@promptbook/remote-server 0.85.0-9 → 0.86.0-2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
package/README.md CHANGED
@@ -16,6 +16,7 @@
16
16
 
17
17
  ## 🌟 New Features
18
18
 
19
+ - 📂 We have plugin for [VSCode](https://github.com/webgptorg/book-extension) to support `.book` file extension
19
20
  - 💫 Support of [`o3-mini` model by OpenAI](https://openai.com/index/openai-o3-mini/)
20
21
  - 🐋 **Support of [DeepSeek models](https://www.npmjs.com/package/@promptbook/deepseek)**
21
22
  - 💙 Working [the **Book** language v1.0.0](https://github.com/webgptorg/book)
@@ -59,7 +60,7 @@ Rest of the documentation is common for **entire promptbook ecosystem**:
59
60
 
60
61
  During the computer revolution, we have seen [multiple generations of computer languages](https://github.com/webgptorg/promptbook/discussions/180), from the physical rewiring of the vacuum tubes through low-level machine code to the high-level languages like Python or JavaScript. And now, we're on the edge of the **next revolution**!
61
62
 
62
- It's a revolution of writing software in plain human language that is understandable and executable by both humans and machines – and it's going to change everything!
63
+ It's a revolution of writing software in **plain human language** that is understandable and executable by both humans and machines – and it's going to change everything!
63
64
 
64
65
  The incredible growth in power of microprocessors and the Moore's Law have been the driving force behind the ever-more powerful languages, and it's been an amazing journey! Similarly, the large language models (like GPT or Claude) are the next big thing in language technology, and they're set to transform the way we interact with computers.
65
66
 
@@ -88,41 +89,24 @@ Promptbook project is ecosystem of multiple projects and tools, following is a l
88
89
  <thead>
89
90
  <tr>
90
91
  <th>Project</th>
91
- <th>Description</th>
92
- <th>Link</th>
92
+ <th>About</th>
93
93
  </tr>
94
94
  </thead>
95
95
  <tbody>
96
96
  <tr>
97
- <td>Core</td>
98
- <td>Promptbook Core is a description and documentation of the basic concepts, ideas and inner workings of how Promptbook should be implemented, and defines what features must be describable by book language.</td>
99
- <td rowspan=2>https://github.com/webgptorg/book</td>
100
- </tr>
101
- <tr>
102
- <td>Book language</td>
97
+ <td><a href="https://github.com/webgptorg/book">Book language</a></td>
103
98
  <td>
104
- Book is a markdown-like language to define core entities like projects, pipelines, knowledge,.... It is designed to be understandable by non-programmers and non-technical people
99
+ Book is a markdown-like language to define core entities like personas, knowledge, tasks,.... It is designed to be understandable by non-programmers and non-technical people<hr>
100
+ There is also <a href="https://github.com/webgptorg/book-extension">a plugin for VSCode</a> to support <code>.book</code> file extension
105
101
  </td>
106
102
  </tr>
107
103
  <tr>
108
- <td>Promptbook typescript project</td>
109
- <td>Promptbook implementation in TypeScript released as multiple NPM packages</td>
110
- <td>https://github.com/webgptorg/promptbook + <a href="https://www.npmjs.com/package/@promptbook/core#-packages-for-developers">Multiple packages published on NPM</a></td>
104
+ <td><a href="https://github.com/webgptorg/promptbook">Promptbook Engine</a></td>
105
+ <td>Promptbook implementation in TypeScript released as <a href="https://www.npmjs.com/package/@promptbook/core#-packages-for-developers">multiple NPM packages</a> and <a href="https://hub.docker.com/r/hejny/promptbook">Docker HUB</a></td>
111
106
  </tr>
112
107
  <tr>
113
- <td>Promptbook studio</td>
108
+ <td><a href="https://promptbook.studio">Promptbook Studio</a></td>
114
109
  <td>Studio to write Books and instantly publish them as miniapps</td>
115
- <td>
116
- https://promptbook.studio<br/>
117
- https://github.com/hejny/promptbook-studio</td>
118
- </tr><tr>
119
- <td>Hello World</td>
120
- <td>Simple starter kit with Books integrated into the sample applications</td>
121
- <td>
122
- https://github.com/webgptorg/hello-world<br/>
123
- https://github.com/webgptorg/hello-world-node-js<br/>
124
- https://github.com/webgptorg/hello-world-next-js
125
- </td>
126
110
  </tr>
127
111
  </tbody>
128
112
  </table>
package/esm/index.es.js CHANGED
@@ -31,7 +31,7 @@ var BOOK_LANGUAGE_VERSION = '1.0.0';
31
31
  * @generated
32
32
  * @see https://github.com/webgptorg/promptbook
33
33
  */
34
- var PROMPTBOOK_ENGINE_VERSION = '0.85.0-8';
34
+ var PROMPTBOOK_ENGINE_VERSION = '0.86.0-1';
35
35
  /**
36
36
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
37
37
  * Note: [💞] Ignore a discrepancy between file name and entity name
@@ -1491,57 +1491,6 @@ function isValidPromptbookVersion(version) {
1491
1491
  return true;
1492
1492
  }
1493
1493
 
1494
- /**
1495
- * Checks if an URL is reserved for private networks or localhost.
1496
- *
1497
- * Note: There are two simmilar functions:
1498
- * - `isUrlOnPrivateNetwork` which tests full URL
1499
- * - `isHostnameOnPrivateNetwork` *(this one)* which tests just hostname
1500
- *
1501
- * @public exported from `@promptbook/utils`
1502
- */
1503
- function isHostnameOnPrivateNetwork(hostname) {
1504
- if (hostname === 'example.com' ||
1505
- hostname === 'localhost' ||
1506
- hostname.endsWith('.localhost') ||
1507
- hostname.endsWith('.local') ||
1508
- hostname.endsWith('.test') ||
1509
- hostname === '127.0.0.1' ||
1510
- hostname === '::1') {
1511
- return true;
1512
- }
1513
- if (hostname.includes(':')) {
1514
- // IPv6
1515
- var ipParts = hostname.split(':');
1516
- return ipParts[0] === 'fc00' || ipParts[0] === 'fd00' || ipParts[0] === 'fe80';
1517
- }
1518
- else {
1519
- // IPv4
1520
- var ipParts = hostname.split('.').map(function (part) { return Number.parseInt(part, 10); });
1521
- return (ipParts[0] === 10 ||
1522
- (ipParts[0] === 172 && ipParts[1] >= 16 && ipParts[1] <= 31) ||
1523
- (ipParts[0] === 192 && ipParts[1] === 168));
1524
- }
1525
- }
1526
-
1527
- /**
1528
- * Checks if an IP address or hostname is reserved for private networks or localhost.
1529
- *
1530
- * Note: There are two simmilar functions:
1531
- * - `isUrlOnPrivateNetwork` *(this one)* which tests full URL
1532
- * - `isHostnameOnPrivateNetwork` which tests just hostname
1533
- *
1534
- * @param {string} ipAddress - The IP address to check.
1535
- * @returns {boolean} Returns true if the IP address is reserved for private networks or localhost, otherwise false.
1536
- * @public exported from `@promptbook/utils`
1537
- */
1538
- function isUrlOnPrivateNetwork(url) {
1539
- if (typeof url === 'string') {
1540
- url = new URL(url);
1541
- }
1542
- return isHostnameOnPrivateNetwork(url.hostname);
1543
- }
1544
-
1545
1494
  /**
1546
1495
  * Tests if given string is valid URL.
1547
1496
  *
@@ -1584,16 +1533,19 @@ function isValidPipelineUrl(url) {
1584
1533
  if (!isValidUrl(url)) {
1585
1534
  return false;
1586
1535
  }
1587
- if (!url.startsWith('https://')) {
1536
+ if (!url.startsWith('https://') && !url.startsWith('http://') /* <- Note: [👣] */) {
1588
1537
  return false;
1589
1538
  }
1590
1539
  if (url.includes('#')) {
1591
1540
  // TODO: [🐠]
1592
1541
  return false;
1593
1542
  }
1543
+ /*
1544
+ Note: [👣][🧠] Is it secure to allow pipeline URLs on private and unsecured networks?
1594
1545
  if (isUrlOnPrivateNetwork(url)) {
1595
1546
  return false;
1596
1547
  }
1548
+ */
1597
1549
  return true;
1598
1550
  }
1599
1551
  /**
@@ -2065,7 +2017,7 @@ function createTask(options) {
2065
2017
  * TODO: [🐚] Split into more files and make `PrepareTask` & `RemoteTask` + split the function
2066
2018
  */
2067
2019
 
2068
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book.md`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book.md"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book.md"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book.md",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book.md`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book.md"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book.md",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book.md`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book.md"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book.md",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book.md`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book.md"}];
2020
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModelNames",description:"List of available model names separated by comma (,)",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n```json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n```\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelRequirements",format:"JSON",dependentParameterNames:["availableModelNames","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModelNames}` List of available model names separated by comma (,)\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are experienced AI engineer, you need to create virtual assistant.\nWrite\n\n## Example\n\n\\`\\`\\`json\n{\n\"modelName\": \"gpt-4o\",\n\"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n\"temperature\": 0.7\n}\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON object\n- Write just the JSON object, no other text should be present\n- It contains the following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nPick from the following models:\n\n- {availableModelNames}\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
2069
2021
 
2070
2022
  /**
2071
2023
  * Checks if value is valid email
@@ -3220,7 +3172,7 @@ function preparePersona(personaDescription, tools, options) {
3220
3172
  collection = createCollectionFromJson.apply(void 0, __spreadArray([], __read(PipelineCollection), false));
3221
3173
  _b = createPipelineExecutor;
3222
3174
  _c = {};
3223
- return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-persona.book.md')];
3175
+ return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-persona.book')];
3224
3176
  case 1:
3225
3177
  preparePersonaExecutor = _b.apply(void 0, [(_c.pipeline = _d.sent(),
3226
3178
  _c.tools = tools,
@@ -4438,7 +4390,7 @@ function preparePipeline(pipeline, tools, options) {
4438
4390
  collection = createCollectionFromJson.apply(void 0, __spreadArray([], __read(PipelineCollection), false));
4439
4391
  _c = createPipelineExecutor;
4440
4392
  _d = {};
4441
- return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-title.book.md')];
4393
+ return [4 /*yield*/, collection.getPipelineByUrl('https://promptbook.studio/promptbook/prepare-title.book')];
4442
4394
  case 1:
4443
4395
  prepareTitleExecutor = _c.apply(void 0, [(_d.pipeline = _e.sent(),
4444
4396
  _d.tools = tools,
@@ -7017,6 +6969,46 @@ function startRemoteServer(options) {
7017
6969
  }
7018
6970
  });
7019
6971
  }); });
6972
+ // TODO: [🧠] Is it secure / good idea to expose source codes of hosted books
6973
+ app.get("".concat(rootPath, "/books/*"), function (request, response) { return __awaiter(_this, void 0, void 0, function () {
6974
+ var pipelines, fullUrl, pipelineUrl, pipeline, source, error_1;
6975
+ return __generator(this, function (_a) {
6976
+ switch (_a.label) {
6977
+ case 0:
6978
+ _a.trys.push([0, 3, , 4]);
6979
+ if (collection === null) {
6980
+ response.status(500).send('No collection nor books available');
6981
+ return [2 /*return*/];
6982
+ }
6983
+ return [4 /*yield*/, collection.listPipelines()];
6984
+ case 1:
6985
+ pipelines = _a.sent();
6986
+ fullUrl = request.protocol + '://' + request.get('host') + request.originalUrl;
6987
+ pipelineUrl = pipelines.find(function (pipelineUrl) { return pipelineUrl.endsWith(request.originalUrl); }) || fullUrl;
6988
+ return [4 /*yield*/, collection.getPipelineByUrl(pipelineUrl)];
6989
+ case 2:
6990
+ pipeline = _a.sent();
6991
+ source = pipeline.sources[0];
6992
+ if (source === undefined || source.type !== 'BOOK') {
6993
+ throw new Error('Pipeline source is not a book');
6994
+ }
6995
+ response
6996
+ .type('text/markdown')
6997
+ .send(source.content);
6998
+ return [3 /*break*/, 4];
6999
+ case 3:
7000
+ error_1 = _a.sent();
7001
+ if (!(error_1 instanceof Error)) {
7002
+ throw error_1;
7003
+ }
7004
+ response
7005
+ .status(404)
7006
+ .send({ error: serializeError(error_1) });
7007
+ return [3 /*break*/, 4];
7008
+ case 4: return [2 /*return*/];
7009
+ }
7010
+ });
7011
+ }); });
7020
7012
  app.get("".concat(rootPath, "/executions"), function (request, response) { return __awaiter(_this, void 0, void 0, function () {
7021
7013
  return __generator(this, function (_a) {
7022
7014
  response.send(runningExecutionTasks);
@@ -7029,7 +7021,9 @@ function startRemoteServer(options) {
7029
7021
  taskId = request.params.taskId;
7030
7022
  execution = runningExecutionTasks.find(function (executionTask) { return executionTask.taskId === taskId; });
7031
7023
  if (execution === undefined) {
7032
- response.status(404).send("Execution \"".concat(taskId, "\" not found"));
7024
+ response
7025
+ .status(404)
7026
+ .send("Execution \"".concat(taskId, "\" not found"));
7033
7027
  return [2 /*return*/];
7034
7028
  }
7035
7029
  response.send(execution.currentValue);
@@ -7037,7 +7031,7 @@ function startRemoteServer(options) {
7037
7031
  });
7038
7032
  }); });
7039
7033
  app.post("".concat(rootPath, "/executions/new"), function (request, response) { return __awaiter(_this, void 0, void 0, function () {
7040
- var _a, inputParameters, identification, pipelineUrl, pipeline, tools, pipelineExecutor, executionTask, error_1;
7034
+ var _a, inputParameters, identification, pipelineUrl, pipeline, tools, pipelineExecutor, executionTask, error_2;
7041
7035
  return __generator(this, function (_b) {
7042
7036
  switch (_b.label) {
7043
7037
  case 0:
@@ -7065,11 +7059,11 @@ function startRemoteServer(options) {
7065
7059
  response.send(executionTask);
7066
7060
  return [3 /*break*/, 5];
7067
7061
  case 4:
7068
- error_1 = _b.sent();
7069
- if (!(error_1 instanceof Error)) {
7070
- throw error_1;
7062
+ error_2 = _b.sent();
7063
+ if (!(error_2 instanceof Error)) {
7064
+ throw error_2;
7071
7065
  }
7072
- response.status(400).send({ error: serializeError(error_1) });
7066
+ response.status(400).send({ error: serializeError(error_2) });
7073
7067
  return [3 /*break*/, 5];
7074
7068
  case 5: return [2 /*return*/];
7075
7069
  }
@@ -7090,7 +7084,7 @@ function startRemoteServer(options) {
7090
7084
  }
7091
7085
  // -----------
7092
7086
  socket.on('prompt-request', function (request) { return __awaiter(_this, void 0, void 0, function () {
7093
- var identification, prompt, tools, llm, _a, promptResult, _b, error_2;
7087
+ var identification, prompt, tools, llm, _a, promptResult, _b, error_3;
7094
7088
  return __generator(this, function (_c) {
7095
7089
  switch (_c.label) {
7096
7090
  case 0:
@@ -7159,11 +7153,11 @@ function startRemoteServer(options) {
7159
7153
  socket.emit('prompt-response', { promptResult: promptResult } /* <- Note: [🤛] */);
7160
7154
  return [3 /*break*/, 15];
7161
7155
  case 13:
7162
- error_2 = _c.sent();
7163
- if (!(error_2 instanceof Error)) {
7164
- throw error_2;
7156
+ error_3 = _c.sent();
7157
+ if (!(error_3 instanceof Error)) {
7158
+ throw error_3;
7165
7159
  }
7166
- socket.emit('error', serializeError(error_2) /* <- Note: [🤛] */);
7160
+ socket.emit('error', serializeError(error_3) /* <- Note: [🤛] */);
7167
7161
  return [3 /*break*/, 15];
7168
7162
  case 14:
7169
7163
  socket.disconnect();
@@ -7175,7 +7169,7 @@ function startRemoteServer(options) {
7175
7169
  // -----------
7176
7170
  // TODO: [👒] Listing models (and checking configuration) probbably should go through REST API not Socket.io
7177
7171
  socket.on('listModels-request', function (request) { return __awaiter(_this, void 0, void 0, function () {
7178
- var identification, tools, llm, models, error_3;
7172
+ var identification, tools, llm, models, error_4;
7179
7173
  return __generator(this, function (_a) {
7180
7174
  switch (_a.label) {
7181
7175
  case 0:
@@ -7196,11 +7190,11 @@ function startRemoteServer(options) {
7196
7190
  socket.emit('listModels-response', { models: models } /* <- Note: [🤛] */);
7197
7191
  return [3 /*break*/, 6];
7198
7192
  case 4:
7199
- error_3 = _a.sent();
7200
- if (!(error_3 instanceof Error)) {
7201
- throw error_3;
7193
+ error_4 = _a.sent();
7194
+ if (!(error_4 instanceof Error)) {
7195
+ throw error_4;
7202
7196
  }
7203
- socket.emit('error', serializeError(error_3));
7197
+ socket.emit('error', serializeError(error_4));
7204
7198
  return [3 /*break*/, 6];
7205
7199
  case 5:
7206
7200
  socket.disconnect();
@@ -7212,7 +7206,7 @@ function startRemoteServer(options) {
7212
7206
  // -----------
7213
7207
  // TODO: [👒] Listing models (and checking configuration) probbably should go through REST API not Socket.io
7214
7208
  socket.on('preparePipeline-request', function (request) { return __awaiter(_this, void 0, void 0, function () {
7215
- var identification, pipeline, tools, preparedPipeline, error_4;
7209
+ var identification, pipeline, tools, preparedPipeline, error_5;
7216
7210
  return __generator(this, function (_a) {
7217
7211
  switch (_a.label) {
7218
7212
  case 0:
@@ -7232,11 +7226,11 @@ function startRemoteServer(options) {
7232
7226
  socket.emit('preparePipeline-response', { preparedPipeline: preparedPipeline } /* <- Note: [🤛] */);
7233
7227
  return [3 /*break*/, 6];
7234
7228
  case 4:
7235
- error_4 = _a.sent();
7236
- if (!(error_4 instanceof Error)) {
7237
- throw error_4;
7229
+ error_5 = _a.sent();
7230
+ if (!(error_5 instanceof Error)) {
7231
+ throw error_5;
7238
7232
  }
7239
- socket.emit('error', serializeError(error_4));
7233
+ socket.emit('error', serializeError(error_5));
7240
7234
  return [3 /*break*/, 6];
7241
7235
  case 5:
7242
7236
  socket.disconnect();