@rembr/vscode 1.0.0 → 2.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/CHANGELOG.md +57 -1
- package/README.md +261 -148
- package/cli.js +29 -14
- package/package.json +2 -2
- package/setup.js +144 -29
- package/templates/agents/ralph-rlm.agent.md +164 -0
- package/templates/agents/rlm.agent.md +106 -0
- package/templates/copilot-instructions.md +66 -49
- package/templates/instructions/code-investigation.instructions.md +103 -0
- package/templates/instructions/rembr-integration.instructions.md +88 -0
- package/templates/prompts/ralph-analyze.prompt.md +74 -0
- package/templates/prompts/ralph-plan.prompt.md +70 -0
- package/templates/prompts/rlm-analyze.prompt.md +39 -0
- package/templates/prompts/rlm-plan.prompt.md +58 -0
- package/templates/recursive-agent.agent.md +277 -0
- package/templates/recursive-analyst.agent.md +9 -17
- package/templates/skills/ralph-rlm-orchestration/SKILL.md +297 -0
- package/templates/skills/rlm-orchestration/SKILL.md +180 -0
- package/templates/aider.conf.yml +0 -52
- package/templates/cursorrules +0 -141
- package/templates/windsurfrules +0 -141
package/CHANGELOG.md
CHANGED
|
@@ -1,10 +1,66 @@
|
|
|
1
1
|
# Changelog
|
|
2
2
|
|
|
3
|
-
All notable changes to @rembr/
|
|
3
|
+
All notable changes to @rembr/vscode will be documented in this file.
|
|
4
4
|
|
|
5
5
|
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
|
|
6
6
|
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
|
|
7
7
|
|
|
8
|
+
## [2.0.0] - 2026-01-10
|
|
9
|
+
|
|
10
|
+
### Added
|
|
11
|
+
|
|
12
|
+
#### Complete RLM Agent System
|
|
13
|
+
- **Custom Agents**: `@rlm` (basic decomposition) and `@ralph-rlm` (acceptance-driven quality)
|
|
14
|
+
- **Skills**: RLM orchestration patterns with quality validation
|
|
15
|
+
- `rlm-orchestration/SKILL.md` - Basic RLM decomposition patterns
|
|
16
|
+
- `ralph-rlm-orchestration/SKILL.md` - Acceptance-driven loop patterns
|
|
17
|
+
- **Prompts**: Quick-start commands for Chat interface
|
|
18
|
+
- `/rlm-analyze` - Start basic RLM analysis
|
|
19
|
+
- `/ralph-analyze` - Start acceptance-driven analysis
|
|
20
|
+
- `/rlm-plan` - Generate decomposition plan only
|
|
21
|
+
- `/ralph-plan` - Define acceptance criteria only
|
|
22
|
+
- **Instructions**: Specialized guidance for agents
|
|
23
|
+
- `rembr-integration.instructions.md` - Memory storage patterns
|
|
24
|
+
- `code-investigation.instructions.md` - Code search best practices
|
|
25
|
+
|
|
26
|
+
#### Agent Architecture
|
|
27
|
+
- **Basic RLM**: Fast task decomposition with single-pass completion
|
|
28
|
+
- **Ralph-RLM**: Iterative quality loops with acceptance criteria validation
|
|
29
|
+
- **Handoffs**: Seamless transitions between agent modes
|
|
30
|
+
- **Stuck Detection**: Auto-regenerates plans when blocked (Ralph-RLM)
|
|
31
|
+
- **Memory Categories**: Specialized storage (goals, context, facts, learning)
|
|
32
|
+
|
|
33
|
+
#### Enhanced Setup
|
|
34
|
+
- Updated installer copies complete `.github/` structure
|
|
35
|
+
- VS Code settings requirements check
|
|
36
|
+
- Migration guide for v1.x users
|
|
37
|
+
- Backwards compatibility with existing recursive-analyst agent
|
|
38
|
+
|
|
39
|
+
### Changed
|
|
40
|
+
|
|
41
|
+
#### Breaking Changes
|
|
42
|
+
- **Package Scope**: Renamed from `@rembr/client` to `@rembr/vscode`
|
|
43
|
+
- **Architecture**: Agent-based system replaces simple auto-detection
|
|
44
|
+
- **File Structure**: Complete `.github/` directory with agents, skills, prompts, instructions
|
|
45
|
+
- **Usage**: Chat agents (`@rlm`, `@ralph-rlm`) replace automatic pattern recognition
|
|
46
|
+
|
|
47
|
+
#### Improved
|
|
48
|
+
- **Token Efficiency**: Up to 52% reduction with quality improvements
|
|
49
|
+
- **Quality Assurance**: Ralph-RLM ensures acceptance criteria are met
|
|
50
|
+
- **Developer Experience**: Explicit agent selection vs automatic detection
|
|
51
|
+
- **Documentation**: Comprehensive examples and workflow guides
|
|
52
|
+
|
|
53
|
+
### Migration from v1.x
|
|
54
|
+
|
|
55
|
+
1. Backup existing `.github/` files
|
|
56
|
+
2. Run `rembr-vscode-setup` to install v2.0 structure
|
|
57
|
+
3. Copy custom configurations to new format
|
|
58
|
+
4. Enable required VS Code settings:
|
|
59
|
+
- `github.copilot.chat.codeGeneration.useInstructionFiles: true`
|
|
60
|
+
- `chat.agent.enabled: true`
|
|
61
|
+
- `chat.useAgentSkills: true`
|
|
62
|
+
5. Test with `/rlm-analyze` to verify setup
|
|
63
|
+
|
|
8
64
|
## [1.0.0] - 2026-01-06
|
|
9
65
|
|
|
10
66
|
### Added
|
package/README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
|
1
1
|
# @rembr/vscode
|
|
2
2
|
|
|
3
|
-
**Recursive Language Model (RLM)
|
|
3
|
+
**Recursive Language Model (RLM) Integration for VS Code and GitHub Copilot**
|
|
4
4
|
|
|
5
|
-
|
|
5
|
+
Complete RLM setup with custom agents, skills, prompts, and semantic memory integration. Choose between **basic RLM** for fast decomposition or **Ralph-RLM** for acceptance-driven quality assurance.
|
|
6
6
|
|
|
7
7
|
## Quick Start
|
|
8
8
|
|
|
@@ -13,227 +13,339 @@ rembr-vscode-setup
|
|
|
13
13
|
|
|
14
14
|
**What happens next?**
|
|
15
15
|
|
|
16
|
-
✅
|
|
17
|
-
✅
|
|
18
|
-
✅
|
|
19
|
-
✅
|
|
20
|
-
✅
|
|
16
|
+
✅ **Custom Agents** - `@rlm` and `@ralph-rlm` agents for task orchestration
|
|
17
|
+
✅ **Skill System** - RLM orchestration skills teach decomposition patterns
|
|
18
|
+
✅ **Chat Prompts** - `/rlm-analyze`, `/ralph-analyze` for quick starts
|
|
19
|
+
✅ **Memory Integration** - Persistent context via rembr MCP
|
|
20
|
+
✅ **Token Efficiency** - 51% reduction for complex tasks
|
|
21
21
|
|
|
22
|
-
##
|
|
22
|
+
## Agent Modes
|
|
23
|
+
|
|
24
|
+
| Agent | Description | Best For | Exit Condition |
|
|
25
|
+
|-------|-------------|----------|----------------|
|
|
26
|
+
| `@rlm` | Basic RLM - fast decomposition | Quick analysis, bug investigation | Task complete |
|
|
27
|
+
| `@ralph-rlm` | Acceptance-driven loops | Security audits, quality-critical | All criteria met |
|
|
28
|
+
|
|
29
|
+
### Basic RLM Flow
|
|
30
|
+
```
|
|
31
|
+
User Task → Decompose → Investigate Subtasks → Synthesize Results
|
|
32
|
+
↓
|
|
33
|
+
Store in Rembr (context, facts, learning)
|
|
34
|
+
```
|
|
35
|
+
|
|
36
|
+
### Ralph-RLM Flow
|
|
37
|
+
```
|
|
38
|
+
User Task → Define Criteria → LOOP until ALL met:
|
|
39
|
+
↓ ├── Load criteria
|
|
40
|
+
Store in Rembr ├── Validate findings
|
|
41
|
+
(goals category) ├── Update status
|
|
42
|
+
├── Check stuck
|
|
43
|
+
└── Regenerate if needed
|
|
44
|
+
```
|
|
45
|
+
|
|
46
|
+
## Usage Examples
|
|
47
|
+
|
|
48
|
+
### Using Custom Agents
|
|
49
|
+
|
|
50
|
+
Select the agent from the agent picker in Chat view:
|
|
51
|
+
|
|
52
|
+
```
|
|
53
|
+
@rlm Analyze the authentication system and identify all password handling
|
|
54
|
+
```
|
|
55
|
+
|
|
56
|
+
```
|
|
57
|
+
@ralph-rlm Audit the API endpoints for OWASP Top 10 vulnerabilities
|
|
58
|
+
```
|
|
59
|
+
|
|
60
|
+
### Using Chat Prompts
|
|
61
|
+
|
|
62
|
+
Type `/` followed by prompt name:
|
|
23
63
|
|
|
24
|
-
### Before: Traditional Approach
|
|
25
64
|
```
|
|
26
|
-
|
|
65
|
+
/rlm-analyze Investigate how user sessions are managed across services
|
|
66
|
+
```
|
|
27
67
|
|
|
28
|
-
|
|
29
|
-
|
|
68
|
+
```
|
|
69
|
+
/ralph-analyze Perform security audit of payment processing flow
|
|
30
70
|
```
|
|
31
71
|
|
|
32
|
-
### After: RLM Patterns
|
|
33
72
|
```
|
|
34
|
-
|
|
73
|
+
/rlm-plan Generate decomposition plan for rate limiting implementation
|
|
74
|
+
```
|
|
35
75
|
|
|
36
|
-
|
|
37
|
-
├── L1-Analysis: Analyze payment endpoints (280 tokens)
|
|
38
|
-
├── L1-Design: Design Redis strategy (180 tokens)
|
|
39
|
-
├── L1-Implementation: Build middleware (350 tokens)
|
|
40
|
-
└── L1-Monitoring: Add metrics/tests (120 tokens)
|
|
76
|
+
### Example Workflows
|
|
41
77
|
|
|
42
|
-
|
|
78
|
+
#### Quick Codebase Analysis
|
|
79
|
+
```
|
|
80
|
+
@rlm Analyze the authentication system and find all places where passwords are validated
|
|
43
81
|
```
|
|
44
82
|
|
|
45
|
-
|
|
83
|
+
**Output:**
|
|
84
|
+
- L1-Auth: Authentication middleware analysis
|
|
85
|
+
- L1-Validation: Password validation logic
|
|
86
|
+
- L1-Security: Hash verification patterns
|
|
87
|
+
- L1-Session: Session management review
|
|
46
88
|
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
-
|
|
50
|
-
|
|
89
|
+
#### Security Audit with Validation
|
|
90
|
+
```
|
|
91
|
+
@ralph-rlm Audit the API endpoints for OWASP Top 10 vulnerabilities
|
|
92
|
+
|
|
93
|
+
Acceptance Criteria:
|
|
94
|
+
✓ Input validation checked
|
|
95
|
+
✓ Authentication flaws identified
|
|
96
|
+
✓ Sensitive data exposure reviewed
|
|
97
|
+
✓ XML/XXE injection tested
|
|
98
|
+
✓ Access control verified
|
|
99
|
+
✓ Security misconfiguration found
|
|
100
|
+
✓ XSS vulnerabilities checked
|
|
101
|
+
✓ Deserialization flaws tested
|
|
102
|
+
✓ Component vulnerabilities identified
|
|
103
|
+
✓ Logging/monitoring gaps found
|
|
104
|
+
```
|
|
51
105
|
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
-
|
|
55
|
-
- **Cross-project Learning** - Reuse patterns between projects
|
|
106
|
+
#### Planning Before Execution
|
|
107
|
+
```
|
|
108
|
+
/rlm-plan Investigate how rate limiting should be implemented across microservices
|
|
56
109
|
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
110
|
+
Generated Plan:
|
|
111
|
+
1. L1-Analysis: Current rate limiting state
|
|
112
|
+
2. L1-Architecture: Distributed rate limit design
|
|
113
|
+
3. L1-Implementation: Redis-based implementation
|
|
114
|
+
4. L1-Monitoring: Metrics and alerting
|
|
115
|
+
```
|
|
116
|
+
|
|
117
|
+
Then execute:
|
|
118
|
+
```
|
|
119
|
+
@rlm [paste the generated plan above]
|
|
120
|
+
```
|
|
61
121
|
|
|
62
122
|
## Auto-Detection Examples
|
|
63
123
|
|
|
64
|
-
|
|
65
|
-
These requests automatically trigger recursive decomposition:
|
|
124
|
+
The system automatically detects when to use RLM patterns:
|
|
66
125
|
|
|
126
|
+
### ✅ Complex Tasks (Auto-RLM)
|
|
67
127
|
```javascript
|
|
68
|
-
// Multi-component implementations
|
|
128
|
+
// Multi-component implementations
|
|
69
129
|
"Implement OAuth2 with JWT refresh tokens, rate limiting, and admin dashboard"
|
|
70
130
|
|
|
71
|
-
// Cross-service integrations
|
|
131
|
+
// Cross-service integrations
|
|
72
132
|
"Migrate user service to microservices with message queues and monitoring"
|
|
73
133
|
|
|
74
|
-
//
|
|
75
|
-
"
|
|
134
|
+
// Security audits
|
|
135
|
+
"Audit the authentication system for OWASP Top 10 vulnerabilities"
|
|
76
136
|
|
|
77
|
-
//
|
|
78
|
-
"Analyze
|
|
137
|
+
// Architecture analysis
|
|
138
|
+
"Analyze the caching layer and identify performance bottlenecks"
|
|
79
139
|
```
|
|
80
140
|
|
|
81
141
|
### 🎯 Simple Tasks (Standard)
|
|
82
|
-
These use traditional single-shot responses:
|
|
83
|
-
|
|
84
142
|
```javascript
|
|
85
143
|
// Single file changes
|
|
86
144
|
"Fix this TypeScript type error"
|
|
87
|
-
"Add logging to this function"
|
|
88
|
-
"Update README with
|
|
89
|
-
"Rename variable from userID to userId"
|
|
145
|
+
"Add logging to this function"
|
|
146
|
+
"Update README with installation steps"
|
|
90
147
|
```
|
|
91
148
|
|
|
92
|
-
##
|
|
93
|
-
|
|
94
|
-
| Complexity | Traditional Tokens | RLM Tokens | Reduction | Quality Gain |
|
|
95
|
-
|------------|-------------------|------------|-----------|--------------|
|
|
96
|
-
| **High** | 18,400 | 8,800 | **52%** | +2.5 points |
|
|
97
|
-
| **Medium** | 8,200 | 4,900 | **40%** | +1.8 points |
|
|
98
|
-
| **Low** | 2,100 | 2,100 | **0%** | No change |
|
|
99
|
-
|
|
100
|
-
### Why RLM Works
|
|
149
|
+
## File Structure Installed
|
|
101
150
|
|
|
102
|
-
|
|
103
|
-
|
|
104
|
-
|
|
105
|
-
|
|
151
|
+
```
|
|
152
|
+
your-project/
|
|
153
|
+
├── .github/
|
|
154
|
+
│ ├── copilot-instructions.md # Repository-wide RLM instructions
|
|
155
|
+
│ ├── agents/
|
|
156
|
+
│ │ ├── rlm.agent.md # Basic RLM agent
|
|
157
|
+
│ │ └── ralph-rlm.agent.md # Acceptance-driven agent
|
|
158
|
+
│ ├── skills/
|
|
159
|
+
│ │ ├── rlm-orchestration/
|
|
160
|
+
│ │ │ └── SKILL.md # RLM skill definition
|
|
161
|
+
│ │ └── ralph-rlm-orchestration/
|
|
162
|
+
│ │ └── SKILL.md # Ralph-RLM skill definition
|
|
163
|
+
│ ├── prompts/
|
|
164
|
+
│ │ ├── rlm-analyze.prompt.md # Quick RLM analysis start
|
|
165
|
+
│ │ ├── ralph-analyze.prompt.md # Quick Ralph-RLM start
|
|
166
|
+
│ │ ├── rlm-plan.prompt.md # Generate plan only
|
|
167
|
+
│ │ └── ralph-plan.prompt.md # Define criteria only
|
|
168
|
+
│ └── instructions/
|
|
169
|
+
│ ├── rembr-integration.instructions.md # Memory patterns
|
|
170
|
+
│ └── code-investigation.instructions.md # Code search patterns
|
|
171
|
+
└── .vscode/
|
|
172
|
+
└── settings.json # MCP configuration
|
|
173
|
+
```
|
|
106
174
|
|
|
107
175
|
## Memory Categories
|
|
108
176
|
|
|
109
|
-
RLM automatically organizes
|
|
177
|
+
RLM automatically organizes findings in rembr:
|
|
110
178
|
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
|
|
179
|
+
| Category | Purpose | Used By |
|
|
180
|
+
|----------|---------|---------|
|
|
181
|
+
| `goals` | Acceptance criteria and validation status | Ralph-RLM |
|
|
182
|
+
| `context` | Task state, decomposition progress | Both |
|
|
183
|
+
| `facts` | Validated findings and discoveries | Both |
|
|
184
|
+
| `learning` | Synthesized insights and patterns | Both |
|
|
114
185
|
|
|
115
|
-
##
|
|
186
|
+
## Performance Benefits
|
|
116
187
|
|
|
117
|
-
|
|
188
|
+
| Complexity | Traditional | RLM Tokens | Reduction | Quality |
|
|
189
|
+
|------------|-------------|------------|-----------|---------|
|
|
190
|
+
| **High** | 18,400 | 8,800 | **52%** | +2.5 pts |
|
|
191
|
+
| **Medium** | 8,200 | 4,900 | **40%** | +1.8 pts |
|
|
192
|
+
| **Low** | 2,100 | 2,100 | **0%** | No change |
|
|
118
193
|
|
|
119
|
-
|
|
120
|
-
# Analyze any task for RLM suitability
|
|
121
|
-
node rlm-helper.js "implement microservice with auth and monitoring"
|
|
194
|
+
### Why RLM Works
|
|
122
195
|
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
# 🏗️ Suggested Decomposition:
|
|
128
|
-
# 1. L1-Analysis: Analyze current architecture and requirements
|
|
129
|
-
# 2. L1-Design: Design service interfaces and auth strategy
|
|
130
|
-
# 3. L1-Implementation: Build core service and endpoints
|
|
131
|
-
# 4. L1-Monitoring: Add logging, metrics, and health checks
|
|
132
|
-
```
|
|
196
|
+
1. **Focused Context** - Each subagent gets only relevant code/memories
|
|
197
|
+
2. **Iterative Validation** - Ralph-RLM ensures quality criteria are met
|
|
198
|
+
3. **Persistent Learning** - Solutions stored for future reference
|
|
199
|
+
4. **Stuck Detection** - Automatically regenerates plans if blocked
|
|
133
200
|
|
|
134
|
-
|
|
201
|
+
## Agent Handoffs
|
|
135
202
|
|
|
136
|
-
|
|
137
|
-
// RLM automatically stores and retrieves context
|
|
138
|
-
search_memory({
|
|
139
|
-
query: "rate limiting patterns express",
|
|
140
|
-
category: "facts",
|
|
141
|
-
limit: 5
|
|
142
|
-
});
|
|
203
|
+
Agents support workflow transitions:
|
|
143
204
|
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
205
|
+
```
|
|
206
|
+
@rlm Can you switch to Ralph-RLM for higher quality validation?
|
|
207
|
+
→ Hands off to @ralph-rlm with current context
|
|
208
|
+
|
|
209
|
+
@ralph-rlm This looks good, switch to basic RLM for faster completion
|
|
210
|
+
→ Hands off to @rlm with findings so far
|
|
150
211
|
```
|
|
151
212
|
|
|
152
213
|
## Configuration
|
|
153
214
|
|
|
154
|
-
### Set API Key
|
|
215
|
+
### 1. Set API Key
|
|
216
|
+
|
|
217
|
+
Configure your rembr API key in VS Code settings:
|
|
155
218
|
|
|
156
|
-
|
|
219
|
+
1. Get key: [rembr.ai/dashboard/settings](https://rembr.ai/dashboard/settings)
|
|
220
|
+
2. VS Code: `Cmd+,` → Extensions → MCP → `rembr.env.REMBR_API_KEY`
|
|
221
|
+
3. Reload: `Cmd+Shift+P` → "Developer: Reload Window"
|
|
157
222
|
|
|
158
|
-
|
|
159
|
-
2. **VS Code Settings**: `Cmd+,` → Extensions → MCP → `rembr.env.REMBR_API_KEY`
|
|
160
|
-
3. **Reload VS Code**: `Cmd+Shift+P` → "Developer: Reload Window"
|
|
223
|
+
### 2. Enable Required Settings
|
|
161
224
|
|
|
162
|
-
|
|
225
|
+
Ensure these VS Code settings are enabled:
|
|
226
|
+
|
|
227
|
+
```json
|
|
228
|
+
{
|
|
229
|
+
"github.copilot.chat.codeGeneration.useInstructionFiles": true,
|
|
230
|
+
"chat.agent.enabled": true,
|
|
231
|
+
"chat.useAgentSkills": true
|
|
232
|
+
}
|
|
233
|
+
```
|
|
163
234
|
|
|
164
|
-
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
|
|
168
|
-
|
|
235
|
+
### 3. MCP Server Configuration
|
|
236
|
+
|
|
237
|
+
The installer adds to `.vscode/settings.json`:
|
|
238
|
+
|
|
239
|
+
```json
|
|
240
|
+
{
|
|
241
|
+
"mcp": {
|
|
242
|
+
"mcpServers": {
|
|
243
|
+
"rembr": {
|
|
244
|
+
"command": "npx",
|
|
245
|
+
"args": ["@rembr/mcp-client"],
|
|
246
|
+
"env": {
|
|
247
|
+
"REMBR_API_KEY": "${REMBR_API_KEY}",
|
|
248
|
+
"REMBR_PROJECT_ID": "${REMBR_PROJECT_ID}"
|
|
249
|
+
}
|
|
250
|
+
}
|
|
251
|
+
}
|
|
252
|
+
}
|
|
253
|
+
}
|
|
254
|
+
```
|
|
169
255
|
|
|
170
256
|
## Advanced Usage
|
|
171
257
|
|
|
172
|
-
### Custom
|
|
258
|
+
### Custom Agent Creation
|
|
173
259
|
|
|
174
260
|
Create domain-specific agents in `.github/agents/`:
|
|
175
261
|
|
|
176
262
|
```markdown
|
|
177
263
|
---
|
|
178
|
-
name:
|
|
179
|
-
description: Specialized in
|
|
180
|
-
|
|
181
|
-
-
|
|
182
|
-
|
|
183
|
-
|
|
264
|
+
name: Security Auditor
|
|
265
|
+
description: Specialized in security analysis with OWASP Top 10 focus
|
|
266
|
+
instructions: |
|
|
267
|
+
Use Ralph-RLM patterns for security audits.
|
|
268
|
+
Always define comprehensive acceptance criteria.
|
|
269
|
+
Check for: injection, auth, exposure, XXE, access control,
|
|
270
|
+
misconfiguration, XSS, deserialization, components, logging.
|
|
184
271
|
---
|
|
185
|
-
|
|
186
|
-
You handle payment system tasks using RLM patterns.
|
|
187
|
-
Auto-decompose into: security, processing, webhooks, compliance.
|
|
188
272
|
```
|
|
189
273
|
|
|
190
|
-
###
|
|
191
|
-
|
|
192
|
-
For fine-grained control:
|
|
274
|
+
### Memory Search Patterns
|
|
193
275
|
|
|
194
276
|
```javascript
|
|
195
|
-
//
|
|
196
|
-
|
|
197
|
-
|
|
198
|
-
|
|
199
|
-
|
|
200
|
-
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
|
|
204
|
-
|
|
205
|
-
|
|
206
|
-
Store findings with metadata: {"taskId": "rate-limit-20260107", "area": "middleware"}
|
|
207
|
-
`
|
|
277
|
+
// Find related implementations
|
|
278
|
+
search_memory({
|
|
279
|
+
query: "rate limiting middleware express redis",
|
|
280
|
+
category: "facts",
|
|
281
|
+
limit: 5
|
|
282
|
+
});
|
|
283
|
+
|
|
284
|
+
// Get similar solutions
|
|
285
|
+
find_similar_memories({
|
|
286
|
+
memory_id: "auth-jwt-implementation-abc",
|
|
287
|
+
min_similarity: 0.8
|
|
208
288
|
});
|
|
209
289
|
```
|
|
210
290
|
|
|
211
|
-
|
|
291
|
+
### Skill Development
|
|
212
292
|
|
|
213
|
-
|
|
214
|
-
```bash
|
|
215
|
-
# Check MCP connection
|
|
216
|
-
curl -H "X-API-Key: YOUR_KEY" https://rembr.ai/health
|
|
293
|
+
Skills teach agents how to orchestrate tasks:
|
|
217
294
|
|
|
218
|
-
|
|
219
|
-
|
|
295
|
+
```markdown
|
|
296
|
+
# RLM Orchestration Skill
|
|
297
|
+
|
|
298
|
+
## When to use
|
|
299
|
+
- Complex tasks requiring decomposition
|
|
300
|
+
- Multi-component implementations
|
|
301
|
+
- Cross-system analysis
|
|
302
|
+
|
|
303
|
+
## How to decompose
|
|
304
|
+
1. Analyze task complexity
|
|
305
|
+
2. Identify major components
|
|
306
|
+
3. Create focused subtasks
|
|
307
|
+
4. Store context in rembr
|
|
308
|
+
5. Synthesize findings
|
|
220
309
|
```
|
|
221
310
|
|
|
222
|
-
|
|
311
|
+
## Troubleshooting
|
|
312
|
+
|
|
313
|
+
### Agent not appearing
|
|
314
|
+
- Check `.github/agents/*.agent.md` exists
|
|
315
|
+
- Verify VS Code version ≥1.106
|
|
316
|
+
- Run "Chat: Configure Custom Agents" from Command Palette
|
|
317
|
+
|
|
318
|
+
### Skills not loading
|
|
319
|
+
- Ensure `chat.useAgentSkills` is enabled
|
|
320
|
+
- Check `.github/skills/*/SKILL.md` structure
|
|
321
|
+
- Skills load automatically based on prompt match
|
|
322
|
+
|
|
323
|
+
### Memory connection issues
|
|
324
|
+
- Verify MCP configuration in settings
|
|
325
|
+
- Check environment variables
|
|
326
|
+
- Test rembr connection: `curl -H "X-API-Key: YOUR_KEY" https://rembr.ai/health`
|
|
327
|
+
|
|
328
|
+
### Auto-detection not working
|
|
223
329
|
1. Ensure `.github/copilot-instructions.md` exists in project root
|
|
224
330
|
2. Restart GitHub Copilot: `Cmd+Shift+P` → "GitHub Copilot: Restart Extension"
|
|
225
|
-
3. Use
|
|
331
|
+
3. Use explicit complexity indicators in requests
|
|
332
|
+
|
|
333
|
+
## Migration from v1.x
|
|
334
|
+
|
|
335
|
+
If upgrading from v1.x:
|
|
336
|
+
|
|
337
|
+
1. **Backup**: Save existing `.github/` files
|
|
338
|
+
2. **Install**: Run `rembr-vscode-setup` again
|
|
339
|
+
3. **Migrate**: Copy custom configurations to new structure
|
|
340
|
+
4. **Test**: Try `/rlm-analyze` to verify setup
|
|
226
341
|
|
|
227
|
-
|
|
228
|
-
- Check task complexity (max 3 decomposition levels)
|
|
229
|
-
- Ensure focused, actionable subtasks
|
|
230
|
-
- Verify proper metadata in memory storage
|
|
342
|
+
The new agent-based system replaces the simpler auto-detection patterns.
|
|
231
343
|
|
|
232
344
|
## Getting Support
|
|
233
345
|
|
|
234
346
|
- **Documentation**: [docs.rembr.ai/rlm-patterns](https://docs.rembr.ai/rlm-patterns)
|
|
235
|
-
- **Examples**:
|
|
236
|
-
- **Community**: [GitHub Discussions](https://github.com/rembr-ai/community/discussions)
|
|
347
|
+
- **Examples**: Try `search_memory({query: "implementation example"})`
|
|
348
|
+
- **Community**: [GitHub Discussions](https://github.com/rembr-ai/community/discussions)
|
|
237
349
|
- **Issues**: [GitHub Issues](https://github.com/rembr-ai/vscode-extension/issues)
|
|
238
350
|
|
|
239
351
|
## License
|
|
@@ -242,7 +354,8 @@ MIT - see [LICENSE](LICENSE) for details.
|
|
|
242
354
|
|
|
243
355
|
---
|
|
244
356
|
|
|
245
|
-
**Version**:
|
|
246
|
-
**
|
|
247
|
-
**
|
|
248
|
-
**
|
|
357
|
+
**Version**: 2.0.0
|
|
358
|
+
**Agents**: Basic RLM (`@rlm`) and Ralph-RLM (`@ralph-rlm`)
|
|
359
|
+
**Skills**: RLM orchestration patterns with quality validation
|
|
360
|
+
**Memory Backend**: [rembr.ai](https://rembr.ai) semantic memory service
|
|
361
|
+
**Token Efficiency**: Up to 52% reduction with quality improvements
|
package/cli.js
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
#!/usr/bin/env node
|
|
2
2
|
const { setup } = require('./setup');
|
|
3
3
|
|
|
4
|
-
console.log('🫐 REMBR VS Code RLM
|
|
4
|
+
console.log('🫐 REMBR VS Code RLM Agent Setup v2.0');
|
|
5
5
|
|
|
6
6
|
const args = process.argv.slice(2);
|
|
7
7
|
const command = args[0];
|
|
@@ -9,7 +9,7 @@ const command = args[0];
|
|
|
9
9
|
switch (command) {
|
|
10
10
|
case 'setup':
|
|
11
11
|
case 'init':
|
|
12
|
-
console.log('Setting up GitHub Copilot with
|
|
12
|
+
console.log('Setting up GitHub Copilot with RLM agents, skills, and prompts...\n');
|
|
13
13
|
setup(true);
|
|
14
14
|
break;
|
|
15
15
|
|
|
@@ -17,31 +17,46 @@ switch (command) {
|
|
|
17
17
|
case '--help':
|
|
18
18
|
case '-h':
|
|
19
19
|
console.log(`
|
|
20
|
-
|
|
20
|
+
🫐 REMBR VS Code RLM Agent System v2.0
|
|
21
21
|
|
|
22
22
|
Usage:
|
|
23
|
-
npx @rembr/vscode setup Configure RLM
|
|
23
|
+
npx @rembr/vscode setup Configure RLM agent system in your project
|
|
24
24
|
npx @rembr/vscode help Show this help message
|
|
25
25
|
|
|
26
|
-
What it
|
|
27
|
-
•
|
|
28
|
-
•
|
|
29
|
-
•
|
|
30
|
-
•
|
|
26
|
+
What it installs:
|
|
27
|
+
• Custom Agents: @rlm (fast) and @ralph-rlm (quality-focused)
|
|
28
|
+
• Skills: RLM orchestration patterns with validation
|
|
29
|
+
• Prompts: /rlm-analyze, /ralph-analyze, /rlm-plan, /ralph-plan
|
|
30
|
+
• Instructions: Memory patterns and code investigation guides
|
|
31
|
+
• MCP Server: Semantic memory integration
|
|
32
|
+
|
|
33
|
+
Agent Modes:
|
|
34
|
+
• @rlm: Fast decomposition for quick analysis
|
|
35
|
+
• @ralph-rlm: Acceptance-driven loops with quality validation
|
|
36
|
+
|
|
37
|
+
Usage Examples:
|
|
38
|
+
@rlm Analyze authentication system for security issues
|
|
39
|
+
@ralph-rlm Audit API endpoints for OWASP Top 10 vulnerabilities
|
|
40
|
+
/rlm-analyze "investigate rate limiting implementation"
|
|
31
41
|
|
|
32
42
|
Benefits:
|
|
33
|
-
•
|
|
34
|
-
•
|
|
43
|
+
• 52% token efficiency improvement for complex tasks
|
|
44
|
+
• Quality assurance through acceptance criteria
|
|
35
45
|
• Persistent semantic memory across sessions
|
|
36
|
-
•
|
|
46
|
+
• Handoffs between agent modes
|
|
47
|
+
|
|
48
|
+
Requirements:
|
|
49
|
+
• VS Code 1.106+ with GitHub Copilot
|
|
50
|
+
• Settings: chat.agent.enabled, chat.useAgentSkills enabled
|
|
37
51
|
|
|
38
52
|
Get started:
|
|
39
53
|
1. Run: npx @rembr/vscode setup
|
|
40
54
|
2. Get API key: https://rembr.ai/dashboard/settings
|
|
41
55
|
3. Configure in VS Code: Settings → MCP → rembr.env.REMBR_API_KEY
|
|
42
|
-
4.
|
|
56
|
+
4. Enable required VS Code settings (see output)
|
|
57
|
+
5. Try: @rlm or /rlm-analyze
|
|
43
58
|
|
|
44
|
-
Learn more: https://docs.rembr.ai/rlm-
|
|
59
|
+
Learn more: https://docs.rembr.ai/rlm-agents
|
|
45
60
|
`);
|
|
46
61
|
break;
|
|
47
62
|
|
package/package.json
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
1
|
{
|
|
2
2
|
"name": "@rembr/vscode",
|
|
3
|
-
"version": "
|
|
4
|
-
"description": "VS Code
|
|
3
|
+
"version": "2.0.0",
|
|
4
|
+
"description": "VS Code RLM integration - Recursive Language Model patterns with GitHub Copilot agents, skills, and semantic memory",
|
|
5
5
|
"main": "setup.js",
|
|
6
6
|
"bin": {
|
|
7
7
|
"rembr-vscode": "./cli.js"
|