@shaxpir/duiduidui-models 1.9.20 → 1.9.21
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/dist/models/SkillLevel.d.ts +108 -34
- package/dist/models/SkillLevel.js +139 -53
- package/package.json +1 -2
|
@@ -1,72 +1,146 @@
|
|
|
1
1
|
import { ReviewResult } from './Review';
|
|
2
2
|
import { Bounds } from './BayesianScore';
|
|
3
3
|
/**
|
|
4
|
-
* Represents a skill level
|
|
5
|
-
* Uses
|
|
4
|
+
* Represents a skill level estimate with uncertainty.
|
|
5
|
+
* Uses Item Response Theory (IRT) for skill assessment.
|
|
6
|
+
*
|
|
7
|
+
* The skill level represents the estimated number of characters
|
|
8
|
+
* a user has mastered. A user with skill level N is expected to
|
|
9
|
+
* succeed on recognition tasks for characters with difficulty <= N.
|
|
6
10
|
*/
|
|
7
11
|
export interface SkillLevel {
|
|
12
|
+
/** Estimated skill level (maps to ~number of characters mastered) */
|
|
13
|
+
mu: number;
|
|
14
|
+
/** Uncertainty in the estimate (standard deviation) */
|
|
15
|
+
sigma: number;
|
|
16
|
+
}
|
|
17
|
+
/**
|
|
18
|
+
* Legacy interface for backwards compatibility during migration.
|
|
19
|
+
* Maps to the new SkillLevel interface.
|
|
20
|
+
* @deprecated Use SkillLevel with mu/sigma instead
|
|
21
|
+
*/
|
|
22
|
+
export interface LegacySkillLevel {
|
|
8
23
|
rating: number;
|
|
9
24
|
rating_deviation: number;
|
|
10
25
|
volatility: number;
|
|
11
26
|
}
|
|
12
27
|
/**
|
|
13
|
-
* Model for updating and managing skill levels using
|
|
28
|
+
* Model for updating and managing skill levels using Item Response Theory (IRT).
|
|
14
29
|
*
|
|
15
|
-
*
|
|
16
|
-
*
|
|
17
|
-
* - Rating 0 = absolute beginner (knows ~0 characters)
|
|
18
|
-
* - Rating 100 = knows ~100 characters
|
|
19
|
-
* - Rating 3000 = knows ~3000 characters
|
|
30
|
+
* This model estimates user skill based on a logistic psychometric function:
|
|
31
|
+
* P(success | difficulty d, skill μ) = 1 / (1 + exp(k * (d - μ)))
|
|
20
32
|
*
|
|
21
|
-
*
|
|
22
|
-
*
|
|
33
|
+
* Where:
|
|
34
|
+
* - μ (mu) is the skill level we're estimating
|
|
35
|
+
* - k controls the steepness of the transition from "easy" to "hard"
|
|
36
|
+
* - Cards with difficulty < μ are likely to be answered correctly
|
|
37
|
+
* - Cards with difficulty > μ are likely to be answered incorrectly
|
|
38
|
+
*
|
|
39
|
+
* The model uses Bayesian updating with a Gaussian approximation:
|
|
40
|
+
* - Each observation updates μ based on prediction error
|
|
41
|
+
* - Uncertainty (σ) decreases as we accumulate evidence
|
|
42
|
+
* - No full history is needed - just μ and σ are sufficient statistics
|
|
43
|
+
*
|
|
44
|
+
* Scale semantics:
|
|
45
|
+
* - μ = 0: absolute beginner (knows ~0 characters)
|
|
46
|
+
* - μ = 100: knows ~100 characters
|
|
47
|
+
* - μ = 3000: knows ~3000 characters
|
|
23
48
|
*/
|
|
24
49
|
export declare class SkillLevelModel {
|
|
25
50
|
/**
|
|
26
|
-
*
|
|
51
|
+
* Steepness parameter for the logistic function.
|
|
52
|
+
*
|
|
53
|
+
* Controls how sharply success probability drops as difficulty exceeds skill:
|
|
54
|
+
* - k = 0.05 means the transition zone spans ~40 difficulty points
|
|
55
|
+
* - At difficulty = μ, P(success) = 50%
|
|
56
|
+
* - At difficulty = μ + 20, P(success) ≈ 27%
|
|
57
|
+
* - At difficulty = μ + 40, P(success) ≈ 12%
|
|
58
|
+
*
|
|
59
|
+
* Lower k = more gradual transition, higher k = sharper cutoff.
|
|
60
|
+
*/
|
|
61
|
+
private static readonly K;
|
|
62
|
+
/**
|
|
63
|
+
* Minimum sigma value to prevent over-confidence.
|
|
64
|
+
* Even with many observations, we maintain some uncertainty.
|
|
65
|
+
*/
|
|
66
|
+
private static readonly MIN_SIGMA;
|
|
67
|
+
/**
|
|
68
|
+
* Maximum sigma value for initial state.
|
|
69
|
+
*/
|
|
70
|
+
private static readonly MAX_SIGMA;
|
|
71
|
+
/**
|
|
72
|
+
* Update skill level using IRT after a review.
|
|
27
73
|
*
|
|
28
|
-
*
|
|
29
|
-
*
|
|
30
|
-
*
|
|
31
|
-
* @param
|
|
32
|
-
* @param
|
|
74
|
+
* Uses Bayesian updating with a Gaussian approximation to the posterior.
|
|
75
|
+
* The update is incremental - only requires current μ and σ, not full history.
|
|
76
|
+
*
|
|
77
|
+
* @param mu Current skill level estimate
|
|
78
|
+
* @param sigma Current uncertainty (standard deviation)
|
|
79
|
+
* @param cardDifficulty Difficulty of the card reviewed
|
|
33
80
|
* @param outcome Review result (FAIL/HARD/GOOD/EASY)
|
|
34
|
-
* @
|
|
35
|
-
* @returns Updated skill level with new rating, rating_deviation, and volatility
|
|
81
|
+
* @returns Updated skill level with new mu and sigma
|
|
36
82
|
*/
|
|
37
|
-
static
|
|
83
|
+
static update(mu: number, sigma: number, cardDifficulty: number, outcome: ReviewResult): SkillLevel;
|
|
38
84
|
/**
|
|
39
|
-
*
|
|
85
|
+
* Update skill level using IRT (Glicko-2 compatible signature).
|
|
86
|
+
*
|
|
87
|
+
* This method provides backwards compatibility with the old Glicko-2 API.
|
|
88
|
+
* The volatility and cardRatingDeviation parameters are ignored.
|
|
89
|
+
*
|
|
90
|
+
* @deprecated Use update() instead for cleaner IRT semantics
|
|
91
|
+
*/
|
|
92
|
+
static updateWithGlicko2(rating: number, ratingDeviation: number, _volatility: number, cardDifficulty: number, _cardRatingDeviation: number, outcome: ReviewResult, _tau?: number): LegacySkillLevel;
|
|
93
|
+
/**
|
|
94
|
+
* Map a review outcome to a success score for IRT.
|
|
40
95
|
*
|
|
41
96
|
* @param outcome Review result
|
|
42
|
-
* @returns
|
|
97
|
+
* @returns Success score from 0.0 (complete failure) to 1.0 (perfect success)
|
|
43
98
|
*/
|
|
44
99
|
static outcomeToScore(outcome: ReviewResult): number;
|
|
45
100
|
/**
|
|
46
|
-
* Calculate
|
|
47
|
-
*
|
|
101
|
+
* Calculate the probability of success on a card given skill level.
|
|
102
|
+
*
|
|
103
|
+
* @param mu Skill level estimate
|
|
104
|
+
* @param cardDifficulty Difficulty of the card
|
|
105
|
+
* @returns Probability of success (0 to 1)
|
|
106
|
+
*/
|
|
107
|
+
static predictSuccess(mu: number, cardDifficulty: number): number;
|
|
108
|
+
/**
|
|
109
|
+
* Calculate confidence bounds for the skill estimate.
|
|
48
110
|
*
|
|
49
|
-
* @param
|
|
50
|
-
* @param
|
|
111
|
+
* @param mu Skill level estimate
|
|
112
|
+
* @param sigma Uncertainty (standard deviation)
|
|
51
113
|
* @param confidence Confidence level (0.95 for 95%, 0.99 for 99%)
|
|
52
114
|
* @returns Bounds object with lower and upper confidence limits
|
|
53
115
|
*/
|
|
54
|
-
static calculateBounds(
|
|
116
|
+
static calculateBounds(mu: number, sigma: number, confidence?: number): Bounds;
|
|
55
117
|
/**
|
|
56
118
|
* Create a default skill level for a new user.
|
|
57
|
-
* Starts at
|
|
119
|
+
* Starts at skill 0 (knows no characters) with high uncertainty.
|
|
58
120
|
*
|
|
59
|
-
* @param
|
|
60
|
-
* @param initialVolatility Initial volatility (default 0.06, moderate)
|
|
121
|
+
* @param initialSigma Initial uncertainty (default 50)
|
|
61
122
|
* @returns New SkillLevel object
|
|
62
123
|
*/
|
|
63
|
-
static createDefault(
|
|
124
|
+
static createDefault(initialSigma?: number): SkillLevel;
|
|
125
|
+
/**
|
|
126
|
+
* Create a default skill level in legacy format.
|
|
127
|
+
* @deprecated Use createDefault() instead
|
|
128
|
+
*/
|
|
129
|
+
static createDefaultLegacy(initialRatingDeviation?: number, initialVolatility?: number): LegacySkillLevel;
|
|
130
|
+
/**
|
|
131
|
+
* Convert from legacy Glicko-2 format to IRT format.
|
|
132
|
+
*/
|
|
133
|
+
static fromLegacy(legacy: LegacySkillLevel): SkillLevel;
|
|
134
|
+
/**
|
|
135
|
+
* Convert from IRT format to legacy Glicko-2 format.
|
|
136
|
+
*/
|
|
137
|
+
static toLegacy(skill: SkillLevel): LegacySkillLevel;
|
|
64
138
|
/**
|
|
65
139
|
* Check if the skill level has high confidence (low uncertainty).
|
|
66
140
|
*
|
|
67
|
-
* @param
|
|
68
|
-
* @param threshold Maximum
|
|
69
|
-
* @returns True if uncertainty is low
|
|
141
|
+
* @param sigma Uncertainty (standard deviation)
|
|
142
|
+
* @param threshold Maximum sigma to be considered "high confidence" (default 15)
|
|
143
|
+
* @returns True if uncertainty is low
|
|
70
144
|
*/
|
|
71
|
-
static isHighConfidence(
|
|
145
|
+
static isHighConfidence(sigma: number, threshold?: number): boolean;
|
|
72
146
|
}
|
|
@@ -1,106 +1,192 @@
|
|
|
1
1
|
"use strict";
|
|
2
|
-
var __importDefault = (this && this.__importDefault) || function (mod) {
|
|
3
|
-
return (mod && mod.__esModule) ? mod : { "default": mod };
|
|
4
|
-
};
|
|
5
2
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
6
3
|
exports.SkillLevelModel = void 0;
|
|
7
|
-
const glicko2_lite_1 = __importDefault(require("glicko2-lite"));
|
|
8
4
|
/**
|
|
9
|
-
* Model for updating and managing skill levels using
|
|
5
|
+
* Model for updating and managing skill levels using Item Response Theory (IRT).
|
|
10
6
|
*
|
|
11
|
-
*
|
|
12
|
-
*
|
|
13
|
-
* - Rating 0 = absolute beginner (knows ~0 characters)
|
|
14
|
-
* - Rating 100 = knows ~100 characters
|
|
15
|
-
* - Rating 3000 = knows ~3000 characters
|
|
7
|
+
* This model estimates user skill based on a logistic psychometric function:
|
|
8
|
+
* P(success | difficulty d, skill μ) = 1 / (1 + exp(k * (d - μ)))
|
|
16
9
|
*
|
|
17
|
-
*
|
|
18
|
-
*
|
|
10
|
+
* Where:
|
|
11
|
+
* - μ (mu) is the skill level we're estimating
|
|
12
|
+
* - k controls the steepness of the transition from "easy" to "hard"
|
|
13
|
+
* - Cards with difficulty < μ are likely to be answered correctly
|
|
14
|
+
* - Cards with difficulty > μ are likely to be answered incorrectly
|
|
15
|
+
*
|
|
16
|
+
* The model uses Bayesian updating with a Gaussian approximation:
|
|
17
|
+
* - Each observation updates μ based on prediction error
|
|
18
|
+
* - Uncertainty (σ) decreases as we accumulate evidence
|
|
19
|
+
* - No full history is needed - just μ and σ are sufficient statistics
|
|
20
|
+
*
|
|
21
|
+
* Scale semantics:
|
|
22
|
+
* - μ = 0: absolute beginner (knows ~0 characters)
|
|
23
|
+
* - μ = 100: knows ~100 characters
|
|
24
|
+
* - μ = 3000: knows ~3000 characters
|
|
19
25
|
*/
|
|
20
26
|
class SkillLevelModel {
|
|
21
27
|
/**
|
|
22
|
-
* Update skill level using
|
|
28
|
+
* Update skill level using IRT after a review.
|
|
29
|
+
*
|
|
30
|
+
* Uses Bayesian updating with a Gaussian approximation to the posterior.
|
|
31
|
+
* The update is incremental - only requires current μ and σ, not full history.
|
|
23
32
|
*
|
|
24
|
-
* @param
|
|
25
|
-
* @param
|
|
26
|
-
* @param
|
|
27
|
-
* @param cardDifficulty Difficulty of the card reviewed (on same scale as rating)
|
|
28
|
-
* @param cardRatingDeviation Rating deviation for the card (typically fixed, e.g., 100)
|
|
33
|
+
* @param mu Current skill level estimate
|
|
34
|
+
* @param sigma Current uncertainty (standard deviation)
|
|
35
|
+
* @param cardDifficulty Difficulty of the card reviewed
|
|
29
36
|
* @param outcome Review result (FAIL/HARD/GOOD/EASY)
|
|
30
|
-
* @
|
|
31
|
-
|
|
37
|
+
* @returns Updated skill level with new mu and sigma
|
|
38
|
+
*/
|
|
39
|
+
static update(mu, sigma, cardDifficulty, outcome) {
|
|
40
|
+
const k = SkillLevelModel.K;
|
|
41
|
+
// Map outcome to success value (0 to 1)
|
|
42
|
+
const y = SkillLevelModel.outcomeToScore(outcome);
|
|
43
|
+
// Predicted probability of success given current skill estimate
|
|
44
|
+
const p = 1 / (1 + Math.exp(k * (cardDifficulty - mu)));
|
|
45
|
+
// Prediction error: positive if did better than expected, negative if worse
|
|
46
|
+
const error = y - p;
|
|
47
|
+
// Fisher information for logistic model (highest at p = 0.5)
|
|
48
|
+
const info = p * (1 - p);
|
|
49
|
+
// Update variance (precision increases with information)
|
|
50
|
+
const sigmaSquared = sigma * sigma;
|
|
51
|
+
const newSigmaSquared = 1 / (1 / sigmaSquared + k * k * info);
|
|
52
|
+
const newSigma = Math.sqrt(newSigmaSquared);
|
|
53
|
+
// Update mean (shift toward evidence)
|
|
54
|
+
const newMu = mu + newSigmaSquared * k * error;
|
|
55
|
+
return {
|
|
56
|
+
mu: Math.max(0, newMu), // Skill can't go negative
|
|
57
|
+
sigma: Math.max(SkillLevelModel.MIN_SIGMA, Math.min(SkillLevelModel.MAX_SIGMA, newSigma))
|
|
58
|
+
};
|
|
59
|
+
}
|
|
60
|
+
/**
|
|
61
|
+
* Update skill level using IRT (Glicko-2 compatible signature).
|
|
62
|
+
*
|
|
63
|
+
* This method provides backwards compatibility with the old Glicko-2 API.
|
|
64
|
+
* The volatility and cardRatingDeviation parameters are ignored.
|
|
65
|
+
*
|
|
66
|
+
* @deprecated Use update() instead for cleaner IRT semantics
|
|
32
67
|
*/
|
|
33
|
-
static updateWithGlicko2(rating, ratingDeviation,
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
// Call glicko2-lite with a single match
|
|
37
|
-
// Match format: [opponentRating, opponentRD, outcome]
|
|
38
|
-
const result = (0, glicko2_lite_1.default)(rating, ratingDeviation, volatility, [
|
|
39
|
-
[cardDifficulty, cardRatingDeviation, score]
|
|
40
|
-
], { tau });
|
|
68
|
+
static updateWithGlicko2(rating, ratingDeviation, _volatility, cardDifficulty, _cardRatingDeviation, outcome, _tau = 0.5) {
|
|
69
|
+
const result = SkillLevelModel.update(rating, ratingDeviation, cardDifficulty, outcome);
|
|
70
|
+
// Return in legacy format
|
|
41
71
|
return {
|
|
42
|
-
rating: result.
|
|
43
|
-
rating_deviation: result.
|
|
44
|
-
volatility:
|
|
72
|
+
rating: result.mu,
|
|
73
|
+
rating_deviation: result.sigma,
|
|
74
|
+
volatility: 0.06 // Fixed value, not used in IRT
|
|
45
75
|
};
|
|
46
76
|
}
|
|
47
77
|
/**
|
|
48
|
-
* Map a review outcome to a
|
|
78
|
+
* Map a review outcome to a success score for IRT.
|
|
49
79
|
*
|
|
50
80
|
* @param outcome Review result
|
|
51
|
-
* @returns
|
|
81
|
+
* @returns Success score from 0.0 (complete failure) to 1.0 (perfect success)
|
|
52
82
|
*/
|
|
53
83
|
static outcomeToScore(outcome) {
|
|
54
84
|
switch (outcome) {
|
|
55
85
|
case 'EASY': return 1.0;
|
|
56
|
-
case 'GOOD': return 0.
|
|
57
|
-
case 'HARD': return 0.
|
|
86
|
+
case 'GOOD': return 0.85;
|
|
87
|
+
case 'HARD': return 0.3;
|
|
58
88
|
case 'FAIL': return 0.0;
|
|
59
89
|
}
|
|
60
90
|
}
|
|
61
91
|
/**
|
|
62
|
-
* Calculate
|
|
63
|
-
* Returns a proper statistical confidence interval.
|
|
92
|
+
* Calculate the probability of success on a card given skill level.
|
|
64
93
|
*
|
|
65
|
-
* @param
|
|
66
|
-
* @param
|
|
94
|
+
* @param mu Skill level estimate
|
|
95
|
+
* @param cardDifficulty Difficulty of the card
|
|
96
|
+
* @returns Probability of success (0 to 1)
|
|
97
|
+
*/
|
|
98
|
+
static predictSuccess(mu, cardDifficulty) {
|
|
99
|
+
return 1 / (1 + Math.exp(SkillLevelModel.K * (cardDifficulty - mu)));
|
|
100
|
+
}
|
|
101
|
+
/**
|
|
102
|
+
* Calculate confidence bounds for the skill estimate.
|
|
103
|
+
*
|
|
104
|
+
* @param mu Skill level estimate
|
|
105
|
+
* @param sigma Uncertainty (standard deviation)
|
|
67
106
|
* @param confidence Confidence level (0.95 for 95%, 0.99 for 99%)
|
|
68
107
|
* @returns Bounds object with lower and upper confidence limits
|
|
69
108
|
*/
|
|
70
|
-
static calculateBounds(
|
|
109
|
+
static calculateBounds(mu, sigma, confidence = 0.95) {
|
|
71
110
|
// Z-score for desired confidence level
|
|
72
|
-
// 95% CI: ±1.96 standard deviations
|
|
73
|
-
// 99% CI: ±2.58 standard deviations
|
|
74
111
|
const z = confidence === 0.95 ? 1.96 : confidence === 0.99 ? 2.58 : 1.96;
|
|
75
112
|
return {
|
|
76
|
-
lower: Math.max(0,
|
|
77
|
-
upper:
|
|
113
|
+
lower: Math.max(0, mu - z * sigma),
|
|
114
|
+
upper: mu + z * sigma
|
|
78
115
|
};
|
|
79
116
|
}
|
|
80
117
|
/**
|
|
81
118
|
* Create a default skill level for a new user.
|
|
82
|
-
* Starts at
|
|
119
|
+
* Starts at skill 0 (knows no characters) with high uncertainty.
|
|
83
120
|
*
|
|
84
|
-
* @param
|
|
85
|
-
* @param initialVolatility Initial volatility (default 0.06, moderate)
|
|
121
|
+
* @param initialSigma Initial uncertainty (default 50)
|
|
86
122
|
* @returns New SkillLevel object
|
|
87
123
|
*/
|
|
88
|
-
static createDefault(
|
|
124
|
+
static createDefault(initialSigma = 50) {
|
|
125
|
+
return {
|
|
126
|
+
mu: 0,
|
|
127
|
+
sigma: initialSigma
|
|
128
|
+
};
|
|
129
|
+
}
|
|
130
|
+
/**
|
|
131
|
+
* Create a default skill level in legacy format.
|
|
132
|
+
* @deprecated Use createDefault() instead
|
|
133
|
+
*/
|
|
134
|
+
static createDefaultLegacy(initialRatingDeviation = 50, initialVolatility = 0.06) {
|
|
89
135
|
return {
|
|
90
136
|
rating: 0,
|
|
91
137
|
rating_deviation: initialRatingDeviation,
|
|
92
138
|
volatility: initialVolatility
|
|
93
139
|
};
|
|
94
140
|
}
|
|
141
|
+
/**
|
|
142
|
+
* Convert from legacy Glicko-2 format to IRT format.
|
|
143
|
+
*/
|
|
144
|
+
static fromLegacy(legacy) {
|
|
145
|
+
return {
|
|
146
|
+
mu: legacy.rating,
|
|
147
|
+
sigma: legacy.rating_deviation
|
|
148
|
+
};
|
|
149
|
+
}
|
|
150
|
+
/**
|
|
151
|
+
* Convert from IRT format to legacy Glicko-2 format.
|
|
152
|
+
*/
|
|
153
|
+
static toLegacy(skill) {
|
|
154
|
+
return {
|
|
155
|
+
rating: skill.mu,
|
|
156
|
+
rating_deviation: skill.sigma,
|
|
157
|
+
volatility: 0.06
|
|
158
|
+
};
|
|
159
|
+
}
|
|
95
160
|
/**
|
|
96
161
|
* Check if the skill level has high confidence (low uncertainty).
|
|
97
162
|
*
|
|
98
|
-
* @param
|
|
99
|
-
* @param threshold Maximum
|
|
100
|
-
* @returns True if uncertainty is low
|
|
163
|
+
* @param sigma Uncertainty (standard deviation)
|
|
164
|
+
* @param threshold Maximum sigma to be considered "high confidence" (default 15)
|
|
165
|
+
* @returns True if uncertainty is low
|
|
101
166
|
*/
|
|
102
|
-
static isHighConfidence(
|
|
103
|
-
return
|
|
167
|
+
static isHighConfidence(sigma, threshold = 15) {
|
|
168
|
+
return sigma < threshold;
|
|
104
169
|
}
|
|
105
170
|
}
|
|
106
171
|
exports.SkillLevelModel = SkillLevelModel;
|
|
172
|
+
/**
|
|
173
|
+
* Steepness parameter for the logistic function.
|
|
174
|
+
*
|
|
175
|
+
* Controls how sharply success probability drops as difficulty exceeds skill:
|
|
176
|
+
* - k = 0.05 means the transition zone spans ~40 difficulty points
|
|
177
|
+
* - At difficulty = μ, P(success) = 50%
|
|
178
|
+
* - At difficulty = μ + 20, P(success) ≈ 27%
|
|
179
|
+
* - At difficulty = μ + 40, P(success) ≈ 12%
|
|
180
|
+
*
|
|
181
|
+
* Lower k = more gradual transition, higher k = sharper cutoff.
|
|
182
|
+
*/
|
|
183
|
+
SkillLevelModel.K = 0.05;
|
|
184
|
+
/**
|
|
185
|
+
* Minimum sigma value to prevent over-confidence.
|
|
186
|
+
* Even with many observations, we maintain some uncertainty.
|
|
187
|
+
*/
|
|
188
|
+
SkillLevelModel.MIN_SIGMA = 5;
|
|
189
|
+
/**
|
|
190
|
+
* Maximum sigma value for initial state.
|
|
191
|
+
*/
|
|
192
|
+
SkillLevelModel.MAX_SIGMA = 100;
|
package/package.json
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@shaxpir/duiduidui-models",
|
|
3
|
-
"version": "1.9.
|
|
3
|
+
"version": "1.9.21",
|
|
4
4
|
"repository": {
|
|
5
5
|
"type": "git",
|
|
6
6
|
"url": "https://github.com/shaxpir/duiduidui-models"
|
|
@@ -19,7 +19,6 @@
|
|
|
19
19
|
"@shaxpir/duiduidui-models": "^1.4.14",
|
|
20
20
|
"@shaxpir/sharedb": "^6.0.6",
|
|
21
21
|
"@shaxpir/shaxpir-common": "^1.4.1",
|
|
22
|
-
"glicko2-lite": "^4.0.0",
|
|
23
22
|
"ot-json1": "1.0.1",
|
|
24
23
|
"ot-text-unicode": "4.0.0",
|
|
25
24
|
"reconnecting-websocket": "4.4.0"
|