@shaxpir/duiduidui-models 1.9.22 → 1.9.25

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -15,31 +15,71 @@ export interface SkillLevel {
15
15
  sigma: number;
16
16
  }
17
17
  /**
18
- * Legacy interface for backwards compatibility during migration.
19
- * Maps to the new SkillLevel interface.
20
- * @deprecated Use SkillLevel with mu/sigma instead
18
+ * Parameters for skill level updates.
19
+ * All parameters are optional and have sensible defaults.
21
20
  */
22
- export interface LegacySkillLevel {
23
- rating: number;
24
- rating_deviation: number;
25
- volatility: number;
21
+ export interface SkillUpdateParams {
22
+ /**
23
+ * Coefficient controlling how quickly skill moves toward evidence.
24
+ *
25
+ * When informative evidence is received, skill moves this fraction
26
+ * of the distance from current mu toward the card's difficulty.
27
+ *
28
+ * - 0.5 means move halfway toward the card difficulty each time
29
+ * - Lower values = more conservative, requires more evidence
30
+ * - Higher values = more aggressive, trusts individual observations more
31
+ *
32
+ * With coefficient 0.5, approaching a difficulty level:
33
+ * - After 1 review: 50% of the way
34
+ * - After 2 reviews: 75% of the way
35
+ * - After 3 reviews: 87.5% of the way
36
+ * - After 5 reviews: 96.9% of the way
37
+ *
38
+ * @default 0.5
39
+ */
40
+ updateCoefficient?: number;
41
+ /**
42
+ * Coefficient for sigma updates when evidence is informative.
43
+ * Sigma is multiplied by this value (so 0.9 = 10% decay).
44
+ *
45
+ * @default 0.9
46
+ */
47
+ sigmaDecay?: number;
48
+ /**
49
+ * Minimum sigma value to prevent over-confidence.
50
+ * Even with many observations, we maintain some uncertainty.
51
+ *
52
+ * @default 5
53
+ */
54
+ minSigma?: number;
55
+ /**
56
+ * Maximum sigma value.
57
+ *
58
+ * @default 100
59
+ */
60
+ maxSigma?: number;
26
61
  }
27
62
  /**
28
- * Model for updating and managing skill levels using Item Response Theory (IRT).
63
+ * Default parameters for skill updates.
64
+ */
65
+ export declare const DEFAULT_SKILL_PARAMS: Required<SkillUpdateParams>;
66
+ /**
67
+ * Model for updating and managing skill levels using Item Response Theory (IRT)
68
+ * with asymmetric evidence clamping.
29
69
  *
30
- * This model estimates user skill based on a logistic psychometric function:
31
- * P(success | difficulty d, skill μ) = 1 / (1 + exp(k * (d - μ)))
70
+ * This model is based on standard IRT psychometric principles but applies a
71
+ * clamping constraint that reflects the asymmetric nature of flashcard evidence:
32
72
  *
33
- * Where:
34
- * - μ (mu) is the skill level we're estimating
35
- * - k controls the steepness of the transition from "easy" to "hard"
36
- * - Cards with difficulty < μ are likely to be answered correctly
37
- * - Cards with difficulty > μ are likely to be answered incorrectly
73
+ * - Succeeding on a card of difficulty D provides evidence that skill >= D,
74
+ * but a single success should NOT push skill estimate above D
75
+ * - Failing on a card of difficulty D provides evidence that skill <= D,
76
+ * but a single failure should NOT push skill estimate below D
77
+ * - Succeeding on easy cards (difficulty < skill) is uninformative
78
+ * - Failing on hard cards (difficulty > skill) is uninformative
38
79
  *
39
- * The model uses Bayesian updating with a Gaussian approximation:
40
- * - Each observation updates μ based on prediction error
41
- * - Uncertainty (σ) decreases as we accumulate evidence
42
- * - No full history is needed - just μ and σ are sufficient statistics
80
+ * The update rule moves skill toward the card difficulty by a fraction (coefficient),
81
+ * ensuring that skill can only asymptotically approach demonstrated competence
82
+ * through multiple consistent observations.
43
83
  *
44
84
  * Scale semantics:
45
85
  * - μ = 0: absolute beginner (knows ~0 characters)
@@ -48,48 +88,31 @@ export interface LegacySkillLevel {
48
88
  */
49
89
  export declare class SkillLevelModel {
50
90
  /**
51
- * Steepness parameter for the logistic function.
52
- *
53
- * Controls how sharply success probability drops as difficulty exceeds skill:
54
- * - k = 0.05 means the transition zone spans ~40 difficulty points
55
- * - At difficulty = μ, P(success) = 50%
56
- * - At difficulty = μ + 20, P(success) ≈ 27%
57
- * - At difficulty = μ + 40, P(success) ≈ 12%
58
- *
59
- * Lower k = more gradual transition, higher k = sharper cutoff.
91
+ * Discrimination parameter for predictSuccess logistic function.
92
+ * Controls how sharply probability transitions around difficulty = mu.
93
+ * Higher values = steeper curve. 0.05 gives gradual transition over ~60 difficulty units.
60
94
  */
61
95
  private static readonly K;
62
96
  /**
63
- * Minimum sigma value to prevent over-confidence.
64
- * Even with many observations, we maintain some uncertainty.
65
- */
66
- private static readonly MIN_SIGMA;
67
- /**
68
- * Maximum sigma value for initial state.
69
- */
70
- private static readonly MAX_SIGMA;
71
- /**
72
- * Update skill level using IRT after a review.
97
+ * Update skill level using clamped IRT after a review.
73
98
  *
74
- * Uses Bayesian updating with a Gaussian approximation to the posterior.
75
- * The update is incremental - only requires current μ and σ, not full history.
99
+ * Applies asymmetric evidence rules:
100
+ * - Success on harder card (difficulty > mu): informative, move mu up toward difficulty
101
+ * - Failure on easier card (difficulty < mu): informative, move mu down toward difficulty
102
+ * - Success on easier card: uninformative, no change
103
+ * - Failure on harder card: uninformative, no change
104
+ *
105
+ * When evidence is informative, sigma also decreases to reflect increased confidence.
106
+ * When evidence is uninformative, both mu and sigma remain unchanged.
76
107
  *
77
108
  * @param mu Current skill level estimate
78
109
  * @param sigma Current uncertainty (standard deviation)
79
110
  * @param cardDifficulty Difficulty of the card reviewed
80
111
  * @param outcome Review result (FAIL/HARD/GOOD/EASY)
112
+ * @param params Optional parameters to customize update behavior
81
113
  * @returns Updated skill level with new mu and sigma
82
114
  */
83
- static update(mu: number, sigma: number, cardDifficulty: number, outcome: ReviewResult): SkillLevel;
84
- /**
85
- * Update skill level using IRT (Glicko-2 compatible signature).
86
- *
87
- * This method provides backwards compatibility with the old Glicko-2 API.
88
- * The volatility and cardRatingDeviation parameters are ignored.
89
- *
90
- * @deprecated Use update() instead for cleaner IRT semantics
91
- */
92
- static updateWithGlicko2(rating: number, ratingDeviation: number, _volatility: number, cardDifficulty: number, _cardRatingDeviation: number, outcome: ReviewResult, _tau?: number): LegacySkillLevel;
115
+ static update(mu: number, sigma: number, cardDifficulty: number, outcome: ReviewResult, params?: SkillUpdateParams): SkillLevel;
93
116
  /**
94
117
  * Map a review outcome to a success score for IRT.
95
118
  *
@@ -122,19 +145,6 @@ export declare class SkillLevelModel {
122
145
  * @returns New SkillLevel object
123
146
  */
124
147
  static createDefault(initialSigma?: number): SkillLevel;
125
- /**
126
- * Create a default skill level in legacy format.
127
- * @deprecated Use createDefault() instead
128
- */
129
- static createDefaultLegacy(initialRatingDeviation?: number, initialVolatility?: number): LegacySkillLevel;
130
- /**
131
- * Convert from legacy Glicko-2 format to IRT format.
132
- */
133
- static fromLegacy(legacy: LegacySkillLevel): SkillLevel;
134
- /**
135
- * Convert from IRT format to legacy Glicko-2 format.
136
- */
137
- static toLegacy(skill: SkillLevel): LegacySkillLevel;
138
148
  /**
139
149
  * Check if the skill level has high confidence (low uncertainty).
140
150
  *
@@ -1,22 +1,32 @@
1
1
  "use strict";
2
2
  Object.defineProperty(exports, "__esModule", { value: true });
3
- exports.SkillLevelModel = void 0;
3
+ exports.SkillLevelModel = exports.DEFAULT_SKILL_PARAMS = void 0;
4
4
  /**
5
- * Model for updating and managing skill levels using Item Response Theory (IRT).
5
+ * Default parameters for skill updates.
6
+ */
7
+ exports.DEFAULT_SKILL_PARAMS = {
8
+ updateCoefficient: 0.5,
9
+ sigmaDecay: 0.9,
10
+ minSigma: 5,
11
+ maxSigma: 100
12
+ };
13
+ /**
14
+ * Model for updating and managing skill levels using Item Response Theory (IRT)
15
+ * with asymmetric evidence clamping.
6
16
  *
7
- * This model estimates user skill based on a logistic psychometric function:
8
- * P(success | difficulty d, skill μ) = 1 / (1 + exp(k * (d - μ)))
17
+ * This model is based on standard IRT psychometric principles but applies a
18
+ * clamping constraint that reflects the asymmetric nature of flashcard evidence:
9
19
  *
10
- * Where:
11
- * - μ (mu) is the skill level we're estimating
12
- * - k controls the steepness of the transition from "easy" to "hard"
13
- * - Cards with difficulty < μ are likely to be answered correctly
14
- * - Cards with difficulty > μ are likely to be answered incorrectly
20
+ * - Succeeding on a card of difficulty D provides evidence that skill >= D,
21
+ * but a single success should NOT push skill estimate above D
22
+ * - Failing on a card of difficulty D provides evidence that skill <= D,
23
+ * but a single failure should NOT push skill estimate below D
24
+ * - Succeeding on easy cards (difficulty < skill) is uninformative
25
+ * - Failing on hard cards (difficulty > skill) is uninformative
15
26
  *
16
- * The model uses Bayesian updating with a Gaussian approximation:
17
- * - Each observation updates μ based on prediction error
18
- * - Uncertainty (σ) decreases as we accumulate evidence
19
- * - No full history is needed - just μ and σ are sufficient statistics
27
+ * The update rule moves skill toward the card difficulty by a fraction (coefficient),
28
+ * ensuring that skill can only asymptotically approach demonstrated competence
29
+ * through multiple consistent observations.
20
30
  *
21
31
  * Scale semantics:
22
32
  * - μ = 0: absolute beginner (knows ~0 characters)
@@ -25,53 +35,42 @@ exports.SkillLevelModel = void 0;
25
35
  */
26
36
  class SkillLevelModel {
27
37
  /**
28
- * Update skill level using IRT after a review.
38
+ * Update skill level using clamped IRT after a review.
29
39
  *
30
- * Uses Bayesian updating with a Gaussian approximation to the posterior.
31
- * The update is incremental - only requires current μ and σ, not full history.
40
+ * Applies asymmetric evidence rules:
41
+ * - Success on harder card (difficulty > mu): informative, move mu up toward difficulty
42
+ * - Failure on easier card (difficulty < mu): informative, move mu down toward difficulty
43
+ * - Success on easier card: uninformative, no change
44
+ * - Failure on harder card: uninformative, no change
45
+ *
46
+ * When evidence is informative, sigma also decreases to reflect increased confidence.
47
+ * When evidence is uninformative, both mu and sigma remain unchanged.
32
48
  *
33
49
  * @param mu Current skill level estimate
34
50
  * @param sigma Current uncertainty (standard deviation)
35
51
  * @param cardDifficulty Difficulty of the card reviewed
36
52
  * @param outcome Review result (FAIL/HARD/GOOD/EASY)
53
+ * @param params Optional parameters to customize update behavior
37
54
  * @returns Updated skill level with new mu and sigma
38
55
  */
39
- static update(mu, sigma, cardDifficulty, outcome) {
40
- const k = SkillLevelModel.K;
41
- // Map outcome to success value (0 to 1)
42
- const y = SkillLevelModel.outcomeToScore(outcome);
43
- // Predicted probability of success given current skill estimate
44
- const p = 1 / (1 + Math.exp(k * (cardDifficulty - mu)));
45
- // Prediction error: positive if did better than expected, negative if worse
46
- const error = y - p;
47
- // Fisher information for logistic model (highest at p = 0.5)
48
- const info = p * (1 - p);
49
- // Update variance (precision increases with information)
50
- const sigmaSquared = sigma * sigma;
51
- const newSigmaSquared = 1 / (1 / sigmaSquared + k * k * info);
52
- const newSigma = Math.sqrt(newSigmaSquared);
53
- // Update mean (shift toward evidence)
54
- const newMu = mu + newSigmaSquared * k * error;
55
- return {
56
- mu: Math.max(0, newMu), // Skill can't go negative
57
- sigma: Math.max(SkillLevelModel.MIN_SIGMA, Math.min(SkillLevelModel.MAX_SIGMA, newSigma))
58
- };
59
- }
60
- /**
61
- * Update skill level using IRT (Glicko-2 compatible signature).
62
- *
63
- * This method provides backwards compatibility with the old Glicko-2 API.
64
- * The volatility and cardRatingDeviation parameters are ignored.
65
- *
66
- * @deprecated Use update() instead for cleaner IRT semantics
67
- */
68
- static updateWithGlicko2(rating, ratingDeviation, _volatility, cardDifficulty, _cardRatingDeviation, outcome, _tau = 0.5) {
69
- const result = SkillLevelModel.update(rating, ratingDeviation, cardDifficulty, outcome);
70
- // Return in legacy format
56
+ static update(mu, sigma, cardDifficulty, outcome, params = {}) {
57
+ const { updateCoefficient = exports.DEFAULT_SKILL_PARAMS.updateCoefficient, sigmaDecay = exports.DEFAULT_SKILL_PARAMS.sigmaDecay, minSigma = exports.DEFAULT_SKILL_PARAMS.minSigma, maxSigma = exports.DEFAULT_SKILL_PARAMS.maxSigma } = params;
58
+ const isSuccess = outcome === 'EASY' || outcome === 'GOOD';
59
+ const isFailure = outcome === 'FAIL' || outcome === 'HARD';
60
+ // Determine if this observation is informative
61
+ const isInformative = (isSuccess && cardDifficulty > mu) || // Success on harder card
62
+ (isFailure && cardDifficulty < mu); // Failure on easier card
63
+ if (!isInformative) {
64
+ // Uninformative evidence: no change to skill estimate
65
+ return { mu, sigma };
66
+ }
67
+ // Informative evidence: move mu toward card difficulty
68
+ const newMu = mu + updateCoefficient * (cardDifficulty - mu);
69
+ // Decrease sigma since we learned something
70
+ const newSigma = sigma * sigmaDecay;
71
71
  return {
72
- rating: result.mu,
73
- rating_deviation: result.sigma,
74
- volatility: 0.06 // Fixed value, not used in IRT
72
+ mu: Math.max(0, newMu),
73
+ sigma: Math.max(minSigma, Math.min(maxSigma, newSigma))
75
74
  };
76
75
  }
77
76
  /**
@@ -127,36 +126,6 @@ class SkillLevelModel {
127
126
  sigma: initialSigma
128
127
  };
129
128
  }
130
- /**
131
- * Create a default skill level in legacy format.
132
- * @deprecated Use createDefault() instead
133
- */
134
- static createDefaultLegacy(initialRatingDeviation = 50, initialVolatility = 0.06) {
135
- return {
136
- rating: 0,
137
- rating_deviation: initialRatingDeviation,
138
- volatility: initialVolatility
139
- };
140
- }
141
- /**
142
- * Convert from legacy Glicko-2 format to IRT format.
143
- */
144
- static fromLegacy(legacy) {
145
- return {
146
- mu: legacy.rating,
147
- sigma: legacy.rating_deviation
148
- };
149
- }
150
- /**
151
- * Convert from IRT format to legacy Glicko-2 format.
152
- */
153
- static toLegacy(skill) {
154
- return {
155
- rating: skill.mu,
156
- rating_deviation: skill.sigma,
157
- volatility: 0.06
158
- };
159
- }
160
129
  /**
161
130
  * Check if the skill level has high confidence (low uncertainty).
162
131
  *
@@ -170,23 +139,8 @@ class SkillLevelModel {
170
139
  }
171
140
  exports.SkillLevelModel = SkillLevelModel;
172
141
  /**
173
- * Steepness parameter for the logistic function.
174
- *
175
- * Controls how sharply success probability drops as difficulty exceeds skill:
176
- * - k = 0.05 means the transition zone spans ~40 difficulty points
177
- * - At difficulty = μ, P(success) = 50%
178
- * - At difficulty = μ + 20, P(success) ≈ 27%
179
- * - At difficulty = μ + 40, P(success) ≈ 12%
180
- *
181
- * Lower k = more gradual transition, higher k = sharper cutoff.
142
+ * Discrimination parameter for predictSuccess logistic function.
143
+ * Controls how sharply probability transitions around difficulty = mu.
144
+ * Higher values = steeper curve. 0.05 gives gradual transition over ~60 difficulty units.
182
145
  */
183
146
  SkillLevelModel.K = 0.05;
184
- /**
185
- * Minimum sigma value to prevent over-confidence.
186
- * Even with many observations, we maintain some uncertainty.
187
- */
188
- SkillLevelModel.MIN_SIGMA = 5;
189
- /**
190
- * Maximum sigma value for initial state.
191
- */
192
- SkillLevelModel.MAX_SIGMA = 100;
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@shaxpir/duiduidui-models",
3
- "version": "1.9.22",
3
+ "version": "1.9.25",
4
4
  "repository": {
5
5
  "type": "git",
6
6
  "url": "https://github.com/shaxpir/duiduidui-models"