@qlik/api 1.31.0 → 1.32.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (95) hide show
  1. package/api-keys.js +2 -2
  2. package/apps.js +2 -2
  3. package/assistants.d.ts +1301 -0
  4. package/assistants.js +273 -0
  5. package/audits.js +2 -2
  6. package/auth.js +2 -2
  7. package/automation-connections.d.ts +366 -0
  8. package/automation-connections.js +91 -0
  9. package/automations.js +2 -2
  10. package/automl-deployments.d.ts +97 -0
  11. package/automl-deployments.js +27 -0
  12. package/automl-predictions.d.ts +214 -0
  13. package/automl-predictions.js +72 -0
  14. package/brands.js +2 -2
  15. package/chunks/{GUU3KZGK.js → RCLKKVYB.js} +1 -1
  16. package/chunks/{YKZ2QYHN.js → VVD2DPKQ.js} +2 -2
  17. package/chunks/{KBSD75QL.js → YTT2FEVE.js} +1 -1
  18. package/collections.js +2 -2
  19. package/conditions.d.ts +662 -0
  20. package/conditions.js +113 -0
  21. package/consumption.d.ts +182 -0
  22. package/consumption.js +24 -0
  23. package/csp-origins.js +2 -2
  24. package/csrf-token.d.ts +62 -0
  25. package/csrf-token.js +23 -0
  26. package/data-alerts.d.ts +1004 -0
  27. package/data-alerts.js +155 -0
  28. package/data-assets.js +2 -2
  29. package/data-connections.js +2 -2
  30. package/data-credentials.js +2 -2
  31. package/data-files.js +2 -2
  32. package/data-qualities.d.ts +175 -0
  33. package/data-qualities.js +44 -0
  34. package/data-sets.d.ts +424 -0
  35. package/data-sets.js +75 -0
  36. package/data-sources.d.ts +268 -0
  37. package/data-sources.js +39 -0
  38. package/data-stores.d.ts +537 -0
  39. package/data-stores.js +108 -0
  40. package/dcaas.d.ts +192 -0
  41. package/dcaas.js +39 -0
  42. package/di-projects.d.ts +673 -0
  43. package/di-projects.js +164 -0
  44. package/encryption.d.ts +370 -0
  45. package/encryption.js +98 -0
  46. package/extensions.js +2 -2
  47. package/glossaries.js +2 -2
  48. package/groups.js +2 -2
  49. package/identity-providers.js +2 -2
  50. package/index.d.ts +105 -1
  51. package/index.js +556 -4
  52. package/items.js +2 -2
  53. package/knowledgebases.d.ts +890 -0
  54. package/knowledgebases.js +169 -0
  55. package/licenses.d.ts +1 -1
  56. package/licenses.js +2 -2
  57. package/lineage-graphs.d.ts +712 -0
  58. package/lineage-graphs.js +92 -0
  59. package/ml.d.ts +2628 -0
  60. package/ml.js +384 -0
  61. package/notes.d.ts +110 -0
  62. package/notes.js +31 -0
  63. package/notifications.d.ts +98 -0
  64. package/notifications.js +24 -0
  65. package/oauth-clients.js +2 -2
  66. package/oauth-tokens.d.ts +126 -0
  67. package/oauth-tokens.js +31 -0
  68. package/package.json +28 -2
  69. package/qix.d.ts +1 -1
  70. package/qix.js +2 -2
  71. package/questions.d.ts +364 -0
  72. package/questions.js +34 -0
  73. package/quotas.js +2 -2
  74. package/reload-tasks.js +2 -2
  75. package/reloads.js +2 -2
  76. package/report-templates.d.ts +287 -0
  77. package/report-templates.js +80 -0
  78. package/reports.js +2 -2
  79. package/roles.js +2 -2
  80. package/sharing-tasks.d.ts +952 -0
  81. package/sharing-tasks.js +105 -0
  82. package/spaces.js +2 -2
  83. package/tasks.d.ts +564 -0
  84. package/tasks.js +106 -0
  85. package/temp-contents.js +2 -2
  86. package/tenants.js +2 -2
  87. package/themes.js +2 -2
  88. package/transports.js +2 -2
  89. package/ui-config.d.ts +274 -0
  90. package/ui-config.js +77 -0
  91. package/users.js +2 -2
  92. package/web-integrations.js +2 -2
  93. package/web-notifications.js +2 -2
  94. package/webhooks.js +2 -2
  95. /package/chunks/{DLKLPD7T.js → LTNGXTXG.js} +0 -0
package/ml.d.ts ADDED
@@ -0,0 +1,2628 @@
1
+ import { A as ApiCallOptions } from './invoke-fetch-types-Cq7bjkqn.js';
2
+ import './auth-types-DqfMuSRX.js';
3
+
4
+ /**
5
+ * An error object
6
+ */
7
+ type APIError = {
8
+ /** Qlik error code (not HTTP response status code) */
9
+ code: string;
10
+ /** Description of the error */
11
+ detail?: string;
12
+ /** Additional details about the error. These may vary by error. */
13
+ meta?: {
14
+ /** The argument */
15
+ argument?: string;
16
+ /** Extra details for what may have caused the error */
17
+ details?: string;
18
+ /** The unique id of the error instance */
19
+ errorId?: string;
20
+ /** The issue code */
21
+ issue?: string;
22
+ /** The resource type that the error occurred on */
23
+ resource?: string;
24
+ /** The resource id that the error occurred on */
25
+ resourceId?: string;
26
+ };
27
+ /** Short summary of error */
28
+ title: string;
29
+ };
30
+ /**
31
+ * An AutoML alias
32
+ */
33
+ type Alias = {
34
+ /** Timestamp when this was created */
35
+ createdAt: CreatedAt;
36
+ /** ID of the owner/user that created this entity */
37
+ createdBy: string;
38
+ /** ID of a model deployment */
39
+ deploymentId: DeploymentId;
40
+ /** ID of this entity */
41
+ id: EntityId;
42
+ /** The mode of an alias. Default mode means the model assigned to that alias will be used if alias is not specified */
43
+ mode: AliasMode;
44
+ models: ModelsInfo;
45
+ /** Name of this entity */
46
+ name: EntityName;
47
+ /** Timestamp when this was updated */
48
+ updatedAt: UpdatedAt;
49
+ };
50
+ type AliasFindResponse = {
51
+ data: {
52
+ /** An AutoML alias */
53
+ attributes: Alias;
54
+ /** ID of this entity */
55
+ id: EntityId;
56
+ type: "alias";
57
+ }[];
58
+ /** Resource links included in paginated responses */
59
+ links: ResponseLinks;
60
+ /** Meta for FIND operations */
61
+ meta?: FindResponseMeta;
62
+ };
63
+ type AliasGetResponse = {
64
+ data: {
65
+ /** An AutoML alias */
66
+ attributes: Alias;
67
+ /** ID of this entity */
68
+ id: EntityId;
69
+ type: "alias";
70
+ };
71
+ };
72
+ /**
73
+ * ID of an alias
74
+ */
75
+ type AliasId = string;
76
+ /**
77
+ * Input for creating a new alias
78
+ */
79
+ type AliasInput = {
80
+ data: {
81
+ attributes: {
82
+ models: ModelsInfo;
83
+ /** Name of this entity */
84
+ name: EntityName;
85
+ };
86
+ type: "alias";
87
+ };
88
+ };
89
+ /**
90
+ * The mode of an alias. Default mode means the model assigned to that alias will be used if alias is not specified
91
+ */
92
+ type AliasMode = "default" | "undefined";
93
+ type AliasPatch = AliasPatchItem[];
94
+ /**
95
+ * Alias values that can be patched.
96
+ * @example
97
+ * {
98
+ * op: "replace",
99
+ * path: "/name"
100
+ * }
101
+ */
102
+ type AliasPatchItem = {
103
+ /** All patch requests use the replace operation */
104
+ op: "replace";
105
+ /** Path for the property you want to update */
106
+ path: "/name" | "/models";
107
+ /** Use for fields that can be `any` type (string, number, etc.) */
108
+ value: AnyType;
109
+ };
110
+ type AliasPostResponse = {
111
+ data: {
112
+ /** An AutoML alias */
113
+ attributes: Alias;
114
+ /** ID of this entity */
115
+ id: EntityId;
116
+ type: "alias";
117
+ };
118
+ };
119
+ /**
120
+ * Use for fields that can be `any` type (string, number, etc.)
121
+ */
122
+ type AnyType = unknown;
123
+ /**
124
+ * A batch prediction job configuration
125
+ */
126
+ type BatchPrediction = {
127
+ /** ID of an alias */
128
+ aliasId?: AliasId;
129
+ /** Timestamp when this was created */
130
+ createdAt?: CreatedAt;
131
+ /** ID of the owner/user that ran this prediction batch */
132
+ createdBy?: string;
133
+ /** The Qlik catalog dataset ID */
134
+ dataSetId?: DataSetId;
135
+ /** ID of the dataset with the prediction results */
136
+ datasetId?: string;
137
+ /** ID of a model deployment */
138
+ deploymentId?: DeploymentId;
139
+ /** JSON string of error object */
140
+ errorMessage?: ErrorMessage;
141
+ /** JSON string with list of error objects */
142
+ errors?: Errors;
143
+ /** ID of this entity */
144
+ id?: EntityId;
145
+ /** A optional column name upon which to create an index. Must be unique for
146
+ * every row. If not included, Qlik will create a unique index column. */
147
+ indexColumn?: IndexColumn;
148
+ /** Name of this entity */
149
+ name?: EntityName;
150
+ /** Where to output dataset */
151
+ outputDataset?: string;
152
+ /** ID of owner/user for this entity */
153
+ ownerId?: OwnerId;
154
+ /** Batch prediction job schedule */
155
+ schedule?: BatchPredictionSchedule;
156
+ /** Status of this batch prediction */
157
+ status?: BatchPredictionStatus;
158
+ /** Timestamp when this was updated */
159
+ updatedAt?: UpdatedAt;
160
+ /** Sets which files, file names, and spaces are used to write results of
161
+ * batch predictions (output files) to the catalog. */
162
+ writeback?: BatchPredictionWriteback;
163
+ };
164
+ /**
165
+ * Response for batch prediction predict action that indicates job and status
166
+ */
167
+ type BatchPredictionActionResponse = {
168
+ data: {
169
+ attributes: PredictionJobResponse;
170
+ /** ID of this entity */
171
+ id: EntityId;
172
+ type: "job";
173
+ };
174
+ };
175
+ type BatchPredictionFindResponse = {
176
+ data: {
177
+ /** A batch prediction job configuration */
178
+ attributes: BatchPrediction;
179
+ /** ID of this entity */
180
+ id: EntityId;
181
+ type: "batch-prediction";
182
+ }[];
183
+ /** Resource links included in paginated responses */
184
+ links: ResponseLinks;
185
+ /** Meta for FIND operations */
186
+ meta?: FindResponseMeta;
187
+ };
188
+ type BatchPredictionGetResponse = {
189
+ data: {
190
+ /** A batch prediction job configuration */
191
+ attributes: BatchPrediction;
192
+ /** ID of this entity */
193
+ id: EntityId;
194
+ type: "batch-prediction";
195
+ };
196
+ };
197
+ /**
198
+ * Input values for creating a batch prediction configuration
199
+ */
200
+ type BatchPredictionInput = {
201
+ data?: {
202
+ attributes?: {
203
+ /** ID of an alias */
204
+ aliasId?: AliasId;
205
+ /** The Qlik catalog dataset ID */
206
+ dataSetId?: DataSetId;
207
+ /** ID of a model deployment */
208
+ deploymentId?: DeploymentId;
209
+ description?: string;
210
+ /** A optional column name upon which to create an index. Must be unique for
211
+ * every row. If not included, Qlik will create a unique index column. */
212
+ indexColumn?: IndexColumn;
213
+ /** Name of this entity */
214
+ name?: EntityName;
215
+ /** Configuration to schedule a batch prediction */
216
+ schedule?: BatchPredictionScheduleInputAttributes;
217
+ /** Sets which files, file names, and spaces are used to write results of
218
+ * batch predictions (output files) to the catalog. */
219
+ writeback?: BatchPredictionWriteback;
220
+ };
221
+ type?: "batch-prediction";
222
+ };
223
+ };
224
+ type BatchPredictionPatch = {
225
+ /** All patch requests use the replace operation */
226
+ op: "replace";
227
+ /** Path for the property you want to update */
228
+ path: "/name" | "/description" | "/dataSetId" | "/indexColumn" | "/applyDatasetChangeOnly" | "/ownerId" | "/writeback/spaceId" | "/writeback/format" | "/writeback/dstName" | "/writeback/dstShapName" | "/writeback/dstCoordShapName" | "/writeback/dstNotPredictedName" | "/writeback/dstSourceName";
229
+ /** Use for fields that can be `any` type (string, number, etc.) */
230
+ value: AnyType;
231
+ }[];
232
+ type BatchPredictionPostResponse = {
233
+ data: {
234
+ /** A batch prediction job configuration */
235
+ attributes: BatchPrediction;
236
+ /** ID of this entity */
237
+ id: EntityId;
238
+ type: "batch-prediction";
239
+ };
240
+ };
241
+ /**
242
+ * Batch prediction job schedule
243
+ */
244
+ type BatchPredictionSchedule = {
245
+ /** If true, only run prediction if dataset has changed to avoid
246
+ * duplicates. If set to false, re-runs predictions on unchanged
247
+ * datasets. */
248
+ applyDatasetChangeOnly?: boolean;
249
+ /** The ID of the chronos job */
250
+ chronosJobId?: string;
251
+ /** When the job finished */
252
+ endDateTime?: string;
253
+ /** Number of times a scheduled prediction job has failed */
254
+ failureAttempts?: number;
255
+ /** When the last successful job happened */
256
+ lastSuccessfulDateTime?: string;
257
+ /** Recurrence rules. Maximum is DAILY but you can specify the
258
+ * hour, minute, and second it runs each day.
259
+ * One string per rule. */
260
+ recurrence?: string[];
261
+ /** When the job is scheduled to start */
262
+ startDateTime?: string;
263
+ /** The status of the schedule */
264
+ status?: "pending" | "active" | "error" | "error_scheduler_unreachable" | "error_scheduler_callback_error" | "licence_advanced_features_required" | "failing_schedule_permission";
265
+ /** Timezone used for the date-time fields */
266
+ timezone?: string;
267
+ };
268
+ type BatchPredictionScheduleGetResponse = {
269
+ data: {
270
+ /** Batch prediction job schedule */
271
+ attributes: BatchPredictionSchedule;
272
+ /** ID of this entity */
273
+ id: EntityId;
274
+ type: "batch-prediction-schedule";
275
+ };
276
+ };
277
+ /**
278
+ * Input values for a batch prediction schedule
279
+ */
280
+ type BatchPredictionScheduleInput = {
281
+ data?: {
282
+ /** Configuration to schedule a batch prediction */
283
+ attributes?: BatchPredictionScheduleInputAttributes;
284
+ type?: "batch-prediction-schedule";
285
+ };
286
+ };
287
+ /**
288
+ * Configuration to schedule a batch prediction
289
+ */
290
+ type BatchPredictionScheduleInputAttributes = {
291
+ /** If true, only run prediction if dataset has changed to avoid
292
+ * duplicates. If set to false, re-runs predictions on unchanged
293
+ * datasets. */
294
+ applyDatasetChangeOnly?: boolean;
295
+ /** When the job is scheduled to finish */
296
+ endDateTime?: string;
297
+ /** Recurrence rules. Maximum is DAILY but you can specify the
298
+ * hour, minute, and second it runs each day.
299
+ * One string per rule. */
300
+ recurrence?: string[];
301
+ /** When the job is scheduled to start */
302
+ startDateTime: string;
303
+ /** Timezone used for the date-time fields */
304
+ timezone: string;
305
+ };
306
+ type BatchPredictionSchedulePatch = {
307
+ /** All patch requests use the replace operation */
308
+ op: "replace";
309
+ /** Path for the property you want to update */
310
+ path: "/startDateTime" | "/endDateTime" | "/timezone" | "/recurrence" | "/applyDatasetChangeOnly";
311
+ /** Use for fields that can be `any` type (string, number, etc.) */
312
+ value: AnyType;
313
+ }[];
314
+ type BatchPredictionSchedulePutResponse = {
315
+ data: {
316
+ /** Batch prediction job schedule */
317
+ attributes: BatchPredictionSchedule;
318
+ /** ID of this entity */
319
+ id: EntityId;
320
+ type: "batch-prediction-schedule";
321
+ };
322
+ };
323
+ /**
324
+ * Status of this batch prediction
325
+ */
326
+ type BatchPredictionStatus = "modified" | "ready" | "error" | "cancelled" | "pending";
327
+ /**
328
+ * Sets which files, file names, and spaces are used to write results of
329
+ * batch predictions (output files) to the catalog.
330
+ */
331
+ type BatchPredictionWriteback = {
332
+ dstCoordShapName?: string;
333
+ dstName: string;
334
+ dstNotPredictedName?: string;
335
+ dstShapName?: string;
336
+ dstSourceName?: string;
337
+ /** File format for write back files (this applies to all) */
338
+ format: "qvd" | "parquet" | "csv";
339
+ /** Space ID where you want to save batch prediction writebacks or
340
+ * empty string ('') save them to your personal space. */
341
+ spaceId: string;
342
+ };
343
+ type BinaryImbalanceSampling = {
344
+ sampleClass?: string;
345
+ sampleDirection?: "up" | "down";
346
+ sampleRatio?: number;
347
+ };
348
+ /**
349
+ * Indicates if you want to change the featureType for this
350
+ * feature within the experiment version
351
+ */
352
+ type ChangeType = "categorical" | "numeric" | "date" | "freetext";
353
+ type ColumnTransform = {
354
+ changeType: string;
355
+ name: string;
356
+ };
357
+ type ConfigurationKey = "DATE_INDEX" | "FUTURE_FEATURE" | "GROUP_ID" | "FORECAST_GAP_SIZE" | "FORECAST_WINDOW_SIZE";
358
+ /**
359
+ * The ID of a correlated resource of corrType
360
+ */
361
+ type CorrId = string;
362
+ /**
363
+ * Types names of correlated resources (batch 'prediction' and
364
+ * experiment_version)
365
+ */
366
+ type CorrType = "batch-prediction" | "experiment-version";
367
+ /**
368
+ * Timestamp when this was created
369
+ */
370
+ type CreatedAt = string;
371
+ /**
372
+ * ID of the owner/user that created this entity.
373
+ */
374
+ type CreatedBy = string;
375
+ type DataSchemaConfiguration = {
376
+ key: ConfigurationKey;
377
+ value: string;
378
+ };
379
+ /**
380
+ * The Qlik catalog dataset ID
381
+ * @example
382
+ * "672e55cfcadfb8a18281523e"
383
+ */
384
+ type DataSetId = string;
385
+ /**
386
+ * The data type of this feature in your dataset
387
+ * @example
388
+ * "STRING"
389
+ */
390
+ type DataType = "DATE" | "TIME" | "DATETIME" | "TIMESTAMP" | "STRING" | "DOUBLE" | "DECIMAL" | "INTEGER" | "BOOLEAN" | "BINARY" | "CUSTOM" | "FLOAT" | "OBJECT";
391
+ /**
392
+ * Whether this is a new or other dataset
393
+ */
394
+ type DatasetOrigin = "new" | "changed" | "refreshed" | "same";
395
+ /**
396
+ * A optional date column name to index
397
+ */
398
+ type DateIndexes = string[];
399
+ /**
400
+ * Timestamp when this is deleted
401
+ */
402
+ type DeletedAt = string;
403
+ /**
404
+ * IDs of all models deployed to the deployment
405
+ */
406
+ type DeployedModelIds = string[];
407
+ /**
408
+ * Input values for adding deployed models to a deployment
409
+ */
410
+ type DeployedModelsInput = {
411
+ data: {
412
+ attributes: {
413
+ /** IDs of all models deployed to the deployment */
414
+ deployedModelIds: DeployedModelIds;
415
+ };
416
+ type: "deployed-models";
417
+ };
418
+ };
419
+ /**
420
+ * A deployed model against which you can run predictions
421
+ */
422
+ type Deployment = {
423
+ /** Timestamp when this was created */
424
+ createdAt: CreatedAt;
425
+ /** ID of the owner/user that created this entity. */
426
+ createdBy: CreatedBy;
427
+ /** IDs of all models deployed to the deployment */
428
+ deployedModelIds?: DeployedModelIds;
429
+ /** Whether this deployment is deprecated */
430
+ deprecated: boolean;
431
+ /** Description of this entity */
432
+ description: EntityDescription;
433
+ /** Whether to allow predictions */
434
+ enablePredictions: boolean;
435
+ /** JSON string of error object */
436
+ errorMessage?: ErrorMessage;
437
+ /** JSON string with list of error objects */
438
+ errors?: Errors;
439
+ /** ID of this entity */
440
+ id: EntityId;
441
+ /** ID of the model */
442
+ modelId: ModelId;
443
+ /** Name of this entity */
444
+ name: EntityName;
445
+ /** ID of owner/user for this entity */
446
+ ownerId: OwnerId;
447
+ /** Space ID for this entity (empty string for personal space) */
448
+ spaceId: SpaceId;
449
+ /** Timestamp when this was updated */
450
+ updatedAt: UpdatedAt;
451
+ };
452
+ type DeploymentFindResponse = {
453
+ data: {
454
+ /** A deployed model against which you can run predictions */
455
+ attributes: Deployment;
456
+ /** ID of this entity */
457
+ id: EntityId;
458
+ type: "deployment";
459
+ }[];
460
+ /** Resource links included in paginated responses */
461
+ links: ResponseLinks;
462
+ /** Meta for FIND operations */
463
+ meta?: FindResponseMeta;
464
+ };
465
+ type DeploymentGetResponse = {
466
+ data: {
467
+ /** A deployed model against which you can run predictions */
468
+ attributes: Deployment;
469
+ /** ID of this entity */
470
+ id: EntityId;
471
+ type: "deployment";
472
+ };
473
+ };
474
+ /**
475
+ * ID of a model deployment
476
+ */
477
+ type DeploymentId = string;
478
+ /**
479
+ * Input for creating a new deployment
480
+ */
481
+ type DeploymentInput = {
482
+ data?: {
483
+ attributes?: {
484
+ /** Whether this deployment is deprecated */
485
+ deprecated?: boolean;
486
+ /** Description of this entity */
487
+ description?: EntityDescription;
488
+ /** Whether to allow real-time predictions */
489
+ enablePredictions?: boolean;
490
+ /** ID of the model */
491
+ modelId: ModelId;
492
+ /** Name of this entity */
493
+ name: EntityName;
494
+ /** Space ID for this entity (empty string for personal space) */
495
+ spaceId: SpaceId;
496
+ };
497
+ type?: "deployment";
498
+ };
499
+ };
500
+ type DeploymentPatch = {
501
+ /** All patch requests use the replace operation */
502
+ op: "replace";
503
+ /** Path for the property you want to update */
504
+ path: "/name" | "/description" | "/spaceId";
505
+ /** Use for fields that can be `any` type (string, number, etc.) */
506
+ value: AnyType;
507
+ }[];
508
+ type DeploymentPostResponse = {
509
+ data: {
510
+ /** A deployed model against which you can run predictions */
511
+ attributes: Deployment;
512
+ /** ID of this entity */
513
+ id: EntityId;
514
+ type: "deployment";
515
+ };
516
+ };
517
+ /**
518
+ * Feature dropped during preprocessing
519
+ */
520
+ type DroppedFeature = {
521
+ /** Name of dropped feature in the dataset */
522
+ name?: string;
523
+ /** Reason the feature was dropped */
524
+ reason?: "highly_correlated" | "has_target_leakage" | "is_date_engineered" | "feature_with_low_importance";
525
+ };
526
+ /**
527
+ * Description of this entity
528
+ */
529
+ type EntityDescription = string;
530
+ /**
531
+ * ID of this entity
532
+ */
533
+ type EntityId = string;
534
+ /**
535
+ * Name of this entity
536
+ */
537
+ type EntityName = string;
538
+ type EnumSortAliases = "name" | "+name" | "-name";
539
+ type EnumSortBatchPredictions = "createdAt" | "+createdAt" | "-createdAt" | "description" | "+description" | "-description" | "name" | "+name" | "-name" | "updatedAt" | "+updatedAt" | "-updatedAt";
540
+ type EnumSortDeployments = "createdAt" | "+createdAt" | "-createdAt" | "name" | "+name" | "-name" | "updatedAt" | "+updatedAt" | "-updatedAt";
541
+ type EnumSortExperimentVersions = "createdAt" | "+createdAt" | "-createdAt" | "description" | "+description" | "-description" | "experimentMode" | "+experimentMode" | "-experimentMode" | "experimentType" | "+experimentType" | "-experimentType" | "name" | "+name" | "-name" | "status" | "+status" | "-status" | "updatedAt" | "+updatedAt" | "-updatedAt" | "versionNumber" | "+versionNumber" | "-versionNumber";
542
+ type EnumSortExperiments = "createdAt" | "+createdAt" | "-createdAt" | "description" | "+description" | "-description" | "name" | "+name" | "-name" | "updatedAt" | "+updatedAt" | "-updatedAt";
543
+ type EnumSortModels = "createdAt" | "+createdAt" | "-createdAt" | "description" | "+description" | "-description" | "name" | "+name" | "-name" | "updatedAt" | "+updatedAt" | "-updatedAt";
544
+ /**
545
+ * JSON string of error object
546
+ */
547
+ type ErrorMessage = string;
548
+ /**
549
+ * JSON string with list of error objects
550
+ */
551
+ type Errors = APIError[];
552
+ /**
553
+ * An AutoML experiment
554
+ */
555
+ type Experiment = {
556
+ /** Timestamp when this was created */
557
+ createdAt: CreatedAt;
558
+ /** Description of this entity */
559
+ description?: EntityDescription;
560
+ /** ID of this entity */
561
+ id: EntityId;
562
+ /** Name of this entity */
563
+ name?: EntityName;
564
+ /** ID of owner/user for this entity */
565
+ ownerId: OwnerId;
566
+ /** Space ID for this entity (empty string for personal space) */
567
+ spaceId: SpaceId;
568
+ /** Tenant ID for this entity */
569
+ tenantId: TenantId;
570
+ /** Timestamp when this was updated */
571
+ updatedAt: UpdatedAt;
572
+ };
573
+ type ExperimentFindResponse = {
574
+ data: {
575
+ /** An AutoML experiment */
576
+ attributes: Experiment;
577
+ /** ID of this entity */
578
+ id: EntityId;
579
+ type: "experiment";
580
+ }[];
581
+ /** Resource links included in paginated responses */
582
+ links: ResponseLinks;
583
+ /** Meta for FIND operations */
584
+ meta?: FindResponseMeta;
585
+ };
586
+ type ExperimentGetResponse = {
587
+ data: {
588
+ /** An AutoML experiment */
589
+ attributes: Experiment;
590
+ /** ID of this entity */
591
+ id: EntityId;
592
+ type: "experiment";
593
+ };
594
+ };
595
+ /**
596
+ * ID of the experiment
597
+ */
598
+ type ExperimentId = string;
599
+ /**
600
+ * Input for creating this entity
601
+ */
602
+ type ExperimentInput = {
603
+ /** Data container for ExperimentInput */
604
+ data?: {
605
+ /** Experiment input attributes */
606
+ attributes?: {
607
+ /** Description of this entity */
608
+ description?: EntityDescription;
609
+ /** Name of this entity */
610
+ name: EntityName;
611
+ /** Space ID for this entity (empty string for personal space) */
612
+ spaceId: SpaceId;
613
+ };
614
+ type?: "experiment";
615
+ };
616
+ };
617
+ /**
618
+ * The model training mode for the experiment version
619
+ */
620
+ type ExperimentMode = "intelligent" | "manual" | "manual_hpo";
621
+ /**
622
+ * @example
623
+ * [
624
+ * {
625
+ * op: "replace",
626
+ * path: "/name"
627
+ * },
628
+ * {
629
+ * op: "replace",
630
+ * path: "/description"
631
+ * },
632
+ * {
633
+ * op: "replace",
634
+ * path: "/spaceId"
635
+ * }
636
+ * ]
637
+ */
638
+ type ExperimentPatch = ExperimentPatchItem[];
639
+ /**
640
+ * Experiment fields that can be patched. The following paths all require `value` to be a string: `/name`, `/spaceId`, and `/description`
641
+ */
642
+ type ExperimentPatchItem = {
643
+ /** All patch requests use the replace operation */
644
+ op: "replace";
645
+ /** Path for the property you want to update */
646
+ path: "/name" | "/description" | "/spaceId";
647
+ /** Use for fields that can be `any` type (string, number, etc.) */
648
+ value: AnyType;
649
+ };
650
+ type ExperimentPostResponse = {
651
+ data: {
652
+ /** An AutoML experiment */
653
+ attributes: Experiment;
654
+ /** ID of this entity */
655
+ id: EntityId;
656
+ type: "experiment";
657
+ };
658
+ };
659
+ /**
660
+ * Experiment type
661
+ */
662
+ type ExperimentType = "binary" | "multiclass" | "regression" | "timeseries";
663
+ /**
664
+ * An AutoML experiment version. This is a configuration for training
665
+ * models within an experiment.
666
+ */
667
+ type ExperimentVersion = {
668
+ /** List of algorithms selected for model training in this version */
669
+ algorithms?: ModelAlgorithm[];
670
+ /** Timestamp when this was created */
671
+ createdAt: CreatedAt;
672
+ /** ID of owner/user for this entity */
673
+ createdByUserId: OwnerId;
674
+ /** The Qlik catalog dataset ID */
675
+ dataSetId: DataSetId;
676
+ /** Whether this is a new or other dataset */
677
+ datasetOrigin?: DatasetOrigin;
678
+ /** A optional date column name to index */
679
+ dateIndexes?: DateIndexes;
680
+ /** JSON string of error object */
681
+ errorMessage?: ErrorMessage;
682
+ /** JSON string with list of error objects */
683
+ errors?: Errors;
684
+ /** ID of the experiment */
685
+ experimentId: ExperimentId;
686
+ /** The model training mode for the experiment version */
687
+ experimentMode?: ExperimentMode;
688
+ /** Experiment type */
689
+ experimentType: ExperimentType;
690
+ /** List of features from your dataset for creating Experiment
691
+ * Versions. This appears in from ProfileInsights response (in the
692
+ * defaultVersionConfig). You can adjust the default settings before
693
+ * using it as input to create or update Experiment Versions. */
694
+ featuresList?: FeaturesList;
695
+ /** ID of this entity */
696
+ id: EntityId;
697
+ /** Number of the last batch */
698
+ lastBatchNum?: number;
699
+ /** Name of this entity */
700
+ name?: EntityName;
701
+ /** Pipeline metadata including transformations to apply to columns and
702
+ * specific schema configuration data */
703
+ pipeline?: Pipeline;
704
+ /** Preprocessed insights. Like feature insights but with fewer details. */
705
+ preprocessedInsights?: PreprocessedInsightColumn[];
706
+ /** ID of the dataset profile with metadata about source data */
707
+ profileId?: string;
708
+ /** Current status of this entity */
709
+ status: "ready" | "error" | "cancelled" | "pending" | "dataprep_requested" | "datasync_requested" | "datasync_done";
710
+ /** The target field in the dataset */
711
+ target: string;
712
+ /** ID of the top model (based on training scores) in this experiment
713
+ * version */
714
+ topModelId?: string;
715
+ /** Training duration in seconds. If provided, minimum is 900 (15m) and
716
+ * max is 21600 (6h). */
717
+ trainingDuration?: TrainingDuration;
718
+ /** Timestamp when this was updated */
719
+ updatedAt: UpdatedAt;
720
+ /** 1-based sequential version number within the experiment */
721
+ versionNumber?: number;
722
+ };
723
+ type ExperimentVersionFindResponse = {
724
+ data: {
725
+ /** An AutoML experiment version. This is a configuration for training
726
+ * models within an experiment. */
727
+ attributes: ExperimentVersion;
728
+ /** ID of this entity */
729
+ id: EntityId;
730
+ type: "experiment-version";
731
+ }[];
732
+ /** Resource links included in paginated responses */
733
+ links: ResponseLinks;
734
+ /** Meta for FIND operations */
735
+ meta?: FindResponseMeta;
736
+ };
737
+ type ExperimentVersionGetResponse = {
738
+ data: {
739
+ /** An AutoML experiment version. This is a configuration for training
740
+ * models within an experiment. */
741
+ attributes: ExperimentVersion;
742
+ /** ID of this entity */
743
+ id: EntityId;
744
+ type: "experiment-version";
745
+ };
746
+ };
747
+ /**
748
+ * ID of the experiment version
749
+ */
750
+ type ExperimentVersionId = string;
751
+ /**
752
+ * Input for creating a new experiment version. Defaults provided in the
753
+ * ProfileInsights response.
754
+ */
755
+ type ExperimentVersionInput = {
756
+ data: {
757
+ attributes: {
758
+ /** Algorithms used for model training in this version. See
759
+ * documentation for valid algorithms for each
760
+ * `experimentType`.
761
+ *
762
+ * If not provided, defaults to all valid algorithms for your
763
+ * experimentType. */
764
+ algorithms?: ModelAlgorithm[];
765
+ /** The Qlik catalog dataset ID */
766
+ dataSetId: DataSetId;
767
+ /** Whether this is a new or other dataset */
768
+ datasetOrigin?: DatasetOrigin;
769
+ /** A optional date column name to index */
770
+ dateIndexes?: DateIndexes;
771
+ /** The model training mode for the experiment version */
772
+ experimentMode: ExperimentMode;
773
+ /** Experiment type */
774
+ experimentType: ExperimentType;
775
+ /** List of features from your dataset for creating Experiment
776
+ * Versions. This appears in from ProfileInsights response (in the
777
+ * defaultVersionConfig). You can adjust the default settings before
778
+ * using it as input to create or update Experiment Versions. */
779
+ featuresList: FeaturesList;
780
+ name: string;
781
+ /** Pipeline metadata including transformations to apply to columns and
782
+ * specific schema configuration data */
783
+ pipeline?: Pipeline;
784
+ /** The target field in the dataset. Set in first experiment
785
+ * version and can't be changed in subsequent versions. */
786
+ target: string;
787
+ /** Training duration in seconds. If provided, minimum is 900 (15m) and
788
+ * max is 21600 (6h). */
789
+ trainingDuration?: TrainingDuration;
790
+ };
791
+ type: "experiment-version";
792
+ };
793
+ };
794
+ type ExperimentVersionPatch = {
795
+ /** All patch requests use the replace operation */
796
+ op: "replace";
797
+ /** Path for the properties you can update. */
798
+ path: "/name";
799
+ /** Use for fields that can be `any` type (string, number, etc.) */
800
+ value: AnyType;
801
+ }[];
802
+ type ExperimentVersionPostResponse = {
803
+ data: {
804
+ /** An AutoML experiment version. This is a configuration for training
805
+ * models within an experiment. */
806
+ attributes: ExperimentVersion;
807
+ /** ID of this entity */
808
+ id: EntityId;
809
+ type: "experiment-version";
810
+ };
811
+ };
812
+ type Failure = {
813
+ errors: APIError[];
814
+ };
815
+ /**
816
+ * A feature (column) from your dataset
817
+ */
818
+ type Feature = {
819
+ /** Indicates if you want to change the featureType for this
820
+ * feature within the experiment version */
821
+ changeType?: ChangeType;
822
+ /** The data type of this feature in your dataset */
823
+ dataType?: DataType;
824
+ /** The default feature type based on the feature's data type.
825
+ * If you want a value to be interpreted differently (e.g. 0/1
826
+ * as categorical/boolean instead of numeric), use `changeType`. */
827
+ featureType?: FeatureType;
828
+ /** Include this feature in your experiment version? Default
829
+ * here is based on insights for this feature
830
+ * (e.g. willBeDropped). */
831
+ include?: boolean;
832
+ /** Name of the feature column */
833
+ name?: string;
834
+ /** The parent feature name for engineered features. e.g. `OrderDate` may be the parent of its engineered features (features extracted from parent) like `OrderDate.YEAR`, `OrderDate.MONTH`, etc. */
835
+ parentFeature?: string;
836
+ };
837
+ /**
838
+ * Metadata about the features in your dataset, generated when you create
839
+ * ProfileInsights.
840
+ */
841
+ type FeatureInsights = {
842
+ /** Whether a feature cannot be the target field */
843
+ cannotBeTarget: boolean;
844
+ /** The default feature type based on the feature's data type.
845
+ * If you want a value to be interpreted differently (e.g. 0/1
846
+ * as categorical/boolean instead of numeric), use `changeType`. */
847
+ defaultFeatureType?: FeatureType;
848
+ /** Preliminary list of engineered features as strings. If subsequent
849
+ * processing validates them, they'll be converted to EngineeredFeature
850
+ * objects within a NestedColumn, each of which may contain its own
851
+ * FeatureInsights. */
852
+ engineeredFeatures?: string[];
853
+ /** Experiment types in this feature insight */
854
+ experimentTypes: ExperimentType[];
855
+ /** List of insights about this feature. */
856
+ insights: Insights[];
857
+ /** Name of the feature insight */
858
+ name: string;
859
+ /** Whether this feature will be dropped. Traits like high cardinality
860
+ * make some features less predictive or too costly to merit use. */
861
+ willBeDropped: boolean;
862
+ };
863
+ /**
864
+ * The default feature type based on the feature's data type.
865
+ * If you want a value to be interpreted differently (e.g. 0/1
866
+ * as categorical/boolean instead of numeric), use `changeType`.
867
+ */
868
+ type FeatureType = "categorical" | "numeric" | "date" | "freetext";
869
+ /**
870
+ * List of features from your dataset for creating Experiment
871
+ * Versions. This appears in from ProfileInsights response (in the
872
+ * defaultVersionConfig). You can adjust the default settings before
873
+ * using it as input to create or update Experiment Versions.
874
+ */
875
+ type FeaturesList = Feature[];
876
+ /**
877
+ * Dataset file type
878
+ * @example
879
+ * "qvd, parquet, csv"
880
+ */
881
+ type FileType = string;
882
+ /**
883
+ * Meta for FIND operations
884
+ */
885
+ type FindResponseMeta = {
886
+ count: number;
887
+ };
888
+ /**
889
+ * A optional column name upon which to create an index. Must be unique for
890
+ * every row. If not included, Qlik will create a unique index column.
891
+ */
892
+ type IndexColumn = string;
893
+ /**
894
+ * Insights about a feature, such as why it's not included in a model
895
+ */
896
+ type Insights = "constant" | "high_cardinality" | "high_cardinality_integer" | "too_many_nulls" | "will_be_impact_encoded" | "will_be_one_hot_encoded" | "possible_free_text_encoded" | "valid_index" | "underrepresented_class" | "invalid_column_name" | "will_be_date_engineered" | "possible_date_index" | "possible_group" | "possible_future_feature";
897
+ /**
898
+ * The type for this job
899
+ */
900
+ type JobType = "prediction";
901
+ /**
902
+ * A model based on an algorithm within an experiment version.
903
+ */
904
+ type Model = {
905
+ /** Model algorithm name abbreviation */
906
+ algoAbbrv?: ModelAlgorithmAbbreviation;
907
+ /** The algorithm used by this model */
908
+ algorithm?: string;
909
+ anomalyRatio?: number;
910
+ /** Batch number indicates the index of the experiment version fold
911
+ * (most relevant when HPO is enabled) */
912
+ batchNum?: number;
913
+ binaryImbalanceSampling?: BinaryImbalanceSampling;
914
+ binningFeatures?: string[];
915
+ /** Dataset columns selected as features */
916
+ columns?: string[];
917
+ /** Timestamp when this was created */
918
+ createdAt?: CreatedAt;
919
+ /** Description of this entity */
920
+ description?: EntityDescription;
921
+ /** Features dropped because they're unsuitable */
922
+ droppedFeatures?: DroppedFeature[];
923
+ /** JSON string of error object */
924
+ errorMessage?: ErrorMessage;
925
+ /** JSON string with list of error objects */
926
+ errors?: Errors;
927
+ /** ID of the experiment version */
928
+ experimentVersionId?: ExperimentVersionId;
929
+ /** Version number of the hyperparameter optimization */
930
+ hpoNum?: number;
931
+ /** ID of this entity */
932
+ id?: EntityId;
933
+ /** Model metrics based on the type of model */
934
+ metrics?: ModelMetrics;
935
+ /** Model state. These are the state of the model in relation to
936
+ * deployments. */
937
+ modelState?: ModelState;
938
+ /** Name of this entity */
939
+ name?: EntityName;
940
+ powerTransformFeatures?: string[];
941
+ /** Ratio of sample data in relation to the dataset */
942
+ samplingRatio?: number;
943
+ /** Model sequence number within the experiment version */
944
+ seqNum?: number;
945
+ /** Model status. These are the status of the model in relation to
946
+ * experiments (i.e. training status). */
947
+ status?: ModelStatus;
948
+ /** Timestamp when this was updated */
949
+ updatedAt?: UpdatedAt;
950
+ };
951
+ /**
952
+ * Enumeration of model algorithms.
953
+ *
954
+ * A subset of these may be provided based on your ExperimentType. This is
955
+ * based on your target's featureType. When you select a target feature
956
+ * from your ProfileInsights response (defaultVersionConfig.featuresList),
957
+ * it tells you which algorithms will be available if you choose it as your
958
+ * target.
959
+ */
960
+ type ModelAlgorithm = "catboost_classifier" | "catboost_regression" | "elasticnet_regression" | "gaussian_nb" | "kneighbors_classifier" | "lasso_regression" | "lasso" | "lgbm_classifier" | "lgbm_regression" | "linear_regression" | "logistic_regression" | "random_forest_classifier" | "random_forest_regression" | "sgd_regression" | "xgb_classifier" | "xgb_regression" | "deepar_timeseries" | "mixer_timeseries" | "tft_timeseries" | "tide_timeseries";
961
+ /**
962
+ * Model algorithm name abbreviation
963
+ */
964
+ type ModelAlgorithmAbbreviation = "CATBC" | "CATBR" | "ELNC" | "GNBC" | "LGBMC" | "LGBMR" | "LINR" | "LOGC" | "LSOC" | "RAFC" | "RAFR" | "SGDR" | "XGBC" | "XGBR" | "DEAR" | "MIXR" | "TFTT" | "TIDE";
965
+ type ModelFindResponse = {
966
+ data: {
967
+ /** A model based on an algorithm within an experiment version. */
968
+ attributes: Model;
969
+ /** ID of this entity */
970
+ id: EntityId;
971
+ type: "model";
972
+ }[];
973
+ /** Resource links included in paginated responses */
974
+ links: ResponseLinks;
975
+ /** Meta for FIND operations */
976
+ meta?: FindResponseMeta;
977
+ };
978
+ type ModelGetResponse = {
979
+ data: {
980
+ /** A model based on an algorithm within an experiment version. */
981
+ attributes: Model;
982
+ /** ID of this entity */
983
+ id: EntityId;
984
+ type: "model";
985
+ };
986
+ };
987
+ /**
988
+ * ID of the model
989
+ */
990
+ type ModelId = string;
991
+ /**
992
+ * Model information stored on an alias
993
+ */
994
+ type ModelInfo = {
995
+ /** ID of this entity */
996
+ id?: EntityId;
997
+ };
998
+ /**
999
+ * Model metrics based on the type of model
1000
+ */
1001
+ type ModelMetrics = {
1002
+ /** Binary metrics for categorical values with two options. Details:
1003
+ * https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/AutoML/scoring-binary-classification.htm */
1004
+ binary?: ModelMetricsBinary;
1005
+ /** Multiclass metrics for categorical values with 3+ options. Details:
1006
+ * https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/AutoML/scoring-multiclass-classification.htm */
1007
+ multiclass?: ModelMetricsMulticlass;
1008
+ /** Regression metrics for numeric values. Details:
1009
+ * https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/AutoML/scoring-regression.htm */
1010
+ regression?: ModelMetricsRegression;
1011
+ };
1012
+ /**
1013
+ * Binary metrics for categorical values with two options. Details:
1014
+ * https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/AutoML/scoring-binary-classification.htm
1015
+ */
1016
+ type ModelMetricsBinary = {
1017
+ /** Average measure of how often the model made correct predictions
1018
+ * (training data) */
1019
+ accuracy?: number;
1020
+ /** Average measure of how often the model made correct predictions
1021
+ * (test data) */
1022
+ accuracyTest?: number;
1023
+ /** Area under curve (training data) */
1024
+ auc?: number;
1025
+ /** Area under curve (test data) */
1026
+ aucTest?: number;
1027
+ /** The harmonic mean of precision and recall for training data */
1028
+ f1?: number;
1029
+ /** The harmonic mean of precision and recall for test data */
1030
+ f1Test?: number;
1031
+ /** The false positive rate (training data) */
1032
+ fallout?: number;
1033
+ /** The false positive rate (test data) */
1034
+ falloutTest?: number;
1035
+ /** Actual true values incorrectly predicted as false (training data) */
1036
+ falseNegative?: number;
1037
+ /** Actual true values incorrectly predicted as false (test data) */
1038
+ falseNegativeTest?: number;
1039
+ /** Actual false values incorrectly predicted as true (training data) */
1040
+ falsePositive?: number;
1041
+ /** Actual false values incorrectly predicted as true (test data) */
1042
+ falsePositiveTest?: number;
1043
+ /** Measures accuracy in logistic regression (training data) */
1044
+ logLoss?: number;
1045
+ /** Measures accuracy in logistic regression (test data) */
1046
+ logLossTest?: number;
1047
+ /** Matthews correlation coefficient (training data) */
1048
+ mcc?: number;
1049
+ /** Matthews correlation coefficient (test data) */
1050
+ mccTest?: number;
1051
+ /** The false negative rate (training data) */
1052
+ missRate?: number;
1053
+ /** The false negative rate (test data) */
1054
+ missRateTest?: number;
1055
+ /** Negative predictive value (training data) */
1056
+ npv?: number;
1057
+ /** Negative predictive value (test data) */
1058
+ npvTest?: number;
1059
+ /** Positive predictive value. Probability that the model was correct
1060
+ * when it predicted something was true. (training data) */
1061
+ precision?: number;
1062
+ /** Positive predictive value. Probability that the model was correct
1063
+ * when it predicted something was true. (test data) */
1064
+ precisionTest?: number;
1065
+ /** The true positive rate (training data) */
1066
+ recall?: number;
1067
+ /** The true positive rate (test data) */
1068
+ recallTest?: number;
1069
+ /** The true negative rate (training data) */
1070
+ specificity?: number;
1071
+ /** The true negative rate (test data) */
1072
+ specificityTest?: number;
1073
+ /** Probability that a prediction is true (training data) */
1074
+ threshold?: number;
1075
+ /** Probability that a prediction is true (test data) */
1076
+ thresholdTest?: number;
1077
+ /** Actual false values correctly predicted as false (training data) */
1078
+ trueNegative?: number;
1079
+ /** Actual false values correctly predicted as false (test data) */
1080
+ trueNegativeTest?: number;
1081
+ /** Actual true values correctly predicted as true (training data) */
1082
+ truePositive?: number;
1083
+ /** Actual true values correctly predicted as true (test data) */
1084
+ truePositiveTest?: number;
1085
+ };
1086
+ /**
1087
+ * Multiclass metrics for categorical values with 3+ options. Details:
1088
+ * https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/AutoML/scoring-multiclass-classification.htm
1089
+ */
1090
+ type ModelMetricsMulticlass = {
1091
+ /** Average of how often the model made a correct prediction (training
1092
+ * data) */
1093
+ accuracy?: number;
1094
+ /** Average of how often the model made a correct prediction (test data) */
1095
+ accuracyTest?: number;
1096
+ /** A matrix summary of the accuracy of predictions in a classification
1097
+ * model (training data) */
1098
+ confusionMatrix?: string;
1099
+ /** A matrix summary of the accuracy of predictions in a classification
1100
+ * model (training data) */
1101
+ confusionMatrixTest?: string;
1102
+ /** Macro F1 is the averaged F1 value for each class without weighting
1103
+ * (training data) */
1104
+ f1Macro?: number;
1105
+ /** Macro F1 is the averaged F1 value for each class without weighting
1106
+ * (test data) */
1107
+ f1MacroTest?: number;
1108
+ /** Micro F1 is the F1 value calculated across the entire confusion
1109
+ * matrix (training data) */
1110
+ f1Micro?: number;
1111
+ /** Micro F1 is the F1 value calculated across the entire confusion
1112
+ * matrix (test data) */
1113
+ f1MicroTest?: number;
1114
+ /** Weighted F1 (training data) */
1115
+ f1Weighted?: number;
1116
+ /** Weighted F1 (test data) */
1117
+ f1WeightedTest?: number;
1118
+ };
1119
+ /**
1120
+ * Regression metrics for numeric values. Details:
1121
+ * https://help.qlik.com/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/AutoML/scoring-regression.htm
1122
+ */
1123
+ type ModelMetricsRegression = {
1124
+ /** Mean absolute error (training data) */
1125
+ mae?: number;
1126
+ /** Mean absolute error (test data) */
1127
+ maeTest?: number;
1128
+ /** Mean squared error (training data) */
1129
+ mse?: number;
1130
+ /** Mean squared error (test data) */
1131
+ mseTest?: number;
1132
+ /** R squared (training data) */
1133
+ r2?: number;
1134
+ /** R squared (test data) */
1135
+ r2Test?: number;
1136
+ /** Root mean squared error (training data) */
1137
+ rmse?: number;
1138
+ /** Root mean squared error (test data) */
1139
+ rmseTest?: number;
1140
+ };
1141
+ /**
1142
+ * Model state. These are the state of the model in relation to
1143
+ * deployments.
1144
+ */
1145
+ type ModelState = "pending" | "enabled" | "disabled" | "inactive";
1146
+ /**
1147
+ * Model status. These are the status of the model in relation to
1148
+ * experiments (i.e. training status).
1149
+ */
1150
+ type ModelStatus = "pending" | "training_requested" | "training_done" | "ready" | "error";
1151
+ type ModelsInfo = ModelInfo[];
1152
+ type OutputFile = {
1153
+ fileName: string;
1154
+ /** Dataset file type */
1155
+ fileType: FileType;
1156
+ key: string;
1157
+ path: string;
1158
+ /** Space ID for this entity (empty string for personal space) */
1159
+ spaceId: SpaceId;
1160
+ };
1161
+ /**
1162
+ * ID of owner/user for this entity
1163
+ */
1164
+ type OwnerId = string;
1165
+ /**
1166
+ * ID of the current job's parent
1167
+ */
1168
+ type ParentJobId = string;
1169
+ /**
1170
+ * Pipeline metadata including transformations to apply to columns and
1171
+ * specific schema configuration data
1172
+ */
1173
+ type Pipeline = {
1174
+ dataSchemaConfiguration?: DataSchemaConfiguration[];
1175
+ transforms?: Transform[];
1176
+ };
1177
+ type PredictionJobResponse = {
1178
+ /** The ID of a correlated resource of corrType */
1179
+ corrId: CorrId;
1180
+ /** Types names of correlated resources (batch 'prediction' and
1181
+ * experiment_version) */
1182
+ corrType: CorrType;
1183
+ /** Timestamp when this was created */
1184
+ createdAt: CreatedAt;
1185
+ /** ID of the owner/user that created this entity */
1186
+ createdBy: string;
1187
+ /** Timestamp when this is deleted */
1188
+ deletedAt: DeletedAt;
1189
+ /** ID of a model deployment */
1190
+ deploymentId: DeploymentId;
1191
+ details: {
1192
+ isScheduled: boolean;
1193
+ lineageSchemaUpdated: boolean;
1194
+ outputFiles: OutputFile[];
1195
+ };
1196
+ experimentVersionNumber: string;
1197
+ /** ID of this entity */
1198
+ id: EntityId;
1199
+ /** The type for this job */
1200
+ jobType: JobType;
1201
+ /** ID of the model */
1202
+ modelId: ModelId;
1203
+ name: string;
1204
+ /** ID of the current job's parent */
1205
+ parentJobId: ParentJobId;
1206
+ parentName: string;
1207
+ rowsPredicted: number;
1208
+ /** Status of this job */
1209
+ status: "pending" | "completed" | "cancelled" | "error";
1210
+ success: boolean;
1211
+ /** Tenant ID for this entity */
1212
+ tenantId: TenantId;
1213
+ trigger: string;
1214
+ /** Timestamp when this was updated */
1215
+ updatedAt: UpdatedAt;
1216
+ };
1217
+ /**
1218
+ * Metadata about features/columns from dataset after preprocessing
1219
+ */
1220
+ type PreprocessedInsightColumn = {
1221
+ /** Preliminary list of column/feature insights available after
1222
+ * preprocessing but before feature insights are available */
1223
+ insights: ("is_free_text" | "cannot_be_processed_as_free_text" | "is_date_engineered" | "has_target_leakage" | "feature_type_change_invalid" | "feature_type_change_failed" | "feature_type_change_successful")[];
1224
+ /** Name of the preprocessed insight column */
1225
+ name: string;
1226
+ /** Whether this feature insight will be dropped due to free text or
1227
+ * high cardinality that makes it less useful */
1228
+ willBeDropped: boolean;
1229
+ };
1230
+ /**
1231
+ * Insights (metadata) about an experiment dataset
1232
+ */
1233
+ type ProfileInsights = {
1234
+ /** List of algorithms available for the selected experiment type */
1235
+ algorithms?: ModelAlgorithm[];
1236
+ defaultVersionConfig?: {
1237
+ /** The Qlik catalog dataset ID */
1238
+ dataSetId: DataSetId;
1239
+ /** Whether this is a new or other dataset */
1240
+ datasetOrigin: DatasetOrigin;
1241
+ /** The model training mode for the experiment version */
1242
+ experimentMode: ExperimentMode;
1243
+ /** List of features from your dataset for creating Experiment
1244
+ * Versions. This appears in from ProfileInsights response (in the
1245
+ * defaultVersionConfig). You can adjust the default settings before
1246
+ * using it as input to create or update Experiment Versions. */
1247
+ featuresList?: FeaturesList;
1248
+ name: string;
1249
+ };
1250
+ /** List of feature insights object, one per feature in the dataset */
1251
+ insights?: FeatureInsights[];
1252
+ /** ID of owner/user for this entity */
1253
+ ownerId: OwnerId;
1254
+ /** Status of profile insights. Not available until `ready`. */
1255
+ status: "pending" | "error" | "ready";
1256
+ /** Tenant ID for this entity */
1257
+ tenantId: TenantId;
1258
+ };
1259
+ type ProfileInsightsGetResponse = {
1260
+ data: {
1261
+ /** Insights (metadata) about an experiment dataset */
1262
+ attributes: ProfileInsights;
1263
+ /** ID of this entity */
1264
+ id: EntityId;
1265
+ type: "profile-insights";
1266
+ };
1267
+ };
1268
+ /**
1269
+ * Input to get dataset and feature metadata needed to create
1270
+ * experiment versions
1271
+ */
1272
+ type ProfileInsightsInput = {
1273
+ /** Data wrapper for request input */
1274
+ data?: {
1275
+ /** The request body for this resource */
1276
+ attributes?: {
1277
+ /** The Qlik catalog dataset ID */
1278
+ dataSetId?: DataSetId;
1279
+ /** Experiment type */
1280
+ experimentType?: ExperimentType;
1281
+ /** Whether the server should or client should manage polling/waiting */
1282
+ shouldWait?: boolean;
1283
+ /** Optional selected target provided on subsequent requests */
1284
+ target?: string;
1285
+ };
1286
+ type?: "profile-insights";
1287
+ };
1288
+ };
1289
+ type RealTimePredictionInputSchema = {
1290
+ /** The name of a feature in the dataset */
1291
+ name?: string;
1292
+ };
1293
+ type RealTimePredictionSchema = {
1294
+ /** The name of a feature in the dataset */
1295
+ name?: string;
1296
+ };
1297
+ /**
1298
+ * Input values for creating realtime predictions
1299
+ */
1300
+ type RealtimePrediction = {
1301
+ data?: {
1302
+ attributes?: {
1303
+ /** Rows of the dataset from which to produce predictions */
1304
+ rows?: string[][];
1305
+ /** List of features in the dataset */
1306
+ schema?: RealTimePredictionSchema[];
1307
+ };
1308
+ type?: "realtime-prediction";
1309
+ };
1310
+ };
1311
+ /**
1312
+ * Input values for creating realtime predictions
1313
+ */
1314
+ type RealtimePredictionInput = {
1315
+ /** Rows of the dataset from which to produce predictions.
1316
+ * Date features must be in ISO 8601 format. */
1317
+ rows?: string[][];
1318
+ /** List of features in the dataset. */
1319
+ schema?: RealTimePredictionInputSchema[];
1320
+ };
1321
+ /**
1322
+ * Resource links included in paginated responses
1323
+ */
1324
+ type ResponseLinks = {
1325
+ first: {
1326
+ /** Link to the first set of responses from `offset` 0 to count `limit`` */
1327
+ href?: string;
1328
+ };
1329
+ last: {
1330
+ /** Link to the last set of responses from `limit` minus `offset` to
1331
+ * `limit` */
1332
+ href?: string;
1333
+ };
1334
+ next: {
1335
+ /** Link to the next set of responses */
1336
+ href?: string;
1337
+ };
1338
+ prev: {
1339
+ /** Link to the previous set of responses */
1340
+ href?: string;
1341
+ };
1342
+ self: {
1343
+ /** Link to the current set of responses */
1344
+ href?: string;
1345
+ };
1346
+ };
1347
+ /**
1348
+ * Space ID for this entity (empty string for personal space)
1349
+ */
1350
+ type SpaceId = string;
1351
+ /**
1352
+ * Tenant ID for this entity
1353
+ */
1354
+ type TenantId = string;
1355
+ /**
1356
+ * Training duration in seconds. If provided, minimum is 900 (15m) and
1357
+ * max is 21600 (6h).
1358
+ */
1359
+ type TrainingDuration = number;
1360
+ type Transform = {
1361
+ column?: ColumnTransform;
1362
+ };
1363
+ /**
1364
+ * Timestamp when this was updated
1365
+ */
1366
+ type UpdatedAt = string;
1367
+ /**
1368
+ * List deployments
1369
+ * @example
1370
+ * getMlDeployments(
1371
+ * {
1372
+ * filter: "`filter=spaceId eq \"UUID\" and modelState eq \"enabled\"`",
1373
+ * limit: 10,
1374
+ * offset: 32
1375
+ * }
1376
+ * )
1377
+ *
1378
+ * @param query an object with query parameters
1379
+ * @throws GetMlDeploymentsHttpError
1380
+ */
1381
+ declare const getMlDeployments: (query: {
1382
+ /** Deployment fields by which you can filter responses.<br><br>
1383
+ * - `spaceId` ID string (or empty string for personal space) - ID of space in which deployment(s) exist
1384
+ * - `modelId` UUID string - By model ID
1385
+ * - `createdBy` ID string
1386
+ * - `ownerId` ID string
1387
+ * - `approverId` ID string - ID of user that approved a model in the deployment
1388
+ * - `experimentId` UUID string - ID of experiment in which model(s) exist
1389
+ * - `experimentVersionId` UUID string - ID of experiment version in which model(s) exist
1390
+ * - `predictionEnabled` boolean - Are predictions enabled
1391
+ * - `exactName` string - Deployments with exact name. Names may not be unique.
1392
+ * - `nameContains` string - Deployments where name includes this. Names may not be unique
1393
+ * - `modelName` string - Partial or exact, case-insensitive name of model in the deployment
1394
+ * - `modelState` enum string - State by which to find models<br><br>
1395
+ * - Valid states: `pending, enabled, disabled, inactive` */
1396
+ filter?: string;
1397
+ /** Number of results per page. Default is 32. */
1398
+ limit?: number;
1399
+ /** Number of rows to skip before getting page[size] */
1400
+ offset?: number;
1401
+ /** Field(s) by which to sort response */
1402
+ sort?: EnumSortDeployments;
1403
+ }, options?: ApiCallOptions) => Promise<GetMlDeploymentsHttpResponse>;
1404
+ type GetMlDeploymentsHttpResponse = {
1405
+ data: DeploymentFindResponse;
1406
+ headers: Headers;
1407
+ status: 200;
1408
+ prev?: (options?: ApiCallOptions) => Promise<GetMlDeploymentsHttpResponse>;
1409
+ next?: (options?: ApiCallOptions) => Promise<GetMlDeploymentsHttpResponse>;
1410
+ };
1411
+ type GetMlDeploymentsHttpError = {
1412
+ data: Failure;
1413
+ headers: Headers;
1414
+ status: number;
1415
+ };
1416
+ /**
1417
+ * Create a deployment
1418
+ *
1419
+ * @param body an object with the body content
1420
+ * @throws CreateMlDeploymentHttpError
1421
+ */
1422
+ declare const createMlDeployment: (body: DeploymentInput, options?: ApiCallOptions) => Promise<CreateMlDeploymentHttpResponse>;
1423
+ type CreateMlDeploymentHttpResponse = {
1424
+ data: DeploymentPostResponse;
1425
+ headers: Headers;
1426
+ status: 201;
1427
+ };
1428
+ type CreateMlDeploymentHttpError = {
1429
+ data: Failure;
1430
+ headers: Headers;
1431
+ status: number;
1432
+ };
1433
+ /**
1434
+ * Delete a deployment
1435
+ *
1436
+ * @param deploymentId ID of the deployment
1437
+ * @throws DeleteMlDeploymentHttpError
1438
+ */
1439
+ declare const deleteMlDeployment: (deploymentId: string, options?: ApiCallOptions) => Promise<DeleteMlDeploymentHttpResponse>;
1440
+ type DeleteMlDeploymentHttpResponse = {
1441
+ data: void;
1442
+ headers: Headers;
1443
+ status: 204;
1444
+ };
1445
+ type DeleteMlDeploymentHttpError = {
1446
+ data: Failure;
1447
+ headers: Headers;
1448
+ status: number;
1449
+ };
1450
+ /**
1451
+ * Get a deployment
1452
+ *
1453
+ * @param deploymentId ID of the deployment
1454
+ * @throws GetMlDeploymentHttpError
1455
+ */
1456
+ declare const getMlDeployment: (deploymentId: string, options?: ApiCallOptions) => Promise<GetMlDeploymentHttpResponse>;
1457
+ type GetMlDeploymentHttpResponse = {
1458
+ data: DeploymentGetResponse;
1459
+ headers: Headers;
1460
+ status: 200;
1461
+ };
1462
+ type GetMlDeploymentHttpError = {
1463
+ data: Failure;
1464
+ headers: Headers;
1465
+ status: number;
1466
+ };
1467
+ /**
1468
+ * Update a deployment
1469
+ *
1470
+ * @param deploymentId ID of the deployment
1471
+ * @param body an object with the body content
1472
+ * @throws PatchMlDeploymentHttpError
1473
+ */
1474
+ declare const patchMlDeployment: (deploymentId: string, body: DeploymentPatch, options?: ApiCallOptions) => Promise<PatchMlDeploymentHttpResponse>;
1475
+ type PatchMlDeploymentHttpResponse = {
1476
+ data: void;
1477
+ headers: Headers;
1478
+ status: 204;
1479
+ };
1480
+ type PatchMlDeploymentHttpError = {
1481
+ data: Failure;
1482
+ headers: Headers;
1483
+ status: number;
1484
+ };
1485
+ /**
1486
+ * Activate the model for this deployment
1487
+ *
1488
+ * @param deploymentId ID of the deployment
1489
+ * @throws ActivateModelsMlDeploymentHttpError
1490
+ */
1491
+ declare const activateModelsMlDeployment: (deploymentId: string, options?: ApiCallOptions) => Promise<ActivateModelsMlDeploymentHttpResponse>;
1492
+ type ActivateModelsMlDeploymentHttpResponse = {
1493
+ data: void;
1494
+ headers: Headers;
1495
+ status: 204;
1496
+ };
1497
+ type ActivateModelsMlDeploymentHttpError = {
1498
+ data: Failure;
1499
+ headers: Headers;
1500
+ status: number;
1501
+ };
1502
+ /**
1503
+ * Deactivate the model for this deployment
1504
+ *
1505
+ * @param deploymentId ID of the deployment
1506
+ * @throws DeactivateModelsMlDeploymentHttpError
1507
+ */
1508
+ declare const deactivateModelsMlDeployment: (deploymentId: string, options?: ApiCallOptions) => Promise<DeactivateModelsMlDeploymentHttpResponse>;
1509
+ type DeactivateModelsMlDeploymentHttpResponse = {
1510
+ data: void;
1511
+ headers: Headers;
1512
+ status: 204;
1513
+ };
1514
+ type DeactivateModelsMlDeploymentHttpError = {
1515
+ data: Failure;
1516
+ headers: Headers;
1517
+ status: number;
1518
+ };
1519
+ /**
1520
+ * Retrieves a list of aliases based on filter parameters for a deployment.
1521
+ *
1522
+ * @param deploymentId
1523
+ * @param query an object with query parameters
1524
+ * @throws GetMlDeploymentAliasesHttpError
1525
+ */
1526
+ declare const getMlDeploymentAliases: (deploymentId: string, query: {
1527
+ /** Alias fields by which you can filter responses
1528
+ * - `name` string - Aliases with exact name
1529
+ * - `modelId` UUID string - By model ID
1530
+ * - `mode` enum string - Mode by which alias is set to */
1531
+ filter?: string;
1532
+ /** Number of results per page. Default is 32. */
1533
+ limit?: number;
1534
+ /** Number of rows to skip before getting page[size] */
1535
+ offset?: number;
1536
+ /** Field(s) by which to sort response */
1537
+ sort?: EnumSortAliases;
1538
+ }, options?: ApiCallOptions) => Promise<GetMlDeploymentAliasesHttpResponse>;
1539
+ type GetMlDeploymentAliasesHttpResponse = {
1540
+ data: AliasFindResponse;
1541
+ headers: Headers;
1542
+ status: 200;
1543
+ prev?: (options?: ApiCallOptions) => Promise<GetMlDeploymentAliasesHttpResponse>;
1544
+ next?: (options?: ApiCallOptions) => Promise<GetMlDeploymentAliasesHttpResponse>;
1545
+ };
1546
+ type GetMlDeploymentAliasesHttpError = {
1547
+ data: Failure;
1548
+ headers: Headers;
1549
+ status: number;
1550
+ };
1551
+ /**
1552
+ * Creates an alias for a deployment.
1553
+ *
1554
+ * @param deploymentId ID of the deployment
1555
+ * @param body an object with the body content
1556
+ * @throws CreateMlDeploymentAliaseHttpError
1557
+ */
1558
+ declare const createMlDeploymentAliase: (deploymentId: string, body: AliasInput, options?: ApiCallOptions) => Promise<CreateMlDeploymentAliaseHttpResponse>;
1559
+ type CreateMlDeploymentAliaseHttpResponse = {
1560
+ data: AliasPostResponse;
1561
+ headers: Headers;
1562
+ status: 201;
1563
+ };
1564
+ type CreateMlDeploymentAliaseHttpError = {
1565
+ data: Failure;
1566
+ headers: Headers;
1567
+ status: number;
1568
+ };
1569
+ /**
1570
+ * Delete an alias from a deployment.
1571
+ *
1572
+ * @param deploymentId ID of the deployment
1573
+ * @param aliasId ID of the alias
1574
+ * @throws DeleteMlDeploymentAliaseHttpError
1575
+ */
1576
+ declare const deleteMlDeploymentAliase: (deploymentId: string, aliasId: string, options?: ApiCallOptions) => Promise<DeleteMlDeploymentAliaseHttpResponse>;
1577
+ type DeleteMlDeploymentAliaseHttpResponse = {
1578
+ data: void;
1579
+ headers: Headers;
1580
+ status: 204;
1581
+ };
1582
+ type DeleteMlDeploymentAliaseHttpError = {
1583
+ data: Failure;
1584
+ headers: Headers;
1585
+ status: number;
1586
+ };
1587
+ /**
1588
+ * Retrieves an alias that exists on the deployment.
1589
+ *
1590
+ * @param deploymentId ID of the deployment
1591
+ * @param aliasId ID of the alias
1592
+ * @throws GetMlDeploymentAliaseHttpError
1593
+ */
1594
+ declare const getMlDeploymentAliase: (deploymentId: string, aliasId: string, options?: ApiCallOptions) => Promise<GetMlDeploymentAliaseHttpResponse>;
1595
+ type GetMlDeploymentAliaseHttpResponse = {
1596
+ data: AliasGetResponse;
1597
+ headers: Headers;
1598
+ status: 200;
1599
+ };
1600
+ type GetMlDeploymentAliaseHttpError = {
1601
+ data: Failure;
1602
+ headers: Headers;
1603
+ status: number;
1604
+ };
1605
+ /**
1606
+ * Updates an alias for a deployment.
1607
+ *
1608
+ * @param deploymentId ID of the deployment
1609
+ * @param aliasId ID of the alias
1610
+ * @param body an object with the body content
1611
+ * @throws PatchMlDeploymentAliaseHttpError
1612
+ */
1613
+ declare const patchMlDeploymentAliase: (deploymentId: string, aliasId: string, body: AliasPatch, options?: ApiCallOptions) => Promise<PatchMlDeploymentAliaseHttpResponse>;
1614
+ type PatchMlDeploymentAliaseHttpResponse = {
1615
+ data: void;
1616
+ headers: Headers;
1617
+ status: 204;
1618
+ };
1619
+ type PatchMlDeploymentAliaseHttpError = {
1620
+ data: Failure;
1621
+ headers: Headers;
1622
+ status: number;
1623
+ };
1624
+ /**
1625
+ * Generate predictions in a synchronous request/response
1626
+ *
1627
+ * @param deploymentId ID of the deployment
1628
+ * @param aliasName The name of the ML Deployment Alias that will be used to determine which model should be used to produce predictions
1629
+ * @param query an object with query parameters
1630
+ * @param body an object with the body content
1631
+ * @throws RunMlDeploymentAliaseRealtimePredictionsHttpError
1632
+ */
1633
+ declare const runMlDeploymentAliaseRealtimePredictions: (deploymentId: string, aliasName: string, query: {
1634
+ /** If true, reason why a prediction was not produced included response */
1635
+ includeNotPredictedReason?: boolean;
1636
+ /** If true, shap values included in response */
1637
+ includeShap?: boolean;
1638
+ /** If true, source data included in response */
1639
+ includeSource?: boolean;
1640
+ /** The name of the feature in the source data to use as an index in the
1641
+ * response data. The column will be included with its original name
1642
+ * and values. This is intended to allow the caller to join results
1643
+ * with source data. */
1644
+ index?: string;
1645
+ }, body: RealtimePredictionInput, options?: ApiCallOptions) => Promise<RunMlDeploymentAliaseRealtimePredictionsHttpResponse>;
1646
+ type RunMlDeploymentAliaseRealtimePredictionsHttpResponse = {
1647
+ data: RealtimePrediction;
1648
+ headers: Headers;
1649
+ status: 200;
1650
+ };
1651
+ type RunMlDeploymentAliaseRealtimePredictionsHttpError = {
1652
+ data: Failure;
1653
+ headers: Headers;
1654
+ status: number;
1655
+ };
1656
+ /**
1657
+ * List batch prediction configurations
1658
+ *
1659
+ * @param deploymentId ID of the deployment
1660
+ * @param query an object with query parameters
1661
+ * @throws GetMlDeploymentBatchPredictionsHttpError
1662
+ */
1663
+ declare const getMlDeploymentBatchPredictions: (deploymentId: string, query: {
1664
+ /** Batch prediction fields by which you can filter responses.<br><br>
1665
+ * - `modelId` UUID string - By model ID */
1666
+ filter?: string;
1667
+ /** Number of results per page. Default is 32. */
1668
+ limit?: number;
1669
+ /** Number of rows to skip before getting page[size] */
1670
+ offset?: number;
1671
+ /** Field(s) by which to sort response */
1672
+ sort?: EnumSortBatchPredictions;
1673
+ }, options?: ApiCallOptions) => Promise<GetMlDeploymentBatchPredictionsHttpResponse>;
1674
+ type GetMlDeploymentBatchPredictionsHttpResponse = {
1675
+ data: BatchPredictionFindResponse;
1676
+ headers: Headers;
1677
+ status: 200;
1678
+ prev?: (options?: ApiCallOptions) => Promise<GetMlDeploymentBatchPredictionsHttpResponse>;
1679
+ next?: (options?: ApiCallOptions) => Promise<GetMlDeploymentBatchPredictionsHttpResponse>;
1680
+ };
1681
+ type GetMlDeploymentBatchPredictionsHttpError = {
1682
+ data: Failure;
1683
+ headers: Headers;
1684
+ status: number;
1685
+ };
1686
+ /**
1687
+ * Create a prediction configuration
1688
+ *
1689
+ * @param deploymentId ID of the deployment
1690
+ * @param body an object with the body content
1691
+ * @throws CreateMlDeploymentBatchPredictionHttpError
1692
+ */
1693
+ declare const createMlDeploymentBatchPrediction: (deploymentId: string, body: BatchPredictionInput, options?: ApiCallOptions) => Promise<CreateMlDeploymentBatchPredictionHttpResponse>;
1694
+ type CreateMlDeploymentBatchPredictionHttpResponse = {
1695
+ data: BatchPredictionPostResponse;
1696
+ headers: Headers;
1697
+ status: 201;
1698
+ };
1699
+ type CreateMlDeploymentBatchPredictionHttpError = {
1700
+ data: Failure;
1701
+ headers: Headers;
1702
+ status: number;
1703
+ };
1704
+ /**
1705
+ * Delete a batch prediction
1706
+ *
1707
+ * @param deploymentId ID of the deployment
1708
+ * @param batchPredictionId ID of the batch prediction
1709
+ * @throws DeleteMlDeploymentBatchPredictionHttpError
1710
+ */
1711
+ declare const deleteMlDeploymentBatchPrediction: (deploymentId: string, batchPredictionId: string, options?: ApiCallOptions) => Promise<DeleteMlDeploymentBatchPredictionHttpResponse>;
1712
+ type DeleteMlDeploymentBatchPredictionHttpResponse = {
1713
+ data: void;
1714
+ headers: Headers;
1715
+ status: 204;
1716
+ };
1717
+ type DeleteMlDeploymentBatchPredictionHttpError = {
1718
+ data: Failure;
1719
+ headers: Headers;
1720
+ status: number;
1721
+ };
1722
+ /**
1723
+ * Retrieve a batch prediction
1724
+ *
1725
+ * @param deploymentId ID of the deployment
1726
+ * @param batchPredictionId ID of the batch prediction
1727
+ * @throws GetMlDeploymentBatchPredictionHttpError
1728
+ */
1729
+ declare const getMlDeploymentBatchPrediction: (deploymentId: string, batchPredictionId: string, options?: ApiCallOptions) => Promise<GetMlDeploymentBatchPredictionHttpResponse>;
1730
+ type GetMlDeploymentBatchPredictionHttpResponse = {
1731
+ data: BatchPredictionGetResponse;
1732
+ headers: Headers;
1733
+ status: 200;
1734
+ };
1735
+ type GetMlDeploymentBatchPredictionHttpError = {
1736
+ data: Failure;
1737
+ headers: Headers;
1738
+ status: number;
1739
+ };
1740
+ /**
1741
+ * Updates a batch prediction
1742
+ *
1743
+ * @param deploymentId ID of the deployment
1744
+ * @param batchPredictionId ID of the batch prediction
1745
+ * @param body an object with the body content
1746
+ * @throws PatchMlDeploymentBatchPredictionHttpError
1747
+ */
1748
+ declare const patchMlDeploymentBatchPrediction: (deploymentId: string, batchPredictionId: string, body: BatchPredictionPatch, options?: ApiCallOptions) => Promise<PatchMlDeploymentBatchPredictionHttpResponse>;
1749
+ type PatchMlDeploymentBatchPredictionHttpResponse = {
1750
+ data: void;
1751
+ headers: Headers;
1752
+ status: 204;
1753
+ };
1754
+ type PatchMlDeploymentBatchPredictionHttpError = {
1755
+ data: Failure;
1756
+ headers: Headers;
1757
+ status: number;
1758
+ };
1759
+ /**
1760
+ * Run a batch prediction
1761
+ *
1762
+ * @param deploymentId ID of the deployment
1763
+ * @param batchPredictionId ID of the batch prediction
1764
+ * @throws PredictMlDeploymentBatchPredictionHttpError
1765
+ */
1766
+ declare const predictMlDeploymentBatchPrediction: (deploymentId: string, batchPredictionId: string, options?: ApiCallOptions) => Promise<PredictMlDeploymentBatchPredictionHttpResponse>;
1767
+ type PredictMlDeploymentBatchPredictionHttpResponse = {
1768
+ data: BatchPredictionActionResponse;
1769
+ headers: Headers;
1770
+ status: 202;
1771
+ };
1772
+ type PredictMlDeploymentBatchPredictionHttpError = {
1773
+ data: Failure;
1774
+ headers: Headers;
1775
+ status: number;
1776
+ };
1777
+ /**
1778
+ * Deletes the schedule from a batch prediction.
1779
+ *
1780
+ * @param deploymentId ID of the deployment
1781
+ * @param batchPredictionId ID of the batch prediction
1782
+ * @throws DeleteMlDeploymentBatchPredictionScheduleHttpError
1783
+ */
1784
+ declare const deleteMlDeploymentBatchPredictionSchedule: (deploymentId: string, batchPredictionId: string, options?: ApiCallOptions) => Promise<DeleteMlDeploymentBatchPredictionScheduleHttpResponse>;
1785
+ type DeleteMlDeploymentBatchPredictionScheduleHttpResponse = {
1786
+ data: void;
1787
+ headers: Headers;
1788
+ status: 204;
1789
+ };
1790
+ type DeleteMlDeploymentBatchPredictionScheduleHttpError = {
1791
+ data: Failure;
1792
+ headers: Headers;
1793
+ status: number;
1794
+ };
1795
+ /**
1796
+ * Retrieves the schedule for a batch prediction.
1797
+ *
1798
+ * @param deploymentId ID of the deployment
1799
+ * @param batchPredictionId ID of the batch prediction
1800
+ * @throws GetMlDeploymentBatchPredictionScheduleHttpError
1801
+ */
1802
+ declare const getMlDeploymentBatchPredictionSchedule: (deploymentId: string, batchPredictionId: string, options?: ApiCallOptions) => Promise<GetMlDeploymentBatchPredictionScheduleHttpResponse>;
1803
+ type GetMlDeploymentBatchPredictionScheduleHttpResponse = {
1804
+ data: BatchPredictionScheduleGetResponse;
1805
+ headers: Headers;
1806
+ status: 200;
1807
+ };
1808
+ type GetMlDeploymentBatchPredictionScheduleHttpError = {
1809
+ data: Failure;
1810
+ headers: Headers;
1811
+ status: number;
1812
+ };
1813
+ /**
1814
+ * Updates the schedule for a batch prediction.
1815
+ *
1816
+ * @param deploymentId ID of the deployment
1817
+ * @param batchPredictionId ID of the batch prediction
1818
+ * @param body an object with the body content
1819
+ * @throws UpdateMlDeploymentBatchPredictionScheduleHttpError
1820
+ */
1821
+ declare const updateMlDeploymentBatchPredictionSchedule: (deploymentId: string, batchPredictionId: string, body: BatchPredictionSchedulePatch, options?: ApiCallOptions) => Promise<UpdateMlDeploymentBatchPredictionScheduleHttpResponse>;
1822
+ type UpdateMlDeploymentBatchPredictionScheduleHttpResponse = {
1823
+ data: void;
1824
+ headers: Headers;
1825
+ status: 204;
1826
+ };
1827
+ type UpdateMlDeploymentBatchPredictionScheduleHttpError = {
1828
+ data: Failure;
1829
+ headers: Headers;
1830
+ status: number;
1831
+ };
1832
+ /**
1833
+ * Adds a schedule to a batch prediction.
1834
+ *
1835
+ * @param deploymentId ID of the deployment
1836
+ * @param batchPredictionId ID of the batch prediction
1837
+ * @param body an object with the body content
1838
+ * @throws SetMlDeploymentBatchPredictionScheduleHttpError
1839
+ */
1840
+ declare const setMlDeploymentBatchPredictionSchedule: (deploymentId: string, batchPredictionId: string, body: BatchPredictionScheduleInput, options?: ApiCallOptions) => Promise<SetMlDeploymentBatchPredictionScheduleHttpResponse>;
1841
+ type SetMlDeploymentBatchPredictionScheduleHttpResponse = {
1842
+ data: BatchPredictionSchedulePutResponse;
1843
+ headers: Headers;
1844
+ status: 201;
1845
+ };
1846
+ type SetMlDeploymentBatchPredictionScheduleHttpError = {
1847
+ data: Failure;
1848
+ headers: Headers;
1849
+ status: number;
1850
+ };
1851
+ /**
1852
+ * Add deployed models for this deployment
1853
+ *
1854
+ * @param deploymentId ID of the deployment
1855
+ * @param body an object with the body content
1856
+ * @throws AddMlDeploymentModelsHttpError
1857
+ */
1858
+ declare const addMlDeploymentModels: (deploymentId: string, body: DeployedModelsInput, options?: ApiCallOptions) => Promise<AddMlDeploymentModelsHttpResponse>;
1859
+ type AddMlDeploymentModelsHttpResponse = {
1860
+ data: void;
1861
+ headers: Headers;
1862
+ status: 204;
1863
+ };
1864
+ type AddMlDeploymentModelsHttpError = {
1865
+ data: Failure;
1866
+ headers: Headers;
1867
+ status: number;
1868
+ };
1869
+ /**
1870
+ * Remove deployed models from this deployment
1871
+ *
1872
+ * @param deploymentId ID of the deployment
1873
+ * @param body an object with the body content
1874
+ * @throws RemoveMlDeploymentModelsHttpError
1875
+ */
1876
+ declare const removeMlDeploymentModels: (deploymentId: string, body: DeployedModelsInput, options?: ApiCallOptions) => Promise<RemoveMlDeploymentModelsHttpResponse>;
1877
+ type RemoveMlDeploymentModelsHttpResponse = {
1878
+ data: void;
1879
+ headers: Headers;
1880
+ status: 204;
1881
+ };
1882
+ type RemoveMlDeploymentModelsHttpError = {
1883
+ data: Failure;
1884
+ headers: Headers;
1885
+ status: number;
1886
+ };
1887
+ /**
1888
+ * Generate predictions in a synchronous request/response
1889
+ *
1890
+ * @param deploymentId ID of the deployment
1891
+ * @param query an object with query parameters
1892
+ * @param body an object with the body content
1893
+ * @throws RunMlDeploymentRealtimePredictionsHttpError
1894
+ */
1895
+ declare const runMlDeploymentRealtimePredictions: (deploymentId: string, query: {
1896
+ /** If true, reason why a prediction was not produced included response */
1897
+ includeNotPredictedReason?: boolean;
1898
+ /** If true, shapley values included in response */
1899
+ includeShap?: boolean;
1900
+ /** If true, source data included in response */
1901
+ includeSource?: boolean;
1902
+ /** The name of the feature in the source data to use as an index in the
1903
+ * response data. The column will be included with its original name
1904
+ * and values. This is intended to allow the caller to join results
1905
+ * with source data. */
1906
+ index?: string;
1907
+ }, body: RealtimePredictionInput, options?: ApiCallOptions) => Promise<RunMlDeploymentRealtimePredictionsHttpResponse>;
1908
+ type RunMlDeploymentRealtimePredictionsHttpResponse = {
1909
+ data: RealtimePrediction;
1910
+ headers: Headers;
1911
+ status: 200;
1912
+ };
1913
+ type RunMlDeploymentRealtimePredictionsHttpError = {
1914
+ data: Failure;
1915
+ headers: Headers;
1916
+ status: number;
1917
+ };
1918
+ /**
1919
+ * Retrieves a list of experiments based on provided filter and sort
1920
+ * parameters.
1921
+ * @example
1922
+ * getMlExperiments(
1923
+ * {
1924
+ * filter: "`filter=ownerId eq UUID and experimentVersionId eq UUID`",
1925
+ * limit: 10,
1926
+ * offset: 32
1927
+ * }
1928
+ * )
1929
+ *
1930
+ * @param query an object with query parameters
1931
+ * @throws GetMlExperimentsHttpError
1932
+ */
1933
+ declare const getMlExperiments: (query: {
1934
+ /** Experiment fields by which you can filter responses within this tenant
1935
+ * - `ownerId` ID string - ID of the owner/user that created the experiment
1936
+ * - `spaceId` ID string (or empty string for personal space) - ID of the space where the experiment is saved.
1937
+ * - `experimentVersionId` UUID string - ID of an experiment version in the experiment
1938
+ * - `modelId` UUID string - ID of a model associated with the experiment
1939
+ * - `deploymentId` UUID string - ID of a deployment of a model associated with the experiment */
1940
+ filter?: string;
1941
+ /** Number of results per page. Default is 32. */
1942
+ limit?: number;
1943
+ /** Number of rows to skip before getting page[size] */
1944
+ offset?: number;
1945
+ /** Field(s) by which to sort response */
1946
+ sort?: EnumSortExperiments;
1947
+ }, options?: ApiCallOptions) => Promise<GetMlExperimentsHttpResponse>;
1948
+ type GetMlExperimentsHttpResponse = {
1949
+ data: ExperimentFindResponse;
1950
+ headers: Headers;
1951
+ status: 200;
1952
+ prev?: (options?: ApiCallOptions) => Promise<GetMlExperimentsHttpResponse>;
1953
+ next?: (options?: ApiCallOptions) => Promise<GetMlExperimentsHttpResponse>;
1954
+ };
1955
+ type GetMlExperimentsHttpError = {
1956
+ data: Failure;
1957
+ headers: Headers;
1958
+ status: number;
1959
+ };
1960
+ /**
1961
+ * Create an experiment
1962
+ *
1963
+ * @param body an object with the body content
1964
+ * @throws CreateMlExperimentHttpError
1965
+ */
1966
+ declare const createMlExperiment: (body: ExperimentInput, options?: ApiCallOptions) => Promise<CreateMlExperimentHttpResponse>;
1967
+ type CreateMlExperimentHttpResponse = {
1968
+ data: ExperimentPostResponse;
1969
+ headers: Headers;
1970
+ status: 201;
1971
+ };
1972
+ type CreateMlExperimentHttpError = {
1973
+ data: Failure;
1974
+ headers: Headers;
1975
+ status: number;
1976
+ };
1977
+ /**
1978
+ * Delete an experiment
1979
+ *
1980
+ * @param experimentId ID of the experiment
1981
+ * @throws DeleteMlExperimentHttpError
1982
+ */
1983
+ declare const deleteMlExperiment: (experimentId: string, options?: ApiCallOptions) => Promise<DeleteMlExperimentHttpResponse>;
1984
+ type DeleteMlExperimentHttpResponse = {
1985
+ data: void;
1986
+ headers: Headers;
1987
+ status: 204;
1988
+ };
1989
+ type DeleteMlExperimentHttpError = {
1990
+ data: Failure;
1991
+ headers: Headers;
1992
+ status: number;
1993
+ };
1994
+ /**
1995
+ * Get an experiment
1996
+ *
1997
+ * @param experimentId ID of the experiment
1998
+ * @throws GetMlExperimentHttpError
1999
+ */
2000
+ declare const getMlExperiment: (experimentId: string, options?: ApiCallOptions) => Promise<GetMlExperimentHttpResponse>;
2001
+ type GetMlExperimentHttpResponse = {
2002
+ data: ExperimentGetResponse;
2003
+ headers: Headers;
2004
+ status: 200;
2005
+ };
2006
+ type GetMlExperimentHttpError = {
2007
+ data: Failure;
2008
+ headers: Headers;
2009
+ status: number;
2010
+ };
2011
+ /**
2012
+ * Update an experiment
2013
+ *
2014
+ * @param experimentId ID of the experiment
2015
+ * @param body an object with the body content
2016
+ * @throws PatchMlExperimentHttpError
2017
+ */
2018
+ declare const patchMlExperiment: (experimentId: string, body: ExperimentPatch, options?: ApiCallOptions) => Promise<PatchMlExperimentHttpResponse>;
2019
+ type PatchMlExperimentHttpResponse = {
2020
+ data: void;
2021
+ headers: Headers;
2022
+ status: 204;
2023
+ };
2024
+ type PatchMlExperimentHttpError = {
2025
+ data: Failure;
2026
+ headers: Headers;
2027
+ status: number;
2028
+ };
2029
+ /**
2030
+ * List models
2031
+ *
2032
+ * @param experimentId ID of the experiment
2033
+ * @param query an object with query parameters
2034
+ * @throws GetMlExperimentModelsHttpError
2035
+ */
2036
+ declare const getMlExperimentModels: (experimentId: string, query: {
2037
+ /** Model fields you can filter by:<br><br>
2038
+ *
2039
+ * - `experimentVersionId` UUID string - Find by experiment version ID
2040
+ * - `batchNum` UUID string - Search by batch number
2041
+ * - `isHpo` boolean - Is hyperparameter optimization used?
2042
+ * - `isMetrics` boolean - Are metrics for regression, binary, or multiclass are used?
2043
+ * - `id` UUID string - Find by model ID
2044
+ * - `algorithm` enum string - Find by algorithm<br><br>
2045
+ *
2046
+ * - Valid algorithms: catboost_classifier, catboost_regression,
2047
+ * elasticnet_regression, gaussian_nb, kneighbors_classifier,
2048
+ * lasso_regression, lasso, lgbm_classifier, lgbm_regression,
2049
+ * linear_regression, logistic_regression, random_forest_classifier,
2050
+ * random_forest_regression, sgd_regression, xgb_classifier,
2051
+ * xgb_regression<br><br>
2052
+ *
2053
+ * - `status` enum string - find by status<br><br>
2054
+ * - Valid statuses: pending, training_requested, training_done, ready, error<br><br>
2055
+ * - `hasDeployment` boolean - Models that are part of a deployment
2056
+ * - `nameContains` string - Models with name includes this case-insensitive string
2057
+ * - `exactName` string - Models with exact name. Model names may not be unique
2058
+ * - `samplingRatio` number - Find models by sampling ratio
2059
+ * - `modelState` enum string - State by which to find models<br><br>
2060
+ * - Valid states: `pending, enabled, disabled, inactive` */
2061
+ filter?: string;
2062
+ /** Number of results per page. Default is 32. */
2063
+ limit?: number;
2064
+ /** Number of rows to skip before getting page[size] */
2065
+ offset?: number;
2066
+ /** Field(s) by which to sort response */
2067
+ sort?: EnumSortModels;
2068
+ }, options?: ApiCallOptions) => Promise<GetMlExperimentModelsHttpResponse>;
2069
+ type GetMlExperimentModelsHttpResponse = {
2070
+ data: ModelFindResponse;
2071
+ headers: Headers;
2072
+ status: 200;
2073
+ prev?: (options?: ApiCallOptions) => Promise<GetMlExperimentModelsHttpResponse>;
2074
+ next?: (options?: ApiCallOptions) => Promise<GetMlExperimentModelsHttpResponse>;
2075
+ };
2076
+ type GetMlExperimentModelsHttpError = {
2077
+ data: Failure;
2078
+ headers: Headers;
2079
+ status: number;
2080
+ };
2081
+ /**
2082
+ * Get a model
2083
+ *
2084
+ * @param experimentId ID of the experiment
2085
+ * @param modelId ID of the model
2086
+ * @throws GetMlExperimentModelHttpError
2087
+ */
2088
+ declare const getMlExperimentModel: (experimentId: string, modelId: string, options?: ApiCallOptions) => Promise<GetMlExperimentModelHttpResponse>;
2089
+ type GetMlExperimentModelHttpResponse = {
2090
+ data: ModelGetResponse;
2091
+ headers: Headers;
2092
+ status: 200;
2093
+ };
2094
+ type GetMlExperimentModelHttpError = {
2095
+ data: Failure;
2096
+ headers: Headers;
2097
+ status: number;
2098
+ };
2099
+ /**
2100
+ * List experiment versions
2101
+ *
2102
+ * @param experimentId ID of the experiment
2103
+ * @param query an object with query parameters
2104
+ * @throws GetMlExperimentVersionsHttpError
2105
+ */
2106
+ declare const getMlExperimentVersions: (experimentId: string, query: {
2107
+ /** Experiment version filter options
2108
+ * - `isRunning` boolean - Is the experiment version running (training models)?
2109
+ * - `isSettled` boolean - Is the experiment version settled?
2110
+ * - `status` enum string - Status to filter by. Omit to get models of any status.
2111
+ * - Valid statuses: pending, ready, error, cancelled
2112
+ * - `modelId` UUID string - ID of a model associated with the experiment */
2113
+ filter?: string;
2114
+ /** Number of results per page. Default is 32. */
2115
+ limit?: number;
2116
+ /** Number of rows to skip before getting page[size] */
2117
+ offset?: number;
2118
+ /** Field(s) by which to sort response */
2119
+ sort?: EnumSortExperimentVersions;
2120
+ }, options?: ApiCallOptions) => Promise<GetMlExperimentVersionsHttpResponse>;
2121
+ type GetMlExperimentVersionsHttpResponse = {
2122
+ data: ExperimentVersionFindResponse;
2123
+ headers: Headers;
2124
+ status: 200;
2125
+ prev?: (options?: ApiCallOptions) => Promise<GetMlExperimentVersionsHttpResponse>;
2126
+ next?: (options?: ApiCallOptions) => Promise<GetMlExperimentVersionsHttpResponse>;
2127
+ };
2128
+ type GetMlExperimentVersionsHttpError = {
2129
+ data: Failure;
2130
+ headers: Headers;
2131
+ status: number;
2132
+ };
2133
+ /**
2134
+ * Creates an experiment version.
2135
+ * Poll this version and check its `status` field to determine when models
2136
+ * are finished training.
2137
+ *
2138
+ * @param experimentId ID of the experiment
2139
+ * @param body an object with the body content
2140
+ * @throws CreateMlExperimentVersionHttpError
2141
+ */
2142
+ declare const createMlExperimentVersion: (experimentId: string, body: ExperimentVersionInput, options?: ApiCallOptions) => Promise<CreateMlExperimentVersionHttpResponse>;
2143
+ type CreateMlExperimentVersionHttpResponse = {
2144
+ data: ExperimentVersionPostResponse;
2145
+ headers: Headers;
2146
+ status: 201;
2147
+ };
2148
+ type CreateMlExperimentVersionHttpError = {
2149
+ data: Failure;
2150
+ headers: Headers;
2151
+ status: number;
2152
+ };
2153
+ /**
2154
+ * Delete an experiment version
2155
+ *
2156
+ * @param experimentId ID of the experiment
2157
+ * @param experimentVersionId ID of the experiment version
2158
+ * @throws DeleteMlExperimentVersionHttpError
2159
+ */
2160
+ declare const deleteMlExperimentVersion: (experimentId: string, experimentVersionId: string, options?: ApiCallOptions) => Promise<DeleteMlExperimentVersionHttpResponse>;
2161
+ type DeleteMlExperimentVersionHttpResponse = {
2162
+ data: void;
2163
+ headers: Headers;
2164
+ status: 204;
2165
+ };
2166
+ type DeleteMlExperimentVersionHttpError = {
2167
+ data: Failure;
2168
+ headers: Headers;
2169
+ status: number;
2170
+ };
2171
+ /**
2172
+ * Get an experiment version
2173
+ *
2174
+ * @param experimentId ID of the experiment
2175
+ * @param experimentVersionId ID of the experiment version
2176
+ * @throws GetMlExperimentVersionHttpError
2177
+ */
2178
+ declare const getMlExperimentVersion: (experimentId: string, experimentVersionId: string, options?: ApiCallOptions) => Promise<GetMlExperimentVersionHttpResponse>;
2179
+ type GetMlExperimentVersionHttpResponse = {
2180
+ data: ExperimentVersionGetResponse;
2181
+ headers: Headers;
2182
+ status: 200;
2183
+ };
2184
+ type GetMlExperimentVersionHttpError = {
2185
+ data: Failure;
2186
+ headers: Headers;
2187
+ status: number;
2188
+ };
2189
+ /**
2190
+ * Update an experiment version
2191
+ *
2192
+ * @param experimentId ID of the experiment
2193
+ * @param experimentVersionId ID of the experiment version
2194
+ * @param body an object with the body content
2195
+ * @throws PatchMlExperimentVersionHttpError
2196
+ */
2197
+ declare const patchMlExperimentVersion: (experimentId: string, experimentVersionId: string, body: ExperimentVersionPatch, options?: ApiCallOptions) => Promise<PatchMlExperimentVersionHttpResponse>;
2198
+ type PatchMlExperimentVersionHttpResponse = {
2199
+ data: void;
2200
+ headers: Headers;
2201
+ status: 204;
2202
+ };
2203
+ type PatchMlExperimentVersionHttpError = {
2204
+ data: Failure;
2205
+ headers: Headers;
2206
+ status: number;
2207
+ };
2208
+ /**
2209
+ * Cancels jobs for an experiment version or batch prediction.
2210
+ *
2211
+ * @param corrType The type of a resource paired with a corrId
2212
+ * @param corrId The ID of a correlated resource of corrType
2213
+ * @throws CancelMlJobHttpError
2214
+ */
2215
+ declare const cancelMlJob: (corrType: string, corrId: string, options?: ApiCallOptions) => Promise<CancelMlJobHttpResponse>;
2216
+ type CancelMlJobHttpResponse = {
2217
+ data: void;
2218
+ headers: Headers;
2219
+ status: 204;
2220
+ };
2221
+ type CancelMlJobHttpError = {
2222
+ data: Failure;
2223
+ headers: Headers;
2224
+ status: number;
2225
+ };
2226
+ /**
2227
+ * Starts creating profile insights for an experiment dataset.
2228
+ * This is an asynchronous operation. A `202 Accepted` response indicates
2229
+ * that the process has started successfully. Use the link in the response
2230
+ * to check the status.
2231
+ *
2232
+ * @param body an object with the body content
2233
+ * @throws CreateMlProfileInsightHttpError
2234
+ */
2235
+ declare const createMlProfileInsight: (body: ProfileInsightsInput, options?: ApiCallOptions) => Promise<CreateMlProfileInsightHttpResponse>;
2236
+ type CreateMlProfileInsightHttpResponse = {
2237
+ data: ProfileInsightsGetResponse;
2238
+ headers: Headers;
2239
+ status: 200 | 202;
2240
+ };
2241
+ type CreateMlProfileInsightHttpError = {
2242
+ data: Failure;
2243
+ headers: Headers;
2244
+ status: number;
2245
+ };
2246
+ /**
2247
+ * Retrieves profile insights for the specified dataset. If you received a
2248
+ * `202 Accepted` response from `POST /ml/profile-insights`, poll this
2249
+ * endpoint until a `200 OK` response with `ready` status is returned.
2250
+ *
2251
+ * @param dataSetId The Qlik catalog dataset ID
2252
+ * @throws GetMlProfileInsightHttpError
2253
+ */
2254
+ declare const getMlProfileInsight: (dataSetId: string, options?: ApiCallOptions) => Promise<GetMlProfileInsightHttpResponse>;
2255
+ type GetMlProfileInsightHttpResponse = {
2256
+ data: ProfileInsightsGetResponse;
2257
+ headers: Headers;
2258
+ status: 200;
2259
+ };
2260
+ type GetMlProfileInsightHttpError = {
2261
+ data: Failure;
2262
+ headers: Headers;
2263
+ status: number;
2264
+ };
2265
+ /**
2266
+ * Clears the cache for ml api requests.
2267
+ */
2268
+ declare function clearCache(): void;
2269
+ interface MlAPI {
2270
+ /**
2271
+ * List deployments
2272
+ * @example
2273
+ * getMlDeployments(
2274
+ * {
2275
+ * filter: "`filter=spaceId eq \"UUID\" and modelState eq \"enabled\"`",
2276
+ * limit: 10,
2277
+ * offset: 32
2278
+ * }
2279
+ * )
2280
+ *
2281
+ * @param query an object with query parameters
2282
+ * @throws GetMlDeploymentsHttpError
2283
+ */
2284
+ getMlDeployments: typeof getMlDeployments;
2285
+ /**
2286
+ * Create a deployment
2287
+ *
2288
+ * @param body an object with the body content
2289
+ * @throws CreateMlDeploymentHttpError
2290
+ */
2291
+ createMlDeployment: typeof createMlDeployment;
2292
+ /**
2293
+ * Delete a deployment
2294
+ *
2295
+ * @param deploymentId ID of the deployment
2296
+ * @throws DeleteMlDeploymentHttpError
2297
+ */
2298
+ deleteMlDeployment: typeof deleteMlDeployment;
2299
+ /**
2300
+ * Get a deployment
2301
+ *
2302
+ * @param deploymentId ID of the deployment
2303
+ * @throws GetMlDeploymentHttpError
2304
+ */
2305
+ getMlDeployment: typeof getMlDeployment;
2306
+ /**
2307
+ * Update a deployment
2308
+ *
2309
+ * @param deploymentId ID of the deployment
2310
+ * @param body an object with the body content
2311
+ * @throws PatchMlDeploymentHttpError
2312
+ */
2313
+ patchMlDeployment: typeof patchMlDeployment;
2314
+ /**
2315
+ * Activate the model for this deployment
2316
+ *
2317
+ * @param deploymentId ID of the deployment
2318
+ * @throws ActivateModelsMlDeploymentHttpError
2319
+ */
2320
+ activateModelsMlDeployment: typeof activateModelsMlDeployment;
2321
+ /**
2322
+ * Deactivate the model for this deployment
2323
+ *
2324
+ * @param deploymentId ID of the deployment
2325
+ * @throws DeactivateModelsMlDeploymentHttpError
2326
+ */
2327
+ deactivateModelsMlDeployment: typeof deactivateModelsMlDeployment;
2328
+ /**
2329
+ * Retrieves a list of aliases based on filter parameters for a deployment.
2330
+ *
2331
+ * @param deploymentId
2332
+ * @param query an object with query parameters
2333
+ * @throws GetMlDeploymentAliasesHttpError
2334
+ */
2335
+ getMlDeploymentAliases: typeof getMlDeploymentAliases;
2336
+ /**
2337
+ * Creates an alias for a deployment.
2338
+ *
2339
+ * @param deploymentId ID of the deployment
2340
+ * @param body an object with the body content
2341
+ * @throws CreateMlDeploymentAliaseHttpError
2342
+ */
2343
+ createMlDeploymentAliase: typeof createMlDeploymentAliase;
2344
+ /**
2345
+ * Delete an alias from a deployment.
2346
+ *
2347
+ * @param deploymentId ID of the deployment
2348
+ * @param aliasId ID of the alias
2349
+ * @throws DeleteMlDeploymentAliaseHttpError
2350
+ */
2351
+ deleteMlDeploymentAliase: typeof deleteMlDeploymentAliase;
2352
+ /**
2353
+ * Retrieves an alias that exists on the deployment.
2354
+ *
2355
+ * @param deploymentId ID of the deployment
2356
+ * @param aliasId ID of the alias
2357
+ * @throws GetMlDeploymentAliaseHttpError
2358
+ */
2359
+ getMlDeploymentAliase: typeof getMlDeploymentAliase;
2360
+ /**
2361
+ * Updates an alias for a deployment.
2362
+ *
2363
+ * @param deploymentId ID of the deployment
2364
+ * @param aliasId ID of the alias
2365
+ * @param body an object with the body content
2366
+ * @throws PatchMlDeploymentAliaseHttpError
2367
+ */
2368
+ patchMlDeploymentAliase: typeof patchMlDeploymentAliase;
2369
+ /**
2370
+ * Generate predictions in a synchronous request/response
2371
+ *
2372
+ * @param deploymentId ID of the deployment
2373
+ * @param aliasName The name of the ML Deployment Alias that will be used to determine which model should be used to produce predictions
2374
+ * @param query an object with query parameters
2375
+ * @param body an object with the body content
2376
+ * @throws RunMlDeploymentAliaseRealtimePredictionsHttpError
2377
+ */
2378
+ runMlDeploymentAliaseRealtimePredictions: typeof runMlDeploymentAliaseRealtimePredictions;
2379
+ /**
2380
+ * List batch prediction configurations
2381
+ *
2382
+ * @param deploymentId ID of the deployment
2383
+ * @param query an object with query parameters
2384
+ * @throws GetMlDeploymentBatchPredictionsHttpError
2385
+ */
2386
+ getMlDeploymentBatchPredictions: typeof getMlDeploymentBatchPredictions;
2387
+ /**
2388
+ * Create a prediction configuration
2389
+ *
2390
+ * @param deploymentId ID of the deployment
2391
+ * @param body an object with the body content
2392
+ * @throws CreateMlDeploymentBatchPredictionHttpError
2393
+ */
2394
+ createMlDeploymentBatchPrediction: typeof createMlDeploymentBatchPrediction;
2395
+ /**
2396
+ * Delete a batch prediction
2397
+ *
2398
+ * @param deploymentId ID of the deployment
2399
+ * @param batchPredictionId ID of the batch prediction
2400
+ * @throws DeleteMlDeploymentBatchPredictionHttpError
2401
+ */
2402
+ deleteMlDeploymentBatchPrediction: typeof deleteMlDeploymentBatchPrediction;
2403
+ /**
2404
+ * Retrieve a batch prediction
2405
+ *
2406
+ * @param deploymentId ID of the deployment
2407
+ * @param batchPredictionId ID of the batch prediction
2408
+ * @throws GetMlDeploymentBatchPredictionHttpError
2409
+ */
2410
+ getMlDeploymentBatchPrediction: typeof getMlDeploymentBatchPrediction;
2411
+ /**
2412
+ * Updates a batch prediction
2413
+ *
2414
+ * @param deploymentId ID of the deployment
2415
+ * @param batchPredictionId ID of the batch prediction
2416
+ * @param body an object with the body content
2417
+ * @throws PatchMlDeploymentBatchPredictionHttpError
2418
+ */
2419
+ patchMlDeploymentBatchPrediction: typeof patchMlDeploymentBatchPrediction;
2420
+ /**
2421
+ * Run a batch prediction
2422
+ *
2423
+ * @param deploymentId ID of the deployment
2424
+ * @param batchPredictionId ID of the batch prediction
2425
+ * @throws PredictMlDeploymentBatchPredictionHttpError
2426
+ */
2427
+ predictMlDeploymentBatchPrediction: typeof predictMlDeploymentBatchPrediction;
2428
+ /**
2429
+ * Deletes the schedule from a batch prediction.
2430
+ *
2431
+ * @param deploymentId ID of the deployment
2432
+ * @param batchPredictionId ID of the batch prediction
2433
+ * @throws DeleteMlDeploymentBatchPredictionScheduleHttpError
2434
+ */
2435
+ deleteMlDeploymentBatchPredictionSchedule: typeof deleteMlDeploymentBatchPredictionSchedule;
2436
+ /**
2437
+ * Retrieves the schedule for a batch prediction.
2438
+ *
2439
+ * @param deploymentId ID of the deployment
2440
+ * @param batchPredictionId ID of the batch prediction
2441
+ * @throws GetMlDeploymentBatchPredictionScheduleHttpError
2442
+ */
2443
+ getMlDeploymentBatchPredictionSchedule: typeof getMlDeploymentBatchPredictionSchedule;
2444
+ /**
2445
+ * Updates the schedule for a batch prediction.
2446
+ *
2447
+ * @param deploymentId ID of the deployment
2448
+ * @param batchPredictionId ID of the batch prediction
2449
+ * @param body an object with the body content
2450
+ * @throws UpdateMlDeploymentBatchPredictionScheduleHttpError
2451
+ */
2452
+ updateMlDeploymentBatchPredictionSchedule: typeof updateMlDeploymentBatchPredictionSchedule;
2453
+ /**
2454
+ * Adds a schedule to a batch prediction.
2455
+ *
2456
+ * @param deploymentId ID of the deployment
2457
+ * @param batchPredictionId ID of the batch prediction
2458
+ * @param body an object with the body content
2459
+ * @throws SetMlDeploymentBatchPredictionScheduleHttpError
2460
+ */
2461
+ setMlDeploymentBatchPredictionSchedule: typeof setMlDeploymentBatchPredictionSchedule;
2462
+ /**
2463
+ * Add deployed models for this deployment
2464
+ *
2465
+ * @param deploymentId ID of the deployment
2466
+ * @param body an object with the body content
2467
+ * @throws AddMlDeploymentModelsHttpError
2468
+ */
2469
+ addMlDeploymentModels: typeof addMlDeploymentModels;
2470
+ /**
2471
+ * Remove deployed models from this deployment
2472
+ *
2473
+ * @param deploymentId ID of the deployment
2474
+ * @param body an object with the body content
2475
+ * @throws RemoveMlDeploymentModelsHttpError
2476
+ */
2477
+ removeMlDeploymentModels: typeof removeMlDeploymentModels;
2478
+ /**
2479
+ * Generate predictions in a synchronous request/response
2480
+ *
2481
+ * @param deploymentId ID of the deployment
2482
+ * @param query an object with query parameters
2483
+ * @param body an object with the body content
2484
+ * @throws RunMlDeploymentRealtimePredictionsHttpError
2485
+ */
2486
+ runMlDeploymentRealtimePredictions: typeof runMlDeploymentRealtimePredictions;
2487
+ /**
2488
+ * Retrieves a list of experiments based on provided filter and sort
2489
+ * parameters.
2490
+ * @example
2491
+ * getMlExperiments(
2492
+ * {
2493
+ * filter: "`filter=ownerId eq UUID and experimentVersionId eq UUID`",
2494
+ * limit: 10,
2495
+ * offset: 32
2496
+ * }
2497
+ * )
2498
+ *
2499
+ * @param query an object with query parameters
2500
+ * @throws GetMlExperimentsHttpError
2501
+ */
2502
+ getMlExperiments: typeof getMlExperiments;
2503
+ /**
2504
+ * Create an experiment
2505
+ *
2506
+ * @param body an object with the body content
2507
+ * @throws CreateMlExperimentHttpError
2508
+ */
2509
+ createMlExperiment: typeof createMlExperiment;
2510
+ /**
2511
+ * Delete an experiment
2512
+ *
2513
+ * @param experimentId ID of the experiment
2514
+ * @throws DeleteMlExperimentHttpError
2515
+ */
2516
+ deleteMlExperiment: typeof deleteMlExperiment;
2517
+ /**
2518
+ * Get an experiment
2519
+ *
2520
+ * @param experimentId ID of the experiment
2521
+ * @throws GetMlExperimentHttpError
2522
+ */
2523
+ getMlExperiment: typeof getMlExperiment;
2524
+ /**
2525
+ * Update an experiment
2526
+ *
2527
+ * @param experimentId ID of the experiment
2528
+ * @param body an object with the body content
2529
+ * @throws PatchMlExperimentHttpError
2530
+ */
2531
+ patchMlExperiment: typeof patchMlExperiment;
2532
+ /**
2533
+ * List models
2534
+ *
2535
+ * @param experimentId ID of the experiment
2536
+ * @param query an object with query parameters
2537
+ * @throws GetMlExperimentModelsHttpError
2538
+ */
2539
+ getMlExperimentModels: typeof getMlExperimentModels;
2540
+ /**
2541
+ * Get a model
2542
+ *
2543
+ * @param experimentId ID of the experiment
2544
+ * @param modelId ID of the model
2545
+ * @throws GetMlExperimentModelHttpError
2546
+ */
2547
+ getMlExperimentModel: typeof getMlExperimentModel;
2548
+ /**
2549
+ * List experiment versions
2550
+ *
2551
+ * @param experimentId ID of the experiment
2552
+ * @param query an object with query parameters
2553
+ * @throws GetMlExperimentVersionsHttpError
2554
+ */
2555
+ getMlExperimentVersions: typeof getMlExperimentVersions;
2556
+ /**
2557
+ * Creates an experiment version.
2558
+ * Poll this version and check its `status` field to determine when models
2559
+ * are finished training.
2560
+ *
2561
+ * @param experimentId ID of the experiment
2562
+ * @param body an object with the body content
2563
+ * @throws CreateMlExperimentVersionHttpError
2564
+ */
2565
+ createMlExperimentVersion: typeof createMlExperimentVersion;
2566
+ /**
2567
+ * Delete an experiment version
2568
+ *
2569
+ * @param experimentId ID of the experiment
2570
+ * @param experimentVersionId ID of the experiment version
2571
+ * @throws DeleteMlExperimentVersionHttpError
2572
+ */
2573
+ deleteMlExperimentVersion: typeof deleteMlExperimentVersion;
2574
+ /**
2575
+ * Get an experiment version
2576
+ *
2577
+ * @param experimentId ID of the experiment
2578
+ * @param experimentVersionId ID of the experiment version
2579
+ * @throws GetMlExperimentVersionHttpError
2580
+ */
2581
+ getMlExperimentVersion: typeof getMlExperimentVersion;
2582
+ /**
2583
+ * Update an experiment version
2584
+ *
2585
+ * @param experimentId ID of the experiment
2586
+ * @param experimentVersionId ID of the experiment version
2587
+ * @param body an object with the body content
2588
+ * @throws PatchMlExperimentVersionHttpError
2589
+ */
2590
+ patchMlExperimentVersion: typeof patchMlExperimentVersion;
2591
+ /**
2592
+ * Cancels jobs for an experiment version or batch prediction.
2593
+ *
2594
+ * @param corrType The type of a resource paired with a corrId
2595
+ * @param corrId The ID of a correlated resource of corrType
2596
+ * @throws CancelMlJobHttpError
2597
+ */
2598
+ cancelMlJob: typeof cancelMlJob;
2599
+ /**
2600
+ * Starts creating profile insights for an experiment dataset.
2601
+ * This is an asynchronous operation. A `202 Accepted` response indicates
2602
+ * that the process has started successfully. Use the link in the response
2603
+ * to check the status.
2604
+ *
2605
+ * @param body an object with the body content
2606
+ * @throws CreateMlProfileInsightHttpError
2607
+ */
2608
+ createMlProfileInsight: typeof createMlProfileInsight;
2609
+ /**
2610
+ * Retrieves profile insights for the specified dataset. If you received a
2611
+ * `202 Accepted` response from `POST /ml/profile-insights`, poll this
2612
+ * endpoint until a `200 OK` response with `ready` status is returned.
2613
+ *
2614
+ * @param dataSetId The Qlik catalog dataset ID
2615
+ * @throws GetMlProfileInsightHttpError
2616
+ */
2617
+ getMlProfileInsight: typeof getMlProfileInsight;
2618
+ /**
2619
+ * Clears the cache for ml api requests.
2620
+ */
2621
+ clearCache: typeof clearCache;
2622
+ }
2623
+ /**
2624
+ * Functions for the ml api
2625
+ */
2626
+ declare const mlExport: MlAPI;
2627
+
2628
+ export { type APIError, type ActivateModelsMlDeploymentHttpError, type ActivateModelsMlDeploymentHttpResponse, type AddMlDeploymentModelsHttpError, type AddMlDeploymentModelsHttpResponse, type Alias, type AliasFindResponse, type AliasGetResponse, type AliasId, type AliasInput, type AliasMode, type AliasPatch, type AliasPatchItem, type AliasPostResponse, type AnyType, type BatchPrediction, type BatchPredictionActionResponse, type BatchPredictionFindResponse, type BatchPredictionGetResponse, type BatchPredictionInput, type BatchPredictionPatch, type BatchPredictionPostResponse, type BatchPredictionSchedule, type BatchPredictionScheduleGetResponse, type BatchPredictionScheduleInput, type BatchPredictionScheduleInputAttributes, type BatchPredictionSchedulePatch, type BatchPredictionSchedulePutResponse, type BatchPredictionStatus, type BatchPredictionWriteback, type BinaryImbalanceSampling, type CancelMlJobHttpError, type CancelMlJobHttpResponse, type ChangeType, type ColumnTransform, type ConfigurationKey, type CorrId, type CorrType, type CreateMlDeploymentAliaseHttpError, type CreateMlDeploymentAliaseHttpResponse, type CreateMlDeploymentBatchPredictionHttpError, type CreateMlDeploymentBatchPredictionHttpResponse, type CreateMlDeploymentHttpError, type CreateMlDeploymentHttpResponse, type CreateMlExperimentHttpError, type CreateMlExperimentHttpResponse, type CreateMlExperimentVersionHttpError, type CreateMlExperimentVersionHttpResponse, type CreateMlProfileInsightHttpError, type CreateMlProfileInsightHttpResponse, type CreatedAt, type CreatedBy, type DataSchemaConfiguration, type DataSetId, type DataType, type DatasetOrigin, type DateIndexes, type DeactivateModelsMlDeploymentHttpError, type DeactivateModelsMlDeploymentHttpResponse, type DeleteMlDeploymentAliaseHttpError, type DeleteMlDeploymentAliaseHttpResponse, type DeleteMlDeploymentBatchPredictionHttpError, type DeleteMlDeploymentBatchPredictionHttpResponse, type DeleteMlDeploymentBatchPredictionScheduleHttpError, type DeleteMlDeploymentBatchPredictionScheduleHttpResponse, type DeleteMlDeploymentHttpError, type DeleteMlDeploymentHttpResponse, type DeleteMlExperimentHttpError, type DeleteMlExperimentHttpResponse, type DeleteMlExperimentVersionHttpError, type DeleteMlExperimentVersionHttpResponse, type DeletedAt, type DeployedModelIds, type DeployedModelsInput, type Deployment, type DeploymentFindResponse, type DeploymentGetResponse, type DeploymentId, type DeploymentInput, type DeploymentPatch, type DeploymentPostResponse, type DroppedFeature, type EntityDescription, type EntityId, type EntityName, type EnumSortAliases, type EnumSortBatchPredictions, type EnumSortDeployments, type EnumSortExperimentVersions, type EnumSortExperiments, type EnumSortModels, type ErrorMessage, type Errors, type Experiment, type ExperimentFindResponse, type ExperimentGetResponse, type ExperimentId, type ExperimentInput, type ExperimentMode, type ExperimentPatch, type ExperimentPatchItem, type ExperimentPostResponse, type ExperimentType, type ExperimentVersion, type ExperimentVersionFindResponse, type ExperimentVersionGetResponse, type ExperimentVersionId, type ExperimentVersionInput, type ExperimentVersionPatch, type ExperimentVersionPostResponse, type Failure, type Feature, type FeatureInsights, type FeatureType, type FeaturesList, type FileType, type FindResponseMeta, type GetMlDeploymentAliaseHttpError, type GetMlDeploymentAliaseHttpResponse, type GetMlDeploymentAliasesHttpError, type GetMlDeploymentAliasesHttpResponse, type GetMlDeploymentBatchPredictionHttpError, type GetMlDeploymentBatchPredictionHttpResponse, type GetMlDeploymentBatchPredictionScheduleHttpError, type GetMlDeploymentBatchPredictionScheduleHttpResponse, type GetMlDeploymentBatchPredictionsHttpError, type GetMlDeploymentBatchPredictionsHttpResponse, type GetMlDeploymentHttpError, type GetMlDeploymentHttpResponse, type GetMlDeploymentsHttpError, type GetMlDeploymentsHttpResponse, type GetMlExperimentHttpError, type GetMlExperimentHttpResponse, type GetMlExperimentModelHttpError, type GetMlExperimentModelHttpResponse, type GetMlExperimentModelsHttpError, type GetMlExperimentModelsHttpResponse, type GetMlExperimentVersionHttpError, type GetMlExperimentVersionHttpResponse, type GetMlExperimentVersionsHttpError, type GetMlExperimentVersionsHttpResponse, type GetMlExperimentsHttpError, type GetMlExperimentsHttpResponse, type GetMlProfileInsightHttpError, type GetMlProfileInsightHttpResponse, type IndexColumn, type Insights, type JobType, type MlAPI, type Model, type ModelAlgorithm, type ModelAlgorithmAbbreviation, type ModelFindResponse, type ModelGetResponse, type ModelId, type ModelInfo, type ModelMetrics, type ModelMetricsBinary, type ModelMetricsMulticlass, type ModelMetricsRegression, type ModelState, type ModelStatus, type ModelsInfo, type OutputFile, type OwnerId, type ParentJobId, type PatchMlDeploymentAliaseHttpError, type PatchMlDeploymentAliaseHttpResponse, type PatchMlDeploymentBatchPredictionHttpError, type PatchMlDeploymentBatchPredictionHttpResponse, type PatchMlDeploymentHttpError, type PatchMlDeploymentHttpResponse, type PatchMlExperimentHttpError, type PatchMlExperimentHttpResponse, type PatchMlExperimentVersionHttpError, type PatchMlExperimentVersionHttpResponse, type Pipeline, type PredictMlDeploymentBatchPredictionHttpError, type PredictMlDeploymentBatchPredictionHttpResponse, type PredictionJobResponse, type PreprocessedInsightColumn, type ProfileInsights, type ProfileInsightsGetResponse, type ProfileInsightsInput, type RealTimePredictionInputSchema, type RealTimePredictionSchema, type RealtimePrediction, type RealtimePredictionInput, type RemoveMlDeploymentModelsHttpError, type RemoveMlDeploymentModelsHttpResponse, type ResponseLinks, type RunMlDeploymentAliaseRealtimePredictionsHttpError, type RunMlDeploymentAliaseRealtimePredictionsHttpResponse, type RunMlDeploymentRealtimePredictionsHttpError, type RunMlDeploymentRealtimePredictionsHttpResponse, type SetMlDeploymentBatchPredictionScheduleHttpError, type SetMlDeploymentBatchPredictionScheduleHttpResponse, type SpaceId, type TenantId, type TrainingDuration, type Transform, type UpdateMlDeploymentBatchPredictionScheduleHttpError, type UpdateMlDeploymentBatchPredictionScheduleHttpResponse, type UpdatedAt, activateModelsMlDeployment, addMlDeploymentModels, cancelMlJob, clearCache, createMlDeployment, createMlDeploymentAliase, createMlDeploymentBatchPrediction, createMlExperiment, createMlExperimentVersion, createMlProfileInsight, deactivateModelsMlDeployment, mlExport as default, deleteMlDeployment, deleteMlDeploymentAliase, deleteMlDeploymentBatchPrediction, deleteMlDeploymentBatchPredictionSchedule, deleteMlExperiment, deleteMlExperimentVersion, getMlDeployment, getMlDeploymentAliase, getMlDeploymentAliases, getMlDeploymentBatchPrediction, getMlDeploymentBatchPredictionSchedule, getMlDeploymentBatchPredictions, getMlDeployments, getMlExperiment, getMlExperimentModel, getMlExperimentModels, getMlExperimentVersion, getMlExperimentVersions, getMlExperiments, getMlProfileInsight, patchMlDeployment, patchMlDeploymentAliase, patchMlDeploymentBatchPrediction, patchMlExperiment, patchMlExperimentVersion, predictMlDeploymentBatchPrediction, removeMlDeploymentModels, runMlDeploymentAliaseRealtimePredictions, runMlDeploymentRealtimePredictions, setMlDeploymentBatchPredictionSchedule, updateMlDeploymentBatchPredictionSchedule };