@qlik/api 1.31.0 → 1.33.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (142) hide show
  1. package/api-keys.d.ts +10 -10
  2. package/api-keys.js +64 -50
  3. package/apps.d.ts +56 -56
  4. package/apps.js +392 -304
  5. package/assistants.d.ts +1301 -0
  6. package/assistants.js +329 -0
  7. package/audits.d.ts +10 -10
  8. package/audits.js +48 -36
  9. package/{auth-types-DqfMuSRX.d.ts → auth-types-Cj5bM3Yk.d.ts} +29 -9
  10. package/auth.d.ts +17 -4
  11. package/auth.js +4 -2
  12. package/automation-connections.d.ts +366 -0
  13. package/automation-connections.js +107 -0
  14. package/automations.d.ts +27 -27
  15. package/automations.js +159 -123
  16. package/automl-deployments.d.ts +97 -0
  17. package/automl-deployments.js +29 -0
  18. package/automl-predictions.d.ts +214 -0
  19. package/automl-predictions.js +84 -0
  20. package/brands.d.ts +18 -18
  21. package/brands.js +107 -83
  22. package/chunks/{KBSD75QL.js → 33GQY7N7.js} +1 -1
  23. package/chunks/{M64RLKVG.js → 62DXIH3S.js} +7 -5
  24. package/chunks/7MMXU6EL.js +86 -0
  25. package/chunks/{DLKLPD7T.js → GPRUNZV4.js} +3 -3
  26. package/chunks/{YKZ2QYHN.js → LIEZG7IM.js} +3 -3
  27. package/chunks/{FKDGGR2O.js → OTIO4SEJ.js} +698 -708
  28. package/chunks/{UZTIZ4H5.js → RP3EJGHG.js} +74 -74
  29. package/chunks/{GUU3KZGK.js → SPATCXXU.js} +9 -2
  30. package/chunks/{LY7RP2HA.js → XF3TPZKZ.js} +23 -8
  31. package/chunks/{6ZONDHRN.js → YYZCS5PW.js} +11 -4
  32. package/chunks/{3RGGGGAR.js → ZCTVPXGO.js} +1 -1
  33. package/collections.d.ts +16 -15
  34. package/collections.js +98 -76
  35. package/conditions.d.ts +662 -0
  36. package/conditions.js +135 -0
  37. package/consumption.d.ts +182 -0
  38. package/consumption.js +26 -0
  39. package/csp-origins.d.ts +9 -9
  40. package/csp-origins.js +53 -41
  41. package/csrf-token.d.ts +62 -0
  42. package/csrf-token.js +25 -0
  43. package/data-alerts.d.ts +1004 -0
  44. package/data-alerts.js +187 -0
  45. package/data-assets.d.ts +8 -8
  46. package/data-assets.js +50 -40
  47. package/data-connections.d.ts +16 -16
  48. package/data-connections.js +87 -69
  49. package/data-credentials.d.ts +11 -11
  50. package/data-credentials.js +52 -42
  51. package/data-files.d.ts +18 -18
  52. package/data-files.js +107 -83
  53. package/data-qualities.d.ts +175 -0
  54. package/data-qualities.js +50 -0
  55. package/data-sets.d.ts +424 -0
  56. package/data-sets.js +87 -0
  57. package/data-sources.d.ts +268 -0
  58. package/data-sources.js +45 -0
  59. package/data-stores.d.ts +537 -0
  60. package/data-stores.js +128 -0
  61. package/dcaas.d.ts +192 -0
  62. package/dcaas.js +45 -0
  63. package/di-projects.d.ts +673 -0
  64. package/di-projects.js +196 -0
  65. package/direct-access-agents.d.ts +328 -0
  66. package/direct-access-agents.js +108 -0
  67. package/encryption.d.ts +370 -0
  68. package/encryption.js +118 -0
  69. package/extensions.d.ts +11 -11
  70. package/extensions.js +61 -47
  71. package/glossaries.d.ts +33 -33
  72. package/glossaries.js +221 -173
  73. package/groups.d.ts +12 -12
  74. package/groups.js +72 -56
  75. package/identity-providers.d.ts +11 -11
  76. package/identity-providers.js +67 -51
  77. package/index.d.ts +113 -4
  78. package/index.js +626 -40
  79. package/interceptors.d.ts +9 -2
  80. package/interceptors.js +2 -2
  81. package/invoke-fetch-types-BYCD4pc9.d.ts +98 -0
  82. package/items.d.ts +14 -13
  83. package/items.js +71 -55
  84. package/knowledgebases.d.ts +890 -0
  85. package/knowledgebases.js +203 -0
  86. package/licenses.d.ts +14 -14
  87. package/licenses.js +76 -58
  88. package/lineage-graphs.d.ts +712 -0
  89. package/lineage-graphs.js +108 -0
  90. package/ml.d.ts +2676 -0
  91. package/ml.js +477 -0
  92. package/notes.d.ts +110 -0
  93. package/notes.js +35 -0
  94. package/notifications.d.ts +98 -0
  95. package/notifications.js +26 -0
  96. package/oauth-clients.d.ts +14 -14
  97. package/oauth-clients.js +96 -74
  98. package/oauth-tokens.d.ts +126 -0
  99. package/oauth-tokens.js +35 -0
  100. package/package.json +34 -6
  101. package/qix.d.ts +145 -4
  102. package/qix.js +2 -2
  103. package/questions.d.ts +364 -0
  104. package/questions.js +38 -0
  105. package/quotas.d.ts +6 -6
  106. package/quotas.js +20 -16
  107. package/reload-tasks.d.ts +8 -8
  108. package/reload-tasks.js +46 -36
  109. package/reloads.d.ts +7 -7
  110. package/reloads.js +36 -28
  111. package/report-templates.d.ts +287 -0
  112. package/report-templates.js +94 -0
  113. package/reports.d.ts +4 -4
  114. package/reports.js +20 -16
  115. package/roles.d.ts +8 -8
  116. package/roles.js +46 -36
  117. package/sharing-tasks.d.ts +952 -0
  118. package/sharing-tasks.js +125 -0
  119. package/spaces.d.ts +22 -22
  120. package/spaces.js +153 -119
  121. package/tasks.d.ts +564 -0
  122. package/tasks.js +126 -0
  123. package/temp-contents.d.ts +7 -7
  124. package/temp-contents.js +30 -24
  125. package/tenants.d.ts +8 -8
  126. package/tenants.js +57 -45
  127. package/themes.d.ts +11 -11
  128. package/themes.js +61 -47
  129. package/transports.d.ts +8 -8
  130. package/transports.js +49 -37
  131. package/ui-config.d.ts +274 -0
  132. package/ui-config.js +91 -0
  133. package/users.d.ts +15 -15
  134. package/users.js +81 -63
  135. package/web-integrations.d.ts +8 -8
  136. package/web-integrations.js +46 -36
  137. package/web-notifications.d.ts +9 -9
  138. package/web-notifications.js +53 -41
  139. package/webhooks.d.ts +14 -14
  140. package/webhooks.js +88 -68
  141. package/chunks/2ZQ3ZX7F.js +0 -33
  142. package/invoke-fetch-types-Cq7bjkqn.d.ts +0 -243
package/ml.d.ts ADDED
@@ -0,0 +1,2676 @@
1
+ import { A as ApiCallOptions } from './invoke-fetch-types-BYCD4pc9.js';
2
+ import './auth-types-Cj5bM3Yk.js';
3
+
4
+ /**
5
+ * An error object
6
+ */
7
+ type APIError = {
8
+ /** Qlik error code (not HTTP response status code) */
9
+ code: string;
10
+ /** Description of the error */
11
+ detail?: string;
12
+ /** Additional details about the error. These may vary by error. */
13
+ meta?: {
14
+ /** The argument */
15
+ argument?: string;
16
+ /** Extra details for what may have caused the error */
17
+ details?: string;
18
+ /** The unique id of the error instance */
19
+ errorId?: string;
20
+ /** The issue code */
21
+ issue?: string;
22
+ /** The resource type that the error occurred on */
23
+ resource?: string;
24
+ /** The resource id that the error occurred on */
25
+ resourceId?: string;
26
+ };
27
+ /** Short summary of error */
28
+ title: string;
29
+ };
30
+ /**
31
+ * An AutoML alias
32
+ */
33
+ type Alias = {
34
+ /** Timestamp when this was created */
35
+ createdAt: CreatedAt;
36
+ /** ID of the owner/user that created this entity */
37
+ createdBy: string;
38
+ /** ID of a model deployment */
39
+ deploymentId: DeploymentId;
40
+ /** ID of this entity */
41
+ id: EntityId;
42
+ /** The mode of an alias. Default mode means the model assigned to that alias will be used if alias is not specified */
43
+ mode: AliasMode;
44
+ models: ModelsInfo;
45
+ /** Name of this entity */
46
+ name: EntityName;
47
+ /** Timestamp when this was updated */
48
+ updatedAt: UpdatedAt;
49
+ };
50
+ type AliasFindResponse = {
51
+ data: {
52
+ /** An AutoML alias */
53
+ attributes: Alias;
54
+ /** ID of this entity */
55
+ id: EntityId;
56
+ type: "alias";
57
+ }[];
58
+ /** Resource links included in paginated responses */
59
+ links: ResponseLinks;
60
+ /** Meta for FIND operations */
61
+ meta?: FindResponseMeta;
62
+ };
63
+ type AliasGetResponse = {
64
+ data: {
65
+ /** An AutoML alias */
66
+ attributes: Alias;
67
+ /** ID of this entity */
68
+ id: EntityId;
69
+ type: "alias";
70
+ };
71
+ };
72
+ /**
73
+ * ID of an alias
74
+ */
75
+ type AliasId = string;
76
+ /**
77
+ * Input for creating a new alias
78
+ */
79
+ type AliasInput = {
80
+ data: {
81
+ attributes: {
82
+ models: ModelsInfo;
83
+ /** Name of this entity */
84
+ name: EntityName;
85
+ };
86
+ type: "alias";
87
+ };
88
+ };
89
+ /**
90
+ * The mode of an alias. Default mode means the model assigned to that alias will be used if alias is not specified
91
+ */
92
+ type AliasMode = "default" | "undefined";
93
+ type AliasPatch = AliasPatchItem[];
94
+ /**
95
+ * Alias values that can be patched.
96
+ * @example
97
+ * {
98
+ * op: "replace",
99
+ * path: "/name"
100
+ * }
101
+ */
102
+ type AliasPatchItem = {
103
+ /** All patch requests use the replace operation */
104
+ op: "replace";
105
+ /** Path for the property you want to update */
106
+ path: "/name" | "/models";
107
+ /** Use for fields that can be `any` type (string, number, etc.) */
108
+ value: AnyType;
109
+ };
110
+ type AliasPostResponse = {
111
+ data: {
112
+ /** An AutoML alias */
113
+ attributes: Alias;
114
+ /** ID of this entity */
115
+ id: EntityId;
116
+ type: "alias";
117
+ };
118
+ };
119
+ /**
120
+ * Use for fields that can be `any` type (string, number, etc.)
121
+ */
122
+ type AnyType = unknown;
123
+ /**
124
+ * A batch prediction job configuration
125
+ */
126
+ type BatchPrediction = {
127
+ /** ID of an alias */
128
+ aliasId?: AliasId;
129
+ /** Timestamp when this was created */
130
+ createdAt?: CreatedAt;
131
+ /** ID of the owner/user that ran this prediction batch */
132
+ createdBy?: string;
133
+ /** The Qlik catalog dataset ID */
134
+ dataSetId?: DataSetId;
135
+ /** ID of the dataset with the prediction results */
136
+ datasetId?: string;
137
+ /** ID of a model deployment */
138
+ deploymentId?: DeploymentId;
139
+ /** JSON string of error object */
140
+ errorMessage?: ErrorMessage;
141
+ /** JSON string with list of error objects */
142
+ errors?: Errors;
143
+ /** ID of this entity */
144
+ id?: EntityId;
145
+ /** A optional column name upon which to create an index. Must be unique for
146
+ * every row. If not included, Qlik will create a unique index column. */
147
+ indexColumn?: IndexColumn;
148
+ /** Name of this entity */
149
+ name?: EntityName;
150
+ /** Where to output dataset */
151
+ outputDataset?: string;
152
+ /** ID of owner/user for this entity */
153
+ ownerId?: OwnerId;
154
+ /** Batch prediction job schedule */
155
+ schedule?: BatchPredictionSchedule;
156
+ /** Status of this batch prediction */
157
+ status?: BatchPredictionStatus;
158
+ /** Timestamp when this was updated */
159
+ updatedAt?: UpdatedAt;
160
+ /** Sets which files, file names, and spaces are used to write results of
161
+ * batch predictions (output files) to the catalog. */
162
+ writeback?: BatchPredictionWriteback;
163
+ };
164
+ /**
165
+ * Response for batch prediction predict action that indicates job and status
166
+ */
167
+ type BatchPredictionActionResponse = {
168
+ data: {
169
+ attributes: PredictionJobResponse;
170
+ /** ID of this entity */
171
+ id: EntityId;
172
+ type: "job";
173
+ };
174
+ };
175
+ type BatchPredictionFindResponse = {
176
+ data: {
177
+ /** A batch prediction job configuration */
178
+ attributes: BatchPrediction;
179
+ /** ID of this entity */
180
+ id: EntityId;
181
+ type: "batch-prediction";
182
+ }[];
183
+ /** Resource links included in paginated responses */
184
+ links: ResponseLinks;
185
+ /** Meta for FIND operations */
186
+ meta?: FindResponseMeta;
187
+ };
188
+ type BatchPredictionGetResponse = {
189
+ data: {
190
+ /** A batch prediction job configuration */
191
+ attributes: BatchPrediction;
192
+ /** ID of this entity */
193
+ id: EntityId;
194
+ type: "batch-prediction";
195
+ };
196
+ };
197
+ /**
198
+ * Input values for creating a batch prediction configuration
199
+ */
200
+ type BatchPredictionInput = {
201
+ data?: {
202
+ attributes?: {
203
+ /** ID of an alias */
204
+ aliasId?: AliasId;
205
+ /** The Qlik catalog dataset ID */
206
+ dataSetId?: DataSetId;
207
+ /** ID of a model deployment */
208
+ deploymentId?: DeploymentId;
209
+ description?: string;
210
+ /** A optional column name upon which to create an index. Must be unique for
211
+ * every row. If not included, Qlik will create a unique index column. */
212
+ indexColumn?: IndexColumn;
213
+ /** Name of this entity */
214
+ name?: EntityName;
215
+ /** Configuration to schedule a batch prediction */
216
+ schedule?: BatchPredictionScheduleInputAttributes;
217
+ /** Sets which files, file names, and spaces are used to write results of
218
+ * batch predictions (output files) to the catalog. */
219
+ writeback?: BatchPredictionWriteback;
220
+ };
221
+ type?: "batch-prediction";
222
+ };
223
+ };
224
+ type BatchPredictionPatch = {
225
+ /** All patch requests use the replace operation */
226
+ op: "replace";
227
+ /** Path for the property you want to update */
228
+ path: "/name" | "/description" | "/dataSetId" | "/indexColumn" | "/applyDatasetChangeOnly" | "/ownerId" | "/writeback/spaceId" | "/writeback/format" | "/writeback/dstName" | "/writeback/dstShapName" | "/writeback/dstCoordShapName" | "/writeback/dstNotPredictedName" | "/writeback/dstSourceName";
229
+ /** Use for fields that can be `any` type (string, number, etc.) */
230
+ value: AnyType;
231
+ }[];
232
+ type BatchPredictionPostResponse = {
233
+ data: {
234
+ /** A batch prediction job configuration */
235
+ attributes: BatchPrediction;
236
+ /** ID of this entity */
237
+ id: EntityId;
238
+ type: "batch-prediction";
239
+ };
240
+ };
241
+ /**
242
+ * Batch prediction job schedule
243
+ */
244
+ type BatchPredictionSchedule = {
245
+ /** If true, only run prediction if dataset has changed to avoid
246
+ * duplicates. If set to false, re-runs predictions on unchanged
247
+ * datasets. */
248
+ applyDatasetChangeOnly?: boolean;
249
+ /** The ID of the chronos job */
250
+ chronosJobId?: string;
251
+ /** When the job finished */
252
+ endDateTime?: string;
253
+ /** Number of times a scheduled prediction job has failed */
254
+ failureAttempts?: number;
255
+ /** When the last successful job happened */
256
+ lastSuccessfulDateTime?: string;
257
+ /** Recurrence rules. Maximum is DAILY but you can specify the
258
+ * hour, minute, and second it runs each day.
259
+ * One string per rule. */
260
+ recurrence?: string[];
261
+ /** When the job is scheduled to start */
262
+ startDateTime?: string;
263
+ /** The status of the schedule */
264
+ status?: "pending" | "active" | "error" | "error_scheduler_unreachable" | "error_scheduler_callback_error" | "licence_advanced_features_required" | "failing_schedule_permission";
265
+ /** Timezone used for the date-time fields */
266
+ timezone?: string;
267
+ };
268
+ type BatchPredictionScheduleGetResponse = {
269
+ data: {
270
+ /** Batch prediction job schedule */
271
+ attributes: BatchPredictionSchedule;
272
+ /** ID of this entity */
273
+ id: EntityId;
274
+ type: "batch-prediction-schedule";
275
+ };
276
+ };
277
+ /**
278
+ * Input values for a batch prediction schedule
279
+ */
280
+ type BatchPredictionScheduleInput = {
281
+ data?: {
282
+ /** Configuration to schedule a batch prediction */
283
+ attributes?: BatchPredictionScheduleInputAttributes;
284
+ type?: "batch-prediction-schedule";
285
+ };
286
+ };
287
+ /**
288
+ * Configuration to schedule a batch prediction
289
+ */
290
+ type BatchPredictionScheduleInputAttributes = {
291
+ /** If true, only run prediction if dataset has changed to avoid
292
+ * duplicates. If set to false, re-runs predictions on unchanged
293
+ * datasets. */
294
+ applyDatasetChangeOnly?: boolean;
295
+ /** When the job is scheduled to finish */
296
+ endDateTime?: string;
297
+ /** Recurrence rules. Maximum is DAILY but you can specify the
298
+ * hour, minute, and second it runs each day.
299
+ * One string per rule. */
300
+ recurrence?: string[];
301
+ /** When the job is scheduled to start */
302
+ startDateTime: string;
303
+ /** Timezone used for the date-time fields */
304
+ timezone: string;
305
+ };
306
+ type BatchPredictionSchedulePatch = {
307
+ /** All patch requests use the replace operation */
308
+ op: "replace";
309
+ /** Path for the property you want to update */
310
+ path: "/startDateTime" | "/endDateTime" | "/timezone" | "/recurrence" | "/applyDatasetChangeOnly";
311
+ /** Use for fields that can be `any` type (string, number, etc.) */
312
+ value: AnyType;
313
+ }[];
314
+ type BatchPredictionSchedulePutResponse = {
315
+ data: {
316
+ /** Batch prediction job schedule */
317
+ attributes: BatchPredictionSchedule;
318
+ /** ID of this entity */
319
+ id: EntityId;
320
+ type: "batch-prediction-schedule";
321
+ };
322
+ };
323
+ /**
324
+ * Status of this batch prediction
325
+ */
326
+ type BatchPredictionStatus = "modified" | "ready" | "error" | "cancelled" | "pending";
327
+ /**
328
+ * Sets which files, file names, and spaces are used to write results of
329
+ * batch predictions (output files) to the catalog.
330
+ */
331
+ type BatchPredictionWriteback = {
332
+ dstCoordShapName?: string;
333
+ dstName: string;
334
+ dstNotPredictedName?: string;
335
+ dstShapName?: string;
336
+ dstSourceName?: string;
337
+ /** File format for write back files (this applies to all) */
338
+ format: "qvd" | "parquet" | "csv";
339
+ /** Space ID where you want to save batch prediction writebacks or
340
+ * empty string ('') save them to your personal space. */
341
+ spaceId: string;
342
+ };
343
+ type BinaryImbalanceSampling = {
344
+ sampleClass?: string;
345
+ sampleDirection?: "up" | "down";
346
+ sampleRatio?: number;
347
+ };
348
+ /**
349
+ * Indicates if you want to change the featureType for this
350
+ * feature within the experiment version
351
+ */
352
+ type ChangeType = "categorical" | "numeric" | "date" | "freetext";
353
+ type ColumnTransform = {
354
+ changeType: string;
355
+ name: string;
356
+ };
357
+ type ConfigurationKey = "DATE_INDEX" | "FUTURE_FEATURE" | "GROUP_ID" | "FORECAST_GAP_SIZE" | "FORECAST_WINDOW_SIZE";
358
+ /**
359
+ * The ID of a correlated resource of corrType
360
+ */
361
+ type CorrId = string;
362
+ /**
363
+ * Types names of correlated resources (batch 'prediction' and
364
+ * experiment_version)
365
+ */
366
+ type CorrType = "batch-prediction" | "experiment-version";
367
+ /**
368
+ * Timestamp when this was created
369
+ */
370
+ type CreatedAt = string;
371
+ /**
372
+ * ID of the owner/user that created this entity.
373
+ */
374
+ type CreatedBy = string;
375
+ type DataSchemaConfiguration = {
376
+ key: ConfigurationKey;
377
+ value: string;
378
+ };
379
+ /**
380
+ * The Qlik catalog dataset ID
381
+ * @example
382
+ * "672e55cfcadfb8a18281523e"
383
+ */
384
+ type DataSetId = string;
385
+ /**
386
+ * The data type of this feature in your dataset
387
+ * @example
388
+ * "STRING"
389
+ */
390
+ type DataType = "DATE" | "TIME" | "DATETIME" | "TIMESTAMP" | "STRING" | "DOUBLE" | "DECIMAL" | "INTEGER" | "BOOLEAN" | "BINARY" | "CUSTOM" | "FLOAT" | "OBJECT";
391
+ /**
392
+ * Whether this is a new or other dataset
393
+ */
394
+ type DatasetOrigin = "new" | "changed" | "refreshed" | "same";
395
+ /**
396
+ * A optional date column name to index
397
+ */
398
+ type DateIndexes = string[];
399
+ /**
400
+ * Timestamp when this is deleted
401
+ */
402
+ type DeletedAt = string;
403
+ /**
404
+ * IDs of all models deployed to the deployment
405
+ */
406
+ type DeployedModelIds = string[];
407
+ /**
408
+ * Input values for adding deployed models to a deployment
409
+ */
410
+ type DeployedModelsInput = {
411
+ data: {
412
+ attributes: {
413
+ /** IDs of all models deployed to the deployment */
414
+ deployedModelIds: DeployedModelIds;
415
+ };
416
+ type: "deployed-models";
417
+ };
418
+ };
419
+ /**
420
+ * A deployed model against which you can run predictions
421
+ */
422
+ type Deployment = {
423
+ /** Timestamp when this was created */
424
+ createdAt: CreatedAt;
425
+ /** ID of the owner/user that created this entity. */
426
+ createdBy: CreatedBy;
427
+ /** IDs of all models deployed to the deployment */
428
+ deployedModelIds?: DeployedModelIds;
429
+ /** Whether this deployment is deprecated */
430
+ deprecated: boolean;
431
+ /** Description of this entity */
432
+ description: EntityDescription;
433
+ /** Whether to allow predictions */
434
+ enablePredictions: boolean;
435
+ /** JSON string of error object */
436
+ errorMessage?: ErrorMessage;
437
+ /** JSON string with list of error objects */
438
+ errors?: Errors;
439
+ /** ID of this entity */
440
+ id: EntityId;
441
+ /** ID of the model */
442
+ modelId: ModelId;
443
+ /** Name of this entity */
444
+ name: EntityName;
445
+ /** ID of owner/user for this entity */
446
+ ownerId: OwnerId;
447
+ /** Space ID for this entity (empty string for personal space) */
448
+ spaceId: SpaceId;
449
+ /** Timestamp when this was updated */
450
+ updatedAt: UpdatedAt;
451
+ };
452
+ type DeploymentFindResponse = {
453
+ data: {
454
+ /** A deployed model against which you can run predictions */
455
+ attributes: Deployment;
456
+ /** ID of this entity */
457
+ id: EntityId;
458
+ type: "deployment";
459
+ }[];
460
+ /** Resource links included in paginated responses */
461
+ links: ResponseLinks;
462
+ /** Meta for FIND operations */
463
+ meta?: FindResponseMeta;
464
+ };
465
+ type DeploymentGetResponse = {
466
+ data: {
467
+ /** A deployed model against which you can run predictions */
468
+ attributes: Deployment;
469
+ /** ID of this entity */
470
+ id: EntityId;
471
+ type: "deployment";
472
+ };
473
+ };
474
+ /**
475
+ * ID of a model deployment
476
+ */
477
+ type DeploymentId = string;
478
+ /**
479
+ * Input for creating a new deployment
480
+ */
481
+ type DeploymentInput = {
482
+ data?: {
483
+ attributes?: {
484
+ /** Whether this deployment is deprecated */
485
+ deprecated?: boolean;
486
+ /** Description of this entity */
487
+ description?: EntityDescription;
488
+ /** Whether to allow real-time predictions */
489
+ enablePredictions?: boolean;
490
+ /** ID of the model */
491
+ modelId: ModelId;
492
+ /** Name of this entity */
493
+ name: EntityName;
494
+ /** Space ID for this entity (empty string for personal space) */
495
+ spaceId: SpaceId;
496
+ };
497
+ type?: "deployment";
498
+ };
499
+ };
500
+ type DeploymentPatch = {
501
+ /** All patch requests use the replace operation */
502
+ op: "replace";
503
+ /** Path for the property you want to update */
504
+ path: "/name" | "/description" | "/spaceId";
505
+ /** Use for fields that can be `any` type (string, number, etc.) */
506
+ value: AnyType;
507
+ }[];
508
+ type DeploymentPostResponse = {
509
+ data: {
510
+ /** A deployed model against which you can run predictions */
511
+ attributes: Deployment;
512
+ /** ID of this entity */
513
+ id: EntityId;
514
+ type: "deployment";
515
+ };
516
+ };
517
+ /**
518
+ * Feature dropped during preprocessing
519
+ */
520
+ type DroppedFeature = {
521
+ /** Name of dropped feature in the dataset */
522
+ name?: string;
523
+ /** Reason the feature was dropped */
524
+ reason?: "highly_correlated" | "has_target_leakage" | "is_date_engineered" | "feature_with_low_importance";
525
+ };
526
+ /**
527
+ * Description of this entity
528
+ */
529
+ type EntityDescription = string;
530
+ /**
531
+ * ID of this entity
532
+ */
533
+ type EntityId = string;
534
+ /**
535
+ * Name of this entity
536
+ */
537
+ type EntityName = string;
538
+ type EnumSortAliases = "name" | "+name" | "-name";
539
+ type EnumSortBatchPredictions = "createdAt" | "+createdAt" | "-createdAt" | "description" | "+description" | "-description" | "name" | "+name" | "-name" | "updatedAt" | "+updatedAt" | "-updatedAt";
540
+ type EnumSortDeployments = "createdAt" | "+createdAt" | "-createdAt" | "name" | "+name" | "-name" | "updatedAt" | "+updatedAt" | "-updatedAt";
541
+ type EnumSortExperimentVersions = "createdAt" | "+createdAt" | "-createdAt" | "description" | "+description" | "-description" | "experimentMode" | "+experimentMode" | "-experimentMode" | "experimentType" | "+experimentType" | "-experimentType" | "name" | "+name" | "-name" | "status" | "+status" | "-status" | "updatedAt" | "+updatedAt" | "-updatedAt" | "versionNumber" | "+versionNumber" | "-versionNumber";
542
+ type EnumSortExperiments = "createdAt" | "+createdAt" | "-createdAt" | "description" | "+description" | "-description" | "name" | "+name" | "-name" | "updatedAt" | "+updatedAt" | "-updatedAt";
543
+ type EnumSortModels = "createdAt" | "+createdAt" | "-createdAt" | "description" | "+description" | "-description" | "name" | "+name" | "-name" | "updatedAt" | "+updatedAt" | "-updatedAt";
544
+ /**
545
+ * JSON string of error object
546
+ */
547
+ type ErrorMessage = string;
548
+ /**
549
+ * JSON string with list of error objects
550
+ */
551
+ type Errors = APIError[];
552
+ /**
553
+ * An AutoML experiment
554
+ */
555
+ type Experiment = {
556
+ /** Timestamp when this was created */
557
+ createdAt: CreatedAt;
558
+ /** Description of this entity */
559
+ description?: EntityDescription;
560
+ /** ID of this entity */
561
+ id: EntityId;
562
+ /** Name of this entity */
563
+ name?: EntityName;
564
+ /** ID of owner/user for this entity */
565
+ ownerId: OwnerId;
566
+ /** Space ID for this entity (empty string for personal space) */
567
+ spaceId: SpaceId;
568
+ /** Tenant ID for this entity */
569
+ tenantId: TenantId;
570
+ /** Timestamp when this was updated */
571
+ updatedAt: UpdatedAt;
572
+ };
573
+ type ExperimentFindResponse = {
574
+ data: {
575
+ /** An AutoML experiment */
576
+ attributes: Experiment;
577
+ /** ID of this entity */
578
+ id: EntityId;
579
+ type: "experiment";
580
+ }[];
581
+ /** Resource links included in paginated responses */
582
+ links: ResponseLinks;
583
+ /** Meta for FIND operations */
584
+ meta?: FindResponseMeta;
585
+ };
586
+ type ExperimentGetResponse = {
587
+ data: {
588
+ /** An AutoML experiment */
589
+ attributes: Experiment;
590
+ /** ID of this entity */
591
+ id: EntityId;
592
+ type: "experiment";
593
+ };
594
+ };
595
+ /**
596
+ * ID of the experiment
597
+ */
598
+ type ExperimentId = string;
599
+ /**
600
+ * Input for creating this entity
601
+ */
602
+ type ExperimentInput = {
603
+ /** Data container for ExperimentInput */
604
+ data?: {
605
+ /** Experiment input attributes */
606
+ attributes?: {
607
+ /** Description of this entity */
608
+ description?: EntityDescription;
609
+ /** Name of this entity */
610
+ name: EntityName;
611
+ /** Space ID for this entity (empty string for personal space) */
612
+ spaceId: SpaceId;
613
+ };
614
+ type?: "experiment";
615
+ };
616
+ };
617
+ /**
618
+ * The model training mode for the experiment version
619
+ */
620
+ type ExperimentMode = "intelligent" | "manual" | "manual_hpo";
621
+ /**
622
+ * @example
623
+ * [
624
+ * {
625
+ * op: "replace",
626
+ * path: "/name"
627
+ * },
628
+ * {
629
+ * op: "replace",
630
+ * path: "/description"
631
+ * },
632
+ * {
633
+ * op: "replace",
634
+ * path: "/spaceId"
635
+ * }
636
+ * ]
637
+ */
638
+ type ExperimentPatch = ExperimentPatchItem[];
639
+ /**
640
+ * Experiment fields that can be patched. The following paths all require `value` to be a string: `/name`, `/spaceId`, and `/description`
641
+ */
642
+ type ExperimentPatchItem = {
643
+ /** All patch requests use the replace operation */
644
+ op: "replace";
645
+ /** Path for the property you want to update */
646
+ path: "/name" | "/description" | "/spaceId";
647
+ /** Use for fields that can be `any` type (string, number, etc.) */
648
+ value: AnyType;
649
+ };
650
+ type ExperimentPostResponse = {
651
+ data: {
652
+ /** An AutoML experiment */
653
+ attributes: Experiment;
654
+ /** ID of this entity */
655
+ id: EntityId;
656
+ type: "experiment";
657
+ };
658
+ };
659
+ /**
660
+ * Experiment type
661
+ */
662
+ type ExperimentType = "binary" | "multiclass" | "regression" | "timeseries";
663
+ /**
664
+ * An AutoML experiment version. This is a configuration for training
665
+ * models within an experiment.
666
+ */
667
+ type ExperimentVersion = {
668
+ /** List of algorithms selected for model training in this version */
669
+ algorithms?: ModelAlgorithm[];
670
+ /** Timestamp when this was created */
671
+ createdAt: CreatedAt;
672
+ /** ID of owner/user for this entity */
673
+ createdByUserId: OwnerId;
674
+ /** The Qlik catalog dataset ID */
675
+ dataSetId: DataSetId;
676
+ /** Whether this is a new or other dataset */
677
+ datasetOrigin?: DatasetOrigin;
678
+ /** A optional date column name to index */
679
+ dateIndexes?: DateIndexes;
680
+ /** JSON string of error object */
681
+ errorMessage?: ErrorMessage;
682
+ /** JSON string with list of error objects */
683
+ errors?: Errors;
684
+ /** ID of the experiment */
685
+ experimentId: ExperimentId;
686
+ /** The model training mode for the experiment version */
687
+ experimentMode?: ExperimentMode;
688
+ /** Experiment type */
689
+ experimentType: ExperimentType;
690
+ /** List of features from your dataset for creating Experiment
691
+ * Versions. This appears in from ProfileInsights response (in the
692
+ * defaultVersionConfig). You can adjust the default settings before
693
+ * using it as input to create or update Experiment Versions. */
694
+ featuresList?: FeaturesList;
695
+ /** ID of this entity */
696
+ id: EntityId;
697
+ /** Number of the last batch */
698
+ lastBatchNum?: number;
699
+ /** Name of this entity */
700
+ name?: EntityName;
701
+ /** Pipeline metadata including transformations to apply to columns and
702
+ * specific schema configuration data */
703
+ pipeline?: Pipeline;
704
+ /** Preprocessed insights. Like feature insights but with fewer details. */
705
+ preprocessedInsights?: PreprocessedInsightColumn[];
706
+ /** ID of the dataset profile with metadata about source data */
707
+ profileId?: string;
708
+ /** Current status of this entity */
709
+ status: "ready" | "error" | "cancelled" | "pending" | "dataprep_requested" | "datasync_requested" | "datasync_done";
710
+ /** The target field in the dataset */
711
+ target: string;
712
+ /** ID of the top model (based on training scores) in this experiment
713
+ * version */
714
+ topModelId?: string;
715
+ /** Training duration in seconds. If provided, minimum is 900 (15m) and
716
+ * max is 21600 (6h). */
717
+ trainingDuration?: TrainingDuration;
718
+ /** Timestamp when this was updated */
719
+ updatedAt: UpdatedAt;
720
+ /** 1-based sequential version number within the experiment */
721
+ versionNumber?: number;
722
+ };
723
+ type ExperimentVersionFindResponse = {
724
+ data: {
725
+ /** An AutoML experiment version. This is a configuration for training
726
+ * models within an experiment. */
727
+ attributes: ExperimentVersion;
728
+ /** ID of this entity */
729
+ id: EntityId;
730
+ type: "experiment-version";
731
+ }[];
732
+ /** Resource links included in paginated responses */
733
+ links: ResponseLinks;
734
+ /** Meta for FIND operations */
735
+ meta?: FindResponseMeta;
736
+ };
737
+ type ExperimentVersionGetResponse = {
738
+ data: {
739
+ /** An AutoML experiment version. This is a configuration for training
740
+ * models within an experiment. */
741
+ attributes: ExperimentVersion;
742
+ /** ID of this entity */
743
+ id: EntityId;
744
+ type: "experiment-version";
745
+ };
746
+ };
747
+ /**
748
+ * ID of the experiment version
749
+ */
750
+ type ExperimentVersionId = string;
751
+ /**
752
+ * Input for creating a new experiment version. Defaults provided in the
753
+ * ProfileInsights response.
754
+ */
755
+ type ExperimentVersionInput = {
756
+ data: {
757
+ attributes: {
758
+ /** Algorithms used for model training in this version. See
759
+ * documentation for valid algorithms for each
760
+ * `experimentType`.
761
+ *
762
+ * If not provided, defaults to all valid algorithms for your
763
+ * experimentType. */
764
+ algorithms?: ModelAlgorithm[];
765
+ /** The Qlik catalog dataset ID */
766
+ dataSetId: DataSetId;
767
+ /** Whether this is a new or other dataset */
768
+ datasetOrigin?: DatasetOrigin;
769
+ /** A optional date column name to index */
770
+ dateIndexes?: DateIndexes;
771
+ /** The model training mode for the experiment version */
772
+ experimentMode: ExperimentMode;
773
+ /** Experiment type */
774
+ experimentType: ExperimentType;
775
+ /** List of features from your dataset for creating Experiment
776
+ * Versions. This appears in from ProfileInsights response (in the
777
+ * defaultVersionConfig). You can adjust the default settings before
778
+ * using it as input to create or update Experiment Versions. */
779
+ featuresList: FeaturesList;
780
+ name: string;
781
+ /** Pipeline metadata including transformations to apply to columns and
782
+ * specific schema configuration data */
783
+ pipeline?: Pipeline;
784
+ /** The target field in the dataset. Set in first experiment
785
+ * version and can't be changed in subsequent versions. */
786
+ target: string;
787
+ /** Training duration in seconds. If provided, minimum is 900 (15m) and
788
+ * max is 21600 (6h). */
789
+ trainingDuration?: TrainingDuration;
790
+ };
791
+ type: "experiment-version";
792
+ };
793
+ };
794
+ type ExperimentVersionPatch = {
795
+ /** All patch requests use the replace operation */
796
+ op: "replace";
797
+ /** Path for the properties you can update. */
798
+ path: "/name";
799
+ /** Use for fields that can be `any` type (string, number, etc.) */
800
+ value: AnyType;
801
+ }[];
802
+ type ExperimentVersionPostResponse = {
803
+ data: {
804
+ /** An AutoML experiment version. This is a configuration for training
805
+ * models within an experiment. */
806
+ attributes: ExperimentVersion;
807
+ /** ID of this entity */
808
+ id: EntityId;
809
+ type: "experiment-version";
810
+ };
811
+ };
812
+ type Failure = {
813
+ errors: APIError[];
814
+ };
815
+ /**
816
+ * A feature (column) from your dataset
817
+ */
818
+ type Feature = {
819
+ /** Indicates if you want to change the featureType for this
820
+ * feature within the experiment version */
821
+ changeType?: ChangeType;
822
+ /** The data type of this feature in your dataset */
823
+ dataType?: DataType;
824
+ /** The default feature type based on the feature's data type.
825
+ * If you want a value to be interpreted differently (e.g. 0/1
826
+ * as categorical/boolean instead of numeric), use `changeType`. */
827
+ featureType?: FeatureType;
828
+ /** Include this feature in your experiment version? Default
829
+ * here is based on insights for this feature
830
+ * (e.g. willBeDropped). */
831
+ include?: boolean;
832
+ /** Name of the feature column */
833
+ name?: string;
834
+ /** The parent feature name for engineered features. e.g. `OrderDate` may be the parent of its engineered features (features extracted from parent) like `OrderDate.YEAR`, `OrderDate.MONTH`, etc. */
835
+ parentFeature?: string;
836
+ };
837
+ /**
838
+ * Metadata about the features in your dataset, generated when you create
839
+ * ProfileInsights.
840
+ */
841
+ type FeatureInsights = {
842
+ /** Whether a feature cannot be the target field */
843
+ cannotBeTarget: boolean;
844
+ /** The default feature type based on the feature's data type.
845
+ * If you want a value to be interpreted differently (e.g. 0/1
846
+ * as categorical/boolean instead of numeric), use `changeType`. */
847
+ defaultFeatureType?: FeatureType;
848
+ /** Preliminary list of engineered features as strings. If subsequent
849
+ * processing validates them, they'll be converted to EngineeredFeature
850
+ * objects within a NestedColumn, each of which may contain its own
851
+ * FeatureInsights. */
852
+ engineeredFeatures?: string[];
853
+ /** Experiment types in this feature insight */
854
+ experimentTypes: ExperimentType[];
855
+ /** List of insights about this feature. */
856
+ insights: Insights[];
857
+ /** Name of the feature insight */
858
+ name: string;
859
+ /** Whether this feature will be dropped. Traits like high cardinality
860
+ * make some features less predictive or too costly to merit use. */
861
+ willBeDropped: boolean;
862
+ };
863
+ /**
864
+ * The default feature type based on the feature's data type.
865
+ * If you want a value to be interpreted differently (e.g. 0/1
866
+ * as categorical/boolean instead of numeric), use `changeType`.
867
+ */
868
+ type FeatureType = "categorical" | "numeric" | "date" | "freetext";
869
+ /**
870
+ * List of features from your dataset for creating Experiment
871
+ * Versions. This appears in from ProfileInsights response (in the
872
+ * defaultVersionConfig). You can adjust the default settings before
873
+ * using it as input to create or update Experiment Versions.
874
+ */
875
+ type FeaturesList = Feature[];
876
+ /**
877
+ * Dataset file type
878
+ * @example
879
+ * "qvd, parquet, csv"
880
+ */
881
+ type FileType = string;
882
+ /**
883
+ * Meta for FIND operations
884
+ */
885
+ type FindResponseMeta = {
886
+ count: number;
887
+ };
888
+ /**
889
+ * A optional column name upon which to create an index. Must be unique for
890
+ * every row. If not included, Qlik will create a unique index column.
891
+ */
892
+ type IndexColumn = string;
893
+ /**
894
+ * Insights about a feature, such as why it's not included in a model
895
+ */
896
+ type Insights = "constant" | "high_cardinality" | "high_cardinality_integer" | "too_many_nulls" | "will_be_impact_encoded" | "will_be_one_hot_encoded" | "possible_free_text_encoded" | "valid_index" | "underrepresented_class" | "invalid_column_name" | "will_be_date_engineered" | "possible_date_index" | "possible_group" | "possible_future_feature";
897
+ /**
898
+ * The type for this job
899
+ */
900
+ type JobType = "prediction";
901
+ /**
902
+ * A model based on an algorithm within an experiment version.
903
+ */
904
+ type Model = {
905
+ /** Model algorithm name abbreviation */
906
+ algoAbbrv?: ModelAlgorithmAbbreviation;
907
+ /** The algorithm used by this model */
908
+ algorithm?: string;
909
+ anomalyRatio?: number;
910
+ /** Batch number indicates the index of the experiment version fold
911
+ * (most relevant when HPO is enabled) */
912
+ batchNum?: number;
913
+ binaryImbalanceSampling?: BinaryImbalanceSampling;
914
+ binningFeatures?: string[];
915
+ /** Dataset columns selected as features */
916
+ columns?: string[];
917
+ /** Timestamp when this was created */
918
+ createdAt?: CreatedAt;
919
+ /** Description of this entity */
920
+ description?: EntityDescription;
921
+ /** Features dropped because they're unsuitable */
922
+ droppedFeatures?: DroppedFeature[];
923
+ /** JSON string of error object */
924
+ errorMessage?: ErrorMessage;
925
+ /** JSON string with list of error objects */
926
+ errors?: Errors;
927
+ /** ID of the experiment version */
928
+ experimentVersionId?: ExperimentVersionId;
929
+ /** Version number of the hyperparameter optimization */
930
+ hpoNum?: number;
931
+ /** ID of this entity */
932
+ id?: EntityId;
933
+ /** Model metrics based on the type of model */
934
+ metrics?: ModelMetrics;
935
+ /** Model state. These are the state of the model in relation to
936
+ * deployments. */
937
+ modelState?: ModelState;
938
+ /** Name of this entity */
939
+ name?: EntityName;
940
+ powerTransformFeatures?: string[];
941
+ /** Ratio of sample data in relation to the dataset */
942
+ samplingRatio?: number;
943
+ /** Model sequence number within the experiment version */
944
+ seqNum?: number;
945
+ /** Model status. These are the status of the model in relation to
946
+ * experiments (i.e. training status). */
947
+ status?: ModelStatus;
948
+ /** Timestamp when this was updated */
949
+ updatedAt?: UpdatedAt;
950
+ };
951
+ /**
952
+ * Enumeration of model algorithms.
953
+ *
954
+ * A subset of these may be provided based on your ExperimentType. This is
955
+ * based on your target's featureType. When you select a target feature
956
+ * from your ProfileInsights response (defaultVersionConfig.featuresList),
957
+ * it tells you which algorithms will be available if you choose it as your
958
+ * target.
959
+ */
960
+ type ModelAlgorithm = "catboost_classifier" | "catboost_regression" | "elasticnet_regression" | "gaussian_nb" | "kneighbors_classifier" | "lasso_regression" | "lasso" | "lgbm_classifier" | "lgbm_regression" | "linear_regression" | "logistic_regression" | "random_forest_classifier" | "random_forest_regression" | "sgd_regression" | "xgb_classifier" | "xgb_regression" | "deepar_timeseries" | "mixer_timeseries" | "tft_timeseries" | "tide_timeseries";
961
+ /**
962
+ * Model algorithm name abbreviation
963
+ */
964
+ type ModelAlgorithmAbbreviation = "CATBC" | "CATBR" | "ELNC" | "GNBC" | "LGBMC" | "LGBMR" | "LINR" | "LOGC" | "LSOC" | "RAFC" | "RAFR" | "SGDR" | "XGBC" | "XGBR" | "DEAR" | "MIXR" | "TFTT" | "TIDE";
965
+ type ModelFindResponse = {
966
+ data: {
967
+ /** A model based on an algorithm within an experiment version. */
968
+ attributes: Model;
969
+ /** ID of this entity */
970
+ id: EntityId;
971
+ type: "model";
972
+ }[];
973
+ /** Resource links included in paginated responses */
974
+ links: ResponseLinks;
975
+ /** Meta for FIND operations */
976
+ meta?: FindResponseMeta;
977
+ };
978
+ type ModelGetResponse = {
979
+ data: {
980
+ /** A model based on an algorithm within an experiment version. */
981
+ attributes: Model;
982
+ /** ID of this entity */
983
+ id: EntityId;
984
+ type: "model";
985
+ };
986
+ };
987
+ /**
988
+ * ID of the model
989
+ */
990
+ type ModelId = string;
991
+ /**
992
+ * Model information stored on an alias
993
+ */
994
+ type ModelInfo = {
995
+ /** ID of this entity */
996
+ id?: EntityId;
997
+ };
998
+ /**
999
+ * Model metrics based on the type of model
1000
+ */
1001
+ type ModelMetrics = {
1002
+ /** Binary metrics for categorical values with two options. Details:
1003
+ * https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/AutoML/scoring-binary-classification.htm */
1004
+ binary?: ModelMetricsBinary;
1005
+ /** Multiclass metrics for categorical values with 3+ options. Details:
1006
+ * https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/AutoML/scoring-multiclass-classification.htm */
1007
+ multiclass?: ModelMetricsMulticlass;
1008
+ /** Regression metrics for numeric values. Details:
1009
+ * https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/AutoML/scoring-regression.htm */
1010
+ regression?: ModelMetricsRegression;
1011
+ /** Timeseries metrics experiments valid for timeseries forecasting. */
1012
+ timeseries?: ModelMetricsTimeseries;
1013
+ };
1014
+ /**
1015
+ * Binary metrics for categorical values with two options. Details:
1016
+ * https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/AutoML/scoring-binary-classification.htm
1017
+ */
1018
+ type ModelMetricsBinary = {
1019
+ /** Average measure of how often the model made correct predictions
1020
+ * (training data) */
1021
+ accuracy?: number;
1022
+ /** Average measure of how often the model made correct predictions
1023
+ * (test data) */
1024
+ accuracyTest?: number;
1025
+ /** Area under curve (training data) */
1026
+ auc?: number;
1027
+ /** Area under curve (test data) */
1028
+ aucTest?: number;
1029
+ /** The harmonic mean of precision and recall for training data */
1030
+ f1?: number;
1031
+ /** The harmonic mean of precision and recall for test data */
1032
+ f1Test?: number;
1033
+ /** The false positive rate (training data) */
1034
+ fallout?: number;
1035
+ /** The false positive rate (test data) */
1036
+ falloutTest?: number;
1037
+ /** Actual true values incorrectly predicted as false (training data) */
1038
+ falseNegative?: number;
1039
+ /** Actual true values incorrectly predicted as false (test data) */
1040
+ falseNegativeTest?: number;
1041
+ /** Actual false values incorrectly predicted as true (training data) */
1042
+ falsePositive?: number;
1043
+ /** Actual false values incorrectly predicted as true (test data) */
1044
+ falsePositiveTest?: number;
1045
+ /** Measures accuracy in logistic regression (training data) */
1046
+ logLoss?: number;
1047
+ /** Measures accuracy in logistic regression (test data) */
1048
+ logLossTest?: number;
1049
+ /** Matthews correlation coefficient (training data) */
1050
+ mcc?: number;
1051
+ /** Matthews correlation coefficient (test data) */
1052
+ mccTest?: number;
1053
+ /** The false negative rate (training data) */
1054
+ missRate?: number;
1055
+ /** The false negative rate (test data) */
1056
+ missRateTest?: number;
1057
+ /** Negative predictive value (training data) */
1058
+ npv?: number;
1059
+ /** Negative predictive value (test data) */
1060
+ npvTest?: number;
1061
+ /** Positive predictive value. Probability that the model was correct
1062
+ * when it predicted something was true. (training data) */
1063
+ precision?: number;
1064
+ /** Positive predictive value. Probability that the model was correct
1065
+ * when it predicted something was true. (test data) */
1066
+ precisionTest?: number;
1067
+ /** The true positive rate (training data) */
1068
+ recall?: number;
1069
+ /** The true positive rate (test data) */
1070
+ recallTest?: number;
1071
+ /** The true negative rate (training data) */
1072
+ specificity?: number;
1073
+ /** The true negative rate (test data) */
1074
+ specificityTest?: number;
1075
+ /** Probability that a prediction is true (training data) */
1076
+ threshold?: number;
1077
+ /** Probability that a prediction is true (test data) */
1078
+ thresholdTest?: number;
1079
+ /** Actual false values correctly predicted as false (training data) */
1080
+ trueNegative?: number;
1081
+ /** Actual false values correctly predicted as false (test data) */
1082
+ trueNegativeTest?: number;
1083
+ /** Actual true values correctly predicted as true (training data) */
1084
+ truePositive?: number;
1085
+ /** Actual true values correctly predicted as true (test data) */
1086
+ truePositiveTest?: number;
1087
+ };
1088
+ /**
1089
+ * Multiclass metrics for categorical values with 3+ options. Details:
1090
+ * https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/AutoML/scoring-multiclass-classification.htm
1091
+ */
1092
+ type ModelMetricsMulticlass = {
1093
+ /** Average of how often the model made a correct prediction (training
1094
+ * data) */
1095
+ accuracy?: number;
1096
+ /** Average of how often the model made a correct prediction (test data) */
1097
+ accuracyTest?: number;
1098
+ /** A matrix summary of the accuracy of predictions in a classification
1099
+ * model (training data) */
1100
+ confusionMatrix?: string;
1101
+ /** A matrix summary of the accuracy of predictions in a classification
1102
+ * model (training data) */
1103
+ confusionMatrixTest?: string;
1104
+ /** Macro F1 is the averaged F1 value for each class without weighting
1105
+ * (training data) */
1106
+ f1Macro?: number;
1107
+ /** Macro F1 is the averaged F1 value for each class without weighting
1108
+ * (test data) */
1109
+ f1MacroTest?: number;
1110
+ /** Micro F1 is the F1 value calculated across the entire confusion
1111
+ * matrix (training data) */
1112
+ f1Micro?: number;
1113
+ /** Micro F1 is the F1 value calculated across the entire confusion
1114
+ * matrix (test data) */
1115
+ f1MicroTest?: number;
1116
+ /** Weighted F1 (training data) */
1117
+ f1Weighted?: number;
1118
+ /** Weighted F1 (test data) */
1119
+ f1WeightedTest?: number;
1120
+ };
1121
+ /**
1122
+ * Regression metrics for numeric values. Details:
1123
+ * https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/AutoML/scoring-regression.htm
1124
+ */
1125
+ type ModelMetricsRegression = {
1126
+ /** Mean absolute error (training data) */
1127
+ mae?: number;
1128
+ /** Mean absolute error (test data) */
1129
+ maeTest?: number;
1130
+ /** Mean squared error (training data) */
1131
+ mse?: number;
1132
+ /** Mean squared error (test data) */
1133
+ mseTest?: number;
1134
+ /** R squared (training data) */
1135
+ r2?: number;
1136
+ /** R squared (test data) */
1137
+ r2Test?: number;
1138
+ /** Root mean squared error (training data) */
1139
+ rmse?: number;
1140
+ /** Root mean squared error (test data) */
1141
+ rmseTest?: number;
1142
+ };
1143
+ /**
1144
+ * Timeseries metrics experiments valid for timeseries forecasting.
1145
+ */
1146
+ type ModelMetricsTimeseries = {
1147
+ /** Mean absolute percentage error (training data) */
1148
+ mape?: number;
1149
+ /** Mean absolute percentage error (test data) */
1150
+ mapeTest?: number;
1151
+ };
1152
+ /**
1153
+ * Model state. These are the state of the model in relation to
1154
+ * deployments.
1155
+ */
1156
+ type ModelState = "pending" | "enabled" | "disabled" | "inactive";
1157
+ /**
1158
+ * Model status. These are the status of the model in relation to
1159
+ * experiments (i.e. training status).
1160
+ */
1161
+ type ModelStatus = "pending" | "training_requested" | "training_done" | "ready" | "error";
1162
+ type ModelsInfo = ModelInfo[];
1163
+ type OutputFile = {
1164
+ fileName: string;
1165
+ /** Dataset file type */
1166
+ fileType: FileType;
1167
+ key: string;
1168
+ path: string;
1169
+ /** Space ID for this entity (empty string for personal space) */
1170
+ spaceId: SpaceId;
1171
+ };
1172
+ /**
1173
+ * ID of owner/user for this entity
1174
+ */
1175
+ type OwnerId = string;
1176
+ /**
1177
+ * ID of the current job's parent
1178
+ */
1179
+ type ParentJobId = string;
1180
+ /**
1181
+ * Pipeline metadata including transformations to apply to columns and
1182
+ * specific schema configuration data
1183
+ */
1184
+ type Pipeline = {
1185
+ dataSchemaConfiguration?: DataSchemaConfiguration[];
1186
+ transforms?: Transform[];
1187
+ };
1188
+ type PredictionJobResponse = {
1189
+ /** The ID of a correlated resource of corrType */
1190
+ corrId: CorrId;
1191
+ /** Types names of correlated resources (batch 'prediction' and
1192
+ * experiment_version) */
1193
+ corrType: CorrType;
1194
+ /** Timestamp when this was created */
1195
+ createdAt: CreatedAt;
1196
+ /** ID of the owner/user that created this entity */
1197
+ createdBy: string;
1198
+ /** Timestamp when this is deleted */
1199
+ deletedAt: DeletedAt;
1200
+ /** ID of a model deployment */
1201
+ deploymentId: DeploymentId;
1202
+ details: {
1203
+ isScheduled: boolean;
1204
+ lineageSchemaUpdated: boolean;
1205
+ outputFiles: OutputFile[];
1206
+ };
1207
+ experimentVersionNumber: string;
1208
+ /** ID of this entity */
1209
+ id: EntityId;
1210
+ /** The type for this job */
1211
+ jobType: JobType;
1212
+ /** ID of the model */
1213
+ modelId: ModelId;
1214
+ name: string;
1215
+ /** ID of the current job's parent */
1216
+ parentJobId: ParentJobId;
1217
+ parentName: string;
1218
+ rowsPredicted: number;
1219
+ /** Status of this job */
1220
+ status: "pending" | "completed" | "cancelled" | "error";
1221
+ success: boolean;
1222
+ /** Tenant ID for this entity */
1223
+ tenantId: TenantId;
1224
+ trigger: string;
1225
+ /** Timestamp when this was updated */
1226
+ updatedAt: UpdatedAt;
1227
+ };
1228
+ /**
1229
+ * Metadata about features/columns from dataset after preprocessing
1230
+ */
1231
+ type PreprocessedInsightColumn = {
1232
+ /** Preliminary list of column/feature insights available after
1233
+ * preprocessing but before feature insights are available */
1234
+ insights: ("is_free_text" | "cannot_be_processed_as_free_text" | "is_date_engineered" | "has_target_leakage" | "feature_type_change_invalid" | "feature_type_change_failed" | "feature_type_change_successful")[];
1235
+ /** Name of the preprocessed insight column */
1236
+ name: string;
1237
+ /** Whether this feature insight will be dropped due to free text or
1238
+ * high cardinality that makes it less useful */
1239
+ willBeDropped: boolean;
1240
+ };
1241
+ /**
1242
+ * Insights (metadata) about an experiment dataset
1243
+ */
1244
+ type ProfileInsights = {
1245
+ /** List of algorithms available for the selected experiment type */
1246
+ algorithms?: ModelAlgorithm[];
1247
+ defaultVersionConfig?: {
1248
+ /** The Qlik catalog dataset ID */
1249
+ dataSetId: DataSetId;
1250
+ /** Whether this is a new or other dataset */
1251
+ datasetOrigin: DatasetOrigin;
1252
+ /** The model training mode for the experiment version */
1253
+ experimentMode: ExperimentMode;
1254
+ /** List of features from your dataset for creating Experiment
1255
+ * Versions. This appears in from ProfileInsights response (in the
1256
+ * defaultVersionConfig). You can adjust the default settings before
1257
+ * using it as input to create or update Experiment Versions. */
1258
+ featuresList?: FeaturesList;
1259
+ name: string;
1260
+ };
1261
+ /** List of feature insights object, one per feature in the dataset */
1262
+ insights?: FeatureInsights[];
1263
+ /** ID of owner/user for this entity */
1264
+ ownerId: OwnerId;
1265
+ /** Status of profile insights. Not available until `ready`. */
1266
+ status: "pending" | "error" | "ready";
1267
+ /** Tenant ID for this entity */
1268
+ tenantId: TenantId;
1269
+ };
1270
+ type ProfileInsightsGetResponse = {
1271
+ data: {
1272
+ /** Insights (metadata) about an experiment dataset */
1273
+ attributes: ProfileInsights;
1274
+ /** ID of this entity */
1275
+ id: EntityId;
1276
+ type: "profile-insights";
1277
+ };
1278
+ };
1279
+ /**
1280
+ * Input to get dataset and feature metadata needed to create
1281
+ * experiment versions
1282
+ */
1283
+ type ProfileInsightsInput = {
1284
+ /** Data wrapper for request input */
1285
+ data?: {
1286
+ /** The request body for this resource */
1287
+ attributes?: {
1288
+ /** The Qlik catalog dataset ID */
1289
+ dataSetId?: DataSetId;
1290
+ /** Experiment type */
1291
+ experimentType?: ExperimentType;
1292
+ /** Whether the server should or client should manage polling/waiting */
1293
+ shouldWait?: boolean;
1294
+ /** Optional selected target provided on subsequent requests */
1295
+ target?: string;
1296
+ };
1297
+ type?: "profile-insights";
1298
+ };
1299
+ };
1300
+ type RealTimePredictionInputSchema = {
1301
+ /** The name of a feature in the dataset */
1302
+ name?: string;
1303
+ };
1304
+ type RealTimePredictionSchema = {
1305
+ /** The name of a feature in the dataset */
1306
+ name?: string;
1307
+ };
1308
+ /**
1309
+ * Input values for creating realtime predictions
1310
+ */
1311
+ type RealtimePrediction = {
1312
+ data?: {
1313
+ attributes?: {
1314
+ /** Rows of the dataset from which to produce predictions */
1315
+ rows?: string[][];
1316
+ /** List of features in the dataset */
1317
+ schema?: RealTimePredictionSchema[];
1318
+ };
1319
+ type?: "realtime-prediction";
1320
+ };
1321
+ };
1322
+ /**
1323
+ * Input values for creating realtime predictions
1324
+ */
1325
+ type RealtimePredictionInput = {
1326
+ /** Rows of the dataset from which to produce predictions.
1327
+ * Date features must be in ISO 8601 format. */
1328
+ rows?: string[][];
1329
+ /** List of features in the dataset. */
1330
+ schema?: RealTimePredictionInputSchema[];
1331
+ };
1332
+ /**
1333
+ * Resource links included in paginated responses
1334
+ */
1335
+ type ResponseLinks = {
1336
+ first: {
1337
+ /** Link to the first set of responses from `offset` 0 to count `limit`` */
1338
+ href?: string;
1339
+ };
1340
+ last: {
1341
+ /** Link to the last set of responses from `limit` minus `offset` to
1342
+ * `limit` */
1343
+ href?: string;
1344
+ };
1345
+ next: {
1346
+ /** Link to the next set of responses */
1347
+ href?: string;
1348
+ };
1349
+ prev: {
1350
+ /** Link to the previous set of responses */
1351
+ href?: string;
1352
+ };
1353
+ self: {
1354
+ /** Link to the current set of responses */
1355
+ href?: string;
1356
+ };
1357
+ };
1358
+ /**
1359
+ * Space ID for this entity (empty string for personal space)
1360
+ */
1361
+ type SpaceId = string;
1362
+ /**
1363
+ * Tenant ID for this entity
1364
+ */
1365
+ type TenantId = string;
1366
+ /**
1367
+ * Training duration in seconds. If provided, minimum is 900 (15m) and
1368
+ * max is 21600 (6h).
1369
+ */
1370
+ type TrainingDuration = number;
1371
+ type Transform = {
1372
+ column?: ColumnTransform;
1373
+ };
1374
+ /**
1375
+ * Timestamp when this was updated
1376
+ */
1377
+ type UpdatedAt = string;
1378
+ /**
1379
+ * List deployments
1380
+ * @example
1381
+ * getMlDeployments(
1382
+ * {
1383
+ * filter: "`filter=spaceId eq \"UUID\" and modelState eq \"enabled\"`",
1384
+ * limit: 10,
1385
+ * offset: 32
1386
+ * }
1387
+ * )
1388
+ *
1389
+ * @param query an object with query parameters
1390
+ * @throws GetMlDeploymentsHttpError
1391
+ */
1392
+ declare function getMlDeployments(query: {
1393
+ /** Deployment fields by which you can filter responses.<br><br>
1394
+ * - `spaceId` ID string (or empty string for personal space) - ID of space in which deployment(s) exist
1395
+ * - `modelId` UUID string - By model ID
1396
+ * - `createdBy` ID string
1397
+ * - `ownerId` ID string
1398
+ * - `approverId` ID string - ID of user that approved a model in the deployment
1399
+ * - `experimentId` UUID string - ID of experiment in which model(s) exist
1400
+ * - `experimentVersionId` UUID string - ID of experiment version in which model(s) exist
1401
+ * - `predictionEnabled` boolean - Are predictions enabled
1402
+ * - `exactName` string - Deployments with exact name. Names may not be unique.
1403
+ * - `nameContains` string - Deployments where name includes this. Names may not be unique
1404
+ * - `modelName` string - Partial or exact, case-insensitive name of model in the deployment
1405
+ * - `modelState` enum string - State by which to find models<br><br>
1406
+ * - Valid states: `pending, enabled, disabled, inactive` */
1407
+ filter?: string;
1408
+ /** Number of results per page. Default is 32. */
1409
+ limit?: number;
1410
+ /** Number of rows to skip before getting page[size] */
1411
+ offset?: number;
1412
+ /** Field(s) by which to sort response */
1413
+ sort?: EnumSortDeployments;
1414
+ }, options?: ApiCallOptions): Promise<GetMlDeploymentsHttpResponse>;
1415
+ type GetMlDeploymentsHttpResponse = {
1416
+ data: DeploymentFindResponse;
1417
+ headers: Headers;
1418
+ status: 200;
1419
+ prev?: (options?: ApiCallOptions) => Promise<GetMlDeploymentsHttpResponse>;
1420
+ next?: (options?: ApiCallOptions) => Promise<GetMlDeploymentsHttpResponse>;
1421
+ };
1422
+ type GetMlDeploymentsHttpError = {
1423
+ data: Failure;
1424
+ headers: Headers;
1425
+ status: number;
1426
+ };
1427
+ /**
1428
+ * Create a deployment
1429
+ *
1430
+ * @param body an object with the body content
1431
+ * @throws CreateMlDeploymentHttpError
1432
+ */
1433
+ declare function createMlDeployment(body: DeploymentInput, options?: ApiCallOptions): Promise<CreateMlDeploymentHttpResponse>;
1434
+ type CreateMlDeploymentHttpResponse = {
1435
+ data: DeploymentPostResponse;
1436
+ headers: Headers;
1437
+ status: 201;
1438
+ };
1439
+ type CreateMlDeploymentHttpError = {
1440
+ data: Failure;
1441
+ headers: Headers;
1442
+ status: number;
1443
+ };
1444
+ /**
1445
+ * Delete a deployment
1446
+ *
1447
+ * @param deploymentId ID of the deployment
1448
+ * @throws DeleteMlDeploymentHttpError
1449
+ */
1450
+ declare function deleteMlDeployment(deploymentId: string, options?: ApiCallOptions): Promise<DeleteMlDeploymentHttpResponse>;
1451
+ type DeleteMlDeploymentHttpResponse = {
1452
+ data: void;
1453
+ headers: Headers;
1454
+ status: 204;
1455
+ };
1456
+ type DeleteMlDeploymentHttpError = {
1457
+ data: Failure;
1458
+ headers: Headers;
1459
+ status: number;
1460
+ };
1461
+ /**
1462
+ * Get a deployment
1463
+ *
1464
+ * @param deploymentId ID of the deployment
1465
+ * @throws GetMlDeploymentHttpError
1466
+ */
1467
+ declare function getMlDeployment(deploymentId: string, options?: ApiCallOptions): Promise<GetMlDeploymentHttpResponse>;
1468
+ type GetMlDeploymentHttpResponse = {
1469
+ data: DeploymentGetResponse;
1470
+ headers: Headers;
1471
+ status: 200;
1472
+ };
1473
+ type GetMlDeploymentHttpError = {
1474
+ data: Failure;
1475
+ headers: Headers;
1476
+ status: number;
1477
+ };
1478
+ /**
1479
+ * Update a deployment
1480
+ *
1481
+ * @param deploymentId ID of the deployment
1482
+ * @param body an object with the body content
1483
+ * @throws PatchMlDeploymentHttpError
1484
+ */
1485
+ declare function patchMlDeployment(deploymentId: string, body: DeploymentPatch, options?: ApiCallOptions): Promise<PatchMlDeploymentHttpResponse>;
1486
+ type PatchMlDeploymentHttpResponse = {
1487
+ data: void;
1488
+ headers: Headers;
1489
+ status: 204;
1490
+ };
1491
+ type PatchMlDeploymentHttpError = {
1492
+ data: Failure;
1493
+ headers: Headers;
1494
+ status: number;
1495
+ };
1496
+ /**
1497
+ * Activate the model for this deployment
1498
+ *
1499
+ * @param deploymentId ID of the deployment
1500
+ * @throws ActivateModelsMlDeploymentHttpError
1501
+ */
1502
+ declare function activateModelsMlDeployment(deploymentId: string, options?: ApiCallOptions): Promise<ActivateModelsMlDeploymentHttpResponse>;
1503
+ type ActivateModelsMlDeploymentHttpResponse = {
1504
+ data: void;
1505
+ headers: Headers;
1506
+ status: 204;
1507
+ };
1508
+ type ActivateModelsMlDeploymentHttpError = {
1509
+ data: Failure;
1510
+ headers: Headers;
1511
+ status: number;
1512
+ };
1513
+ /**
1514
+ * Deactivate the model for this deployment
1515
+ *
1516
+ * @param deploymentId ID of the deployment
1517
+ * @throws DeactivateModelsMlDeploymentHttpError
1518
+ */
1519
+ declare function deactivateModelsMlDeployment(deploymentId: string, options?: ApiCallOptions): Promise<DeactivateModelsMlDeploymentHttpResponse>;
1520
+ type DeactivateModelsMlDeploymentHttpResponse = {
1521
+ data: void;
1522
+ headers: Headers;
1523
+ status: 204;
1524
+ };
1525
+ type DeactivateModelsMlDeploymentHttpError = {
1526
+ data: Failure;
1527
+ headers: Headers;
1528
+ status: number;
1529
+ };
1530
+ /**
1531
+ * Retrieves a list of aliases based on filter parameters for a deployment.
1532
+ *
1533
+ * @param deploymentId
1534
+ * @param query an object with query parameters
1535
+ * @throws GetMlDeploymentAliasesHttpError
1536
+ */
1537
+ declare function getMlDeploymentAliases(deploymentId: string, query: {
1538
+ /** Alias fields by which you can filter responses
1539
+ * - `name` string - Aliases with exact name
1540
+ * - `modelId` UUID string - By model ID
1541
+ * - `mode` enum string - Mode by which alias is set to */
1542
+ filter?: string;
1543
+ /** Number of results per page. Default is 32. */
1544
+ limit?: number;
1545
+ /** Number of rows to skip before getting page[size] */
1546
+ offset?: number;
1547
+ /** Field(s) by which to sort response */
1548
+ sort?: EnumSortAliases;
1549
+ }, options?: ApiCallOptions): Promise<GetMlDeploymentAliasesHttpResponse>;
1550
+ type GetMlDeploymentAliasesHttpResponse = {
1551
+ data: AliasFindResponse;
1552
+ headers: Headers;
1553
+ status: 200;
1554
+ prev?: (options?: ApiCallOptions) => Promise<GetMlDeploymentAliasesHttpResponse>;
1555
+ next?: (options?: ApiCallOptions) => Promise<GetMlDeploymentAliasesHttpResponse>;
1556
+ };
1557
+ type GetMlDeploymentAliasesHttpError = {
1558
+ data: Failure;
1559
+ headers: Headers;
1560
+ status: number;
1561
+ };
1562
+ /**
1563
+ * Creates an alias for a deployment.
1564
+ *
1565
+ * @param deploymentId ID of the deployment
1566
+ * @param body an object with the body content
1567
+ * @throws CreateMlDeploymentAliaseHttpError
1568
+ */
1569
+ declare function createMlDeploymentAliase(deploymentId: string, body: AliasInput, options?: ApiCallOptions): Promise<CreateMlDeploymentAliaseHttpResponse>;
1570
+ type CreateMlDeploymentAliaseHttpResponse = {
1571
+ data: AliasPostResponse;
1572
+ headers: Headers;
1573
+ status: 201;
1574
+ };
1575
+ type CreateMlDeploymentAliaseHttpError = {
1576
+ data: Failure;
1577
+ headers: Headers;
1578
+ status: number;
1579
+ };
1580
+ /**
1581
+ * Delete an alias from a deployment.
1582
+ *
1583
+ * @param deploymentId ID of the deployment
1584
+ * @param aliasId ID of the alias
1585
+ * @throws DeleteMlDeploymentAliaseHttpError
1586
+ */
1587
+ declare function deleteMlDeploymentAliase(deploymentId: string, aliasId: string, options?: ApiCallOptions): Promise<DeleteMlDeploymentAliaseHttpResponse>;
1588
+ type DeleteMlDeploymentAliaseHttpResponse = {
1589
+ data: void;
1590
+ headers: Headers;
1591
+ status: 204;
1592
+ };
1593
+ type DeleteMlDeploymentAliaseHttpError = {
1594
+ data: Failure;
1595
+ headers: Headers;
1596
+ status: number;
1597
+ };
1598
+ /**
1599
+ * Retrieves an alias that exists on the deployment.
1600
+ *
1601
+ * @param deploymentId ID of the deployment
1602
+ * @param aliasId ID of the alias
1603
+ * @throws GetMlDeploymentAliaseHttpError
1604
+ */
1605
+ declare function getMlDeploymentAliase(deploymentId: string, aliasId: string, options?: ApiCallOptions): Promise<GetMlDeploymentAliaseHttpResponse>;
1606
+ type GetMlDeploymentAliaseHttpResponse = {
1607
+ data: AliasGetResponse;
1608
+ headers: Headers;
1609
+ status: 200;
1610
+ };
1611
+ type GetMlDeploymentAliaseHttpError = {
1612
+ data: Failure;
1613
+ headers: Headers;
1614
+ status: number;
1615
+ };
1616
+ /**
1617
+ * Updates an alias for a deployment.
1618
+ *
1619
+ * @param deploymentId ID of the deployment
1620
+ * @param aliasId ID of the alias
1621
+ * @param body an object with the body content
1622
+ * @throws PatchMlDeploymentAliaseHttpError
1623
+ */
1624
+ declare function patchMlDeploymentAliase(deploymentId: string, aliasId: string, body: AliasPatch, options?: ApiCallOptions): Promise<PatchMlDeploymentAliaseHttpResponse>;
1625
+ type PatchMlDeploymentAliaseHttpResponse = {
1626
+ data: void;
1627
+ headers: Headers;
1628
+ status: 204;
1629
+ };
1630
+ type PatchMlDeploymentAliaseHttpError = {
1631
+ data: Failure;
1632
+ headers: Headers;
1633
+ status: number;
1634
+ };
1635
+ /**
1636
+ * Generate predictions in a synchronous request/response
1637
+ *
1638
+ * @param deploymentId ID of the deployment
1639
+ * @param aliasName The name of the ML Deployment Alias that will be used to determine which model should be used to produce predictions
1640
+ * @param query an object with query parameters
1641
+ * @param body an object with the body content
1642
+ * @throws RunMlDeploymentAliaseRealtimePredictionsHttpError
1643
+ */
1644
+ declare function runMlDeploymentAliaseRealtimePredictions(deploymentId: string, aliasName: string, query: {
1645
+ /** If true, reason why a prediction was not produced included response */
1646
+ includeNotPredictedReason?: boolean;
1647
+ /** If true, shap values included in response */
1648
+ includeShap?: boolean;
1649
+ /** If true, source data included in response */
1650
+ includeSource?: boolean;
1651
+ /** The name of the feature in the source data to use as an index in the
1652
+ * response data. The column will be included with its original name
1653
+ * and values. This is intended to allow the caller to join results
1654
+ * with source data. */
1655
+ index?: string;
1656
+ }, body: RealtimePredictionInput, options?: ApiCallOptions): Promise<RunMlDeploymentAliaseRealtimePredictionsHttpResponse>;
1657
+ type RunMlDeploymentAliaseRealtimePredictionsHttpResponse = {
1658
+ data: RealtimePrediction;
1659
+ headers: Headers;
1660
+ status: 200;
1661
+ };
1662
+ type RunMlDeploymentAliaseRealtimePredictionsHttpError = {
1663
+ data: Failure;
1664
+ headers: Headers;
1665
+ status: number;
1666
+ };
1667
+ /**
1668
+ * List batch prediction configurations
1669
+ *
1670
+ * @param deploymentId ID of the deployment
1671
+ * @param query an object with query parameters
1672
+ * @throws GetMlDeploymentBatchPredictionsHttpError
1673
+ */
1674
+ declare function getMlDeploymentBatchPredictions(deploymentId: string, query: {
1675
+ /** Batch prediction fields by which you can filter responses.<br><br>
1676
+ * - `modelId` UUID string - By model ID */
1677
+ filter?: string;
1678
+ /** Number of results per page. Default is 32. */
1679
+ limit?: number;
1680
+ /** Number of rows to skip before getting page[size] */
1681
+ offset?: number;
1682
+ /** Field(s) by which to sort response */
1683
+ sort?: EnumSortBatchPredictions;
1684
+ }, options?: ApiCallOptions): Promise<GetMlDeploymentBatchPredictionsHttpResponse>;
1685
+ type GetMlDeploymentBatchPredictionsHttpResponse = {
1686
+ data: BatchPredictionFindResponse;
1687
+ headers: Headers;
1688
+ status: 200;
1689
+ prev?: (options?: ApiCallOptions) => Promise<GetMlDeploymentBatchPredictionsHttpResponse>;
1690
+ next?: (options?: ApiCallOptions) => Promise<GetMlDeploymentBatchPredictionsHttpResponse>;
1691
+ };
1692
+ type GetMlDeploymentBatchPredictionsHttpError = {
1693
+ data: Failure;
1694
+ headers: Headers;
1695
+ status: number;
1696
+ };
1697
+ /**
1698
+ * Create a prediction configuration
1699
+ *
1700
+ * @param deploymentId ID of the deployment
1701
+ * @param body an object with the body content
1702
+ * @throws CreateMlDeploymentBatchPredictionHttpError
1703
+ */
1704
+ declare function createMlDeploymentBatchPrediction(deploymentId: string, body: BatchPredictionInput, options?: ApiCallOptions): Promise<CreateMlDeploymentBatchPredictionHttpResponse>;
1705
+ type CreateMlDeploymentBatchPredictionHttpResponse = {
1706
+ data: BatchPredictionPostResponse;
1707
+ headers: Headers;
1708
+ status: 201;
1709
+ };
1710
+ type CreateMlDeploymentBatchPredictionHttpError = {
1711
+ data: Failure;
1712
+ headers: Headers;
1713
+ status: number;
1714
+ };
1715
+ /**
1716
+ * Delete a batch prediction
1717
+ *
1718
+ * @param deploymentId ID of the deployment
1719
+ * @param batchPredictionId ID of the batch prediction
1720
+ * @throws DeleteMlDeploymentBatchPredictionHttpError
1721
+ */
1722
+ declare function deleteMlDeploymentBatchPrediction(deploymentId: string, batchPredictionId: string, options?: ApiCallOptions): Promise<DeleteMlDeploymentBatchPredictionHttpResponse>;
1723
+ type DeleteMlDeploymentBatchPredictionHttpResponse = {
1724
+ data: void;
1725
+ headers: Headers;
1726
+ status: 204;
1727
+ };
1728
+ type DeleteMlDeploymentBatchPredictionHttpError = {
1729
+ data: Failure;
1730
+ headers: Headers;
1731
+ status: number;
1732
+ };
1733
+ /**
1734
+ * Retrieve a batch prediction
1735
+ *
1736
+ * @param deploymentId ID of the deployment
1737
+ * @param batchPredictionId ID of the batch prediction
1738
+ * @throws GetMlDeploymentBatchPredictionHttpError
1739
+ */
1740
+ declare function getMlDeploymentBatchPrediction(deploymentId: string, batchPredictionId: string, options?: ApiCallOptions): Promise<GetMlDeploymentBatchPredictionHttpResponse>;
1741
+ type GetMlDeploymentBatchPredictionHttpResponse = {
1742
+ data: BatchPredictionGetResponse;
1743
+ headers: Headers;
1744
+ status: 200;
1745
+ };
1746
+ type GetMlDeploymentBatchPredictionHttpError = {
1747
+ data: Failure;
1748
+ headers: Headers;
1749
+ status: number;
1750
+ };
1751
+ /**
1752
+ * Updates a batch prediction
1753
+ *
1754
+ * @param deploymentId ID of the deployment
1755
+ * @param batchPredictionId ID of the batch prediction
1756
+ * @param body an object with the body content
1757
+ * @throws PatchMlDeploymentBatchPredictionHttpError
1758
+ */
1759
+ declare function patchMlDeploymentBatchPrediction(deploymentId: string, batchPredictionId: string, body: BatchPredictionPatch, options?: ApiCallOptions): Promise<PatchMlDeploymentBatchPredictionHttpResponse>;
1760
+ type PatchMlDeploymentBatchPredictionHttpResponse = {
1761
+ data: void;
1762
+ headers: Headers;
1763
+ status: 204;
1764
+ };
1765
+ type PatchMlDeploymentBatchPredictionHttpError = {
1766
+ data: Failure;
1767
+ headers: Headers;
1768
+ status: number;
1769
+ };
1770
+ /**
1771
+ * Run a batch prediction
1772
+ *
1773
+ * @param deploymentId ID of the deployment
1774
+ * @param batchPredictionId ID of the batch prediction
1775
+ * @throws PredictMlDeploymentBatchPredictionHttpError
1776
+ */
1777
+ declare function predictMlDeploymentBatchPrediction(deploymentId: string, batchPredictionId: string, options?: ApiCallOptions): Promise<PredictMlDeploymentBatchPredictionHttpResponse>;
1778
+ type PredictMlDeploymentBatchPredictionHttpResponse = {
1779
+ data: BatchPredictionActionResponse;
1780
+ headers: Headers;
1781
+ status: 202;
1782
+ };
1783
+ type PredictMlDeploymentBatchPredictionHttpError = {
1784
+ data: Failure;
1785
+ headers: Headers;
1786
+ status: number;
1787
+ };
1788
+ /**
1789
+ * Deletes the schedule from a batch prediction.
1790
+ *
1791
+ * @param deploymentId ID of the deployment
1792
+ * @param batchPredictionId ID of the batch prediction
1793
+ * @throws DeleteMlDeploymentBatchPredictionScheduleHttpError
1794
+ */
1795
+ declare function deleteMlDeploymentBatchPredictionSchedule(deploymentId: string, batchPredictionId: string, options?: ApiCallOptions): Promise<DeleteMlDeploymentBatchPredictionScheduleHttpResponse>;
1796
+ type DeleteMlDeploymentBatchPredictionScheduleHttpResponse = {
1797
+ data: void;
1798
+ headers: Headers;
1799
+ status: 204;
1800
+ };
1801
+ type DeleteMlDeploymentBatchPredictionScheduleHttpError = {
1802
+ data: Failure;
1803
+ headers: Headers;
1804
+ status: number;
1805
+ };
1806
+ /**
1807
+ * Retrieves the schedule for a batch prediction.
1808
+ *
1809
+ * @param deploymentId ID of the deployment
1810
+ * @param batchPredictionId ID of the batch prediction
1811
+ * @throws GetMlDeploymentBatchPredictionScheduleHttpError
1812
+ */
1813
+ declare function getMlDeploymentBatchPredictionSchedule(deploymentId: string, batchPredictionId: string, options?: ApiCallOptions): Promise<GetMlDeploymentBatchPredictionScheduleHttpResponse>;
1814
+ type GetMlDeploymentBatchPredictionScheduleHttpResponse = {
1815
+ data: BatchPredictionScheduleGetResponse;
1816
+ headers: Headers;
1817
+ status: 200;
1818
+ };
1819
+ type GetMlDeploymentBatchPredictionScheduleHttpError = {
1820
+ data: Failure;
1821
+ headers: Headers;
1822
+ status: number;
1823
+ };
1824
+ /**
1825
+ * Updates the schedule for a batch prediction.
1826
+ *
1827
+ * @param deploymentId ID of the deployment
1828
+ * @param batchPredictionId ID of the batch prediction
1829
+ * @param body an object with the body content
1830
+ * @throws UpdateMlDeploymentBatchPredictionScheduleHttpError
1831
+ */
1832
+ declare function updateMlDeploymentBatchPredictionSchedule(deploymentId: string, batchPredictionId: string, body: BatchPredictionSchedulePatch, options?: ApiCallOptions): Promise<UpdateMlDeploymentBatchPredictionScheduleHttpResponse>;
1833
+ type UpdateMlDeploymentBatchPredictionScheduleHttpResponse = {
1834
+ data: void;
1835
+ headers: Headers;
1836
+ status: 204;
1837
+ };
1838
+ type UpdateMlDeploymentBatchPredictionScheduleHttpError = {
1839
+ data: Failure;
1840
+ headers: Headers;
1841
+ status: number;
1842
+ };
1843
+ /**
1844
+ * Adds a schedule to a batch prediction.
1845
+ *
1846
+ * @param deploymentId ID of the deployment
1847
+ * @param batchPredictionId ID of the batch prediction
1848
+ * @param body an object with the body content
1849
+ * @throws SetMlDeploymentBatchPredictionScheduleHttpError
1850
+ */
1851
+ declare function setMlDeploymentBatchPredictionSchedule(deploymentId: string, batchPredictionId: string, body: BatchPredictionScheduleInput, options?: ApiCallOptions): Promise<SetMlDeploymentBatchPredictionScheduleHttpResponse>;
1852
+ type SetMlDeploymentBatchPredictionScheduleHttpResponse = {
1853
+ data: BatchPredictionSchedulePutResponse;
1854
+ headers: Headers;
1855
+ status: 201;
1856
+ };
1857
+ type SetMlDeploymentBatchPredictionScheduleHttpError = {
1858
+ data: Failure;
1859
+ headers: Headers;
1860
+ status: number;
1861
+ };
1862
+ /**
1863
+ * Add deployed models for this deployment
1864
+ *
1865
+ * @param deploymentId ID of the deployment
1866
+ * @param body an object with the body content
1867
+ * @throws AddMlDeploymentModelsHttpError
1868
+ */
1869
+ declare function addMlDeploymentModels(deploymentId: string, body: DeployedModelsInput, options?: ApiCallOptions): Promise<AddMlDeploymentModelsHttpResponse>;
1870
+ type AddMlDeploymentModelsHttpResponse = {
1871
+ data: void;
1872
+ headers: Headers;
1873
+ status: 204;
1874
+ };
1875
+ type AddMlDeploymentModelsHttpError = {
1876
+ data: Failure;
1877
+ headers: Headers;
1878
+ status: number;
1879
+ };
1880
+ /**
1881
+ * Remove deployed models from this deployment
1882
+ *
1883
+ * @param deploymentId ID of the deployment
1884
+ * @param body an object with the body content
1885
+ * @throws RemoveMlDeploymentModelsHttpError
1886
+ */
1887
+ declare function removeMlDeploymentModels(deploymentId: string, body: DeployedModelsInput, options?: ApiCallOptions): Promise<RemoveMlDeploymentModelsHttpResponse>;
1888
+ type RemoveMlDeploymentModelsHttpResponse = {
1889
+ data: void;
1890
+ headers: Headers;
1891
+ status: 204;
1892
+ };
1893
+ type RemoveMlDeploymentModelsHttpError = {
1894
+ data: Failure;
1895
+ headers: Headers;
1896
+ status: number;
1897
+ };
1898
+ /**
1899
+ * Generate predictions in a synchronous request/response
1900
+ *
1901
+ * @param deploymentId ID of the deployment
1902
+ * @param query an object with query parameters
1903
+ * @param body an object with the body content
1904
+ * @throws RunMlDeploymentRealtimePredictionsHttpError
1905
+ */
1906
+ declare function runMlDeploymentRealtimePredictions(deploymentId: string, query: {
1907
+ /** If true, reason why a prediction was not produced included response */
1908
+ includeNotPredictedReason?: boolean;
1909
+ /** If true, shapley values included in response */
1910
+ includeShap?: boolean;
1911
+ /** If true, source data included in response */
1912
+ includeSource?: boolean;
1913
+ /** The name of the feature in the source data to use as an index in the
1914
+ * response data. The column will be included with its original name
1915
+ * and values. This is intended to allow the caller to join results
1916
+ * with source data. */
1917
+ index?: string;
1918
+ }, body: RealtimePredictionInput, options?: ApiCallOptions): Promise<RunMlDeploymentRealtimePredictionsHttpResponse>;
1919
+ type RunMlDeploymentRealtimePredictionsHttpResponse = {
1920
+ data: RealtimePrediction;
1921
+ headers: Headers;
1922
+ status: 200;
1923
+ };
1924
+ type RunMlDeploymentRealtimePredictionsHttpError = {
1925
+ data: Failure;
1926
+ headers: Headers;
1927
+ status: number;
1928
+ };
1929
+ /**
1930
+ * Retrieves a list of experiments based on provided filter and sort
1931
+ * parameters.
1932
+ * @example
1933
+ * getMlExperiments(
1934
+ * {
1935
+ * filter: "`filter=ownerId eq UUID and experimentVersionId eq UUID`",
1936
+ * limit: 10,
1937
+ * offset: 32
1938
+ * }
1939
+ * )
1940
+ *
1941
+ * @param query an object with query parameters
1942
+ * @throws GetMlExperimentsHttpError
1943
+ */
1944
+ declare function getMlExperiments(query: {
1945
+ /** Experiment fields by which you can filter responses within this tenant
1946
+ * - `ownerId` ID string - ID of the owner/user that created the experiment
1947
+ * - `spaceId` ID string (or empty string for personal space) - ID of the space where the experiment is saved.
1948
+ * - `experimentVersionId` UUID string - ID of an experiment version in the experiment
1949
+ * - `modelId` UUID string - ID of a model associated with the experiment
1950
+ * - `deploymentId` UUID string - ID of a deployment of a model associated with the experiment */
1951
+ filter?: string;
1952
+ /** Number of results per page. Default is 32. */
1953
+ limit?: number;
1954
+ /** Number of rows to skip before getting page[size] */
1955
+ offset?: number;
1956
+ /** Field(s) by which to sort response */
1957
+ sort?: EnumSortExperiments;
1958
+ }, options?: ApiCallOptions): Promise<GetMlExperimentsHttpResponse>;
1959
+ type GetMlExperimentsHttpResponse = {
1960
+ data: ExperimentFindResponse;
1961
+ headers: Headers;
1962
+ status: 200;
1963
+ prev?: (options?: ApiCallOptions) => Promise<GetMlExperimentsHttpResponse>;
1964
+ next?: (options?: ApiCallOptions) => Promise<GetMlExperimentsHttpResponse>;
1965
+ };
1966
+ type GetMlExperimentsHttpError = {
1967
+ data: Failure;
1968
+ headers: Headers;
1969
+ status: number;
1970
+ };
1971
+ /**
1972
+ * Create an experiment
1973
+ *
1974
+ * @param body an object with the body content
1975
+ * @throws CreateMlExperimentHttpError
1976
+ */
1977
+ declare function createMlExperiment(body: ExperimentInput, options?: ApiCallOptions): Promise<CreateMlExperimentHttpResponse>;
1978
+ type CreateMlExperimentHttpResponse = {
1979
+ data: ExperimentPostResponse;
1980
+ headers: Headers;
1981
+ status: 201;
1982
+ };
1983
+ type CreateMlExperimentHttpError = {
1984
+ data: Failure;
1985
+ headers: Headers;
1986
+ status: number;
1987
+ };
1988
+ /**
1989
+ * Delete an experiment
1990
+ *
1991
+ * @param experimentId ID of the experiment
1992
+ * @throws DeleteMlExperimentHttpError
1993
+ */
1994
+ declare function deleteMlExperiment(experimentId: string, options?: ApiCallOptions): Promise<DeleteMlExperimentHttpResponse>;
1995
+ type DeleteMlExperimentHttpResponse = {
1996
+ data: void;
1997
+ headers: Headers;
1998
+ status: 204;
1999
+ };
2000
+ type DeleteMlExperimentHttpError = {
2001
+ data: Failure;
2002
+ headers: Headers;
2003
+ status: number;
2004
+ };
2005
+ /**
2006
+ * Get an experiment
2007
+ *
2008
+ * @param experimentId ID of the experiment
2009
+ * @throws GetMlExperimentHttpError
2010
+ */
2011
+ declare function getMlExperiment(experimentId: string, options?: ApiCallOptions): Promise<GetMlExperimentHttpResponse>;
2012
+ type GetMlExperimentHttpResponse = {
2013
+ data: ExperimentGetResponse;
2014
+ headers: Headers;
2015
+ status: 200;
2016
+ };
2017
+ type GetMlExperimentHttpError = {
2018
+ data: Failure;
2019
+ headers: Headers;
2020
+ status: number;
2021
+ };
2022
+ /**
2023
+ * Update an experiment
2024
+ *
2025
+ * @param experimentId ID of the experiment
2026
+ * @param body an object with the body content
2027
+ * @throws PatchMlExperimentHttpError
2028
+ */
2029
+ declare function patchMlExperiment(experimentId: string, body: ExperimentPatch, options?: ApiCallOptions): Promise<PatchMlExperimentHttpResponse>;
2030
+ type PatchMlExperimentHttpResponse = {
2031
+ data: void;
2032
+ headers: Headers;
2033
+ status: 204;
2034
+ };
2035
+ type PatchMlExperimentHttpError = {
2036
+ data: Failure;
2037
+ headers: Headers;
2038
+ status: number;
2039
+ };
2040
+ /**
2041
+ * List models
2042
+ *
2043
+ * @param experimentId ID of the experiment
2044
+ * @param query an object with query parameters
2045
+ * @throws GetMlExperimentModelsHttpError
2046
+ */
2047
+ declare function getMlExperimentModels(experimentId: string, query: {
2048
+ /** Model fields you can filter by:<br><br>
2049
+ *
2050
+ * - `experimentVersionId` UUID string - Find by experiment version ID
2051
+ * - `batchNum` UUID string - Search by batch number
2052
+ * - `isHpo` boolean - Is hyperparameter optimization used?
2053
+ * - `isMetrics` boolean - Are metrics for regression, binary, or multiclass are used?
2054
+ * - `id` UUID string - Find by model ID
2055
+ * - `algorithm` enum string - Find by algorithm<br><br>
2056
+ *
2057
+ * - Valid algorithms: catboost_classifier, catboost_regression,
2058
+ * elasticnet_regression, gaussian_nb, kneighbors_classifier,
2059
+ * lasso_regression, lasso, lgbm_classifier, lgbm_regression,
2060
+ * linear_regression, logistic_regression, random_forest_classifier,
2061
+ * random_forest_regression, sgd_regression, xgb_classifier,
2062
+ * xgb_regression<br><br>
2063
+ *
2064
+ * - `status` enum string - find by status<br><br>
2065
+ * - Valid statuses: pending, training_requested, training_done, ready, error<br><br>
2066
+ * - `hasDeployment` boolean - Models that are part of a deployment
2067
+ * - `nameContains` string - Models with name includes this case-insensitive string
2068
+ * - `exactName` string - Models with exact name. Model names may not be unique
2069
+ * - `samplingRatio` number - Find models by sampling ratio
2070
+ * - `modelState` enum string - State by which to find models<br><br>
2071
+ * - Valid states: `pending, enabled, disabled, inactive` */
2072
+ filter?: string;
2073
+ /** Number of results per page. Default is 32. */
2074
+ limit?: number;
2075
+ /** Number of rows to skip before getting page[size] */
2076
+ offset?: number;
2077
+ /** Field(s) by which to sort response */
2078
+ sort?: EnumSortModels;
2079
+ }, options?: ApiCallOptions): Promise<GetMlExperimentModelsHttpResponse>;
2080
+ type GetMlExperimentModelsHttpResponse = {
2081
+ data: ModelFindResponse;
2082
+ headers: Headers;
2083
+ status: 200;
2084
+ prev?: (options?: ApiCallOptions) => Promise<GetMlExperimentModelsHttpResponse>;
2085
+ next?: (options?: ApiCallOptions) => Promise<GetMlExperimentModelsHttpResponse>;
2086
+ };
2087
+ type GetMlExperimentModelsHttpError = {
2088
+ data: Failure;
2089
+ headers: Headers;
2090
+ status: number;
2091
+ };
2092
+ /**
2093
+ * Get a model
2094
+ *
2095
+ * @param experimentId ID of the experiment
2096
+ * @param modelId ID of the model
2097
+ * @throws GetMlExperimentModelHttpError
2098
+ */
2099
+ declare function getMlExperimentModel(experimentId: string, modelId: string, options?: ApiCallOptions): Promise<GetMlExperimentModelHttpResponse>;
2100
+ type GetMlExperimentModelHttpResponse = {
2101
+ data: ModelGetResponse;
2102
+ headers: Headers;
2103
+ status: 200;
2104
+ };
2105
+ type GetMlExperimentModelHttpError = {
2106
+ data: Failure;
2107
+ headers: Headers;
2108
+ status: number;
2109
+ };
2110
+ /**
2111
+ * List experiment versions
2112
+ *
2113
+ * @param experimentId ID of the experiment
2114
+ * @param query an object with query parameters
2115
+ * @throws GetMlExperimentVersionsHttpError
2116
+ */
2117
+ declare function getMlExperimentVersions(experimentId: string, query: {
2118
+ /** Experiment version filter options
2119
+ * - `isRunning` boolean - Is the experiment version running (training models)?
2120
+ * - `isSettled` boolean - Is the experiment version settled?
2121
+ * - `status` enum string - Status to filter by. Omit to get models of any status.
2122
+ * - Valid statuses: pending, ready, error, cancelled
2123
+ * - `modelId` UUID string - ID of a model associated with the experiment */
2124
+ filter?: string;
2125
+ /** Number of results per page. Default is 32. */
2126
+ limit?: number;
2127
+ /** Number of rows to skip before getting page[size] */
2128
+ offset?: number;
2129
+ /** Field(s) by which to sort response */
2130
+ sort?: EnumSortExperimentVersions;
2131
+ }, options?: ApiCallOptions): Promise<GetMlExperimentVersionsHttpResponse>;
2132
+ type GetMlExperimentVersionsHttpResponse = {
2133
+ data: ExperimentVersionFindResponse;
2134
+ headers: Headers;
2135
+ status: 200;
2136
+ prev?: (options?: ApiCallOptions) => Promise<GetMlExperimentVersionsHttpResponse>;
2137
+ next?: (options?: ApiCallOptions) => Promise<GetMlExperimentVersionsHttpResponse>;
2138
+ };
2139
+ type GetMlExperimentVersionsHttpError = {
2140
+ data: Failure;
2141
+ headers: Headers;
2142
+ status: number;
2143
+ };
2144
+ /**
2145
+ * Creates an experiment version.
2146
+ * Poll this version and check its `status` field to determine when models
2147
+ * are finished training.
2148
+ *
2149
+ * @param experimentId ID of the experiment
2150
+ * @param body an object with the body content
2151
+ * @throws CreateMlExperimentVersionHttpError
2152
+ */
2153
+ declare function createMlExperimentVersion(experimentId: string, body: ExperimentVersionInput, options?: ApiCallOptions): Promise<CreateMlExperimentVersionHttpResponse>;
2154
+ type CreateMlExperimentVersionHttpResponse = {
2155
+ data: ExperimentVersionPostResponse;
2156
+ headers: Headers;
2157
+ status: 201;
2158
+ };
2159
+ type CreateMlExperimentVersionHttpError = {
2160
+ data: Failure;
2161
+ headers: Headers;
2162
+ status: number;
2163
+ };
2164
+ /**
2165
+ * Delete an experiment version
2166
+ *
2167
+ * @param experimentId ID of the experiment
2168
+ * @param experimentVersionId ID of the experiment version
2169
+ * @throws DeleteMlExperimentVersionHttpError
2170
+ */
2171
+ declare function deleteMlExperimentVersion(experimentId: string, experimentVersionId: string, options?: ApiCallOptions): Promise<DeleteMlExperimentVersionHttpResponse>;
2172
+ type DeleteMlExperimentVersionHttpResponse = {
2173
+ data: void;
2174
+ headers: Headers;
2175
+ status: 204;
2176
+ };
2177
+ type DeleteMlExperimentVersionHttpError = {
2178
+ data: Failure;
2179
+ headers: Headers;
2180
+ status: number;
2181
+ };
2182
+ /**
2183
+ * Get an experiment version
2184
+ *
2185
+ * @param experimentId ID of the experiment
2186
+ * @param experimentVersionId ID of the experiment version
2187
+ * @throws GetMlExperimentVersionHttpError
2188
+ */
2189
+ declare function getMlExperimentVersion(experimentId: string, experimentVersionId: string, options?: ApiCallOptions): Promise<GetMlExperimentVersionHttpResponse>;
2190
+ type GetMlExperimentVersionHttpResponse = {
2191
+ data: ExperimentVersionGetResponse;
2192
+ headers: Headers;
2193
+ status: 200;
2194
+ };
2195
+ type GetMlExperimentVersionHttpError = {
2196
+ data: Failure;
2197
+ headers: Headers;
2198
+ status: number;
2199
+ };
2200
+ /**
2201
+ * Update an experiment version
2202
+ *
2203
+ * @param experimentId ID of the experiment
2204
+ * @param experimentVersionId ID of the experiment version
2205
+ * @param body an object with the body content
2206
+ * @throws PatchMlExperimentVersionHttpError
2207
+ */
2208
+ declare function patchMlExperimentVersion(experimentId: string, experimentVersionId: string, body: ExperimentVersionPatch, options?: ApiCallOptions): Promise<PatchMlExperimentVersionHttpResponse>;
2209
+ type PatchMlExperimentVersionHttpResponse = {
2210
+ data: void;
2211
+ headers: Headers;
2212
+ status: 204;
2213
+ };
2214
+ type PatchMlExperimentVersionHttpError = {
2215
+ data: Failure;
2216
+ headers: Headers;
2217
+ status: number;
2218
+ };
2219
+ /**
2220
+ * Cancels jobs for an experiment version or batch prediction.
2221
+ *
2222
+ * @param corrType The type of a resource paired with a corrId
2223
+ * @param corrId The ID of a correlated resource of corrType
2224
+ * @throws CancelMlJobHttpError
2225
+ */
2226
+ declare function cancelMlJob(corrType: string, corrId: string, options?: ApiCallOptions): Promise<CancelMlJobHttpResponse>;
2227
+ type CancelMlJobHttpResponse = {
2228
+ data: void;
2229
+ headers: Headers;
2230
+ status: 204;
2231
+ };
2232
+ type CancelMlJobHttpError = {
2233
+ data: Failure;
2234
+ headers: Headers;
2235
+ status: number;
2236
+ };
2237
+ /**
2238
+ * Starts creating profile insights for an experiment dataset.
2239
+ * This is an asynchronous operation. A `202 Accepted` response indicates
2240
+ * that the process has started successfully. Use the link in the response
2241
+ * to check the status.
2242
+ *
2243
+ * @param body an object with the body content
2244
+ * @throws CreateMlProfileInsightHttpError
2245
+ */
2246
+ declare function createMlProfileInsight(body: ProfileInsightsInput, options?: ApiCallOptions): Promise<CreateMlProfileInsightHttpResponse>;
2247
+ type CreateMlProfileInsightHttpResponse = {
2248
+ data: ProfileInsightsGetResponse;
2249
+ headers: Headers;
2250
+ status: 200 | 202;
2251
+ };
2252
+ type CreateMlProfileInsightHttpError = {
2253
+ data: Failure;
2254
+ headers: Headers;
2255
+ status: number;
2256
+ };
2257
+ /**
2258
+ * Retrieves profile insights for the specified dataset. If you received a
2259
+ * `202 Accepted` response from `POST /ml/profile-insights`, poll this
2260
+ * endpoint until a `200 OK` response with `ready` status is returned.
2261
+ *
2262
+ * @param dataSetId The Qlik catalog dataset ID
2263
+ * @param query an object with query parameters
2264
+ * @throws GetMlProfileInsightWithQueryHttpError
2265
+ */
2266
+ declare function getMlProfileInsightWithQuery(dataSetId: string, query: {
2267
+ /** The optional experiment type for profile-insights GET requests after
2268
+ * this is known. */
2269
+ experimentType?: ExperimentType;
2270
+ /** The optional target feature for profile-insights GET requests after this
2271
+ * is known. */
2272
+ target?: string;
2273
+ }, options?: ApiCallOptions): Promise<GetMlProfileInsightWithQueryHttpResponse>;
2274
+ type GetMlProfileInsightWithQueryHttpResponse = {
2275
+ data: ProfileInsightsGetResponse;
2276
+ headers: Headers;
2277
+ status: 200;
2278
+ };
2279
+ type GetMlProfileInsightWithQueryHttpError = {
2280
+ data: Failure;
2281
+ headers: Headers;
2282
+ status: number;
2283
+ };
2284
+ /**
2285
+ * Retrieves profile insights for the specified dataset. If you received a
2286
+ * `202 Accepted` response from `POST /ml/profile-insights`, poll this
2287
+ * endpoint until a `200 OK` response with `ready` status is returned.
2288
+ *
2289
+ * @param dataSetId The Qlik catalog dataset ID
2290
+ * @throws GetMlProfileInsightHttpError
2291
+ */
2292
+ declare function getMlProfileInsight(dataSetId: string, options?: ApiCallOptions): Promise<GetMlProfileInsightHttpResponse>;
2293
+ type GetMlProfileInsightHttpResponse = {
2294
+ data: ProfileInsightsGetResponse;
2295
+ headers: Headers;
2296
+ status: 200;
2297
+ };
2298
+ type GetMlProfileInsightHttpError = {
2299
+ data: Failure;
2300
+ headers: Headers;
2301
+ status: number;
2302
+ };
2303
+ /**
2304
+ * Clears the cache for ml api requests.
2305
+ */
2306
+ declare function clearCache(): void;
2307
+ interface MlAPI {
2308
+ /**
2309
+ * List deployments
2310
+ * @example
2311
+ * getMlDeployments(
2312
+ * {
2313
+ * filter: "`filter=spaceId eq \"UUID\" and modelState eq \"enabled\"`",
2314
+ * limit: 10,
2315
+ * offset: 32
2316
+ * }
2317
+ * )
2318
+ *
2319
+ * @param query an object with query parameters
2320
+ * @throws GetMlDeploymentsHttpError
2321
+ */
2322
+ getMlDeployments: typeof getMlDeployments;
2323
+ /**
2324
+ * Create a deployment
2325
+ *
2326
+ * @param body an object with the body content
2327
+ * @throws CreateMlDeploymentHttpError
2328
+ */
2329
+ createMlDeployment: typeof createMlDeployment;
2330
+ /**
2331
+ * Delete a deployment
2332
+ *
2333
+ * @param deploymentId ID of the deployment
2334
+ * @throws DeleteMlDeploymentHttpError
2335
+ */
2336
+ deleteMlDeployment: typeof deleteMlDeployment;
2337
+ /**
2338
+ * Get a deployment
2339
+ *
2340
+ * @param deploymentId ID of the deployment
2341
+ * @throws GetMlDeploymentHttpError
2342
+ */
2343
+ getMlDeployment: typeof getMlDeployment;
2344
+ /**
2345
+ * Update a deployment
2346
+ *
2347
+ * @param deploymentId ID of the deployment
2348
+ * @param body an object with the body content
2349
+ * @throws PatchMlDeploymentHttpError
2350
+ */
2351
+ patchMlDeployment: typeof patchMlDeployment;
2352
+ /**
2353
+ * Activate the model for this deployment
2354
+ *
2355
+ * @param deploymentId ID of the deployment
2356
+ * @throws ActivateModelsMlDeploymentHttpError
2357
+ */
2358
+ activateModelsMlDeployment: typeof activateModelsMlDeployment;
2359
+ /**
2360
+ * Deactivate the model for this deployment
2361
+ *
2362
+ * @param deploymentId ID of the deployment
2363
+ * @throws DeactivateModelsMlDeploymentHttpError
2364
+ */
2365
+ deactivateModelsMlDeployment: typeof deactivateModelsMlDeployment;
2366
+ /**
2367
+ * Retrieves a list of aliases based on filter parameters for a deployment.
2368
+ *
2369
+ * @param deploymentId
2370
+ * @param query an object with query parameters
2371
+ * @throws GetMlDeploymentAliasesHttpError
2372
+ */
2373
+ getMlDeploymentAliases: typeof getMlDeploymentAliases;
2374
+ /**
2375
+ * Creates an alias for a deployment.
2376
+ *
2377
+ * @param deploymentId ID of the deployment
2378
+ * @param body an object with the body content
2379
+ * @throws CreateMlDeploymentAliaseHttpError
2380
+ */
2381
+ createMlDeploymentAliase: typeof createMlDeploymentAliase;
2382
+ /**
2383
+ * Delete an alias from a deployment.
2384
+ *
2385
+ * @param deploymentId ID of the deployment
2386
+ * @param aliasId ID of the alias
2387
+ * @throws DeleteMlDeploymentAliaseHttpError
2388
+ */
2389
+ deleteMlDeploymentAliase: typeof deleteMlDeploymentAliase;
2390
+ /**
2391
+ * Retrieves an alias that exists on the deployment.
2392
+ *
2393
+ * @param deploymentId ID of the deployment
2394
+ * @param aliasId ID of the alias
2395
+ * @throws GetMlDeploymentAliaseHttpError
2396
+ */
2397
+ getMlDeploymentAliase: typeof getMlDeploymentAliase;
2398
+ /**
2399
+ * Updates an alias for a deployment.
2400
+ *
2401
+ * @param deploymentId ID of the deployment
2402
+ * @param aliasId ID of the alias
2403
+ * @param body an object with the body content
2404
+ * @throws PatchMlDeploymentAliaseHttpError
2405
+ */
2406
+ patchMlDeploymentAliase: typeof patchMlDeploymentAliase;
2407
+ /**
2408
+ * Generate predictions in a synchronous request/response
2409
+ *
2410
+ * @param deploymentId ID of the deployment
2411
+ * @param aliasName The name of the ML Deployment Alias that will be used to determine which model should be used to produce predictions
2412
+ * @param query an object with query parameters
2413
+ * @param body an object with the body content
2414
+ * @throws RunMlDeploymentAliaseRealtimePredictionsHttpError
2415
+ */
2416
+ runMlDeploymentAliaseRealtimePredictions: typeof runMlDeploymentAliaseRealtimePredictions;
2417
+ /**
2418
+ * List batch prediction configurations
2419
+ *
2420
+ * @param deploymentId ID of the deployment
2421
+ * @param query an object with query parameters
2422
+ * @throws GetMlDeploymentBatchPredictionsHttpError
2423
+ */
2424
+ getMlDeploymentBatchPredictions: typeof getMlDeploymentBatchPredictions;
2425
+ /**
2426
+ * Create a prediction configuration
2427
+ *
2428
+ * @param deploymentId ID of the deployment
2429
+ * @param body an object with the body content
2430
+ * @throws CreateMlDeploymentBatchPredictionHttpError
2431
+ */
2432
+ createMlDeploymentBatchPrediction: typeof createMlDeploymentBatchPrediction;
2433
+ /**
2434
+ * Delete a batch prediction
2435
+ *
2436
+ * @param deploymentId ID of the deployment
2437
+ * @param batchPredictionId ID of the batch prediction
2438
+ * @throws DeleteMlDeploymentBatchPredictionHttpError
2439
+ */
2440
+ deleteMlDeploymentBatchPrediction: typeof deleteMlDeploymentBatchPrediction;
2441
+ /**
2442
+ * Retrieve a batch prediction
2443
+ *
2444
+ * @param deploymentId ID of the deployment
2445
+ * @param batchPredictionId ID of the batch prediction
2446
+ * @throws GetMlDeploymentBatchPredictionHttpError
2447
+ */
2448
+ getMlDeploymentBatchPrediction: typeof getMlDeploymentBatchPrediction;
2449
+ /**
2450
+ * Updates a batch prediction
2451
+ *
2452
+ * @param deploymentId ID of the deployment
2453
+ * @param batchPredictionId ID of the batch prediction
2454
+ * @param body an object with the body content
2455
+ * @throws PatchMlDeploymentBatchPredictionHttpError
2456
+ */
2457
+ patchMlDeploymentBatchPrediction: typeof patchMlDeploymentBatchPrediction;
2458
+ /**
2459
+ * Run a batch prediction
2460
+ *
2461
+ * @param deploymentId ID of the deployment
2462
+ * @param batchPredictionId ID of the batch prediction
2463
+ * @throws PredictMlDeploymentBatchPredictionHttpError
2464
+ */
2465
+ predictMlDeploymentBatchPrediction: typeof predictMlDeploymentBatchPrediction;
2466
+ /**
2467
+ * Deletes the schedule from a batch prediction.
2468
+ *
2469
+ * @param deploymentId ID of the deployment
2470
+ * @param batchPredictionId ID of the batch prediction
2471
+ * @throws DeleteMlDeploymentBatchPredictionScheduleHttpError
2472
+ */
2473
+ deleteMlDeploymentBatchPredictionSchedule: typeof deleteMlDeploymentBatchPredictionSchedule;
2474
+ /**
2475
+ * Retrieves the schedule for a batch prediction.
2476
+ *
2477
+ * @param deploymentId ID of the deployment
2478
+ * @param batchPredictionId ID of the batch prediction
2479
+ * @throws GetMlDeploymentBatchPredictionScheduleHttpError
2480
+ */
2481
+ getMlDeploymentBatchPredictionSchedule: typeof getMlDeploymentBatchPredictionSchedule;
2482
+ /**
2483
+ * Updates the schedule for a batch prediction.
2484
+ *
2485
+ * @param deploymentId ID of the deployment
2486
+ * @param batchPredictionId ID of the batch prediction
2487
+ * @param body an object with the body content
2488
+ * @throws UpdateMlDeploymentBatchPredictionScheduleHttpError
2489
+ */
2490
+ updateMlDeploymentBatchPredictionSchedule: typeof updateMlDeploymentBatchPredictionSchedule;
2491
+ /**
2492
+ * Adds a schedule to a batch prediction.
2493
+ *
2494
+ * @param deploymentId ID of the deployment
2495
+ * @param batchPredictionId ID of the batch prediction
2496
+ * @param body an object with the body content
2497
+ * @throws SetMlDeploymentBatchPredictionScheduleHttpError
2498
+ */
2499
+ setMlDeploymentBatchPredictionSchedule: typeof setMlDeploymentBatchPredictionSchedule;
2500
+ /**
2501
+ * Add deployed models for this deployment
2502
+ *
2503
+ * @param deploymentId ID of the deployment
2504
+ * @param body an object with the body content
2505
+ * @throws AddMlDeploymentModelsHttpError
2506
+ */
2507
+ addMlDeploymentModels: typeof addMlDeploymentModels;
2508
+ /**
2509
+ * Remove deployed models from this deployment
2510
+ *
2511
+ * @param deploymentId ID of the deployment
2512
+ * @param body an object with the body content
2513
+ * @throws RemoveMlDeploymentModelsHttpError
2514
+ */
2515
+ removeMlDeploymentModels: typeof removeMlDeploymentModels;
2516
+ /**
2517
+ * Generate predictions in a synchronous request/response
2518
+ *
2519
+ * @param deploymentId ID of the deployment
2520
+ * @param query an object with query parameters
2521
+ * @param body an object with the body content
2522
+ * @throws RunMlDeploymentRealtimePredictionsHttpError
2523
+ */
2524
+ runMlDeploymentRealtimePredictions: typeof runMlDeploymentRealtimePredictions;
2525
+ /**
2526
+ * Retrieves a list of experiments based on provided filter and sort
2527
+ * parameters.
2528
+ * @example
2529
+ * getMlExperiments(
2530
+ * {
2531
+ * filter: "`filter=ownerId eq UUID and experimentVersionId eq UUID`",
2532
+ * limit: 10,
2533
+ * offset: 32
2534
+ * }
2535
+ * )
2536
+ *
2537
+ * @param query an object with query parameters
2538
+ * @throws GetMlExperimentsHttpError
2539
+ */
2540
+ getMlExperiments: typeof getMlExperiments;
2541
+ /**
2542
+ * Create an experiment
2543
+ *
2544
+ * @param body an object with the body content
2545
+ * @throws CreateMlExperimentHttpError
2546
+ */
2547
+ createMlExperiment: typeof createMlExperiment;
2548
+ /**
2549
+ * Delete an experiment
2550
+ *
2551
+ * @param experimentId ID of the experiment
2552
+ * @throws DeleteMlExperimentHttpError
2553
+ */
2554
+ deleteMlExperiment: typeof deleteMlExperiment;
2555
+ /**
2556
+ * Get an experiment
2557
+ *
2558
+ * @param experimentId ID of the experiment
2559
+ * @throws GetMlExperimentHttpError
2560
+ */
2561
+ getMlExperiment: typeof getMlExperiment;
2562
+ /**
2563
+ * Update an experiment
2564
+ *
2565
+ * @param experimentId ID of the experiment
2566
+ * @param body an object with the body content
2567
+ * @throws PatchMlExperimentHttpError
2568
+ */
2569
+ patchMlExperiment: typeof patchMlExperiment;
2570
+ /**
2571
+ * List models
2572
+ *
2573
+ * @param experimentId ID of the experiment
2574
+ * @param query an object with query parameters
2575
+ * @throws GetMlExperimentModelsHttpError
2576
+ */
2577
+ getMlExperimentModels: typeof getMlExperimentModels;
2578
+ /**
2579
+ * Get a model
2580
+ *
2581
+ * @param experimentId ID of the experiment
2582
+ * @param modelId ID of the model
2583
+ * @throws GetMlExperimentModelHttpError
2584
+ */
2585
+ getMlExperimentModel: typeof getMlExperimentModel;
2586
+ /**
2587
+ * List experiment versions
2588
+ *
2589
+ * @param experimentId ID of the experiment
2590
+ * @param query an object with query parameters
2591
+ * @throws GetMlExperimentVersionsHttpError
2592
+ */
2593
+ getMlExperimentVersions: typeof getMlExperimentVersions;
2594
+ /**
2595
+ * Creates an experiment version.
2596
+ * Poll this version and check its `status` field to determine when models
2597
+ * are finished training.
2598
+ *
2599
+ * @param experimentId ID of the experiment
2600
+ * @param body an object with the body content
2601
+ * @throws CreateMlExperimentVersionHttpError
2602
+ */
2603
+ createMlExperimentVersion: typeof createMlExperimentVersion;
2604
+ /**
2605
+ * Delete an experiment version
2606
+ *
2607
+ * @param experimentId ID of the experiment
2608
+ * @param experimentVersionId ID of the experiment version
2609
+ * @throws DeleteMlExperimentVersionHttpError
2610
+ */
2611
+ deleteMlExperimentVersion: typeof deleteMlExperimentVersion;
2612
+ /**
2613
+ * Get an experiment version
2614
+ *
2615
+ * @param experimentId ID of the experiment
2616
+ * @param experimentVersionId ID of the experiment version
2617
+ * @throws GetMlExperimentVersionHttpError
2618
+ */
2619
+ getMlExperimentVersion: typeof getMlExperimentVersion;
2620
+ /**
2621
+ * Update an experiment version
2622
+ *
2623
+ * @param experimentId ID of the experiment
2624
+ * @param experimentVersionId ID of the experiment version
2625
+ * @param body an object with the body content
2626
+ * @throws PatchMlExperimentVersionHttpError
2627
+ */
2628
+ patchMlExperimentVersion: typeof patchMlExperimentVersion;
2629
+ /**
2630
+ * Cancels jobs for an experiment version or batch prediction.
2631
+ *
2632
+ * @param corrType The type of a resource paired with a corrId
2633
+ * @param corrId The ID of a correlated resource of corrType
2634
+ * @throws CancelMlJobHttpError
2635
+ */
2636
+ cancelMlJob: typeof cancelMlJob;
2637
+ /**
2638
+ * Starts creating profile insights for an experiment dataset.
2639
+ * This is an asynchronous operation. A `202 Accepted` response indicates
2640
+ * that the process has started successfully. Use the link in the response
2641
+ * to check the status.
2642
+ *
2643
+ * @param body an object with the body content
2644
+ * @throws CreateMlProfileInsightHttpError
2645
+ */
2646
+ createMlProfileInsight: typeof createMlProfileInsight;
2647
+ /**
2648
+ * Retrieves profile insights for the specified dataset. If you received a
2649
+ * `202 Accepted` response from `POST /ml/profile-insights`, poll this
2650
+ * endpoint until a `200 OK` response with `ready` status is returned.
2651
+ *
2652
+ * @param dataSetId The Qlik catalog dataset ID
2653
+ * @param query an object with query parameters
2654
+ * @throws GetMlProfileInsightWithQueryHttpError
2655
+ */
2656
+ getMlProfileInsightWithQuery: typeof getMlProfileInsightWithQuery;
2657
+ /**
2658
+ * Retrieves profile insights for the specified dataset. If you received a
2659
+ * `202 Accepted` response from `POST /ml/profile-insights`, poll this
2660
+ * endpoint until a `200 OK` response with `ready` status is returned.
2661
+ *
2662
+ * @param dataSetId The Qlik catalog dataset ID
2663
+ * @throws GetMlProfileInsightHttpError
2664
+ */
2665
+ getMlProfileInsight: typeof getMlProfileInsight;
2666
+ /**
2667
+ * Clears the cache for ml api requests.
2668
+ */
2669
+ clearCache: typeof clearCache;
2670
+ }
2671
+ /**
2672
+ * Functions for the ml api
2673
+ */
2674
+ declare const mlExport: MlAPI;
2675
+
2676
+ export { type APIError, type ActivateModelsMlDeploymentHttpError, type ActivateModelsMlDeploymentHttpResponse, type AddMlDeploymentModelsHttpError, type AddMlDeploymentModelsHttpResponse, type Alias, type AliasFindResponse, type AliasGetResponse, type AliasId, type AliasInput, type AliasMode, type AliasPatch, type AliasPatchItem, type AliasPostResponse, type AnyType, type BatchPrediction, type BatchPredictionActionResponse, type BatchPredictionFindResponse, type BatchPredictionGetResponse, type BatchPredictionInput, type BatchPredictionPatch, type BatchPredictionPostResponse, type BatchPredictionSchedule, type BatchPredictionScheduleGetResponse, type BatchPredictionScheduleInput, type BatchPredictionScheduleInputAttributes, type BatchPredictionSchedulePatch, type BatchPredictionSchedulePutResponse, type BatchPredictionStatus, type BatchPredictionWriteback, type BinaryImbalanceSampling, type CancelMlJobHttpError, type CancelMlJobHttpResponse, type ChangeType, type ColumnTransform, type ConfigurationKey, type CorrId, type CorrType, type CreateMlDeploymentAliaseHttpError, type CreateMlDeploymentAliaseHttpResponse, type CreateMlDeploymentBatchPredictionHttpError, type CreateMlDeploymentBatchPredictionHttpResponse, type CreateMlDeploymentHttpError, type CreateMlDeploymentHttpResponse, type CreateMlExperimentHttpError, type CreateMlExperimentHttpResponse, type CreateMlExperimentVersionHttpError, type CreateMlExperimentVersionHttpResponse, type CreateMlProfileInsightHttpError, type CreateMlProfileInsightHttpResponse, type CreatedAt, type CreatedBy, type DataSchemaConfiguration, type DataSetId, type DataType, type DatasetOrigin, type DateIndexes, type DeactivateModelsMlDeploymentHttpError, type DeactivateModelsMlDeploymentHttpResponse, type DeleteMlDeploymentAliaseHttpError, type DeleteMlDeploymentAliaseHttpResponse, type DeleteMlDeploymentBatchPredictionHttpError, type DeleteMlDeploymentBatchPredictionHttpResponse, type DeleteMlDeploymentBatchPredictionScheduleHttpError, type DeleteMlDeploymentBatchPredictionScheduleHttpResponse, type DeleteMlDeploymentHttpError, type DeleteMlDeploymentHttpResponse, type DeleteMlExperimentHttpError, type DeleteMlExperimentHttpResponse, type DeleteMlExperimentVersionHttpError, type DeleteMlExperimentVersionHttpResponse, type DeletedAt, type DeployedModelIds, type DeployedModelsInput, type Deployment, type DeploymentFindResponse, type DeploymentGetResponse, type DeploymentId, type DeploymentInput, type DeploymentPatch, type DeploymentPostResponse, type DroppedFeature, type EntityDescription, type EntityId, type EntityName, type EnumSortAliases, type EnumSortBatchPredictions, type EnumSortDeployments, type EnumSortExperimentVersions, type EnumSortExperiments, type EnumSortModels, type ErrorMessage, type Errors, type Experiment, type ExperimentFindResponse, type ExperimentGetResponse, type ExperimentId, type ExperimentInput, type ExperimentMode, type ExperimentPatch, type ExperimentPatchItem, type ExperimentPostResponse, type ExperimentType, type ExperimentVersion, type ExperimentVersionFindResponse, type ExperimentVersionGetResponse, type ExperimentVersionId, type ExperimentVersionInput, type ExperimentVersionPatch, type ExperimentVersionPostResponse, type Failure, type Feature, type FeatureInsights, type FeatureType, type FeaturesList, type FileType, type FindResponseMeta, type GetMlDeploymentAliaseHttpError, type GetMlDeploymentAliaseHttpResponse, type GetMlDeploymentAliasesHttpError, type GetMlDeploymentAliasesHttpResponse, type GetMlDeploymentBatchPredictionHttpError, type GetMlDeploymentBatchPredictionHttpResponse, type GetMlDeploymentBatchPredictionScheduleHttpError, type GetMlDeploymentBatchPredictionScheduleHttpResponse, type GetMlDeploymentBatchPredictionsHttpError, type GetMlDeploymentBatchPredictionsHttpResponse, type GetMlDeploymentHttpError, type GetMlDeploymentHttpResponse, type GetMlDeploymentsHttpError, type GetMlDeploymentsHttpResponse, type GetMlExperimentHttpError, type GetMlExperimentHttpResponse, type GetMlExperimentModelHttpError, type GetMlExperimentModelHttpResponse, type GetMlExperimentModelsHttpError, type GetMlExperimentModelsHttpResponse, type GetMlExperimentVersionHttpError, type GetMlExperimentVersionHttpResponse, type GetMlExperimentVersionsHttpError, type GetMlExperimentVersionsHttpResponse, type GetMlExperimentsHttpError, type GetMlExperimentsHttpResponse, type GetMlProfileInsightHttpError, type GetMlProfileInsightHttpResponse, type GetMlProfileInsightWithQueryHttpError, type GetMlProfileInsightWithQueryHttpResponse, type IndexColumn, type Insights, type JobType, type MlAPI, type Model, type ModelAlgorithm, type ModelAlgorithmAbbreviation, type ModelFindResponse, type ModelGetResponse, type ModelId, type ModelInfo, type ModelMetrics, type ModelMetricsBinary, type ModelMetricsMulticlass, type ModelMetricsRegression, type ModelMetricsTimeseries, type ModelState, type ModelStatus, type ModelsInfo, type OutputFile, type OwnerId, type ParentJobId, type PatchMlDeploymentAliaseHttpError, type PatchMlDeploymentAliaseHttpResponse, type PatchMlDeploymentBatchPredictionHttpError, type PatchMlDeploymentBatchPredictionHttpResponse, type PatchMlDeploymentHttpError, type PatchMlDeploymentHttpResponse, type PatchMlExperimentHttpError, type PatchMlExperimentHttpResponse, type PatchMlExperimentVersionHttpError, type PatchMlExperimentVersionHttpResponse, type Pipeline, type PredictMlDeploymentBatchPredictionHttpError, type PredictMlDeploymentBatchPredictionHttpResponse, type PredictionJobResponse, type PreprocessedInsightColumn, type ProfileInsights, type ProfileInsightsGetResponse, type ProfileInsightsInput, type RealTimePredictionInputSchema, type RealTimePredictionSchema, type RealtimePrediction, type RealtimePredictionInput, type RemoveMlDeploymentModelsHttpError, type RemoveMlDeploymentModelsHttpResponse, type ResponseLinks, type RunMlDeploymentAliaseRealtimePredictionsHttpError, type RunMlDeploymentAliaseRealtimePredictionsHttpResponse, type RunMlDeploymentRealtimePredictionsHttpError, type RunMlDeploymentRealtimePredictionsHttpResponse, type SetMlDeploymentBatchPredictionScheduleHttpError, type SetMlDeploymentBatchPredictionScheduleHttpResponse, type SpaceId, type TenantId, type TrainingDuration, type Transform, type UpdateMlDeploymentBatchPredictionScheduleHttpError, type UpdateMlDeploymentBatchPredictionScheduleHttpResponse, type UpdatedAt, activateModelsMlDeployment, addMlDeploymentModels, cancelMlJob, clearCache, createMlDeployment, createMlDeploymentAliase, createMlDeploymentBatchPrediction, createMlExperiment, createMlExperimentVersion, createMlProfileInsight, deactivateModelsMlDeployment, mlExport as default, deleteMlDeployment, deleteMlDeploymentAliase, deleteMlDeploymentBatchPrediction, deleteMlDeploymentBatchPredictionSchedule, deleteMlExperiment, deleteMlExperimentVersion, getMlDeployment, getMlDeploymentAliase, getMlDeploymentAliases, getMlDeploymentBatchPrediction, getMlDeploymentBatchPredictionSchedule, getMlDeploymentBatchPredictions, getMlDeployments, getMlExperiment, getMlExperimentModel, getMlExperimentModels, getMlExperimentVersion, getMlExperimentVersions, getMlExperiments, getMlProfileInsight, getMlProfileInsightWithQuery, patchMlDeployment, patchMlDeploymentAliase, patchMlDeploymentBatchPrediction, patchMlExperiment, patchMlExperimentVersion, predictMlDeploymentBatchPrediction, removeMlDeploymentModels, runMlDeploymentAliaseRealtimePredictions, runMlDeploymentRealtimePredictions, setMlDeploymentBatchPredictionSchedule, updateMlDeploymentBatchPredictionSchedule };