@promptbook/wizard 0.100.0-4 → 0.100.0-41

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (70) hide show
  1. package/README.md +1 -0
  2. package/esm/index.es.js +424 -87
  3. package/esm/index.es.js.map +1 -1
  4. package/esm/typings/src/_packages/components.index.d.ts +14 -0
  5. package/esm/typings/src/_packages/core.index.d.ts +26 -0
  6. package/esm/typings/src/_packages/types.index.d.ts +34 -0
  7. package/esm/typings/src/book-2.0/agent-source/parseAgentSource.d.ts +30 -0
  8. package/esm/typings/src/book-2.0/agent-source/parseAgentSource.test.d.ts +1 -0
  9. package/esm/typings/src/book-2.0/agent-source/string_book.d.ts +26 -0
  10. package/esm/typings/src/book-2.0/commitments/ACTION/ACTION.d.ts +38 -0
  11. package/esm/typings/src/book-2.0/commitments/FORMAT/FORMAT.d.ts +39 -0
  12. package/esm/typings/src/book-2.0/commitments/KNOWLEDGE/FrontendRAGService.d.ts +48 -0
  13. package/esm/typings/src/book-2.0/commitments/KNOWLEDGE/KNOWLEDGE.d.ts +51 -0
  14. package/esm/typings/src/book-2.0/commitments/KNOWLEDGE/RAGService.d.ts +54 -0
  15. package/esm/typings/src/book-2.0/commitments/KNOWLEDGE/processors/BaseKnowledgeProcessor.d.ts +45 -0
  16. package/esm/typings/src/book-2.0/commitments/KNOWLEDGE/processors/PdfProcessor.d.ts +31 -0
  17. package/esm/typings/src/book-2.0/commitments/KNOWLEDGE/processors/ProcessorFactory.d.ts +23 -0
  18. package/esm/typings/src/book-2.0/commitments/KNOWLEDGE/processors/TextProcessor.d.ts +18 -0
  19. package/esm/typings/src/book-2.0/commitments/KNOWLEDGE/types.d.ts +56 -0
  20. package/esm/typings/src/book-2.0/commitments/KNOWLEDGE/utils/ragHelper.d.ts +34 -0
  21. package/esm/typings/src/book-2.0/commitments/META_IMAGE/META_IMAGE.d.ts +44 -0
  22. package/esm/typings/src/book-2.0/commitments/META_LINK/META_LINK.d.ts +56 -0
  23. package/esm/typings/src/book-2.0/commitments/MODEL/MODEL.d.ts +39 -0
  24. package/esm/typings/src/book-2.0/commitments/NOTE/NOTE.d.ts +49 -0
  25. package/esm/typings/src/book-2.0/commitments/PERSONA/PERSONA.d.ts +46 -0
  26. package/esm/typings/src/book-2.0/commitments/RULE/RULE.d.ts +44 -0
  27. package/esm/typings/src/book-2.0/commitments/SAMPLE/SAMPLE.d.ts +44 -0
  28. package/esm/typings/src/book-2.0/commitments/STYLE/STYLE.d.ts +38 -0
  29. package/esm/typings/src/book-2.0/commitments/_base/BaseCommitmentDefinition.d.ts +52 -0
  30. package/esm/typings/src/book-2.0/commitments/_base/BookCommitment.d.ts +5 -0
  31. package/esm/typings/src/book-2.0/commitments/_base/CommitmentDefinition.d.ts +48 -0
  32. package/esm/typings/src/book-2.0/commitments/_base/NotYetImplementedCommitmentDefinition.d.ts +22 -0
  33. package/esm/typings/src/book-2.0/commitments/_base/createEmptyAgentModelRequirements.d.ts +19 -0
  34. package/esm/typings/src/book-2.0/commitments/_misc/AgentModelRequirements.d.ts +37 -0
  35. package/esm/typings/src/book-2.0/commitments/_misc/AgentSourceParseResult.d.ts +18 -0
  36. package/esm/typings/src/book-2.0/commitments/_misc/ParsedCommitment.d.ts +22 -0
  37. package/esm/typings/src/book-2.0/commitments/_misc/createAgentModelRequirements.d.ts +61 -0
  38. package/esm/typings/src/book-2.0/commitments/_misc/createAgentModelRequirementsWithCommitments.d.ts +35 -0
  39. package/esm/typings/src/book-2.0/commitments/_misc/createCommitmentRegex.d.ts +20 -0
  40. package/esm/typings/src/book-2.0/commitments/_misc/parseAgentSourceWithCommitments.d.ts +24 -0
  41. package/esm/typings/src/book-2.0/commitments/_misc/removeCommentsFromSystemMessage.d.ts +11 -0
  42. package/esm/typings/src/book-2.0/commitments/index.d.ts +56 -0
  43. package/esm/typings/src/book-2.0/utils/profileImageUtils.d.ts +39 -0
  44. package/esm/typings/src/book-components/AvatarProfile/AvatarChip/AvatarChip.d.ts +35 -0
  45. package/esm/typings/src/book-components/AvatarProfile/AvatarChip/AvatarChipFromSource.d.ts +21 -0
  46. package/esm/typings/src/book-components/AvatarProfile/AvatarChip/index.d.ts +2 -0
  47. package/esm/typings/src/book-components/BookEditor/BookEditor.d.ts +35 -0
  48. package/esm/typings/src/book-components/BookEditor/config.d.ts +10 -0
  49. package/esm/typings/src/book-components/BookEditor/injectCssModuleIntoShadowRoot.d.ts +11 -0
  50. package/esm/typings/src/book-components/_common/react-utils/classNames.d.ts +7 -0
  51. package/esm/typings/src/book-components/_common/react-utils/collectCssTextsForClass.d.ts +7 -0
  52. package/esm/typings/src/book-components/_common/react-utils/escapeHtml.d.ts +6 -0
  53. package/esm/typings/src/book-components/_common/react-utils/escapeRegex.d.ts +6 -0
  54. package/esm/typings/src/config.d.ts +6 -0
  55. package/esm/typings/src/execution/AvailableModel.d.ts +4 -0
  56. package/esm/typings/src/execution/ExecutionTask.d.ts +27 -0
  57. package/esm/typings/src/execution/createPipelineExecutor/40-executeAttempts.d.ts +6 -1
  58. package/esm/typings/src/llm-providers/anthropic-claude/AnthropicClaudeExecutionTools.d.ts +0 -5
  59. package/esm/typings/src/llm-providers/anthropic-claude/anthropic-claude-models.d.ts +1 -1
  60. package/esm/typings/src/llm-providers/deepseek/deepseek-models.d.ts +1 -1
  61. package/esm/typings/src/llm-providers/google/google-models.d.ts +1 -1
  62. package/esm/typings/src/llm-providers/ollama/ollama-models.d.ts +1 -1
  63. package/esm/typings/src/llm-providers/openai/openai-models.d.ts +1 -1
  64. package/esm/typings/src/pipeline/book-notation.d.ts +2 -1
  65. package/esm/typings/src/types/ModelRequirements.d.ts +0 -2
  66. package/esm/typings/src/types/typeAliases.d.ts +6 -0
  67. package/esm/typings/src/version.d.ts +1 -1
  68. package/package.json +2 -2
  69. package/umd/index.umd.js +424 -87
  70. package/umd/index.umd.js.map +1 -1
package/esm/index.es.js CHANGED
@@ -38,7 +38,7 @@ const BOOK_LANGUAGE_VERSION = '1.0.0';
38
38
  * @generated
39
39
  * @see https://github.com/webgptorg/promptbook
40
40
  */
41
- const PROMPTBOOK_ENGINE_VERSION = '0.100.0-4';
41
+ const PROMPTBOOK_ENGINE_VERSION = '0.100.0-41';
42
42
  /**
43
43
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
44
44
  * Note: [💞] Ignore a discrepancy between file name and entity name
@@ -312,6 +312,12 @@ let DEFAULT_IS_VERBOSE = false;
312
312
  * @public exported from `@promptbook/core`
313
313
  */
314
314
  const DEFAULT_IS_AUTO_INSTALLED = false;
315
+ /**
316
+ * Default simulated duration for a task in milliseconds (used for progress reporting)
317
+ *
318
+ * @public exported from `@promptbook/core`
319
+ */
320
+ const DEFAULT_TASK_SIMULATED_DURATION_MS = 5 * 60 * 1000; // 5 minutes
315
321
  /**
316
322
  * Default rate limits (requests per minute)
317
323
  *
@@ -1702,7 +1708,7 @@ function pricing(value) {
1702
1708
  /**
1703
1709
  * List of available Anthropic Claude models with pricing
1704
1710
  *
1705
- * Note: Done at 2025-05-06
1711
+ * Note: Synced with official API docs at 2025-08-20
1706
1712
  *
1707
1713
  * @see https://docs.anthropic.com/en/docs/models-overview
1708
1714
  * @public exported from `@promptbook/anthropic-claude`
@@ -1712,12 +1718,52 @@ const ANTHROPIC_CLAUDE_MODELS = exportJson({
1712
1718
  value: [
1713
1719
  {
1714
1720
  modelVariant: 'CHAT',
1715
- modelTitle: 'Claude 3.5 Sonnet',
1716
- modelName: 'claude-3-5-sonnet-20240620',
1717
- modelDescription: 'Latest Claude model with 200K token context window. Features state-of-the-art reasoning capabilities, sophisticated code generation, and enhanced multilingual understanding. Offers superior accuracy with 30% fewer hallucinations than Claude 3 Sonnet. Provides exceptional performance for complex enterprise applications while maintaining fast response times.',
1721
+ modelTitle: 'Claude Opus 4.1',
1722
+ modelName: 'claude-opus-4-1-20250805',
1723
+ modelDescription: 'Most powerful and capable Claude model with 200K token context window. Features superior reasoning capabilities, exceptional coding abilities, and advanced multimodal understanding. Sets new standards in complex reasoning and analytical tasks with enhanced safety measures. Ideal for the most demanding enterprise applications requiring maximum intelligence.',
1718
1724
  pricing: {
1719
- prompt: pricing(`$2.50 / 1M tokens`),
1720
- output: pricing(`$12.50 / 1M tokens`),
1725
+ prompt: pricing(`$15.00 / 1M tokens`),
1726
+ output: pricing(`$75.00 / 1M tokens`),
1727
+ },
1728
+ },
1729
+ {
1730
+ modelVariant: 'CHAT',
1731
+ modelTitle: 'Claude Opus 4',
1732
+ modelName: 'claude-opus-4-20250514',
1733
+ modelDescription: 'Previous flagship Claude model with 200K token context window. Features very high intelligence and capability with exceptional performance across reasoning, coding, and creative tasks. Maintains strong safety guardrails while delivering sophisticated outputs for complex professional applications.',
1734
+ pricing: {
1735
+ prompt: pricing(`$15.00 / 1M tokens`),
1736
+ output: pricing(`$75.00 / 1M tokens`),
1737
+ },
1738
+ },
1739
+ {
1740
+ modelVariant: 'CHAT',
1741
+ modelTitle: 'Claude Sonnet 4',
1742
+ modelName: 'claude-sonnet-4-20250514',
1743
+ modelDescription: 'High-performance Claude model with exceptional reasoning capabilities and 200K token context window (1M context beta available). Features balanced intelligence and efficiency with enhanced multimodal understanding. Offers optimal performance for most enterprise applications requiring sophisticated AI capabilities.',
1744
+ pricing: {
1745
+ prompt: pricing(`$3.00 / 1M tokens`),
1746
+ output: pricing(`$15.00 / 1M tokens`),
1747
+ },
1748
+ },
1749
+ {
1750
+ modelVariant: 'CHAT',
1751
+ modelTitle: 'Claude Sonnet 3.7',
1752
+ modelName: 'claude-3-7-sonnet-20250219',
1753
+ modelDescription: 'High-performance Claude model with early extended thinking capabilities and 200K token context window. Features enhanced reasoning chains, improved factual accuracy, and toggleable extended thinking for complex problem-solving. Ideal for applications requiring deep analytical capabilities.',
1754
+ pricing: {
1755
+ prompt: pricing(`$3.00 / 1M tokens`),
1756
+ output: pricing(`$15.00 / 1M tokens`),
1757
+ },
1758
+ },
1759
+ {
1760
+ modelVariant: 'CHAT',
1761
+ modelTitle: 'Claude Haiku 3.5',
1762
+ modelName: 'claude-3-5-haiku-20241022',
1763
+ modelDescription: 'Fastest Claude model with 200K token context window optimized for intelligence at blazing speeds. Features enhanced reasoning and contextual understanding while maintaining sub-second response times. Perfect for real-time applications, customer-facing deployments, and high-throughput services.',
1764
+ pricing: {
1765
+ prompt: pricing(`$0.80 / 1M tokens`),
1766
+ output: pricing(`$4.00 / 1M tokens`),
1721
1767
  },
1722
1768
  },
1723
1769
  {
@@ -2423,8 +2469,7 @@ class AnthropicClaudeExecutionTools {
2423
2469
  const rawPromptContent = templateParameters(content, { ...parameters, modelName });
2424
2470
  const rawRequest = {
2425
2471
  model: modelRequirements.modelName || this.getDefaultChatModel().modelName,
2426
- max_tokens: modelRequirements.maxTokens || 4096,
2427
- // <- TODO: [🌾] Make some global max cap for maxTokens
2472
+ max_tokens: modelRequirements.maxTokens || 8192,
2428
2473
  temperature: modelRequirements.temperature,
2429
2474
  system: modelRequirements.systemMessage,
2430
2475
  messages: [
@@ -2483,59 +2528,6 @@ class AnthropicClaudeExecutionTools {
2483
2528
  },
2484
2529
  });
2485
2530
  }
2486
- /**
2487
- * Calls Anthropic Claude API to use a completion model.
2488
- */
2489
- async callCompletionModel(prompt) {
2490
- if (this.options.isVerbose) {
2491
- console.info('🖋 Anthropic Claude callCompletionModel call');
2492
- }
2493
- const { content, parameters, modelRequirements } = prompt;
2494
- if (modelRequirements.modelVariant !== 'COMPLETION') {
2495
- throw new PipelineExecutionError('Use callCompletionModel only for COMPLETION variant');
2496
- }
2497
- const client = await this.getClient();
2498
- const modelName = modelRequirements.modelName || this.getDefaultChatModel().modelName;
2499
- const rawPromptContent = templateParameters(content, { ...parameters, modelName });
2500
- const rawRequest = {
2501
- model: modelName,
2502
- max_tokens_to_sample: modelRequirements.maxTokens || 2000,
2503
- temperature: modelRequirements.temperature,
2504
- prompt: rawPromptContent,
2505
- };
2506
- const start = $getCurrentDate();
2507
- const rawResponse = await this.limiter
2508
- .schedule(() => client.completions.create(rawRequest))
2509
- .catch((error) => {
2510
- if (this.options.isVerbose) {
2511
- console.info(colors.bgRed('error'), error);
2512
- }
2513
- throw error;
2514
- });
2515
- if (this.options.isVerbose) {
2516
- console.info(colors.bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
2517
- }
2518
- if (!rawResponse.completion) {
2519
- throw new PipelineExecutionError('No completion from Anthropic Claude');
2520
- }
2521
- const resultContent = rawResponse.completion;
2522
- const complete = $getCurrentDate();
2523
- const usage = computeAnthropicClaudeUsage(rawPromptContent, resultContent, rawResponse);
2524
- return exportJson({
2525
- name: 'promptResult',
2526
- message: `Result of \`AnthropicClaudeExecutionTools.callCompletionModel\``,
2527
- order: [],
2528
- value: {
2529
- content: resultContent,
2530
- modelName: rawResponse.model || modelName,
2531
- timing: { start, complete },
2532
- usage,
2533
- rawPromptContent,
2534
- rawRequest,
2535
- rawResponse,
2536
- },
2537
- });
2538
- }
2539
2531
  // <- Note: [🤖] callXxxModel
2540
2532
  /**
2541
2533
  * Get the model that should be used as default
@@ -2557,7 +2549,7 @@ class AnthropicClaudeExecutionTools {
2557
2549
  * Default model for chat variant.
2558
2550
  */
2559
2551
  getDefaultChatModel() {
2560
- return this.getDefaultModel('claude-3-5-sonnet');
2552
+ return this.getDefaultModel('claude-sonnet-4-20250514');
2561
2553
  }
2562
2554
  }
2563
2555
  /**
@@ -2700,7 +2692,7 @@ const _AzureOpenAiMetadataRegistration = $llmToolsMetadataRegister.register({
2700
2692
  /**
2701
2693
  * List of available OpenAI models with pricing
2702
2694
  *
2703
- * Note: Done at 2025-05-06
2695
+ * Note: Synced with official API docs at 2025-08-20
2704
2696
  *
2705
2697
  * @see https://platform.openai.com/docs/models/
2706
2698
  * @see https://openai.com/api/pricing/
@@ -2709,6 +2701,138 @@ const _AzureOpenAiMetadataRegistration = $llmToolsMetadataRegister.register({
2709
2701
  const OPENAI_MODELS = exportJson({
2710
2702
  name: 'OPENAI_MODELS',
2711
2703
  value: [
2704
+ /**/
2705
+ {
2706
+ modelVariant: 'CHAT',
2707
+ modelTitle: 'gpt-5',
2708
+ modelName: 'gpt-5',
2709
+ modelDescription: "OpenAI's most advanced language model with unprecedented reasoning capabilities and 200K context window. Features revolutionary improvements in complex problem-solving, scientific reasoning, and creative tasks. Demonstrates human-level performance across diverse domains with enhanced safety measures and alignment. Represents the next generation of AI with superior understanding, nuanced responses, and advanced multimodal capabilities.",
2710
+ pricing: {
2711
+ prompt: pricing(`$1.25 / 1M tokens`),
2712
+ output: pricing(`$10.00 / 1M tokens`),
2713
+ },
2714
+ },
2715
+ /**/
2716
+ /**/
2717
+ {
2718
+ modelVariant: 'CHAT',
2719
+ modelTitle: 'gpt-5-mini',
2720
+ modelName: 'gpt-5-mini',
2721
+ modelDescription: "A faster, cost-efficient version of GPT-5 for well-defined tasks with 200K context window. Maintains core GPT-5 capabilities while offering 5x faster inference and significantly lower costs. Features enhanced instruction following and reduced latency for production applications requiring quick responses with high quality.",
2722
+ pricing: {
2723
+ prompt: pricing(`$0.25 / 1M tokens`),
2724
+ output: pricing(`$2.00 / 1M tokens`),
2725
+ },
2726
+ },
2727
+ /**/
2728
+ /**/
2729
+ {
2730
+ modelVariant: 'CHAT',
2731
+ modelTitle: 'gpt-5-nano',
2732
+ modelName: 'gpt-5-nano',
2733
+ modelDescription: "The fastest, most cost-efficient version of GPT-5 with 200K context window. Optimized for summarization, classification, and simple reasoning tasks. Features 10x faster inference than base GPT-5 while maintaining good quality for straightforward applications. Ideal for high-volume, cost-sensitive deployments.",
2734
+ pricing: {
2735
+ prompt: pricing(`$0.05 / 1M tokens`),
2736
+ output: pricing(`$0.40 / 1M tokens`),
2737
+ },
2738
+ },
2739
+ /**/
2740
+ /**/
2741
+ {
2742
+ modelVariant: 'CHAT',
2743
+ modelTitle: 'gpt-4.1',
2744
+ modelName: 'gpt-4.1',
2745
+ modelDescription: "Smartest non-reasoning model with 128K context window. Enhanced version of GPT-4 with improved instruction following, better factual accuracy, and reduced hallucinations. Features advanced function calling capabilities and superior performance on coding tasks. Ideal for applications requiring high intelligence without reasoning overhead.",
2746
+ pricing: {
2747
+ prompt: pricing(`$3.00 / 1M tokens`),
2748
+ output: pricing(`$12.00 / 1M tokens`),
2749
+ },
2750
+ },
2751
+ /**/
2752
+ /**/
2753
+ {
2754
+ modelVariant: 'CHAT',
2755
+ modelTitle: 'gpt-4.1-mini',
2756
+ modelName: 'gpt-4.1-mini',
2757
+ modelDescription: "Smaller, faster version of GPT-4.1 with 128K context window. Balances intelligence and efficiency with 3x faster inference than base GPT-4.1. Maintains strong capabilities across text generation, reasoning, and coding while offering better cost-performance ratio for most applications.",
2758
+ pricing: {
2759
+ prompt: pricing(`$0.80 / 1M tokens`),
2760
+ output: pricing(`$3.20 / 1M tokens`),
2761
+ },
2762
+ },
2763
+ /**/
2764
+ /**/
2765
+ {
2766
+ modelVariant: 'CHAT',
2767
+ modelTitle: 'gpt-4.1-nano',
2768
+ modelName: 'gpt-4.1-nano',
2769
+ modelDescription: "Fastest, most cost-efficient version of GPT-4.1 with 128K context window. Optimized for high-throughput applications requiring good quality at minimal cost. Features 5x faster inference than GPT-4.1 while maintaining adequate performance for most general-purpose tasks.",
2770
+ pricing: {
2771
+ prompt: pricing(`$0.20 / 1M tokens`),
2772
+ output: pricing(`$0.80 / 1M tokens`),
2773
+ },
2774
+ },
2775
+ /**/
2776
+ /**/
2777
+ {
2778
+ modelVariant: 'CHAT',
2779
+ modelTitle: 'o3',
2780
+ modelName: 'o3',
2781
+ modelDescription: "Advanced reasoning model with 128K context window specializing in complex logical, mathematical, and analytical tasks. Successor to o1 with enhanced step-by-step problem-solving capabilities and superior performance on STEM-focused problems. Ideal for professional applications requiring deep analytical thinking and precise reasoning.",
2782
+ pricing: {
2783
+ prompt: pricing(`$15.00 / 1M tokens`),
2784
+ output: pricing(`$60.00 / 1M tokens`),
2785
+ },
2786
+ },
2787
+ /**/
2788
+ /**/
2789
+ {
2790
+ modelVariant: 'CHAT',
2791
+ modelTitle: 'o3-pro',
2792
+ modelName: 'o3-pro',
2793
+ modelDescription: "Enhanced version of o3 with more compute allocated for better responses on the most challenging problems. Features extended reasoning time and improved accuracy on complex analytical tasks. Designed for applications where maximum reasoning quality is more important than response speed.",
2794
+ pricing: {
2795
+ prompt: pricing(`$30.00 / 1M tokens`),
2796
+ output: pricing(`$120.00 / 1M tokens`),
2797
+ },
2798
+ },
2799
+ /**/
2800
+ /**/
2801
+ {
2802
+ modelVariant: 'CHAT',
2803
+ modelTitle: 'o4-mini',
2804
+ modelName: 'o4-mini',
2805
+ modelDescription: "Fast, cost-efficient reasoning model with 128K context window. Successor to o1-mini with improved analytical capabilities while maintaining speed advantages. Features enhanced mathematical reasoning and logical problem-solving at significantly lower cost than full reasoning models.",
2806
+ pricing: {
2807
+ prompt: pricing(`$4.00 / 1M tokens`),
2808
+ output: pricing(`$16.00 / 1M tokens`),
2809
+ },
2810
+ },
2811
+ /**/
2812
+ /**/
2813
+ {
2814
+ modelVariant: 'CHAT',
2815
+ modelTitle: 'o3-deep-research',
2816
+ modelName: 'o3-deep-research',
2817
+ modelDescription: "Most powerful deep research model with 128K context window. Specialized for comprehensive research tasks, literature analysis, and complex information synthesis. Features advanced citation capabilities and enhanced factual accuracy for academic and professional research applications.",
2818
+ pricing: {
2819
+ prompt: pricing(`$25.00 / 1M tokens`),
2820
+ output: pricing(`$100.00 / 1M tokens`),
2821
+ },
2822
+ },
2823
+ /**/
2824
+ /**/
2825
+ {
2826
+ modelVariant: 'CHAT',
2827
+ modelTitle: 'o4-mini-deep-research',
2828
+ modelName: 'o4-mini-deep-research',
2829
+ modelDescription: "Faster, more affordable deep research model with 128K context window. Balances research capabilities with cost efficiency, offering good performance on literature review, fact-checking, and information synthesis tasks at a more accessible price point.",
2830
+ pricing: {
2831
+ prompt: pricing(`$12.00 / 1M tokens`),
2832
+ output: pricing(`$48.00 / 1M tokens`),
2833
+ },
2834
+ },
2835
+ /**/
2712
2836
  /*/
2713
2837
  {
2714
2838
  modelTitle: 'dall-e-3',
@@ -3229,7 +3353,6 @@ class AzureOpenAiExecutionTools {
3229
3353
  const modelName = prompt.modelRequirements.modelName || this.options.deploymentName;
3230
3354
  const modelSettings = {
3231
3355
  maxTokens: modelRequirements.maxTokens,
3232
- // <- TODO: [🌾] Make some global max cap for maxTokens
3233
3356
  temperature: modelRequirements.temperature,
3234
3357
  user: (_a = this.options.userId) === null || _a === void 0 ? void 0 : _a.toString(),
3235
3358
  // <- TODO: [🈁] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
@@ -3335,8 +3458,7 @@ class AzureOpenAiExecutionTools {
3335
3458
  try {
3336
3459
  const modelName = prompt.modelRequirements.modelName || this.options.deploymentName;
3337
3460
  const modelSettings = {
3338
- maxTokens: modelRequirements.maxTokens || 2000,
3339
- // <- TODO: [🌾] Make some global max cap for maxTokens
3461
+ maxTokens: modelRequirements.maxTokens,
3340
3462
  temperature: modelRequirements.temperature,
3341
3463
  user: (_a = this.options.userId) === null || _a === void 0 ? void 0 : _a.toString(),
3342
3464
  // <- TODO: [🈁] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
@@ -3720,7 +3842,7 @@ function createExecutionToolsFromVercelProvider(options) {
3720
3842
  /**
3721
3843
  * List of available Deepseek models with descriptions
3722
3844
  *
3723
- * Note: Done at 2025-05-06
3845
+ * Note: Synced with official API docs at 2025-08-20
3724
3846
  *
3725
3847
  * @see https://www.deepseek.com/models
3726
3848
  * @public exported from `@promptbook/deepseek`
@@ -3730,12 +3852,32 @@ const DEEPSEEK_MODELS = exportJson({
3730
3852
  value: [
3731
3853
  {
3732
3854
  modelVariant: 'CHAT',
3733
- modelTitle: 'Deepseek Chat Pro',
3734
- modelName: 'deepseek-chat-pro',
3735
- modelDescription: 'Latest flagship general-purpose model with 256K context window. Enhanced from base Chat model with 40% improvement on complex reasoning tasks and specialized domain knowledge. Features advanced prompt optimization and improved contextual memory. Ideal for enterprise applications requiring highest quality responses.',
3855
+ modelTitle: 'DeepSeek V3',
3856
+ modelName: 'deepseek-chat',
3857
+ modelDescription: 'Latest flagship general-purpose model with 128K context window. Features exceptional reasoning capabilities, advanced code generation, and strong performance across diverse domains. Offers competitive performance with leading models while maintaining cost efficiency. Ideal for complex reasoning, coding, and knowledge-intensive tasks.',
3736
3858
  pricing: {
3737
- prompt: pricing(`$1.20 / 1M tokens`),
3738
- output: pricing(`$2.40 / 1M tokens`),
3859
+ prompt: pricing(`$0.14 / 1M tokens`),
3860
+ output: pricing(`$0.28 / 1M tokens`),
3861
+ },
3862
+ },
3863
+ {
3864
+ modelVariant: 'CHAT',
3865
+ modelTitle: 'DeepSeek R1',
3866
+ modelName: 'deepseek-reasoner',
3867
+ modelDescription: 'Advanced reasoning model with 128K context window specializing in complex problem-solving and analytical thinking. Features explicit reasoning chains, enhanced mathematical capabilities, and superior performance on STEM tasks. Designed for applications requiring deep analytical reasoning and step-by-step problem solving.',
3868
+ pricing: {
3869
+ prompt: pricing(`$0.55 / 1M tokens`),
3870
+ output: pricing(`$2.19 / 1M tokens`),
3871
+ },
3872
+ },
3873
+ {
3874
+ modelVariant: 'CHAT',
3875
+ modelTitle: 'DeepSeek Coder V2',
3876
+ modelName: 'deepseek-coder',
3877
+ modelDescription: 'Specialized coding model with 128K context window optimized for software development tasks. Features exceptional code generation, debugging, and refactoring capabilities across 40+ programming languages. Particularly strong in understanding complex codebases and implementing solutions based on natural language specifications.',
3878
+ pricing: {
3879
+ prompt: pricing(`$0.14 / 1M tokens`),
3880
+ output: pricing(`$0.28 / 1M tokens`),
3739
3881
  },
3740
3882
  },
3741
3883
  {
@@ -3969,7 +4111,7 @@ const _GoogleMetadataRegistration = $llmToolsMetadataRegister.register({
3969
4111
  /**
3970
4112
  * List of available Google models with descriptions
3971
4113
  *
3972
- * Note: Done at 2025-05-06
4114
+ * Note: Synced with official API docs at 2025-08-20
3973
4115
  *
3974
4116
  * @see https://ai.google.dev/models/gemini
3975
4117
  * @public exported from `@promptbook/google`
@@ -3980,11 +4122,51 @@ const GOOGLE_MODELS = exportJson({
3980
4122
  {
3981
4123
  modelVariant: 'CHAT',
3982
4124
  modelTitle: 'Gemini 2.5 Pro',
3983
- modelName: 'gemini-2.5-pro-preview-03-25',
3984
- modelDescription: 'Latest advanced multimodal model with 1M token context window. Features exceptional reasoning across complex tasks, sophisticated function calling, and advanced image analysis (16MP resolution). Demonstrates superior performance in math, coding, and knowledge-intensive tasks with 30% improvement over Gemini 1.5 Pro. Ideal for enterprise applications requiring deep contextual understanding.',
4125
+ modelName: 'gemini-2.5-pro',
4126
+ modelDescription: 'State-of-the-art thinking model with 1M token context window capable of reasoning over complex problems in code, math, and STEM. Features enhanced thinking capabilities, advanced multimodal understanding, and superior performance on analytical tasks. Ideal for complex enterprise applications requiring maximum intelligence and reasoning.',
3985
4127
  pricing: {
3986
- prompt: pricing(`$8.00 / 1M tokens`),
3987
- output: pricing(`$24.00 / 1M tokens`),
4128
+ prompt: pricing(`$7.00 / 1M tokens`),
4129
+ output: pricing(`$21.00 / 1M tokens`),
4130
+ },
4131
+ },
4132
+ {
4133
+ modelVariant: 'CHAT',
4134
+ modelTitle: 'Gemini 2.5 Flash',
4135
+ modelName: 'gemini-2.5-flash',
4136
+ modelDescription: 'Best model in terms of price-performance with 1M token context window offering well-rounded capabilities. Features adaptive thinking, cost efficiency, and enhanced reasoning for large-scale processing. Ideal for low-latency, high-volume tasks that require thinking and agentic use cases.',
4137
+ pricing: {
4138
+ prompt: pricing(`$0.35 / 1M tokens`),
4139
+ output: pricing(`$1.05 / 1M tokens`),
4140
+ },
4141
+ },
4142
+ {
4143
+ modelVariant: 'CHAT',
4144
+ modelTitle: 'Gemini 2.5 Flash Lite',
4145
+ modelName: 'gemini-2.5-flash-lite',
4146
+ modelDescription: 'Cost-efficient Gemini 2.5 Flash model optimized for high throughput with 1M token context window. Features thinking capabilities while maintaining the most cost-efficient pricing. Perfect for real-time, low-latency use cases requiring good quality at scale.',
4147
+ pricing: {
4148
+ prompt: pricing(`$0.20 / 1M tokens`),
4149
+ output: pricing(`$0.60 / 1M tokens`),
4150
+ },
4151
+ },
4152
+ {
4153
+ modelVariant: 'CHAT',
4154
+ modelTitle: 'Gemini 2.0 Flash',
4155
+ modelName: 'gemini-2.0-flash',
4156
+ modelDescription: 'Next-generation model with 1M token context window delivering improved capabilities, superior speed, and realtime streaming. Features enhanced function calling, code execution, and search capabilities. Ideal for applications requiring cutting-edge AI capabilities with fast response times.',
4157
+ pricing: {
4158
+ prompt: pricing(`$0.25 / 1M tokens`),
4159
+ output: pricing(`$0.75 / 1M tokens`),
4160
+ },
4161
+ },
4162
+ {
4163
+ modelVariant: 'CHAT',
4164
+ modelTitle: 'Gemini 2.0 Flash Lite',
4165
+ modelName: 'gemini-2.0-flash-lite',
4166
+ modelDescription: 'Cost-efficient Gemini 2.0 Flash model optimized for low latency with 1M token context window. Balances performance and cost with enhanced efficiency for high-volume applications. Perfect for applications requiring good quality responses at minimal cost.',
4167
+ pricing: {
4168
+ prompt: pricing(`$0.15 / 1M tokens`),
4169
+ output: pricing(`$0.45 / 1M tokens`),
3988
4170
  },
3989
4171
  },
3990
4172
  {
@@ -4425,7 +4607,6 @@ class OpenAiCompatibleExecutionTools {
4425
4607
  const modelSettings = {
4426
4608
  model: modelName,
4427
4609
  max_tokens: modelRequirements.maxTokens,
4428
- // <- TODO: [🌾] Make some global max cap for maxTokens
4429
4610
  temperature: modelRequirements.temperature,
4430
4611
  // <- TODO: [🈁] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
4431
4612
  // <- Note: [🧆]
@@ -4521,8 +4702,7 @@ class OpenAiCompatibleExecutionTools {
4521
4702
  const modelName = modelRequirements.modelName || this.getDefaultCompletionModel().modelName;
4522
4703
  const modelSettings = {
4523
4704
  model: modelName,
4524
- max_tokens: modelRequirements.maxTokens || 2000,
4525
- // <- TODO: [🌾] Make some global max cap for maxTokens
4705
+ max_tokens: modelRequirements.maxTokens,
4526
4706
  temperature: modelRequirements.temperature,
4527
4707
  // <- TODO: [🈁] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
4528
4708
  // <- Note: [🧆]
@@ -4671,7 +4851,7 @@ class OpenAiCompatibleExecutionTools {
4671
4851
  /**
4672
4852
  * List of available models in Ollama library
4673
4853
  *
4674
- * Note: Done at 2025-05-19
4854
+ * Note: Synced with official API docs at 2025-08-20
4675
4855
  *
4676
4856
  * @see https://ollama.com/library
4677
4857
  * @public exported from `@promptbook/ollama`
@@ -4679,6 +4859,24 @@ class OpenAiCompatibleExecutionTools {
4679
4859
  const OLLAMA_MODELS = exportJson({
4680
4860
  name: 'OLLAMA_MODELS',
4681
4861
  value: [
4862
+ {
4863
+ modelVariant: 'CHAT',
4864
+ modelTitle: 'llama3.3',
4865
+ modelName: 'llama3.3',
4866
+ modelDescription: 'Meta Llama 3.3 (70B parameters) with 128K context window. Latest generation foundation model with significantly enhanced reasoning, instruction following, and multilingual capabilities. Features improved performance on complex tasks and better factual accuracy compared to Llama 3.1.',
4867
+ },
4868
+ {
4869
+ modelVariant: 'CHAT',
4870
+ modelTitle: 'llama3.2',
4871
+ modelName: 'llama3.2',
4872
+ modelDescription: 'Meta Llama 3.2 (1B-90B parameters) with 128K context window. Enhanced model with improved reasoning capabilities, better instruction following, and multimodal support in larger variants. Features significant performance improvements over Llama 3.1 across diverse tasks.',
4873
+ },
4874
+ {
4875
+ modelVariant: 'CHAT',
4876
+ modelTitle: 'llama3.1',
4877
+ modelName: 'llama3.1',
4878
+ modelDescription: 'Meta Llama 3.1 (8B-405B parameters) with 128K context window. Advanced foundation model with enhanced reasoning, improved multilingual capabilities, and better performance on complex tasks. Features significant improvements in code generation and mathematical reasoning.',
4879
+ },
4682
4880
  {
4683
4881
  modelVariant: 'CHAT',
4684
4882
  modelTitle: 'llama3',
@@ -5173,7 +5371,7 @@ class OpenAiExecutionTools extends OpenAiCompatibleExecutionTools {
5173
5371
  * Default model for chat variant.
5174
5372
  */
5175
5373
  getDefaultChatModel() {
5176
- return this.getDefaultModel('gpt-4-turbo');
5374
+ return this.getDefaultModel('gpt-5');
5177
5375
  }
5178
5376
  /**
5179
5377
  * Default model for completion variant.
@@ -5241,8 +5439,6 @@ class OpenAiAssistantExecutionTools extends OpenAiExecutionTools {
5241
5439
  const modelName = modelRequirements.modelName || this.getDefaultChatModel().modelName;
5242
5440
  const modelSettings = {
5243
5441
  model: modelName,
5244
- max_tokens: modelRequirements.maxTokens,
5245
- // <- TODO: [🌾] Make some global max cap for maxTokens
5246
5442
 
5247
5443
  temperature: modelRequirements.temperature,
5248
5444
 
@@ -6975,7 +7171,7 @@ function assertsTaskSuccessful(executionResult) {
6975
7171
  * @private internal helper function
6976
7172
  */
6977
7173
  function createTask(options) {
6978
- const { taskType, taskProcessCallback } = options;
7174
+ const { taskType, taskProcessCallback, tldrProvider } = options;
6979
7175
  let { title } = options;
6980
7176
  // TODO: [🐙] DRY
6981
7177
  const taskId = `${taskType.toLowerCase().substring(0, 4)}-${$randomToken(8 /* <- TODO: To global config + Use Base58 to avoid similar char conflicts */)}`;
@@ -7048,6 +7244,78 @@ function createTask(options) {
7048
7244
  return status;
7049
7245
  // <- Note: [1] --||--
7050
7246
  },
7247
+ get tldr() {
7248
+ var _a, _b, _c, _d, _e, _f, _g, _h, _j, _k;
7249
+ // Use custom tldr provider if available
7250
+ if (tldrProvider) {
7251
+ return tldrProvider(createdAt, status, currentValue, errors, warnings);
7252
+ }
7253
+ // Fallback to default implementation
7254
+ const cv = currentValue;
7255
+ // If explicit percent is provided, use it
7256
+ let percentRaw = (_f = (_d = (_b = (_a = cv === null || cv === void 0 ? void 0 : cv.tldr) === null || _a === void 0 ? void 0 : _a.percent) !== null && _b !== void 0 ? _b : (_c = cv === null || cv === void 0 ? void 0 : cv.usage) === null || _c === void 0 ? void 0 : _c.percent) !== null && _d !== void 0 ? _d : (_e = cv === null || cv === void 0 ? void 0 : cv.progress) === null || _e === void 0 ? void 0 : _e.percent) !== null && _f !== void 0 ? _f : cv === null || cv === void 0 ? void 0 : cv.percent;
7257
+ // Simulate progress if not provided
7258
+ if (typeof percentRaw !== 'number') {
7259
+ // Simulate progress: evenly split across subtasks, based on elapsed time
7260
+ const now = new Date();
7261
+ const elapsedMs = now.getTime() - createdAt.getTime();
7262
+ const totalMs = DEFAULT_TASK_SIMULATED_DURATION_MS;
7263
+ // If subtasks are defined, split progress evenly
7264
+ const subtaskCount = Array.isArray(cv === null || cv === void 0 ? void 0 : cv.subtasks) ? cv.subtasks.length : 1;
7265
+ const completedSubtasks = Array.isArray(cv === null || cv === void 0 ? void 0 : cv.subtasks)
7266
+ ? cv.subtasks.filter((s) => s.done || s.completed).length
7267
+ : 0;
7268
+ // Progress from completed subtasks
7269
+ const subtaskProgress = subtaskCount > 0 ? completedSubtasks / subtaskCount : 0;
7270
+ // Progress from elapsed time for current subtask
7271
+ const timeProgress = Math.min(elapsedMs / totalMs, 1);
7272
+ // Combine: completed subtasks + time progress for current subtask
7273
+ percentRaw = Math.min(subtaskProgress + (1 / subtaskCount) * timeProgress, 1);
7274
+ if (status === 'FINISHED')
7275
+ percentRaw = 1;
7276
+ if (status === 'ERROR')
7277
+ percentRaw = 0;
7278
+ }
7279
+ // Clamp to [0,1]
7280
+ let percent = Number(percentRaw) || 0;
7281
+ if (percent < 0)
7282
+ percent = 0;
7283
+ if (percent > 1)
7284
+ percent = 1;
7285
+ // Build a short message: prefer explicit tldr.message, then common summary/message fields, then errors/warnings, then status
7286
+ const messageFromResult = (_k = (_j = (_h = (_g = cv === null || cv === void 0 ? void 0 : cv.tldr) === null || _g === void 0 ? void 0 : _g.message) !== null && _h !== void 0 ? _h : cv === null || cv === void 0 ? void 0 : cv.message) !== null && _j !== void 0 ? _j : cv === null || cv === void 0 ? void 0 : cv.summary) !== null && _k !== void 0 ? _k : cv === null || cv === void 0 ? void 0 : cv.statusMessage;
7287
+ let message = messageFromResult;
7288
+ if (!message) {
7289
+ // If subtasks, show current subtask
7290
+ if (Array.isArray(cv === null || cv === void 0 ? void 0 : cv.subtasks) && cv.subtasks.length > 0) {
7291
+ const current = cv.subtasks.find((s) => !s.done && !s.completed);
7292
+ if (current && current.title) {
7293
+ message = `Working on ${current.title}`;
7294
+ }
7295
+ }
7296
+ if (!message) {
7297
+ if (errors.length) {
7298
+ message = errors[errors.length - 1].message || 'Error';
7299
+ }
7300
+ else if (warnings.length) {
7301
+ message = warnings[warnings.length - 1].message || 'Warning';
7302
+ }
7303
+ else if (status === 'FINISHED') {
7304
+ message = 'Finished';
7305
+ }
7306
+ else if (status === 'ERROR') {
7307
+ message = 'Error';
7308
+ }
7309
+ else {
7310
+ message = 'Running';
7311
+ }
7312
+ }
7313
+ }
7314
+ return {
7315
+ percent: percent,
7316
+ message,
7317
+ };
7318
+ },
7051
7319
  get createdAt() {
7052
7320
  return createdAt;
7053
7321
  // <- Note: [1] --||--
@@ -8920,7 +9188,7 @@ function validatePromptResult(options) {
8920
9188
  */
8921
9189
  async function executeAttempts(options) {
8922
9190
  const { jokerParameterNames, priority, maxAttempts, // <- Note: [💂]
8923
- preparedContent, parameters, task, preparedPipeline, tools, $executionReport, pipelineIdentification, maxExecutionAttempts, } = options;
9191
+ preparedContent, parameters, task, preparedPipeline, tools, $executionReport, pipelineIdentification, maxExecutionAttempts, onProgress, } = options;
8924
9192
  const $ongoingTaskResult = {
8925
9193
  $result: null,
8926
9194
  $resultString: null,
@@ -9164,6 +9432,10 @@ async function executeAttempts(options) {
9164
9432
  result: $ongoingTaskResult.$resultString,
9165
9433
  error: error,
9166
9434
  });
9435
+ // Report failed attempt
9436
+ onProgress({
9437
+ errors: [error],
9438
+ });
9167
9439
  }
9168
9440
  finally {
9169
9441
  if (!isJokerAttempt &&
@@ -10045,6 +10317,71 @@ function createPipelineExecutor(options) {
10045
10317
  updateOngoingResult(newOngoingResult);
10046
10318
  });
10047
10319
  },
10320
+ tldrProvider(createdAt, status, currentValue, errors) {
10321
+ var _a;
10322
+ // Better progress estimation based on pipeline structure
10323
+ const cv = currentValue;
10324
+ // Handle finished/error states
10325
+ if (status === 'FINISHED') {
10326
+ return {
10327
+ percent: 1,
10328
+ message: 'Finished',
10329
+ };
10330
+ }
10331
+ if (status === 'ERROR') {
10332
+ const errorMessage = errors.length > 0 ? errors[errors.length - 1].message : 'Error';
10333
+ return {
10334
+ percent: 0,
10335
+ message: errorMessage,
10336
+ };
10337
+ }
10338
+ // Calculate progress based on pipeline tasks
10339
+ const totalTasks = pipeline.tasks.length;
10340
+ let completedTasks = 0;
10341
+ let currentTaskName = '';
10342
+ // Check execution report for completed tasks
10343
+ if ((_a = cv === null || cv === void 0 ? void 0 : cv.executionReport) === null || _a === void 0 ? void 0 : _a.promptExecutions) {
10344
+ const executedTaskTitles = new Set(cv.executionReport.promptExecutions.map((execution) => execution.prompt.title));
10345
+ // Count completed tasks by matching titles
10346
+ const completedTasksByTitle = pipeline.tasks.filter(task => executedTaskTitles.has(task.title));
10347
+ completedTasks = completedTasksByTitle.length;
10348
+ // Find current task being executed (first task not yet completed)
10349
+ const remainingTasks = pipeline.tasks.filter(task => !executedTaskTitles.has(task.title));
10350
+ if (remainingTasks.length > 0) {
10351
+ currentTaskName = remainingTasks[0].name;
10352
+ }
10353
+ }
10354
+ // Calculate progress percentage
10355
+ let percent = totalTasks > 0 ? completedTasks / totalTasks : 0;
10356
+ // Add time-based progress for current task (assuming 5 minutes total)
10357
+ if (completedTasks < totalTasks) {
10358
+ const elapsedMs = new Date().getTime() - createdAt.getTime();
10359
+ const totalMs = 5 * 60 * 1000; // 5 minutes
10360
+ const timeProgress = Math.min(elapsedMs / totalMs, 1);
10361
+ // Add partial progress for current task
10362
+ percent += (1 / totalTasks) * timeProgress;
10363
+ }
10364
+ // Clamp to [0,1]
10365
+ percent = Math.min(Math.max(percent, 0), 1);
10366
+ // Generate message
10367
+ let message = '';
10368
+ if (currentTaskName) {
10369
+ // Find the task to get its title
10370
+ const currentTask = pipeline.tasks.find(task => task.name === currentTaskName);
10371
+ const taskTitle = (currentTask === null || currentTask === void 0 ? void 0 : currentTask.title) || currentTaskName;
10372
+ message = `Working on task ${taskTitle}`;
10373
+ }
10374
+ else if (completedTasks === 0) {
10375
+ message = 'Starting pipeline execution';
10376
+ }
10377
+ else {
10378
+ message = `Processing pipeline (${completedTasks}/${totalTasks} tasks completed)`;
10379
+ }
10380
+ return {
10381
+ percent,
10382
+ message,
10383
+ };
10384
+ },
10048
10385
  });
10049
10386
  // <- TODO: Make types such as there is no need to do `as` for `createTask`
10050
10387
  return pipelineExecutor;