@saber2pr/ai-agent 0.0.6 → 0.0.8

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -1,74 +1,141 @@
1
- # @saber2pr/ai-agent
1
+ # 🚀 Saber2pr AI Agent
2
2
 
3
- A lightweight local AI assistant based on the **MCP (Model Context Protocol)**. It automatically loads your local tools (from Cursor or VSCode MCP configurations) and provides an intelligent orchestration layer via OpenAI-compatible APIs.
3
+ A high-performance AI Agent toolkit designed for automated code auditing, repository mapping, and architectural analysis. It supports both a lightweight **Standard Edition** for direct API interaction and a powerful **LangChain Edition** for complex multi-step reasoning and private LLM integration.
4
4
 
5
- ## ✨ Features
5
+ ## ✨ Core Features
6
6
 
7
- * **Native MCP Support**: Seamlessly connects to local MCP servers using Stdio transport.
8
- * **Auto-Discovery**: Automatically reads tool definitions from `~/.cursor/mcp.json` and `~/.vscode/mcp.json`.
9
- * **Persistent Configuration**: On the first run, it guides you through setting up your API endpoint, key, and model name, saving them to `~/.saber2pr-agent.json`.
10
- * **Namespace Management**: Prevents tool name conflicts by automatically prefixing functions (e.g., `serverName__toolName`).
11
- * **Interactive CLI**: Built-in REPL for multi-turn conversations and complex tool-chaining.
7
+ * **Dual Mode Support**:
8
+ * **Standard Mode**: Lightweight, fast, and uses direct OpenAI-compatible API calls.
9
+ * **LangChain Mode**: Orchestrated via ReAct agents, supporting complex tool-chains and custom model extensions.
12
10
 
13
- ## 📦 Installation
14
11
 
15
- Install globally via npm:
12
+ * **MCP Integration**: Built on the Model Context Protocol to bridge local development environments with AI.
13
+ * **Repository Intelligence**: Integrated `PromptEngine` for generating project maps and code skeletons without exhausting tokens.
14
+ * **Automated Audit Workflow**: Specialized tools for locating code violations, providing line-specific fixes, and generating structured JSON reports.
15
+ * **Private LLM Gateway**: Easily adapt to non-standard API protocols (e.g., Jarvis, internal enterprise gateways) by extending the `BaseChatModel`.
16
+
17
+ ---
18
+
19
+ ## 🛠️ Installation
16
20
 
17
21
  ```bash
18
- npm install -g @saber2pr/ai-agent
22
+ # Clone the repository
23
+ git clone https://github.com/saber2pr/ai-agent.git
24
+ cd ai-agent
25
+
26
+ # Install dependencies
27
+ npm install
28
+
29
+ # Build the project
30
+ npm run build
31
+
19
32
  ```
20
33
 
21
- Or run directly using `npx`:
34
+ ---
35
+
36
+ ## 🚀 Usage Modes
37
+
38
+ ### 1. Standard Edition (Direct API)
39
+
40
+ Best for quick scripts and simple chat interactions. It uses a straightforward message-loop logic.
41
+
42
+ ```javascript
43
+ const McpAgent = require("./lib/agent").default;
44
+
45
+ const agent = new McpAgent({
46
+ targetDir: "/path/to/project"
47
+ });
48
+
49
+ await agent.chat("Analyze the directory structure.");
22
50
 
23
- ```bash
24
- npx @saber2pr/ai-agent
25
51
  ```
26
52
 
27
- ## 🚀 Quick Start
53
+ ### 2. LangChain Edition (Advanced Agent)
28
54
 
29
- ### 1. Launch the Agent
55
+ Best for complex tasks like "Audit the whole project and fix bugs." It supports autonomous tool usage.
30
56
 
31
- Start the assistant by running the binary command:
57
+ ```javascript
58
+ const McpAgent = require("./lib/agent-chain").default;
59
+ const { MyPrivateLLM } = require("./your-custom-llm");
60
+
61
+ const agent = new McpAgent({
62
+ apiModel: new MyPrivateLLM(), // Inject custom LLM
63
+ maxIterations: 15,
64
+ targetDir: "/path/to/project"
65
+ });
66
+
67
+ await agent.chat("Scan for hardcoded colors and submit a review report.");
32
68
 
33
- ```bash
34
- sagent
35
69
  ```
36
70
 
37
- ### 2. Initialize Configuration
71
+ ---
38
72
 
39
- If it's your first time running the agent, you will be prompted to provide:
73
+ ## 🔧 Extending with Private LLMs
40
74
 
41
- * **API Base URL**: e.g., `https://api.openai.com/v1` or your custom proxy.
42
- * **API Key**: Your model provider's API key.
43
- * **Model Name**: e.g., `gpt-4o`, `claude-3-5-sonnet`, or `deepseek-v3`.
75
+ To use your own API protocol, extend the `BaseChatModel` from `@langchain/core`:
44
76
 
45
- Your settings will be stored in `~/.saber2pr-agent.json` for future use.
77
+ ```javascript
78
+ const { BaseChatModel } = require("@langchain/core/language_models/chat_models");
79
+
80
+ class MyPrivateLLM extends BaseChatModel {
81
+ async _generate(messages) {
82
+ const lastMessage = messages[messages.length - 1];
83
+ const response = await fetch("https://your-api.com/v1/chat", {
84
+ method: 'POST',
85
+ body: JSON.stringify({ query: lastMessage.content }),
86
+ headers: { 'Authorization': `Bearer ${token}` }
87
+ });
88
+ const data = await response.json();
89
+ return {
90
+ generations: [{ text: data.text, message: { content: data.text, role: "assistant" } }]
91
+ };
92
+ }
93
+ _llmType() { return "private_llm"; }
94
+ }
95
+
96
+ ```
46
97
 
47
- ### 3. Connect Local Tools
98
+ ---
48
99
 
49
- The agent automatically scans the following paths for MCP configurations:
100
+ ## 📦 Built-in Toolset
50
101
 
51
- * `~/.cursor/mcp.json`
52
- * `~/.vscode/mcp.json`
102
+ | Tool | Description |
103
+ | ----------------- | ------------------------------------------------------------------------ |
104
+ | `generate_review` | Finalizes the process by submitting a structured violation report. |
105
+ | `get_repo_map` | Generates a high-level map of the project files and exports. |
106
+ | `read_full_code` | Reads file content with line numbers for precise auditing. |
107
+ | `read_skeleton` | Extracts class/function signatures without full logic (Token efficient). |
53
108
 
54
- Ensure your MCP servers are configured in these files, and `sagent` will gain the ability to call them immediately.
109
+ ---
110
+
111
+ ## 📋 Audit Rule Configuration
112
+
113
+ You can pass structured rules via the `extraSystemPrompt`:
114
+
115
+ ```javascript
116
+ const agent = new McpAgent({
117
+ extraSystemPrompt: {
118
+ role: "Code Auditor",
119
+ rules: [
120
+ { id: "THEME-001", name: "Theme Check", description: "No hardcoded hex colors." }
121
+ ]
122
+ }
123
+ });
124
+
125
+ ```
55
126
 
56
- ## 🛠️ Usage
127
+ ---
57
128
 
58
- | Command | Description |
59
- | ------------------------ | ----------------------------------------------- |
60
- | `~/.saber2pr-agent.json` | Manually edit this file to update API settings. |
61
- | `exit` | Type during a chat to quit the program. |
62
- | `sagent` | Enter interactive chat mode. |
129
+ ## ⚙️ Configuration
63
130
 
64
- ## 🏗️ Tech Stack
131
+ The agent stores API keys and base URLs in `~/.saber2pr-agent.json`.
65
132
 
66
- Built with:
133
+ * `baseURL`: The API endpoint.
134
+ * `apiKey`: Your authentication key.
135
+ * `model`: The model name (e.g., `gpt-4o`, `claude-3-5-sonnet`).
67
136
 
68
- * [@modelcontextprotocol/sdk](https://www.google.com/search?q=https://github.com/modelcontextprotocol/typescript-sdk) - Official MCP SDK.
69
- * [openai](https://www.google.com/search?q=https://github.com/openai/openai-node) - Client for API interactions.
70
- * [TypeScript](https://www.google.com/search?q=https://www.typescriptlang.org/) - Ensuring type safety and robustness.
137
+ ---
71
138
 
72
- ## 📄 License
139
+ ## 📜 License
73
140
 
74
- [ISC](https://www.google.com/search?q=./LICENSE) © saber2pr
141
+ ISC
@@ -0,0 +1,48 @@
1
+ import { BaseChatModel } from "@langchain/core/language_models/chat_models";
2
+ interface ApiConfig {
3
+ baseURL: string;
4
+ apiKey: string;
5
+ model: string;
6
+ }
7
+ export interface CustomTool {
8
+ name: string;
9
+ description: string;
10
+ parameters: any;
11
+ handler: (args: any) => Promise<any>;
12
+ }
13
+ export interface AgentOptions {
14
+ targetDir?: string;
15
+ tools?: CustomTool[];
16
+ extraSystemPrompt?: any;
17
+ maxTokens?: number;
18
+ apiConfig?: ApiConfig;
19
+ apiModel?: BaseChatModel;
20
+ maxIterations?: number;
21
+ }
22
+ export default class McpChainAgent {
23
+ private allTools;
24
+ private messages;
25
+ private engine;
26
+ private encoder;
27
+ private extraTools;
28
+ private maxTokens;
29
+ private executor?;
30
+ private apiConfig;
31
+ private maxIterations;
32
+ private apiModel?;
33
+ constructor(options?: AgentOptions);
34
+ /**
35
+ * 工具处理器包装逻辑:增加日志打印和 Token 监控
36
+ */
37
+ private wrapHandler;
38
+ private registerBuiltinTools;
39
+ private injectCustomTools;
40
+ private calculateTokens;
41
+ private pruneMessages;
42
+ init(): Promise<void>;
43
+ chat(input: string): Promise<string>;
44
+ private showLoading;
45
+ start(): Promise<void>;
46
+ private ensureApiConfig;
47
+ }
48
+ export {};
@@ -0,0 +1,315 @@
1
+ "use strict";
2
+ var __createBinding = (this && this.__createBinding) || (Object.create ? (function(o, m, k, k2) {
3
+ if (k2 === undefined) k2 = k;
4
+ var desc = Object.getOwnPropertyDescriptor(m, k);
5
+ if (!desc || ("get" in desc ? !m.__esModule : desc.writable || desc.configurable)) {
6
+ desc = { enumerable: true, get: function() { return m[k]; } };
7
+ }
8
+ Object.defineProperty(o, k2, desc);
9
+ }) : (function(o, m, k, k2) {
10
+ if (k2 === undefined) k2 = k;
11
+ o[k2] = m[k];
12
+ }));
13
+ var __setModuleDefault = (this && this.__setModuleDefault) || (Object.create ? (function(o, v) {
14
+ Object.defineProperty(o, "default", { enumerable: true, value: v });
15
+ }) : function(o, v) {
16
+ o["default"] = v;
17
+ });
18
+ var __importStar = (this && this.__importStar) || (function () {
19
+ var ownKeys = function(o) {
20
+ ownKeys = Object.getOwnPropertyNames || function (o) {
21
+ var ar = [];
22
+ for (var k in o) if (Object.prototype.hasOwnProperty.call(o, k)) ar[ar.length] = k;
23
+ return ar;
24
+ };
25
+ return ownKeys(o);
26
+ };
27
+ return function (mod) {
28
+ if (mod && mod.__esModule) return mod;
29
+ var result = {};
30
+ if (mod != null) for (var k = ownKeys(mod), i = 0; i < k.length; i++) if (k[i] !== "default") __createBinding(result, mod, k[i]);
31
+ __setModuleDefault(result, mod);
32
+ return result;
33
+ };
34
+ })();
35
+ var __importDefault = (this && this.__importDefault) || function (mod) {
36
+ return (mod && mod.__esModule) ? mod : { "default": mod };
37
+ };
38
+ Object.defineProperty(exports, "__esModule", { value: true });
39
+ const fs_1 = __importDefault(require("fs"));
40
+ const path_1 = __importDefault(require("path"));
41
+ const os_1 = __importDefault(require("os"));
42
+ const readline = __importStar(require("readline"));
43
+ const ts_context_mcp_1 = require("@saber2pr/ts-context-mcp");
44
+ const js_tiktoken_1 = require("js-tiktoken");
45
+ const openai_1 = require("@langchain/openai");
46
+ const tools_1 = require("@langchain/core/tools");
47
+ const agents_1 = require("langchain/agents");
48
+ const prompts_1 = require("@langchain/core/prompts");
49
+ const CONFIG_FILE = path_1.default.join(os_1.default.homedir(), ".saber2pr-agent.json");
50
+ class McpChainAgent {
51
+ constructor(options) {
52
+ this.allTools = [];
53
+ this.messages = [];
54
+ this.encoder = (0, js_tiktoken_1.getEncoding)("cl100k_base");
55
+ this.extraTools = [];
56
+ this.engine = new ts_context_mcp_1.PromptEngine((options === null || options === void 0 ? void 0 : options.targetDir) || process.cwd());
57
+ this.extraTools = (options === null || options === void 0 ? void 0 : options.tools) || [];
58
+ this.maxTokens = (options === null || options === void 0 ? void 0 : options.maxTokens) || 100000;
59
+ this.apiConfig = options === null || options === void 0 ? void 0 : options.apiConfig;
60
+ this.maxIterations = (options === null || options === void 0 ? void 0 : options.maxIterations) || 20;
61
+ this.apiModel = options === null || options === void 0 ? void 0 : options.apiModel;
62
+ const baseSystemPrompt = `你是一个专业的 AI 代码架构师,具备深度的源码分析与工程化处理能力。
63
+
64
+ ### 核心操作规范:
65
+ 1. **全局扫描(强制首选)**:在开始任何分析任务前,你【必须】首先调用 'get_repo_map'。这是理解项目结构、技术栈及模块关系的唯一来源。
66
+ 2. **循序渐进的分析路径**:
67
+ - 优先使用 'read_skeleton' 提取接口和函数签名。
68
+ - 仅在需要分析具体逻辑或准备修复代码时,才使用 'read_full_code'。
69
+ 3. **真实性原则**:所有的代码分析必须基于工具返回的真实内容,严禁虚假猜测。`;
70
+ this.messages.push({
71
+ role: "system",
72
+ content: (options === null || options === void 0 ? void 0 : options.extraSystemPrompt)
73
+ ? `${baseSystemPrompt}\n\n[额外指令]:\n${JSON.stringify(options.extraSystemPrompt)}`
74
+ : baseSystemPrompt,
75
+ });
76
+ this.registerBuiltinTools();
77
+ this.injectCustomTools();
78
+ }
79
+ /**
80
+ * 工具处理器包装逻辑:增加日志打印和 Token 监控
81
+ */
82
+ wrapHandler(name, handler) {
83
+ return async (args) => {
84
+ // 1. 打印工具执行日志
85
+ console.log(`\n [工具调用]: ${name}`);
86
+ if (args === null || args === void 0 ? void 0 : args.filePath) {
87
+ console.log(` [目标文件]: ${args.filePath}`);
88
+ }
89
+ // 2. 执行逻辑
90
+ const result = await handler(args);
91
+ const content = typeof result === "string" ? result : JSON.stringify(result);
92
+ // 3. 统计 Token 消耗
93
+ const tokens = this.encoder.encode(content).length;
94
+ console.log(` [输出长度]: ${tokens} tokens`);
95
+ return content;
96
+ };
97
+ }
98
+ registerBuiltinTools() {
99
+ const builtinTools = [
100
+ {
101
+ type: "function",
102
+ function: { name: "get_repo_map", description: "获取项目全局结构图和导出清单", parameters: { type: "object" } },
103
+ _handler: this.wrapHandler("get_repo_map", async () => {
104
+ this.engine.refresh();
105
+ return this.engine.getRepoMap();
106
+ }),
107
+ },
108
+ {
109
+ type: "function",
110
+ function: {
111
+ name: "read_skeleton",
112
+ description: "读取代码骨架(接口、类定义等),非常节省 Token",
113
+ parameters: { type: "object", properties: { filePath: { type: "string" } } },
114
+ },
115
+ _handler: this.wrapHandler("read_skeleton", async ({ filePath }) => this.engine.getSkeleton(filePath)),
116
+ },
117
+ {
118
+ type: "function",
119
+ function: {
120
+ name: "read_full_code",
121
+ description: "读取完整源码。注意:仅在需要具体行号或精细逻辑时使用",
122
+ parameters: { type: "object", properties: { filePath: { type: "string" } } },
123
+ },
124
+ _handler: this.wrapHandler("read_full_code", async ({ filePath }) => {
125
+ // --- 新增:Token 守卫 ---
126
+ const currentTokens = this.calculateTokens();
127
+ if (currentTokens > this.maxTokens) {
128
+ return `[SYSTEM WARNING]: 当前上下文已达到 ${currentTokens} tokens (上限 ${this.maxTokens})。为了保证系统稳定,已拦截 read_full_code。请立即根据已知信息进行总结或停止阅读更多代码。`;
129
+ }
130
+ try {
131
+ if (typeof filePath !== 'string' || !filePath) {
132
+ return "Error: filePath 不能为空";
133
+ }
134
+ // 拼合绝对路径
135
+ const fullPath = path_1.default.resolve(this.engine.getRootDir(), filePath);
136
+ // 安全检查:防止 AI 尝试读取项目外的敏感文件
137
+ if (!fullPath.startsWith(this.engine.getRootDir())) {
138
+ return "Error: 权限拒绝,禁止访问项目目录外的文件。";
139
+ }
140
+ if (!fs_1.default.existsSync(fullPath)) {
141
+ return `Error: 文件不存在: ${filePath}`;
142
+ }
143
+ const content = fs_1.default.readFileSync(fullPath, "utf-8");
144
+ // 加上行号,AI 就能在 generate_review 里给出准确的 line 参数
145
+ return content.split('\n')
146
+ .map((line, i) => `${i + 1} | ${line}`)
147
+ .join('\n');
148
+ }
149
+ catch (err) {
150
+ return `Error: 读取文件失败: ${err.message}`;
151
+ }
152
+ }),
153
+ }
154
+ ];
155
+ this.allTools.push(...builtinTools);
156
+ }
157
+ injectCustomTools() {
158
+ for (const tool of this.extraTools) {
159
+ this.allTools.push({
160
+ type: "function",
161
+ function: { name: tool.name, description: tool.description, parameters: tool.parameters },
162
+ _handler: this.wrapHandler(tool.name, tool.handler),
163
+ });
164
+ }
165
+ }
166
+ calculateTokens() {
167
+ return this.messages.reduce((acc, msg) => acc + this.encoder.encode(String(msg.content || "")).length, 0);
168
+ }
169
+ pruneMessages() {
170
+ const current = this.calculateTokens();
171
+ if (current > this.maxTokens) {
172
+ console.log(`\n⚠️ 上下文达到限制 (${current} tokens),正在裁剪旧消息...`);
173
+ // 保留 system prompt (index 0),移除后续消息
174
+ while (this.calculateTokens() > this.maxTokens * 0.8 && this.messages.length > 2) {
175
+ this.messages.splice(1, 1);
176
+ }
177
+ console.log(`✅ 裁剪完成,当前: ${this.calculateTokens()} tokens`);
178
+ }
179
+ }
180
+ async init() {
181
+ if (this.executor)
182
+ return;
183
+ let model;
184
+ if (this.apiModel) {
185
+ console.log("ℹ️ 使用自定义 API Model 实例");
186
+ model = this.apiModel;
187
+ }
188
+ else {
189
+ // 降级方案:使用配置创建默认的 ChatOpenAI
190
+ const apiConfig = await this.ensureApiConfig();
191
+ console.log(`ℹ️ 使用默认 ChatOpenAI (${apiConfig.model})`);
192
+ model = new openai_1.ChatOpenAI({
193
+ configuration: { baseURL: apiConfig.baseURL, apiKey: apiConfig.apiKey },
194
+ modelName: apiConfig.model,
195
+ temperature: 0,
196
+ streaming: false
197
+ });
198
+ }
199
+ const langchainTools = this.allTools.map(t => new tools_1.DynamicTool({
200
+ name: t.function.name,
201
+ description: t.function.description || "",
202
+ func: t._handler
203
+ }));
204
+ const prompt = prompts_1.PromptTemplate.fromTemplate(`
205
+ {system_prompt}
206
+
207
+ TOOLS:
208
+ ------
209
+ You can use the following tools:
210
+ {tools}
211
+
212
+ To use a tool, please use the following format:
213
+ Thought: Do I need to use a tool? Yes
214
+ Action: the action to take, should be one of [{tool_names}]
215
+ Action Input: the input to the action (JSON format)
216
+ Observation: the result of the action
217
+ ... (repeat N times)
218
+ Thought: I now know the final answer
219
+ Final Answer: the final answer to the original input question
220
+
221
+ Begin!
222
+ Question: {input}
223
+ Thought: {agent_scratchpad}`);
224
+ const agent = await (0, agents_1.createReactAgent)({ llm: model, tools: langchainTools, prompt });
225
+ this.executor = new agents_1.AgentExecutor({
226
+ agent,
227
+ tools: langchainTools,
228
+ verbose: false, // 我们已经有了 wrapHandler 日志,关闭原生 verbose 以保持整洁
229
+ handleParsingErrors: true,
230
+ maxIterations: this.maxIterations
231
+ });
232
+ }
233
+ async chat(input) {
234
+ var _a;
235
+ if (!this.executor)
236
+ await this.init();
237
+ this.messages.push({ role: "user", content: input });
238
+ this.pruneMessages();
239
+ console.log(`\n📊 状态: Context ${this.calculateTokens()} / Limit ${this.maxTokens} tokens`);
240
+ const stopLoading = this.showLoading("🤖 Agent 正在思考并执行工具...");
241
+ try {
242
+ const response = await this.executor.invoke({
243
+ input: input,
244
+ system_prompt: this.messages[0].content,
245
+ });
246
+ let output = response.output;
247
+ // 清洗 ReAct 冗余标签
248
+ if (output.includes("Final Answer:")) {
249
+ output = ((_a = output.split("Final Answer:").pop()) === null || _a === void 0 ? void 0 : _a.trim()) || output;
250
+ }
251
+ this.messages.push({ role: "assistant", content: output });
252
+ return output;
253
+ }
254
+ finally {
255
+ stopLoading();
256
+ }
257
+ }
258
+ showLoading(text) {
259
+ const chars = ['⠋', '⠙', '⠹', '⠸', '⠼', '⠴', '⠦', '⠧', '⠇', '⠏'];
260
+ let i = 0;
261
+ const timer = setInterval(() => {
262
+ process.stdout.write(`\r${chars[i]} ${text}`);
263
+ i = (i + 1) % chars.length;
264
+ }, 80);
265
+ return () => {
266
+ clearInterval(timer);
267
+ process.stdout.write('\r\x1b[K');
268
+ };
269
+ }
270
+ async start() {
271
+ await this.init();
272
+ const rl = readline.createInterface({ input: process.stdin, output: process.stdout });
273
+ console.log(`\n🚀 AI 助手启动 (LangChain 核心)`);
274
+ console.log(`📂 目标目录: ${this.engine.getRootDir()}`);
275
+ const chatLoop = () => {
276
+ rl.question("\n👤 你: ", async (input) => {
277
+ if (!input.trim())
278
+ return chatLoop();
279
+ if (input.toLowerCase() === "exit")
280
+ process.exit(0);
281
+ try {
282
+ const result = await this.chat(input);
283
+ console.log(`\n🤖 Agent: ${result}`);
284
+ }
285
+ catch (err) {
286
+ console.error("\n❌ 系统错误:", err.message);
287
+ }
288
+ chatLoop();
289
+ });
290
+ };
291
+ chatLoop();
292
+ }
293
+ async ensureApiConfig() {
294
+ if (this.apiConfig)
295
+ return this.apiConfig;
296
+ if (fs_1.default.existsSync(CONFIG_FILE)) {
297
+ return JSON.parse(fs_1.default.readFileSync(CONFIG_FILE, "utf-8"));
298
+ }
299
+ const rl = readline.createInterface({
300
+ input: process.stdin,
301
+ output: process.stdout,
302
+ });
303
+ const question = (q) => new Promise((res) => rl.question(q, res));
304
+ console.log("\n🔑 配置 API 凭据:");
305
+ const config = {
306
+ baseURL: await question("? API Base URL (如 https://api.openai.com/v1): "),
307
+ apiKey: await question("? API Key: "),
308
+ model: await question("? Model Name (如 gpt-4o): "),
309
+ };
310
+ fs_1.default.writeFileSync(CONFIG_FILE, JSON.stringify(config, null, 2));
311
+ rl.close();
312
+ return config;
313
+ }
314
+ }
315
+ exports.default = McpChainAgent;
package/lib/agent.d.ts CHANGED
@@ -1,3 +1,8 @@
1
+ interface ApiConfig {
2
+ baseURL: string;
3
+ apiKey: string;
4
+ model: string;
5
+ }
1
6
  export interface CustomTool {
2
7
  name: string;
3
8
  description: string;
@@ -10,6 +15,8 @@ export interface AgentOptions {
10
15
  tools?: any[];
11
16
  /** 注入到 System Prompt 中的额外指令/规则/上下文 */
12
17
  extraSystemPrompt?: any;
18
+ maxTokens?: number;
19
+ apiConfig?: ApiConfig;
13
20
  }
14
21
  export default class McpAgent {
15
22
  private openai;
@@ -20,6 +27,8 @@ export default class McpAgent {
20
27
  private engine;
21
28
  private encoder;
22
29
  private extraTools;
30
+ private maxTokens;
31
+ private apiConfig;
23
32
  constructor(options?: AgentOptions);
24
33
  /**
25
34
  * 计算当前消息列表的总 Token 消耗
@@ -36,6 +45,11 @@ export default class McpAgent {
36
45
  private loadMcpConfigs;
37
46
  init(): Promise<void>;
38
47
  private processChat;
48
+ /**
49
+ * 裁剪上下文消息列表
50
+ * 保留第一条 System 消息,并移除中间的旧消息直到低于阈值
51
+ */
52
+ private pruneMessages;
39
53
  /**
40
54
  * 简易 Loading 动画辅助函数
41
55
  */
@@ -48,3 +62,4 @@ export default class McpAgent {
48
62
  chat(input: string): Promise<string>;
49
63
  start(): Promise<void>;
50
64
  }
65
+ export {};
package/lib/agent.js CHANGED
@@ -56,11 +56,26 @@ class McpAgent {
56
56
  this.extraTools = [];
57
57
  this.engine = new ts_context_mcp_1.PromptEngine((options === null || options === void 0 ? void 0 : options.targetDir) || process.cwd());
58
58
  this.extraTools = (options === null || options === void 0 ? void 0 : options.tools) || []; // 接收外部传入的工具
59
- let baseSystemPrompt = `你是一个专业的 AI 代码架构师。
60
- 你可以访问本地文件系统并利用 AST (抽象语法树) 技术分析代码。
61
- 你的核心目标是提供准确的代码结构、依赖关系和逻辑分析。
62
- 请先使用 get_repo_map 查看项目整体代码结构。
63
- 请优先使用 read_skeleton 查看结构,只有在必要时才使用 read_full_code 或 get_method_body。`;
59
+ this.maxTokens = (options === null || options === void 0 ? void 0 : options.maxTokens) || 100000; // 默认 100k
60
+ this.apiConfig = options === null || options === void 0 ? void 0 : options.apiConfig;
61
+ let baseSystemPrompt = `你是一个专业的 AI 代码架构师,具备深度的源码分析与工程化处理能力。
62
+
63
+ ### 核心操作规范:
64
+ 1. **全局扫描(强制首选)**:在开始任何分析任务前,你【必须】首先调用 'get_repo_map'。这是你理解项目目录结构、技术栈及模块关系的唯一权威来源。
65
+ 2. **循序渐进的分析路径**:
66
+ - 优先使用 'read_skeleton' 提取接口、类和函数签名,以最低的 Token 成本建立代码逻辑视图。
67
+ - 仅在需要深入分析具体业务逻辑、提取精准代码块或进行代码修改建议时,才使用 'read_full_code' 或 'get_method_body'。
68
+ 3. **真实性原则**:
69
+ - 所有的代码分析、行号定位和逻辑推断必须基于工具返回的真实内容,严禁基于文件名进行虚假猜测。
70
+ - 如果工具返回结果为空或报错,应尝试调整路径或更换工具。
71
+
72
+ ### 技术能力:
73
+ - 精通 TypeScript/JavaScript 及其 AST 结构,能准确识别各种复杂的声明与调用关系。
74
+ - 能够理解代码间的依赖链路,并结合项目上下文给出合理的架构建议。
75
+
76
+ ### 执行准则:
77
+ - **任务导向**:直接通过工具链解决问题,减少不必要的中间对话。
78
+ - **自主决策**:根据任务需求自主选择最合适的工具组合,无需每一步都向用户请示。`;
64
79
  // 2. 拼接额外指令
65
80
  if (options === null || options === void 0 ? void 0 : options.extraSystemPrompt) {
66
81
  const extra = typeof options.extraSystemPrompt === 'string'
@@ -211,7 +226,13 @@ class McpAgent {
211
226
  required: ["filePath", "methodName"],
212
227
  },
213
228
  },
214
- _handler: async ({ filePath, methodName }) => this.engine.getMethodImplementation(filePath, methodName),
229
+ _handler: async ({ filePath, methodName }) => {
230
+ // --- 新增:同样的 Token 守卫 ---
231
+ if (this.calculateTokens() > this.maxTokens) {
232
+ return `[SYSTEM WARNING]: Token 消耗已达上限,禁止获取详细方法体。请利用已获取的 Skeleton 信息进行分析。`;
233
+ }
234
+ return this.engine.getMethodImplementation(filePath, methodName);
235
+ },
215
236
  },
216
237
  {
217
238
  type: "function",
@@ -228,6 +249,11 @@ class McpAgent {
228
249
  },
229
250
  // 核心实现:直接利用 fs 读取
230
251
  _handler: async ({ filePath }) => {
252
+ // --- 新增:Token 守卫 ---
253
+ const currentTokens = this.calculateTokens();
254
+ if (currentTokens > this.maxTokens) {
255
+ return `[SYSTEM WARNING]: 当前上下文已达到 ${currentTokens} tokens (上限 ${this.maxTokens})。为了保证系统稳定,已拦截 read_full_code。请立即根据已知信息进行总结或停止阅读更多代码。`;
256
+ }
231
257
  try {
232
258
  if (typeof filePath !== 'string' || !filePath) {
233
259
  return "Error: filePath 不能为空";
@@ -257,6 +283,8 @@ class McpAgent {
257
283
  }
258
284
  // --- 初始化与环境准备 (API Config & MCP Servers) ---
259
285
  async ensureApiConfig() {
286
+ if (this.apiConfig)
287
+ return this.apiConfig;
260
288
  if (fs_1.default.existsSync(CONFIG_FILE)) {
261
289
  return JSON.parse(fs_1.default.readFileSync(CONFIG_FILE, "utf-8"));
262
290
  }
@@ -329,9 +357,18 @@ class McpAgent {
329
357
  var _a;
330
358
  this.messages.push({ role: 'user', content: userInput });
331
359
  while (true) {
360
+ // --- 新增:发送请求前先检查并裁剪 ---
361
+ this.pruneMessages();
332
362
  // 打印当前上下文的累计 Token
333
363
  const currentInputTokens = this.calculateTokens();
334
364
  console.log(`\n📊 当前上下文累计: ${currentInputTokens} tokens`);
365
+ // 如果接近上限(如 80%),在消息队列中插入一条隐含的系统指令
366
+ if (currentInputTokens > this.maxTokens * 0.8 && currentInputTokens <= this.maxTokens) {
367
+ this.messages.push({
368
+ role: "system",
369
+ content: "注意:上下文即将耗尽。请停止读取新文件,优先处理现有信息并尽快输出结果。"
370
+ });
371
+ }
335
372
  const stopLoading = this.showLoading("🤖 Agent 正在思考...");
336
373
  let response;
337
374
  try {
@@ -388,6 +425,24 @@ class McpAgent {
388
425
  }
389
426
  }
390
427
  }
428
+ /**
429
+ * 裁剪上下文消息列表
430
+ * 保留第一条 System 消息,并移除中间的旧消息直到低于阈值
431
+ */
432
+ pruneMessages() {
433
+ const currentTokens = this.calculateTokens();
434
+ if (currentTokens <= this.maxTokens)
435
+ return;
436
+ console.log(`\n⚠️ 上下文达到限制 (${currentTokens} tokens),正在自动裁剪...`);
437
+ // 策略:保留索引 0 (System),从索引 1 开始删除
438
+ // 每次删除一对 (通常是助理请求 + 工具回复,或者用户提问 + 助理回答)
439
+ while (this.calculateTokens() > this.maxTokens && this.messages.length > 2) {
440
+ // 始终保留系统提示词 (index 0) 和最后一条消息 (保持对话连贯)
441
+ // 删除索引为 1 的消息
442
+ this.messages.splice(1, 1);
443
+ }
444
+ console.log(`✅ 裁剪完成,当前上下文: ${this.calculateTokens()} tokens`);
445
+ }
391
446
  /**
392
447
  * 简易 Loading 动画辅助函数
393
448
  */
@@ -0,0 +1,2 @@
1
+ #!/usr/bin/env node
2
+ export {};
@@ -0,0 +1,9 @@
1
+ #!/usr/bin/env node
2
+ "use strict";
3
+ var __importDefault = (this && this.__importDefault) || function (mod) {
4
+ return (mod && mod.__esModule) ? mod : { "default": mod };
5
+ };
6
+ Object.defineProperty(exports, "__esModule", { value: true });
7
+ const agent_chain_1 = __importDefault(require("./agent-chain"));
8
+ const manager = new agent_chain_1.default();
9
+ manager.start();
package/lib/index.d.ts CHANGED
@@ -1,2 +1,3 @@
1
1
  export * from './agent';
2
+ export { default as McpChainAgent } from './agent-chain';
2
3
  export { default } from './agent';
package/lib/index.js CHANGED
@@ -17,7 +17,9 @@ var __importDefault = (this && this.__importDefault) || function (mod) {
17
17
  return (mod && mod.__esModule) ? mod : { "default": mod };
18
18
  };
19
19
  Object.defineProperty(exports, "__esModule", { value: true });
20
- exports.default = void 0;
20
+ exports.default = exports.McpChainAgent = void 0;
21
21
  __exportStar(require("./agent"), exports);
22
+ var agent_chain_1 = require("./agent-chain");
23
+ Object.defineProperty(exports, "McpChainAgent", { enumerable: true, get: function () { return __importDefault(agent_chain_1).default; } });
22
24
  var agent_1 = require("./agent");
23
25
  Object.defineProperty(exports, "default", { enumerable: true, get: function () { return __importDefault(agent_1).default; } });
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@saber2pr/ai-agent",
3
- "version": "0.0.6",
3
+ "version": "0.0.8",
4
4
  "description": "AI Assistant CLI.",
5
5
  "author": "saber2pr",
6
6
  "license": "ISC",
@@ -8,7 +8,8 @@
8
8
  "lib"
9
9
  ],
10
10
  "bin": {
11
- "sagent": "./lib/cli.js"
11
+ "sagent": "./lib/cli.js",
12
+ "sagent-chain": "./lib/cli-chain.js"
12
13
  },
13
14
  "publishConfig": {
14
15
  "access": "public",
@@ -21,9 +22,12 @@
21
22
  "prepublishOnly": "tsc"
22
23
  },
23
24
  "dependencies": {
25
+ "@langchain/core": "^1.1.18",
26
+ "@langchain/openai": "^1.2.4",
24
27
  "@modelcontextprotocol/sdk": "^1.25.3",
25
28
  "@saber2pr/ts-context-mcp": "^0.0.6",
26
29
  "js-tiktoken": "^1.0.21",
30
+ "langchain": "~0.3",
27
31
  "openai": "^6.16.0"
28
32
  },
29
33
  "devDependencies": {