@promptbook/remote-server 0.66.0-8 → 0.66.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/esm/index.es.js +282 -2126
- package/esm/index.es.js.map +1 -1
- package/esm/typings/src/_packages/anthropic-claude.index.d.ts +0 -2
- package/esm/typings/src/_packages/cli.index.d.ts +6 -0
- package/esm/typings/src/_packages/core.index.d.ts +2 -0
- package/esm/typings/src/_packages/types.index.d.ts +22 -14
- package/esm/typings/src/_packages/utils.index.d.ts +7 -7
- package/esm/typings/src/config.d.ts +6 -0
- package/esm/typings/src/execution/LlmExecutionToolsConstructor.d.ts +1 -1
- package/esm/typings/src/llm-providers/_common/$llmToolsMetadataRegister.d.ts +2 -2
- package/esm/typings/src/llm-providers/_common/$llmToolsRegister.d.ts +2 -2
- package/esm/typings/src/llm-providers/_common/$registeredLlmToolsMessage.d.ts +9 -0
- package/esm/typings/src/llm-providers/_common/LlmToolsConfiguration.d.ts +1 -1
- package/esm/typings/src/llm-providers/_common/LlmToolsMetadata.d.ts +1 -1
- package/esm/typings/src/llm-providers/_common/createLlmToolsFromConfigurationFromEnv.d.ts +1 -0
- package/esm/typings/src/llm-providers/_common/getLlmToolsForTestingAndScriptsAndPlayground.d.ts +1 -1
- package/esm/typings/src/llm-providers/anthropic-claude/register-constructor.d.ts +1 -0
- package/esm/typings/src/llm-providers/azure-openai/register-constructor.d.ts +1 -0
- package/esm/typings/src/llm-providers/openai/register-constructor.d.ts +1 -0
- package/esm/typings/src/llm-providers/remote/RemoteLlmExecutionTools.d.ts +1 -0
- package/esm/typings/src/llm-providers/remote/interfaces/{Promptbook_Server_Error.d.ts → PromptbookServer_Error.d.ts} +1 -1
- package/esm/typings/src/llm-providers/remote/interfaces/PromptbookServer_ListModels_Request.d.ts +34 -0
- package/esm/typings/src/llm-providers/remote/interfaces/PromptbookServer_ListModels_Response.d.ts +15 -0
- package/esm/typings/src/llm-providers/remote/interfaces/{Promptbook_Server_Progress.d.ts → PromptbookServer_Prompt_Progress.d.ts} +1 -1
- package/esm/typings/src/llm-providers/remote/interfaces/{Promptbook_Server_Request.d.ts → PromptbookServer_Prompt_Request.d.ts} +15 -3
- package/esm/typings/src/llm-providers/remote/interfaces/{Promptbook_Server_Response.d.ts → PromptbookServer_Prompt_Response.d.ts} +1 -1
- package/esm/typings/src/llm-providers/remote/interfaces/RemoteLlmExecutionToolsOptions.d.ts +1 -7
- package/esm/typings/src/llm-providers/remote/startRemoteServer.d.ts +1 -0
- package/esm/typings/src/utils/{Register.d.ts → $Register.d.ts} +6 -2
- package/esm/typings/src/utils/environment/{getGlobalScope.d.ts → $getGlobalScope.d.ts} +1 -1
- package/esm/typings/src/utils/organization/f.d.ts +6 -0
- package/package.json +2 -6
- package/umd/index.umd.js +286 -2128
- package/umd/index.umd.js.map +1 -1
- package/esm/typings/src/llm-providers/_common/config.d.ts +0 -14
- package/esm/typings/src/llm-providers/anthropic-claude/register1.d.ts +0 -4
- /package/esm/typings/src/llm-providers/mocked/{fakeTextToExpectations.d.ts → $fakeTextToExpectations.d.ts} +0 -0
- /package/esm/typings/src/utils/{currentDate.d.ts → $currentDate.d.ts} +0 -0
- /package/esm/typings/src/utils/environment/{isRunningInBrowser.d.ts → $isRunningInBrowser.d.ts} +0 -0
- /package/esm/typings/src/utils/environment/{isRunningInNode.d.ts → $isRunningInNode.d.ts} +0 -0
- /package/esm/typings/src/utils/environment/{isRunningInWebWorker.d.ts → $isRunningInWebWorker.d.ts} +0 -0
- /package/esm/typings/src/utils/files/{isDirectoryExisting.d.ts → $isDirectoryExisting.d.ts} +0 -0
- /package/esm/typings/src/utils/files/{isDirectoryExisting.test.d.ts → $isDirectoryExisting.test.d.ts} +0 -0
- /package/esm/typings/src/utils/files/{isFileExisting.d.ts → $isFileExisting.d.ts} +0 -0
- /package/esm/typings/src/utils/files/{isFileExisting.test.d.ts → $isFileExisting.test.d.ts} +0 -0
- /package/esm/typings/src/utils/files/{listAllFiles.d.ts → $listAllFiles.d.ts} +0 -0
- /package/esm/typings/src/utils/files/{listAllFiles.test.d.ts → $listAllFiles.test.d.ts} +0 -0
- /package/esm/typings/src/utils/random/{randomSeed.d.ts → $randomSeed.d.ts} +0 -0
package/umd/index.umd.js
CHANGED
|
@@ -1,22 +1,20 @@
|
|
|
1
1
|
(function (global, factory) {
|
|
2
|
-
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('colors'), require('http'), require('socket.io'), require('spacetrim')
|
|
3
|
-
typeof define === 'function' && define.amd ? define(['exports', 'colors', 'http', 'socket.io', 'spacetrim'
|
|
4
|
-
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global["promptbook-remote-server"] = {}, global.colors, global.http, global.socket_io, global.spaceTrim
|
|
5
|
-
})(this, (function (exports, colors, http, socket_io, spaceTrim
|
|
2
|
+
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports, require('colors'), require('http'), require('socket.io'), require('spacetrim')) :
|
|
3
|
+
typeof define === 'function' && define.amd ? define(['exports', 'colors', 'http', 'socket.io', 'spacetrim'], factory) :
|
|
4
|
+
(global = typeof globalThis !== 'undefined' ? globalThis : global || self, factory(global["promptbook-remote-server"] = {}, global.colors, global.http, global.socket_io, global.spaceTrim));
|
|
5
|
+
})(this, (function (exports, colors, http, socket_io, spaceTrim) { 'use strict';
|
|
6
6
|
|
|
7
7
|
function _interopDefaultLegacy (e) { return e && typeof e === 'object' && 'default' in e ? e : { 'default': e }; }
|
|
8
8
|
|
|
9
9
|
var colors__default = /*#__PURE__*/_interopDefaultLegacy(colors);
|
|
10
10
|
var http__default = /*#__PURE__*/_interopDefaultLegacy(http);
|
|
11
11
|
var spaceTrim__default = /*#__PURE__*/_interopDefaultLegacy(spaceTrim);
|
|
12
|
-
var Anthropic__default = /*#__PURE__*/_interopDefaultLegacy(Anthropic);
|
|
13
|
-
var OpenAI__default = /*#__PURE__*/_interopDefaultLegacy(OpenAI);
|
|
14
12
|
|
|
15
13
|
// ⚠️ WARNING: This code has been generated so that any manual changes will be overwritten
|
|
16
14
|
/**
|
|
17
15
|
* The version of the Promptbook library
|
|
18
16
|
*/
|
|
19
|
-
var PROMPTBOOK_VERSION = '0.66.0-
|
|
17
|
+
var PROMPTBOOK_VERSION = '0.66.0-9';
|
|
20
18
|
// TODO: !!!! List here all the versions and annotate + put into script
|
|
21
19
|
|
|
22
20
|
/*! *****************************************************************************
|
|
@@ -208,8 +206,37 @@
|
|
|
208
206
|
*/
|
|
209
207
|
MultipleLlmExecutionTools.prototype.checkConfiguration = function () {
|
|
210
208
|
return __awaiter(this, void 0, void 0, function () {
|
|
211
|
-
|
|
212
|
-
|
|
209
|
+
var _a, _b, llmExecutionTools, e_1_1;
|
|
210
|
+
var e_1, _c;
|
|
211
|
+
return __generator(this, function (_d) {
|
|
212
|
+
switch (_d.label) {
|
|
213
|
+
case 0:
|
|
214
|
+
_d.trys.push([0, 5, 6, 7]);
|
|
215
|
+
_a = __values(this.llmExecutionTools), _b = _a.next();
|
|
216
|
+
_d.label = 1;
|
|
217
|
+
case 1:
|
|
218
|
+
if (!!_b.done) return [3 /*break*/, 4];
|
|
219
|
+
llmExecutionTools = _b.value;
|
|
220
|
+
return [4 /*yield*/, llmExecutionTools.checkConfiguration()];
|
|
221
|
+
case 2:
|
|
222
|
+
_d.sent();
|
|
223
|
+
_d.label = 3;
|
|
224
|
+
case 3:
|
|
225
|
+
_b = _a.next();
|
|
226
|
+
return [3 /*break*/, 1];
|
|
227
|
+
case 4: return [3 /*break*/, 7];
|
|
228
|
+
case 5:
|
|
229
|
+
e_1_1 = _d.sent();
|
|
230
|
+
e_1 = { error: e_1_1 };
|
|
231
|
+
return [3 /*break*/, 7];
|
|
232
|
+
case 6:
|
|
233
|
+
try {
|
|
234
|
+
if (_b && !_b.done && (_c = _a.return)) _c.call(_a);
|
|
235
|
+
}
|
|
236
|
+
finally { if (e_1) throw e_1.error; }
|
|
237
|
+
return [7 /*endfinally*/];
|
|
238
|
+
case 7: return [2 /*return*/];
|
|
239
|
+
}
|
|
213
240
|
});
|
|
214
241
|
});
|
|
215
242
|
};
|
|
@@ -219,8 +246,8 @@
|
|
|
219
246
|
*/
|
|
220
247
|
MultipleLlmExecutionTools.prototype.listModels = function () {
|
|
221
248
|
return __awaiter(this, void 0, void 0, function () {
|
|
222
|
-
var availableModels, _a, _b, llmExecutionTools, models,
|
|
223
|
-
var
|
|
249
|
+
var availableModels, _a, _b, llmExecutionTools, models, e_2_1;
|
|
250
|
+
var e_2, _c;
|
|
224
251
|
return __generator(this, function (_d) {
|
|
225
252
|
switch (_d.label) {
|
|
226
253
|
case 0:
|
|
@@ -243,14 +270,14 @@
|
|
|
243
270
|
return [3 /*break*/, 2];
|
|
244
271
|
case 5: return [3 /*break*/, 8];
|
|
245
272
|
case 6:
|
|
246
|
-
|
|
247
|
-
|
|
273
|
+
e_2_1 = _d.sent();
|
|
274
|
+
e_2 = { error: e_2_1 };
|
|
248
275
|
return [3 /*break*/, 8];
|
|
249
276
|
case 7:
|
|
250
277
|
try {
|
|
251
278
|
if (_b && !_b.done && (_c = _a.return)) _c.call(_a);
|
|
252
279
|
}
|
|
253
|
-
finally { if (
|
|
280
|
+
finally { if (e_2) throw e_2.error; }
|
|
254
281
|
return [7 /*endfinally*/];
|
|
255
282
|
case 8: return [2 /*return*/, availableModels];
|
|
256
283
|
}
|
|
@@ -283,8 +310,8 @@
|
|
|
283
310
|
*/
|
|
284
311
|
MultipleLlmExecutionTools.prototype.callCommonModel = function (prompt) {
|
|
285
312
|
return __awaiter(this, void 0, void 0, function () {
|
|
286
|
-
var errors, _a, _b, llmExecutionTools, _c, error_1,
|
|
287
|
-
var
|
|
313
|
+
var errors, _a, _b, llmExecutionTools, _c, error_1, e_3_1;
|
|
314
|
+
var e_3, _d;
|
|
288
315
|
var _this = this;
|
|
289
316
|
return __generator(this, function (_e) {
|
|
290
317
|
switch (_e.label) {
|
|
@@ -340,14 +367,14 @@
|
|
|
340
367
|
return [3 /*break*/, 2];
|
|
341
368
|
case 14: return [3 /*break*/, 17];
|
|
342
369
|
case 15:
|
|
343
|
-
|
|
344
|
-
|
|
370
|
+
e_3_1 = _e.sent();
|
|
371
|
+
e_3 = { error: e_3_1 };
|
|
345
372
|
return [3 /*break*/, 17];
|
|
346
373
|
case 16:
|
|
347
374
|
try {
|
|
348
375
|
if (_b && !_b.done && (_d = _a.return)) _d.call(_a);
|
|
349
376
|
}
|
|
350
|
-
finally { if (
|
|
377
|
+
finally { if (e_3) throw e_3.error; }
|
|
351
378
|
return [7 /*endfinally*/];
|
|
352
379
|
case 17:
|
|
353
380
|
if (errors.length === 1) {
|
|
@@ -434,261 +461,6 @@
|
|
|
434
461
|
* TODO: [👷♂️] @@@ Manual about construction of llmTools
|
|
435
462
|
*/
|
|
436
463
|
|
|
437
|
-
/**
|
|
438
|
-
* Remote server is a proxy server that uses its execution tools internally and exposes the executor interface externally.
|
|
439
|
-
*
|
|
440
|
-
* You can simply use `RemoteExecutionTools` on client-side javascript and connect to your remote server.
|
|
441
|
-
* This is useful to make all logic on browser side but not expose your API keys or no need to use customer's GPU.
|
|
442
|
-
*
|
|
443
|
-
* @see https://github.com/webgptorg/promptbook#remote-server
|
|
444
|
-
* @public exported from `@promptbook/remote-client`
|
|
445
|
-
*/
|
|
446
|
-
var RemoteLlmExecutionTools = /** @class */ (function () {
|
|
447
|
-
function RemoteLlmExecutionTools(options) {
|
|
448
|
-
this.options = options;
|
|
449
|
-
}
|
|
450
|
-
Object.defineProperty(RemoteLlmExecutionTools.prototype, "title", {
|
|
451
|
-
get: function () {
|
|
452
|
-
// TODO: [🧠] Maybe fetch title+description from the remote server (as well as if model methods are defined)
|
|
453
|
-
return 'Remote server';
|
|
454
|
-
},
|
|
455
|
-
enumerable: false,
|
|
456
|
-
configurable: true
|
|
457
|
-
});
|
|
458
|
-
Object.defineProperty(RemoteLlmExecutionTools.prototype, "description", {
|
|
459
|
-
get: function () {
|
|
460
|
-
return 'Use all models by your remote server';
|
|
461
|
-
},
|
|
462
|
-
enumerable: false,
|
|
463
|
-
configurable: true
|
|
464
|
-
});
|
|
465
|
-
/**
|
|
466
|
-
* Check the configuration of all execution tools
|
|
467
|
-
*/
|
|
468
|
-
RemoteLlmExecutionTools.prototype.checkConfiguration = function () {
|
|
469
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
470
|
-
return __generator(this, function (_a) {
|
|
471
|
-
return [2 /*return*/];
|
|
472
|
-
});
|
|
473
|
-
});
|
|
474
|
-
};
|
|
475
|
-
/**
|
|
476
|
-
* List all available models that can be used
|
|
477
|
-
*/
|
|
478
|
-
RemoteLlmExecutionTools.prototype.listModels = function () {
|
|
479
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
480
|
-
return __generator(this, function (_a) {
|
|
481
|
-
return [2 /*return*/, (this.options.models ||
|
|
482
|
-
[
|
|
483
|
-
/* !!!!!! */
|
|
484
|
-
])];
|
|
485
|
-
});
|
|
486
|
-
});
|
|
487
|
-
};
|
|
488
|
-
/**
|
|
489
|
-
* Creates a connection to the remote proxy server.
|
|
490
|
-
*/
|
|
491
|
-
RemoteLlmExecutionTools.prototype.makeConnection = function () {
|
|
492
|
-
var _this = this;
|
|
493
|
-
return new Promise(
|
|
494
|
-
// <- TODO: [🧱] Implement in a functional (not new Class) way
|
|
495
|
-
function (resolve, reject) {
|
|
496
|
-
var socket = socket_ioClient.io(_this.options.remoteUrl, {
|
|
497
|
-
path: _this.options.path,
|
|
498
|
-
// path: `${this.remoteUrl.pathname}/socket.io`,
|
|
499
|
-
transports: [/*'websocket', <- TODO: [🌬] Make websocket transport work */ 'polling'],
|
|
500
|
-
});
|
|
501
|
-
// console.log('Connecting to', this.options.remoteUrl.href, { socket });
|
|
502
|
-
socket.on('connect', function () {
|
|
503
|
-
resolve(socket);
|
|
504
|
-
});
|
|
505
|
-
// TODO: !!!! Better timeout handling
|
|
506
|
-
setTimeout(function () {
|
|
507
|
-
reject(new Error("Timeout while connecting to ".concat(_this.options.remoteUrl)));
|
|
508
|
-
}, 1000 /* <- TODO: Timeout to config */);
|
|
509
|
-
});
|
|
510
|
-
};
|
|
511
|
-
/**
|
|
512
|
-
* Calls remote proxy server to use a chat model
|
|
513
|
-
*/
|
|
514
|
-
RemoteLlmExecutionTools.prototype.callChatModel = function (prompt) {
|
|
515
|
-
if (this.options.isVerbose) {
|
|
516
|
-
console.info("\uD83D\uDD8B Remote callChatModel call");
|
|
517
|
-
}
|
|
518
|
-
return /* not await */ this.callCommonModel(prompt);
|
|
519
|
-
};
|
|
520
|
-
/**
|
|
521
|
-
* Calls remote proxy server to use a completion model
|
|
522
|
-
*/
|
|
523
|
-
RemoteLlmExecutionTools.prototype.callCompletionModel = function (prompt) {
|
|
524
|
-
if (this.options.isVerbose) {
|
|
525
|
-
console.info("\uD83D\uDCAC Remote callCompletionModel call");
|
|
526
|
-
}
|
|
527
|
-
return /* not await */ this.callCommonModel(prompt);
|
|
528
|
-
};
|
|
529
|
-
/**
|
|
530
|
-
* Calls remote proxy server to use a embedding model
|
|
531
|
-
*/
|
|
532
|
-
RemoteLlmExecutionTools.prototype.callEmbeddingModel = function (prompt) {
|
|
533
|
-
if (this.options.isVerbose) {
|
|
534
|
-
console.info("\uD83D\uDCAC Remote callEmbeddingModel call");
|
|
535
|
-
}
|
|
536
|
-
return /* not await */ this.callCommonModel(prompt);
|
|
537
|
-
};
|
|
538
|
-
// <- Note: [🤖] callXxxModel
|
|
539
|
-
/**
|
|
540
|
-
* Calls remote proxy server to use both completion or chat model
|
|
541
|
-
*/
|
|
542
|
-
RemoteLlmExecutionTools.prototype.callCommonModel = function (prompt) {
|
|
543
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
544
|
-
var socket, promptResult;
|
|
545
|
-
return __generator(this, function (_a) {
|
|
546
|
-
switch (_a.label) {
|
|
547
|
-
case 0: return [4 /*yield*/, this.makeConnection()];
|
|
548
|
-
case 1:
|
|
549
|
-
socket = _a.sent();
|
|
550
|
-
if (this.options.isAnonymous) {
|
|
551
|
-
socket.emit('request', {
|
|
552
|
-
llmToolsConfiguration: this.options.llmToolsConfiguration,
|
|
553
|
-
prompt: prompt,
|
|
554
|
-
// <- TODO: [🛫] `prompt` is NOT fully serializable as JSON, it contains functions which are not serializable
|
|
555
|
-
});
|
|
556
|
-
}
|
|
557
|
-
else {
|
|
558
|
-
socket.emit('request', {
|
|
559
|
-
clientId: this.options.clientId,
|
|
560
|
-
prompt: prompt,
|
|
561
|
-
// <- TODO: [🛫] `prompt` is NOT fully serializable as JSON, it contains functions which are not serializable
|
|
562
|
-
});
|
|
563
|
-
}
|
|
564
|
-
return [4 /*yield*/, new Promise(function (resolve, reject) {
|
|
565
|
-
socket.on('response', function (response) {
|
|
566
|
-
resolve(response.promptResult);
|
|
567
|
-
socket.disconnect();
|
|
568
|
-
});
|
|
569
|
-
socket.on('error', function (error) {
|
|
570
|
-
reject(new PipelineExecutionError(error.errorMessage));
|
|
571
|
-
socket.disconnect();
|
|
572
|
-
});
|
|
573
|
-
})];
|
|
574
|
-
case 2:
|
|
575
|
-
promptResult = _a.sent();
|
|
576
|
-
socket.disconnect();
|
|
577
|
-
return [2 /*return*/, promptResult];
|
|
578
|
-
}
|
|
579
|
-
});
|
|
580
|
-
});
|
|
581
|
-
};
|
|
582
|
-
return RemoteLlmExecutionTools;
|
|
583
|
-
}());
|
|
584
|
-
/**
|
|
585
|
-
* TODO: [🍓] Allow to list compatible models with each variant
|
|
586
|
-
* TODO: [🗯] RemoteLlmExecutionTools should extend Destroyable and implement IDestroyable
|
|
587
|
-
* TODO: [🧠][🌰] Allow to pass `title` for tracking purposes
|
|
588
|
-
* TODO: [🧠] Maybe remove `@promptbook/remote-client` and just use `@promptbook/core`
|
|
589
|
-
*/
|
|
590
|
-
|
|
591
|
-
/**
|
|
592
|
-
* Function computeUsage will create price per one token based on the string value found on openai page
|
|
593
|
-
*
|
|
594
|
-
* @private within the repository, used only as internal helper for `OPENAI_MODELS`
|
|
595
|
-
*/
|
|
596
|
-
function computeUsage(value) {
|
|
597
|
-
var _a = __read(value.split(' / '), 2), price = _a[0], tokens = _a[1];
|
|
598
|
-
return parseFloat(price.replace('$', '')) / parseFloat(tokens.replace('M tokens', '')) / 1000000;
|
|
599
|
-
}
|
|
600
|
-
|
|
601
|
-
/**
|
|
602
|
-
* List of available Anthropic Claude models with pricing
|
|
603
|
-
*
|
|
604
|
-
* Note: Done at 2024-08-16
|
|
605
|
-
*
|
|
606
|
-
* @see https://docs.anthropic.com/en/docs/models-overview
|
|
607
|
-
* @public exported from `@promptbook/anthropic-claude`
|
|
608
|
-
*/
|
|
609
|
-
var ANTHROPIC_CLAUDE_MODELS = [
|
|
610
|
-
{
|
|
611
|
-
modelVariant: 'CHAT',
|
|
612
|
-
modelTitle: 'Claude 3.5 Sonnet',
|
|
613
|
-
modelName: 'claude-3-5-sonnet-20240620',
|
|
614
|
-
pricing: {
|
|
615
|
-
prompt: computeUsage("$3.00 / 1M tokens"),
|
|
616
|
-
output: computeUsage("$15.00 / 1M tokens"),
|
|
617
|
-
},
|
|
618
|
-
},
|
|
619
|
-
{
|
|
620
|
-
modelVariant: 'CHAT',
|
|
621
|
-
modelTitle: 'Claude 3 Opus',
|
|
622
|
-
modelName: 'claude-3-opus-20240229',
|
|
623
|
-
pricing: {
|
|
624
|
-
prompt: computeUsage("$15.00 / 1M tokens"),
|
|
625
|
-
output: computeUsage("$75.00 / 1M tokens"),
|
|
626
|
-
},
|
|
627
|
-
},
|
|
628
|
-
{
|
|
629
|
-
modelVariant: 'CHAT',
|
|
630
|
-
modelTitle: 'Claude 3 Sonnet',
|
|
631
|
-
modelName: 'claude-3-sonnet-20240229',
|
|
632
|
-
pricing: {
|
|
633
|
-
prompt: computeUsage("$3.00 / 1M tokens"),
|
|
634
|
-
output: computeUsage("$15.00 / 1M tokens"),
|
|
635
|
-
},
|
|
636
|
-
},
|
|
637
|
-
{
|
|
638
|
-
modelVariant: 'CHAT',
|
|
639
|
-
modelTitle: 'Claude 3 Haiku',
|
|
640
|
-
modelName: ' claude-3-haiku-20240307',
|
|
641
|
-
pricing: {
|
|
642
|
-
prompt: computeUsage("$0.25 / 1M tokens"),
|
|
643
|
-
output: computeUsage("$1.25 / 1M tokens"),
|
|
644
|
-
},
|
|
645
|
-
},
|
|
646
|
-
{
|
|
647
|
-
modelVariant: 'CHAT',
|
|
648
|
-
modelTitle: 'Claude 2.1',
|
|
649
|
-
modelName: 'claude-2.1',
|
|
650
|
-
pricing: {
|
|
651
|
-
prompt: computeUsage("$8.00 / 1M tokens"),
|
|
652
|
-
output: computeUsage("$24.00 / 1M tokens"),
|
|
653
|
-
},
|
|
654
|
-
},
|
|
655
|
-
{
|
|
656
|
-
modelVariant: 'CHAT',
|
|
657
|
-
modelTitle: 'Claude 2',
|
|
658
|
-
modelName: 'claude-2.0',
|
|
659
|
-
pricing: {
|
|
660
|
-
prompt: computeUsage("$8.00 / 1M tokens"),
|
|
661
|
-
output: computeUsage("$24.00 / 1M tokens"),
|
|
662
|
-
},
|
|
663
|
-
},
|
|
664
|
-
{
|
|
665
|
-
modelVariant: 'CHAT',
|
|
666
|
-
modelTitle: ' Claude Instant 1.2',
|
|
667
|
-
modelName: 'claude-instant-1.2',
|
|
668
|
-
pricing: {
|
|
669
|
-
prompt: computeUsage("$0.80 / 1M tokens"),
|
|
670
|
-
output: computeUsage("$2.40 / 1M tokens"),
|
|
671
|
-
},
|
|
672
|
-
},
|
|
673
|
-
// TODO: !!! Claude 1 and 2 has also completion versions - ask Hoagy
|
|
674
|
-
];
|
|
675
|
-
/**
|
|
676
|
-
* Note: [🤖] Add models of new variant
|
|
677
|
-
* TODO: [🧠] !!! Add embedding models OR Anthropic has only chat+completion models?
|
|
678
|
-
* TODO: [🧠] Some mechanism to propagate unsureness
|
|
679
|
-
* TODO: [🧠][👮♀️] Put here more info like description, isVision, trainingDateCutoff, languages, strengths ( Top-level performance, intelligence, fluency, and understanding), contextWindow,...
|
|
680
|
-
* TODO: [🎰] Some mechanism to auto-update available models
|
|
681
|
-
*/
|
|
682
|
-
|
|
683
|
-
/**
|
|
684
|
-
* Get current date in ISO 8601 format
|
|
685
|
-
*
|
|
686
|
-
* @private internal utility
|
|
687
|
-
*/
|
|
688
|
-
function getCurrentIsoDate() {
|
|
689
|
-
return new Date().toISOString();
|
|
690
|
-
}
|
|
691
|
-
|
|
692
464
|
/**
|
|
693
465
|
* @@@
|
|
694
466
|
*
|
|
@@ -723,19 +495,26 @@
|
|
|
723
495
|
* TODO: [🧠] Is there a way how to meaningfully test this utility
|
|
724
496
|
*/
|
|
725
497
|
|
|
726
|
-
// <- TODO: [🧠] Better system for generator warnings - not always "code" and "by `@promptbook/cli`"
|
|
727
498
|
/**
|
|
728
|
-
*
|
|
499
|
+
* Returns the same value that is passed as argument.
|
|
500
|
+
* No side effects.
|
|
729
501
|
*
|
|
730
|
-
*
|
|
731
|
-
*/
|
|
732
|
-
var LOOP_LIMIT = 1000;
|
|
733
|
-
/**
|
|
734
|
-
* Nonce which is used for replacing things in strings
|
|
502
|
+
* Note: It can be usefull for:
|
|
735
503
|
*
|
|
504
|
+
* 1) Leveling indentation
|
|
505
|
+
* 2) Putting always-true or always-false conditions without getting eslint errors
|
|
506
|
+
*
|
|
507
|
+
* @param value any values
|
|
508
|
+
* @returns the same values
|
|
736
509
|
* @private within the repository
|
|
737
510
|
*/
|
|
738
|
-
|
|
511
|
+
function just(value) {
|
|
512
|
+
if (value === undefined) {
|
|
513
|
+
return undefined;
|
|
514
|
+
}
|
|
515
|
+
return value;
|
|
516
|
+
}
|
|
517
|
+
|
|
739
518
|
/**
|
|
740
519
|
* The names of the parameters that are reserved for special purposes
|
|
741
520
|
*
|
|
@@ -751,1890 +530,219 @@
|
|
|
751
530
|
// <- TODO: Add more like 'date', 'modelName',...
|
|
752
531
|
// <- TODO: Add [emoji] + instructions ACRY when adding new reserved parameter
|
|
753
532
|
]);
|
|
533
|
+
// <- TODO: [🧜♂️]
|
|
754
534
|
/**
|
|
755
535
|
* @@@
|
|
756
536
|
*
|
|
757
|
-
* @
|
|
758
|
-
*/
|
|
759
|
-
var RESERVED_PARAMETER_MISSING_VALUE = 'MISSING-' + REPLACING_NONCE;
|
|
760
|
-
/**
|
|
761
|
-
* @@@
|
|
762
|
-
*
|
|
763
|
-
* @private within the repository
|
|
537
|
+
* @public exported from `@promptbook/core`
|
|
764
538
|
*/
|
|
765
|
-
var
|
|
539
|
+
var IS_VERBOSE = false;
|
|
766
540
|
/**
|
|
767
541
|
* TODO: [🧠][🧜♂️] Maybe join remoteUrl and path into single value
|
|
768
542
|
*/
|
|
769
543
|
|
|
770
544
|
/**
|
|
771
|
-
*
|
|
545
|
+
* @@@
|
|
772
546
|
*
|
|
773
|
-
*
|
|
547
|
+
* Note: `$` is used to indicate that this function is not a pure function - it access global scope
|
|
548
|
+
*
|
|
549
|
+
* @public exported from `@promptbook/utils`
|
|
550
|
+
*/
|
|
551
|
+
function $getGlobalScope() {
|
|
552
|
+
return Function('return this')();
|
|
553
|
+
}
|
|
554
|
+
/***
|
|
555
|
+
* TODO: !!!!! Make private and promptbook registry from this
|
|
774
556
|
*/
|
|
775
|
-
var LimitReachedError = /** @class */ (function (_super) {
|
|
776
|
-
__extends(LimitReachedError, _super);
|
|
777
|
-
function LimitReachedError(message) {
|
|
778
|
-
var _this = _super.call(this, message) || this;
|
|
779
|
-
_this.name = 'LimitReachedError';
|
|
780
|
-
Object.setPrototypeOf(_this, LimitReachedError.prototype);
|
|
781
|
-
return _this;
|
|
782
|
-
}
|
|
783
|
-
return LimitReachedError;
|
|
784
|
-
}(Error));
|
|
785
557
|
|
|
786
558
|
/**
|
|
787
|
-
*
|
|
559
|
+
* Register is @@@
|
|
788
560
|
*
|
|
789
|
-
*
|
|
790
|
-
*
|
|
791
|
-
* @
|
|
792
|
-
* @throws {PipelineExecutionError} if parameter is not defined, not closed, or not opened
|
|
793
|
-
* @public exported from `@promptbook/utils`
|
|
561
|
+
* Note: `$` is used to indicate that this function is not a pure function - it accesses and adds variables in global scope.
|
|
562
|
+
*
|
|
563
|
+
* @private internal utility, exported are only signleton instances of this class
|
|
794
564
|
*/
|
|
795
|
-
function
|
|
796
|
-
|
|
797
|
-
|
|
798
|
-
|
|
799
|
-
|
|
800
|
-
|
|
801
|
-
|
|
802
|
-
}
|
|
803
|
-
else if (parameterValue === RESERVED_PARAMETER_RESTRICTED) {
|
|
804
|
-
// TODO: [🍵]
|
|
805
|
-
throw new UnexpectedError("Parameter {".concat(parameterName, "} is restricted to use"));
|
|
806
|
-
}
|
|
565
|
+
var $Register = /** @class */ (function () {
|
|
566
|
+
function $Register(storageName) {
|
|
567
|
+
this.storageName = storageName;
|
|
568
|
+
storageName = "_promptbook_".concat(storageName);
|
|
569
|
+
var globalScope = $getGlobalScope();
|
|
570
|
+
if (globalScope[storageName] === undefined) {
|
|
571
|
+
globalScope[storageName] = [];
|
|
807
572
|
}
|
|
808
|
-
|
|
809
|
-
|
|
810
|
-
finally {
|
|
811
|
-
try {
|
|
812
|
-
if (_c && !_c.done && (_a = _b.return)) _a.call(_b);
|
|
573
|
+
else if (!Array.isArray(globalScope[storageName])) {
|
|
574
|
+
throw new UnexpectedError("Expected (global) ".concat(storageName, " to be an array, but got ").concat(typeof globalScope[storageName]));
|
|
813
575
|
}
|
|
814
|
-
|
|
576
|
+
this.storage = globalScope[storageName];
|
|
815
577
|
}
|
|
816
|
-
|
|
817
|
-
|
|
818
|
-
|
|
819
|
-
|
|
820
|
-
|
|
821
|
-
|
|
822
|
-
|
|
823
|
-
var
|
|
824
|
-
var
|
|
825
|
-
if (
|
|
826
|
-
|
|
578
|
+
$Register.prototype.list = function () {
|
|
579
|
+
// <- TODO: ReadonlyDeep<Array<TRegistered>>
|
|
580
|
+
return this.storage;
|
|
581
|
+
};
|
|
582
|
+
$Register.prototype.register = function (registered) {
|
|
583
|
+
// <- TODO: What to return here
|
|
584
|
+
var packageName = registered.packageName, className = registered.className;
|
|
585
|
+
var existingRegistrationIndex = this.storage.findIndex(function (item) { return item.packageName === packageName && item.className === className; });
|
|
586
|
+
var existingRegistration = this.storage[existingRegistrationIndex];
|
|
587
|
+
if (!existingRegistration) {
|
|
588
|
+
this.storage.push(registered);
|
|
827
589
|
}
|
|
828
|
-
|
|
829
|
-
|
|
590
|
+
else {
|
|
591
|
+
this.storage[existingRegistrationIndex] = registered;
|
|
830
592
|
}
|
|
831
|
-
if (parameters[parameterName] === undefined) {
|
|
832
|
-
throw new PipelineExecutionError("Parameter {".concat(parameterName, "} is not defined"));
|
|
833
|
-
}
|
|
834
|
-
var parameterValue = parameters[parameterName];
|
|
835
|
-
if (parameterValue === undefined) {
|
|
836
|
-
throw new PipelineExecutionError("Parameter {".concat(parameterName, "} is not defined"));
|
|
837
|
-
}
|
|
838
|
-
parameterValue = parameterValue.toString();
|
|
839
|
-
if (parameterValue.includes('\n') && /^\s*\W{0,3}\s*$/.test(precol)) {
|
|
840
|
-
parameterValue = parameterValue
|
|
841
|
-
.split('\n')
|
|
842
|
-
.map(function (line, index) { return (index === 0 ? line : "".concat(precol).concat(line)); })
|
|
843
|
-
.join('\n');
|
|
844
|
-
}
|
|
845
|
-
replacedTemplate =
|
|
846
|
-
replacedTemplate.substring(0, match.index + precol.length) +
|
|
847
|
-
parameterValue +
|
|
848
|
-
replacedTemplate.substring(match.index + precol.length + parameterName.length + 2);
|
|
849
593
|
};
|
|
850
|
-
|
|
851
|
-
|
|
852
|
-
_loop_1();
|
|
853
|
-
}
|
|
854
|
-
// [💫] Check if there are parameters that are not closed properly
|
|
855
|
-
if (/{\w+$/.test(replacedTemplate)) {
|
|
856
|
-
throw new PipelineExecutionError('Parameter is not closed');
|
|
857
|
-
}
|
|
858
|
-
// [💫] Check if there are parameters that are not opened properly
|
|
859
|
-
if (/^\w+}/.test(replacedTemplate)) {
|
|
860
|
-
throw new PipelineExecutionError('Parameter is not opened');
|
|
861
|
-
}
|
|
862
|
-
return replacedTemplate;
|
|
863
|
-
}
|
|
864
|
-
|
|
865
|
-
/**
|
|
866
|
-
* Counts number of characters in the text
|
|
867
|
-
*
|
|
868
|
-
* @public exported from `@promptbook/utils`
|
|
869
|
-
*/
|
|
870
|
-
function countCharacters(text) {
|
|
871
|
-
// Remove null characters
|
|
872
|
-
text = text.replace(/\0/g, '');
|
|
873
|
-
// Replace emojis (and also ZWJ sequence) with hyphens
|
|
874
|
-
text = text.replace(/(\p{Extended_Pictographic})\p{Modifier_Symbol}/gu, '$1');
|
|
875
|
-
text = text.replace(/(\p{Extended_Pictographic})[\u{FE00}-\u{FE0F}]/gu, '$1');
|
|
876
|
-
text = text.replace(/\p{Extended_Pictographic}(\u{200D}\p{Extended_Pictographic})*/gu, '-');
|
|
877
|
-
return text.length;
|
|
878
|
-
}
|
|
879
|
-
|
|
880
|
-
/**
|
|
881
|
-
* Counts number of lines in the text
|
|
882
|
-
*
|
|
883
|
-
* @public exported from `@promptbook/utils`
|
|
884
|
-
*/
|
|
885
|
-
function countLines(text) {
|
|
886
|
-
if (text === '') {
|
|
887
|
-
return 0;
|
|
888
|
-
}
|
|
889
|
-
return text.split('\n').length;
|
|
890
|
-
}
|
|
891
|
-
|
|
892
|
-
/**
|
|
893
|
-
* Counts number of pages in the text
|
|
894
|
-
*
|
|
895
|
-
* @public exported from `@promptbook/utils`
|
|
896
|
-
*/
|
|
897
|
-
function countPages(text) {
|
|
898
|
-
var sentencesPerPage = 5; // Assuming each page has 5 sentences
|
|
899
|
-
var sentences = text.split(/[.!?]+/).filter(function (sentence) { return sentence.trim() !== ''; });
|
|
900
|
-
var pageCount = Math.ceil(sentences.length / sentencesPerPage);
|
|
901
|
-
return pageCount;
|
|
902
|
-
}
|
|
594
|
+
return $Register;
|
|
595
|
+
}());
|
|
903
596
|
|
|
904
597
|
/**
|
|
905
|
-
*
|
|
598
|
+
* @@@
|
|
906
599
|
*
|
|
907
|
-
*
|
|
600
|
+
* Note: `$` is used to indicate that this interacts with the global scope
|
|
601
|
+
* @singleton Only one instance of each register is created per build, but thare can be more @@@
|
|
602
|
+
* @public exported from `@promptbook/core`
|
|
908
603
|
*/
|
|
909
|
-
|
|
910
|
-
return text.split(/\n\s*\n/).filter(function (paragraph) { return paragraph.trim() !== ''; }).length;
|
|
911
|
-
}
|
|
604
|
+
var $llmToolsRegister = new $Register('llm_execution_tools_constructors');
|
|
912
605
|
|
|
913
606
|
/**
|
|
914
|
-
*
|
|
915
|
-
*
|
|
916
|
-
* @public exported from `@promptbook/utils`
|
|
917
|
-
*/
|
|
918
|
-
function splitIntoSentences(text) {
|
|
919
|
-
return text.split(/[.!?]+/).filter(function (sentence) { return sentence.trim() !== ''; });
|
|
920
|
-
}
|
|
921
|
-
/**
|
|
922
|
-
* Counts number of sentences in the text
|
|
607
|
+
* @@@
|
|
923
608
|
*
|
|
924
|
-
*
|
|
609
|
+
* Note: `$` is used to indicate that this interacts with the global scope
|
|
610
|
+
* @singleton Only one instance of each register is created per build, but thare can be more @@@
|
|
611
|
+
* @public exported from `@promptbook/core`
|
|
925
612
|
*/
|
|
926
|
-
|
|
927
|
-
return splitIntoSentences(text).length;
|
|
928
|
-
}
|
|
613
|
+
var $llmToolsMetadataRegister = new $Register('llm_tools_metadata');
|
|
929
614
|
|
|
930
|
-
var defaultDiacriticsRemovalMap = [
|
|
931
|
-
{
|
|
932
|
-
base: 'A',
|
|
933
|
-
letters: '\u0041\u24B6\uFF21\u00C0\u00C1\u00C2\u1EA6\u1EA4\u1EAA\u1EA8\u00C3\u0100\u0102\u1EB0\u1EAE\u1EB4\u1EB2\u0226\u01E0\u00C4\u01DE\u1EA2\u00C5\u01FA\u01CD\u0200\u0202\u1EA0\u1EAC\u1EB6\u1E00\u0104\u023A\u2C6F',
|
|
934
|
-
},
|
|
935
|
-
{ base: 'AA', letters: '\uA732' },
|
|
936
|
-
{ base: 'AE', letters: '\u00C6\u01FC\u01E2' },
|
|
937
|
-
{ base: 'AO', letters: '\uA734' },
|
|
938
|
-
{ base: 'AU', letters: '\uA736' },
|
|
939
|
-
{ base: 'AV', letters: '\uA738\uA73A' },
|
|
940
|
-
{ base: 'AY', letters: '\uA73C' },
|
|
941
|
-
{
|
|
942
|
-
base: 'B',
|
|
943
|
-
letters: '\u0042\u24B7\uFF22\u1E02\u1E04\u1E06\u0243\u0182\u0181',
|
|
944
|
-
},
|
|
945
|
-
{
|
|
946
|
-
base: 'C',
|
|
947
|
-
letters: '\u0043\u24B8\uFF23\u0106\u0108\u010A\u010C\u00C7\u1E08\u0187\u023B\uA73E',
|
|
948
|
-
},
|
|
949
|
-
{
|
|
950
|
-
base: 'D',
|
|
951
|
-
letters: '\u0044\u24B9\uFF24\u1E0A\u010E\u1E0C\u1E10\u1E12\u1E0E\u0110\u018B\u018A\u0189\uA779\u00D0',
|
|
952
|
-
},
|
|
953
|
-
{ base: 'DZ', letters: '\u01F1\u01C4' },
|
|
954
|
-
{ base: 'Dz', letters: '\u01F2\u01C5' },
|
|
955
|
-
{
|
|
956
|
-
base: 'E',
|
|
957
|
-
letters: '\u0045\u24BA\uFF25\u00C8\u00C9\u00CA\u1EC0\u1EBE\u1EC4\u1EC2\u1EBC\u0112\u1E14\u1E16\u0114\u0116\u00CB\u1EBA\u011A\u0204\u0206\u1EB8\u1EC6\u0228\u1E1C\u0118\u1E18\u1E1A\u0190\u018E',
|
|
958
|
-
},
|
|
959
|
-
{ base: 'F', letters: '\u0046\u24BB\uFF26\u1E1E\u0191\uA77B' },
|
|
960
|
-
{
|
|
961
|
-
base: 'G',
|
|
962
|
-
letters: '\u0047\u24BC\uFF27\u01F4\u011C\u1E20\u011E\u0120\u01E6\u0122\u01E4\u0193\uA7A0\uA77D\uA77E',
|
|
963
|
-
},
|
|
964
|
-
{
|
|
965
|
-
base: 'H',
|
|
966
|
-
letters: '\u0048\u24BD\uFF28\u0124\u1E22\u1E26\u021E\u1E24\u1E28\u1E2A\u0126\u2C67\u2C75\uA78D',
|
|
967
|
-
},
|
|
968
|
-
{
|
|
969
|
-
base: 'I',
|
|
970
|
-
letters: '\u0049\u24BE\uFF29\u00CC\u00CD\u00CE\u0128\u012A\u012C\u0130\u00CF\u1E2E\u1EC8\u01CF\u0208\u020A\u1ECA\u012E\u1E2C\u0197',
|
|
971
|
-
},
|
|
972
|
-
{ base: 'J', letters: '\u004A\u24BF\uFF2A\u0134\u0248' },
|
|
973
|
-
{
|
|
974
|
-
base: 'K',
|
|
975
|
-
letters: '\u004B\u24C0\uFF2B\u1E30\u01E8\u1E32\u0136\u1E34\u0198\u2C69\uA740\uA742\uA744\uA7A2',
|
|
976
|
-
},
|
|
977
|
-
{
|
|
978
|
-
base: 'L',
|
|
979
|
-
letters: '\u004C\u24C1\uFF2C\u013F\u0139\u013D\u1E36\u1E38\u013B\u1E3C\u1E3A\u0141\u023D\u2C62\u2C60\uA748\uA746\uA780',
|
|
980
|
-
},
|
|
981
|
-
{ base: 'LJ', letters: '\u01C7' },
|
|
982
|
-
{ base: 'Lj', letters: '\u01C8' },
|
|
983
|
-
{ base: 'M', letters: '\u004D\u24C2\uFF2D\u1E3E\u1E40\u1E42\u2C6E\u019C' },
|
|
984
|
-
{
|
|
985
|
-
base: 'N',
|
|
986
|
-
letters: '\u004E\u24C3\uFF2E\u01F8\u0143\u00D1\u1E44\u0147\u1E46\u0145\u1E4A\u1E48\u0220\u019D\uA790\uA7A4',
|
|
987
|
-
},
|
|
988
|
-
{ base: 'NJ', letters: '\u01CA' },
|
|
989
|
-
{ base: 'Nj', letters: '\u01CB' },
|
|
990
|
-
{
|
|
991
|
-
base: 'O',
|
|
992
|
-
letters: '\u004F\u24C4\uFF2F\u00D2\u00D3\u00D4\u1ED2\u1ED0\u1ED6\u1ED4\u00D5\u1E4C\u022C\u1E4E\u014C\u1E50\u1E52\u014E\u022E\u0230\u00D6\u022A\u1ECE\u0150\u01D1\u020C\u020E\u01A0\u1EDC\u1EDA\u1EE0\u1EDE\u1EE2\u1ECC\u1ED8\u01EA\u01EC\u00D8\u01FE\u0186\u019F\uA74A\uA74C',
|
|
993
|
-
},
|
|
994
|
-
{ base: 'OI', letters: '\u01A2' },
|
|
995
|
-
{ base: 'OO', letters: '\uA74E' },
|
|
996
|
-
{ base: 'OU', letters: '\u0222' },
|
|
997
|
-
{ base: 'OE', letters: '\u008C\u0152' },
|
|
998
|
-
{ base: 'oe', letters: '\u009C\u0153' },
|
|
999
|
-
{
|
|
1000
|
-
base: 'P',
|
|
1001
|
-
letters: '\u0050\u24C5\uFF30\u1E54\u1E56\u01A4\u2C63\uA750\uA752\uA754',
|
|
1002
|
-
},
|
|
1003
|
-
{ base: 'Q', letters: '\u0051\u24C6\uFF31\uA756\uA758\u024A' },
|
|
1004
|
-
{
|
|
1005
|
-
base: 'R',
|
|
1006
|
-
letters: '\u0052\u24C7\uFF32\u0154\u1E58\u0158\u0210\u0212\u1E5A\u1E5C\u0156\u1E5E\u024C\u2C64\uA75A\uA7A6\uA782',
|
|
1007
|
-
},
|
|
1008
|
-
{
|
|
1009
|
-
base: 'S',
|
|
1010
|
-
letters: '\u0053\u24C8\uFF33\u1E9E\u015A\u1E64\u015C\u1E60\u0160\u1E66\u1E62\u1E68\u0218\u015E\u2C7E\uA7A8\uA784',
|
|
1011
|
-
},
|
|
1012
|
-
{
|
|
1013
|
-
base: 'T',
|
|
1014
|
-
letters: '\u0054\u24C9\uFF34\u1E6A\u0164\u1E6C\u021A\u0162\u1E70\u1E6E\u0166\u01AC\u01AE\u023E\uA786',
|
|
1015
|
-
},
|
|
1016
|
-
{ base: 'TZ', letters: '\uA728' },
|
|
1017
|
-
{
|
|
1018
|
-
base: 'U',
|
|
1019
|
-
letters: '\u0055\u24CA\uFF35\u00D9\u00DA\u00DB\u0168\u1E78\u016A\u1E7A\u016C\u00DC\u01DB\u01D7\u01D5\u01D9\u1EE6\u016E\u0170\u01D3\u0214\u0216\u01AF\u1EEA\u1EE8\u1EEE\u1EEC\u1EF0\u1EE4\u1E72\u0172\u1E76\u1E74\u0244',
|
|
1020
|
-
},
|
|
1021
|
-
{ base: 'V', letters: '\u0056\u24CB\uFF36\u1E7C\u1E7E\u01B2\uA75E\u0245' },
|
|
1022
|
-
{ base: 'VY', letters: '\uA760' },
|
|
1023
|
-
{
|
|
1024
|
-
base: 'W',
|
|
1025
|
-
letters: '\u0057\u24CC\uFF37\u1E80\u1E82\u0174\u1E86\u1E84\u1E88\u2C72',
|
|
1026
|
-
},
|
|
1027
|
-
{ base: 'X', letters: '\u0058\u24CD\uFF38\u1E8A\u1E8C' },
|
|
1028
|
-
{
|
|
1029
|
-
base: 'Y',
|
|
1030
|
-
letters: '\u0059\u24CE\uFF39\u1EF2\u00DD\u0176\u1EF8\u0232\u1E8E\u0178\u1EF6\u1EF4\u01B3\u024E\u1EFE',
|
|
1031
|
-
},
|
|
1032
|
-
{
|
|
1033
|
-
base: 'Z',
|
|
1034
|
-
letters: '\u005A\u24CF\uFF3A\u0179\u1E90\u017B\u017D\u1E92\u1E94\u01B5\u0224\u2C7F\u2C6B\uA762',
|
|
1035
|
-
},
|
|
1036
|
-
{
|
|
1037
|
-
base: 'a',
|
|
1038
|
-
letters: '\u0061\u24D0\uFF41\u1E9A\u00E0\u00E1\u00E2\u1EA7\u1EA5\u1EAB\u1EA9\u00E3\u0101\u0103\u1EB1\u1EAF\u1EB5\u1EB3\u0227\u01E1\u00E4\u01DF\u1EA3\u00E5\u01FB\u01CE\u0201\u0203\u1EA1\u1EAD\u1EB7\u1E01\u0105\u2C65\u0250',
|
|
1039
|
-
},
|
|
1040
|
-
{ base: 'aa', letters: '\uA733' },
|
|
1041
|
-
{ base: 'ae', letters: '\u00E6\u01FD\u01E3' },
|
|
1042
|
-
{ base: 'ao', letters: '\uA735' },
|
|
1043
|
-
{ base: 'au', letters: '\uA737' },
|
|
1044
|
-
{ base: 'av', letters: '\uA739\uA73B' },
|
|
1045
|
-
{ base: 'ay', letters: '\uA73D' },
|
|
1046
|
-
{
|
|
1047
|
-
base: 'b',
|
|
1048
|
-
letters: '\u0062\u24D1\uFF42\u1E03\u1E05\u1E07\u0180\u0183\u0253',
|
|
1049
|
-
},
|
|
1050
|
-
{
|
|
1051
|
-
base: 'c',
|
|
1052
|
-
letters: '\u0063\u24D2\uFF43\u0107\u0109\u010B\u010D\u00E7\u1E09\u0188\u023C\uA73F\u2184',
|
|
1053
|
-
},
|
|
1054
|
-
{
|
|
1055
|
-
base: 'd',
|
|
1056
|
-
letters: '\u0064\u24D3\uFF44\u1E0B\u010F\u1E0D\u1E11\u1E13\u1E0F\u0111\u018C\u0256\u0257\uA77A',
|
|
1057
|
-
},
|
|
1058
|
-
{ base: 'dz', letters: '\u01F3\u01C6' },
|
|
1059
|
-
{
|
|
1060
|
-
base: 'e',
|
|
1061
|
-
letters: '\u0065\u24D4\uFF45\u00E8\u00E9\u00EA\u1EC1\u1EBF\u1EC5\u1EC3\u1EBD\u0113\u1E15\u1E17\u0115\u0117\u00EB\u1EBB\u011B\u0205\u0207\u1EB9\u1EC7\u0229\u1E1D\u0119\u1E19\u1E1B\u0247\u025B\u01DD',
|
|
1062
|
-
},
|
|
1063
|
-
{ base: 'f', letters: '\u0066\u24D5\uFF46\u1E1F\u0192\uA77C' },
|
|
1064
|
-
{
|
|
1065
|
-
base: 'g',
|
|
1066
|
-
letters: '\u0067\u24D6\uFF47\u01F5\u011D\u1E21\u011F\u0121\u01E7\u0123\u01E5\u0260\uA7A1\u1D79\uA77F',
|
|
1067
|
-
},
|
|
1068
|
-
{
|
|
1069
|
-
base: 'h',
|
|
1070
|
-
letters: '\u0068\u24D7\uFF48\u0125\u1E23\u1E27\u021F\u1E25\u1E29\u1E2B\u1E96\u0127\u2C68\u2C76\u0265',
|
|
1071
|
-
},
|
|
1072
|
-
{ base: 'hv', letters: '\u0195' },
|
|
1073
|
-
{
|
|
1074
|
-
base: 'i',
|
|
1075
|
-
letters: '\u0069\u24D8\uFF49\u00EC\u00ED\u00EE\u0129\u012B\u012D\u00EF\u1E2F\u1EC9\u01D0\u0209\u020B\u1ECB\u012F\u1E2D\u0268\u0131',
|
|
1076
|
-
},
|
|
1077
|
-
{ base: 'j', letters: '\u006A\u24D9\uFF4A\u0135\u01F0\u0249' },
|
|
1078
|
-
{
|
|
1079
|
-
base: 'k',
|
|
1080
|
-
letters: '\u006B\u24DA\uFF4B\u1E31\u01E9\u1E33\u0137\u1E35\u0199\u2C6A\uA741\uA743\uA745\uA7A3',
|
|
1081
|
-
},
|
|
1082
|
-
{
|
|
1083
|
-
base: 'l',
|
|
1084
|
-
letters: '\u006C\u24DB\uFF4C\u0140\u013A\u013E\u1E37\u1E39\u013C\u1E3D\u1E3B\u017F\u0142\u019A\u026B\u2C61\uA749\uA781\uA747',
|
|
1085
|
-
},
|
|
1086
|
-
{ base: 'lj', letters: '\u01C9' },
|
|
1087
|
-
{ base: 'm', letters: '\u006D\u24DC\uFF4D\u1E3F\u1E41\u1E43\u0271\u026F' },
|
|
1088
|
-
{
|
|
1089
|
-
base: 'n',
|
|
1090
|
-
letters: '\u006E\u24DD\uFF4E\u01F9\u0144\u00F1\u1E45\u0148\u1E47\u0146\u1E4B\u1E49\u019E\u0272\u0149\uA791\uA7A5',
|
|
1091
|
-
},
|
|
1092
|
-
{ base: 'nj', letters: '\u01CC' },
|
|
1093
|
-
{
|
|
1094
|
-
base: 'o',
|
|
1095
|
-
letters: '\u006F\u24DE\uFF4F\u00F2\u00F3\u00F4\u1ED3\u1ED1\u1ED7\u1ED5\u00F5\u1E4D\u022D\u1E4F\u014D\u1E51\u1E53\u014F\u022F\u0231\u00F6\u022B\u1ECF\u0151\u01D2\u020D\u020F\u01A1\u1EDD\u1EDB\u1EE1\u1EDF\u1EE3\u1ECD\u1ED9\u01EB\u01ED\u00F8\u01FF\u0254\uA74B\uA74D\u0275',
|
|
1096
|
-
},
|
|
1097
|
-
{ base: 'oi', letters: '\u01A3' },
|
|
1098
|
-
{ base: 'ou', letters: '\u0223' },
|
|
1099
|
-
{ base: 'oo', letters: '\uA74F' },
|
|
1100
|
-
{
|
|
1101
|
-
base: 'p',
|
|
1102
|
-
letters: '\u0070\u24DF\uFF50\u1E55\u1E57\u01A5\u1D7D\uA751\uA753\uA755',
|
|
1103
|
-
},
|
|
1104
|
-
{ base: 'q', letters: '\u0071\u24E0\uFF51\u024B\uA757\uA759' },
|
|
1105
|
-
{
|
|
1106
|
-
base: 'r',
|
|
1107
|
-
letters: '\u0072\u24E1\uFF52\u0155\u1E59\u0159\u0211\u0213\u1E5B\u1E5D\u0157\u1E5F\u024D\u027D\uA75B\uA7A7\uA783',
|
|
1108
|
-
},
|
|
1109
|
-
{
|
|
1110
|
-
base: 's',
|
|
1111
|
-
letters: '\u0073\u24E2\uFF53\u00DF\u015B\u1E65\u015D\u1E61\u0161\u1E67\u1E63\u1E69\u0219\u015F\u023F\uA7A9\uA785\u1E9B',
|
|
1112
|
-
},
|
|
1113
|
-
{
|
|
1114
|
-
base: 't',
|
|
1115
|
-
letters: '\u0074\u24E3\uFF54\u1E6B\u1E97\u0165\u1E6D\u021B\u0163\u1E71\u1E6F\u0167\u01AD\u0288\u2C66\uA787',
|
|
1116
|
-
},
|
|
1117
|
-
{ base: 'tz', letters: '\uA729' },
|
|
1118
|
-
{
|
|
1119
|
-
base: 'u',
|
|
1120
|
-
letters: '\u0075\u24E4\uFF55\u00F9\u00FA\u00FB\u0169\u1E79\u016B\u1E7B\u016D\u00FC\u01DC\u01D8\u01D6\u01DA\u1EE7\u016F\u0171\u01D4\u0215\u0217\u01B0\u1EEB\u1EE9\u1EEF\u1EED\u1EF1\u1EE5\u1E73\u0173\u1E77\u1E75\u0289',
|
|
1121
|
-
},
|
|
1122
|
-
{ base: 'v', letters: '\u0076\u24E5\uFF56\u1E7D\u1E7F\u028B\uA75F\u028C' },
|
|
1123
|
-
{ base: 'vy', letters: '\uA761' },
|
|
1124
|
-
{
|
|
1125
|
-
base: 'w',
|
|
1126
|
-
letters: '\u0077\u24E6\uFF57\u1E81\u1E83\u0175\u1E87\u1E85\u1E98\u1E89\u2C73',
|
|
1127
|
-
},
|
|
1128
|
-
{ base: 'x', letters: '\u0078\u24E7\uFF58\u1E8B\u1E8D' },
|
|
1129
|
-
{
|
|
1130
|
-
base: 'y',
|
|
1131
|
-
letters: '\u0079\u24E8\uFF59\u1EF3\u00FD\u0177\u1EF9\u0233\u1E8F\u00FF\u1EF7\u1E99\u1EF5\u01B4\u024F\u1EFF',
|
|
1132
|
-
},
|
|
1133
|
-
{
|
|
1134
|
-
base: 'z',
|
|
1135
|
-
letters: '\u007A\u24E9\uFF5A\u017A\u1E91\u017C\u017E\u1E93\u1E95\u01B6\u0225\u0240\u2C6C\uA763',
|
|
1136
|
-
},
|
|
1137
|
-
];
|
|
1138
615
|
/**
|
|
1139
|
-
*
|
|
1140
|
-
* Contains lowercase and uppercase separatelly
|
|
616
|
+
* Creates a message with all registered LLM tools
|
|
1141
617
|
*
|
|
1142
|
-
*
|
|
1143
|
-
* > "ě" => "e"
|
|
1144
|
-
* > "Ă" => "A"
|
|
1145
|
-
* > ...
|
|
618
|
+
* Note: This function is used to create a (error) message when there is no constructor for some LLM provider
|
|
1146
619
|
*
|
|
1147
|
-
* @
|
|
620
|
+
* @private internal function of `createLlmToolsFromConfiguration` and `createLlmToolsFromEnv`
|
|
1148
621
|
*/
|
|
1149
|
-
|
|
1150
|
-
|
|
1151
|
-
|
|
1152
|
-
|
|
1153
|
-
|
|
1154
|
-
|
|
1155
|
-
|
|
622
|
+
function $registeredLlmToolsMessage() {
|
|
623
|
+
var e_1, _a, e_2, _b;
|
|
624
|
+
/**
|
|
625
|
+
* Mixes registered LLM tools from $llmToolsMetadataRegister and $llmToolsRegister
|
|
626
|
+
*/
|
|
627
|
+
var all = [];
|
|
628
|
+
var _loop_1 = function (packageName, className) {
|
|
629
|
+
if (all.some(function (item) { return item.packageName === packageName && item.className === className; })) {
|
|
630
|
+
return "continue";
|
|
631
|
+
}
|
|
632
|
+
all.push({ packageName: packageName, className: className });
|
|
633
|
+
};
|
|
634
|
+
try {
|
|
635
|
+
for (var _c = __values($llmToolsMetadataRegister.list()), _d = _c.next(); !_d.done; _d = _c.next()) {
|
|
636
|
+
var _e = _d.value, packageName = _e.packageName, className = _e.className;
|
|
637
|
+
_loop_1(packageName, className);
|
|
638
|
+
}
|
|
639
|
+
}
|
|
640
|
+
catch (e_1_1) { e_1 = { error: e_1_1 }; }
|
|
641
|
+
finally {
|
|
642
|
+
try {
|
|
643
|
+
if (_d && !_d.done && (_a = _c.return)) _a.call(_c);
|
|
644
|
+
}
|
|
645
|
+
finally { if (e_1) throw e_1.error; }
|
|
646
|
+
}
|
|
647
|
+
var _loop_2 = function (packageName, className) {
|
|
648
|
+
if (all.some(function (item) { return item.packageName === packageName && item.className === className; })) {
|
|
649
|
+
return "continue";
|
|
650
|
+
}
|
|
651
|
+
all.push({ packageName: packageName, className: className });
|
|
652
|
+
};
|
|
653
|
+
try {
|
|
654
|
+
for (var _f = __values($llmToolsRegister.list()), _g = _f.next(); !_g.done; _g = _f.next()) {
|
|
655
|
+
var _h = _g.value, packageName = _h.packageName, className = _h.className;
|
|
656
|
+
_loop_2(packageName, className);
|
|
657
|
+
}
|
|
658
|
+
}
|
|
659
|
+
catch (e_2_1) { e_2 = { error: e_2_1 }; }
|
|
660
|
+
finally {
|
|
661
|
+
try {
|
|
662
|
+
if (_g && !_g.done && (_b = _f.return)) _b.call(_f);
|
|
663
|
+
}
|
|
664
|
+
finally { if (e_2) throw e_2.error; }
|
|
1156
665
|
}
|
|
666
|
+
var metadata = all.map(function (metadata) {
|
|
667
|
+
var isMetadataAviailable = $llmToolsMetadataRegister
|
|
668
|
+
.list()
|
|
669
|
+
.find(function (_a) {
|
|
670
|
+
var packageName = _a.packageName, className = _a.className;
|
|
671
|
+
return metadata.packageName === packageName && metadata.className === className;
|
|
672
|
+
});
|
|
673
|
+
var isInstalled = $llmToolsRegister
|
|
674
|
+
.list()
|
|
675
|
+
.find(function (_a) {
|
|
676
|
+
var packageName = _a.packageName, className = _a.className;
|
|
677
|
+
return metadata.packageName === packageName && metadata.className === className;
|
|
678
|
+
});
|
|
679
|
+
return __assign(__assign({}, metadata), { isMetadataAviailable: isMetadataAviailable, isInstalled: isInstalled });
|
|
680
|
+
});
|
|
681
|
+
return spaceTrim__default["default"](function (block) { return "\n Available LLM providers are:\n ".concat(block(metadata
|
|
682
|
+
.map(function (_a, i) {
|
|
683
|
+
var packageName = _a.packageName, className = _a.className, isMetadataAviailable = _a.isMetadataAviailable, isInstalled = _a.isInstalled;
|
|
684
|
+
var more;
|
|
685
|
+
if (just(false)) {
|
|
686
|
+
more = '';
|
|
687
|
+
}
|
|
688
|
+
else if (!isMetadataAviailable && !isInstalled) {
|
|
689
|
+
// TODO: [�][�] Maybe do allow to do auto-install if package not registered and not found
|
|
690
|
+
more = "(not installed and no metadata, looks like a unexpected behavior)";
|
|
691
|
+
}
|
|
692
|
+
else if (isMetadataAviailable && !isInstalled) {
|
|
693
|
+
// TODO: [�][�]
|
|
694
|
+
more = "(not installed)";
|
|
695
|
+
}
|
|
696
|
+
else if (!isMetadataAviailable && isInstalled) {
|
|
697
|
+
more = "(no metadata, looks like a unexpected behavior)";
|
|
698
|
+
}
|
|
699
|
+
else if (isMetadataAviailable && isInstalled) {
|
|
700
|
+
more = "(installed)";
|
|
701
|
+
}
|
|
702
|
+
else {
|
|
703
|
+
more = "(unknown state, looks like a unexpected behavior)";
|
|
704
|
+
}
|
|
705
|
+
return "".concat(i + 1, ") `").concat(className, "` from `").concat(packageName, "` ").concat(more);
|
|
706
|
+
})
|
|
707
|
+
.join('\n')), "\n "); });
|
|
1157
708
|
}
|
|
1158
|
-
// <- TODO: [🍓] Put to maker function to save execution time if not needed
|
|
1159
|
-
/*
|
|
1160
|
-
@see https://stackoverflow.com/questions/990904/remove-accents-diacritics-in-a-string-in-javascript
|
|
1161
|
-
Licensed under the Apache License, Version 2.0 (the "License");
|
|
1162
|
-
you may not use this file except in compliance with the License.
|
|
1163
|
-
You may obtain a copy of the License at
|
|
1164
|
-
|
|
1165
|
-
http://www.apache.org/licenses/LICENSE-2.0
|
|
1166
|
-
|
|
1167
|
-
Unless required by applicable law or agreed to in writing, software
|
|
1168
|
-
distributed under the License is distributed on an "AS IS" BASIS,
|
|
1169
|
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
1170
|
-
See the License for the specific language governing permissions and
|
|
1171
|
-
limitations under the License.
|
|
1172
|
-
*/
|
|
1173
709
|
|
|
1174
710
|
/**
|
|
1175
711
|
* @@@
|
|
1176
712
|
*
|
|
1177
|
-
*
|
|
713
|
+
* Note: This function is not cached, every call creates new instance of `MultipleLlmExecutionTools`
|
|
714
|
+
*
|
|
1178
715
|
* @returns @@@
|
|
1179
|
-
* @public exported from `@promptbook/
|
|
716
|
+
* @public exported from `@promptbook/core`
|
|
1180
717
|
*/
|
|
1181
|
-
function
|
|
1182
|
-
|
|
1183
|
-
|
|
1184
|
-
|
|
718
|
+
function createLlmToolsFromConfiguration(configuration, options) {
|
|
719
|
+
if (options === void 0) { options = {}; }
|
|
720
|
+
var _a = options.isVerbose, isVerbose = _a === void 0 ? IS_VERBOSE : _a;
|
|
721
|
+
var llmTools = configuration.map(function (llmConfiguration) {
|
|
722
|
+
var registeredItem = $llmToolsRegister
|
|
723
|
+
.list()
|
|
724
|
+
.find(function (_a) {
|
|
725
|
+
var packageName = _a.packageName, className = _a.className;
|
|
726
|
+
return llmConfiguration.packageName === packageName && llmConfiguration.className === className;
|
|
727
|
+
});
|
|
728
|
+
if (registeredItem === undefined) {
|
|
729
|
+
throw new Error(spaceTrim__default["default"](function (block) { return "\n There is no constructor for LLM provider `".concat(llmConfiguration.className, "` from `").concat(llmConfiguration.packageName, "`\n\n You have probably forgotten install and import the provider package.\n To fix this issue, you can:\n\n Install:\n\n > npm install ").concat(llmConfiguration.packageName, "\n\n And import:\n\n > import '").concat(llmConfiguration.packageName, "';\n\n\n ").concat(block($registeredLlmToolsMessage()), "\n "); }));
|
|
730
|
+
}
|
|
731
|
+
return registeredItem(__assign({ isVerbose: isVerbose }, llmConfiguration.options));
|
|
1185
732
|
});
|
|
733
|
+
return joinLlmExecutionTools.apply(void 0, __spreadArray([], __read(llmTools), false));
|
|
1186
734
|
}
|
|
1187
735
|
/**
|
|
1188
|
-
* TODO: [
|
|
736
|
+
* TODO: [🎌] Togethere with `createLlmToolsFromConfiguration` + 'EXECUTION_TOOLS_CLASSES' gets to `@promptbook/core` ALL model providers, make this more efficient
|
|
737
|
+
* TODO: [🧠][🎌] Dynamically install required providers
|
|
738
|
+
* TODO: @@@ write discussion about this - wizzard
|
|
739
|
+
* TODO: [🧠][🍛] Which name is better `createLlmToolsFromConfig` or `createLlmToolsFromConfiguration`?
|
|
740
|
+
* TODO: [🧠] Is there some meaningfull way how to test this util
|
|
741
|
+
* TODO: This should be maybe not under `_common` but under `utils`
|
|
1189
742
|
*/
|
|
1190
743
|
|
|
1191
744
|
/**
|
|
1192
|
-
*
|
|
1193
|
-
*
|
|
1194
|
-
* @public exported from `@promptbook/utils`
|
|
1195
|
-
*/
|
|
1196
|
-
function countWords(text) {
|
|
1197
|
-
text = text.replace(/[\p{Extended_Pictographic}]/gu, 'a');
|
|
1198
|
-
text = removeDiacritics(text);
|
|
1199
|
-
return text.split(/[^a-zа-я0-9]+/i).filter(function (word) { return word.length > 0; }).length;
|
|
1200
|
-
}
|
|
1201
|
-
|
|
1202
|
-
/**
|
|
1203
|
-
* Helper of usage compute
|
|
1204
|
-
*
|
|
1205
|
-
* @param content the content of prompt or response
|
|
1206
|
-
* @returns part of PromptResultUsageCounts
|
|
1207
|
-
*
|
|
1208
|
-
* @private internal utility of LlmExecutionTools
|
|
1209
|
-
*/
|
|
1210
|
-
function computeUsageCounts(content) {
|
|
1211
|
-
return {
|
|
1212
|
-
charactersCount: { value: countCharacters(content) },
|
|
1213
|
-
wordsCount: { value: countWords(content) },
|
|
1214
|
-
sentencesCount: { value: countSentences(content) },
|
|
1215
|
-
linesCount: { value: countLines(content) },
|
|
1216
|
-
paragraphsCount: { value: countParagraphs(content) },
|
|
1217
|
-
pagesCount: { value: countPages(content) },
|
|
1218
|
-
};
|
|
1219
|
-
}
|
|
1220
|
-
|
|
1221
|
-
/**
|
|
1222
|
-
* Make UncertainNumber
|
|
1223
|
-
*
|
|
1224
|
-
* @param value
|
|
1225
|
-
*
|
|
1226
|
-
* @private utility for initializating UncertainNumber
|
|
1227
|
-
*/
|
|
1228
|
-
function uncertainNumber(value) {
|
|
1229
|
-
if (value === null || value === undefined || Number.isNaN(value)) {
|
|
1230
|
-
return { value: 0, isUncertain: true };
|
|
1231
|
-
}
|
|
1232
|
-
return { value: value };
|
|
1233
|
-
}
|
|
1234
|
-
|
|
1235
|
-
/**
|
|
1236
|
-
* Computes the usage of the Anthropic Claude API based on the response from Anthropic Claude
|
|
1237
|
-
*
|
|
1238
|
-
* @param promptContent The content of the prompt
|
|
1239
|
-
* @param resultContent The content of the result (for embedding prompts or failed prompts pass empty string)
|
|
1240
|
-
* @param rawResponse The raw response from Anthropic Claude API
|
|
1241
|
-
* @throws {PipelineExecutionError} If the usage is not defined in the response from Anthropic Claude
|
|
1242
|
-
* @private internal utility of `AnthropicClaudeExecutionTools`
|
|
1243
|
-
*/
|
|
1244
|
-
function computeAnthropicClaudeUsage(promptContent, // <- Note: Intentionally using [] to access type properties to bring jsdoc from Prompt/PromptResult to consumer
|
|
1245
|
-
resultContent, rawResponse) {
|
|
1246
|
-
var _a, _b;
|
|
1247
|
-
if (rawResponse.usage === undefined) {
|
|
1248
|
-
throw new PipelineExecutionError('The usage is not defined in the response from Anthropic Claude');
|
|
1249
|
-
}
|
|
1250
|
-
if (((_a = rawResponse.usage) === null || _a === void 0 ? void 0 : _a.input_tokens) === undefined) {
|
|
1251
|
-
throw new PipelineExecutionError('In Anthropic Claude response `usage.prompt_tokens` not defined');
|
|
1252
|
-
}
|
|
1253
|
-
var inputTokens = rawResponse.usage.input_tokens;
|
|
1254
|
-
var outputTokens = ((_b = rawResponse.usage) === null || _b === void 0 ? void 0 : _b.output_tokens) || 0;
|
|
1255
|
-
var modelInfo = ANTHROPIC_CLAUDE_MODELS.find(function (model) { return model.modelName === rawResponse.model; });
|
|
1256
|
-
var price;
|
|
1257
|
-
if (modelInfo === undefined || modelInfo.pricing === undefined) {
|
|
1258
|
-
price = uncertainNumber();
|
|
1259
|
-
}
|
|
1260
|
-
else {
|
|
1261
|
-
price = uncertainNumber(inputTokens * modelInfo.pricing.prompt + outputTokens * modelInfo.pricing.output);
|
|
1262
|
-
}
|
|
1263
|
-
return {
|
|
1264
|
-
price: price,
|
|
1265
|
-
input: __assign({ tokensCount: uncertainNumber(rawResponse.usage.input_tokens) }, computeUsageCounts(promptContent)),
|
|
1266
|
-
output: __assign({ tokensCount: uncertainNumber(outputTokens) }, computeUsageCounts(resultContent)),
|
|
1267
|
-
};
|
|
1268
|
-
}
|
|
1269
|
-
/**
|
|
1270
|
-
* TODO: [🤝] DRY Maybe some common abstraction between `computeOpenAiUsage` and `computeAnthropicClaudeUsage`
|
|
1271
|
-
*/
|
|
1272
|
-
|
|
1273
|
-
/**
|
|
1274
|
-
* Execution Tools for calling Anthropic Claude API.
|
|
1275
|
-
*
|
|
1276
|
-
* @public exported from `@promptbook/anthropic-claude`
|
|
1277
|
-
* @deprecated use `createAnthropicClaudeExecutionTools` instead
|
|
1278
|
-
*/
|
|
1279
|
-
var AnthropicClaudeExecutionTools = /** @class */ (function () {
|
|
1280
|
-
/**
|
|
1281
|
-
* Creates Anthropic Claude Execution Tools.
|
|
1282
|
-
*
|
|
1283
|
-
* @param options which are relevant are directly passed to the Anthropic Claude client
|
|
1284
|
-
*/
|
|
1285
|
-
function AnthropicClaudeExecutionTools(options) {
|
|
1286
|
-
if (options === void 0) { options = { isProxied: false }; }
|
|
1287
|
-
this.options = options;
|
|
1288
|
-
/**
|
|
1289
|
-
* Anthropic Claude API client.
|
|
1290
|
-
*/
|
|
1291
|
-
this.client = null;
|
|
1292
|
-
}
|
|
1293
|
-
Object.defineProperty(AnthropicClaudeExecutionTools.prototype, "title", {
|
|
1294
|
-
get: function () {
|
|
1295
|
-
return 'Anthropic Claude';
|
|
1296
|
-
},
|
|
1297
|
-
enumerable: false,
|
|
1298
|
-
configurable: true
|
|
1299
|
-
});
|
|
1300
|
-
Object.defineProperty(AnthropicClaudeExecutionTools.prototype, "description", {
|
|
1301
|
-
get: function () {
|
|
1302
|
-
return 'Use all models provided by Anthropic Claude';
|
|
1303
|
-
},
|
|
1304
|
-
enumerable: false,
|
|
1305
|
-
configurable: true
|
|
1306
|
-
});
|
|
1307
|
-
AnthropicClaudeExecutionTools.prototype.getClient = function () {
|
|
1308
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
1309
|
-
var anthropicOptions;
|
|
1310
|
-
return __generator(this, function (_a) {
|
|
1311
|
-
if (this.client === null) {
|
|
1312
|
-
anthropicOptions = __assign({}, this.options);
|
|
1313
|
-
delete anthropicOptions.isVerbose;
|
|
1314
|
-
delete anthropicOptions.isProxied;
|
|
1315
|
-
this.client = new Anthropic__default["default"](anthropicOptions);
|
|
1316
|
-
}
|
|
1317
|
-
return [2 /*return*/, this.client];
|
|
1318
|
-
});
|
|
1319
|
-
});
|
|
1320
|
-
};
|
|
1321
|
-
/**
|
|
1322
|
-
* Check the `options` passed to `constructor`
|
|
1323
|
-
*/
|
|
1324
|
-
AnthropicClaudeExecutionTools.prototype.checkConfiguration = function () {
|
|
1325
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
1326
|
-
return __generator(this, function (_a) {
|
|
1327
|
-
switch (_a.label) {
|
|
1328
|
-
case 0: return [4 /*yield*/, this.getClient()];
|
|
1329
|
-
case 1:
|
|
1330
|
-
_a.sent();
|
|
1331
|
-
return [2 /*return*/];
|
|
1332
|
-
}
|
|
1333
|
-
});
|
|
1334
|
-
});
|
|
1335
|
-
};
|
|
1336
|
-
/**
|
|
1337
|
-
* List all available Anthropic Claude models that can be used
|
|
1338
|
-
*/
|
|
1339
|
-
AnthropicClaudeExecutionTools.prototype.listModels = function () {
|
|
1340
|
-
return ANTHROPIC_CLAUDE_MODELS;
|
|
1341
|
-
};
|
|
1342
|
-
/**
|
|
1343
|
-
* Calls Anthropic Claude API to use a chat model.
|
|
1344
|
-
*/
|
|
1345
|
-
AnthropicClaudeExecutionTools.prototype.callChatModel = function (prompt) {
|
|
1346
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
1347
|
-
var content, parameters, modelRequirements, client, modelName, rawPromptContent, rawRequest, start, complete, rawResponse, contentBlock, resultContent, usage;
|
|
1348
|
-
return __generator(this, function (_a) {
|
|
1349
|
-
switch (_a.label) {
|
|
1350
|
-
case 0:
|
|
1351
|
-
if (this.options.isVerbose) {
|
|
1352
|
-
console.info('💬 Anthropic Claude callChatModel call');
|
|
1353
|
-
}
|
|
1354
|
-
content = prompt.content, parameters = prompt.parameters, modelRequirements = prompt.modelRequirements;
|
|
1355
|
-
return [4 /*yield*/, this.getClient()];
|
|
1356
|
-
case 1:
|
|
1357
|
-
client = _a.sent();
|
|
1358
|
-
// TODO: [☂] Use here more modelRequirements
|
|
1359
|
-
if (modelRequirements.modelVariant !== 'CHAT') {
|
|
1360
|
-
throw new PipelineExecutionError('Use callChatModel only for CHAT variant');
|
|
1361
|
-
}
|
|
1362
|
-
modelName = modelRequirements.modelName || this.getDefaultChatModel().modelName;
|
|
1363
|
-
rawPromptContent = replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName }));
|
|
1364
|
-
rawRequest = {
|
|
1365
|
-
model: modelRequirements.modelName || this.getDefaultChatModel().modelName,
|
|
1366
|
-
max_tokens: modelRequirements.maxTokens || 4096,
|
|
1367
|
-
// <- TODO: [🌾] Make some global max cap for maxTokens
|
|
1368
|
-
temperature: modelRequirements.temperature,
|
|
1369
|
-
system: modelRequirements.systemMessage,
|
|
1370
|
-
// <- TODO: [🈁] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
|
|
1371
|
-
// <- Note: [🧆]
|
|
1372
|
-
messages: [
|
|
1373
|
-
{
|
|
1374
|
-
role: 'user',
|
|
1375
|
-
content: rawPromptContent,
|
|
1376
|
-
},
|
|
1377
|
-
],
|
|
1378
|
-
// TODO: Is here some equivalent of user identification?> user: this.options.user,
|
|
1379
|
-
};
|
|
1380
|
-
start = getCurrentIsoDate();
|
|
1381
|
-
if (this.options.isVerbose) {
|
|
1382
|
-
console.info(colors__default["default"].bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
|
|
1383
|
-
}
|
|
1384
|
-
return [4 /*yield*/, client.messages.create(rawRequest)];
|
|
1385
|
-
case 2:
|
|
1386
|
-
rawResponse = _a.sent();
|
|
1387
|
-
if (this.options.isVerbose) {
|
|
1388
|
-
console.info(colors__default["default"].bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
1389
|
-
}
|
|
1390
|
-
if (!rawResponse.content[0]) {
|
|
1391
|
-
throw new PipelineExecutionError('No content from Anthropic Claude');
|
|
1392
|
-
}
|
|
1393
|
-
if (rawResponse.content.length > 1) {
|
|
1394
|
-
throw new PipelineExecutionError('More than one content blocks from Anthropic Claude');
|
|
1395
|
-
}
|
|
1396
|
-
contentBlock = rawResponse.content[0];
|
|
1397
|
-
if (contentBlock.type !== 'text') {
|
|
1398
|
-
throw new PipelineExecutionError("Returned content is not \"text\" type but \"".concat(contentBlock.type, "\""));
|
|
1399
|
-
}
|
|
1400
|
-
resultContent = contentBlock.text;
|
|
1401
|
-
// eslint-disable-next-line prefer-const
|
|
1402
|
-
complete = getCurrentIsoDate();
|
|
1403
|
-
usage = computeAnthropicClaudeUsage(content, '', rawResponse);
|
|
1404
|
-
return [2 /*return*/, {
|
|
1405
|
-
content: resultContent,
|
|
1406
|
-
modelName: rawResponse.model,
|
|
1407
|
-
timing: {
|
|
1408
|
-
start: start,
|
|
1409
|
-
complete: complete,
|
|
1410
|
-
},
|
|
1411
|
-
usage: usage,
|
|
1412
|
-
rawPromptContent: rawPromptContent,
|
|
1413
|
-
rawRequest: rawRequest,
|
|
1414
|
-
rawResponse: rawResponse,
|
|
1415
|
-
// <- [🗯]
|
|
1416
|
-
}];
|
|
1417
|
-
}
|
|
1418
|
-
});
|
|
1419
|
-
});
|
|
1420
|
-
};
|
|
1421
|
-
/*
|
|
1422
|
-
TODO: [👏]
|
|
1423
|
-
public async callCompletionModel(
|
|
1424
|
-
prompt: Pick<Prompt, 'content' | 'parameters' | 'modelRequirements'>,
|
|
1425
|
-
): Promise<PromptCompletionResult> {
|
|
1426
|
-
|
|
1427
|
-
if (this.options.isVerbose) {
|
|
1428
|
-
console.info('🖋 Anthropic Claude callCompletionModel call');
|
|
1429
|
-
}
|
|
1430
|
-
|
|
1431
|
-
const { content, parameters, modelRequirements } = prompt;
|
|
1432
|
-
|
|
1433
|
-
// TODO: [☂] Use here more modelRequirements
|
|
1434
|
-
if (modelRequirements.modelVariant !== 'COMPLETION') {
|
|
1435
|
-
throw new PipelineExecutionError('Use callCompletionModel only for COMPLETION variant');
|
|
1436
|
-
}
|
|
1437
|
-
|
|
1438
|
-
const modelName = modelRequirements.modelName || this.getDefaultChatModel().modelName;
|
|
1439
|
-
const modelSettings = {
|
|
1440
|
-
model: modelName,
|
|
1441
|
-
max_tokens: modelRequirements.maxTokens || 2000, // <- Note: 2000 is for lagacy reasons
|
|
1442
|
-
// <- TODO: [🌾] Make some global max cap for maxTokens
|
|
1443
|
-
// <- TODO: Use here `systemMessage`, `temperature` and `seed`
|
|
1444
|
-
};
|
|
1445
|
-
|
|
1446
|
-
const rawRequest: xxxx.Completions.CompletionCreateParamsNonStreaming = {
|
|
1447
|
-
...modelSettings,
|
|
1448
|
-
prompt: rawPromptContent,
|
|
1449
|
-
user: this.options.user,
|
|
1450
|
-
};
|
|
1451
|
-
const start: string_date_iso8601 = getCurrentIsoDate();
|
|
1452
|
-
let complete: string_date_iso8601;
|
|
1453
|
-
|
|
1454
|
-
if (this.options.isVerbose) {
|
|
1455
|
-
console.info(colors.bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
|
|
1456
|
-
}
|
|
1457
|
-
const rawResponse = await this.client.completions.create(rawRequest);
|
|
1458
|
-
if (this.options.isVerbose) {
|
|
1459
|
-
console.info(colors.bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
1460
|
-
}
|
|
1461
|
-
|
|
1462
|
-
if (!rawResponse.choices[0]) {
|
|
1463
|
-
throw new PipelineExecutionError('No choises from Anthropic Claude');
|
|
1464
|
-
}
|
|
1465
|
-
|
|
1466
|
-
if (rawResponse.choices.length > 1) {
|
|
1467
|
-
// TODO: This should be maybe only warning
|
|
1468
|
-
throw new PipelineExecutionError('More than one choise from Anthropic Claude');
|
|
1469
|
-
}
|
|
1470
|
-
|
|
1471
|
-
const resultContent = rawResponse.choices[0].text;
|
|
1472
|
-
// eslint-disable-next-line prefer-const
|
|
1473
|
-
complete = getCurrentIsoDate();
|
|
1474
|
-
const usage = { price: 'UNKNOWN', inputTokens: 0, outputTokens: 0 /* <- TODO: [🐞] Compute usage * / } satisfies PromptResultUsage;
|
|
1475
|
-
|
|
1476
|
-
|
|
1477
|
-
|
|
1478
|
-
return {
|
|
1479
|
-
content: resultContent,
|
|
1480
|
-
modelName: rawResponse.model || model,
|
|
1481
|
-
timing: {
|
|
1482
|
-
start,
|
|
1483
|
-
complete,
|
|
1484
|
-
},
|
|
1485
|
-
usage,
|
|
1486
|
-
rawResponse,
|
|
1487
|
-
// <- [🗯]
|
|
1488
|
-
};
|
|
1489
|
-
}
|
|
1490
|
-
*/
|
|
1491
|
-
// <- Note: [🤖] callXxxModel
|
|
1492
|
-
/**
|
|
1493
|
-
* Get the model that should be used as default
|
|
1494
|
-
*/
|
|
1495
|
-
AnthropicClaudeExecutionTools.prototype.getDefaultModel = function (defaultModelName) {
|
|
1496
|
-
var model = ANTHROPIC_CLAUDE_MODELS.find(function (_a) {
|
|
1497
|
-
var modelName = _a.modelName;
|
|
1498
|
-
return modelName.startsWith(defaultModelName);
|
|
1499
|
-
});
|
|
1500
|
-
if (model === undefined) {
|
|
1501
|
-
throw new UnexpectedError(spaceTrim__default["default"](function (block) {
|
|
1502
|
-
return "\n Cannot find model in OpenAI models with name \"".concat(defaultModelName, "\" which should be used as default.\n\n Available models:\n ").concat(block(ANTHROPIC_CLAUDE_MODELS.map(function (_a) {
|
|
1503
|
-
var modelName = _a.modelName;
|
|
1504
|
-
return "- \"".concat(modelName, "\"");
|
|
1505
|
-
}).join('\n')), "\n\n ");
|
|
1506
|
-
}));
|
|
1507
|
-
}
|
|
1508
|
-
return model;
|
|
1509
|
-
};
|
|
1510
|
-
/**
|
|
1511
|
-
* Default model for chat variant.
|
|
1512
|
-
*/
|
|
1513
|
-
AnthropicClaudeExecutionTools.prototype.getDefaultChatModel = function () {
|
|
1514
|
-
return this.getDefaultModel('claude-3-opus');
|
|
1515
|
-
};
|
|
1516
|
-
return AnthropicClaudeExecutionTools;
|
|
1517
|
-
}());
|
|
1518
|
-
/**
|
|
1519
|
-
* TODO: [🍆] JSON mode
|
|
1520
|
-
* TODO: [🧠] Maybe handle errors via transformAnthropicError (like transformAzureError)
|
|
1521
|
-
* TODO: Maybe Create some common util for callChatModel and callCompletionModel
|
|
1522
|
-
* TODO: Maybe make custom OpenAiError
|
|
1523
|
-
* TODO: [🧠][🈁] Maybe use `isDeterministic` from options
|
|
1524
|
-
* TODO: [🧠][🌰] Allow to pass `title` for tracking purposes
|
|
1525
|
-
* TODO: [📅] Maybe instead of `RemoteLlmExecutionToolsOptions` use `proxyWithAnonymousRemoteServer` (if implemented)
|
|
1526
|
-
*/
|
|
1527
|
-
|
|
1528
|
-
/**
|
|
1529
|
-
* Execution Tools for calling Anthropic Claude API.
|
|
1530
|
-
*
|
|
1531
|
-
* @public exported from `@promptbook/anthropic-claude`
|
|
1532
|
-
*/
|
|
1533
|
-
var createAnthropicClaudeExecutionTools = Object.assign(function (options) {
|
|
1534
|
-
if (options.isProxied) {
|
|
1535
|
-
return new RemoteLlmExecutionTools(__assign(__assign({}, options), { isAnonymous: true, llmToolsConfiguration: [
|
|
1536
|
-
{
|
|
1537
|
-
title: 'Anthropic Claude (proxied)',
|
|
1538
|
-
packageName: '@promptbook/anthropic-claude',
|
|
1539
|
-
className: 'AnthropicClaudeExecutionTools',
|
|
1540
|
-
options: __assign(__assign({}, options), { isProxied: false }),
|
|
1541
|
-
},
|
|
1542
|
-
], models: ANTHROPIC_CLAUDE_MODELS }));
|
|
1543
|
-
}
|
|
1544
|
-
return new AnthropicClaudeExecutionTools(options);
|
|
1545
|
-
}, {
|
|
1546
|
-
packageName: '@promptbook/anthropic-claude',
|
|
1547
|
-
className: 'AnthropicClaudeExecutionTools',
|
|
1548
|
-
});
|
|
1549
|
-
/**
|
|
1550
|
-
* TODO: [🧠] !!!! Make anonymous this with all LLM providers
|
|
1551
|
-
* TODO: [🧠][🧱] !!!! Maybe change all `new AnthropicClaudeExecutionTools` -> `createAnthropicClaudeExecutionTools` in manual
|
|
1552
|
-
* TODO: [🧠] Maybe auto-detect usage in browser and determine default value of `isProxied`
|
|
1553
|
-
* TODO: [🦺] Is there some way how to put `packageName` and `className` on top and function definition on bottom?
|
|
1554
|
-
* TODO: [🎶] Naming "constructor" vs "creator" vs "factory"
|
|
1555
|
-
*/
|
|
1556
|
-
|
|
1557
|
-
/**
|
|
1558
|
-
* List of available OpenAI models with pricing
|
|
1559
|
-
*
|
|
1560
|
-
* Note: Done at 2024-05-20
|
|
1561
|
-
*
|
|
1562
|
-
* @see https://platform.openai.com/docs/models/
|
|
1563
|
-
* @see https://openai.com/api/pricing/
|
|
1564
|
-
* @public exported from `@promptbook/openai`
|
|
1565
|
-
*/
|
|
1566
|
-
var OPENAI_MODELS = [
|
|
1567
|
-
/*/
|
|
1568
|
-
{
|
|
1569
|
-
modelTitle: 'dall-e-3',
|
|
1570
|
-
modelName: 'dall-e-3',
|
|
1571
|
-
},
|
|
1572
|
-
/**/
|
|
1573
|
-
/*/
|
|
1574
|
-
{
|
|
1575
|
-
modelTitle: 'whisper-1',
|
|
1576
|
-
modelName: 'whisper-1',
|
|
1577
|
-
},
|
|
1578
|
-
/**/
|
|
1579
|
-
/**/
|
|
1580
|
-
{
|
|
1581
|
-
modelVariant: 'COMPLETION',
|
|
1582
|
-
modelTitle: 'davinci-002',
|
|
1583
|
-
modelName: 'davinci-002',
|
|
1584
|
-
pricing: {
|
|
1585
|
-
prompt: computeUsage("$2.00 / 1M tokens"),
|
|
1586
|
-
output: computeUsage("$2.00 / 1M tokens"), // <- not sure
|
|
1587
|
-
},
|
|
1588
|
-
},
|
|
1589
|
-
/**/
|
|
1590
|
-
/*/
|
|
1591
|
-
{
|
|
1592
|
-
modelTitle: 'dall-e-2',
|
|
1593
|
-
modelName: 'dall-e-2',
|
|
1594
|
-
},
|
|
1595
|
-
/**/
|
|
1596
|
-
/**/
|
|
1597
|
-
{
|
|
1598
|
-
modelVariant: 'CHAT',
|
|
1599
|
-
modelTitle: 'gpt-3.5-turbo-16k',
|
|
1600
|
-
modelName: 'gpt-3.5-turbo-16k',
|
|
1601
|
-
pricing: {
|
|
1602
|
-
prompt: computeUsage("$3.00 / 1M tokens"),
|
|
1603
|
-
output: computeUsage("$4.00 / 1M tokens"),
|
|
1604
|
-
},
|
|
1605
|
-
},
|
|
1606
|
-
/**/
|
|
1607
|
-
/*/
|
|
1608
|
-
{
|
|
1609
|
-
modelTitle: 'tts-1-hd-1106',
|
|
1610
|
-
modelName: 'tts-1-hd-1106',
|
|
1611
|
-
},
|
|
1612
|
-
/**/
|
|
1613
|
-
/*/
|
|
1614
|
-
{
|
|
1615
|
-
modelTitle: 'tts-1-hd',
|
|
1616
|
-
modelName: 'tts-1-hd',
|
|
1617
|
-
},
|
|
1618
|
-
/**/
|
|
1619
|
-
/**/
|
|
1620
|
-
{
|
|
1621
|
-
modelVariant: 'CHAT',
|
|
1622
|
-
modelTitle: 'gpt-4',
|
|
1623
|
-
modelName: 'gpt-4',
|
|
1624
|
-
pricing: {
|
|
1625
|
-
prompt: computeUsage("$30.00 / 1M tokens"),
|
|
1626
|
-
output: computeUsage("$60.00 / 1M tokens"),
|
|
1627
|
-
},
|
|
1628
|
-
},
|
|
1629
|
-
/**/
|
|
1630
|
-
/**/
|
|
1631
|
-
{
|
|
1632
|
-
modelVariant: 'CHAT',
|
|
1633
|
-
modelTitle: 'gpt-4-32k',
|
|
1634
|
-
modelName: 'gpt-4-32k',
|
|
1635
|
-
pricing: {
|
|
1636
|
-
prompt: computeUsage("$60.00 / 1M tokens"),
|
|
1637
|
-
output: computeUsage("$120.00 / 1M tokens"),
|
|
1638
|
-
},
|
|
1639
|
-
},
|
|
1640
|
-
/**/
|
|
1641
|
-
/*/
|
|
1642
|
-
{
|
|
1643
|
-
modelVariant: 'CHAT',
|
|
1644
|
-
modelTitle: 'gpt-4-0613',
|
|
1645
|
-
modelName: 'gpt-4-0613',
|
|
1646
|
-
pricing: {
|
|
1647
|
-
prompt: computeUsage(` / 1M tokens`),
|
|
1648
|
-
output: computeUsage(` / 1M tokens`),
|
|
1649
|
-
},
|
|
1650
|
-
},
|
|
1651
|
-
/**/
|
|
1652
|
-
/**/
|
|
1653
|
-
{
|
|
1654
|
-
modelVariant: 'CHAT',
|
|
1655
|
-
modelTitle: 'gpt-4-turbo-2024-04-09',
|
|
1656
|
-
modelName: 'gpt-4-turbo-2024-04-09',
|
|
1657
|
-
pricing: {
|
|
1658
|
-
prompt: computeUsage("$10.00 / 1M tokens"),
|
|
1659
|
-
output: computeUsage("$30.00 / 1M tokens"),
|
|
1660
|
-
},
|
|
1661
|
-
},
|
|
1662
|
-
/**/
|
|
1663
|
-
/**/
|
|
1664
|
-
{
|
|
1665
|
-
modelVariant: 'CHAT',
|
|
1666
|
-
modelTitle: 'gpt-3.5-turbo-1106',
|
|
1667
|
-
modelName: 'gpt-3.5-turbo-1106',
|
|
1668
|
-
pricing: {
|
|
1669
|
-
prompt: computeUsage("$1.00 / 1M tokens"),
|
|
1670
|
-
output: computeUsage("$2.00 / 1M tokens"),
|
|
1671
|
-
},
|
|
1672
|
-
},
|
|
1673
|
-
/**/
|
|
1674
|
-
/**/
|
|
1675
|
-
{
|
|
1676
|
-
modelVariant: 'CHAT',
|
|
1677
|
-
modelTitle: 'gpt-4-turbo',
|
|
1678
|
-
modelName: 'gpt-4-turbo',
|
|
1679
|
-
pricing: {
|
|
1680
|
-
prompt: computeUsage("$10.00 / 1M tokens"),
|
|
1681
|
-
output: computeUsage("$30.00 / 1M tokens"),
|
|
1682
|
-
},
|
|
1683
|
-
},
|
|
1684
|
-
/**/
|
|
1685
|
-
/**/
|
|
1686
|
-
{
|
|
1687
|
-
modelVariant: 'COMPLETION',
|
|
1688
|
-
modelTitle: 'gpt-3.5-turbo-instruct-0914',
|
|
1689
|
-
modelName: 'gpt-3.5-turbo-instruct-0914',
|
|
1690
|
-
pricing: {
|
|
1691
|
-
prompt: computeUsage("$1.50 / 1M tokens"),
|
|
1692
|
-
output: computeUsage("$2.00 / 1M tokens"), // <- For gpt-3.5-turbo-instruct
|
|
1693
|
-
},
|
|
1694
|
-
},
|
|
1695
|
-
/**/
|
|
1696
|
-
/**/
|
|
1697
|
-
{
|
|
1698
|
-
modelVariant: 'COMPLETION',
|
|
1699
|
-
modelTitle: 'gpt-3.5-turbo-instruct',
|
|
1700
|
-
modelName: 'gpt-3.5-turbo-instruct',
|
|
1701
|
-
pricing: {
|
|
1702
|
-
prompt: computeUsage("$1.50 / 1M tokens"),
|
|
1703
|
-
output: computeUsage("$2.00 / 1M tokens"),
|
|
1704
|
-
},
|
|
1705
|
-
},
|
|
1706
|
-
/**/
|
|
1707
|
-
/*/
|
|
1708
|
-
{
|
|
1709
|
-
modelTitle: 'tts-1',
|
|
1710
|
-
modelName: 'tts-1',
|
|
1711
|
-
},
|
|
1712
|
-
/**/
|
|
1713
|
-
/**/
|
|
1714
|
-
{
|
|
1715
|
-
modelVariant: 'CHAT',
|
|
1716
|
-
modelTitle: 'gpt-3.5-turbo',
|
|
1717
|
-
modelName: 'gpt-3.5-turbo',
|
|
1718
|
-
pricing: {
|
|
1719
|
-
prompt: computeUsage("$3.00 / 1M tokens"),
|
|
1720
|
-
output: computeUsage("$6.00 / 1M tokens"), // <- Not sure, refer to gpt-3.5-turbo in Fine-tuning models
|
|
1721
|
-
},
|
|
1722
|
-
},
|
|
1723
|
-
/**/
|
|
1724
|
-
/**/
|
|
1725
|
-
{
|
|
1726
|
-
modelVariant: 'CHAT',
|
|
1727
|
-
modelTitle: 'gpt-3.5-turbo-0301',
|
|
1728
|
-
modelName: 'gpt-3.5-turbo-0301',
|
|
1729
|
-
pricing: {
|
|
1730
|
-
prompt: computeUsage("$1.50 / 1M tokens"),
|
|
1731
|
-
output: computeUsage("$2.00 / 1M tokens"),
|
|
1732
|
-
},
|
|
1733
|
-
},
|
|
1734
|
-
/**/
|
|
1735
|
-
/**/
|
|
1736
|
-
{
|
|
1737
|
-
modelVariant: 'COMPLETION',
|
|
1738
|
-
modelTitle: 'babbage-002',
|
|
1739
|
-
modelName: 'babbage-002',
|
|
1740
|
-
pricing: {
|
|
1741
|
-
prompt: computeUsage("$0.40 / 1M tokens"),
|
|
1742
|
-
output: computeUsage("$0.40 / 1M tokens"), // <- Not sure
|
|
1743
|
-
},
|
|
1744
|
-
},
|
|
1745
|
-
/**/
|
|
1746
|
-
/**/
|
|
1747
|
-
{
|
|
1748
|
-
modelVariant: 'CHAT',
|
|
1749
|
-
modelTitle: 'gpt-4-1106-preview',
|
|
1750
|
-
modelName: 'gpt-4-1106-preview',
|
|
1751
|
-
pricing: {
|
|
1752
|
-
prompt: computeUsage("$10.00 / 1M tokens"),
|
|
1753
|
-
output: computeUsage("$30.00 / 1M tokens"),
|
|
1754
|
-
},
|
|
1755
|
-
},
|
|
1756
|
-
/**/
|
|
1757
|
-
/**/
|
|
1758
|
-
{
|
|
1759
|
-
modelVariant: 'CHAT',
|
|
1760
|
-
modelTitle: 'gpt-4-0125-preview',
|
|
1761
|
-
modelName: 'gpt-4-0125-preview',
|
|
1762
|
-
pricing: {
|
|
1763
|
-
prompt: computeUsage("$10.00 / 1M tokens"),
|
|
1764
|
-
output: computeUsage("$30.00 / 1M tokens"),
|
|
1765
|
-
},
|
|
1766
|
-
},
|
|
1767
|
-
/**/
|
|
1768
|
-
/*/
|
|
1769
|
-
{
|
|
1770
|
-
modelTitle: 'tts-1-1106',
|
|
1771
|
-
modelName: 'tts-1-1106',
|
|
1772
|
-
},
|
|
1773
|
-
/**/
|
|
1774
|
-
/**/
|
|
1775
|
-
{
|
|
1776
|
-
modelVariant: 'CHAT',
|
|
1777
|
-
modelTitle: 'gpt-3.5-turbo-0125',
|
|
1778
|
-
modelName: 'gpt-3.5-turbo-0125',
|
|
1779
|
-
pricing: {
|
|
1780
|
-
prompt: computeUsage("$0.50 / 1M tokens"),
|
|
1781
|
-
output: computeUsage("$1.50 / 1M tokens"),
|
|
1782
|
-
},
|
|
1783
|
-
},
|
|
1784
|
-
/**/
|
|
1785
|
-
/**/
|
|
1786
|
-
{
|
|
1787
|
-
modelVariant: 'CHAT',
|
|
1788
|
-
modelTitle: 'gpt-4-turbo-preview',
|
|
1789
|
-
modelName: 'gpt-4-turbo-preview',
|
|
1790
|
-
pricing: {
|
|
1791
|
-
prompt: computeUsage("$10.00 / 1M tokens"),
|
|
1792
|
-
output: computeUsage("$30.00 / 1M tokens"), // <- Not sure, just for gpt-4-turbo
|
|
1793
|
-
},
|
|
1794
|
-
},
|
|
1795
|
-
/**/
|
|
1796
|
-
/**/
|
|
1797
|
-
{
|
|
1798
|
-
modelVariant: 'EMBEDDING',
|
|
1799
|
-
modelTitle: 'text-embedding-3-large',
|
|
1800
|
-
modelName: 'text-embedding-3-large',
|
|
1801
|
-
pricing: {
|
|
1802
|
-
prompt: computeUsage("$0.13 / 1M tokens"),
|
|
1803
|
-
// TODO: [🏏] Leverage the batch API @see https://platform.openai.com/docs/guides/batch
|
|
1804
|
-
output: 0, // <- Note: [🆖] In Embedding models you dont pay for output
|
|
1805
|
-
},
|
|
1806
|
-
},
|
|
1807
|
-
/**/
|
|
1808
|
-
/**/
|
|
1809
|
-
{
|
|
1810
|
-
modelVariant: 'EMBEDDING',
|
|
1811
|
-
modelTitle: 'text-embedding-3-small',
|
|
1812
|
-
modelName: 'text-embedding-3-small',
|
|
1813
|
-
pricing: {
|
|
1814
|
-
prompt: computeUsage("$0.02 / 1M tokens"),
|
|
1815
|
-
// TODO: [🏏] Leverage the batch API @see https://platform.openai.com/docs/guides/batch
|
|
1816
|
-
output: 0, // <- Note: [🆖] In Embedding models you dont pay for output
|
|
1817
|
-
},
|
|
1818
|
-
},
|
|
1819
|
-
/**/
|
|
1820
|
-
/**/
|
|
1821
|
-
{
|
|
1822
|
-
modelVariant: 'CHAT',
|
|
1823
|
-
modelTitle: 'gpt-3.5-turbo-0613',
|
|
1824
|
-
modelName: 'gpt-3.5-turbo-0613',
|
|
1825
|
-
pricing: {
|
|
1826
|
-
prompt: computeUsage("$1.50 / 1M tokens"),
|
|
1827
|
-
output: computeUsage("$2.00 / 1M tokens"),
|
|
1828
|
-
},
|
|
1829
|
-
},
|
|
1830
|
-
/**/
|
|
1831
|
-
/**/
|
|
1832
|
-
{
|
|
1833
|
-
modelVariant: 'EMBEDDING',
|
|
1834
|
-
modelTitle: 'text-embedding-ada-002',
|
|
1835
|
-
modelName: 'text-embedding-ada-002',
|
|
1836
|
-
pricing: {
|
|
1837
|
-
prompt: computeUsage("$0.1 / 1M tokens"),
|
|
1838
|
-
// TODO: [🏏] Leverage the batch API @see https://platform.openai.com/docs/guides/batch
|
|
1839
|
-
output: 0, // <- Note: [🆖] In Embedding models you dont pay for output
|
|
1840
|
-
},
|
|
1841
|
-
},
|
|
1842
|
-
/**/
|
|
1843
|
-
/*/
|
|
1844
|
-
{
|
|
1845
|
-
modelVariant: 'CHAT',
|
|
1846
|
-
modelTitle: 'gpt-4-1106-vision-preview',
|
|
1847
|
-
modelName: 'gpt-4-1106-vision-preview',
|
|
1848
|
-
},
|
|
1849
|
-
/**/
|
|
1850
|
-
/*/
|
|
1851
|
-
{
|
|
1852
|
-
modelVariant: 'CHAT',
|
|
1853
|
-
modelTitle: 'gpt-4-vision-preview',
|
|
1854
|
-
modelName: 'gpt-4-vision-preview',
|
|
1855
|
-
pricing: {
|
|
1856
|
-
prompt: computeUsage(`$10.00 / 1M tokens`),
|
|
1857
|
-
output: computeUsage(`$30.00 / 1M tokens`),
|
|
1858
|
-
},
|
|
1859
|
-
},
|
|
1860
|
-
/**/
|
|
1861
|
-
/**/
|
|
1862
|
-
{
|
|
1863
|
-
modelVariant: 'CHAT',
|
|
1864
|
-
modelTitle: 'gpt-4o-2024-05-13',
|
|
1865
|
-
modelName: 'gpt-4o-2024-05-13',
|
|
1866
|
-
pricing: {
|
|
1867
|
-
prompt: computeUsage("$5.00 / 1M tokens"),
|
|
1868
|
-
output: computeUsage("$15.00 / 1M tokens"),
|
|
1869
|
-
},
|
|
1870
|
-
},
|
|
1871
|
-
/**/
|
|
1872
|
-
/**/
|
|
1873
|
-
{
|
|
1874
|
-
modelVariant: 'CHAT',
|
|
1875
|
-
modelTitle: 'gpt-4o',
|
|
1876
|
-
modelName: 'gpt-4o',
|
|
1877
|
-
pricing: {
|
|
1878
|
-
prompt: computeUsage("$5.00 / 1M tokens"),
|
|
1879
|
-
output: computeUsage("$15.00 / 1M tokens"),
|
|
1880
|
-
},
|
|
1881
|
-
},
|
|
1882
|
-
/**/
|
|
1883
|
-
/**/
|
|
1884
|
-
{
|
|
1885
|
-
modelVariant: 'CHAT',
|
|
1886
|
-
modelTitle: 'gpt-3.5-turbo-16k-0613',
|
|
1887
|
-
modelName: 'gpt-3.5-turbo-16k-0613',
|
|
1888
|
-
pricing: {
|
|
1889
|
-
prompt: computeUsage("$3.00 / 1M tokens"),
|
|
1890
|
-
output: computeUsage("$4.00 / 1M tokens"),
|
|
1891
|
-
},
|
|
1892
|
-
},
|
|
1893
|
-
/**/
|
|
1894
|
-
];
|
|
1895
|
-
/**
|
|
1896
|
-
* Note: [🤖] Add models of new variant
|
|
1897
|
-
* TODO: [🧠] Some mechanism to propagate unsureness
|
|
1898
|
-
* TODO: [🎰] Some mechanism to auto-update available models
|
|
1899
|
-
* TODO: [🎰][👮♀️] Make this list dynamic - dynamically can be listed modelNames but not modelVariant, legacy status, context length and pricing
|
|
1900
|
-
* TODO: [🧠][👮♀️] Put here more info like description, isVision, trainingDateCutoff, languages, strengths ( Top-level performance, intelligence, fluency, and understanding), contextWindow,...
|
|
1901
|
-
* @see https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
|
|
1902
|
-
* @see https://openai.com/api/pricing/
|
|
1903
|
-
* @see /other/playground/playground.ts
|
|
1904
|
-
* TODO: [🍓] Make better
|
|
1905
|
-
* TODO: Change model titles to human eg: "gpt-4-turbo-2024-04-09" -> "GPT-4 Turbo (2024-04-09)"
|
|
1906
|
-
* TODO: [🚸] Not all models are compatible with JSON mode, add this information here and use it
|
|
1907
|
-
*/
|
|
1908
|
-
|
|
1909
|
-
/**
|
|
1910
|
-
* Execution Tools for calling Azure OpenAI API.
|
|
1911
|
-
*
|
|
1912
|
-
* @public exported from `@promptbook/azure-openai`
|
|
1913
|
-
*/
|
|
1914
|
-
var AzureOpenAiExecutionTools = /** @class */ (function () {
|
|
1915
|
-
/**
|
|
1916
|
-
* Creates OpenAI Execution Tools.
|
|
1917
|
-
*
|
|
1918
|
-
* @param options which are relevant are directly passed to the OpenAI client
|
|
1919
|
-
*/
|
|
1920
|
-
function AzureOpenAiExecutionTools(options) {
|
|
1921
|
-
this.options = options;
|
|
1922
|
-
/**
|
|
1923
|
-
* OpenAI Azure API client.
|
|
1924
|
-
*/
|
|
1925
|
-
this.client = null;
|
|
1926
|
-
}
|
|
1927
|
-
Object.defineProperty(AzureOpenAiExecutionTools.prototype, "title", {
|
|
1928
|
-
get: function () {
|
|
1929
|
-
return 'Azure OpenAI';
|
|
1930
|
-
},
|
|
1931
|
-
enumerable: false,
|
|
1932
|
-
configurable: true
|
|
1933
|
-
});
|
|
1934
|
-
Object.defineProperty(AzureOpenAiExecutionTools.prototype, "description", {
|
|
1935
|
-
get: function () {
|
|
1936
|
-
return 'Use all models trained by OpenAI provided by Azure';
|
|
1937
|
-
},
|
|
1938
|
-
enumerable: false,
|
|
1939
|
-
configurable: true
|
|
1940
|
-
});
|
|
1941
|
-
AzureOpenAiExecutionTools.prototype.getClient = function () {
|
|
1942
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
1943
|
-
return __generator(this, function (_a) {
|
|
1944
|
-
if (this.client === null) {
|
|
1945
|
-
this.client = new openai.OpenAIClient("https://".concat(this.options.resourceName, ".openai.azure.com/"), new openai.AzureKeyCredential(this.options.apiKey));
|
|
1946
|
-
}
|
|
1947
|
-
return [2 /*return*/, this.client];
|
|
1948
|
-
});
|
|
1949
|
-
});
|
|
1950
|
-
};
|
|
1951
|
-
/**
|
|
1952
|
-
* Check the `options` passed to `constructor`
|
|
1953
|
-
*/
|
|
1954
|
-
AzureOpenAiExecutionTools.prototype.checkConfiguration = function () {
|
|
1955
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
1956
|
-
return __generator(this, function (_a) {
|
|
1957
|
-
switch (_a.label) {
|
|
1958
|
-
case 0: return [4 /*yield*/, this.getClient()];
|
|
1959
|
-
case 1:
|
|
1960
|
-
_a.sent();
|
|
1961
|
-
return [2 /*return*/];
|
|
1962
|
-
}
|
|
1963
|
-
});
|
|
1964
|
-
});
|
|
1965
|
-
};
|
|
1966
|
-
/**
|
|
1967
|
-
* List all available Azure OpenAI models that can be used
|
|
1968
|
-
*/
|
|
1969
|
-
AzureOpenAiExecutionTools.prototype.listModels = function () {
|
|
1970
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
1971
|
-
return __generator(this, function (_a) {
|
|
1972
|
-
// TODO: !!! Do here some filtering which models are really available as deployment
|
|
1973
|
-
// @see https://management.azure.com/subscriptions/subscriptionId/resourceGroups/resourceGroupName/providers/Microsoft.CognitiveServices/accounts/accountName/deployments?api-version=2023-05-01
|
|
1974
|
-
return [2 /*return*/, OPENAI_MODELS.map(function (_a) {
|
|
1975
|
-
var modelTitle = _a.modelTitle, modelName = _a.modelName, modelVariant = _a.modelVariant;
|
|
1976
|
-
return ({
|
|
1977
|
-
modelTitle: "Azure ".concat(modelTitle),
|
|
1978
|
-
modelName: modelName,
|
|
1979
|
-
modelVariant: modelVariant,
|
|
1980
|
-
});
|
|
1981
|
-
})];
|
|
1982
|
-
});
|
|
1983
|
-
});
|
|
1984
|
-
};
|
|
1985
|
-
/**
|
|
1986
|
-
* Calls OpenAI API to use a chat model.
|
|
1987
|
-
*/
|
|
1988
|
-
AzureOpenAiExecutionTools.prototype.callChatModel = function (prompt) {
|
|
1989
|
-
var _a, _b;
|
|
1990
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
1991
|
-
var content, parameters, modelRequirements, client, modelName, modelSettings, rawPromptContent, messages, start, complete, rawRequest, rawResponse, resultContent, usage, error_1;
|
|
1992
|
-
return __generator(this, function (_c) {
|
|
1993
|
-
switch (_c.label) {
|
|
1994
|
-
case 0:
|
|
1995
|
-
if (this.options.isVerbose) {
|
|
1996
|
-
console.info('💬 OpenAI callChatModel call');
|
|
1997
|
-
}
|
|
1998
|
-
content = prompt.content, parameters = prompt.parameters, modelRequirements = prompt.modelRequirements;
|
|
1999
|
-
return [4 /*yield*/, this.getClient()];
|
|
2000
|
-
case 1:
|
|
2001
|
-
client = _c.sent();
|
|
2002
|
-
// TODO: [☂] Use here more modelRequirements
|
|
2003
|
-
if (modelRequirements.modelVariant !== 'CHAT') {
|
|
2004
|
-
throw new PipelineExecutionError('Use callChatModel only for CHAT variant');
|
|
2005
|
-
}
|
|
2006
|
-
_c.label = 2;
|
|
2007
|
-
case 2:
|
|
2008
|
-
_c.trys.push([2, 4, , 5]);
|
|
2009
|
-
modelName = prompt.modelRequirements.modelName || this.options.deploymentName;
|
|
2010
|
-
modelSettings = {
|
|
2011
|
-
maxTokens: modelRequirements.maxTokens,
|
|
2012
|
-
// <- TODO: [🌾] Make some global max cap for maxTokens
|
|
2013
|
-
temperature: modelRequirements.temperature,
|
|
2014
|
-
user: this.options.user,
|
|
2015
|
-
// <- TODO: [🈁] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
|
|
2016
|
-
// <- Note: [🧆]
|
|
2017
|
-
};
|
|
2018
|
-
rawPromptContent = replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName }));
|
|
2019
|
-
messages = __spreadArray(__spreadArray([], __read((modelRequirements.systemMessage === undefined
|
|
2020
|
-
? []
|
|
2021
|
-
: [
|
|
2022
|
-
{
|
|
2023
|
-
role: 'system',
|
|
2024
|
-
content: modelRequirements.systemMessage,
|
|
2025
|
-
},
|
|
2026
|
-
])), false), [
|
|
2027
|
-
{
|
|
2028
|
-
role: 'user',
|
|
2029
|
-
content: rawPromptContent,
|
|
2030
|
-
},
|
|
2031
|
-
], false);
|
|
2032
|
-
start = getCurrentIsoDate();
|
|
2033
|
-
complete = void 0;
|
|
2034
|
-
if (this.options.isVerbose) {
|
|
2035
|
-
console.info(colors__default["default"].bgWhite('messages'), JSON.stringify(messages, null, 4));
|
|
2036
|
-
}
|
|
2037
|
-
rawRequest = [modelName, messages, modelSettings];
|
|
2038
|
-
return [4 /*yield*/, client.getChatCompletions.apply(client, __spreadArray([], __read(rawRequest), false))];
|
|
2039
|
-
case 3:
|
|
2040
|
-
rawResponse = _c.sent();
|
|
2041
|
-
if (this.options.isVerbose) {
|
|
2042
|
-
console.info(colors__default["default"].bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
2043
|
-
}
|
|
2044
|
-
if (!rawResponse.choices[0]) {
|
|
2045
|
-
throw new PipelineExecutionError('No choises from Azure OpenAI');
|
|
2046
|
-
}
|
|
2047
|
-
if (rawResponse.choices.length > 1) {
|
|
2048
|
-
// TODO: This should be maybe only warning
|
|
2049
|
-
throw new PipelineExecutionError('More than one choise from Azure OpenAI');
|
|
2050
|
-
}
|
|
2051
|
-
if (!rawResponse.choices[0].message || !rawResponse.choices[0].message.content) {
|
|
2052
|
-
throw new PipelineExecutionError('Empty response from Azure OpenAI');
|
|
2053
|
-
}
|
|
2054
|
-
resultContent = rawResponse.choices[0].message.content;
|
|
2055
|
-
// eslint-disable-next-line prefer-const
|
|
2056
|
-
complete = getCurrentIsoDate();
|
|
2057
|
-
usage = {
|
|
2058
|
-
price: uncertainNumber() /* <- TODO: [🐞] Compute usage */,
|
|
2059
|
-
input: __assign({ tokensCount: uncertainNumber((_a = rawResponse.usage) === null || _a === void 0 ? void 0 : _a.promptTokens) }, computeUsageCounts(prompt.content)),
|
|
2060
|
-
output: __assign({ tokensCount: uncertainNumber((_b = rawResponse.usage) === null || _b === void 0 ? void 0 : _b.completionTokens) }, computeUsageCounts(prompt.content)),
|
|
2061
|
-
};
|
|
2062
|
-
return [2 /*return*/, {
|
|
2063
|
-
content: resultContent,
|
|
2064
|
-
modelName: modelName,
|
|
2065
|
-
timing: {
|
|
2066
|
-
start: start,
|
|
2067
|
-
complete: complete,
|
|
2068
|
-
},
|
|
2069
|
-
usage: usage,
|
|
2070
|
-
rawPromptContent: rawPromptContent,
|
|
2071
|
-
rawRequest: rawRequest,
|
|
2072
|
-
rawResponse: rawResponse,
|
|
2073
|
-
// <- [🗯]
|
|
2074
|
-
}];
|
|
2075
|
-
case 4:
|
|
2076
|
-
error_1 = _c.sent();
|
|
2077
|
-
throw this.transformAzureError(error_1);
|
|
2078
|
-
case 5: return [2 /*return*/];
|
|
2079
|
-
}
|
|
2080
|
-
});
|
|
2081
|
-
});
|
|
2082
|
-
};
|
|
2083
|
-
/**
|
|
2084
|
-
* Calls Azure OpenAI API to use a complete model.
|
|
2085
|
-
*/
|
|
2086
|
-
AzureOpenAiExecutionTools.prototype.callCompletionModel = function (prompt) {
|
|
2087
|
-
var _a, _b;
|
|
2088
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
2089
|
-
var content, parameters, modelRequirements, client, modelName, modelSettings, start, complete, rawPromptContent, rawRequest, rawResponse, resultContent, usage, error_2;
|
|
2090
|
-
return __generator(this, function (_c) {
|
|
2091
|
-
switch (_c.label) {
|
|
2092
|
-
case 0:
|
|
2093
|
-
if (this.options.isVerbose) {
|
|
2094
|
-
console.info('🖋 OpenAI callCompletionModel call');
|
|
2095
|
-
}
|
|
2096
|
-
content = prompt.content, parameters = prompt.parameters, modelRequirements = prompt.modelRequirements;
|
|
2097
|
-
return [4 /*yield*/, this.getClient()];
|
|
2098
|
-
case 1:
|
|
2099
|
-
client = _c.sent();
|
|
2100
|
-
// TODO: [☂] Use here more modelRequirements
|
|
2101
|
-
if (modelRequirements.modelVariant !== 'COMPLETION') {
|
|
2102
|
-
throw new PipelineExecutionError('Use callCompletionModel only for COMPLETION variant');
|
|
2103
|
-
}
|
|
2104
|
-
_c.label = 2;
|
|
2105
|
-
case 2:
|
|
2106
|
-
_c.trys.push([2, 4, , 5]);
|
|
2107
|
-
modelName = prompt.modelRequirements.modelName || this.options.deploymentName;
|
|
2108
|
-
modelSettings = {
|
|
2109
|
-
maxTokens: modelRequirements.maxTokens || 2000,
|
|
2110
|
-
// <- TODO: [🌾] Make some global max cap for maxTokens
|
|
2111
|
-
temperature: modelRequirements.temperature,
|
|
2112
|
-
user: this.options.user,
|
|
2113
|
-
// <- TODO: [🈁] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
|
|
2114
|
-
// <- Note: [🧆]
|
|
2115
|
-
};
|
|
2116
|
-
start = getCurrentIsoDate();
|
|
2117
|
-
complete = void 0;
|
|
2118
|
-
if (this.options.isVerbose) {
|
|
2119
|
-
console.info(colors__default["default"].bgWhite('content'), JSON.stringify(content, null, 4));
|
|
2120
|
-
console.info(colors__default["default"].bgWhite('parameters'), JSON.stringify(parameters, null, 4));
|
|
2121
|
-
}
|
|
2122
|
-
rawPromptContent = replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName }));
|
|
2123
|
-
rawRequest = [
|
|
2124
|
-
modelName,
|
|
2125
|
-
[rawPromptContent],
|
|
2126
|
-
modelSettings,
|
|
2127
|
-
];
|
|
2128
|
-
return [4 /*yield*/, client.getCompletions.apply(client, __spreadArray([], __read(rawRequest), false))];
|
|
2129
|
-
case 3:
|
|
2130
|
-
rawResponse = _c.sent();
|
|
2131
|
-
if (this.options.isVerbose) {
|
|
2132
|
-
console.info(colors__default["default"].bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
2133
|
-
}
|
|
2134
|
-
if (!rawResponse.choices[0]) {
|
|
2135
|
-
throw new PipelineExecutionError('No choises from OpenAI');
|
|
2136
|
-
}
|
|
2137
|
-
if (rawResponse.choices.length > 1) {
|
|
2138
|
-
// TODO: This should be maybe only warning
|
|
2139
|
-
throw new PipelineExecutionError('More than one choise from OpenAI');
|
|
2140
|
-
}
|
|
2141
|
-
resultContent = rawResponse.choices[0].text;
|
|
2142
|
-
// eslint-disable-next-line prefer-const
|
|
2143
|
-
complete = getCurrentIsoDate();
|
|
2144
|
-
usage = {
|
|
2145
|
-
price: uncertainNumber() /* <- TODO: [🐞] Compute usage */,
|
|
2146
|
-
input: __assign({ tokensCount: uncertainNumber((_a = rawResponse.usage) === null || _a === void 0 ? void 0 : _a.promptTokens) }, computeUsageCounts(prompt.content)),
|
|
2147
|
-
output: __assign({ tokensCount: uncertainNumber((_b = rawResponse.usage) === null || _b === void 0 ? void 0 : _b.completionTokens) }, computeUsageCounts(prompt.content)),
|
|
2148
|
-
};
|
|
2149
|
-
return [2 /*return*/, {
|
|
2150
|
-
content: resultContent,
|
|
2151
|
-
modelName: modelName,
|
|
2152
|
-
timing: {
|
|
2153
|
-
start: start,
|
|
2154
|
-
complete: complete,
|
|
2155
|
-
},
|
|
2156
|
-
usage: usage,
|
|
2157
|
-
rawPromptContent: rawPromptContent,
|
|
2158
|
-
rawRequest: rawRequest,
|
|
2159
|
-
rawResponse: rawResponse,
|
|
2160
|
-
// <- [🗯]
|
|
2161
|
-
}];
|
|
2162
|
-
case 4:
|
|
2163
|
-
error_2 = _c.sent();
|
|
2164
|
-
throw this.transformAzureError(error_2);
|
|
2165
|
-
case 5: return [2 /*return*/];
|
|
2166
|
-
}
|
|
2167
|
-
});
|
|
2168
|
-
});
|
|
2169
|
-
};
|
|
2170
|
-
// <- Note: [🤖] callXxxModel
|
|
2171
|
-
/**
|
|
2172
|
-
* Changes Azure error (which is not propper Error but object) to propper Error
|
|
2173
|
-
*/
|
|
2174
|
-
AzureOpenAiExecutionTools.prototype.transformAzureError = function (azureError) {
|
|
2175
|
-
if (typeof azureError !== 'object' || azureError === null) {
|
|
2176
|
-
return new PipelineExecutionError("Unknown Azure OpenAI error");
|
|
2177
|
-
}
|
|
2178
|
-
var code = azureError.code, message = azureError.message;
|
|
2179
|
-
return new PipelineExecutionError("".concat(code, ": ").concat(message));
|
|
2180
|
-
};
|
|
2181
|
-
return AzureOpenAiExecutionTools;
|
|
2182
|
-
}());
|
|
2183
|
-
/**
|
|
2184
|
-
* TODO: Maybe Create some common util for callChatModel and callCompletionModel
|
|
2185
|
-
* TODO: Maybe make custom AzureOpenAiError
|
|
2186
|
-
* TODO: [🧠][🈁] Maybe use `isDeterministic` from options
|
|
2187
|
-
* TODO: [🧠][🌰] Allow to pass `title` for tracking purposes
|
|
2188
|
-
*/
|
|
2189
|
-
|
|
2190
|
-
/**
|
|
2191
|
-
* Computes the usage of the OpenAI API based on the response from OpenAI
|
|
2192
|
-
*
|
|
2193
|
-
* @param promptContent The content of the prompt
|
|
2194
|
-
* @param resultContent The content of the result (for embedding prompts or failed prompts pass empty string)
|
|
2195
|
-
* @param rawResponse The raw response from OpenAI API
|
|
2196
|
-
* @throws {PipelineExecutionError} If the usage is not defined in the response from OpenAI
|
|
2197
|
-
* @private internal utility of `OpenAiExecutionTools`
|
|
2198
|
-
*/
|
|
2199
|
-
function computeOpenAiUsage(promptContent, // <- Note: Intentionally using [] to access type properties to bring jsdoc from Prompt/PromptResult to consumer
|
|
2200
|
-
resultContent, rawResponse) {
|
|
2201
|
-
var _a, _b;
|
|
2202
|
-
if (rawResponse.usage === undefined) {
|
|
2203
|
-
throw new PipelineExecutionError('The usage is not defined in the response from OpenAI');
|
|
2204
|
-
}
|
|
2205
|
-
if (((_a = rawResponse.usage) === null || _a === void 0 ? void 0 : _a.prompt_tokens) === undefined) {
|
|
2206
|
-
throw new PipelineExecutionError('In OpenAI response `usage.prompt_tokens` not defined');
|
|
2207
|
-
}
|
|
2208
|
-
var inputTokens = rawResponse.usage.prompt_tokens;
|
|
2209
|
-
var outputTokens = ((_b = rawResponse.usage) === null || _b === void 0 ? void 0 : _b.completion_tokens) || 0;
|
|
2210
|
-
var modelInfo = OPENAI_MODELS.find(function (model) { return model.modelName === rawResponse.model; });
|
|
2211
|
-
var price;
|
|
2212
|
-
if (modelInfo === undefined || modelInfo.pricing === undefined) {
|
|
2213
|
-
price = uncertainNumber();
|
|
2214
|
-
}
|
|
2215
|
-
else {
|
|
2216
|
-
price = uncertainNumber(inputTokens * modelInfo.pricing.prompt + outputTokens * modelInfo.pricing.output);
|
|
2217
|
-
}
|
|
2218
|
-
return {
|
|
2219
|
-
price: price,
|
|
2220
|
-
input: __assign({ tokensCount: uncertainNumber(rawResponse.usage.prompt_tokens) }, computeUsageCounts(promptContent)),
|
|
2221
|
-
output: __assign({ tokensCount: uncertainNumber(outputTokens) }, computeUsageCounts(resultContent)),
|
|
2222
|
-
};
|
|
2223
|
-
}
|
|
2224
|
-
/**
|
|
2225
|
-
* TODO: [🤝] DRY Maybe some common abstraction between `computeOpenAiUsage` and `computeAnthropicClaudeUsage`
|
|
2226
|
-
*/
|
|
2227
|
-
|
|
2228
|
-
/**
|
|
2229
|
-
* Execution Tools for calling OpenAI API
|
|
2230
|
-
*
|
|
2231
|
-
* @public exported from `@promptbook/openai`
|
|
2232
|
-
*/
|
|
2233
|
-
var OpenAiExecutionTools = /** @class */ (function () {
|
|
2234
|
-
/**
|
|
2235
|
-
* Creates OpenAI Execution Tools.
|
|
2236
|
-
*
|
|
2237
|
-
* @param options which are relevant are directly passed to the OpenAI client
|
|
2238
|
-
*/
|
|
2239
|
-
function OpenAiExecutionTools(options) {
|
|
2240
|
-
if (options === void 0) { options = {}; }
|
|
2241
|
-
this.options = options;
|
|
2242
|
-
/**
|
|
2243
|
-
* OpenAI API client.
|
|
2244
|
-
*/
|
|
2245
|
-
this.client = null;
|
|
2246
|
-
}
|
|
2247
|
-
Object.defineProperty(OpenAiExecutionTools.prototype, "title", {
|
|
2248
|
-
get: function () {
|
|
2249
|
-
return 'OpenAI';
|
|
2250
|
-
},
|
|
2251
|
-
enumerable: false,
|
|
2252
|
-
configurable: true
|
|
2253
|
-
});
|
|
2254
|
-
Object.defineProperty(OpenAiExecutionTools.prototype, "description", {
|
|
2255
|
-
get: function () {
|
|
2256
|
-
return 'Use all models provided by OpenAI';
|
|
2257
|
-
},
|
|
2258
|
-
enumerable: false,
|
|
2259
|
-
configurable: true
|
|
2260
|
-
});
|
|
2261
|
-
OpenAiExecutionTools.prototype.getClient = function () {
|
|
2262
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
2263
|
-
var openAiOptions;
|
|
2264
|
-
return __generator(this, function (_a) {
|
|
2265
|
-
if (this.client === null) {
|
|
2266
|
-
openAiOptions = __assign({}, this.options);
|
|
2267
|
-
delete openAiOptions.isVerbose;
|
|
2268
|
-
delete openAiOptions.user;
|
|
2269
|
-
this.client = new OpenAI__default["default"](__assign({}, openAiOptions));
|
|
2270
|
-
}
|
|
2271
|
-
return [2 /*return*/, this.client];
|
|
2272
|
-
});
|
|
2273
|
-
});
|
|
2274
|
-
};
|
|
2275
|
-
/**
|
|
2276
|
-
* Check the `options` passed to `constructor`
|
|
2277
|
-
*/
|
|
2278
|
-
OpenAiExecutionTools.prototype.checkConfiguration = function () {
|
|
2279
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
2280
|
-
return __generator(this, function (_a) {
|
|
2281
|
-
switch (_a.label) {
|
|
2282
|
-
case 0: return [4 /*yield*/, this.getClient()];
|
|
2283
|
-
case 1:
|
|
2284
|
-
_a.sent();
|
|
2285
|
-
return [2 /*return*/];
|
|
2286
|
-
}
|
|
2287
|
-
});
|
|
2288
|
-
});
|
|
2289
|
-
};
|
|
2290
|
-
/**
|
|
2291
|
-
* List all available OpenAI models that can be used
|
|
2292
|
-
*/
|
|
2293
|
-
OpenAiExecutionTools.prototype.listModels = function () {
|
|
2294
|
-
/*
|
|
2295
|
-
Note: Dynamic lising of the models
|
|
2296
|
-
const models = await this.openai.models.list({});
|
|
2297
|
-
|
|
2298
|
-
console.log({ models });
|
|
2299
|
-
console.log(models.data);
|
|
2300
|
-
*/
|
|
2301
|
-
return OPENAI_MODELS;
|
|
2302
|
-
};
|
|
2303
|
-
/**
|
|
2304
|
-
* Calls OpenAI API to use a chat model.
|
|
2305
|
-
*/
|
|
2306
|
-
OpenAiExecutionTools.prototype.callChatModel = function (prompt) {
|
|
2307
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
2308
|
-
var content, parameters, modelRequirements, expectFormat, client, modelName, modelSettings, rawPromptContent, rawRequest, start, complete, rawResponse, resultContent, usage;
|
|
2309
|
-
return __generator(this, function (_a) {
|
|
2310
|
-
switch (_a.label) {
|
|
2311
|
-
case 0:
|
|
2312
|
-
if (this.options.isVerbose) {
|
|
2313
|
-
console.info('💬 OpenAI callChatModel call', { prompt: prompt });
|
|
2314
|
-
}
|
|
2315
|
-
content = prompt.content, parameters = prompt.parameters, modelRequirements = prompt.modelRequirements, expectFormat = prompt.expectFormat;
|
|
2316
|
-
return [4 /*yield*/, this.getClient()];
|
|
2317
|
-
case 1:
|
|
2318
|
-
client = _a.sent();
|
|
2319
|
-
// TODO: [☂] Use here more modelRequirements
|
|
2320
|
-
if (modelRequirements.modelVariant !== 'CHAT') {
|
|
2321
|
-
throw new PipelineExecutionError('Use callChatModel only for CHAT variant');
|
|
2322
|
-
}
|
|
2323
|
-
modelName = modelRequirements.modelName || this.getDefaultChatModel().modelName;
|
|
2324
|
-
modelSettings = {
|
|
2325
|
-
model: modelName,
|
|
2326
|
-
max_tokens: modelRequirements.maxTokens,
|
|
2327
|
-
// <- TODO: [🌾] Make some global max cap for maxTokens
|
|
2328
|
-
temperature: modelRequirements.temperature,
|
|
2329
|
-
// <- TODO: [🈁] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
|
|
2330
|
-
// <- Note: [🧆]
|
|
2331
|
-
};
|
|
2332
|
-
if (expectFormat === 'JSON') {
|
|
2333
|
-
modelSettings.response_format = {
|
|
2334
|
-
type: 'json_object',
|
|
2335
|
-
};
|
|
2336
|
-
}
|
|
2337
|
-
rawPromptContent = replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName }));
|
|
2338
|
-
rawRequest = __assign(__assign({}, modelSettings), { messages: __spreadArray(__spreadArray([], __read((modelRequirements.systemMessage === undefined
|
|
2339
|
-
? []
|
|
2340
|
-
: [
|
|
2341
|
-
{
|
|
2342
|
-
role: 'system',
|
|
2343
|
-
content: modelRequirements.systemMessage,
|
|
2344
|
-
},
|
|
2345
|
-
])), false), [
|
|
2346
|
-
{
|
|
2347
|
-
role: 'user',
|
|
2348
|
-
content: rawPromptContent,
|
|
2349
|
-
},
|
|
2350
|
-
], false), user: this.options.user });
|
|
2351
|
-
start = getCurrentIsoDate();
|
|
2352
|
-
if (this.options.isVerbose) {
|
|
2353
|
-
console.info(colors__default["default"].bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
|
|
2354
|
-
}
|
|
2355
|
-
return [4 /*yield*/, client.chat.completions.create(rawRequest)];
|
|
2356
|
-
case 2:
|
|
2357
|
-
rawResponse = _a.sent();
|
|
2358
|
-
if (this.options.isVerbose) {
|
|
2359
|
-
console.info(colors__default["default"].bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
2360
|
-
}
|
|
2361
|
-
if (!rawResponse.choices[0]) {
|
|
2362
|
-
throw new PipelineExecutionError('No choises from OpenAI');
|
|
2363
|
-
}
|
|
2364
|
-
if (rawResponse.choices.length > 1) {
|
|
2365
|
-
// TODO: This should be maybe only warning
|
|
2366
|
-
throw new PipelineExecutionError('More than one choise from OpenAI');
|
|
2367
|
-
}
|
|
2368
|
-
resultContent = rawResponse.choices[0].message.content;
|
|
2369
|
-
// eslint-disable-next-line prefer-const
|
|
2370
|
-
complete = getCurrentIsoDate();
|
|
2371
|
-
usage = computeOpenAiUsage(content, resultContent || '', rawResponse);
|
|
2372
|
-
if (resultContent === null) {
|
|
2373
|
-
throw new PipelineExecutionError('No response message from OpenAI');
|
|
2374
|
-
}
|
|
2375
|
-
return [2 /*return*/, {
|
|
2376
|
-
content: resultContent,
|
|
2377
|
-
modelName: rawResponse.model || modelName,
|
|
2378
|
-
timing: {
|
|
2379
|
-
start: start,
|
|
2380
|
-
complete: complete,
|
|
2381
|
-
},
|
|
2382
|
-
usage: usage,
|
|
2383
|
-
rawPromptContent: rawPromptContent,
|
|
2384
|
-
rawRequest: rawRequest,
|
|
2385
|
-
rawResponse: rawResponse,
|
|
2386
|
-
// <- [🗯]
|
|
2387
|
-
}];
|
|
2388
|
-
}
|
|
2389
|
-
});
|
|
2390
|
-
});
|
|
2391
|
-
};
|
|
2392
|
-
/**
|
|
2393
|
-
* Calls OpenAI API to use a complete model.
|
|
2394
|
-
*/
|
|
2395
|
-
OpenAiExecutionTools.prototype.callCompletionModel = function (prompt) {
|
|
2396
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
2397
|
-
var content, parameters, modelRequirements, client, modelName, modelSettings, rawPromptContent, rawRequest, start, complete, rawResponse, resultContent, usage;
|
|
2398
|
-
return __generator(this, function (_a) {
|
|
2399
|
-
switch (_a.label) {
|
|
2400
|
-
case 0:
|
|
2401
|
-
if (this.options.isVerbose) {
|
|
2402
|
-
console.info('🖋 OpenAI callCompletionModel call', { prompt: prompt });
|
|
2403
|
-
}
|
|
2404
|
-
content = prompt.content, parameters = prompt.parameters, modelRequirements = prompt.modelRequirements;
|
|
2405
|
-
return [4 /*yield*/, this.getClient()];
|
|
2406
|
-
case 1:
|
|
2407
|
-
client = _a.sent();
|
|
2408
|
-
// TODO: [☂] Use here more modelRequirements
|
|
2409
|
-
if (modelRequirements.modelVariant !== 'COMPLETION') {
|
|
2410
|
-
throw new PipelineExecutionError('Use callCompletionModel only for COMPLETION variant');
|
|
2411
|
-
}
|
|
2412
|
-
modelName = modelRequirements.modelName || this.getDefaultCompletionModel().modelName;
|
|
2413
|
-
modelSettings = {
|
|
2414
|
-
model: modelName,
|
|
2415
|
-
max_tokens: modelRequirements.maxTokens || 2000,
|
|
2416
|
-
// <- TODO: [🌾] Make some global max cap for maxTokens
|
|
2417
|
-
temperature: modelRequirements.temperature,
|
|
2418
|
-
// <- TODO: [🈁] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
|
|
2419
|
-
// <- Note: [🧆]
|
|
2420
|
-
};
|
|
2421
|
-
rawPromptContent = replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName }));
|
|
2422
|
-
rawRequest = __assign(__assign({}, modelSettings), { prompt: rawPromptContent, user: this.options.user });
|
|
2423
|
-
start = getCurrentIsoDate();
|
|
2424
|
-
if (this.options.isVerbose) {
|
|
2425
|
-
console.info(colors__default["default"].bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
|
|
2426
|
-
}
|
|
2427
|
-
return [4 /*yield*/, client.completions.create(rawRequest)];
|
|
2428
|
-
case 2:
|
|
2429
|
-
rawResponse = _a.sent();
|
|
2430
|
-
if (this.options.isVerbose) {
|
|
2431
|
-
console.info(colors__default["default"].bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
2432
|
-
}
|
|
2433
|
-
if (!rawResponse.choices[0]) {
|
|
2434
|
-
throw new PipelineExecutionError('No choises from OpenAI');
|
|
2435
|
-
}
|
|
2436
|
-
if (rawResponse.choices.length > 1) {
|
|
2437
|
-
// TODO: This should be maybe only warning
|
|
2438
|
-
throw new PipelineExecutionError('More than one choise from OpenAI');
|
|
2439
|
-
}
|
|
2440
|
-
resultContent = rawResponse.choices[0].text;
|
|
2441
|
-
// eslint-disable-next-line prefer-const
|
|
2442
|
-
complete = getCurrentIsoDate();
|
|
2443
|
-
usage = computeOpenAiUsage(content, resultContent || '', rawResponse);
|
|
2444
|
-
return [2 /*return*/, {
|
|
2445
|
-
content: resultContent,
|
|
2446
|
-
modelName: rawResponse.model || modelName,
|
|
2447
|
-
timing: {
|
|
2448
|
-
start: start,
|
|
2449
|
-
complete: complete,
|
|
2450
|
-
},
|
|
2451
|
-
usage: usage,
|
|
2452
|
-
rawPromptContent: rawPromptContent,
|
|
2453
|
-
rawRequest: rawRequest,
|
|
2454
|
-
rawResponse: rawResponse,
|
|
2455
|
-
// <- [🗯]
|
|
2456
|
-
}];
|
|
2457
|
-
}
|
|
2458
|
-
});
|
|
2459
|
-
});
|
|
2460
|
-
};
|
|
2461
|
-
/**
|
|
2462
|
-
* Calls OpenAI API to use a embedding model
|
|
2463
|
-
*/
|
|
2464
|
-
OpenAiExecutionTools.prototype.callEmbeddingModel = function (prompt) {
|
|
2465
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
2466
|
-
var content, parameters, modelRequirements, client, modelName, rawPromptContent, rawRequest, start, complete, rawResponse, resultContent, usage;
|
|
2467
|
-
return __generator(this, function (_a) {
|
|
2468
|
-
switch (_a.label) {
|
|
2469
|
-
case 0:
|
|
2470
|
-
if (this.options.isVerbose) {
|
|
2471
|
-
console.info('🖋 OpenAI embedding call', { prompt: prompt });
|
|
2472
|
-
}
|
|
2473
|
-
content = prompt.content, parameters = prompt.parameters, modelRequirements = prompt.modelRequirements;
|
|
2474
|
-
return [4 /*yield*/, this.getClient()];
|
|
2475
|
-
case 1:
|
|
2476
|
-
client = _a.sent();
|
|
2477
|
-
// TODO: [☂] Use here more modelRequirements
|
|
2478
|
-
if (modelRequirements.modelVariant !== 'EMBEDDING') {
|
|
2479
|
-
throw new PipelineExecutionError('Use embed only for EMBEDDING variant');
|
|
2480
|
-
}
|
|
2481
|
-
modelName = modelRequirements.modelName || this.getDefaultEmbeddingModel().modelName;
|
|
2482
|
-
rawPromptContent = replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName }));
|
|
2483
|
-
rawRequest = {
|
|
2484
|
-
input: rawPromptContent,
|
|
2485
|
-
model: modelName,
|
|
2486
|
-
};
|
|
2487
|
-
start = getCurrentIsoDate();
|
|
2488
|
-
if (this.options.isVerbose) {
|
|
2489
|
-
console.info(colors__default["default"].bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
|
|
2490
|
-
}
|
|
2491
|
-
return [4 /*yield*/, client.embeddings.create(rawRequest)];
|
|
2492
|
-
case 2:
|
|
2493
|
-
rawResponse = _a.sent();
|
|
2494
|
-
if (this.options.isVerbose) {
|
|
2495
|
-
console.info(colors__default["default"].bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
2496
|
-
}
|
|
2497
|
-
if (rawResponse.data.length !== 1) {
|
|
2498
|
-
throw new PipelineExecutionError("Expected exactly 1 data item in response, got ".concat(rawResponse.data.length));
|
|
2499
|
-
}
|
|
2500
|
-
resultContent = rawResponse.data[0].embedding;
|
|
2501
|
-
// eslint-disable-next-line prefer-const
|
|
2502
|
-
complete = getCurrentIsoDate();
|
|
2503
|
-
usage = computeOpenAiUsage(content, '', rawResponse);
|
|
2504
|
-
return [2 /*return*/, {
|
|
2505
|
-
content: resultContent,
|
|
2506
|
-
modelName: rawResponse.model || modelName,
|
|
2507
|
-
timing: {
|
|
2508
|
-
start: start,
|
|
2509
|
-
complete: complete,
|
|
2510
|
-
},
|
|
2511
|
-
usage: usage,
|
|
2512
|
-
rawPromptContent: rawPromptContent,
|
|
2513
|
-
rawRequest: rawRequest,
|
|
2514
|
-
rawResponse: rawResponse,
|
|
2515
|
-
// <- [🗯]
|
|
2516
|
-
}];
|
|
2517
|
-
}
|
|
2518
|
-
});
|
|
2519
|
-
});
|
|
2520
|
-
};
|
|
2521
|
-
// <- Note: [🤖] callXxxModel
|
|
2522
|
-
/**
|
|
2523
|
-
* Get the model that should be used as default
|
|
2524
|
-
*/
|
|
2525
|
-
OpenAiExecutionTools.prototype.getDefaultModel = function (defaultModelName) {
|
|
2526
|
-
var model = OPENAI_MODELS.find(function (_a) {
|
|
2527
|
-
var modelName = _a.modelName;
|
|
2528
|
-
return modelName === defaultModelName;
|
|
2529
|
-
});
|
|
2530
|
-
if (model === undefined) {
|
|
2531
|
-
throw new UnexpectedError(spaceTrim__default["default"](function (block) {
|
|
2532
|
-
return "\n Cannot find model in OpenAI models with name \"".concat(defaultModelName, "\" which should be used as default.\n\n Available models:\n ").concat(block(OPENAI_MODELS.map(function (_a) {
|
|
2533
|
-
var modelName = _a.modelName;
|
|
2534
|
-
return "- \"".concat(modelName, "\"");
|
|
2535
|
-
}).join('\n')), "\n\n ");
|
|
2536
|
-
}));
|
|
2537
|
-
}
|
|
2538
|
-
return model;
|
|
2539
|
-
};
|
|
2540
|
-
/**
|
|
2541
|
-
* Default model for chat variant.
|
|
2542
|
-
*/
|
|
2543
|
-
OpenAiExecutionTools.prototype.getDefaultChatModel = function () {
|
|
2544
|
-
return this.getDefaultModel('gpt-4o');
|
|
2545
|
-
};
|
|
2546
|
-
/**
|
|
2547
|
-
* Default model for completion variant.
|
|
2548
|
-
*/
|
|
2549
|
-
OpenAiExecutionTools.prototype.getDefaultCompletionModel = function () {
|
|
2550
|
-
return this.getDefaultModel('gpt-3.5-turbo-instruct');
|
|
2551
|
-
};
|
|
2552
|
-
/**
|
|
2553
|
-
* Default model for completion variant.
|
|
2554
|
-
*/
|
|
2555
|
-
OpenAiExecutionTools.prototype.getDefaultEmbeddingModel = function () {
|
|
2556
|
-
return this.getDefaultModel('text-embedding-3-large');
|
|
2557
|
-
};
|
|
2558
|
-
return OpenAiExecutionTools;
|
|
2559
|
-
}());
|
|
2560
|
-
/**
|
|
2561
|
-
* TODO: [🧠][🧙♂️] Maybe there can be some wizzard for thoose who want to use just OpenAI
|
|
2562
|
-
* TODO: Maybe Create some common util for callChatModel and callCompletionModel
|
|
2563
|
-
* TODO: Maybe make custom OpenAiError
|
|
2564
|
-
* TODO: [🧠][🈁] Maybe use `isDeterministic` from options
|
|
2565
|
-
* TODO: [🧠][🌰] Allow to pass `title` for tracking purposes
|
|
2566
|
-
*/
|
|
2567
|
-
|
|
2568
|
-
/**
|
|
2569
|
-
* Execution Tools for calling OpenAI API
|
|
2570
|
-
*
|
|
2571
|
-
* @public exported from `@promptbook/openai`
|
|
2572
|
-
*/
|
|
2573
|
-
var createOpenAiExecutionTools = Object.assign(function (options) {
|
|
2574
|
-
// TODO: !!!!!! If browser, auto add `dangerouslyAllowBrowser`
|
|
2575
|
-
return new OpenAiExecutionTools(options);
|
|
2576
|
-
}, {
|
|
2577
|
-
packageName: '@promptbook/openai',
|
|
2578
|
-
className: 'OpenAiExecutionTools',
|
|
2579
|
-
});
|
|
2580
|
-
/**
|
|
2581
|
-
* TODO: [🦺] Is there some way how to put `packageName` and `className` on top and function definition on bottom?
|
|
2582
|
-
* TODO: [🎶] Naming "constructor" vs "creator" vs "factory"
|
|
2583
|
-
*/
|
|
2584
|
-
|
|
2585
|
-
/**
|
|
2586
|
-
* @@@
|
|
2587
|
-
*
|
|
2588
|
-
* TODO: !!!!!! Remove EXECUTION_TOOLS_CLASSES and use $llmToolsRegister instead
|
|
2589
|
-
*
|
|
2590
|
-
* @private internal type for `createLlmToolsFromConfiguration`
|
|
2591
|
-
*/
|
|
2592
|
-
var EXECUTION_TOOLS_CLASSES = {
|
|
2593
|
-
createOpenAiExecutionTools: createOpenAiExecutionTools,
|
|
2594
|
-
createAnthropicClaudeExecutionTools: createAnthropicClaudeExecutionTools,
|
|
2595
|
-
createAzureOpenAiExecutionTools: function (options) {
|
|
2596
|
-
return new AzureOpenAiExecutionTools(
|
|
2597
|
-
// <- TODO: [🧱] Implement in a functional (not new Class) way
|
|
2598
|
-
options);
|
|
2599
|
-
},
|
|
2600
|
-
// <- Note: [🦑] Add here new LLM provider
|
|
2601
|
-
};
|
|
2602
|
-
/**
|
|
2603
|
-
* TODO: !!!!!!! Make global register for this
|
|
2604
|
-
* TODO: [🧠][🎌] Adding this should be responsibility of each provider package NOT this one central place
|
|
2605
|
-
*/
|
|
2606
|
-
|
|
2607
|
-
/**
|
|
2608
|
-
* @@@
|
|
2609
|
-
*
|
|
2610
|
-
* Note: This function is not cached, every call creates new instance of `MultipleLlmExecutionTools`
|
|
2611
|
-
*
|
|
2612
|
-
* @returns @@@
|
|
2613
|
-
* @public exported from `@promptbook/core`
|
|
2614
|
-
*/
|
|
2615
|
-
function createLlmToolsFromConfiguration(configuration, options) {
|
|
2616
|
-
if (options === void 0) { options = {}; }
|
|
2617
|
-
var _a = options.isVerbose, isVerbose = _a === void 0 ? false : _a;
|
|
2618
|
-
var llmTools = configuration.map(function (llmConfiguration) {
|
|
2619
|
-
var constructor = EXECUTION_TOOLS_CLASSES["create".concat(llmConfiguration.className)];
|
|
2620
|
-
if (!constructor) {
|
|
2621
|
-
throw new Error(spaceTrim__default["default"](function (block) { return "\n There is no constructor for LLM provider `".concat(llmConfiguration.className, "`\n\n\n @@@\n\n Available constructors are:\n ").concat(block('@@@'), "\n\n\n "); }));
|
|
2622
|
-
}
|
|
2623
|
-
return constructor(__assign({ isVerbose: isVerbose }, llmConfiguration.options));
|
|
2624
|
-
});
|
|
2625
|
-
return joinLlmExecutionTools.apply(void 0, __spreadArray([], __read(llmTools), false));
|
|
2626
|
-
}
|
|
2627
|
-
/**
|
|
2628
|
-
* TODO: [🎌] Togethere with `createLlmToolsFromConfiguration` + 'EXECUTION_TOOLS_CLASSES' gets to `@promptbook/core` ALL model providers, make this more efficient
|
|
2629
|
-
* TODO: [🧠][🎌] Dynamically install required providers
|
|
2630
|
-
* TODO: @@@ write discussion about this - wizzard
|
|
2631
|
-
* TODO: [🧠][🍛] Which name is better `createLlmToolsFromConfig` or `createLlmToolsFromConfiguration`?
|
|
2632
|
-
* TODO: [🧠] Is there some meaningfull way how to test this util
|
|
2633
|
-
* TODO: This should be maybe not under `_common` but under `utils`
|
|
2634
|
-
*/
|
|
2635
|
-
|
|
2636
|
-
/**
|
|
2637
|
-
* Remote server is a proxy server that uses its execution tools internally and exposes the executor interface externally.
|
|
745
|
+
* Remote server is a proxy server that uses its execution tools internally and exposes the executor interface externally.
|
|
2638
746
|
*
|
|
2639
747
|
* You can simply use `RemoteExecutionTools` on client-side javascript and connect to your remote server.
|
|
2640
748
|
* This is useful to make all logic on browser side but not expose your API keys or no need to use customer's GPU.
|
|
@@ -2646,7 +754,7 @@
|
|
|
2646
754
|
var _this = this;
|
|
2647
755
|
var _a = __assign({ isAnonymousModeAllowed: false, isCollectionModeAllowed: false, collection: null, createLlmExecutionTools: null }, options), port = _a.port, path = _a.path, collection = _a.collection, createLlmExecutionTools = _a.createLlmExecutionTools,
|
|
2648
756
|
// <- TODO: [🧠][🤺] Remove `createLlmExecutionTools`, pass just `llmExecutionTools`
|
|
2649
|
-
isAnonymousModeAllowed = _a.isAnonymousModeAllowed, isCollectionModeAllowed = _a.isCollectionModeAllowed, _b = _a.isVerbose, isVerbose = _b === void 0 ?
|
|
757
|
+
isAnonymousModeAllowed = _a.isAnonymousModeAllowed, isCollectionModeAllowed = _a.isCollectionModeAllowed, _b = _a.isVerbose, isVerbose = _b === void 0 ? IS_VERBOSE : _b;
|
|
2650
758
|
// <- TODO: [🦪] Some helper type to be able to use discriminant union types with destructuring
|
|
2651
759
|
var httpServer = http__default["default"].createServer({}, function (request, response) { return __awaiter(_this, void 0, void 0, function () {
|
|
2652
760
|
var _a, _b;
|
|
@@ -2701,12 +809,12 @@
|
|
|
2701
809
|
});
|
|
2702
810
|
server.on('connection', function (socket) {
|
|
2703
811
|
console.info(colors__default["default"].gray("Client connected"), socket.id);
|
|
2704
|
-
socket.on('request', function (request) { return __awaiter(_this, void 0, void 0, function () {
|
|
2705
|
-
var _a, prompt, clientId, llmToolsConfiguration, llmExecutionTools, promptResult, _b, error_1;
|
|
812
|
+
socket.on('prompt-request', function (request) { return __awaiter(_this, void 0, void 0, function () {
|
|
813
|
+
var _a, isAnonymous, prompt, clientId, llmToolsConfiguration, llmExecutionTools, promptResult, _b, error_1;
|
|
2706
814
|
return __generator(this, function (_c) {
|
|
2707
815
|
switch (_c.label) {
|
|
2708
816
|
case 0:
|
|
2709
|
-
_a = __assign({ clientId: null, llmToolsConfiguration: null }, request), prompt = _a.prompt, clientId = _a.clientId, llmToolsConfiguration = _a.llmToolsConfiguration;
|
|
817
|
+
_a = __assign({ clientId: null, llmToolsConfiguration: null }, request), isAnonymous = _a.isAnonymous, prompt = _a.prompt, clientId = _a.clientId, llmToolsConfiguration = _a.llmToolsConfiguration;
|
|
2710
818
|
// <- TODO: [🦪] Some helper type to be able to use discriminant union types with destructuring
|
|
2711
819
|
if (isVerbose) {
|
|
2712
820
|
console.info(colors__default["default"].bgWhite("Prompt:"), colors__default["default"].gray(JSON.stringify(request, null, 4)));
|
|
@@ -2714,20 +822,20 @@
|
|
|
2714
822
|
_c.label = 1;
|
|
2715
823
|
case 1:
|
|
2716
824
|
_c.trys.push([1, 14, 15, 16]);
|
|
2717
|
-
if (
|
|
825
|
+
if (isAnonymous === true && !isAnonymousModeAllowed) {
|
|
2718
826
|
throw new PipelineExecutionError("Anonymous mode is not allowed"); // <- TODO: !!! Test
|
|
2719
827
|
}
|
|
2720
|
-
if (
|
|
828
|
+
if (isAnonymous === false && !isCollectionModeAllowed) {
|
|
2721
829
|
throw new PipelineExecutionError("Collection mode is not allowed"); // <- TODO: !!! Test
|
|
2722
830
|
}
|
|
2723
831
|
llmExecutionTools = void 0;
|
|
2724
|
-
if (!(llmToolsConfiguration !== null)) return [3 /*break*/, 2];
|
|
832
|
+
if (!(isAnonymous === true && llmToolsConfiguration !== null)) return [3 /*break*/, 2];
|
|
2725
833
|
// Note: Anonymouse mode
|
|
2726
834
|
// TODO: Maybe check that configuration is not empty
|
|
2727
835
|
llmExecutionTools = createLlmToolsFromConfiguration(llmToolsConfiguration, { isVerbose: isVerbose });
|
|
2728
836
|
return [3 /*break*/, 5];
|
|
2729
837
|
case 2:
|
|
2730
|
-
if (!(createLlmExecutionTools !== null)) return [3 /*break*/, 4];
|
|
838
|
+
if (!(isAnonymous === false && createLlmExecutionTools !== null)) return [3 /*break*/, 4];
|
|
2731
839
|
// Note: Collection mode
|
|
2732
840
|
llmExecutionTools = createLlmExecutionTools(clientId);
|
|
2733
841
|
return [4 /*yield*/, collection.isResponsibleForPrompt(prompt)];
|
|
@@ -2736,7 +844,7 @@
|
|
|
2736
844
|
throw new PipelineExecutionError("Pipeline is not in the collection of this server");
|
|
2737
845
|
}
|
|
2738
846
|
return [3 /*break*/, 5];
|
|
2739
|
-
case 4: throw new PipelineExecutionError("You must provide either llmToolsConfiguration or
|
|
847
|
+
case 4: throw new PipelineExecutionError("You must provide either llmToolsConfiguration or non-anonymous mode must be propperly configured");
|
|
2740
848
|
case 5:
|
|
2741
849
|
promptResult = void 0;
|
|
2742
850
|
_b = prompt.modelRequirements.modelVariant;
|
|
@@ -2778,7 +886,7 @@
|
|
|
2778
886
|
if (isVerbose) {
|
|
2779
887
|
console.info(colors__default["default"].bgGreen("PromptResult:"), colors__default["default"].green(JSON.stringify(promptResult, null, 4)));
|
|
2780
888
|
}
|
|
2781
|
-
socket.emit('response', { promptResult: promptResult });
|
|
889
|
+
socket.emit('prompt-response', { promptResult: promptResult });
|
|
2782
890
|
return [3 /*break*/, 16];
|
|
2783
891
|
case 14:
|
|
2784
892
|
error_1 = _c.sent();
|
|
@@ -2794,6 +902,55 @@
|
|
|
2794
902
|
}
|
|
2795
903
|
});
|
|
2796
904
|
}); });
|
|
905
|
+
// TODO: [👒] Listing models (and checking configuration) probbably should go through REST API not Socket.io
|
|
906
|
+
socket.on('listModels-request', function (request) { return __awaiter(_this, void 0, void 0, function () {
|
|
907
|
+
var _a, isAnonymous, clientId, llmToolsConfiguration, llmExecutionTools, models, error_2;
|
|
908
|
+
return __generator(this, function (_b) {
|
|
909
|
+
switch (_b.label) {
|
|
910
|
+
case 0:
|
|
911
|
+
_a = __assign({ clientId: null, llmToolsConfiguration: null }, request), isAnonymous = _a.isAnonymous, clientId = _a.clientId, llmToolsConfiguration = _a.llmToolsConfiguration;
|
|
912
|
+
// <- TODO: [🦪] Some helper type to be able to use discriminant union types with destructuring
|
|
913
|
+
if (isVerbose) {
|
|
914
|
+
console.info(colors__default["default"].bgWhite("Listing models"));
|
|
915
|
+
}
|
|
916
|
+
_b.label = 1;
|
|
917
|
+
case 1:
|
|
918
|
+
_b.trys.push([1, 3, 4, 5]);
|
|
919
|
+
if (isAnonymous === true && !isAnonymousModeAllowed) {
|
|
920
|
+
throw new PipelineExecutionError("Anonymous mode is not allowed"); // <- TODO: !!! Test
|
|
921
|
+
}
|
|
922
|
+
if (isAnonymous === false && !isCollectionModeAllowed) {
|
|
923
|
+
throw new PipelineExecutionError("Collection mode is not allowed"); // <- TODO: !!! Test
|
|
924
|
+
}
|
|
925
|
+
llmExecutionTools = void 0;
|
|
926
|
+
if (isAnonymous === true) {
|
|
927
|
+
// Note: Anonymouse mode
|
|
928
|
+
// TODO: Maybe check that configuration is not empty
|
|
929
|
+
llmExecutionTools = createLlmToolsFromConfiguration(llmToolsConfiguration, { isVerbose: isVerbose });
|
|
930
|
+
}
|
|
931
|
+
else {
|
|
932
|
+
// Note: Collection mode
|
|
933
|
+
llmExecutionTools = createLlmExecutionTools(clientId);
|
|
934
|
+
}
|
|
935
|
+
return [4 /*yield*/, llmExecutionTools.listModels()];
|
|
936
|
+
case 2:
|
|
937
|
+
models = _b.sent();
|
|
938
|
+
socket.emit('prompt-response', { models: models });
|
|
939
|
+
return [3 /*break*/, 5];
|
|
940
|
+
case 3:
|
|
941
|
+
error_2 = _b.sent();
|
|
942
|
+
if (!(error_2 instanceof Error)) {
|
|
943
|
+
throw error_2;
|
|
944
|
+
}
|
|
945
|
+
socket.emit('error', { errorMessage: error_2.message });
|
|
946
|
+
return [3 /*break*/, 5];
|
|
947
|
+
case 4:
|
|
948
|
+
socket.disconnect();
|
|
949
|
+
return [7 /*endfinally*/];
|
|
950
|
+
case 5: return [2 /*return*/];
|
|
951
|
+
}
|
|
952
|
+
});
|
|
953
|
+
}); });
|
|
2797
954
|
socket.on('disconnect', function () {
|
|
2798
955
|
// TODO: Destroy here executionToolsForClient
|
|
2799
956
|
if (isVerbose) {
|
|
@@ -2823,6 +980,7 @@
|
|
|
2823
980
|
};
|
|
2824
981
|
}
|
|
2825
982
|
/**
|
|
983
|
+
* TODO: [🧠][🛍] Maybe not `isAnonymous: boolean` BUT `mode: 'ANONYMOUS'|'COLLECTION'`
|
|
2826
984
|
* TODO: [⚖] Expose the collection to be able to connect to same collection via createCollectionFromUrl
|
|
2827
985
|
* TODO: Handle progress - support streaming
|
|
2828
986
|
* TODO: [🗯] Do not hang up immediately but wait until client closes OR timeout
|