needed.\n let bytes: [u8; 8] = field.to_be_radix(256);\n assert_eq(bytes, [0, 0, 0, 0, 0, 0, 1, 3]);\n assert_eq(Field::from_be_bytes::<8>(bytes), field);\n }\n // docs:end:to_be_radix_example\n\n #[test]\n // docs:start:to_le_radix_example\n fn test_to_le_radix() {\n // 259, in base 256, little endian, is [3, 1].\n // i.e. 3 * 256^0 + 1 * 256^1\n let field = 259;\n\n // The radix (in this example, 256) must be a power of 2.\n // The length of the returned byte array can be specified to be\n // >= the amount of space needed.\n let bytes: [u8; 8] = field.to_le_radix(256);\n assert_eq(bytes, [3, 1, 0, 0, 0, 0, 0, 0]);\n assert_eq(Field::from_le_bytes::<8>(bytes), field);\n }\n // docs:end:to_le_radix_example\n\n #[test(should_fail_with = \"radix must be greater than 1\")]\n fn test_to_le_radix_1() {\n // this test should only fail in constrained mode\n if !runtime::is_unconstrained() {\n let field = 2;\n let _: [u8; 8] = field.to_le_radix(1);\n } else {\n panic(\"radix must be greater than 1\");\n }\n }\n\n // Updated test to account for Brillig restriction that radix must be greater than 2\n #[test(should_fail_with = \"radix must be greater than 1\")]\n fn test_to_le_radix_brillig_1() {\n // this test should only fail in constrained mode\n if !runtime::is_unconstrained() {\n let field = 1;\n let _: [u8; 8] = field.to_le_radix(1);\n } else {\n panic(\"radix must be greater than 1\");\n }\n }\n\n #[test(should_fail_with = \"radix must be a power of 2\")]\n fn test_to_le_radix_3() {\n // this test should only fail in constrained mode\n if !runtime::is_unconstrained() {\n let field = 2;\n let _: [u8; 8] = field.to_le_radix(3);\n } else {\n panic(\"radix must be a power of 2\");\n }\n }\n\n #[test]\n fn test_to_le_radix_brillig_3() {\n // this test should only fail in constrained mode\n if runtime::is_unconstrained() {\n let field = 1;\n let out: [u8; 8] = field.to_le_radix(3);\n let mut expected = [0; 8];\n expected[0] = 1;\n assert(out == expected, \"unexpected result\");\n }\n }\n\n #[test(should_fail_with = \"radix must be less than or equal to 256\")]\n fn test_to_le_radix_512() {\n // this test should only fail in constrained mode\n if !runtime::is_unconstrained() {\n let field = 2;\n let _: [u8; 8] = field.to_le_radix(512);\n } else {\n panic(\"radix must be less than or equal to 256\")\n }\n }\n\n #[test(should_fail_with = \"Field failed to decompose into specified 16 limbs\")]\n unconstrained fn not_enough_limbs_brillig() {\n let _: [u8; 16] = 0x100000000000000000000000000000000.to_le_bytes();\n }\n\n #[test(should_fail_with = \"Field failed to decompose into specified 16 limbs\")]\n fn not_enough_limbs() {\n let _: [u8; 16] = 0x100000000000000000000000000000000.to_le_bytes();\n }\n\n #[test]\n unconstrained fn test_field_less_than() {\n assert(field_less_than(0, 1));\n assert(field_less_than(0, 0x100));\n assert(field_less_than(0x100, 0 - 1));\n assert(!field_less_than(0 - 1, 0));\n }\n\n #[test]\n unconstrained fn test_large_field_values_unconstrained() {\n let large_field = 0xffffffffffffffff;\n\n let bits: [u1; 64] = large_field.to_le_bits();\n assert_eq(bits[0], 1);\n\n let bytes: [u8; 8] = large_field.to_le_bytes();\n assert_eq(Field::from_le_bytes::<8>(bytes), large_field);\n\n let radix_bytes: [u8; 8] = large_field.to_le_radix(256);\n assert_eq(Field::from_le_bytes::<8>(radix_bytes), large_field);\n }\n\n #[test]\n fn test_large_field_values() {\n let large_val = 0xffffffffffffffff;\n\n let bits: [u1; 64] = large_val.to_le_bits();\n assert_eq(bits[0], 1);\n\n let bytes: [u8; 8] = large_val.to_le_bytes();\n assert_eq(Field::from_le_bytes::<8>(bytes), large_val);\n\n let radix_bytes: [u8; 8] = large_val.to_le_radix(256);\n assert_eq(Field::from_le_bytes::<8>(radix_bytes), large_val);\n }\n\n #[test]\n fn test_decomposition_edge_cases() {\n let zero_bits: [u1; 8] = 0.to_le_bits();\n assert_eq(zero_bits, [0; 8]);\n\n let zero_bytes: [u8; 8] = 0.to_le_bytes();\n assert_eq(zero_bytes, [0; 8]);\n\n let one_bits: [u1; 8] = 1.to_le_bits();\n let expected: [u1; 8] = [1, 0, 0, 0, 0, 0, 0, 0];\n assert_eq(one_bits, expected);\n\n let pow2_bits: [u1; 8] = 4.to_le_bits();\n let expected: [u1; 8] = [0, 0, 1, 0, 0, 0, 0, 0];\n assert_eq(pow2_bits, expected);\n }\n\n #[test]\n fn test_pow_32() {\n assert_eq(2.pow_32(3), 8);\n assert_eq(3.pow_32(2), 9);\n assert_eq(5.pow_32(0), 1);\n assert_eq(7.pow_32(1), 7);\n\n assert_eq(2.pow_32(10), 1024);\n\n assert_eq(0.pow_32(5), 0);\n assert_eq(0.pow_32(0), 1);\n\n assert_eq(1.pow_32(100), 1);\n }\n\n #[test]\n fn test_sgn0() {\n assert_eq(0.sgn0(), 0);\n assert_eq(2.sgn0(), 0);\n assert_eq(4.sgn0(), 0);\n assert_eq(100.sgn0(), 0);\n\n assert_eq(1.sgn0(), 1);\n assert_eq(3.sgn0(), 1);\n assert_eq(5.sgn0(), 1);\n assert_eq(101.sgn0(), 1);\n }\n\n #[test(should_fail_with = \"Field failed to decompose into specified 8 limbs\")]\n fn test_bit_decomposition_overflow() {\n // 8 bits can't represent large field values\n let large_val = 0x1000000000000000;\n let _: [u1; 8] = large_val.to_le_bits();\n }\n\n #[test(should_fail_with = \"Field failed to decompose into specified 4 limbs\")]\n fn test_byte_decomposition_overflow() {\n // 4 bytes can't represent large field values\n let large_val = 0x1000000000000000;\n let _: [u8; 4] = large_val.to_le_bytes();\n }\n\n #[test]\n fn test_to_from_be_bytes_bn254_edge_cases() {\n if crate::compat::is_bn254() {\n // checking that decrementing this byte produces the expected 32 BE bytes for (modulus - 1)\n let mut p_minus_1_bytes: [u8; 32] = modulus_be_bytes().as_array();\n assert(p_minus_1_bytes[32 - 1] > 0);\n p_minus_1_bytes[32 - 1] -= 1;\n\n let p_minus_1 = Field::from_be_bytes::<32>(p_minus_1_bytes);\n assert_eq(p_minus_1 + 1, 0);\n\n // checking that converting (modulus - 1) from and then to 32 BE bytes produces the same bytes\n let p_minus_1_converted_bytes: [u8; 32] = p_minus_1.to_be_bytes();\n assert_eq(p_minus_1_converted_bytes, p_minus_1_bytes);\n\n // checking that incrementing this byte produces 32 BE bytes for (modulus + 1)\n let mut p_plus_1_bytes: [u8; 32] = modulus_be_bytes().as_array();\n assert(p_plus_1_bytes[32 - 1] < 255);\n p_plus_1_bytes[32 - 1] += 1;\n\n let p_plus_1 = Field::from_be_bytes::<32>(p_plus_1_bytes);\n assert_eq(p_plus_1, 1);\n\n // checking that converting p_plus_1 to 32 BE bytes produces the same\n // byte set to 1 as p_plus_1_bytes and otherwise zeroes\n let mut p_plus_1_converted_bytes: [u8; 32] = p_plus_1.to_be_bytes();\n assert_eq(p_plus_1_converted_bytes[32 - 1], 1);\n p_plus_1_converted_bytes[32 - 1] = 0;\n assert_eq(p_plus_1_converted_bytes, [0; 32]);\n\n // checking that Field::from_be_bytes::<32> on the Field modulus produces 0\n assert_eq(modulus_be_bytes().len(), 32);\n let p = Field::from_be_bytes::<32>(modulus_be_bytes().as_array());\n assert_eq(p, 0);\n\n // checking that converting 0 to 32 BE bytes produces 32 zeroes\n let p_bytes: [u8; 32] = 0.to_be_bytes();\n assert_eq(p_bytes, [0; 32]);\n }\n }\n\n #[test]\n fn test_to_from_le_bytes_bn254_edge_cases() {\n if crate::compat::is_bn254() {\n // checking that decrementing this byte produces the expected 32 LE bytes for (modulus - 1)\n let mut p_minus_1_bytes: [u8; 32] = modulus_le_bytes().as_array();\n assert(p_minus_1_bytes[0] > 0);\n p_minus_1_bytes[0] -= 1;\n\n let p_minus_1 = Field::from_le_bytes::<32>(p_minus_1_bytes);\n assert_eq(p_minus_1 + 1, 0);\n\n // checking that converting (modulus - 1) from and then to 32 BE bytes produces the same bytes\n let p_minus_1_converted_bytes: [u8; 32] = p_minus_1.to_le_bytes();\n assert_eq(p_minus_1_converted_bytes, p_minus_1_bytes);\n\n // checking that incrementing this byte produces 32 LE bytes for (modulus + 1)\n let mut p_plus_1_bytes: [u8; 32] = modulus_le_bytes().as_array();\n assert(p_plus_1_bytes[0] < 255);\n p_plus_1_bytes[0] += 1;\n\n let p_plus_1 = Field::from_le_bytes::<32>(p_plus_1_bytes);\n assert_eq(p_plus_1, 1);\n\n // checking that converting p_plus_1 to 32 LE bytes produces the same\n // byte set to 1 as p_plus_1_bytes and otherwise zeroes\n let mut p_plus_1_converted_bytes: [u8; 32] = p_plus_1.to_le_bytes();\n assert_eq(p_plus_1_converted_bytes[0], 1);\n p_plus_1_converted_bytes[0] = 0;\n assert_eq(p_plus_1_converted_bytes, [0; 32]);\n\n // checking that Field::from_le_bytes::<32> on the Field modulus produces 0\n assert_eq(modulus_le_bytes().len(), 32);\n let p = Field::from_le_bytes::<32>(modulus_le_bytes().as_array());\n assert_eq(p, 0);\n\n // checking that converting 0 to 32 LE bytes produces 32 zeroes\n let p_bytes: [u8; 32] = 0.to_le_bytes();\n assert_eq(p_bytes, [0; 32]);\n }\n }\n\n /// Convert a little endian bit array to a field element.\n /// If the provided bit array overflows the field modulus then the Field will silently wrap around.\n fn from_le_bits<let N: u32>(bits: [u1; N]) -> Field {\n static_assert(\n N <= modulus_le_bits().len(),\n \"N must be less than or equal to modulus_le_bits().len()\",\n );\n let mut v = 1;\n let mut result = 0;\n\n for i in 0..N {\n result += (bits[i] as Field) * v;\n v = v * 2;\n }\n result\n }\n\n /// Convert a big endian bit array to a field element.\n /// If the provided bit array overflows the field modulus then the Field will silently wrap around.\n fn from_be_bits<let N: u32>(bits: [u1; N]) -> Field {\n let mut v = 1;\n let mut result = 0;\n\n for i in 0..N {\n result += (bits[N - 1 - i] as Field) * v;\n v = v * 2;\n }\n result\n }\n\n #[test]\n fn test_to_from_be_bits_bn254_edge_cases() {\n if crate::compat::is_bn254() {\n // checking that decrementing this bit produces the expected 254 BE bits for (modulus - 1)\n let mut p_minus_1_bits: [u1; 254] = modulus_be_bits().as_array();\n assert(p_minus_1_bits[254 - 1] > 0);\n p_minus_1_bits[254 - 1] -= 1;\n\n let p_minus_1 = from_be_bits::<254>(p_minus_1_bits);\n assert_eq(p_minus_1 + 1, 0);\n\n // checking that converting (modulus - 1) from and then to 254 BE bits produces the same bits\n let p_minus_1_converted_bits: [u1; 254] = p_minus_1.to_be_bits();\n assert_eq(p_minus_1_converted_bits, p_minus_1_bits);\n\n // checking that incrementing this bit produces 254 BE bits for (modulus + 4)\n let mut p_plus_4_bits: [u1; 254] = modulus_be_bits().as_array();\n assert(p_plus_4_bits[254 - 3] < 1);\n p_plus_4_bits[254 - 3] += 1;\n\n let p_plus_4 = from_be_bits::<254>(p_plus_4_bits);\n assert_eq(p_plus_4, 4);\n\n // checking that converting p_plus_4 to 254 BE bits produces the same\n // bit set to 1 as p_plus_4_bits and otherwise zeroes\n let mut p_plus_4_converted_bits: [u1; 254] = p_plus_4.to_be_bits();\n assert_eq(p_plus_4_converted_bits[254 - 3], 1);\n p_plus_4_converted_bits[254 - 3] = 0;\n assert_eq(p_plus_4_converted_bits, [0; 254]);\n\n // checking that Field::from_be_bits::<254> on the Field modulus produces 0\n assert_eq(modulus_be_bits().len(), 254);\n let p = from_be_bits::<254>(modulus_be_bits().as_array());\n assert_eq(p, 0);\n\n // checking that converting 0 to 254 BE bytes produces 254 zeroes\n let p_bits: [u1; 254] = 0.to_be_bits();\n assert_eq(p_bits, [0; 254]);\n }\n }\n\n #[test]\n fn test_to_from_le_bits_bn254_edge_cases() {\n if crate::compat::is_bn254() {\n // checking that decrementing this bit produces the expected 254 LE bits for (modulus - 1)\n let mut p_minus_1_bits: [u1; 254] = modulus_le_bits().as_array();\n assert(p_minus_1_bits[0] > 0);\n p_minus_1_bits[0] -= 1;\n\n let p_minus_1 = from_le_bits::<254>(p_minus_1_bits);\n assert_eq(p_minus_1 + 1, 0);\n\n // checking that converting (modulus - 1) from and then to 254 BE bits produces the same bits\n let p_minus_1_converted_bits: [u1; 254] = p_minus_1.to_le_bits();\n assert_eq(p_minus_1_converted_bits, p_minus_1_bits);\n\n // checking that incrementing this bit produces 254 LE bits for (modulus + 4)\n let mut p_plus_4_bits: [u1; 254] = modulus_le_bits().as_array();\n assert(p_plus_4_bits[2] < 1);\n p_plus_4_bits[2] += 1;\n\n let p_plus_4 = from_le_bits::<254>(p_plus_4_bits);\n assert_eq(p_plus_4, 4);\n\n // checking that converting p_plus_4 to 254 LE bits produces the same\n // bit set to 1 as p_plus_4_bits and otherwise zeroes\n let mut p_plus_4_converted_bits: [u1; 254] = p_plus_4.to_le_bits();\n assert_eq(p_plus_4_converted_bits[2], 1);\n p_plus_4_converted_bits[2] = 0;\n assert_eq(p_plus_4_converted_bits, [0; 254]);\n\n // checking that Field::from_le_bits::<254> on the Field modulus produces 0\n assert_eq(modulus_le_bits().len(), 254);\n let p = from_le_bits::<254>(modulus_le_bits().as_array());\n assert_eq(p, 0);\n\n // checking that converting 0 to 254 LE bytes produces 254 zeroes\n let p_bits: [u1; 254] = 0.to_le_bits();\n assert_eq(p_bits, [0; 254]);\n }\n }\n}\n",
|
|
150
|
+
"path": "std/field/mod.nr"
|
|
151
|
+
},
|
|
152
|
+
"51": {
|
|
153
|
+
"source": "use dep::keccak256::keccak256;\n\nfn field_to_bytes32(x: Field) -> [u8; 32] {\n x.to_be_bytes()\n}\n\nfn concat2(a: [u8; 32], b: [u8; 32]) -> [u8; 64] {\n let mut preimage: [u8; 64] = [0; 64];\n for i in 0..32 {\n preimage[i] = a[i];\n preimage[32 + i] = b[i];\n }\n preimage\n}\n\nfn concat3(a: [u8; 32], b: [u8; 32], c: [u8; 32]) -> [u8; 96] {\n let mut preimage: [u8; 96] = [0; 96];\n for i in 0..32 {\n preimage[i] = a[i];\n preimage[32 + i] = b[i];\n preimage[64 + i] = c[i];\n }\n preimage\n}\n\nfn concat4(a: [u8; 32], b: [u8; 32], c: [u8; 32], d: [u8; 32]) -> [u8; 128] {\n let mut preimage: [u8; 128] = [0; 128];\n for i in 0..32 {\n preimage[i] = a[i];\n preimage[32 + i] = b[i];\n preimage[64 + i] = c[i];\n preimage[96 + i] = d[i];\n }\n preimage\n}\n\nfn keccak2(a: [u8; 32], b: [u8; 32]) -> [u8; 32] {\n let preimage = concat2(a, b);\n keccak256(preimage, 64)\n}\n\nfn keccak3(a: [u8; 32], b: [u8; 32], c: [u8; 32]) -> [u8; 32] {\n let preimage = concat3(a, b, c);\n keccak256(preimage, 96)\n}\n\nfn keccak4(a: [u8; 32], b: [u8; 32], c: [u8; 32], d: [u8; 32]) -> [u8; 32] {\n let preimage = concat4(a, b, c, d);\n keccak256(preimage, 128)\n}\n\nfn merkle_root_from_path(\n leaf: [u8; 32],\n path: [[u8; 32]; 32],\n index_bits: [u8; 32]\n) -> [u8; 32] {\n let mut cur = leaf;\n for i in 0..32 {\n assert((index_bits[i] == 0) | (index_bits[i] == 1));\n if index_bits[i] == 0 {\n cur = keccak2(cur, path[i]);\n } else {\n cur = keccak2(path[i], cur);\n }\n }\n cur\n}\n\nfn main(\n note_amount: u128,\n note_rho: Field,\n note_pk_hash: Field,\n nullifier_secret: Field,\n merkle_path: [[u8; 32]; 32],\n index_bits: [u8; 32],\n merchant_pk_hash: Field,\n merchant_rho: Field,\n change_pk_hash: Field,\n change_rho: Field,\n pay_amount: u128,\n challenge_nonce: [u8; 32],\n merchant_address_word: [u8; 32]\n) -> pub ([u8; 32], [u8; 32], [u8; 32], [u8; 32], [u8; 32], Field) {\n assert(pay_amount <= note_amount);\n\n let note_commitment = keccak3(\n field_to_bytes32(note_amount as Field),\n field_to_bytes32(note_rho),\n field_to_bytes32(note_pk_hash)\n );\n\n let computed_root = merkle_root_from_path(note_commitment, merkle_path, index_bits);\n\n let nullifier = keccak2(field_to_bytes32(nullifier_secret), note_commitment);\n\n let merchant_commitment = keccak3(\n field_to_bytes32(pay_amount as Field),\n field_to_bytes32(merchant_rho),\n field_to_bytes32(merchant_pk_hash)\n );\n\n let change_amount = note_amount - pay_amount;\n let change_commitment = keccak3(\n field_to_bytes32(change_amount as Field),\n field_to_bytes32(change_rho),\n field_to_bytes32(change_pk_hash)\n );\n\n let challenge_domain_hash: [u8; 32] = [\n 227, 46, 36, 165, 28, 53, 16, 147, 211, 57, 192, 3, 81, 119, 220, 45,\n 165, 193, 184, 185, 86, 62, 65, 67, 147, 237, 215, 85, 6, 220, 192, 85\n ];\n let challenge_hash = keccak4(\n challenge_domain_hash,\n challenge_nonce,\n field_to_bytes32(pay_amount as Field),\n merchant_address_word\n );\n\n (\n nullifier,\n computed_root,\n merchant_commitment,\n change_commitment,\n challenge_hash,\n pay_amount as Field\n )\n}\n",
|
|
154
|
+
"path": "/shielded-402/circuits/spend_change/src/main.nr"
|
|
155
|
+
},
|
|
156
|
+
"55": {
|
|
157
|
+
"source": "mod tests;\nmod oracle_tests;\nmod benchmarks;\n\nuse std::hash::keccakf1600;\nuse std::runtime::is_unconstrained;\n\nglobal BLOCK_SIZE_IN_BYTES: u32 = 136; //(1600 - BITS * 2) / WORD_SIZE;\nglobal WORD_SIZE: u32 = 8; // Limbs are made up of u64s so 8 bytes each.\nglobal LIMBS_PER_BLOCK: u32 = BLOCK_SIZE_IN_BYTES / WORD_SIZE;\nglobal NUM_KECCAK_LANES: u32 = 25;\n\n#[no_predicates]\npub fn keccak256<let N: u32>(input: [u8; N], message_size: u32) -> [u8; 32] {\n assert(N >= message_size);\n\n // Copy input to block bytes. For that we'll need at least input bytes (N)\n // but we want it to be padded to a multiple of BLOCK_SIZE_IN_BYTES.\n let mut block_bytes = [0; ((N / BLOCK_SIZE_IN_BYTES) + 1) * BLOCK_SIZE_IN_BYTES];\n if is_unconstrained() {\n for i in 0..message_size {\n block_bytes[i] = input[i];\n }\n } else {\n for i in 0..N {\n if i < message_size {\n block_bytes[i] = input[i];\n }\n }\n }\n\n //1. format_input_lanes and apply padding\n let max_blocks = (N + BLOCK_SIZE_IN_BYTES) / BLOCK_SIZE_IN_BYTES;\n let real_max_blocks = (message_size + BLOCK_SIZE_IN_BYTES) / BLOCK_SIZE_IN_BYTES;\n\n // Apply Keccak padding (0x01 after message, 0x80 at block end)\n apply_keccak_padding(&mut block_bytes, message_size, real_max_blocks);\n\n // populate a vector of 64-bit limbs from our byte array\n let mut sliced_buffer =\n [0; (((N / BLOCK_SIZE_IN_BYTES) + 1) * BLOCK_SIZE_IN_BYTES) / WORD_SIZE];\n for i in 0..sliced_buffer.len() {\n let limb_start = WORD_SIZE * i;\n\n let mut sliced = 0;\n let mut v = 1;\n sliced += v * (block_bytes[limb_start] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 1] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 2] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 3] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 4] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 5] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 6] as Field);\n v *= 256;\n sliced += v * (block_bytes[limb_start + 7] as Field);\n sliced.assert_max_bit_size::<64>();\n sliced_buffer[i] = sliced as u64;\n }\n\n //2. sponge_absorb\n let mut state: [u64; NUM_KECCAK_LANES] = [0; NUM_KECCAK_LANES];\n // `real_max_blocks` is guaranteed to at least be `1`\n // We peel out the first block as to avoid a conditional inside of the loop.\n // Otherwise, a dynamic predicate can cause a blowup in a constrained runtime.\n state[0] = sliced_buffer[0];\n state[1] = sliced_buffer[1];\n state[2] = sliced_buffer[2];\n state[3] = sliced_buffer[3];\n state[4] = sliced_buffer[4];\n state[5] = sliced_buffer[5];\n state[6] = sliced_buffer[6];\n state[7] = sliced_buffer[7];\n state[8] = sliced_buffer[8];\n state[9] = sliced_buffer[9];\n state[10] = sliced_buffer[10];\n state[11] = sliced_buffer[11];\n state[12] = sliced_buffer[12];\n state[13] = sliced_buffer[13];\n state[14] = sliced_buffer[14];\n state[15] = sliced_buffer[15];\n state[16] = sliced_buffer[16];\n state = keccakf1600(state);\n\n let state = if is_unconstrained() {\n // When in an unconstrained runtime we can take advantage of runtime loop bounds,\n // thus allowing us to simplify the loop body.\n for i in 1..real_max_blocks {\n for j in 0..LIMBS_PER_BLOCK {\n state[j] = state[j] ^ sliced_buffer[i * LIMBS_PER_BLOCK + j];\n }\n state = keccakf1600(state);\n }\n\n state\n } else {\n // We store the intermediate states in an array to avoid having a dynamic predicate\n // inside the loop, which can cause a blowup in a constrained runtime.\n let mut intermediate_states = [state; (N + BLOCK_SIZE_IN_BYTES) / BLOCK_SIZE_IN_BYTES + 1];\n for i in 1..max_blocks {\n let mut previous_state = intermediate_states[i - 1];\n for j in 0..LIMBS_PER_BLOCK {\n previous_state[j] = previous_state[j] ^ sliced_buffer[i * LIMBS_PER_BLOCK + j];\n }\n intermediate_states[i] = keccakf1600(previous_state);\n }\n\n // We can then take the state as of `real_max_blocks`, ignoring later permutations.\n intermediate_states[real_max_blocks - 1]\n };\n\n //3. sponge_squeeze\n let mut result = [0; 32];\n let lane = state[0] as Field;\n let lane_le: [u8; 8] = lane.to_le_bytes();\n result[0] = lane_le[0];\n result[1] = lane_le[1];\n result[2] = lane_le[2];\n result[3] = lane_le[3];\n result[4] = lane_le[4];\n result[5] = lane_le[5];\n result[6] = lane_le[6];\n result[7] = lane_le[7];\n\n let lane = state[1] as Field;\n let lane_le: [u8; 8] = lane.to_le_bytes();\n result[8 * 1] = lane_le[0];\n result[8 * 1 + 1] = lane_le[1];\n result[8 * 1 + 2] = lane_le[2];\n result[8 * 1 + 3] = lane_le[3];\n result[8 * 1 + 4] = lane_le[4];\n result[8 * 1 + 5] = lane_le[5];\n result[8 * 1 + 6] = lane_le[6];\n result[8 * 1 + 7] = lane_le[7];\n\n let lane = state[2] as Field;\n let lane_le: [u8; 8] = lane.to_le_bytes();\n result[8 * 2] = lane_le[0];\n result[8 * 2 + 1] = lane_le[1];\n result[8 * 2 + 2] = lane_le[2];\n result[8 * 2 + 3] = lane_le[3];\n result[8 * 2 + 4] = lane_le[4];\n result[8 * 2 + 5] = lane_le[5];\n result[8 * 2 + 6] = lane_le[6];\n result[8 * 2 + 7] = lane_le[7];\n\n let lane = state[3] as Field;\n let lane_le: [u8; 8] = lane.to_le_bytes();\n result[8 * 3] = lane_le[0];\n result[8 * 3 + 1] = lane_le[1];\n result[8 * 3 + 2] = lane_le[2];\n result[8 * 3 + 3] = lane_le[3];\n result[8 * 3 + 4] = lane_le[4];\n result[8 * 3 + 5] = lane_le[5];\n result[8 * 3 + 6] = lane_le[6];\n result[8 * 3 + 7] = lane_le[7];\n\n result\n}\n\n// Apply Keccak padding to the block_bytes array\n// Append 0x01 after message, then 0x80 at end of block\n// If both padding bytes collide at the same byte, combine them as 0x81\n#[inline_always]\npub(crate) fn apply_keccak_padding<let BLOCK_BYTES: u32>(\n block_bytes: &mut [u8; BLOCK_BYTES],\n message_size: u32,\n real_max_blocks: u32,\n) {\n let real_blocks_bytes = real_max_blocks * BLOCK_SIZE_IN_BYTES;\n\n if message_size == real_blocks_bytes - 1 {\n // Combine both padding bits: 0x01 | 0x80 = 0x81\n block_bytes[message_size] = 0x81;\n } else {\n block_bytes[message_size] = 0x01;\n block_bytes[real_blocks_bytes - 1] = 0x80;\n }\n}\n",
|
|
158
|
+
"path": "nargo/github.com/noir-lang/keccak256/v0.1.3/src/keccak256.nr"
|
|
159
|
+
}
|
|
160
|
+
},
|
|
161
|
+
"expression_width": { "Bounded": { "width": 4 } }
|
|
162
|
+
}
|