@qlik/api 2.2.0 → 2.3.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (232) hide show
  1. package/analytics/change-stores.d.ts +386 -0
  2. package/analytics/change-stores.js +123 -0
  3. package/analytics.d.ts +14 -0
  4. package/analytics.js +13 -0
  5. package/api-keys.d.ts +362 -3
  6. package/api-keys.js +2 -3
  7. package/apps.d.ts +2673 -3
  8. package/apps.js +2 -3
  9. package/assistants.d.ts +1370 -3
  10. package/assistants.js +2 -3
  11. package/audits.d.ts +318 -3
  12. package/audits.js +4 -4
  13. package/auth-types.d.ts +1 -1
  14. package/auth-types.js +1 -2
  15. package/auth.d.ts +94 -2
  16. package/auth.js +63 -3
  17. package/automation-connections.d.ts +366 -3
  18. package/automation-connections.js +2 -3
  19. package/automation-connectors.d.ts +84 -3
  20. package/automation-connectors.js +2 -3
  21. package/automations.d.ts +805 -3
  22. package/automations.js +2 -3
  23. package/automl-deployments.d.ts +101 -3
  24. package/automl-deployments.js +2 -3
  25. package/automl-predictions.d.ts +238 -3
  26. package/automl-predictions.js +2 -3
  27. package/banners.d.ts +184 -3
  28. package/banners.js +2 -3
  29. package/brands.d.ts +670 -3
  30. package/brands.js +2 -3
  31. package/chunks/auth-XusKk8IA.js +32 -0
  32. package/chunks/{chunk-EtTptKIv.js → chunk-D3vHIbds.js} +2 -2
  33. package/chunks/{dist-gXLIqDJW.js → dist-n3iOVn1W.js} +4 -4
  34. package/chunks/{auth-functions-BmZgZYSs.js → interceptors-2VSXImC9.js} +498 -146
  35. package/chunks/{invoke-fetch-PcVIxLW4.js → invoke-fetch-CckTK7bh.js} +3 -3
  36. package/chunks/{invoke-fetch-CucBpA1C.js → invoke-fetch-D9lpiAb-.js} +1 -5
  37. package/chunks/{public-runtime-modules-Dwjzb3l8.js → public-runtime-modules-BqxAMJ9M.js} +7 -7
  38. package/chunks/{qix-DI5o5XF4.d.ts → qix-CrqXv44x.d.ts} +6 -2
  39. package/chunks/{qix-DjxuPCX0.js → qix-DpvHvpx7.js} +11 -10
  40. package/chunks/{qix-chunk-entrypoint-tmTo-kpa.js → qix-chunk-entrypoint-BXZPnE6J.js} +48 -50
  41. package/collections.d.ts +582 -3
  42. package/collections.js +2 -3
  43. package/conditions.d.ts +662 -3
  44. package/conditions.js +2 -3
  45. package/consumption.d.ts +182 -3
  46. package/consumption.js +2 -3
  47. package/core/ip-policies.d.ts +328 -4
  48. package/core/ip-policies.js +108 -5
  49. package/core.d.ts +13 -4
  50. package/core.js +3 -4
  51. package/csp-origins.d.ts +273 -3
  52. package/csp-origins.js +2 -3
  53. package/csrf-token.d.ts +62 -3
  54. package/csrf-token.js +2 -3
  55. package/data-alerts.d.ts +1004 -3
  56. package/data-alerts.js +2 -3
  57. package/data-assets.d.ts +207 -3
  58. package/data-assets.js +2 -3
  59. package/data-connections.d.ts +678 -3
  60. package/data-connections.js +2 -3
  61. package/data-credentials.d.ts +292 -3
  62. package/data-credentials.js +2 -3
  63. package/data-files.d.ts +860 -3
  64. package/data-files.js +2 -3
  65. package/data-qualities.d.ts +175 -3
  66. package/data-qualities.js +2 -3
  67. package/data-sets.d.ts +424 -3
  68. package/data-sets.js +2 -3
  69. package/data-sources.d.ts +348 -3
  70. package/data-sources.js +2 -3
  71. package/data-stores.d.ts +537 -3
  72. package/data-stores.js +2 -3
  73. package/dcaas.d.ts +192 -3
  74. package/dcaas.js +2 -3
  75. package/di-projects.d.ts +812 -4
  76. package/di-projects.js +25 -4
  77. package/direct-access-agents.d.ts +710 -4
  78. package/direct-access-agents.js +37 -5
  79. package/docs/authentication.md +1 -1
  80. package/encryption.d.ts +372 -3
  81. package/encryption.js +2 -3
  82. package/extensions.d.ts +295 -3
  83. package/extensions.js +2 -3
  84. package/global-types.d.ts +1 -1
  85. package/global-types.js +0 -2
  86. package/glossaries.d.ts +1223 -3
  87. package/glossaries.js +2 -3
  88. package/groups.d.ts +510 -3
  89. package/groups.js +2 -3
  90. package/identity-providers.d.ts +711 -3
  91. package/identity-providers.js +2 -3
  92. package/index.d.ts +78 -69
  93. package/index.js +28 -10
  94. package/interceptors.d.ts +52 -3
  95. package/interceptors.js +1 -2
  96. package/invoke-fetch-types.d.ts +1 -1
  97. package/items.d.ts +536 -3
  98. package/items.js +2 -3
  99. package/knowledgebases.d.ts +976 -3
  100. package/knowledgebases.js +2 -3
  101. package/licenses.d.ts +663 -3
  102. package/licenses.js +2 -3
  103. package/lineage-graphs.d.ts +704 -3
  104. package/lineage-graphs.js +2 -3
  105. package/ml.d.ts +2808 -3
  106. package/ml.js +2 -3
  107. package/notes.d.ts +110 -3
  108. package/notes.js +2 -3
  109. package/notifications.d.ts +98 -3
  110. package/notifications.js +2 -3
  111. package/oauth-callback.iife.js +1151 -0
  112. package/oauth-clients.d.ts +562 -3
  113. package/oauth-clients.js +2 -3
  114. package/oauth-tokens.d.ts +126 -3
  115. package/oauth-tokens.js +2 -3
  116. package/package.json +5 -4
  117. package/qix.d.ts +3 -3
  118. package/qix.js +38 -3
  119. package/questions.d.ts +364 -3
  120. package/questions.js +2 -3
  121. package/quotas.d.ts +112 -3
  122. package/quotas.js +2 -3
  123. package/reload-tasks.d.ts +249 -3
  124. package/reload-tasks.js +2 -3
  125. package/reloads.d.ts +260 -3
  126. package/reloads.js +2 -3
  127. package/report-templates.d.ts +287 -3
  128. package/report-templates.js +2 -3
  129. package/reports.d.ts +863 -3
  130. package/reports.js +2 -3
  131. package/roles.d.ts +312 -3
  132. package/roles.js +2 -3
  133. package/sharing-tasks.d.ts +1164 -3
  134. package/sharing-tasks.js +2 -3
  135. package/spaces.d.ts +779 -3
  136. package/spaces.js +2 -3
  137. package/tasks.d.ts +564 -3
  138. package/tasks.js +2 -3
  139. package/temp-contents.d.ts +167 -3
  140. package/temp-contents.js +2 -3
  141. package/tenants.d.ts +360 -3
  142. package/tenants.js +2 -3
  143. package/themes.d.ts +270 -3
  144. package/themes.js +2 -3
  145. package/transports.d.ts +435 -4
  146. package/transports.js +20 -5
  147. package/ui-config.d.ts +274 -3
  148. package/ui-config.js +2 -3
  149. package/users.d.ts +674 -3
  150. package/users.js +2 -3
  151. package/web-integrations.d.ts +294 -3
  152. package/web-integrations.js +2 -3
  153. package/web-notifications.d.ts +273 -3
  154. package/web-notifications.js +2 -3
  155. package/webhooks.d.ts +505 -3
  156. package/webhooks.js +2 -3
  157. package/chunks/api-keys-D6Rqaov4.d.ts +0 -365
  158. package/chunks/apps-BwpXUGDb.d.ts +0 -2673
  159. package/chunks/assistants-wh6Qe7l6.d.ts +0 -1366
  160. package/chunks/audits-DakwzT97.d.ts +0 -316
  161. package/chunks/auth-6mptVm5Q.d.ts +0 -95
  162. package/chunks/auth-Cle0_tmz.js +0 -32
  163. package/chunks/auth-D11iO7ZV.js +0 -65
  164. package/chunks/automation-connections-k2G_n9rj.d.ts +0 -366
  165. package/chunks/automation-connectors-J5OE-1P0.d.ts +0 -84
  166. package/chunks/automations-BGy83EBO.d.ts +0 -797
  167. package/chunks/automl-deployments-CWEpX2pk.d.ts +0 -101
  168. package/chunks/automl-predictions-BNIjRhBm.d.ts +0 -238
  169. package/chunks/banners-CgBRnZGv.d.ts +0 -184
  170. package/chunks/brands-DCgk6Gqx.d.ts +0 -671
  171. package/chunks/collections-BpYjcpIY.d.ts +0 -582
  172. package/chunks/conditions-CJJG7Uph.d.ts +0 -662
  173. package/chunks/consumption-DerFk437.d.ts +0 -182
  174. package/chunks/core-DQXNZdnf.d.ts +0 -12
  175. package/chunks/csp-origins-3NJlh_n9.d.ts +0 -273
  176. package/chunks/csrf-token-DoaoOQzH.d.ts +0 -63
  177. package/chunks/data-alerts-CILSEFbQ.d.ts +0 -1004
  178. package/chunks/data-assets-CJDcssoX.d.ts +0 -207
  179. package/chunks/data-connections-VSB13K6g.d.ts +0 -678
  180. package/chunks/data-credentials-ChEp_hyU.d.ts +0 -292
  181. package/chunks/data-files-CVzn9M6V.d.ts +0 -860
  182. package/chunks/data-qualities-DBrot957.d.ts +0 -176
  183. package/chunks/data-sets-CFzxgWnO.d.ts +0 -424
  184. package/chunks/data-sources-IsAaof_C.d.ts +0 -346
  185. package/chunks/data-stores-DFOPdgfz.d.ts +0 -537
  186. package/chunks/dcaas-qyv7YlrN.d.ts +0 -192
  187. package/chunks/di-projects-DVQTxASr.d.ts +0 -777
  188. package/chunks/direct-access-agents-B77OhzZi.d.ts +0 -580
  189. package/chunks/encryption-BjA6xbCO.d.ts +0 -372
  190. package/chunks/extensions-OO0WtInj.d.ts +0 -294
  191. package/chunks/glossaries-CIX7-KT_.d.ts +0 -1213
  192. package/chunks/groups-C86-UG7S.d.ts +0 -511
  193. package/chunks/identity-providers-h0dKNxGZ.d.ts +0 -711
  194. package/chunks/interceptors-Csx2tEi5.d.ts +0 -52
  195. package/chunks/interceptors-DTYm37AU.js +0 -104
  196. package/chunks/ip-policies-CKRIlbP7.d.ts +0 -327
  197. package/chunks/ip-policies-DXlf172B.js +0 -108
  198. package/chunks/items-C-jzqvFW.d.ts +0 -536
  199. package/chunks/knowledgebases-CyQtVcZN.d.ts +0 -977
  200. package/chunks/licenses-xzjnkitW.d.ts +0 -663
  201. package/chunks/lineage-graphs-CViCCzKy.d.ts +0 -697
  202. package/chunks/ml-Abt2MUva.d.ts +0 -2809
  203. package/chunks/notes-BZxuyDgt.d.ts +0 -111
  204. package/chunks/notifications-Bd_gp4jU.d.ts +0 -99
  205. package/chunks/oauth-clients-B5QPr4IM.d.ts +0 -563
  206. package/chunks/oauth-tokens-1b7V8182.d.ts +0 -127
  207. package/chunks/qix-CYQsLyGQ.js +0 -40
  208. package/chunks/questions-BVp0tvNs.d.ts +0 -364
  209. package/chunks/quotas-CfAebRJd.d.ts +0 -113
  210. package/chunks/reload-tasks-DfwUTetn.d.ts +0 -249
  211. package/chunks/reloads-CwmagnFx.d.ts +0 -260
  212. package/chunks/report-templates-DjQYj5dn.d.ts +0 -287
  213. package/chunks/reports-DzNC6Uq3.d.ts +0 -861
  214. package/chunks/roles-BYFIY6E7.d.ts +0 -312
  215. package/chunks/sharing-tasks-BMGIQ-FO.d.ts +0 -1164
  216. package/chunks/spaces-BK823t-b.d.ts +0 -780
  217. package/chunks/tasks-COKDfShO.d.ts +0 -564
  218. package/chunks/temp-contents-zDomB-g6.d.ts +0 -168
  219. package/chunks/tenants-Bhn86519.d.ts +0 -361
  220. package/chunks/themes-v9NbhiBo.d.ts +0 -269
  221. package/chunks/transports-CqEiFxD3.d.ts +0 -362
  222. package/chunks/ui-config-Crs0mVMp.d.ts +0 -274
  223. package/chunks/users-BSOBU_fg.d.ts +0 -675
  224. package/chunks/web-integrations-MisPAHod.d.ts +0 -295
  225. package/chunks/web-notifications-DVy6FHYh.d.ts +0 -274
  226. package/chunks/webhooks-Dr4EiXqy.d.ts +0 -505
  227. /package/chunks/{auth-types-E99tzdN0.d.ts → auth-types-YrlH_R9f.d.ts} +0 -0
  228. /package/chunks/{auth-types-JehqruDP.js → auth-types-h43TVDpB.js} +0 -0
  229. /package/chunks/{global-types-CrOvI33z.js → global-types-CEVAJebk.js} +0 -0
  230. /package/chunks/{invoke-fetch-CbU2Dgqr.d.ts → invoke-fetch-C1Z0RJYU.d.ts} +0 -0
  231. /package/chunks/{utils-BnC4lrlq.js → utils-vv-xFm06.js} +0 -0
  232. /package/chunks/{websocket-errors-DSbO6kDZ.js → websocket-errors-CRTDTtBL.js} +0 -0
package/ml.d.ts CHANGED
@@ -1,4 +1,2809 @@
1
- import "./chunks/auth-types-E99tzdN0.js";
2
- import "./chunks/invoke-fetch-CbU2Dgqr.js";
3
- import { $ as DataType, $n as ModelMetricsBinary, $r as createMlDeployment, $t as ExperimentVersionId, A as BatchPredictionWriteback, Ai as patchMlDeploymentBatchPrediction, An as GetMlExperimentVersionHttpError, Ar as RealtimePredictionInput, At as EnumSortAliases, B as CreateMlDeploymentBatchPredictionHttpError, Bn as IndexColumn, Br as SetMlDeploymentBatchPredictionScheduleHttpError, Bt as ExperimentGetResponse, C as BatchPredictionSchedule, Ci as getMlExperimentVersions, Cn as GetMlDeploymentsHttpResponse, Cr as PreprocessedInsightColumn, Ct as DeploymentInput, D as BatchPredictionSchedulePatch, Di as mlExport, Dn as GetMlExperimentModelHttpResponse, Dr as RealTimePredictionInputSchema, Dt as EntityDescription, E as BatchPredictionScheduleInputAttributes, Ei as getMlProfileInsightWithQuery, En as GetMlExperimentModelHttpError, Er as ProfileInsightsInput, Et as DroppedFeature, F as ColumnTransform, Fi as removeMlDeploymentModels, Fn as GetMlExperimentsHttpResponse, Fr as ResponseLinks, Ft as EnumSortModels, G as CreateMlExperimentHttpResponse, Gn as ModelAlgorithm, Gr as Transform, Gt as ExperimentModelRecommendationPostResponse, H as CreateMlDeploymentHttpError, Hn as JobType, Hr as SpaceId, Ht as ExperimentInput, I as CorrId, Ii as runMlDeploymentAliaseRealtimePredictions, In as GetMlProfileInsightHttpError, Ir as RunMlDeploymentAliaseRealtimePredictionsHttpError, It as ErrorMessage, J as CreateMlProfileInsightHttpError, Jn as ModelForRecommendations, Jr as UpdatedAt, Jt as ExperimentPostResponse, K as CreateMlExperimentVersionHttpError, Kn as ModelAlgorithmAbbreviation, Kr as UpdateMlDeploymentBatchPredictionScheduleHttpError, Kt as ExperimentPatch, L as CorrType, Li as runMlDeploymentRealtimePredictions, Ln as GetMlProfileInsightHttpResponse, Lr as RunMlDeploymentAliaseRealtimePredictionsHttpResponse, Lt as Errors, M as CancelMlJobHttpError, Mi as patchMlExperimentVersion, Mn as GetMlExperimentVersionsHttpError, Mr as RecommendModelsMlExperimentHttpResponse, Mt as EnumSortDeployments, N as CancelMlJobHttpResponse, Ni as predictMlDeploymentBatchPrediction, Nn as GetMlExperimentVersionsHttpResponse, Nr as RemoveMlDeploymentModelsHttpError, Nt as EnumSortExperimentVersions, O as BatchPredictionSchedulePutResponse, Oi as patchMlDeployment, On as GetMlExperimentModelsHttpError, Or as RealTimePredictionSchema, Ot as EntityId, P as ChangeType, Pi as recommendModelsMlExperiment, Pn as GetMlExperimentsHttpError, Pr as RemoveMlDeploymentModelsHttpResponse, Pt as EnumSortExperiments, Q as DataSetId, Qn as ModelMetrics, Qr as clearCache, Qt as ExperimentVersionGetResponse, R as CreateMlDeploymentAliaseHttpError, Ri as setMlDeploymentBatchPredictionSchedule, Rn as GetMlProfileInsightWithQueryHttpError, Rr as RunMlDeploymentRealtimePredictionsHttpError, Rt as Experiment, S as BatchPredictionPostResponse, Si as getMlExperimentVersion, Sn as GetMlDeploymentsHttpError, Sr as PredictionJobResponse, St as DeploymentId, T as BatchPredictionScheduleInput, Ti as getMlProfileInsight, Tn as GetMlExperimentHttpResponse, Tr as ProfileInsightsGetResponse, Tt as DeploymentPostResponse, U as CreateMlDeploymentHttpResponse, Un as MlAPI, Ur as TenantId, Ut as ExperimentMode, V as CreateMlDeploymentBatchPredictionHttpResponse, Vn as Insights, Vr as SetMlDeploymentBatchPredictionScheduleHttpResponse, Vt as ExperimentId, W as CreateMlExperimentHttpError, Wn as Model, Wr as TrainingDuration, Wt as ExperimentModelRecommendationFilter, X as CreatedAt, Xn as ModelId, Xr as addMlDeploymentModels, Xt as ExperimentVersion, Y as CreateMlProfileInsightHttpResponse, Yn as ModelGetResponse, Yr as activateModelsMlDeployment, Yt as ExperimentType, Z as CreatedBy, Zn as ModelInfo, Zr as cancelMlJob, Zt as ExperimentVersionFindResponse, _ as BatchPredictionActionResponse, _i as getMlDeploymentBatchPredictions, _n as GetMlDeploymentBatchPredictionScheduleHttpResponse, _r as PatchMlExperimentVersionHttpError, _t as DeployedModelIds, a as AddMlDeploymentModelsHttpResponse, ai as deactivateModelsMlDeployment, an as FeatureInsights, ar as ModelsInfo, at as DeleteMlDeploymentAliaseHttpResponse, b as BatchPredictionInput, bi as getMlExperimentModel, bn as GetMlDeploymentHttpError, br as PredictMlDeploymentBatchPredictionHttpError, bt as DeploymentFindResponse, c as AliasGetResponse, ci as deleteMlDeploymentBatchPrediction, cn as FileType, cr as ParentJobId, ct as DeleteMlDeploymentBatchPredictionScheduleHttpError, d as AliasMode, di as deleteMlExperimentVersion, dn as GetMlDeploymentAliaseHttpResponse, dr as PatchMlDeploymentBatchPredictionHttpError, dt as DeleteMlDeploymentHttpResponse, ei as createMlDeploymentAliase, en as ExperimentVersionInput, er as ModelMetricsMulticlass, et as DatasetOrigin, f as AliasPatch, fi as getMlDeployment, fn as GetMlDeploymentAliasesHttpError, fr as PatchMlDeploymentBatchPredictionHttpResponse, ft as DeleteMlExperimentHttpError, g as BatchPrediction, gi as getMlDeploymentBatchPredictionSchedule, gn as GetMlDeploymentBatchPredictionScheduleHttpError, gr as PatchMlExperimentHttpResponse, gt as DeletedAt, h as AnyType, hi as getMlDeploymentBatchPrediction, hn as GetMlDeploymentBatchPredictionHttpResponse, hr as PatchMlExperimentHttpError, ht as DeleteMlExperimentVersionHttpResponse, i as AddMlDeploymentModelsHttpError, ii as createMlProfileInsight, in as Feature, ir as ModelStatus, it as DeleteMlDeploymentAliaseHttpError, j as BinaryImbalanceSampling, ji as patchMlExperiment, jn as GetMlExperimentVersionHttpResponse, jr as RecommendModelsMlExperimentHttpError, jt as EnumSortBatchPredictions, k as BatchPredictionStatus, ki as patchMlDeploymentAliase, kn as GetMlExperimentModelsHttpResponse, kr as RealtimePrediction, kt as EntityName, l as AliasId, li as deleteMlDeploymentBatchPredictionSchedule, ln as FindResponseMeta, lr as PatchMlDeploymentAliaseHttpError, lt as DeleteMlDeploymentBatchPredictionScheduleHttpResponse, m as AliasPostResponse, mi as getMlDeploymentAliases, mn as GetMlDeploymentBatchPredictionHttpError, mr as PatchMlDeploymentHttpResponse, mt as DeleteMlExperimentVersionHttpError, n as ActivateModelsMlDeploymentHttpError, ni as createMlExperiment, nn as ExperimentVersionPostResponse, nr as ModelMetricsTimeseries, nt as DeactivateModelsMlDeploymentHttpError, o as Alias, oi as deleteMlDeployment, on as FeatureType, or as OutputFile, ot as DeleteMlDeploymentBatchPredictionHttpError, p as AliasPatchItem, pi as getMlDeploymentAliase, pn as GetMlDeploymentAliasesHttpResponse, pr as PatchMlDeploymentHttpError, pt as DeleteMlExperimentHttpResponse, q as CreateMlExperimentVersionHttpResponse, qn as ModelFindResponse, qr as UpdateMlDeploymentBatchPredictionScheduleHttpResponse, qt as ExperimentPatchItem, r as ActivateModelsMlDeploymentHttpResponse, ri as createMlExperimentVersion, rn as Failure, rr as ModelState, rt as DeactivateModelsMlDeploymentHttpResponse, s as AliasFindResponse, si as deleteMlDeploymentAliase, sn as FeaturesList, sr as OwnerId, st as DeleteMlDeploymentBatchPredictionHttpResponse, t as APIError, ti as createMlDeploymentBatchPrediction, tn as ExperimentVersionPatch, tr as ModelMetricsRegression, tt as DateIndexes, u as AliasInput, ui as deleteMlExperiment, un as GetMlDeploymentAliaseHttpError, ur as PatchMlDeploymentAliaseHttpResponse, ut as DeleteMlDeploymentHttpError, v as BatchPredictionFindResponse, vi as getMlDeployments, vn as GetMlDeploymentBatchPredictionsHttpError, vr as PatchMlExperimentVersionHttpResponse, vt as DeployedModelsInput, w as BatchPredictionScheduleGetResponse, wi as getMlExperiments, wn as GetMlExperimentHttpError, wr as ProfileInsights, wt as DeploymentPatch, x as BatchPredictionPatch, xi as getMlExperimentModels, xn as GetMlDeploymentHttpResponse, xr as PredictMlDeploymentBatchPredictionHttpResponse, xt as DeploymentGetResponse, y as BatchPredictionGetResponse, yi as getMlExperiment, yn as GetMlDeploymentBatchPredictionsHttpResponse, yr as Pipeline, yt as Deployment, z as CreateMlDeploymentAliaseHttpResponse, zi as updateMlDeploymentBatchPredictionSchedule, zn as GetMlProfileInsightWithQueryHttpResponse, zr as RunMlDeploymentRealtimePredictionsHttpResponse, zt as ExperimentFindResponse } from "./chunks/ml-Abt2MUva.js";
1
+ import { y as ApiCallOptions } from "./chunks/auth-types-YrlH_R9f.js";
2
+ import "./chunks/invoke-fetch-C1Z0RJYU.js";
3
+
4
+ //#region src/public/rest/ml.d.ts
5
+ /**
6
+ * An error object
7
+ */
8
+ type APIError = {
9
+ /** Qlik error code (not HTTP response status code) */
10
+ code: string;
11
+ /** Description of the error */
12
+ detail?: string;
13
+ /** Additional details about the error. These may vary by error. */
14
+ meta?: {
15
+ /** The argument */
16
+ argument?: string;
17
+ /** Extra details for what may have caused the error */
18
+ details?: string;
19
+ /** The unique id of the error instance */
20
+ errorId?: string;
21
+ /** The issue code */
22
+ issue?: string;
23
+ /** The resource type that the error occurred on */
24
+ resource?: string;
25
+ /** The resource id that the error occurred on */
26
+ resourceId?: string;
27
+ };
28
+ /** Short summary of error */
29
+ title: string;
30
+ };
31
+ /**
32
+ * An AutoML alias
33
+ */
34
+ type Alias = {
35
+ /** Timestamp when this was created */
36
+ createdAt: CreatedAt;
37
+ /** ID of the owner/user that created this entity */
38
+ createdBy: string;
39
+ /** ID of a model deployment */
40
+ deploymentId: DeploymentId;
41
+ /** ID of this entity */
42
+ id: EntityId;
43
+ /** The mode of an alias. Default mode means the model assigned to that alias will be used if alias is not specified */
44
+ mode: AliasMode;
45
+ models: ModelsInfo;
46
+ /** Name of this entity */
47
+ name: EntityName;
48
+ /** Timestamp when this was updated */
49
+ updatedAt: UpdatedAt;
50
+ };
51
+ type AliasFindResponse = {
52
+ data: {
53
+ /** An AutoML alias */
54
+ attributes: Alias;
55
+ /** ID of this entity */
56
+ id: EntityId;
57
+ type: "alias";
58
+ }[];
59
+ /** Resource links included in paginated responses */
60
+ links: ResponseLinks;
61
+ /** Meta for FIND operations */
62
+ meta?: FindResponseMeta;
63
+ };
64
+ type AliasGetResponse = {
65
+ data: {
66
+ /** An AutoML alias */
67
+ attributes: Alias;
68
+ /** ID of this entity */
69
+ id: EntityId;
70
+ type: "alias";
71
+ };
72
+ };
73
+ /**
74
+ * ID of an alias
75
+ */
76
+ type AliasId = string;
77
+ /**
78
+ * Input for creating a new alias
79
+ */
80
+ type AliasInput = {
81
+ data: {
82
+ attributes: {
83
+ models: ModelsInfo;
84
+ /** Name of this entity */
85
+ name: EntityName;
86
+ };
87
+ type: "alias";
88
+ };
89
+ };
90
+ /**
91
+ * The mode of an alias. Default mode means the model assigned to that alias will be used if alias is not specified
92
+ */
93
+ type AliasMode = "default" | "undefined";
94
+ /**
95
+ * @example
96
+ * [
97
+ * {
98
+ * op: "replace",
99
+ * path: "/name"
100
+ * },
101
+ * {
102
+ * op: "replace",
103
+ * path: "/models"
104
+ * }
105
+ * ]
106
+ */
107
+ type AliasPatch = AliasPatchItem[];
108
+ /**
109
+ * Alias values that can be patched.
110
+ */
111
+ type AliasPatchItem = {
112
+ /** All patch requests use the replace operation */
113
+ op: "replace";
114
+ /** Path for the property you want to update */
115
+ path: "/name" | "/models";
116
+ /** Use for fields that can be `any` type (string, number, etc.) */
117
+ value: AnyType;
118
+ };
119
+ type AliasPostResponse = {
120
+ data: {
121
+ /** An AutoML alias */
122
+ attributes: Alias;
123
+ /** ID of this entity */
124
+ id: EntityId;
125
+ type: "alias";
126
+ };
127
+ };
128
+ /**
129
+ * Use for fields that can be `any` type (string, number, etc.)
130
+ */
131
+ type AnyType = unknown;
132
+ /**
133
+ * A batch prediction job configuration
134
+ */
135
+ type BatchPrediction = {
136
+ /** ID of an alias */
137
+ aliasId?: AliasId;
138
+ /** Timestamp when this was created */
139
+ createdAt?: CreatedAt;
140
+ /** ID of the owner/user that ran this prediction batch */
141
+ createdBy?: string;
142
+ /** The Qlik catalog dataset ID */
143
+ dataSetId?: DataSetId;
144
+ /** ID of the dataset with the prediction results */
145
+ datasetId?: string;
146
+ /** ID of a model deployment */
147
+ deploymentId?: DeploymentId;
148
+ /** JSON string of error object */
149
+ errorMessage?: ErrorMessage;
150
+ /** JSON string with list of error objects */
151
+ errors?: Errors;
152
+ /** ID of this entity */
153
+ id?: EntityId;
154
+ /** A optional column name upon which to create an index. Must be unique for
155
+ * every row. If not included, Qlik will create a unique index column. */
156
+ indexColumn?: IndexColumn;
157
+ /** Name of this entity */
158
+ name?: EntityName;
159
+ /** Where to output dataset */
160
+ outputDataset?: string;
161
+ /** ID of owner/user for this entity */
162
+ ownerId?: OwnerId;
163
+ /** Batch prediction job schedule */
164
+ schedule?: BatchPredictionSchedule;
165
+ /** Status of this batch prediction */
166
+ status?: BatchPredictionStatus;
167
+ /** Timestamp when this was updated */
168
+ updatedAt?: UpdatedAt;
169
+ /** Sets which files, file names, and spaces are used to write results of
170
+ * batch predictions (output files) to the catalog.
171
+ *
172
+ * Note that for predictions based on time series models, `dstShapName`
173
+ * and `dstCoordShapName` do not apply and will be ignored if set. */
174
+ writeback?: BatchPredictionWriteback;
175
+ };
176
+ /**
177
+ * Response for batch prediction predict action that indicates job and status
178
+ */
179
+ type BatchPredictionActionResponse = {
180
+ data: {
181
+ attributes: PredictionJobResponse;
182
+ /** ID of this entity */
183
+ id: EntityId;
184
+ type: "job";
185
+ };
186
+ };
187
+ type BatchPredictionFindResponse = {
188
+ data: {
189
+ /** A batch prediction job configuration */
190
+ attributes: BatchPrediction;
191
+ /** ID of this entity */
192
+ id: EntityId;
193
+ type: "batch-prediction";
194
+ }[];
195
+ /** Resource links included in paginated responses */
196
+ links: ResponseLinks;
197
+ /** Meta for FIND operations */
198
+ meta?: FindResponseMeta;
199
+ };
200
+ type BatchPredictionGetResponse = {
201
+ data: {
202
+ /** A batch prediction job configuration */
203
+ attributes: BatchPrediction;
204
+ /** ID of this entity */
205
+ id: EntityId;
206
+ type: "batch-prediction";
207
+ };
208
+ };
209
+ /**
210
+ * Input values for creating a batch prediction configuration
211
+ */
212
+ type BatchPredictionInput = {
213
+ data?: {
214
+ attributes?: {
215
+ /** ID of an alias */
216
+ aliasId?: AliasId;
217
+ /** The Qlik catalog dataset ID */
218
+ dataSetId?: DataSetId;
219
+ /** ID of a model deployment */
220
+ deploymentId?: DeploymentId;
221
+ description?: string;
222
+ /** A optional column name upon which to create an index. Must be unique for
223
+ * every row. If not included, Qlik will create a unique index column. */
224
+ indexColumn?: IndexColumn;
225
+ /** Name of this entity */
226
+ name?: EntityName;
227
+ /** Configuration to schedule a batch prediction */
228
+ schedule?: BatchPredictionScheduleInputAttributes;
229
+ /** Sets which files, file names, and spaces are used to write results of
230
+ * batch predictions (output files) to the catalog.
231
+ *
232
+ * Note that for predictions based on time series models, `dstShapName`
233
+ * and `dstCoordShapName` do not apply and will be ignored if set. */
234
+ writeback?: BatchPredictionWriteback;
235
+ };
236
+ type?: "batch-prediction";
237
+ };
238
+ };
239
+ type BatchPredictionPatch = {
240
+ /** All patch requests use the replace operation */
241
+ op: "replace";
242
+ /** Path for the property you want to update */
243
+ path: "/name" | "/description" | "/dataSetId" | "/indexColumn" | "/applyDatasetChangeOnly" | "/ownerId" | "/writeback/spaceId" | "/writeback/format" | "/writeback/dstName" | "/writeback/dstShapName" | "/writeback/dstCoordShapName" | "/writeback/dstNotPredictedName" | "/writeback/dstSourceName";
244
+ /** Use for fields that can be `any` type (string, number, etc.) */
245
+ value: AnyType;
246
+ }[];
247
+ type BatchPredictionPostResponse = {
248
+ data: {
249
+ /** A batch prediction job configuration */
250
+ attributes: BatchPrediction;
251
+ /** ID of this entity */
252
+ id: EntityId;
253
+ type: "batch-prediction";
254
+ };
255
+ };
256
+ /**
257
+ * Batch prediction job schedule
258
+ */
259
+ type BatchPredictionSchedule = {
260
+ /** If true, only run prediction if dataset has changed to avoid
261
+ * duplicates. If set to false, re-runs predictions on unchanged
262
+ * datasets. */
263
+ applyDatasetChangeOnly?: boolean;
264
+ /** The ID of the chronos job */
265
+ chronosJobId?: string;
266
+ /** When the job finished */
267
+ endDateTime?: string;
268
+ /** Number of times a scheduled prediction job has failed */
269
+ failureAttempts?: number;
270
+ /** When the last successful job happened */
271
+ lastSuccessfulDateTime?: string;
272
+ /** Recurrence rules. Maximum is DAILY but you can specify the
273
+ * hour, minute, and second it runs each day.
274
+ * One string per rule. */
275
+ recurrence?: string[];
276
+ /** When the job is scheduled to start */
277
+ startDateTime?: string;
278
+ /** The status of the schedule */
279
+ status?: "pending" | "active" | "error" | "error_scheduler_unreachable" | "error_scheduler_callback_error" | "licence_advanced_features_required" | "failing_schedule_permission";
280
+ /** Timezone used for the date-time fields */
281
+ timezone?: string;
282
+ };
283
+ type BatchPredictionScheduleGetResponse = {
284
+ data: {
285
+ /** Batch prediction job schedule */
286
+ attributes: BatchPredictionSchedule;
287
+ /** ID of this entity */
288
+ id: EntityId;
289
+ type: "batch-prediction-schedule";
290
+ };
291
+ };
292
+ /**
293
+ * Input values for a batch prediction schedule
294
+ */
295
+ type BatchPredictionScheduleInput = {
296
+ data?: {
297
+ /** Configuration to schedule a batch prediction */
298
+ attributes?: BatchPredictionScheduleInputAttributes;
299
+ type?: "batch-prediction-schedule";
300
+ };
301
+ };
302
+ /**
303
+ * Configuration to schedule a batch prediction
304
+ */
305
+ type BatchPredictionScheduleInputAttributes = {
306
+ /** If true, only run prediction if dataset has changed to avoid
307
+ * duplicates. If set to false, re-runs predictions on unchanged
308
+ * datasets. */
309
+ applyDatasetChangeOnly?: boolean;
310
+ /** When the job is scheduled to finish */
311
+ endDateTime?: string;
312
+ /** Recurrence rules. Maximum is DAILY but you can specify the
313
+ * hour, minute, and second it runs each day.
314
+ * One string per rule. */
315
+ recurrence?: string[];
316
+ /** When the job is scheduled to start */
317
+ startDateTime: string;
318
+ /** Timezone used for the date-time fields */
319
+ timezone: string;
320
+ };
321
+ type BatchPredictionSchedulePatch = {
322
+ /** All patch requests use the replace operation */
323
+ op: "replace";
324
+ /** Path for the property you want to update */
325
+ path: "/startDateTime" | "/endDateTime" | "/timezone" | "/recurrence" | "/applyDatasetChangeOnly";
326
+ /** Use for fields that can be `any` type (string, number, etc.) */
327
+ value: AnyType;
328
+ }[];
329
+ type BatchPredictionSchedulePutResponse = {
330
+ data: {
331
+ /** Batch prediction job schedule */
332
+ attributes: BatchPredictionSchedule;
333
+ /** ID of this entity */
334
+ id: EntityId;
335
+ type: "batch-prediction-schedule";
336
+ };
337
+ };
338
+ /**
339
+ * Status of this batch prediction
340
+ */
341
+ type BatchPredictionStatus = "modified" | "ready" | "error" | "cancelled" | "pending";
342
+ /**
343
+ * Sets which files, file names, and spaces are used to write results of
344
+ * batch predictions (output files) to the catalog.
345
+ *
346
+ * Note that for predictions based on time series models, `dstShapName`
347
+ * and `dstCoordShapName` do not apply and will be ignored if set.
348
+ */
349
+ type BatchPredictionWriteback = {
350
+ dstCoordShapName?: string;
351
+ dstName: string;
352
+ dstNotPredictedName?: string;
353
+ dstShapName?: string;
354
+ dstSourceName?: string;
355
+ /** File format for write back files (this applies to all) */
356
+ format: "qvd" | "parquet" | "csv";
357
+ /** Space ID where you want to save batch prediction writebacks or
358
+ * empty string ('') save them to your personal space. */
359
+ spaceId: string;
360
+ };
361
+ type BinaryImbalanceSampling = {
362
+ sampleClass?: string;
363
+ sampleDirection?: "up" | "down";
364
+ sampleRatio?: number;
365
+ };
366
+ /**
367
+ * Indicates if you want to change the featureType for this
368
+ * feature within the experiment version
369
+ */
370
+ type ChangeType = "categorical" | "numeric" | "date" | "freetext";
371
+ type ColumnTransform = {
372
+ changeType: string;
373
+ name: string;
374
+ };
375
+ /**
376
+ * The ID of a correlated resource of corrType
377
+ */
378
+ type CorrId = string;
379
+ /**
380
+ * Types names of correlated resources (batch 'prediction' and
381
+ * experiment_version)
382
+ */
383
+ type CorrType = "batch-prediction" | "experiment-version";
384
+ /**
385
+ * Timestamp when this was created
386
+ */
387
+ type CreatedAt = string;
388
+ /**
389
+ * ID of the owner/user that created this entity.
390
+ */
391
+ type CreatedBy = string;
392
+ /**
393
+ * The Qlik catalog dataset ID
394
+ * @example
395
+ * "672e55cfcadfb8a18281523e"
396
+ */
397
+ type DataSetId = string;
398
+ /**
399
+ * The data type of this feature in your dataset
400
+ * @example
401
+ * "STRING"
402
+ */
403
+ type DataType = "DATE" | "TIME" | "DATETIME" | "TIMESTAMP" | "STRING" | "DOUBLE" | "DECIMAL" | "INTEGER" | "BOOLEAN" | "BINARY" | "CUSTOM" | "FLOAT" | "OBJECT";
404
+ /**
405
+ * Whether this is a new or other dataset
406
+ */
407
+ type DatasetOrigin = "new" | "changed" | "refreshed" | "same";
408
+ /**
409
+ * A optional date column name to index
410
+ */
411
+ type DateIndexes = string[];
412
+ /**
413
+ * Timestamp when this is deleted
414
+ */
415
+ type DeletedAt = string;
416
+ /**
417
+ * IDs of all models deployed to the deployment
418
+ */
419
+ type DeployedModelIds = string[];
420
+ /**
421
+ * Input values for adding deployed models to a deployment
422
+ */
423
+ type DeployedModelsInput = {
424
+ data: {
425
+ attributes: {
426
+ /** IDs of all models deployed to the deployment */
427
+ deployedModelIds: DeployedModelIds;
428
+ };
429
+ type: "deployed-models";
430
+ };
431
+ };
432
+ /**
433
+ * A deployed model against which you can run predictions
434
+ */
435
+ type Deployment = {
436
+ /** Timestamp when this was created */
437
+ createdAt: CreatedAt;
438
+ /** ID of the owner/user that created this entity. */
439
+ createdBy: CreatedBy;
440
+ /** IDs of all models deployed to the deployment */
441
+ deployedModelIds?: DeployedModelIds;
442
+ /** Whether this deployment is deprecated */
443
+ deprecated: boolean;
444
+ /** Description of this entity */
445
+ description: EntityDescription;
446
+ /** Whether to allow predictions */
447
+ enablePredictions: boolean;
448
+ /** JSON string of error object */
449
+ errorMessage?: ErrorMessage;
450
+ /** JSON string with list of error objects */
451
+ errors?: Errors;
452
+ /** ID of this entity */
453
+ id: EntityId;
454
+ /** ID of the model */
455
+ modelId: ModelId;
456
+ /** Name of this entity */
457
+ name: EntityName;
458
+ /** ID of owner/user for this entity */
459
+ ownerId: OwnerId;
460
+ /** Space ID for this entity (empty string for personal space) */
461
+ spaceId: SpaceId;
462
+ /** Timestamp when this was updated */
463
+ updatedAt: UpdatedAt;
464
+ };
465
+ type DeploymentFindResponse = {
466
+ data: {
467
+ /** A deployed model against which you can run predictions */
468
+ attributes: Deployment;
469
+ /** ID of this entity */
470
+ id: EntityId;
471
+ type: "deployment";
472
+ }[];
473
+ /** Resource links included in paginated responses */
474
+ links: ResponseLinks;
475
+ /** Meta for FIND operations */
476
+ meta?: FindResponseMeta;
477
+ };
478
+ type DeploymentGetResponse = {
479
+ data: {
480
+ /** A deployed model against which you can run predictions */
481
+ attributes: Deployment;
482
+ /** ID of this entity */
483
+ id: EntityId;
484
+ type: "deployment";
485
+ };
486
+ };
487
+ /**
488
+ * ID of a model deployment
489
+ */
490
+ type DeploymentId = string;
491
+ /**
492
+ * Input for creating a new deployment
493
+ */
494
+ type DeploymentInput = {
495
+ data?: {
496
+ attributes?: {
497
+ /** Whether this deployment is deprecated */
498
+ deprecated?: boolean;
499
+ /** Description of this entity */
500
+ description?: EntityDescription;
501
+ /** Whether to allow real-time predictions */
502
+ enablePredictions?: boolean;
503
+ /** ID of the model */
504
+ modelId: ModelId;
505
+ /** Name of this entity */
506
+ name: EntityName;
507
+ /** Space ID for this entity (empty string for personal space) */
508
+ spaceId: SpaceId;
509
+ };
510
+ type?: "deployment";
511
+ };
512
+ };
513
+ type DeploymentPatch = {
514
+ /** All patch requests use the replace operation */
515
+ op: "replace";
516
+ /** Path for the property you want to update */
517
+ path: "/name" | "/description" | "/spaceId";
518
+ /** Use for fields that can be `any` type (string, number, etc.) */
519
+ value: AnyType;
520
+ }[];
521
+ type DeploymentPostResponse = {
522
+ data: {
523
+ /** A deployed model against which you can run predictions */
524
+ attributes: Deployment;
525
+ /** ID of this entity */
526
+ id: EntityId;
527
+ type: "deployment";
528
+ };
529
+ };
530
+ /**
531
+ * Feature dropped during preprocessing
532
+ */
533
+ type DroppedFeature = {
534
+ /** Name of dropped feature in the dataset */
535
+ name?: string;
536
+ /** Reason the feature was dropped */
537
+ reason?: "highly_correlated" | "has_target_leakage" | "is_date_engineered" | "feature_with_low_importance";
538
+ };
539
+ /**
540
+ * Description of this entity
541
+ */
542
+ type EntityDescription = string;
543
+ /**
544
+ * ID of this entity
545
+ */
546
+ type EntityId = string;
547
+ /**
548
+ * Name of this entity
549
+ */
550
+ type EntityName = string;
551
+ type EnumSortAliases = "name" | "+name" | "-name";
552
+ type EnumSortBatchPredictions = "createdAt" | "+createdAt" | "-createdAt" | "description" | "+description" | "-description" | "name" | "+name" | "-name" | "updatedAt" | "+updatedAt" | "-updatedAt";
553
+ type EnumSortDeployments = "createdAt" | "+createdAt" | "-createdAt" | "name" | "+name" | "-name" | "updatedAt" | "+updatedAt" | "-updatedAt";
554
+ type EnumSortExperimentVersions = "createdAt" | "+createdAt" | "-createdAt" | "description" | "+description" | "-description" | "experimentMode" | "+experimentMode" | "-experimentMode" | "experimentType" | "+experimentType" | "-experimentType" | "name" | "+name" | "-name" | "status" | "+status" | "-status" | "updatedAt" | "+updatedAt" | "-updatedAt" | "versionNumber" | "+versionNumber" | "-versionNumber";
555
+ type EnumSortExperiments = "createdAt" | "+createdAt" | "-createdAt" | "description" | "+description" | "-description" | "name" | "+name" | "-name" | "updatedAt" | "+updatedAt" | "-updatedAt";
556
+ type EnumSortModels = "createdAt" | "+createdAt" | "-createdAt" | "description" | "+description" | "-description" | "name" | "+name" | "-name" | "updatedAt" | "+updatedAt" | "-updatedAt";
557
+ /**
558
+ * JSON string of error object
559
+ */
560
+ type ErrorMessage = string;
561
+ /**
562
+ * JSON string with list of error objects
563
+ */
564
+ type Errors = APIError[];
565
+ /**
566
+ * An AutoML experiment
567
+ */
568
+ type Experiment = {
569
+ /** Timestamp when this was created */
570
+ createdAt: CreatedAt;
571
+ /** Description of this entity */
572
+ description?: EntityDescription;
573
+ /** ID of this entity */
574
+ id: EntityId;
575
+ /** Name of this entity */
576
+ name?: EntityName;
577
+ /** ID of owner/user for this entity */
578
+ ownerId: OwnerId;
579
+ /** Space ID for this entity (empty string for personal space) */
580
+ spaceId: SpaceId;
581
+ /** Tenant ID for this entity */
582
+ tenantId: TenantId;
583
+ /** Timestamp when this was updated */
584
+ updatedAt: UpdatedAt;
585
+ };
586
+ type ExperimentFindResponse = {
587
+ data: {
588
+ /** An AutoML experiment */
589
+ attributes: Experiment;
590
+ /** ID of this entity */
591
+ id: EntityId;
592
+ type: "experiment";
593
+ }[];
594
+ /** Resource links included in paginated responses */
595
+ links: ResponseLinks;
596
+ /** Meta for FIND operations */
597
+ meta?: FindResponseMeta;
598
+ };
599
+ type ExperimentGetResponse = {
600
+ data: {
601
+ /** An AutoML experiment */
602
+ attributes: Experiment;
603
+ /** ID of this entity */
604
+ id: EntityId;
605
+ type: "experiment";
606
+ };
607
+ };
608
+ /**
609
+ * ID of the experiment
610
+ */
611
+ type ExperimentId = string;
612
+ /**
613
+ * Input for creating this entity
614
+ */
615
+ type ExperimentInput = {
616
+ /** Data container for ExperimentInput */
617
+ data?: {
618
+ /** Experiment input attributes */
619
+ attributes?: {
620
+ /** Description of this entity */
621
+ description?: EntityDescription;
622
+ /** Name of this entity */
623
+ name: EntityName;
624
+ /** Space ID for this entity (empty string for personal space) */
625
+ spaceId: SpaceId;
626
+ };
627
+ type?: "experiment";
628
+ };
629
+ };
630
+ /**
631
+ * The model training mode for the experiment version
632
+ */
633
+ type ExperimentMode = "intelligent" | "manual" | "manual_hpo";
634
+ /**
635
+ * Criteria to determine which pool of models to provide recommendations from
636
+ */
637
+ type ExperimentModelRecommendationFilter = {
638
+ /** The model algorithms to consider */
639
+ algorithms?: ModelAlgorithm[];
640
+ /** Whether to only consider models that are already deployed */
641
+ deployed?: boolean;
642
+ /** Whether to only consider models with 100% sampling */
643
+ fullSampling?: boolean;
644
+ /** The versionNumbers of the experiment versions to consider models from */
645
+ versionNumbers?: number[];
646
+ };
647
+ type ExperimentModelRecommendationPostResponse = {
648
+ data: {
649
+ /** Model recommendations */
650
+ attributes: {
651
+ bestModel?: ModelForRecommendations;
652
+ fastestModel?: ModelForRecommendations;
653
+ mostAccurateModel?: ModelForRecommendations;
654
+ };
655
+ type: "model-recommendation";
656
+ };
657
+ };
658
+ /**
659
+ * @example
660
+ * [
661
+ * {
662
+ * op: "replace",
663
+ * path: "/name"
664
+ * },
665
+ * {
666
+ * op: "replace",
667
+ * path: "/description"
668
+ * },
669
+ * {
670
+ * op: "replace",
671
+ * path: "/spaceId"
672
+ * }
673
+ * ]
674
+ */
675
+ type ExperimentPatch = ExperimentPatchItem[];
676
+ /**
677
+ * Experiment fields that can be patched. The following paths all require `value` to be a string: `/name`, `/spaceId`, and `/description`
678
+ */
679
+ type ExperimentPatchItem = {
680
+ /** All patch requests use the replace operation */
681
+ op: "replace";
682
+ /** Path for the property you want to update */
683
+ path: "/name" | "/description" | "/spaceId";
684
+ /** Use for fields that can be `any` type (string, number, etc.) */
685
+ value: AnyType;
686
+ };
687
+ type ExperimentPostResponse = {
688
+ data: {
689
+ /** An AutoML experiment */
690
+ attributes: Experiment;
691
+ /** ID of this entity */
692
+ id: EntityId;
693
+ type: "experiment";
694
+ };
695
+ };
696
+ /**
697
+ * Experiment type
698
+ */
699
+ type ExperimentType = "binary" | "multiclass" | "regression";
700
+ /**
701
+ * An AutoML experiment version. This is a configuration for training
702
+ * models within an experiment.
703
+ */
704
+ type ExperimentVersion = {
705
+ /** List of algorithms selected for model training in this version */
706
+ algorithms?: ModelAlgorithm[];
707
+ /** Timestamp when this was created */
708
+ createdAt: CreatedAt;
709
+ /** ID of owner/user for this entity */
710
+ createdByUserId: OwnerId;
711
+ /** The Qlik catalog dataset ID */
712
+ dataSetId: DataSetId;
713
+ /** Whether this is a new or other dataset */
714
+ datasetOrigin?: DatasetOrigin;
715
+ /** A optional date column name to index */
716
+ dateIndexes?: DateIndexes;
717
+ /** JSON string of error object */
718
+ errorMessage?: ErrorMessage;
719
+ /** JSON string with list of error objects */
720
+ errors?: Errors;
721
+ /** ID of the experiment */
722
+ experimentId: ExperimentId;
723
+ /** The model training mode for the experiment version */
724
+ experimentMode?: ExperimentMode;
725
+ /** Experiment type */
726
+ experimentType: ExperimentType;
727
+ /** List of features from your dataset for creating Experiment
728
+ * Versions. This appears in from ProfileInsights response (in the
729
+ * defaultVersionConfig). You can adjust the default settings before
730
+ * using it as input to create or update Experiment Versions. */
731
+ featuresList?: FeaturesList;
732
+ /** ID of this entity */
733
+ id: EntityId;
734
+ /** Number of the last batch */
735
+ lastBatchNum?: number;
736
+ /** Name of this entity */
737
+ name?: EntityName;
738
+ /** Pipeline metadata including transformations to apply to columns and
739
+ * specific schema configuration data */
740
+ pipeline?: Pipeline;
741
+ /** Preprocessed insights. Like feature insights but with fewer details. */
742
+ preprocessedInsights?: PreprocessedInsightColumn[];
743
+ /** ID of the dataset profile with metadata about source data */
744
+ profileId?: string;
745
+ /** Current status of this entity */
746
+ status: "ready" | "error" | "cancelled" | "pending" | "dataprep_requested" | "datasync_requested" | "datasync_done";
747
+ /** The target field in the dataset */
748
+ target: string;
749
+ /** ID of the top model (based on training scores) in this experiment
750
+ * version */
751
+ topModelId?: string;
752
+ /** Optional training duration in seconds. If not provided, max value used.
753
+ * If provided, min 900 (15m) and max 21600 (6h). */
754
+ trainingDuration?: TrainingDuration;
755
+ /** Timestamp when this was updated */
756
+ updatedAt: UpdatedAt;
757
+ /** 1-based sequential version number within the experiment */
758
+ versionNumber?: number;
759
+ };
760
+ type ExperimentVersionFindResponse = {
761
+ data: {
762
+ /** An AutoML experiment version. This is a configuration for training
763
+ * models within an experiment. */
764
+ attributes: ExperimentVersion;
765
+ /** ID of this entity */
766
+ id: EntityId;
767
+ type: "experiment-version";
768
+ }[];
769
+ /** Resource links included in paginated responses */
770
+ links: ResponseLinks;
771
+ /** Meta for FIND operations */
772
+ meta?: FindResponseMeta;
773
+ };
774
+ type ExperimentVersionGetResponse = {
775
+ data: {
776
+ /** An AutoML experiment version. This is a configuration for training
777
+ * models within an experiment. */
778
+ attributes: ExperimentVersion;
779
+ /** ID of this entity */
780
+ id: EntityId;
781
+ type: "experiment-version";
782
+ };
783
+ };
784
+ /**
785
+ * ID of the experiment version
786
+ */
787
+ type ExperimentVersionId = string;
788
+ /**
789
+ * Input for creating a new experiment version. Defaults provided in the
790
+ * ProfileInsights response.
791
+ */
792
+ type ExperimentVersionInput = {
793
+ data: {
794
+ attributes: {
795
+ /** Algorithms used for model training in this version. See
796
+ * documentation for valid algorithms for each
797
+ * `experimentType`.
798
+ *
799
+ * If not provided, defaults to all valid algorithms for your
800
+ * experimentType. */
801
+ algorithms?: ModelAlgorithm[];
802
+ /** The Qlik catalog dataset ID */
803
+ dataSetId: DataSetId;
804
+ /** Whether this is a new or other dataset */
805
+ datasetOrigin?: DatasetOrigin;
806
+ /** A optional date column name to index */
807
+ dateIndexes?: DateIndexes;
808
+ /** The model training mode for the experiment version */
809
+ experimentMode: ExperimentMode;
810
+ /** Experiment type */
811
+ experimentType: ExperimentType;
812
+ /** List of features from your dataset for creating Experiment
813
+ * Versions. This appears in from ProfileInsights response (in the
814
+ * defaultVersionConfig). You can adjust the default settings before
815
+ * using it as input to create or update Experiment Versions. */
816
+ featuresList: FeaturesList;
817
+ name: string;
818
+ /** Pipeline metadata including transformations to apply to columns and
819
+ * specific schema configuration data */
820
+ pipeline?: Pipeline;
821
+ /** The target field in the dataset. Set in first experiment
822
+ * version and can't be changed in subsequent versions. */
823
+ target: string;
824
+ /** Optional training duration in seconds. If not provided, max value used.
825
+ * If provided, min 900 (15m) and max 21600 (6h). */
826
+ trainingDuration?: TrainingDuration;
827
+ };
828
+ type: "experiment-version";
829
+ };
830
+ };
831
+ type ExperimentVersionPatch = {
832
+ /** All patch requests use the replace operation */
833
+ op: "replace";
834
+ /** Path for the properties you can update. */
835
+ path: "/name";
836
+ /** Use for fields that can be `any` type (string, number, etc.) */
837
+ value: AnyType;
838
+ }[];
839
+ type ExperimentVersionPostResponse = {
840
+ data: {
841
+ /** An AutoML experiment version. This is a configuration for training
842
+ * models within an experiment. */
843
+ attributes: ExperimentVersion;
844
+ /** ID of this entity */
845
+ id: EntityId;
846
+ type: "experiment-version";
847
+ };
848
+ };
849
+ type Failure = {
850
+ errors: APIError[];
851
+ traceId?: string;
852
+ };
853
+ /**
854
+ * A feature (column) from your dataset
855
+ */
856
+ type Feature = {
857
+ /** Indicates if you want to change the featureType for this
858
+ * feature within the experiment version */
859
+ changeType?: ChangeType;
860
+ /** The data type of this feature in your dataset */
861
+ dataType?: DataType;
862
+ /** The default feature type based on the feature's data type.
863
+ * If you want a value to be interpreted differently (e.g. 0/1
864
+ * as categorical/boolean instead of numeric), use `changeType`. */
865
+ featureType?: FeatureType;
866
+ /** Include this feature in your experiment version? Default
867
+ * here is based on insights for this feature
868
+ * (e.g. willBeDropped). */
869
+ include?: boolean;
870
+ /** Name of the feature column */
871
+ name?: string;
872
+ /** The parent feature name for engineered features. e.g. `OrderDate` may be the parent of its engineered features (features extracted from parent) like `OrderDate.YEAR`, `OrderDate.MONTH`, etc. */
873
+ parentFeature?: string;
874
+ };
875
+ /**
876
+ * Metadata about the features in your dataset, generated when you create
877
+ * ProfileInsights.
878
+ */
879
+ type FeatureInsights = {
880
+ /** Whether a feature cannot be the target field */
881
+ cannotBeTarget: boolean;
882
+ /** The default feature type based on the feature's data type.
883
+ * If you want a value to be interpreted differently (e.g. 0/1
884
+ * as categorical/boolean instead of numeric), use `changeType`. */
885
+ defaultFeatureType?: FeatureType;
886
+ /** Preliminary list of engineered features as strings. If subsequent
887
+ * processing validates them, they'll be converted to EngineeredFeature
888
+ * objects within a NestedColumn, each of which may contain its own
889
+ * FeatureInsights. */
890
+ engineeredFeatures?: string[];
891
+ /** Only applies for time series experiment types. This intial estimate
892
+ * of the combined max forecast window and gap (aka - horizon). It only
893
+ * applies to possible date index columns. After the experiment version
894
+ * is created, we get a more precise number for subsequent versions.
895
+ * When training data is grouped, this estimate may be less accurate. */
896
+ estimatedMaxForecastHorizon?: number;
897
+ /** Experiment types in this feature insight */
898
+ experimentTypes: ExperimentType[];
899
+ /** List of insights about this feature. */
900
+ insights: Insights[];
901
+ /** Name of the feature insight */
902
+ name: string;
903
+ /** Whether this feature will be dropped. Traits like high cardinality
904
+ * make some features less predictive or too costly to merit use. */
905
+ willBeDropped: boolean;
906
+ };
907
+ /**
908
+ * The default feature type based on the feature's data type.
909
+ * If you want a value to be interpreted differently (e.g. 0/1
910
+ * as categorical/boolean instead of numeric), use `changeType`.
911
+ */
912
+ type FeatureType = "categorical" | "numeric" | "date" | "freetext";
913
+ /**
914
+ * List of features from your dataset for creating Experiment
915
+ * Versions. This appears in from ProfileInsights response (in the
916
+ * defaultVersionConfig). You can adjust the default settings before
917
+ * using it as input to create or update Experiment Versions.
918
+ */
919
+ type FeaturesList = Feature[];
920
+ /**
921
+ * Dataset file type
922
+ * @example
923
+ * "qvd, parquet, csv"
924
+ */
925
+ type FileType = string;
926
+ /**
927
+ * Meta for FIND operations
928
+ */
929
+ type FindResponseMeta = {
930
+ count: number;
931
+ };
932
+ /**
933
+ * A optional column name upon which to create an index. Must be unique for
934
+ * every row. If not included, Qlik will create a unique index column.
935
+ */
936
+ type IndexColumn = string;
937
+ /**
938
+ * Insights about a feature, such as why it's not included in a model
939
+ */
940
+ type Insights = "constant" | "high_cardinality" | "high_cardinality_integer" | "too_many_nulls" | "will_be_impact_encoded" | "will_be_one_hot_encoded" | "possible_free_text_encoded" | "valid_index" | "underrepresented_class" | "invalid_column_name" | "will_be_date_engineered";
941
+ /**
942
+ * The type for this job
943
+ */
944
+ type JobType = "prediction";
945
+ /**
946
+ * A model based on an algorithm within an experiment version.
947
+ */
948
+ type Model = {
949
+ /** Model algorithm name abbreviation */
950
+ algoAbbrv?: ModelAlgorithmAbbreviation;
951
+ /** The algorithm used by this model */
952
+ algorithm?: string;
953
+ anomalyRatio?: number;
954
+ /** Batch number indicates the index of the experiment version fold
955
+ * (most relevant when HPO is enabled) */
956
+ batchNum?: number;
957
+ binaryImbalanceSampling?: BinaryImbalanceSampling;
958
+ binningFeatures?: string[];
959
+ /** Dataset columns selected as features */
960
+ columns?: string[];
961
+ /** Timestamp when this was created */
962
+ createdAt?: CreatedAt;
963
+ /** Description of this entity */
964
+ description?: EntityDescription;
965
+ /** Features dropped because they're unsuitable */
966
+ droppedFeatures?: DroppedFeature[];
967
+ /** JSON string of error object */
968
+ errorMessage?: ErrorMessage;
969
+ /** JSON string with list of error objects */
970
+ errors?: Errors;
971
+ /** ID of the experiment version */
972
+ experimentVersionId?: ExperimentVersionId;
973
+ /** Version number of the hyperparameter optimization */
974
+ hpoNum?: number;
975
+ /** ID of this entity */
976
+ id?: EntityId;
977
+ /** Model metrics based on the type of model */
978
+ metrics?: ModelMetrics;
979
+ /** Model state. These are the state of the model in relation to
980
+ * deployments. */
981
+ modelState?: ModelState;
982
+ /** Name of this entity */
983
+ name?: EntityName;
984
+ powerTransformFeatures?: string[];
985
+ /** Ratio of sample data in relation to the dataset */
986
+ samplingRatio?: number;
987
+ /** Model sequence number within the experiment version */
988
+ seqNum?: number;
989
+ /** Model status. These are the status of the model in relation to
990
+ * experiments (i.e. training status). */
991
+ status?: ModelStatus;
992
+ /** Timestamp when this was updated */
993
+ updatedAt?: UpdatedAt;
994
+ };
995
+ /**
996
+ * Enumeration of model algorithms.
997
+ *
998
+ * A subset of these may be provided based on your ExperimentType. This is
999
+ * based on your target's featureType. When you select a target feature
1000
+ * from your ProfileInsights response (defaultVersionConfig.featuresList),
1001
+ * it tells you which algorithms will be available if you choose it as your
1002
+ * target.
1003
+ */
1004
+ type ModelAlgorithm = "catboost_classifier" | "catboost_regression" | "elasticnet_regression" | "gaussian_nb" | "kneighbors_classifier" | "lasso_regression" | "lasso" | "lgbm_classifier" | "lgbm_regression" | "linear_regression" | "logistic_regression" | "random_forest_classifier" | "random_forest_regression" | "sgd_regression" | "xgb_classifier" | "xgb_regression";
1005
+ /**
1006
+ * Model algorithm name abbreviation
1007
+ */
1008
+ type ModelAlgorithmAbbreviation = "CATBC" | "CATBR" | "ELNC" | "GNBC" | "LGBMC" | "LGBMR" | "LINR" | "LOGC" | "LSOC" | "RAFC" | "RAFR" | "SGDR" | "XGBC" | "XGBR";
1009
+ type ModelFindResponse = {
1010
+ data: {
1011
+ /** A model based on an algorithm within an experiment version. */
1012
+ attributes: Model;
1013
+ /** ID of this entity */
1014
+ id: EntityId;
1015
+ type: "model";
1016
+ }[];
1017
+ /** Resource links included in paginated responses */
1018
+ links: ResponseLinks;
1019
+ /** Meta for FIND operations */
1020
+ meta?: FindResponseMeta;
1021
+ };
1022
+ type ModelForRecommendations = Model & {
1023
+ metrics?: {
1024
+ /** This represents model prediction speed in rows/second */
1025
+ predictionSpeed: number;
1026
+ };
1027
+ };
1028
+ type ModelGetResponse = {
1029
+ data: {
1030
+ /** A model based on an algorithm within an experiment version. */
1031
+ attributes: Model;
1032
+ /** ID of this entity */
1033
+ id: EntityId;
1034
+ type: "model";
1035
+ };
1036
+ };
1037
+ /**
1038
+ * ID of the model
1039
+ */
1040
+ type ModelId = string;
1041
+ /**
1042
+ * Model information stored on an alias
1043
+ */
1044
+ type ModelInfo = {
1045
+ /** ID of this entity */
1046
+ id?: EntityId;
1047
+ };
1048
+ /**
1049
+ * Model metrics based on the type of model
1050
+ */
1051
+ type ModelMetrics = {
1052
+ /** Binary metrics for categorical values with two options. Details:
1053
+ * https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/AutoML/scoring-binary-classification.htm */
1054
+ binary?: ModelMetricsBinary;
1055
+ /** Multiclass metrics for categorical values with 3+ options. Details:
1056
+ * https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/AutoML/scoring-multiclass-classification.htm */
1057
+ multiclass?: ModelMetricsMulticlass;
1058
+ /** Regression metrics for numeric values. Details:
1059
+ * https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/AutoML/scoring-regression.htm */
1060
+ regression?: ModelMetricsRegression;
1061
+ /** Timeseries metrics experiments valid for timeseries forecasting. */
1062
+ timeseries?: ModelMetricsTimeseries;
1063
+ };
1064
+ /**
1065
+ * Binary metrics for categorical values with two options. Details:
1066
+ * https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/AutoML/scoring-binary-classification.htm
1067
+ */
1068
+ type ModelMetricsBinary = {
1069
+ /** Average measure of how often the model made correct predictions
1070
+ * (training data) */
1071
+ accuracy?: number;
1072
+ /** Average measure of how often the model made correct predictions
1073
+ * (test data) */
1074
+ accuracyTest?: number;
1075
+ /** Area under curve (training data) */
1076
+ auc?: number;
1077
+ /** Area under curve (test data) */
1078
+ aucTest?: number;
1079
+ /** The harmonic mean of precision and recall for training data */
1080
+ f1?: number;
1081
+ /** The harmonic mean of precision and recall for test data */
1082
+ f1Test?: number;
1083
+ /** The false positive rate (training data) */
1084
+ fallout?: number;
1085
+ /** The false positive rate (test data) */
1086
+ falloutTest?: number;
1087
+ /** Actual true values incorrectly predicted as false (training data) */
1088
+ falseNegative?: number;
1089
+ /** Actual true values incorrectly predicted as false (test data) */
1090
+ falseNegativeTest?: number;
1091
+ /** Actual false values incorrectly predicted as true (training data) */
1092
+ falsePositive?: number;
1093
+ /** Actual false values incorrectly predicted as true (test data) */
1094
+ falsePositiveTest?: number;
1095
+ /** Measures accuracy in logistic regression (training data) */
1096
+ logLoss?: number;
1097
+ /** Measures accuracy in logistic regression (test data) */
1098
+ logLossTest?: number;
1099
+ /** Matthews correlation coefficient (training data) */
1100
+ mcc?: number;
1101
+ /** Matthews correlation coefficient (test data) */
1102
+ mccTest?: number;
1103
+ /** The false negative rate (training data) */
1104
+ missRate?: number;
1105
+ /** The false negative rate (test data) */
1106
+ missRateTest?: number;
1107
+ /** Negative predictive value (training data) */
1108
+ npv?: number;
1109
+ /** Negative predictive value (test data) */
1110
+ npvTest?: number;
1111
+ /** Positive predictive value. Probability that the model was correct
1112
+ * when it predicted something was true. (training data) */
1113
+ precision?: number;
1114
+ /** Positive predictive value. Probability that the model was correct
1115
+ * when it predicted something was true. (test data) */
1116
+ precisionTest?: number;
1117
+ /** The true positive rate (training data) */
1118
+ recall?: number;
1119
+ /** The true positive rate (test data) */
1120
+ recallTest?: number;
1121
+ /** The true negative rate (training data) */
1122
+ specificity?: number;
1123
+ /** The true negative rate (test data) */
1124
+ specificityTest?: number;
1125
+ /** Probability that a prediction is true (training data) */
1126
+ threshold?: number;
1127
+ /** Probability that a prediction is true (test data) */
1128
+ thresholdTest?: number;
1129
+ /** Actual false values correctly predicted as false (training data) */
1130
+ trueNegative?: number;
1131
+ /** Actual false values correctly predicted as false (test data) */
1132
+ trueNegativeTest?: number;
1133
+ /** Actual true values correctly predicted as true (training data) */
1134
+ truePositive?: number;
1135
+ /** Actual true values correctly predicted as true (test data) */
1136
+ truePositiveTest?: number;
1137
+ };
1138
+ /**
1139
+ * Multiclass metrics for categorical values with 3+ options. Details:
1140
+ * https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/AutoML/scoring-multiclass-classification.htm
1141
+ */
1142
+ type ModelMetricsMulticlass = {
1143
+ /** Average of how often the model made a correct prediction (training
1144
+ * data) */
1145
+ accuracy?: number;
1146
+ /** Average of how often the model made a correct prediction (test data) */
1147
+ accuracyTest?: number;
1148
+ /** A matrix summary of the accuracy of predictions in a classification
1149
+ * model (training data) */
1150
+ confusionMatrix?: string;
1151
+ /** A matrix summary of the accuracy of predictions in a classification
1152
+ * model (training data) */
1153
+ confusionMatrixTest?: string;
1154
+ /** Macro F1 is the averaged F1 value for each class without weighting
1155
+ * (training data) */
1156
+ f1Macro?: number;
1157
+ /** Macro F1 is the averaged F1 value for each class without weighting
1158
+ * (test data) */
1159
+ f1MacroTest?: number;
1160
+ /** Micro F1 is the F1 value calculated across the entire confusion
1161
+ * matrix (training data) */
1162
+ f1Micro?: number;
1163
+ /** Micro F1 is the F1 value calculated across the entire confusion
1164
+ * matrix (test data) */
1165
+ f1MicroTest?: number;
1166
+ /** Weighted F1 (training data) */
1167
+ f1Weighted?: number;
1168
+ /** Weighted F1 (test data) */
1169
+ f1WeightedTest?: number;
1170
+ };
1171
+ /**
1172
+ * Regression metrics for numeric values. Details:
1173
+ * https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/AutoML/scoring-regression.htm
1174
+ */
1175
+ type ModelMetricsRegression = {
1176
+ /** Mean absolute error (training data) */
1177
+ mae?: number;
1178
+ /** Mean absolute error (test data) */
1179
+ maeTest?: number;
1180
+ /** Mean squared error (training data) */
1181
+ mse?: number;
1182
+ /** Mean squared error (test data) */
1183
+ mseTest?: number;
1184
+ /** R squared (training data) */
1185
+ r2?: number;
1186
+ /** R squared (test data) */
1187
+ r2Test?: number;
1188
+ /** Root mean squared error (training data) */
1189
+ rmse?: number;
1190
+ /** Root mean squared error (test data) */
1191
+ rmseTest?: number;
1192
+ };
1193
+ /**
1194
+ * Timeseries metrics experiments valid for timeseries forecasting.
1195
+ */
1196
+ type ModelMetricsTimeseries = {
1197
+ /** Mean absolute error (training data) */
1198
+ mae?: number;
1199
+ /** Mean absolute error (test data) */
1200
+ maeTest?: number;
1201
+ /** Mean absolute percentage error (training data) */
1202
+ mape?: number;
1203
+ /** Mean absolute percentage error (test data) */
1204
+ mapeTest?: number;
1205
+ /** Mean absolute scaled error (training data) */
1206
+ mase?: number;
1207
+ /** Mean absolute scaled error (test data) */
1208
+ maseTest?: number;
1209
+ /** Median absolute percentage error (training data) */
1210
+ mdape?: number;
1211
+ /** Median absolute percentage error (test data) */
1212
+ mdapeTest?: number;
1213
+ /** Median root mean squared error (training data) */
1214
+ mdnrmse?: number;
1215
+ /** Median root mean squared error (test data) */
1216
+ mdnrmseTest?: number;
1217
+ /** Mean root mean squared error (training data) */
1218
+ mnrmse?: number;
1219
+ /** Mean root mean squared error (test data) */
1220
+ mnrmseTest?: number;
1221
+ /** Root mean squared error (training data) */
1222
+ rmse?: number;
1223
+ /** Root mean squared error (test data) */
1224
+ rmseTest?: number;
1225
+ /** Symmetric mean absolute percentage error (training data) */
1226
+ smape?: number;
1227
+ /** Symmetric mean absolute percentage error (test data) */
1228
+ smapeTest?: number;
1229
+ /** Weighted mean absolute percentage error (training data) */
1230
+ wmape?: number;
1231
+ /** Weighted mean absolute percentage error (test data) */
1232
+ wmapeTest?: number;
1233
+ };
1234
+ /**
1235
+ * Model state. These are the state of the model in relation to
1236
+ * deployments.
1237
+ */
1238
+ type ModelState = "pending" | "enabled" | "disabled" | "inactive";
1239
+ /**
1240
+ * Model status. These are the status of the model in relation to
1241
+ * experiments (i.e. training status).
1242
+ */
1243
+ type ModelStatus = "pending" | "training_requested" | "training_done" | "ready" | "error";
1244
+ type ModelsInfo = ModelInfo[];
1245
+ type OutputFile = {
1246
+ fileName: string;
1247
+ /** Dataset file type */
1248
+ fileType: FileType;
1249
+ key: string;
1250
+ path: string;
1251
+ /** Space ID for this entity (empty string for personal space) */
1252
+ spaceId: SpaceId;
1253
+ };
1254
+ /**
1255
+ * ID of owner/user for this entity
1256
+ */
1257
+ type OwnerId = string;
1258
+ /**
1259
+ * ID of the current job's parent
1260
+ */
1261
+ type ParentJobId = string;
1262
+ /**
1263
+ * Pipeline metadata including transformations to apply to columns and
1264
+ * specific schema configuration data
1265
+ */
1266
+ type Pipeline = {
1267
+ transforms?: Transform[];
1268
+ };
1269
+ type PredictionJobResponse = {
1270
+ /** The ID of a correlated resource of corrType */
1271
+ corrId: CorrId;
1272
+ /** Types names of correlated resources (batch 'prediction' and
1273
+ * experiment_version) */
1274
+ corrType: CorrType;
1275
+ /** Timestamp when this was created */
1276
+ createdAt: CreatedAt;
1277
+ /** ID of the owner/user that created this entity */
1278
+ createdBy: string;
1279
+ /** Timestamp when this is deleted */
1280
+ deletedAt: DeletedAt;
1281
+ /** ID of a model deployment */
1282
+ deploymentId: DeploymentId;
1283
+ details: {
1284
+ isScheduled: boolean;
1285
+ lineageSchemaUpdated: boolean;
1286
+ outputFiles: OutputFile[];
1287
+ };
1288
+ experimentVersionNumber: string;
1289
+ /** ID of this entity */
1290
+ id: EntityId;
1291
+ /** The type for this job */
1292
+ jobType: JobType;
1293
+ /** ID of the model */
1294
+ modelId: ModelId;
1295
+ name: string;
1296
+ /** ID of the current job's parent */
1297
+ parentJobId: ParentJobId;
1298
+ parentName: string;
1299
+ rowsPredicted: number;
1300
+ /** Status of this job */
1301
+ status: "pending" | "completed" | "cancelled" | "error";
1302
+ success: boolean;
1303
+ /** Tenant ID for this entity */
1304
+ tenantId: TenantId;
1305
+ trigger: string;
1306
+ /** Timestamp when this was updated */
1307
+ updatedAt: UpdatedAt;
1308
+ };
1309
+ /**
1310
+ * Metadata about features/columns from dataset after preprocessing
1311
+ */
1312
+ type PreprocessedInsightColumn = {
1313
+ /** Preliminary list of column/feature insights available after
1314
+ * preprocessing but before feature insights are available */
1315
+ insights: ("is_free_text" | "cannot_be_processed_as_free_text" | "is_date_engineered" | "has_target_leakage" | "feature_type_change_invalid" | "feature_type_change_failed" | "feature_type_change_successful" | "data_bias_detected" | "representation_bias_detected")[];
1316
+ /** Name of the preprocessed insight column */
1317
+ name: string;
1318
+ /** Whether this feature insight will be dropped due to free text or
1319
+ * high cardinality that makes it less useful */
1320
+ willBeDropped: boolean;
1321
+ };
1322
+ /**
1323
+ * Insights (metadata) about an experiment dataset
1324
+ */
1325
+ type ProfileInsights = {
1326
+ /** List of algorithms available for the selected experiment type */
1327
+ algorithms?: ModelAlgorithm[];
1328
+ defaultVersionConfig?: {
1329
+ /** The Qlik catalog dataset ID */
1330
+ dataSetId: DataSetId;
1331
+ /** Whether this is a new or other dataset */
1332
+ datasetOrigin: DatasetOrigin;
1333
+ /** The model training mode for the experiment version */
1334
+ experimentMode: ExperimentMode;
1335
+ /** List of features from your dataset for creating Experiment
1336
+ * Versions. This appears in from ProfileInsights response (in the
1337
+ * defaultVersionConfig). You can adjust the default settings before
1338
+ * using it as input to create or update Experiment Versions. */
1339
+ featuresList?: FeaturesList;
1340
+ name: string;
1341
+ };
1342
+ /** Optional experiment version ID. When included, it indicates that
1343
+ * this dataset profile is a snapshot from a previous version. */
1344
+ experimentVersionId?: string;
1345
+ /** List of feature insights object, one per feature in the dataset */
1346
+ insights?: FeatureInsights[];
1347
+ /** Is this a CSV dataset > 1GB? */
1348
+ isLargeCsv?: boolean;
1349
+ /** Number of rows in the dataset.
1350
+ *
1351
+ * When isLargeCsv is true, this is an estimate since their metadata is
1352
+ * based on a sample rather than the full dataset.
1353
+ *
1354
+ * For datasets over 1GB, multiply `rows` (this) by `columns` (features
1355
+ * included in experiment version) to calculate total `cells` to
1356
+ * ensure it stays under your license limit. Large CSVs have a hard
1357
+ * 100M cell limit. */
1358
+ numberOfRows?: number;
1359
+ /** ID of owner/user for this entity */
1360
+ ownerId: OwnerId;
1361
+ /** Size of the profiled dataset in bytes. */
1362
+ sizeInBytes?: number;
1363
+ /** Status of profile insights. Not available until `ready`. */
1364
+ status: "pending" | "error" | "ready";
1365
+ /** Tenant ID for this entity */
1366
+ tenantId: TenantId;
1367
+ };
1368
+ type ProfileInsightsGetResponse = {
1369
+ data: {
1370
+ /** Insights (metadata) about an experiment dataset */
1371
+ attributes: ProfileInsights;
1372
+ /** ID of this entity */
1373
+ id: EntityId;
1374
+ type: "profile-insights";
1375
+ };
1376
+ };
1377
+ /**
1378
+ * Input to get dataset and feature metadata needed to create
1379
+ * experiment versions
1380
+ */
1381
+ type ProfileInsightsInput = {
1382
+ /** Data wrapper for request input */
1383
+ data?: {
1384
+ /** The request body for this resource */
1385
+ attributes?: {
1386
+ /** The Qlik catalog dataset ID */
1387
+ dataSetId?: DataSetId;
1388
+ /** Experiment type */
1389
+ experimentType?: ExperimentType;
1390
+ /** Whether the server should or client should manage polling/waiting */
1391
+ shouldWait?: boolean;
1392
+ /** Optional selected target provided on subsequent requests */
1393
+ target?: string;
1394
+ };
1395
+ type?: "profile-insights";
1396
+ };
1397
+ };
1398
+ type RealTimePredictionInputSchema = {
1399
+ /** The name of a feature in the dataset */
1400
+ name?: string;
1401
+ };
1402
+ type RealTimePredictionSchema = {
1403
+ /** The name of a feature in the dataset */
1404
+ name?: string;
1405
+ };
1406
+ /**
1407
+ * Input values for creating realtime predictions
1408
+ */
1409
+ type RealtimePrediction = {
1410
+ data?: {
1411
+ attributes?: {
1412
+ /** Rows of the dataset from which to produce predictions */
1413
+ rows?: string[][];
1414
+ /** List of features in the dataset */
1415
+ schema?: RealTimePredictionSchema[];
1416
+ };
1417
+ type?: "realtime-prediction";
1418
+ };
1419
+ };
1420
+ /**
1421
+ * Input values for creating realtime predictions
1422
+ */
1423
+ type RealtimePredictionInput = {
1424
+ /** Rows of the dataset from which to produce predictions.
1425
+ * Date features must be in ISO 8601 format. */
1426
+ rows?: string[][];
1427
+ /** List of features in the dataset. */
1428
+ schema?: RealTimePredictionInputSchema[];
1429
+ };
1430
+ /**
1431
+ * Resource links included in paginated responses
1432
+ */
1433
+ type ResponseLinks = {
1434
+ first: {
1435
+ /** Link to the first set of responses from `offset` 0 to count `limit`` */
1436
+ href?: string;
1437
+ };
1438
+ last: {
1439
+ /** Link to the last set of responses from `limit` minus `offset` to
1440
+ * `limit` */
1441
+ href?: string;
1442
+ };
1443
+ next: {
1444
+ /** Link to the next set of responses */
1445
+ href?: string;
1446
+ };
1447
+ prev: {
1448
+ /** Link to the previous set of responses */
1449
+ href?: string;
1450
+ };
1451
+ self: {
1452
+ /** Link to the current set of responses */
1453
+ href?: string;
1454
+ };
1455
+ };
1456
+ /**
1457
+ * Space ID for this entity (empty string for personal space)
1458
+ */
1459
+ type SpaceId = string;
1460
+ /**
1461
+ * Tenant ID for this entity
1462
+ */
1463
+ type TenantId = string;
1464
+ /**
1465
+ * Optional training duration in seconds. If not provided, max value used.
1466
+ * If provided, min 900 (15m) and max 21600 (6h).
1467
+ */
1468
+ type TrainingDuration = number;
1469
+ type Transform = {
1470
+ column?: ColumnTransform;
1471
+ };
1472
+ /**
1473
+ * Timestamp when this was updated
1474
+ */
1475
+ type UpdatedAt = string;
1476
+ /**
1477
+ * List deployments
1478
+ * @example
1479
+ * getMlDeployments(
1480
+ * {
1481
+ * filter: "`filter=spaceId eq \"UUID\" and predictionEnabled eq \"true\" and nameContains co \"abc\"`",
1482
+ * limit: 10,
1483
+ * offset: 32
1484
+ * }
1485
+ * )
1486
+ *
1487
+ * @param query an object with query parameters
1488
+ * @throws GetMlDeploymentsHttpError
1489
+ */
1490
+ declare function getMlDeployments(query: {
1491
+ /** Deployment fields by which you can filter responses.<br><br>
1492
+ * - `spaceId` ID string (or empty string for personal space) - ID of space in which deployment(s) exist
1493
+ * - `modelId` UUID string - By model ID
1494
+ * - `createdBy` ID string
1495
+ * - `ownerId` ID string
1496
+ * - `experimentId` UUID string - ID of experiment in which model(s) exist
1497
+ * - `experimentVersionId` UUID string - ID of experiment version in which model(s) exist
1498
+ * - `predictionId` UUID string - ID of prediction which exists on deployment
1499
+ * - `predictionEnabled` boolean - Are predictions enabled
1500
+ * - `exactName` string - Deployments with exact name. Names may not be unique.
1501
+ * - `nameContains` string - Deployments where name includes this. Names may not be unique
1502
+ * - `experimentType` string - Deployments that have models of the experiment type */
1503
+ filter?: string;
1504
+ /** Number of results per page. Default is 32. */
1505
+ limit?: number;
1506
+ /** Number of rows to skip before getting page[size] */
1507
+ offset?: number;
1508
+ /** Field(s) by which to sort response */
1509
+ sort?: EnumSortDeployments;
1510
+ }, options?: ApiCallOptions): Promise<GetMlDeploymentsHttpResponse>;
1511
+ type GetMlDeploymentsHttpResponse = {
1512
+ data: DeploymentFindResponse;
1513
+ headers: Headers;
1514
+ status: 200;
1515
+ prev?: (options?: ApiCallOptions) => Promise<GetMlDeploymentsHttpResponse>;
1516
+ next?: (options?: ApiCallOptions) => Promise<GetMlDeploymentsHttpResponse>;
1517
+ };
1518
+ type GetMlDeploymentsHttpError = {
1519
+ data: Failure;
1520
+ headers: Headers;
1521
+ status: number;
1522
+ };
1523
+ /**
1524
+ * Create a deployment
1525
+ *
1526
+ * @param body an object with the body content
1527
+ * @throws CreateMlDeploymentHttpError
1528
+ */
1529
+ declare function createMlDeployment(body: DeploymentInput, options?: ApiCallOptions): Promise<CreateMlDeploymentHttpResponse>;
1530
+ type CreateMlDeploymentHttpResponse = {
1531
+ data: DeploymentPostResponse;
1532
+ headers: Headers;
1533
+ status: 201;
1534
+ };
1535
+ type CreateMlDeploymentHttpError = {
1536
+ data: Failure;
1537
+ headers: Headers;
1538
+ status: number;
1539
+ };
1540
+ /**
1541
+ * Delete a deployment
1542
+ *
1543
+ * @param deploymentId ID of the deployment
1544
+ * @throws DeleteMlDeploymentHttpError
1545
+ */
1546
+ declare function deleteMlDeployment(deploymentId: string, options?: ApiCallOptions): Promise<DeleteMlDeploymentHttpResponse>;
1547
+ type DeleteMlDeploymentHttpResponse = {
1548
+ data: void;
1549
+ headers: Headers;
1550
+ status: 204;
1551
+ };
1552
+ type DeleteMlDeploymentHttpError = {
1553
+ data: Failure;
1554
+ headers: Headers;
1555
+ status: number;
1556
+ };
1557
+ /**
1558
+ * Get a deployment
1559
+ *
1560
+ * @param deploymentId ID of the deployment
1561
+ * @throws GetMlDeploymentHttpError
1562
+ */
1563
+ declare function getMlDeployment(deploymentId: string, options?: ApiCallOptions): Promise<GetMlDeploymentHttpResponse>;
1564
+ type GetMlDeploymentHttpResponse = {
1565
+ data: DeploymentGetResponse;
1566
+ headers: Headers;
1567
+ status: 200;
1568
+ };
1569
+ type GetMlDeploymentHttpError = {
1570
+ data: Failure;
1571
+ headers: Headers;
1572
+ status: number;
1573
+ };
1574
+ /**
1575
+ * Update a deployment
1576
+ *
1577
+ * @param deploymentId ID of the deployment
1578
+ * @param body an object with the body content
1579
+ * @throws PatchMlDeploymentHttpError
1580
+ */
1581
+ declare function patchMlDeployment(deploymentId: string, body: DeploymentPatch, options?: ApiCallOptions): Promise<PatchMlDeploymentHttpResponse>;
1582
+ type PatchMlDeploymentHttpResponse = {
1583
+ data: void;
1584
+ headers: Headers;
1585
+ status: 204;
1586
+ };
1587
+ type PatchMlDeploymentHttpError = {
1588
+ data: Failure;
1589
+ headers: Headers;
1590
+ status: number;
1591
+ };
1592
+ /**
1593
+ * Activate the model for this deployment
1594
+ *
1595
+ * @param deploymentId ID of the deployment
1596
+ * @throws ActivateModelsMlDeploymentHttpError
1597
+ */
1598
+ declare function activateModelsMlDeployment(deploymentId: string, options?: ApiCallOptions): Promise<ActivateModelsMlDeploymentHttpResponse>;
1599
+ type ActivateModelsMlDeploymentHttpResponse = {
1600
+ data: void;
1601
+ headers: Headers;
1602
+ status: 204;
1603
+ };
1604
+ type ActivateModelsMlDeploymentHttpError = {
1605
+ data: Failure;
1606
+ headers: Headers;
1607
+ status: number;
1608
+ };
1609
+ /**
1610
+ * Deactivate the model for this deployment
1611
+ *
1612
+ * @param deploymentId ID of the deployment
1613
+ * @throws DeactivateModelsMlDeploymentHttpError
1614
+ */
1615
+ declare function deactivateModelsMlDeployment(deploymentId: string, options?: ApiCallOptions): Promise<DeactivateModelsMlDeploymentHttpResponse>;
1616
+ type DeactivateModelsMlDeploymentHttpResponse = {
1617
+ data: void;
1618
+ headers: Headers;
1619
+ status: 204;
1620
+ };
1621
+ type DeactivateModelsMlDeploymentHttpError = {
1622
+ data: Failure;
1623
+ headers: Headers;
1624
+ status: number;
1625
+ };
1626
+ /**
1627
+ * Retrieves a list of aliases based on filter parameters for a deployment.
1628
+ *
1629
+ * @param deploymentId ID of the deployment
1630
+ * @param query an object with query parameters
1631
+ * @throws GetMlDeploymentAliasesHttpError
1632
+ */
1633
+ declare function getMlDeploymentAliases(deploymentId: string, query: {
1634
+ /** Alias fields by which you can filter responses
1635
+ * - `name` string - Aliases with exact name
1636
+ * - `modelId` UUID string - By model ID
1637
+ * - `mode` enum string - Mode by which alias is set to */
1638
+ filter?: string;
1639
+ /** Number of results per page. Default is 32. */
1640
+ limit?: number;
1641
+ /** Number of rows to skip before getting page[size] */
1642
+ offset?: number;
1643
+ /** Field(s) by which to sort response */
1644
+ sort?: EnumSortAliases;
1645
+ }, options?: ApiCallOptions): Promise<GetMlDeploymentAliasesHttpResponse>;
1646
+ type GetMlDeploymentAliasesHttpResponse = {
1647
+ data: AliasFindResponse;
1648
+ headers: Headers;
1649
+ status: 200;
1650
+ prev?: (options?: ApiCallOptions) => Promise<GetMlDeploymentAliasesHttpResponse>;
1651
+ next?: (options?: ApiCallOptions) => Promise<GetMlDeploymentAliasesHttpResponse>;
1652
+ };
1653
+ type GetMlDeploymentAliasesHttpError = {
1654
+ data: Failure;
1655
+ headers: Headers;
1656
+ status: number;
1657
+ };
1658
+ /**
1659
+ * Creates an alias for a deployment.
1660
+ *
1661
+ * @param deploymentId ID of the deployment
1662
+ * @param body an object with the body content
1663
+ * @throws CreateMlDeploymentAliaseHttpError
1664
+ */
1665
+ declare function createMlDeploymentAliase(deploymentId: string, body: AliasInput, options?: ApiCallOptions): Promise<CreateMlDeploymentAliaseHttpResponse>;
1666
+ type CreateMlDeploymentAliaseHttpResponse = {
1667
+ data: AliasPostResponse;
1668
+ headers: Headers;
1669
+ status: 201;
1670
+ };
1671
+ type CreateMlDeploymentAliaseHttpError = {
1672
+ data: Failure;
1673
+ headers: Headers;
1674
+ status: number;
1675
+ };
1676
+ /**
1677
+ * Delete an alias from a deployment.
1678
+ *
1679
+ * @param deploymentId ID of the deployment
1680
+ * @param aliasId ID of the alias
1681
+ * @throws DeleteMlDeploymentAliaseHttpError
1682
+ */
1683
+ declare function deleteMlDeploymentAliase(deploymentId: string, aliasId: string, options?: ApiCallOptions): Promise<DeleteMlDeploymentAliaseHttpResponse>;
1684
+ type DeleteMlDeploymentAliaseHttpResponse = {
1685
+ data: void;
1686
+ headers: Headers;
1687
+ status: 204;
1688
+ };
1689
+ type DeleteMlDeploymentAliaseHttpError = {
1690
+ data: Failure;
1691
+ headers: Headers;
1692
+ status: number;
1693
+ };
1694
+ /**
1695
+ * Retrieves an alias that exists on the deployment.
1696
+ *
1697
+ * @param deploymentId ID of the deployment
1698
+ * @param aliasId ID of the alias
1699
+ * @throws GetMlDeploymentAliaseHttpError
1700
+ */
1701
+ declare function getMlDeploymentAliase(deploymentId: string, aliasId: string, options?: ApiCallOptions): Promise<GetMlDeploymentAliaseHttpResponse>;
1702
+ type GetMlDeploymentAliaseHttpResponse = {
1703
+ data: AliasGetResponse;
1704
+ headers: Headers;
1705
+ status: 200;
1706
+ };
1707
+ type GetMlDeploymentAliaseHttpError = {
1708
+ data: Failure;
1709
+ headers: Headers;
1710
+ status: number;
1711
+ };
1712
+ /**
1713
+ * Updates an alias for a deployment.
1714
+ *
1715
+ * @param deploymentId ID of the deployment
1716
+ * @param aliasId ID of the alias
1717
+ * @param body an object with the body content
1718
+ * @throws PatchMlDeploymentAliaseHttpError
1719
+ */
1720
+ declare function patchMlDeploymentAliase(deploymentId: string, aliasId: string, body: AliasPatch, options?: ApiCallOptions): Promise<PatchMlDeploymentAliaseHttpResponse>;
1721
+ type PatchMlDeploymentAliaseHttpResponse = {
1722
+ data: void;
1723
+ headers: Headers;
1724
+ status: 204;
1725
+ };
1726
+ type PatchMlDeploymentAliaseHttpError = {
1727
+ data: Failure;
1728
+ headers: Headers;
1729
+ status: number;
1730
+ };
1731
+ /**
1732
+ * Generate predictions in a synchronous request/response
1733
+ *
1734
+ * @param deploymentId ID of the deployment
1735
+ * @param aliasName The name of the ML Deployment Alias that will be used to determine which model should be used to produce predictions
1736
+ * @param query an object with query parameters
1737
+ * @param body an object with the body content
1738
+ * @throws RunMlDeploymentAliaseRealtimePredictionsHttpError
1739
+ */
1740
+ declare function runMlDeploymentAliaseRealtimePredictions(deploymentId: string, aliasName: string, query: {
1741
+ /** If true, reason why a prediction was not produced included response */
1742
+ includeNotPredictedReason?: boolean;
1743
+ /** If true, shap values included in response */
1744
+ includeShap?: boolean;
1745
+ /** If true, source data included in response */
1746
+ includeSource?: boolean;
1747
+ /** The name of the feature in the source data to use as an index in the
1748
+ * response data. The column will be included with its original name
1749
+ * and values. This is intended to allow the caller to join results
1750
+ * with source data. */
1751
+ index?: string;
1752
+ }, body: RealtimePredictionInput, options?: ApiCallOptions): Promise<RunMlDeploymentAliaseRealtimePredictionsHttpResponse>;
1753
+ type RunMlDeploymentAliaseRealtimePredictionsHttpResponse = {
1754
+ data: RealtimePrediction;
1755
+ headers: Headers;
1756
+ status: 200;
1757
+ };
1758
+ type RunMlDeploymentAliaseRealtimePredictionsHttpError = {
1759
+ data: Failure;
1760
+ headers: Headers;
1761
+ status: number;
1762
+ };
1763
+ /**
1764
+ * List batch prediction configurations
1765
+ *
1766
+ * @param deploymentId ID of the deployment
1767
+ * @param query an object with query parameters
1768
+ * @throws GetMlDeploymentBatchPredictionsHttpError
1769
+ */
1770
+ declare function getMlDeploymentBatchPredictions(deploymentId: string, query: {
1771
+ /** Batch prediction fields by which you can filter responses.<br><br>
1772
+ * - `aliasId` UUID string - ID of an alias within the batch prediction
1773
+ * - `createdBy` ID string
1774
+ * - `deploymentId` UUID string - ID of a deployment of a model associated with the experiment
1775
+ * - `experimentId` UUID string - ID of experiment in which model(s) exist
1776
+ * - `experimentVersionId` UUID string - ID of experiment version in which model(s) exist
1777
+ * - `modelId` UUID string - By model ID
1778
+ * - `ownerId` ID string of batch prediction owner */
1779
+ filter?: string;
1780
+ /** Number of results per page. Default is 32. */
1781
+ limit?: number;
1782
+ /** Number of rows to skip before getting page[size] */
1783
+ offset?: number;
1784
+ /** Field(s) by which to sort response */
1785
+ sort?: EnumSortBatchPredictions;
1786
+ }, options?: ApiCallOptions): Promise<GetMlDeploymentBatchPredictionsHttpResponse>;
1787
+ type GetMlDeploymentBatchPredictionsHttpResponse = {
1788
+ data: BatchPredictionFindResponse;
1789
+ headers: Headers;
1790
+ status: 200;
1791
+ prev?: (options?: ApiCallOptions) => Promise<GetMlDeploymentBatchPredictionsHttpResponse>;
1792
+ next?: (options?: ApiCallOptions) => Promise<GetMlDeploymentBatchPredictionsHttpResponse>;
1793
+ };
1794
+ type GetMlDeploymentBatchPredictionsHttpError = {
1795
+ data: Failure;
1796
+ headers: Headers;
1797
+ status: number;
1798
+ };
1799
+ /**
1800
+ * Create a prediction configuration
1801
+ *
1802
+ * @param deploymentId ID of the deployment
1803
+ * @param body an object with the body content
1804
+ * @throws CreateMlDeploymentBatchPredictionHttpError
1805
+ */
1806
+ declare function createMlDeploymentBatchPrediction(deploymentId: string, body: BatchPredictionInput, options?: ApiCallOptions): Promise<CreateMlDeploymentBatchPredictionHttpResponse>;
1807
+ type CreateMlDeploymentBatchPredictionHttpResponse = {
1808
+ data: BatchPredictionPostResponse;
1809
+ headers: Headers;
1810
+ status: 201;
1811
+ };
1812
+ type CreateMlDeploymentBatchPredictionHttpError = {
1813
+ data: Failure;
1814
+ headers: Headers;
1815
+ status: number;
1816
+ };
1817
+ /**
1818
+ * Delete a batch prediction
1819
+ *
1820
+ * @param deploymentId ID of the deployment
1821
+ * @param batchPredictionId ID of the batch prediction
1822
+ * @throws DeleteMlDeploymentBatchPredictionHttpError
1823
+ */
1824
+ declare function deleteMlDeploymentBatchPrediction(deploymentId: string, batchPredictionId: string, options?: ApiCallOptions): Promise<DeleteMlDeploymentBatchPredictionHttpResponse>;
1825
+ type DeleteMlDeploymentBatchPredictionHttpResponse = {
1826
+ data: void;
1827
+ headers: Headers;
1828
+ status: 204;
1829
+ };
1830
+ type DeleteMlDeploymentBatchPredictionHttpError = {
1831
+ data: Failure;
1832
+ headers: Headers;
1833
+ status: number;
1834
+ };
1835
+ /**
1836
+ * Retrieve a batch prediction
1837
+ *
1838
+ * @param deploymentId ID of the deployment
1839
+ * @param batchPredictionId ID of the batch prediction
1840
+ * @throws GetMlDeploymentBatchPredictionHttpError
1841
+ */
1842
+ declare function getMlDeploymentBatchPrediction(deploymentId: string, batchPredictionId: string, options?: ApiCallOptions): Promise<GetMlDeploymentBatchPredictionHttpResponse>;
1843
+ type GetMlDeploymentBatchPredictionHttpResponse = {
1844
+ data: BatchPredictionGetResponse;
1845
+ headers: Headers;
1846
+ status: 200;
1847
+ };
1848
+ type GetMlDeploymentBatchPredictionHttpError = {
1849
+ data: Failure;
1850
+ headers: Headers;
1851
+ status: number;
1852
+ };
1853
+ /**
1854
+ * Updates a batch prediction
1855
+ *
1856
+ * @param deploymentId ID of the deployment
1857
+ * @param batchPredictionId ID of the batch prediction
1858
+ * @param body an object with the body content
1859
+ * @throws PatchMlDeploymentBatchPredictionHttpError
1860
+ */
1861
+ declare function patchMlDeploymentBatchPrediction(deploymentId: string, batchPredictionId: string, body: BatchPredictionPatch, options?: ApiCallOptions): Promise<PatchMlDeploymentBatchPredictionHttpResponse>;
1862
+ type PatchMlDeploymentBatchPredictionHttpResponse = {
1863
+ data: void;
1864
+ headers: Headers;
1865
+ status: 204;
1866
+ };
1867
+ type PatchMlDeploymentBatchPredictionHttpError = {
1868
+ data: Failure;
1869
+ headers: Headers;
1870
+ status: number;
1871
+ };
1872
+ /**
1873
+ * Run a batch prediction
1874
+ *
1875
+ * @param deploymentId ID of the deployment
1876
+ * @param batchPredictionId ID of the batch prediction
1877
+ * @throws PredictMlDeploymentBatchPredictionHttpError
1878
+ */
1879
+ declare function predictMlDeploymentBatchPrediction(deploymentId: string, batchPredictionId: string, options?: ApiCallOptions): Promise<PredictMlDeploymentBatchPredictionHttpResponse>;
1880
+ type PredictMlDeploymentBatchPredictionHttpResponse = {
1881
+ data: BatchPredictionActionResponse;
1882
+ headers: Headers;
1883
+ status: 202;
1884
+ };
1885
+ type PredictMlDeploymentBatchPredictionHttpError = {
1886
+ data: Failure;
1887
+ headers: Headers;
1888
+ status: number;
1889
+ };
1890
+ /**
1891
+ * Deletes the schedule from a batch prediction.
1892
+ *
1893
+ * @param deploymentId ID of the deployment
1894
+ * @param batchPredictionId ID of the batch prediction
1895
+ * @throws DeleteMlDeploymentBatchPredictionScheduleHttpError
1896
+ */
1897
+ declare function deleteMlDeploymentBatchPredictionSchedule(deploymentId: string, batchPredictionId: string, options?: ApiCallOptions): Promise<DeleteMlDeploymentBatchPredictionScheduleHttpResponse>;
1898
+ type DeleteMlDeploymentBatchPredictionScheduleHttpResponse = {
1899
+ data: void;
1900
+ headers: Headers;
1901
+ status: 204;
1902
+ };
1903
+ type DeleteMlDeploymentBatchPredictionScheduleHttpError = {
1904
+ data: Failure;
1905
+ headers: Headers;
1906
+ status: number;
1907
+ };
1908
+ /**
1909
+ * Retrieves the schedule for a batch prediction.
1910
+ *
1911
+ * @param deploymentId ID of the deployment
1912
+ * @param batchPredictionId ID of the batch prediction
1913
+ * @throws GetMlDeploymentBatchPredictionScheduleHttpError
1914
+ */
1915
+ declare function getMlDeploymentBatchPredictionSchedule(deploymentId: string, batchPredictionId: string, options?: ApiCallOptions): Promise<GetMlDeploymentBatchPredictionScheduleHttpResponse>;
1916
+ type GetMlDeploymentBatchPredictionScheduleHttpResponse = {
1917
+ data: BatchPredictionScheduleGetResponse;
1918
+ headers: Headers;
1919
+ status: 200;
1920
+ };
1921
+ type GetMlDeploymentBatchPredictionScheduleHttpError = {
1922
+ data: Failure;
1923
+ headers: Headers;
1924
+ status: number;
1925
+ };
1926
+ /**
1927
+ * Updates the schedule for a batch prediction.
1928
+ *
1929
+ * @param deploymentId ID of the deployment
1930
+ * @param batchPredictionId ID of the batch prediction
1931
+ * @param body an object with the body content
1932
+ * @throws UpdateMlDeploymentBatchPredictionScheduleHttpError
1933
+ */
1934
+ declare function updateMlDeploymentBatchPredictionSchedule(deploymentId: string, batchPredictionId: string, body: BatchPredictionSchedulePatch, options?: ApiCallOptions): Promise<UpdateMlDeploymentBatchPredictionScheduleHttpResponse>;
1935
+ type UpdateMlDeploymentBatchPredictionScheduleHttpResponse = {
1936
+ data: void;
1937
+ headers: Headers;
1938
+ status: 204;
1939
+ };
1940
+ type UpdateMlDeploymentBatchPredictionScheduleHttpError = {
1941
+ data: Failure;
1942
+ headers: Headers;
1943
+ status: number;
1944
+ };
1945
+ /**
1946
+ * Adds a schedule to a batch prediction.
1947
+ *
1948
+ * @param deploymentId ID of the deployment
1949
+ * @param batchPredictionId ID of the batch prediction
1950
+ * @param body an object with the body content
1951
+ * @throws SetMlDeploymentBatchPredictionScheduleHttpError
1952
+ */
1953
+ declare function setMlDeploymentBatchPredictionSchedule(deploymentId: string, batchPredictionId: string, body: BatchPredictionScheduleInput, options?: ApiCallOptions): Promise<SetMlDeploymentBatchPredictionScheduleHttpResponse>;
1954
+ type SetMlDeploymentBatchPredictionScheduleHttpResponse = {
1955
+ data: BatchPredictionSchedulePutResponse;
1956
+ headers: Headers;
1957
+ status: 201;
1958
+ };
1959
+ type SetMlDeploymentBatchPredictionScheduleHttpError = {
1960
+ data: Failure;
1961
+ headers: Headers;
1962
+ status: number;
1963
+ };
1964
+ /**
1965
+ * Add deployed models for this deployment
1966
+ *
1967
+ * @param deploymentId ID of the deployment
1968
+ * @param body an object with the body content
1969
+ * @throws AddMlDeploymentModelsHttpError
1970
+ */
1971
+ declare function addMlDeploymentModels(deploymentId: string, body: DeployedModelsInput, options?: ApiCallOptions): Promise<AddMlDeploymentModelsHttpResponse>;
1972
+ type AddMlDeploymentModelsHttpResponse = {
1973
+ data: void;
1974
+ headers: Headers;
1975
+ status: 204;
1976
+ };
1977
+ type AddMlDeploymentModelsHttpError = {
1978
+ data: Failure;
1979
+ headers: Headers;
1980
+ status: number;
1981
+ };
1982
+ /**
1983
+ * Remove deployed models from this deployment
1984
+ *
1985
+ * @param deploymentId ID of the deployment
1986
+ * @param body an object with the body content
1987
+ * @throws RemoveMlDeploymentModelsHttpError
1988
+ */
1989
+ declare function removeMlDeploymentModels(deploymentId: string, body: DeployedModelsInput, options?: ApiCallOptions): Promise<RemoveMlDeploymentModelsHttpResponse>;
1990
+ type RemoveMlDeploymentModelsHttpResponse = {
1991
+ data: void;
1992
+ headers: Headers;
1993
+ status: 204;
1994
+ };
1995
+ type RemoveMlDeploymentModelsHttpError = {
1996
+ data: Failure;
1997
+ headers: Headers;
1998
+ status: number;
1999
+ };
2000
+ /**
2001
+ * Generate predictions in a synchronous request/response
2002
+ *
2003
+ * @param deploymentId ID of the deployment
2004
+ * @param query an object with query parameters
2005
+ * @param body an object with the body content
2006
+ * @throws RunMlDeploymentRealtimePredictionsHttpError
2007
+ */
2008
+ declare function runMlDeploymentRealtimePredictions(deploymentId: string, query: {
2009
+ /** If true, reason why a prediction was not produced included response */
2010
+ includeNotPredictedReason?: boolean;
2011
+ /** If true, shapley values included in response */
2012
+ includeShap?: boolean;
2013
+ /** If true, source data included in response */
2014
+ includeSource?: boolean;
2015
+ /** The name of the feature in the source data to use as an index in the
2016
+ * response data. The column will be included with its original name
2017
+ * and values. This is intended to allow the caller to join results
2018
+ * with source data. */
2019
+ index?: string;
2020
+ }, body: RealtimePredictionInput, options?: ApiCallOptions): Promise<RunMlDeploymentRealtimePredictionsHttpResponse>;
2021
+ type RunMlDeploymentRealtimePredictionsHttpResponse = {
2022
+ data: RealtimePrediction;
2023
+ headers: Headers;
2024
+ status: 200;
2025
+ };
2026
+ type RunMlDeploymentRealtimePredictionsHttpError = {
2027
+ data: Failure;
2028
+ headers: Headers;
2029
+ status: number;
2030
+ };
2031
+ /**
2032
+ * Retrieves a list of experiments based on provided filter and sort
2033
+ * parameters.
2034
+ * @example
2035
+ * getMlExperiments(
2036
+ * {
2037
+ * filter: "`filter=ownerId eq UUID and experimentVersionId eq UUID`",
2038
+ * limit: 10,
2039
+ * offset: 32
2040
+ * }
2041
+ * )
2042
+ *
2043
+ * @param query an object with query parameters
2044
+ * @throws GetMlExperimentsHttpError
2045
+ */
2046
+ declare function getMlExperiments(query: {
2047
+ /** Experiment fields by which you can filter responses within this tenant
2048
+ * - `ownerId` ID string - ID of the owner/user that created the experiment
2049
+ * - `spaceId` ID string (or empty string for personal space) - ID of the space where the experiment is saved.
2050
+ * - `experimentVersionId` UUID string - ID of an experiment version in the experiment
2051
+ * - `modelId` UUID string - ID of a model associated with the experiment
2052
+ * - `deploymentId` UUID string - ID of a deployment of a model associated with the experiment */
2053
+ filter?: string;
2054
+ /** Number of results per page. Default is 32. */
2055
+ limit?: number;
2056
+ /** Number of rows to skip before getting page[size] */
2057
+ offset?: number;
2058
+ /** Field(s) by which to sort response */
2059
+ sort?: EnumSortExperiments;
2060
+ }, options?: ApiCallOptions): Promise<GetMlExperimentsHttpResponse>;
2061
+ type GetMlExperimentsHttpResponse = {
2062
+ data: ExperimentFindResponse;
2063
+ headers: Headers;
2064
+ status: 200;
2065
+ prev?: (options?: ApiCallOptions) => Promise<GetMlExperimentsHttpResponse>;
2066
+ next?: (options?: ApiCallOptions) => Promise<GetMlExperimentsHttpResponse>;
2067
+ };
2068
+ type GetMlExperimentsHttpError = {
2069
+ data: Failure;
2070
+ headers: Headers;
2071
+ status: number;
2072
+ };
2073
+ /**
2074
+ * Create an experiment
2075
+ *
2076
+ * @param body an object with the body content
2077
+ * @throws CreateMlExperimentHttpError
2078
+ */
2079
+ declare function createMlExperiment(body: ExperimentInput, options?: ApiCallOptions): Promise<CreateMlExperimentHttpResponse>;
2080
+ type CreateMlExperimentHttpResponse = {
2081
+ data: ExperimentPostResponse;
2082
+ headers: Headers;
2083
+ status: 201;
2084
+ };
2085
+ type CreateMlExperimentHttpError = {
2086
+ data: Failure;
2087
+ headers: Headers;
2088
+ status: number;
2089
+ };
2090
+ /**
2091
+ * Delete an experiment
2092
+ *
2093
+ * @param experimentId ID of the experiment
2094
+ * @throws DeleteMlExperimentHttpError
2095
+ */
2096
+ declare function deleteMlExperiment(experimentId: string, options?: ApiCallOptions): Promise<DeleteMlExperimentHttpResponse>;
2097
+ type DeleteMlExperimentHttpResponse = {
2098
+ data: void;
2099
+ headers: Headers;
2100
+ status: 204;
2101
+ };
2102
+ type DeleteMlExperimentHttpError = {
2103
+ data: Failure;
2104
+ headers: Headers;
2105
+ status: number;
2106
+ };
2107
+ /**
2108
+ * Get an experiment
2109
+ *
2110
+ * @param experimentId ID of the experiment
2111
+ * @throws GetMlExperimentHttpError
2112
+ */
2113
+ declare function getMlExperiment(experimentId: string, options?: ApiCallOptions): Promise<GetMlExperimentHttpResponse>;
2114
+ type GetMlExperimentHttpResponse = {
2115
+ data: ExperimentGetResponse;
2116
+ headers: Headers;
2117
+ status: 200;
2118
+ };
2119
+ type GetMlExperimentHttpError = {
2120
+ data: Failure;
2121
+ headers: Headers;
2122
+ status: number;
2123
+ };
2124
+ /**
2125
+ * Update an experiment
2126
+ *
2127
+ * @param experimentId ID of the experiment
2128
+ * @param body an object with the body content
2129
+ * @throws PatchMlExperimentHttpError
2130
+ */
2131
+ declare function patchMlExperiment(experimentId: string, body: ExperimentPatch, options?: ApiCallOptions): Promise<PatchMlExperimentHttpResponse>;
2132
+ type PatchMlExperimentHttpResponse = {
2133
+ data: void;
2134
+ headers: Headers;
2135
+ status: 204;
2136
+ };
2137
+ type PatchMlExperimentHttpError = {
2138
+ data: Failure;
2139
+ headers: Headers;
2140
+ status: number;
2141
+ };
2142
+ /**
2143
+ * Returns model recommendations for a specified experiment, including the best-performing, fastest, and most accurate models based on evaluation metrics.
2144
+ *
2145
+ * @param experimentId ID of the experiment
2146
+ * @param body an object with the body content
2147
+ * @throws RecommendModelsMlExperimentHttpError
2148
+ */
2149
+ declare function recommendModelsMlExperiment(experimentId: string, body: ExperimentModelRecommendationFilter, options?: ApiCallOptions): Promise<RecommendModelsMlExperimentHttpResponse>;
2150
+ type RecommendModelsMlExperimentHttpResponse = {
2151
+ data: ExperimentModelRecommendationPostResponse;
2152
+ headers: Headers;
2153
+ status: 200;
2154
+ };
2155
+ type RecommendModelsMlExperimentHttpError = {
2156
+ data: Failure;
2157
+ headers: Headers;
2158
+ status: number;
2159
+ };
2160
+ /**
2161
+ * List models
2162
+ *
2163
+ * @param experimentId ID of the experiment
2164
+ * @param query an object with query parameters
2165
+ * @throws GetMlExperimentModelsHttpError
2166
+ */
2167
+ declare function getMlExperimentModels(experimentId: string, query: {
2168
+ /** Model fields you can filter by:<br><br>
2169
+ *
2170
+ * - `experimentVersionId` UUID string - Find by experiment version ID
2171
+ * - `batchNum` UUID string - Search by batch number
2172
+ * - `isHpo` boolean - Is hyperparameter optimization used?
2173
+ * - `isMetrics` boolean - Are metrics for regression, binary, or multiclass are used?
2174
+ * - `id` UUID string - Find by model ID
2175
+ * - `algorithm` enum string - Find by algorithm<br><br>
2176
+ *
2177
+ * - Valid algorithms: catboost_classifier, catboost_regression,
2178
+ * elasticnet_regression, gaussian_nb, kneighbors_classifier,
2179
+ * lasso_regression, lasso, lgbm_classifier, lgbm_regression,
2180
+ * linear_regression, logistic_regression, random_forest_classifier,
2181
+ * random_forest_regression, sgd_regression, xgb_classifier,
2182
+ * xgb_regression<br><br>
2183
+ *
2184
+ * - `status` enum string - find by status<br><br>
2185
+ * - Valid statuses: pending, training_requested, training_done, ready, error<br><br>
2186
+ * - `hasDeployment` boolean - Models that are part of a deployment
2187
+ * - `nameContains` string - Models with name includes this case-insensitive string
2188
+ * - `exactName` string - Models with exact name. Model names may not be unique
2189
+ * - `samplingRatio` number - Find models by sampling ratio
2190
+ * - `modelState` enum string - State by which to find models<br><br>
2191
+ * - Valid states: `pending, enabled, disabled, inactive` */
2192
+ filter?: string;
2193
+ /** Number of results per page. Default is 32. */
2194
+ limit?: number;
2195
+ /** Number of rows to skip before getting page[size] */
2196
+ offset?: number;
2197
+ /** Field(s) by which to sort response */
2198
+ sort?: EnumSortModels;
2199
+ }, options?: ApiCallOptions): Promise<GetMlExperimentModelsHttpResponse>;
2200
+ type GetMlExperimentModelsHttpResponse = {
2201
+ data: ModelFindResponse;
2202
+ headers: Headers;
2203
+ status: 200;
2204
+ prev?: (options?: ApiCallOptions) => Promise<GetMlExperimentModelsHttpResponse>;
2205
+ next?: (options?: ApiCallOptions) => Promise<GetMlExperimentModelsHttpResponse>;
2206
+ };
2207
+ type GetMlExperimentModelsHttpError = {
2208
+ data: Failure;
2209
+ headers: Headers;
2210
+ status: number;
2211
+ };
2212
+ /**
2213
+ * Get a model
2214
+ *
2215
+ * @param experimentId ID of the experiment
2216
+ * @param modelId ID of the model
2217
+ * @throws GetMlExperimentModelHttpError
2218
+ */
2219
+ declare function getMlExperimentModel(experimentId: string, modelId: string, options?: ApiCallOptions): Promise<GetMlExperimentModelHttpResponse>;
2220
+ type GetMlExperimentModelHttpResponse = {
2221
+ data: ModelGetResponse;
2222
+ headers: Headers;
2223
+ status: 200;
2224
+ };
2225
+ type GetMlExperimentModelHttpError = {
2226
+ data: Failure;
2227
+ headers: Headers;
2228
+ status: number;
2229
+ };
2230
+ /**
2231
+ * List experiment versions
2232
+ *
2233
+ * @param experimentId ID of the experiment
2234
+ * @param query an object with query parameters
2235
+ * @throws GetMlExperimentVersionsHttpError
2236
+ */
2237
+ declare function getMlExperimentVersions(experimentId: string, query: {
2238
+ /** Experiment version filter options
2239
+ * - `isRunning` boolean - Is the experiment version running (training models)?
2240
+ * - `isSettled` boolean - Is the experiment version settled?
2241
+ * - `status` enum string - Status to filter by. Omit to get models of any status.
2242
+ * - Valid statuses: pending, ready, error, cancelled
2243
+ * - `modelId` UUID string - ID of a model associated with the experiment */
2244
+ filter?: string;
2245
+ /** Number of results per page. Default is 32. */
2246
+ limit?: number;
2247
+ /** Number of rows to skip before getting page[size] */
2248
+ offset?: number;
2249
+ /** Field(s) by which to sort response */
2250
+ sort?: EnumSortExperimentVersions;
2251
+ }, options?: ApiCallOptions): Promise<GetMlExperimentVersionsHttpResponse>;
2252
+ type GetMlExperimentVersionsHttpResponse = {
2253
+ data: ExperimentVersionFindResponse;
2254
+ headers: Headers;
2255
+ status: 200;
2256
+ prev?: (options?: ApiCallOptions) => Promise<GetMlExperimentVersionsHttpResponse>;
2257
+ next?: (options?: ApiCallOptions) => Promise<GetMlExperimentVersionsHttpResponse>;
2258
+ };
2259
+ type GetMlExperimentVersionsHttpError = {
2260
+ data: Failure;
2261
+ headers: Headers;
2262
+ status: number;
2263
+ };
2264
+ /**
2265
+ * Creates an experiment version.
2266
+ * Poll this version and check its `status` field to determine when models
2267
+ * are finished training.
2268
+ *
2269
+ * @param experimentId ID of the experiment
2270
+ * @param body an object with the body content
2271
+ * @throws CreateMlExperimentVersionHttpError
2272
+ */
2273
+ declare function createMlExperimentVersion(experimentId: string, body: ExperimentVersionInput, options?: ApiCallOptions): Promise<CreateMlExperimentVersionHttpResponse>;
2274
+ type CreateMlExperimentVersionHttpResponse = {
2275
+ data: ExperimentVersionPostResponse;
2276
+ headers: Headers;
2277
+ status: 201;
2278
+ };
2279
+ type CreateMlExperimentVersionHttpError = {
2280
+ data: Failure;
2281
+ headers: Headers;
2282
+ status: number;
2283
+ };
2284
+ /**
2285
+ * Delete an experiment version
2286
+ *
2287
+ * @param experimentId ID of the experiment
2288
+ * @param experimentVersionId ID of the experiment version
2289
+ * @throws DeleteMlExperimentVersionHttpError
2290
+ */
2291
+ declare function deleteMlExperimentVersion(experimentId: string, experimentVersionId: string, options?: ApiCallOptions): Promise<DeleteMlExperimentVersionHttpResponse>;
2292
+ type DeleteMlExperimentVersionHttpResponse = {
2293
+ data: void;
2294
+ headers: Headers;
2295
+ status: 204;
2296
+ };
2297
+ type DeleteMlExperimentVersionHttpError = {
2298
+ data: Failure;
2299
+ headers: Headers;
2300
+ status: number;
2301
+ };
2302
+ /**
2303
+ * Get an experiment version
2304
+ *
2305
+ * @param experimentId ID of the experiment
2306
+ * @param experimentVersionId ID of the experiment version
2307
+ * @throws GetMlExperimentVersionHttpError
2308
+ */
2309
+ declare function getMlExperimentVersion(experimentId: string, experimentVersionId: string, options?: ApiCallOptions): Promise<GetMlExperimentVersionHttpResponse>;
2310
+ type GetMlExperimentVersionHttpResponse = {
2311
+ data: ExperimentVersionGetResponse;
2312
+ headers: Headers;
2313
+ status: 200;
2314
+ };
2315
+ type GetMlExperimentVersionHttpError = {
2316
+ data: Failure;
2317
+ headers: Headers;
2318
+ status: number;
2319
+ };
2320
+ /**
2321
+ * Update an experiment version
2322
+ *
2323
+ * @param experimentId ID of the experiment
2324
+ * @param experimentVersionId ID of the experiment version
2325
+ * @param body an object with the body content
2326
+ * @throws PatchMlExperimentVersionHttpError
2327
+ */
2328
+ declare function patchMlExperimentVersion(experimentId: string, experimentVersionId: string, body: ExperimentVersionPatch, options?: ApiCallOptions): Promise<PatchMlExperimentVersionHttpResponse>;
2329
+ type PatchMlExperimentVersionHttpResponse = {
2330
+ data: void;
2331
+ headers: Headers;
2332
+ status: 204;
2333
+ };
2334
+ type PatchMlExperimentVersionHttpError = {
2335
+ data: Failure;
2336
+ headers: Headers;
2337
+ status: number;
2338
+ };
2339
+ /**
2340
+ * Cancels jobs for an experiment version or batch prediction.
2341
+ *
2342
+ * @param corrType The type of a resource paired with a corrId
2343
+ * @param corrId The ID of a correlated resource of corrType
2344
+ * @throws CancelMlJobHttpError
2345
+ */
2346
+ declare function cancelMlJob(corrType: string, corrId: string, options?: ApiCallOptions): Promise<CancelMlJobHttpResponse>;
2347
+ type CancelMlJobHttpResponse = {
2348
+ data: void;
2349
+ headers: Headers;
2350
+ status: 204;
2351
+ };
2352
+ type CancelMlJobHttpError = {
2353
+ data: Failure;
2354
+ headers: Headers;
2355
+ status: number;
2356
+ };
2357
+ /**
2358
+ * Starts creating profile insights for an experiment dataset.
2359
+ * This is an asynchronous operation. A `202 Accepted` response indicates
2360
+ * that the process has started successfully. Use the link in the response
2361
+ * to check the status.
2362
+ *
2363
+ * @param body an object with the body content
2364
+ * @throws CreateMlProfileInsightHttpError
2365
+ */
2366
+ declare function createMlProfileInsight(body: ProfileInsightsInput, options?: ApiCallOptions): Promise<CreateMlProfileInsightHttpResponse>;
2367
+ type CreateMlProfileInsightHttpResponse = {
2368
+ data: ProfileInsightsGetResponse;
2369
+ headers: Headers;
2370
+ status: 200 | 202;
2371
+ };
2372
+ type CreateMlProfileInsightHttpError = {
2373
+ data: Failure;
2374
+ headers: Headers;
2375
+ status: number;
2376
+ };
2377
+ /**
2378
+ * Retrieves profile insights for the specified dataset. If you received a
2379
+ * `202 Accepted` response from `POST /ml/profile-insights`, poll this
2380
+ * endpoint until a `200 OK` response with `ready` status is returned.
2381
+ *
2382
+ * @param dataSetId The Qlik catalog dataset ID
2383
+ * @param query an object with query parameters
2384
+ * @throws GetMlProfileInsightWithQueryHttpError
2385
+ */
2386
+ declare function getMlProfileInsightWithQuery(dataSetId: string, query: {
2387
+ /** The optional experiment type for profile-insights GET requests after
2388
+ * this is known. */
2389
+ experimentType?: ExperimentType;
2390
+ /** The optional experimentVersionId query parameter for profile-insights
2391
+ * GET requests. When provided after a version has been trained, it gets
2392
+ * the profile insights snapshot used in previous versions rather than
2393
+ * new results. */
2394
+ experimentVersionId?: string;
2395
+ /** The optional target feature for profile-insights GET requests after this
2396
+ * is known. */
2397
+ target?: string;
2398
+ }, options?: ApiCallOptions): Promise<GetMlProfileInsightWithQueryHttpResponse>;
2399
+ type GetMlProfileInsightWithQueryHttpResponse = {
2400
+ data: ProfileInsightsGetResponse;
2401
+ headers: Headers;
2402
+ status: 200;
2403
+ };
2404
+ type GetMlProfileInsightWithQueryHttpError = {
2405
+ data: Failure;
2406
+ headers: Headers;
2407
+ status: number;
2408
+ };
2409
+ /**
2410
+ * Retrieves profile insights for the specified dataset. If you received a
2411
+ * `202 Accepted` response from `POST /ml/profile-insights`, poll this
2412
+ * endpoint until a `200 OK` response with `ready` status is returned.
2413
+ *
2414
+ * @param dataSetId The Qlik catalog dataset ID
2415
+ * @throws GetMlProfileInsightHttpError
2416
+ */
2417
+ declare function getMlProfileInsight(dataSetId: string, options?: ApiCallOptions): Promise<GetMlProfileInsightHttpResponse>;
2418
+ type GetMlProfileInsightHttpResponse = {
2419
+ data: ProfileInsightsGetResponse;
2420
+ headers: Headers;
2421
+ status: 200;
2422
+ };
2423
+ type GetMlProfileInsightHttpError = {
2424
+ data: Failure;
2425
+ headers: Headers;
2426
+ status: number;
2427
+ };
2428
+ /**
2429
+ * Clears the cache for ml api requests.
2430
+ */
2431
+ declare function clearCache(): void;
2432
+ type MlAPI = {
2433
+ /**
2434
+ * List deployments
2435
+ * @example
2436
+ * getMlDeployments(
2437
+ * {
2438
+ * filter: "`filter=spaceId eq \"UUID\" and predictionEnabled eq \"true\" and nameContains co \"abc\"`",
2439
+ * limit: 10,
2440
+ * offset: 32
2441
+ * }
2442
+ * )
2443
+ *
2444
+ * @param query an object with query parameters
2445
+ * @throws GetMlDeploymentsHttpError
2446
+ */
2447
+ getMlDeployments: typeof getMlDeployments;
2448
+ /**
2449
+ * Create a deployment
2450
+ *
2451
+ * @param body an object with the body content
2452
+ * @throws CreateMlDeploymentHttpError
2453
+ */
2454
+ createMlDeployment: typeof createMlDeployment;
2455
+ /**
2456
+ * Delete a deployment
2457
+ *
2458
+ * @param deploymentId ID of the deployment
2459
+ * @throws DeleteMlDeploymentHttpError
2460
+ */
2461
+ deleteMlDeployment: typeof deleteMlDeployment;
2462
+ /**
2463
+ * Get a deployment
2464
+ *
2465
+ * @param deploymentId ID of the deployment
2466
+ * @throws GetMlDeploymentHttpError
2467
+ */
2468
+ getMlDeployment: typeof getMlDeployment;
2469
+ /**
2470
+ * Update a deployment
2471
+ *
2472
+ * @param deploymentId ID of the deployment
2473
+ * @param body an object with the body content
2474
+ * @throws PatchMlDeploymentHttpError
2475
+ */
2476
+ patchMlDeployment: typeof patchMlDeployment;
2477
+ /**
2478
+ * Activate the model for this deployment
2479
+ *
2480
+ * @param deploymentId ID of the deployment
2481
+ * @throws ActivateModelsMlDeploymentHttpError
2482
+ */
2483
+ activateModelsMlDeployment: typeof activateModelsMlDeployment;
2484
+ /**
2485
+ * Deactivate the model for this deployment
2486
+ *
2487
+ * @param deploymentId ID of the deployment
2488
+ * @throws DeactivateModelsMlDeploymentHttpError
2489
+ */
2490
+ deactivateModelsMlDeployment: typeof deactivateModelsMlDeployment;
2491
+ /**
2492
+ * Retrieves a list of aliases based on filter parameters for a deployment.
2493
+ *
2494
+ * @param deploymentId ID of the deployment
2495
+ * @param query an object with query parameters
2496
+ * @throws GetMlDeploymentAliasesHttpError
2497
+ */
2498
+ getMlDeploymentAliases: typeof getMlDeploymentAliases;
2499
+ /**
2500
+ * Creates an alias for a deployment.
2501
+ *
2502
+ * @param deploymentId ID of the deployment
2503
+ * @param body an object with the body content
2504
+ * @throws CreateMlDeploymentAliaseHttpError
2505
+ */
2506
+ createMlDeploymentAliase: typeof createMlDeploymentAliase;
2507
+ /**
2508
+ * Delete an alias from a deployment.
2509
+ *
2510
+ * @param deploymentId ID of the deployment
2511
+ * @param aliasId ID of the alias
2512
+ * @throws DeleteMlDeploymentAliaseHttpError
2513
+ */
2514
+ deleteMlDeploymentAliase: typeof deleteMlDeploymentAliase;
2515
+ /**
2516
+ * Retrieves an alias that exists on the deployment.
2517
+ *
2518
+ * @param deploymentId ID of the deployment
2519
+ * @param aliasId ID of the alias
2520
+ * @throws GetMlDeploymentAliaseHttpError
2521
+ */
2522
+ getMlDeploymentAliase: typeof getMlDeploymentAliase;
2523
+ /**
2524
+ * Updates an alias for a deployment.
2525
+ *
2526
+ * @param deploymentId ID of the deployment
2527
+ * @param aliasId ID of the alias
2528
+ * @param body an object with the body content
2529
+ * @throws PatchMlDeploymentAliaseHttpError
2530
+ */
2531
+ patchMlDeploymentAliase: typeof patchMlDeploymentAliase;
2532
+ /**
2533
+ * Generate predictions in a synchronous request/response
2534
+ *
2535
+ * @param deploymentId ID of the deployment
2536
+ * @param aliasName The name of the ML Deployment Alias that will be used to determine which model should be used to produce predictions
2537
+ * @param query an object with query parameters
2538
+ * @param body an object with the body content
2539
+ * @throws RunMlDeploymentAliaseRealtimePredictionsHttpError
2540
+ */
2541
+ runMlDeploymentAliaseRealtimePredictions: typeof runMlDeploymentAliaseRealtimePredictions;
2542
+ /**
2543
+ * List batch prediction configurations
2544
+ *
2545
+ * @param deploymentId ID of the deployment
2546
+ * @param query an object with query parameters
2547
+ * @throws GetMlDeploymentBatchPredictionsHttpError
2548
+ */
2549
+ getMlDeploymentBatchPredictions: typeof getMlDeploymentBatchPredictions;
2550
+ /**
2551
+ * Create a prediction configuration
2552
+ *
2553
+ * @param deploymentId ID of the deployment
2554
+ * @param body an object with the body content
2555
+ * @throws CreateMlDeploymentBatchPredictionHttpError
2556
+ */
2557
+ createMlDeploymentBatchPrediction: typeof createMlDeploymentBatchPrediction;
2558
+ /**
2559
+ * Delete a batch prediction
2560
+ *
2561
+ * @param deploymentId ID of the deployment
2562
+ * @param batchPredictionId ID of the batch prediction
2563
+ * @throws DeleteMlDeploymentBatchPredictionHttpError
2564
+ */
2565
+ deleteMlDeploymentBatchPrediction: typeof deleteMlDeploymentBatchPrediction;
2566
+ /**
2567
+ * Retrieve a batch prediction
2568
+ *
2569
+ * @param deploymentId ID of the deployment
2570
+ * @param batchPredictionId ID of the batch prediction
2571
+ * @throws GetMlDeploymentBatchPredictionHttpError
2572
+ */
2573
+ getMlDeploymentBatchPrediction: typeof getMlDeploymentBatchPrediction;
2574
+ /**
2575
+ * Updates a batch prediction
2576
+ *
2577
+ * @param deploymentId ID of the deployment
2578
+ * @param batchPredictionId ID of the batch prediction
2579
+ * @param body an object with the body content
2580
+ * @throws PatchMlDeploymentBatchPredictionHttpError
2581
+ */
2582
+ patchMlDeploymentBatchPrediction: typeof patchMlDeploymentBatchPrediction;
2583
+ /**
2584
+ * Run a batch prediction
2585
+ *
2586
+ * @param deploymentId ID of the deployment
2587
+ * @param batchPredictionId ID of the batch prediction
2588
+ * @throws PredictMlDeploymentBatchPredictionHttpError
2589
+ */
2590
+ predictMlDeploymentBatchPrediction: typeof predictMlDeploymentBatchPrediction;
2591
+ /**
2592
+ * Deletes the schedule from a batch prediction.
2593
+ *
2594
+ * @param deploymentId ID of the deployment
2595
+ * @param batchPredictionId ID of the batch prediction
2596
+ * @throws DeleteMlDeploymentBatchPredictionScheduleHttpError
2597
+ */
2598
+ deleteMlDeploymentBatchPredictionSchedule: typeof deleteMlDeploymentBatchPredictionSchedule;
2599
+ /**
2600
+ * Retrieves the schedule for a batch prediction.
2601
+ *
2602
+ * @param deploymentId ID of the deployment
2603
+ * @param batchPredictionId ID of the batch prediction
2604
+ * @throws GetMlDeploymentBatchPredictionScheduleHttpError
2605
+ */
2606
+ getMlDeploymentBatchPredictionSchedule: typeof getMlDeploymentBatchPredictionSchedule;
2607
+ /**
2608
+ * Updates the schedule for a batch prediction.
2609
+ *
2610
+ * @param deploymentId ID of the deployment
2611
+ * @param batchPredictionId ID of the batch prediction
2612
+ * @param body an object with the body content
2613
+ * @throws UpdateMlDeploymentBatchPredictionScheduleHttpError
2614
+ */
2615
+ updateMlDeploymentBatchPredictionSchedule: typeof updateMlDeploymentBatchPredictionSchedule;
2616
+ /**
2617
+ * Adds a schedule to a batch prediction.
2618
+ *
2619
+ * @param deploymentId ID of the deployment
2620
+ * @param batchPredictionId ID of the batch prediction
2621
+ * @param body an object with the body content
2622
+ * @throws SetMlDeploymentBatchPredictionScheduleHttpError
2623
+ */
2624
+ setMlDeploymentBatchPredictionSchedule: typeof setMlDeploymentBatchPredictionSchedule;
2625
+ /**
2626
+ * Add deployed models for this deployment
2627
+ *
2628
+ * @param deploymentId ID of the deployment
2629
+ * @param body an object with the body content
2630
+ * @throws AddMlDeploymentModelsHttpError
2631
+ */
2632
+ addMlDeploymentModels: typeof addMlDeploymentModels;
2633
+ /**
2634
+ * Remove deployed models from this deployment
2635
+ *
2636
+ * @param deploymentId ID of the deployment
2637
+ * @param body an object with the body content
2638
+ * @throws RemoveMlDeploymentModelsHttpError
2639
+ */
2640
+ removeMlDeploymentModels: typeof removeMlDeploymentModels;
2641
+ /**
2642
+ * Generate predictions in a synchronous request/response
2643
+ *
2644
+ * @param deploymentId ID of the deployment
2645
+ * @param query an object with query parameters
2646
+ * @param body an object with the body content
2647
+ * @throws RunMlDeploymentRealtimePredictionsHttpError
2648
+ */
2649
+ runMlDeploymentRealtimePredictions: typeof runMlDeploymentRealtimePredictions;
2650
+ /**
2651
+ * Retrieves a list of experiments based on provided filter and sort
2652
+ * parameters.
2653
+ * @example
2654
+ * getMlExperiments(
2655
+ * {
2656
+ * filter: "`filter=ownerId eq UUID and experimentVersionId eq UUID`",
2657
+ * limit: 10,
2658
+ * offset: 32
2659
+ * }
2660
+ * )
2661
+ *
2662
+ * @param query an object with query parameters
2663
+ * @throws GetMlExperimentsHttpError
2664
+ */
2665
+ getMlExperiments: typeof getMlExperiments;
2666
+ /**
2667
+ * Create an experiment
2668
+ *
2669
+ * @param body an object with the body content
2670
+ * @throws CreateMlExperimentHttpError
2671
+ */
2672
+ createMlExperiment: typeof createMlExperiment;
2673
+ /**
2674
+ * Delete an experiment
2675
+ *
2676
+ * @param experimentId ID of the experiment
2677
+ * @throws DeleteMlExperimentHttpError
2678
+ */
2679
+ deleteMlExperiment: typeof deleteMlExperiment;
2680
+ /**
2681
+ * Get an experiment
2682
+ *
2683
+ * @param experimentId ID of the experiment
2684
+ * @throws GetMlExperimentHttpError
2685
+ */
2686
+ getMlExperiment: typeof getMlExperiment;
2687
+ /**
2688
+ * Update an experiment
2689
+ *
2690
+ * @param experimentId ID of the experiment
2691
+ * @param body an object with the body content
2692
+ * @throws PatchMlExperimentHttpError
2693
+ */
2694
+ patchMlExperiment: typeof patchMlExperiment;
2695
+ /**
2696
+ * Returns model recommendations for a specified experiment, including the best-performing, fastest, and most accurate models based on evaluation metrics.
2697
+ *
2698
+ * @param experimentId ID of the experiment
2699
+ * @param body an object with the body content
2700
+ * @throws RecommendModelsMlExperimentHttpError
2701
+ */
2702
+ recommendModelsMlExperiment: typeof recommendModelsMlExperiment;
2703
+ /**
2704
+ * List models
2705
+ *
2706
+ * @param experimentId ID of the experiment
2707
+ * @param query an object with query parameters
2708
+ * @throws GetMlExperimentModelsHttpError
2709
+ */
2710
+ getMlExperimentModels: typeof getMlExperimentModels;
2711
+ /**
2712
+ * Get a model
2713
+ *
2714
+ * @param experimentId ID of the experiment
2715
+ * @param modelId ID of the model
2716
+ * @throws GetMlExperimentModelHttpError
2717
+ */
2718
+ getMlExperimentModel: typeof getMlExperimentModel;
2719
+ /**
2720
+ * List experiment versions
2721
+ *
2722
+ * @param experimentId ID of the experiment
2723
+ * @param query an object with query parameters
2724
+ * @throws GetMlExperimentVersionsHttpError
2725
+ */
2726
+ getMlExperimentVersions: typeof getMlExperimentVersions;
2727
+ /**
2728
+ * Creates an experiment version.
2729
+ * Poll this version and check its `status` field to determine when models
2730
+ * are finished training.
2731
+ *
2732
+ * @param experimentId ID of the experiment
2733
+ * @param body an object with the body content
2734
+ * @throws CreateMlExperimentVersionHttpError
2735
+ */
2736
+ createMlExperimentVersion: typeof createMlExperimentVersion;
2737
+ /**
2738
+ * Delete an experiment version
2739
+ *
2740
+ * @param experimentId ID of the experiment
2741
+ * @param experimentVersionId ID of the experiment version
2742
+ * @throws DeleteMlExperimentVersionHttpError
2743
+ */
2744
+ deleteMlExperimentVersion: typeof deleteMlExperimentVersion;
2745
+ /**
2746
+ * Get an experiment version
2747
+ *
2748
+ * @param experimentId ID of the experiment
2749
+ * @param experimentVersionId ID of the experiment version
2750
+ * @throws GetMlExperimentVersionHttpError
2751
+ */
2752
+ getMlExperimentVersion: typeof getMlExperimentVersion;
2753
+ /**
2754
+ * Update an experiment version
2755
+ *
2756
+ * @param experimentId ID of the experiment
2757
+ * @param experimentVersionId ID of the experiment version
2758
+ * @param body an object with the body content
2759
+ * @throws PatchMlExperimentVersionHttpError
2760
+ */
2761
+ patchMlExperimentVersion: typeof patchMlExperimentVersion;
2762
+ /**
2763
+ * Cancels jobs for an experiment version or batch prediction.
2764
+ *
2765
+ * @param corrType The type of a resource paired with a corrId
2766
+ * @param corrId The ID of a correlated resource of corrType
2767
+ * @throws CancelMlJobHttpError
2768
+ */
2769
+ cancelMlJob: typeof cancelMlJob;
2770
+ /**
2771
+ * Starts creating profile insights for an experiment dataset.
2772
+ * This is an asynchronous operation. A `202 Accepted` response indicates
2773
+ * that the process has started successfully. Use the link in the response
2774
+ * to check the status.
2775
+ *
2776
+ * @param body an object with the body content
2777
+ * @throws CreateMlProfileInsightHttpError
2778
+ */
2779
+ createMlProfileInsight: typeof createMlProfileInsight;
2780
+ /**
2781
+ * Retrieves profile insights for the specified dataset. If you received a
2782
+ * `202 Accepted` response from `POST /ml/profile-insights`, poll this
2783
+ * endpoint until a `200 OK` response with `ready` status is returned.
2784
+ *
2785
+ * @param dataSetId The Qlik catalog dataset ID
2786
+ * @param query an object with query parameters
2787
+ * @throws GetMlProfileInsightWithQueryHttpError
2788
+ */
2789
+ getMlProfileInsightWithQuery: typeof getMlProfileInsightWithQuery;
2790
+ /**
2791
+ * Retrieves profile insights for the specified dataset. If you received a
2792
+ * `202 Accepted` response from `POST /ml/profile-insights`, poll this
2793
+ * endpoint until a `200 OK` response with `ready` status is returned.
2794
+ *
2795
+ * @param dataSetId The Qlik catalog dataset ID
2796
+ * @throws GetMlProfileInsightHttpError
2797
+ */
2798
+ getMlProfileInsight: typeof getMlProfileInsight;
2799
+ /**
2800
+ * Clears the cache for ml api requests.
2801
+ */
2802
+ clearCache: typeof clearCache;
2803
+ };
2804
+ /**
2805
+ * Functions for the ml api
2806
+ */
2807
+ declare const mlExport: MlAPI;
2808
+ //#endregion
4
2809
  export { APIError, ActivateModelsMlDeploymentHttpError, ActivateModelsMlDeploymentHttpResponse, AddMlDeploymentModelsHttpError, AddMlDeploymentModelsHttpResponse, Alias, AliasFindResponse, AliasGetResponse, AliasId, AliasInput, AliasMode, AliasPatch, AliasPatchItem, AliasPostResponse, AnyType, BatchPrediction, BatchPredictionActionResponse, BatchPredictionFindResponse, BatchPredictionGetResponse, BatchPredictionInput, BatchPredictionPatch, BatchPredictionPostResponse, BatchPredictionSchedule, BatchPredictionScheduleGetResponse, BatchPredictionScheduleInput, BatchPredictionScheduleInputAttributes, BatchPredictionSchedulePatch, BatchPredictionSchedulePutResponse, BatchPredictionStatus, BatchPredictionWriteback, BinaryImbalanceSampling, CancelMlJobHttpError, CancelMlJobHttpResponse, ChangeType, ColumnTransform, CorrId, CorrType, CreateMlDeploymentAliaseHttpError, CreateMlDeploymentAliaseHttpResponse, CreateMlDeploymentBatchPredictionHttpError, CreateMlDeploymentBatchPredictionHttpResponse, CreateMlDeploymentHttpError, CreateMlDeploymentHttpResponse, CreateMlExperimentHttpError, CreateMlExperimentHttpResponse, CreateMlExperimentVersionHttpError, CreateMlExperimentVersionHttpResponse, CreateMlProfileInsightHttpError, CreateMlProfileInsightHttpResponse, CreatedAt, CreatedBy, DataSetId, DataType, DatasetOrigin, DateIndexes, DeactivateModelsMlDeploymentHttpError, DeactivateModelsMlDeploymentHttpResponse, DeleteMlDeploymentAliaseHttpError, DeleteMlDeploymentAliaseHttpResponse, DeleteMlDeploymentBatchPredictionHttpError, DeleteMlDeploymentBatchPredictionHttpResponse, DeleteMlDeploymentBatchPredictionScheduleHttpError, DeleteMlDeploymentBatchPredictionScheduleHttpResponse, DeleteMlDeploymentHttpError, DeleteMlDeploymentHttpResponse, DeleteMlExperimentHttpError, DeleteMlExperimentHttpResponse, DeleteMlExperimentVersionHttpError, DeleteMlExperimentVersionHttpResponse, DeletedAt, DeployedModelIds, DeployedModelsInput, Deployment, DeploymentFindResponse, DeploymentGetResponse, DeploymentId, DeploymentInput, DeploymentPatch, DeploymentPostResponse, DroppedFeature, EntityDescription, EntityId, EntityName, EnumSortAliases, EnumSortBatchPredictions, EnumSortDeployments, EnumSortExperimentVersions, EnumSortExperiments, EnumSortModels, ErrorMessage, Errors, Experiment, ExperimentFindResponse, ExperimentGetResponse, ExperimentId, ExperimentInput, ExperimentMode, ExperimentModelRecommendationFilter, ExperimentModelRecommendationPostResponse, ExperimentPatch, ExperimentPatchItem, ExperimentPostResponse, ExperimentType, ExperimentVersion, ExperimentVersionFindResponse, ExperimentVersionGetResponse, ExperimentVersionId, ExperimentVersionInput, ExperimentVersionPatch, ExperimentVersionPostResponse, Failure, Feature, FeatureInsights, FeatureType, FeaturesList, FileType, FindResponseMeta, GetMlDeploymentAliaseHttpError, GetMlDeploymentAliaseHttpResponse, GetMlDeploymentAliasesHttpError, GetMlDeploymentAliasesHttpResponse, GetMlDeploymentBatchPredictionHttpError, GetMlDeploymentBatchPredictionHttpResponse, GetMlDeploymentBatchPredictionScheduleHttpError, GetMlDeploymentBatchPredictionScheduleHttpResponse, GetMlDeploymentBatchPredictionsHttpError, GetMlDeploymentBatchPredictionsHttpResponse, GetMlDeploymentHttpError, GetMlDeploymentHttpResponse, GetMlDeploymentsHttpError, GetMlDeploymentsHttpResponse, GetMlExperimentHttpError, GetMlExperimentHttpResponse, GetMlExperimentModelHttpError, GetMlExperimentModelHttpResponse, GetMlExperimentModelsHttpError, GetMlExperimentModelsHttpResponse, GetMlExperimentVersionHttpError, GetMlExperimentVersionHttpResponse, GetMlExperimentVersionsHttpError, GetMlExperimentVersionsHttpResponse, GetMlExperimentsHttpError, GetMlExperimentsHttpResponse, GetMlProfileInsightHttpError, GetMlProfileInsightHttpResponse, GetMlProfileInsightWithQueryHttpError, GetMlProfileInsightWithQueryHttpResponse, IndexColumn, Insights, JobType, MlAPI, Model, ModelAlgorithm, ModelAlgorithmAbbreviation, ModelFindResponse, ModelForRecommendations, ModelGetResponse, ModelId, ModelInfo, ModelMetrics, ModelMetricsBinary, ModelMetricsMulticlass, ModelMetricsRegression, ModelMetricsTimeseries, ModelState, ModelStatus, ModelsInfo, OutputFile, OwnerId, ParentJobId, PatchMlDeploymentAliaseHttpError, PatchMlDeploymentAliaseHttpResponse, PatchMlDeploymentBatchPredictionHttpError, PatchMlDeploymentBatchPredictionHttpResponse, PatchMlDeploymentHttpError, PatchMlDeploymentHttpResponse, PatchMlExperimentHttpError, PatchMlExperimentHttpResponse, PatchMlExperimentVersionHttpError, PatchMlExperimentVersionHttpResponse, Pipeline, PredictMlDeploymentBatchPredictionHttpError, PredictMlDeploymentBatchPredictionHttpResponse, PredictionJobResponse, PreprocessedInsightColumn, ProfileInsights, ProfileInsightsGetResponse, ProfileInsightsInput, RealTimePredictionInputSchema, RealTimePredictionSchema, RealtimePrediction, RealtimePredictionInput, RecommendModelsMlExperimentHttpError, RecommendModelsMlExperimentHttpResponse, RemoveMlDeploymentModelsHttpError, RemoveMlDeploymentModelsHttpResponse, ResponseLinks, RunMlDeploymentAliaseRealtimePredictionsHttpError, RunMlDeploymentAliaseRealtimePredictionsHttpResponse, RunMlDeploymentRealtimePredictionsHttpError, RunMlDeploymentRealtimePredictionsHttpResponse, SetMlDeploymentBatchPredictionScheduleHttpError, SetMlDeploymentBatchPredictionScheduleHttpResponse, SpaceId, TenantId, TrainingDuration, Transform, UpdateMlDeploymentBatchPredictionScheduleHttpError, UpdateMlDeploymentBatchPredictionScheduleHttpResponse, UpdatedAt, activateModelsMlDeployment, addMlDeploymentModels, cancelMlJob, clearCache, createMlDeployment, createMlDeploymentAliase, createMlDeploymentBatchPrediction, createMlExperiment, createMlExperimentVersion, createMlProfileInsight, deactivateModelsMlDeployment, mlExport as default, deleteMlDeployment, deleteMlDeploymentAliase, deleteMlDeploymentBatchPrediction, deleteMlDeploymentBatchPredictionSchedule, deleteMlExperiment, deleteMlExperimentVersion, getMlDeployment, getMlDeploymentAliase, getMlDeploymentAliases, getMlDeploymentBatchPrediction, getMlDeploymentBatchPredictionSchedule, getMlDeploymentBatchPredictions, getMlDeployments, getMlExperiment, getMlExperimentModel, getMlExperimentModels, getMlExperimentVersion, getMlExperimentVersions, getMlExperiments, getMlProfileInsight, getMlProfileInsightWithQuery, patchMlDeployment, patchMlDeploymentAliase, patchMlDeploymentBatchPrediction, patchMlExperiment, patchMlExperimentVersion, predictMlDeploymentBatchPrediction, recommendModelsMlExperiment, removeMlDeploymentModels, runMlDeploymentAliaseRealtimePredictions, runMlDeploymentRealtimePredictions, setMlDeploymentBatchPredictionSchedule, updateMlDeploymentBatchPredictionSchedule };