@promptbook/remote-server 0.66.0-7 → 0.66.0-9
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/esm/index.es.js +266 -2167
- package/esm/index.es.js.map +1 -1
- package/esm/typings/src/_packages/anthropic-claude.index.d.ts +0 -2
- package/esm/typings/src/_packages/azure-openai.index.d.ts +4 -0
- package/esm/typings/src/_packages/cli.index.d.ts +8 -0
- package/esm/typings/src/_packages/core.index.d.ts +2 -0
- package/esm/typings/src/_packages/types.index.d.ts +22 -14
- package/esm/typings/src/_packages/utils.index.d.ts +7 -7
- package/esm/typings/src/execution/LlmExecutionToolsConstructor.d.ts +1 -1
- package/esm/typings/src/llm-providers/_common/$llmToolsMetadataRegister.d.ts +2 -2
- package/esm/typings/src/llm-providers/_common/$llmToolsRegister.d.ts +2 -2
- package/esm/typings/src/llm-providers/_common/$registeredLlmToolsMessage.d.ts +9 -0
- package/esm/typings/src/llm-providers/_common/LlmToolsConfiguration.d.ts +1 -1
- package/esm/typings/src/llm-providers/_common/LlmToolsMetadata.d.ts +1 -1
- package/esm/typings/src/llm-providers/_common/createLlmToolsFromConfigurationFromEnv.d.ts +1 -0
- package/esm/typings/src/llm-providers/_common/getLlmToolsForTestingAndScriptsAndPlayground.d.ts +1 -1
- package/esm/typings/src/llm-providers/anthropic-claude/register-constructor.d.ts +1 -0
- package/esm/typings/src/llm-providers/azure-openai/createAzureOpenAiExecutionTools.d.ts +15 -0
- package/esm/typings/src/llm-providers/azure-openai/register-configuration.d.ts +9 -0
- package/esm/typings/src/llm-providers/azure-openai/register-constructor.d.ts +12 -0
- package/esm/typings/src/llm-providers/openai/register-constructor.d.ts +1 -0
- package/esm/typings/src/llm-providers/remote/RemoteLlmExecutionTools.d.ts +1 -0
- package/esm/typings/src/llm-providers/remote/interfaces/{Promptbook_Server_Error.d.ts → PromptbookServer_Error.d.ts} +1 -1
- package/esm/typings/src/llm-providers/remote/interfaces/PromptbookServer_ListModels_Request.d.ts +34 -0
- package/esm/typings/src/llm-providers/remote/interfaces/PromptbookServer_ListModels_Response.d.ts +15 -0
- package/esm/typings/src/llm-providers/remote/interfaces/{Promptbook_Server_Progress.d.ts → PromptbookServer_Prompt_Progress.d.ts} +1 -1
- package/esm/typings/src/llm-providers/remote/interfaces/{Promptbook_Server_Request.d.ts → PromptbookServer_Prompt_Request.d.ts} +15 -3
- package/esm/typings/src/llm-providers/remote/interfaces/{Promptbook_Server_Response.d.ts → PromptbookServer_Prompt_Response.d.ts} +1 -1
- package/esm/typings/src/llm-providers/remote/interfaces/RemoteLlmExecutionToolsOptions.d.ts +1 -7
- package/esm/typings/src/llm-providers/remote/startRemoteServer.d.ts +1 -0
- package/esm/typings/src/utils/{Register.d.ts → $Register.d.ts} +6 -2
- package/esm/typings/src/utils/environment/{getGlobalScope.d.ts → $getGlobalScope.d.ts} +1 -1
- package/esm/typings/src/utils/organization/f.d.ts +6 -0
- package/package.json +2 -6
- package/umd/index.umd.js +270 -2169
- package/umd/index.umd.js.map +1 -1
- package/esm/typings/src/llm-providers/_common/config.d.ts +0 -14
- package/esm/typings/src/llm-providers/anthropic-claude/register1.d.ts +0 -4
- /package/esm/typings/src/llm-providers/mocked/{fakeTextToExpectations.d.ts → $fakeTextToExpectations.d.ts} +0 -0
- /package/esm/typings/src/utils/{currentDate.d.ts → $currentDate.d.ts} +0 -0
- /package/esm/typings/src/utils/environment/{isRunningInBrowser.d.ts → $isRunningInBrowser.d.ts} +0 -0
- /package/esm/typings/src/utils/environment/{isRunningInNode.d.ts → $isRunningInNode.d.ts} +0 -0
- /package/esm/typings/src/utils/environment/{isRunningInWebWorker.d.ts → $isRunningInWebWorker.d.ts} +0 -0
- /package/esm/typings/src/utils/files/{isDirectoryExisting.d.ts → $isDirectoryExisting.d.ts} +0 -0
- /package/esm/typings/src/utils/files/{isDirectoryExisting.test.d.ts → $isDirectoryExisting.test.d.ts} +0 -0
- /package/esm/typings/src/utils/files/{isFileExisting.d.ts → $isFileExisting.d.ts} +0 -0
- /package/esm/typings/src/utils/files/{isFileExisting.test.d.ts → $isFileExisting.test.d.ts} +0 -0
- /package/esm/typings/src/utils/files/{listAllFiles.d.ts → $listAllFiles.d.ts} +0 -0
- /package/esm/typings/src/utils/files/{listAllFiles.test.d.ts → $listAllFiles.test.d.ts} +0 -0
- /package/esm/typings/src/utils/random/{randomSeed.d.ts → $randomSeed.d.ts} +0 -0
package/esm/index.es.js
CHANGED
|
@@ -2,16 +2,12 @@ import colors from 'colors';
|
|
|
2
2
|
import http from 'http';
|
|
3
3
|
import { Server } from 'socket.io';
|
|
4
4
|
import spaceTrim$1, { spaceTrim } from 'spacetrim';
|
|
5
|
-
import { io } from 'socket.io-client';
|
|
6
|
-
import Anthropic from '@anthropic-ai/sdk';
|
|
7
|
-
import { OpenAIClient, AzureKeyCredential } from '@azure/openai';
|
|
8
|
-
import OpenAI from 'openai';
|
|
9
5
|
|
|
10
6
|
// ⚠️ WARNING: This code has been generated so that any manual changes will be overwritten
|
|
11
7
|
/**
|
|
12
8
|
* The version of the Promptbook library
|
|
13
9
|
*/
|
|
14
|
-
var PROMPTBOOK_VERSION = '0.66.0-
|
|
10
|
+
var PROMPTBOOK_VERSION = '0.66.0-8';
|
|
15
11
|
// TODO: !!!! List here all the versions and annotate + put into script
|
|
16
12
|
|
|
17
13
|
/*! *****************************************************************************
|
|
@@ -203,8 +199,37 @@ var MultipleLlmExecutionTools = /** @class */ (function () {
|
|
|
203
199
|
*/
|
|
204
200
|
MultipleLlmExecutionTools.prototype.checkConfiguration = function () {
|
|
205
201
|
return __awaiter(this, void 0, void 0, function () {
|
|
206
|
-
|
|
207
|
-
|
|
202
|
+
var _a, _b, llmExecutionTools, e_1_1;
|
|
203
|
+
var e_1, _c;
|
|
204
|
+
return __generator(this, function (_d) {
|
|
205
|
+
switch (_d.label) {
|
|
206
|
+
case 0:
|
|
207
|
+
_d.trys.push([0, 5, 6, 7]);
|
|
208
|
+
_a = __values(this.llmExecutionTools), _b = _a.next();
|
|
209
|
+
_d.label = 1;
|
|
210
|
+
case 1:
|
|
211
|
+
if (!!_b.done) return [3 /*break*/, 4];
|
|
212
|
+
llmExecutionTools = _b.value;
|
|
213
|
+
return [4 /*yield*/, llmExecutionTools.checkConfiguration()];
|
|
214
|
+
case 2:
|
|
215
|
+
_d.sent();
|
|
216
|
+
_d.label = 3;
|
|
217
|
+
case 3:
|
|
218
|
+
_b = _a.next();
|
|
219
|
+
return [3 /*break*/, 1];
|
|
220
|
+
case 4: return [3 /*break*/, 7];
|
|
221
|
+
case 5:
|
|
222
|
+
e_1_1 = _d.sent();
|
|
223
|
+
e_1 = { error: e_1_1 };
|
|
224
|
+
return [3 /*break*/, 7];
|
|
225
|
+
case 6:
|
|
226
|
+
try {
|
|
227
|
+
if (_b && !_b.done && (_c = _a.return)) _c.call(_a);
|
|
228
|
+
}
|
|
229
|
+
finally { if (e_1) throw e_1.error; }
|
|
230
|
+
return [7 /*endfinally*/];
|
|
231
|
+
case 7: return [2 /*return*/];
|
|
232
|
+
}
|
|
208
233
|
});
|
|
209
234
|
});
|
|
210
235
|
};
|
|
@@ -214,8 +239,8 @@ var MultipleLlmExecutionTools = /** @class */ (function () {
|
|
|
214
239
|
*/
|
|
215
240
|
MultipleLlmExecutionTools.prototype.listModels = function () {
|
|
216
241
|
return __awaiter(this, void 0, void 0, function () {
|
|
217
|
-
var availableModels, _a, _b, llmExecutionTools, models,
|
|
218
|
-
var
|
|
242
|
+
var availableModels, _a, _b, llmExecutionTools, models, e_2_1;
|
|
243
|
+
var e_2, _c;
|
|
219
244
|
return __generator(this, function (_d) {
|
|
220
245
|
switch (_d.label) {
|
|
221
246
|
case 0:
|
|
@@ -238,14 +263,14 @@ var MultipleLlmExecutionTools = /** @class */ (function () {
|
|
|
238
263
|
return [3 /*break*/, 2];
|
|
239
264
|
case 5: return [3 /*break*/, 8];
|
|
240
265
|
case 6:
|
|
241
|
-
|
|
242
|
-
|
|
266
|
+
e_2_1 = _d.sent();
|
|
267
|
+
e_2 = { error: e_2_1 };
|
|
243
268
|
return [3 /*break*/, 8];
|
|
244
269
|
case 7:
|
|
245
270
|
try {
|
|
246
271
|
if (_b && !_b.done && (_c = _a.return)) _c.call(_a);
|
|
247
272
|
}
|
|
248
|
-
finally { if (
|
|
273
|
+
finally { if (e_2) throw e_2.error; }
|
|
249
274
|
return [7 /*endfinally*/];
|
|
250
275
|
case 8: return [2 /*return*/, availableModels];
|
|
251
276
|
}
|
|
@@ -278,8 +303,8 @@ var MultipleLlmExecutionTools = /** @class */ (function () {
|
|
|
278
303
|
*/
|
|
279
304
|
MultipleLlmExecutionTools.prototype.callCommonModel = function (prompt) {
|
|
280
305
|
return __awaiter(this, void 0, void 0, function () {
|
|
281
|
-
var errors, _a, _b, llmExecutionTools, _c, error_1,
|
|
282
|
-
var
|
|
306
|
+
var errors, _a, _b, llmExecutionTools, _c, error_1, e_3_1;
|
|
307
|
+
var e_3, _d;
|
|
283
308
|
var _this = this;
|
|
284
309
|
return __generator(this, function (_e) {
|
|
285
310
|
switch (_e.label) {
|
|
@@ -335,14 +360,14 @@ var MultipleLlmExecutionTools = /** @class */ (function () {
|
|
|
335
360
|
return [3 /*break*/, 2];
|
|
336
361
|
case 14: return [3 /*break*/, 17];
|
|
337
362
|
case 15:
|
|
338
|
-
|
|
339
|
-
|
|
363
|
+
e_3_1 = _e.sent();
|
|
364
|
+
e_3 = { error: e_3_1 };
|
|
340
365
|
return [3 /*break*/, 17];
|
|
341
366
|
case 16:
|
|
342
367
|
try {
|
|
343
368
|
if (_b && !_b.done && (_d = _a.return)) _d.call(_a);
|
|
344
369
|
}
|
|
345
|
-
finally { if (
|
|
370
|
+
finally { if (e_3) throw e_3.error; }
|
|
346
371
|
return [7 /*endfinally*/];
|
|
347
372
|
case 17:
|
|
348
373
|
if (errors.length === 1) {
|
|
@@ -430,2209 +455,233 @@ function joinLlmExecutionTools() {
|
|
|
430
455
|
*/
|
|
431
456
|
|
|
432
457
|
/**
|
|
433
|
-
*
|
|
458
|
+
* @@@
|
|
434
459
|
*
|
|
435
|
-
*
|
|
436
|
-
* This is useful to make all logic on browser side but not expose your API keys or no need to use customer's GPU.
|
|
460
|
+
* Note: `$` is used to indicate that this function is not a pure function - it access global scope
|
|
437
461
|
*
|
|
438
|
-
* @
|
|
439
|
-
* @public exported from `@promptbook/remote-client`
|
|
462
|
+
* @public exported from `@promptbook/utils`
|
|
440
463
|
*/
|
|
441
|
-
|
|
442
|
-
|
|
443
|
-
|
|
444
|
-
|
|
445
|
-
|
|
446
|
-
|
|
447
|
-
|
|
448
|
-
|
|
449
|
-
|
|
450
|
-
|
|
451
|
-
|
|
452
|
-
|
|
453
|
-
|
|
454
|
-
|
|
455
|
-
|
|
456
|
-
|
|
457
|
-
|
|
458
|
-
|
|
459
|
-
|
|
460
|
-
|
|
461
|
-
|
|
462
|
-
*/
|
|
463
|
-
RemoteLlmExecutionTools.prototype.checkConfiguration = function () {
|
|
464
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
465
|
-
return __generator(this, function (_a) {
|
|
466
|
-
return [2 /*return*/];
|
|
467
|
-
});
|
|
468
|
-
});
|
|
469
|
-
};
|
|
470
|
-
/**
|
|
471
|
-
* List all available models that can be used
|
|
472
|
-
*/
|
|
473
|
-
RemoteLlmExecutionTools.prototype.listModels = function () {
|
|
474
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
475
|
-
return __generator(this, function (_a) {
|
|
476
|
-
return [2 /*return*/, (this.options.models ||
|
|
477
|
-
[
|
|
478
|
-
/* !!!!!! */
|
|
479
|
-
])];
|
|
480
|
-
});
|
|
481
|
-
});
|
|
482
|
-
};
|
|
483
|
-
/**
|
|
484
|
-
* Creates a connection to the remote proxy server.
|
|
485
|
-
*/
|
|
486
|
-
RemoteLlmExecutionTools.prototype.makeConnection = function () {
|
|
487
|
-
var _this = this;
|
|
488
|
-
return new Promise(
|
|
489
|
-
// <- TODO: [🧱] Implement in a functional (not new Class) way
|
|
490
|
-
function (resolve, reject) {
|
|
491
|
-
var socket = io(_this.options.remoteUrl, {
|
|
492
|
-
path: _this.options.path,
|
|
493
|
-
// path: `${this.remoteUrl.pathname}/socket.io`,
|
|
494
|
-
transports: [/*'websocket', <- TODO: [🌬] Make websocket transport work */ 'polling'],
|
|
495
|
-
});
|
|
496
|
-
// console.log('Connecting to', this.options.remoteUrl.href, { socket });
|
|
497
|
-
socket.on('connect', function () {
|
|
498
|
-
resolve(socket);
|
|
499
|
-
});
|
|
500
|
-
// TODO: !!!! Better timeout handling
|
|
501
|
-
setTimeout(function () {
|
|
502
|
-
reject(new Error("Timeout while connecting to ".concat(_this.options.remoteUrl)));
|
|
503
|
-
}, 1000 /* <- TODO: Timeout to config */);
|
|
504
|
-
});
|
|
505
|
-
};
|
|
506
|
-
/**
|
|
507
|
-
* Calls remote proxy server to use a chat model
|
|
508
|
-
*/
|
|
509
|
-
RemoteLlmExecutionTools.prototype.callChatModel = function (prompt) {
|
|
510
|
-
if (this.options.isVerbose) {
|
|
511
|
-
console.info("\uD83D\uDD8B Remote callChatModel call");
|
|
464
|
+
function $getGlobalScope() {
|
|
465
|
+
return Function('return this')();
|
|
466
|
+
}
|
|
467
|
+
/***
|
|
468
|
+
* TODO: !!!!! Make private and promptbook registry from this
|
|
469
|
+
*/
|
|
470
|
+
|
|
471
|
+
/**
|
|
472
|
+
* Register is @@@
|
|
473
|
+
*
|
|
474
|
+
* Note: `$` is used to indicate that this function is not a pure function - it accesses and adds variables in global scope.
|
|
475
|
+
*
|
|
476
|
+
* @private internal utility, exported are only signleton instances of this class
|
|
477
|
+
*/
|
|
478
|
+
var $Register = /** @class */ (function () {
|
|
479
|
+
function $Register(storageName) {
|
|
480
|
+
this.storageName = storageName;
|
|
481
|
+
storageName = "_promptbook_".concat(storageName);
|
|
482
|
+
var globalScope = $getGlobalScope();
|
|
483
|
+
if (globalScope[storageName] === undefined) {
|
|
484
|
+
globalScope[storageName] = [];
|
|
512
485
|
}
|
|
513
|
-
|
|
514
|
-
|
|
515
|
-
/**
|
|
516
|
-
* Calls remote proxy server to use a completion model
|
|
517
|
-
*/
|
|
518
|
-
RemoteLlmExecutionTools.prototype.callCompletionModel = function (prompt) {
|
|
519
|
-
if (this.options.isVerbose) {
|
|
520
|
-
console.info("\uD83D\uDCAC Remote callCompletionModel call");
|
|
486
|
+
else if (!Array.isArray(globalScope[storageName])) {
|
|
487
|
+
throw new UnexpectedError("Expected (global) ".concat(storageName, " to be an array, but got ").concat(typeof globalScope[storageName]));
|
|
521
488
|
}
|
|
522
|
-
|
|
523
|
-
}
|
|
524
|
-
|
|
525
|
-
|
|
526
|
-
|
|
527
|
-
|
|
528
|
-
|
|
529
|
-
|
|
489
|
+
this.storage = globalScope[storageName];
|
|
490
|
+
}
|
|
491
|
+
$Register.prototype.list = function () {
|
|
492
|
+
// <- TODO: ReadonlyDeep<Array<TRegistered>>
|
|
493
|
+
return this.storage;
|
|
494
|
+
};
|
|
495
|
+
$Register.prototype.register = function (registered) {
|
|
496
|
+
// <- TODO: What to return here
|
|
497
|
+
var packageName = registered.packageName, className = registered.className;
|
|
498
|
+
var existingRegistrationIndex = this.storage.findIndex(function (item) { return item.packageName === packageName && item.className === className; });
|
|
499
|
+
var existingRegistration = this.storage[existingRegistrationIndex];
|
|
500
|
+
// TODO: !!!!!! Global IS_VERBOSE mode
|
|
501
|
+
if (!existingRegistration) {
|
|
502
|
+
console.warn("[\uD83D\uDCE6] Registering `".concat(packageName, ".").concat(className, "` to `").concat(this.storageName, "`"));
|
|
503
|
+
this.storage.push(registered);
|
|
504
|
+
}
|
|
505
|
+
else {
|
|
506
|
+
console.warn("[\uD83D\uDCE6] Re-registering `".concat(packageName, ".").concat(className, "` to `").concat(this.storageName, "`"));
|
|
507
|
+
this.storage[existingRegistrationIndex] = registered;
|
|
530
508
|
}
|
|
531
|
-
return /* not await */ this.callCommonModel(prompt);
|
|
532
|
-
};
|
|
533
|
-
// <- Note: [🤖] callXxxModel
|
|
534
|
-
/**
|
|
535
|
-
* Calls remote proxy server to use both completion or chat model
|
|
536
|
-
*/
|
|
537
|
-
RemoteLlmExecutionTools.prototype.callCommonModel = function (prompt) {
|
|
538
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
539
|
-
var socket, promptResult;
|
|
540
|
-
return __generator(this, function (_a) {
|
|
541
|
-
switch (_a.label) {
|
|
542
|
-
case 0: return [4 /*yield*/, this.makeConnection()];
|
|
543
|
-
case 1:
|
|
544
|
-
socket = _a.sent();
|
|
545
|
-
if (this.options.isAnonymous) {
|
|
546
|
-
socket.emit('request', {
|
|
547
|
-
llmToolsConfiguration: this.options.llmToolsConfiguration,
|
|
548
|
-
prompt: prompt,
|
|
549
|
-
// <- TODO: [🛫] `prompt` is NOT fully serializable as JSON, it contains functions which are not serializable
|
|
550
|
-
});
|
|
551
|
-
}
|
|
552
|
-
else {
|
|
553
|
-
socket.emit('request', {
|
|
554
|
-
clientId: this.options.clientId,
|
|
555
|
-
prompt: prompt,
|
|
556
|
-
// <- TODO: [🛫] `prompt` is NOT fully serializable as JSON, it contains functions which are not serializable
|
|
557
|
-
});
|
|
558
|
-
}
|
|
559
|
-
return [4 /*yield*/, new Promise(function (resolve, reject) {
|
|
560
|
-
socket.on('response', function (response) {
|
|
561
|
-
resolve(response.promptResult);
|
|
562
|
-
socket.disconnect();
|
|
563
|
-
});
|
|
564
|
-
socket.on('error', function (error) {
|
|
565
|
-
reject(new PipelineExecutionError(error.errorMessage));
|
|
566
|
-
socket.disconnect();
|
|
567
|
-
});
|
|
568
|
-
})];
|
|
569
|
-
case 2:
|
|
570
|
-
promptResult = _a.sent();
|
|
571
|
-
socket.disconnect();
|
|
572
|
-
return [2 /*return*/, promptResult];
|
|
573
|
-
}
|
|
574
|
-
});
|
|
575
|
-
});
|
|
576
509
|
};
|
|
577
|
-
return
|
|
510
|
+
return $Register;
|
|
578
511
|
}());
|
|
579
|
-
/**
|
|
580
|
-
* TODO: [🍓] Allow to list compatible models with each variant
|
|
581
|
-
* TODO: [🗯] RemoteLlmExecutionTools should extend Destroyable and implement IDestroyable
|
|
582
|
-
* TODO: [🧠][🌰] Allow to pass `title` for tracking purposes
|
|
583
|
-
* TODO: [🧠] Maybe remove `@promptbook/remote-client` and just use `@promptbook/core`
|
|
584
|
-
*/
|
|
585
512
|
|
|
586
513
|
/**
|
|
587
|
-
*
|
|
514
|
+
* @@@
|
|
588
515
|
*
|
|
589
|
-
*
|
|
516
|
+
* Note: `$` is used to indicate that this interacts with the global scope
|
|
517
|
+
* @singleton Only one instance of each register is created per build, but thare can be more @@@
|
|
518
|
+
* @public exported from `@promptbook/core`
|
|
590
519
|
*/
|
|
591
|
-
|
|
592
|
-
var _a = __read(value.split(' / '), 2), price = _a[0], tokens = _a[1];
|
|
593
|
-
return parseFloat(price.replace('$', '')) / parseFloat(tokens.replace('M tokens', '')) / 1000000;
|
|
594
|
-
}
|
|
520
|
+
var $llmToolsRegister = new $Register('llm_execution_tools_constructors');
|
|
595
521
|
|
|
596
522
|
/**
|
|
597
|
-
*
|
|
523
|
+
* Returns the same value that is passed as argument.
|
|
524
|
+
* No side effects.
|
|
598
525
|
*
|
|
599
|
-
* Note:
|
|
526
|
+
* Note: It can be usefull for:
|
|
600
527
|
*
|
|
601
|
-
*
|
|
602
|
-
*
|
|
603
|
-
|
|
604
|
-
|
|
605
|
-
|
|
606
|
-
|
|
607
|
-
modelTitle: 'Claude 3.5 Sonnet',
|
|
608
|
-
modelName: 'claude-3-5-sonnet-20240620',
|
|
609
|
-
pricing: {
|
|
610
|
-
prompt: computeUsage("$3.00 / 1M tokens"),
|
|
611
|
-
output: computeUsage("$15.00 / 1M tokens"),
|
|
612
|
-
},
|
|
613
|
-
},
|
|
614
|
-
{
|
|
615
|
-
modelVariant: 'CHAT',
|
|
616
|
-
modelTitle: 'Claude 3 Opus',
|
|
617
|
-
modelName: 'claude-3-opus-20240229',
|
|
618
|
-
pricing: {
|
|
619
|
-
prompt: computeUsage("$15.00 / 1M tokens"),
|
|
620
|
-
output: computeUsage("$75.00 / 1M tokens"),
|
|
621
|
-
},
|
|
622
|
-
},
|
|
623
|
-
{
|
|
624
|
-
modelVariant: 'CHAT',
|
|
625
|
-
modelTitle: 'Claude 3 Sonnet',
|
|
626
|
-
modelName: 'claude-3-sonnet-20240229',
|
|
627
|
-
pricing: {
|
|
628
|
-
prompt: computeUsage("$3.00 / 1M tokens"),
|
|
629
|
-
output: computeUsage("$15.00 / 1M tokens"),
|
|
630
|
-
},
|
|
631
|
-
},
|
|
632
|
-
{
|
|
633
|
-
modelVariant: 'CHAT',
|
|
634
|
-
modelTitle: 'Claude 3 Haiku',
|
|
635
|
-
modelName: ' claude-3-haiku-20240307',
|
|
636
|
-
pricing: {
|
|
637
|
-
prompt: computeUsage("$0.25 / 1M tokens"),
|
|
638
|
-
output: computeUsage("$1.25 / 1M tokens"),
|
|
639
|
-
},
|
|
640
|
-
},
|
|
641
|
-
{
|
|
642
|
-
modelVariant: 'CHAT',
|
|
643
|
-
modelTitle: 'Claude 2.1',
|
|
644
|
-
modelName: 'claude-2.1',
|
|
645
|
-
pricing: {
|
|
646
|
-
prompt: computeUsage("$8.00 / 1M tokens"),
|
|
647
|
-
output: computeUsage("$24.00 / 1M tokens"),
|
|
648
|
-
},
|
|
649
|
-
},
|
|
650
|
-
{
|
|
651
|
-
modelVariant: 'CHAT',
|
|
652
|
-
modelTitle: 'Claude 2',
|
|
653
|
-
modelName: 'claude-2.0',
|
|
654
|
-
pricing: {
|
|
655
|
-
prompt: computeUsage("$8.00 / 1M tokens"),
|
|
656
|
-
output: computeUsage("$24.00 / 1M tokens"),
|
|
657
|
-
},
|
|
658
|
-
},
|
|
659
|
-
{
|
|
660
|
-
modelVariant: 'CHAT',
|
|
661
|
-
modelTitle: ' Claude Instant 1.2',
|
|
662
|
-
modelName: 'claude-instant-1.2',
|
|
663
|
-
pricing: {
|
|
664
|
-
prompt: computeUsage("$0.80 / 1M tokens"),
|
|
665
|
-
output: computeUsage("$2.40 / 1M tokens"),
|
|
666
|
-
},
|
|
667
|
-
},
|
|
668
|
-
// TODO: !!! Claude 1 and 2 has also completion versions - ask Hoagy
|
|
669
|
-
];
|
|
670
|
-
/**
|
|
671
|
-
* Note: [🤖] Add models of new variant
|
|
672
|
-
* TODO: [🧠] !!! Add embedding models OR Anthropic has only chat+completion models?
|
|
673
|
-
* TODO: [🧠] Some mechanism to propagate unsureness
|
|
674
|
-
* TODO: [🧠][👮♀️] Put here more info like description, isVision, trainingDateCutoff, languages, strengths ( Top-level performance, intelligence, fluency, and understanding), contextWindow,...
|
|
675
|
-
* TODO: [🎰] Some mechanism to auto-update available models
|
|
528
|
+
* 1) Leveling indentation
|
|
529
|
+
* 2) Putting always-true or always-false conditions without getting eslint errors
|
|
530
|
+
*
|
|
531
|
+
* @param value any values
|
|
532
|
+
* @returns the same values
|
|
533
|
+
* @private within the repository
|
|
676
534
|
*/
|
|
535
|
+
function just(value) {
|
|
536
|
+
if (value === undefined) {
|
|
537
|
+
return undefined;
|
|
538
|
+
}
|
|
539
|
+
return value;
|
|
540
|
+
}
|
|
677
541
|
|
|
678
542
|
/**
|
|
679
|
-
*
|
|
543
|
+
* @@@
|
|
680
544
|
*
|
|
681
|
-
*
|
|
545
|
+
* Note: `$` is used to indicate that this interacts with the global scope
|
|
546
|
+
* @singleton Only one instance of each register is created per build, but thare can be more @@@
|
|
547
|
+
* @public exported from `@promptbook/core`
|
|
682
548
|
*/
|
|
683
|
-
|
|
684
|
-
return new Date().toISOString();
|
|
685
|
-
}
|
|
549
|
+
var $llmToolsMetadataRegister = new $Register('llm_tools_metadata');
|
|
686
550
|
|
|
687
551
|
/**
|
|
688
|
-
*
|
|
552
|
+
* Creates a message with all registered LLM tools
|
|
689
553
|
*
|
|
690
|
-
* Note:
|
|
691
|
-
* Note: This function mutates the object and returns the original (but mutated-deep-freezed) object
|
|
554
|
+
* Note: This function is used to create a (error) message when there is no constructor for some LLM provider
|
|
692
555
|
*
|
|
693
|
-
* @
|
|
694
|
-
* @public exported from `@promptbook/utils`
|
|
556
|
+
* @private internal function of `createLlmToolsFromConfiguration` and `createLlmToolsFromEnv`
|
|
695
557
|
*/
|
|
696
|
-
function $
|
|
697
|
-
var e_1, _a;
|
|
698
|
-
|
|
558
|
+
function $registeredLlmToolsMessage() {
|
|
559
|
+
var e_1, _a, e_2, _b;
|
|
560
|
+
/**
|
|
561
|
+
* Mixes registered LLM tools from $llmToolsMetadataRegister and $llmToolsRegister
|
|
562
|
+
*/
|
|
563
|
+
var all = [];
|
|
564
|
+
var _loop_1 = function (packageName, className) {
|
|
565
|
+
if (all.some(function (item) { return item.packageName === packageName && item.className === className; })) {
|
|
566
|
+
return "continue";
|
|
567
|
+
}
|
|
568
|
+
all.push({ packageName: packageName, className: className });
|
|
569
|
+
};
|
|
699
570
|
try {
|
|
700
|
-
for (var
|
|
701
|
-
var
|
|
702
|
-
|
|
703
|
-
if (value && typeof value === 'object') {
|
|
704
|
-
$deepFreeze(value);
|
|
705
|
-
}
|
|
571
|
+
for (var _c = __values($llmToolsMetadataRegister.list()), _d = _c.next(); !_d.done; _d = _c.next()) {
|
|
572
|
+
var _e = _d.value, packageName = _e.packageName, className = _e.className;
|
|
573
|
+
_loop_1(packageName, className);
|
|
706
574
|
}
|
|
707
575
|
}
|
|
708
576
|
catch (e_1_1) { e_1 = { error: e_1_1 }; }
|
|
709
577
|
finally {
|
|
710
578
|
try {
|
|
711
|
-
if (
|
|
579
|
+
if (_d && !_d.done && (_a = _c.return)) _a.call(_c);
|
|
712
580
|
}
|
|
713
581
|
finally { if (e_1) throw e_1.error; }
|
|
714
582
|
}
|
|
715
|
-
|
|
716
|
-
}
|
|
717
|
-
|
|
718
|
-
|
|
719
|
-
|
|
720
|
-
|
|
721
|
-
// <- TODO: [🧠] Better system for generator warnings - not always "code" and "by `@promptbook/cli`"
|
|
722
|
-
/**
|
|
723
|
-
* The maximum number of iterations for a loops
|
|
724
|
-
*
|
|
725
|
-
* @private within the repository - too low-level in comparison with other `MAX_...`
|
|
726
|
-
*/
|
|
727
|
-
var LOOP_LIMIT = 1000;
|
|
728
|
-
/**
|
|
729
|
-
* Nonce which is used for replacing things in strings
|
|
730
|
-
*
|
|
731
|
-
* @private within the repository
|
|
732
|
-
*/
|
|
733
|
-
var REPLACING_NONCE = 'u$k42k%!V2zo34w7Fu#@QUHYPW';
|
|
734
|
-
/**
|
|
735
|
-
* The names of the parameters that are reserved for special purposes
|
|
736
|
-
*
|
|
737
|
-
* @public exported from `@promptbook/core`
|
|
738
|
-
*/
|
|
739
|
-
$deepFreeze([
|
|
740
|
-
'content',
|
|
741
|
-
'context',
|
|
742
|
-
'knowledge',
|
|
743
|
-
'samples',
|
|
744
|
-
'modelName',
|
|
745
|
-
'currentDate',
|
|
746
|
-
// <- TODO: Add more like 'date', 'modelName',...
|
|
747
|
-
// <- TODO: Add [emoji] + instructions ACRY when adding new reserved parameter
|
|
748
|
-
]);
|
|
749
|
-
/**
|
|
750
|
-
* @@@
|
|
751
|
-
*
|
|
752
|
-
* @private within the repository
|
|
753
|
-
*/
|
|
754
|
-
var RESERVED_PARAMETER_MISSING_VALUE = 'MISSING-' + REPLACING_NONCE;
|
|
755
|
-
/**
|
|
756
|
-
* @@@
|
|
757
|
-
*
|
|
758
|
-
* @private within the repository
|
|
759
|
-
*/
|
|
760
|
-
var RESERVED_PARAMETER_RESTRICTED = 'RESTRICTED-' + REPLACING_NONCE;
|
|
761
|
-
/**
|
|
762
|
-
* TODO: [🧠][🧜♂️] Maybe join remoteUrl and path into single value
|
|
763
|
-
*/
|
|
764
|
-
|
|
765
|
-
/**
|
|
766
|
-
* This error type indicates that some limit was reached
|
|
767
|
-
*
|
|
768
|
-
* @public exported from `@promptbook/core`
|
|
769
|
-
*/
|
|
770
|
-
var LimitReachedError = /** @class */ (function (_super) {
|
|
771
|
-
__extends(LimitReachedError, _super);
|
|
772
|
-
function LimitReachedError(message) {
|
|
773
|
-
var _this = _super.call(this, message) || this;
|
|
774
|
-
_this.name = 'LimitReachedError';
|
|
775
|
-
Object.setPrototypeOf(_this, LimitReachedError.prototype);
|
|
776
|
-
return _this;
|
|
777
|
-
}
|
|
778
|
-
return LimitReachedError;
|
|
779
|
-
}(Error));
|
|
780
|
-
|
|
781
|
-
/**
|
|
782
|
-
* Replaces parameters in template with values from parameters object
|
|
783
|
-
*
|
|
784
|
-
* @param template the template with parameters in {curly} braces
|
|
785
|
-
* @param parameters the object with parameters
|
|
786
|
-
* @returns the template with replaced parameters
|
|
787
|
-
* @throws {PipelineExecutionError} if parameter is not defined, not closed, or not opened
|
|
788
|
-
* @public exported from `@promptbook/utils`
|
|
789
|
-
*/
|
|
790
|
-
function replaceParameters(template, parameters) {
|
|
791
|
-
var e_1, _a;
|
|
583
|
+
var _loop_2 = function (packageName, className) {
|
|
584
|
+
if (all.some(function (item) { return item.packageName === packageName && item.className === className; })) {
|
|
585
|
+
return "continue";
|
|
586
|
+
}
|
|
587
|
+
all.push({ packageName: packageName, className: className });
|
|
588
|
+
};
|
|
792
589
|
try {
|
|
793
|
-
for (var
|
|
794
|
-
var
|
|
795
|
-
|
|
796
|
-
throw new UnexpectedError("Parameter {".concat(parameterName, "} has missing value"));
|
|
797
|
-
}
|
|
798
|
-
else if (parameterValue === RESERVED_PARAMETER_RESTRICTED) {
|
|
799
|
-
// TODO: [🍵]
|
|
800
|
-
throw new UnexpectedError("Parameter {".concat(parameterName, "} is restricted to use"));
|
|
801
|
-
}
|
|
590
|
+
for (var _f = __values($llmToolsRegister.list()), _g = _f.next(); !_g.done; _g = _f.next()) {
|
|
591
|
+
var _h = _g.value, packageName = _h.packageName, className = _h.className;
|
|
592
|
+
_loop_2(packageName, className);
|
|
802
593
|
}
|
|
803
594
|
}
|
|
804
|
-
catch (
|
|
595
|
+
catch (e_2_1) { e_2 = { error: e_2_1 }; }
|
|
805
596
|
finally {
|
|
806
597
|
try {
|
|
807
|
-
if (
|
|
598
|
+
if (_g && !_g.done && (_b = _f.return)) _b.call(_f);
|
|
808
599
|
}
|
|
809
|
-
finally { if (
|
|
600
|
+
finally { if (e_2) throw e_2.error; }
|
|
810
601
|
}
|
|
811
|
-
var
|
|
812
|
-
|
|
813
|
-
|
|
814
|
-
|
|
815
|
-
|
|
816
|
-
|
|
602
|
+
var metadata = all.map(function (metadata) {
|
|
603
|
+
var isMetadataAviailable = $llmToolsMetadataRegister
|
|
604
|
+
.list()
|
|
605
|
+
.find(function (_a) {
|
|
606
|
+
var packageName = _a.packageName, className = _a.className;
|
|
607
|
+
return metadata.packageName === packageName && metadata.className === className;
|
|
608
|
+
});
|
|
609
|
+
var isInstalled = $llmToolsRegister
|
|
610
|
+
.list()
|
|
611
|
+
.find(function (_a) {
|
|
612
|
+
var packageName = _a.packageName, className = _a.className;
|
|
613
|
+
return metadata.packageName === packageName && metadata.className === className;
|
|
614
|
+
});
|
|
615
|
+
return __assign(__assign({}, metadata), { isMetadataAviailable: isMetadataAviailable, isInstalled: isInstalled });
|
|
616
|
+
});
|
|
617
|
+
return spaceTrim$1(function (block) { return "\n Available LLM providers are:\n ".concat(block(metadata
|
|
618
|
+
.map(function (_a, i) {
|
|
619
|
+
var packageName = _a.packageName, className = _a.className, isMetadataAviailable = _a.isMetadataAviailable, isInstalled = _a.isInstalled;
|
|
620
|
+
var more;
|
|
621
|
+
if (just(false)) {
|
|
622
|
+
more = '';
|
|
817
623
|
}
|
|
818
|
-
|
|
819
|
-
|
|
820
|
-
|
|
821
|
-
return "continue";
|
|
624
|
+
else if (!isMetadataAviailable && !isInstalled) {
|
|
625
|
+
// TODO: [�][�] Maybe do allow to do auto-install if package not registered and not found
|
|
626
|
+
more = "(not installed and no metadata, looks like a unexpected behavior)";
|
|
822
627
|
}
|
|
823
|
-
if (
|
|
824
|
-
|
|
628
|
+
else if (isMetadataAviailable && !isInstalled) {
|
|
629
|
+
// TODO: [�][�]
|
|
630
|
+
more = "(not installed)";
|
|
825
631
|
}
|
|
826
|
-
if (
|
|
827
|
-
|
|
632
|
+
else if (!isMetadataAviailable && isInstalled) {
|
|
633
|
+
more = "(no metadata, looks like a unexpected behavior)";
|
|
828
634
|
}
|
|
829
|
-
|
|
830
|
-
|
|
831
|
-
throw new PipelineExecutionError("Parameter {".concat(parameterName, "} is not defined"));
|
|
635
|
+
else if (isMetadataAviailable && isInstalled) {
|
|
636
|
+
more = "(installed)";
|
|
832
637
|
}
|
|
833
|
-
|
|
834
|
-
|
|
835
|
-
parameterValue = parameterValue
|
|
836
|
-
.split('\n')
|
|
837
|
-
.map(function (line, index) { return (index === 0 ? line : "".concat(precol).concat(line)); })
|
|
838
|
-
.join('\n');
|
|
638
|
+
else {
|
|
639
|
+
more = "(unknown state, looks like a unexpected behavior)";
|
|
839
640
|
}
|
|
840
|
-
|
|
841
|
-
|
|
842
|
-
|
|
843
|
-
replacedTemplate.substring(match.index + precol.length + parameterName.length + 2);
|
|
844
|
-
};
|
|
845
|
-
while ((match = /^(?<precol>.*){(?<parameterName>\w+)}(.*)/m /* <- Not global */
|
|
846
|
-
.exec(replacedTemplate))) {
|
|
847
|
-
_loop_1();
|
|
848
|
-
}
|
|
849
|
-
// [💫] Check if there are parameters that are not closed properly
|
|
850
|
-
if (/{\w+$/.test(replacedTemplate)) {
|
|
851
|
-
throw new PipelineExecutionError('Parameter is not closed');
|
|
852
|
-
}
|
|
853
|
-
// [💫] Check if there are parameters that are not opened properly
|
|
854
|
-
if (/^\w+}/.test(replacedTemplate)) {
|
|
855
|
-
throw new PipelineExecutionError('Parameter is not opened');
|
|
856
|
-
}
|
|
857
|
-
return replacedTemplate;
|
|
858
|
-
}
|
|
859
|
-
|
|
860
|
-
/**
|
|
861
|
-
* Counts number of characters in the text
|
|
862
|
-
*
|
|
863
|
-
* @public exported from `@promptbook/utils`
|
|
864
|
-
*/
|
|
865
|
-
function countCharacters(text) {
|
|
866
|
-
// Remove null characters
|
|
867
|
-
text = text.replace(/\0/g, '');
|
|
868
|
-
// Replace emojis (and also ZWJ sequence) with hyphens
|
|
869
|
-
text = text.replace(/(\p{Extended_Pictographic})\p{Modifier_Symbol}/gu, '$1');
|
|
870
|
-
text = text.replace(/(\p{Extended_Pictographic})[\u{FE00}-\u{FE0F}]/gu, '$1');
|
|
871
|
-
text = text.replace(/\p{Extended_Pictographic}(\u{200D}\p{Extended_Pictographic})*/gu, '-');
|
|
872
|
-
return text.length;
|
|
873
|
-
}
|
|
874
|
-
|
|
875
|
-
/**
|
|
876
|
-
* Counts number of lines in the text
|
|
877
|
-
*
|
|
878
|
-
* @public exported from `@promptbook/utils`
|
|
879
|
-
*/
|
|
880
|
-
function countLines(text) {
|
|
881
|
-
if (text === '') {
|
|
882
|
-
return 0;
|
|
883
|
-
}
|
|
884
|
-
return text.split('\n').length;
|
|
885
|
-
}
|
|
886
|
-
|
|
887
|
-
/**
|
|
888
|
-
* Counts number of pages in the text
|
|
889
|
-
*
|
|
890
|
-
* @public exported from `@promptbook/utils`
|
|
891
|
-
*/
|
|
892
|
-
function countPages(text) {
|
|
893
|
-
var sentencesPerPage = 5; // Assuming each page has 5 sentences
|
|
894
|
-
var sentences = text.split(/[.!?]+/).filter(function (sentence) { return sentence.trim() !== ''; });
|
|
895
|
-
var pageCount = Math.ceil(sentences.length / sentencesPerPage);
|
|
896
|
-
return pageCount;
|
|
897
|
-
}
|
|
898
|
-
|
|
899
|
-
/**
|
|
900
|
-
* Counts number of paragraphs in the text
|
|
901
|
-
*
|
|
902
|
-
* @public exported from `@promptbook/utils`
|
|
903
|
-
*/
|
|
904
|
-
function countParagraphs(text) {
|
|
905
|
-
return text.split(/\n\s*\n/).filter(function (paragraph) { return paragraph.trim() !== ''; }).length;
|
|
906
|
-
}
|
|
907
|
-
|
|
908
|
-
/**
|
|
909
|
-
* Split text into sentences
|
|
910
|
-
*
|
|
911
|
-
* @public exported from `@promptbook/utils`
|
|
912
|
-
*/
|
|
913
|
-
function splitIntoSentences(text) {
|
|
914
|
-
return text.split(/[.!?]+/).filter(function (sentence) { return sentence.trim() !== ''; });
|
|
915
|
-
}
|
|
916
|
-
/**
|
|
917
|
-
* Counts number of sentences in the text
|
|
918
|
-
*
|
|
919
|
-
* @public exported from `@promptbook/utils`
|
|
920
|
-
*/
|
|
921
|
-
function countSentences(text) {
|
|
922
|
-
return splitIntoSentences(text).length;
|
|
923
|
-
}
|
|
924
|
-
|
|
925
|
-
var defaultDiacriticsRemovalMap = [
|
|
926
|
-
{
|
|
927
|
-
base: 'A',
|
|
928
|
-
letters: '\u0041\u24B6\uFF21\u00C0\u00C1\u00C2\u1EA6\u1EA4\u1EAA\u1EA8\u00C3\u0100\u0102\u1EB0\u1EAE\u1EB4\u1EB2\u0226\u01E0\u00C4\u01DE\u1EA2\u00C5\u01FA\u01CD\u0200\u0202\u1EA0\u1EAC\u1EB6\u1E00\u0104\u023A\u2C6F',
|
|
929
|
-
},
|
|
930
|
-
{ base: 'AA', letters: '\uA732' },
|
|
931
|
-
{ base: 'AE', letters: '\u00C6\u01FC\u01E2' },
|
|
932
|
-
{ base: 'AO', letters: '\uA734' },
|
|
933
|
-
{ base: 'AU', letters: '\uA736' },
|
|
934
|
-
{ base: 'AV', letters: '\uA738\uA73A' },
|
|
935
|
-
{ base: 'AY', letters: '\uA73C' },
|
|
936
|
-
{
|
|
937
|
-
base: 'B',
|
|
938
|
-
letters: '\u0042\u24B7\uFF22\u1E02\u1E04\u1E06\u0243\u0182\u0181',
|
|
939
|
-
},
|
|
940
|
-
{
|
|
941
|
-
base: 'C',
|
|
942
|
-
letters: '\u0043\u24B8\uFF23\u0106\u0108\u010A\u010C\u00C7\u1E08\u0187\u023B\uA73E',
|
|
943
|
-
},
|
|
944
|
-
{
|
|
945
|
-
base: 'D',
|
|
946
|
-
letters: '\u0044\u24B9\uFF24\u1E0A\u010E\u1E0C\u1E10\u1E12\u1E0E\u0110\u018B\u018A\u0189\uA779\u00D0',
|
|
947
|
-
},
|
|
948
|
-
{ base: 'DZ', letters: '\u01F1\u01C4' },
|
|
949
|
-
{ base: 'Dz', letters: '\u01F2\u01C5' },
|
|
950
|
-
{
|
|
951
|
-
base: 'E',
|
|
952
|
-
letters: '\u0045\u24BA\uFF25\u00C8\u00C9\u00CA\u1EC0\u1EBE\u1EC4\u1EC2\u1EBC\u0112\u1E14\u1E16\u0114\u0116\u00CB\u1EBA\u011A\u0204\u0206\u1EB8\u1EC6\u0228\u1E1C\u0118\u1E18\u1E1A\u0190\u018E',
|
|
953
|
-
},
|
|
954
|
-
{ base: 'F', letters: '\u0046\u24BB\uFF26\u1E1E\u0191\uA77B' },
|
|
955
|
-
{
|
|
956
|
-
base: 'G',
|
|
957
|
-
letters: '\u0047\u24BC\uFF27\u01F4\u011C\u1E20\u011E\u0120\u01E6\u0122\u01E4\u0193\uA7A0\uA77D\uA77E',
|
|
958
|
-
},
|
|
959
|
-
{
|
|
960
|
-
base: 'H',
|
|
961
|
-
letters: '\u0048\u24BD\uFF28\u0124\u1E22\u1E26\u021E\u1E24\u1E28\u1E2A\u0126\u2C67\u2C75\uA78D',
|
|
962
|
-
},
|
|
963
|
-
{
|
|
964
|
-
base: 'I',
|
|
965
|
-
letters: '\u0049\u24BE\uFF29\u00CC\u00CD\u00CE\u0128\u012A\u012C\u0130\u00CF\u1E2E\u1EC8\u01CF\u0208\u020A\u1ECA\u012E\u1E2C\u0197',
|
|
966
|
-
},
|
|
967
|
-
{ base: 'J', letters: '\u004A\u24BF\uFF2A\u0134\u0248' },
|
|
968
|
-
{
|
|
969
|
-
base: 'K',
|
|
970
|
-
letters: '\u004B\u24C0\uFF2B\u1E30\u01E8\u1E32\u0136\u1E34\u0198\u2C69\uA740\uA742\uA744\uA7A2',
|
|
971
|
-
},
|
|
972
|
-
{
|
|
973
|
-
base: 'L',
|
|
974
|
-
letters: '\u004C\u24C1\uFF2C\u013F\u0139\u013D\u1E36\u1E38\u013B\u1E3C\u1E3A\u0141\u023D\u2C62\u2C60\uA748\uA746\uA780',
|
|
975
|
-
},
|
|
976
|
-
{ base: 'LJ', letters: '\u01C7' },
|
|
977
|
-
{ base: 'Lj', letters: '\u01C8' },
|
|
978
|
-
{ base: 'M', letters: '\u004D\u24C2\uFF2D\u1E3E\u1E40\u1E42\u2C6E\u019C' },
|
|
979
|
-
{
|
|
980
|
-
base: 'N',
|
|
981
|
-
letters: '\u004E\u24C3\uFF2E\u01F8\u0143\u00D1\u1E44\u0147\u1E46\u0145\u1E4A\u1E48\u0220\u019D\uA790\uA7A4',
|
|
982
|
-
},
|
|
983
|
-
{ base: 'NJ', letters: '\u01CA' },
|
|
984
|
-
{ base: 'Nj', letters: '\u01CB' },
|
|
985
|
-
{
|
|
986
|
-
base: 'O',
|
|
987
|
-
letters: '\u004F\u24C4\uFF2F\u00D2\u00D3\u00D4\u1ED2\u1ED0\u1ED6\u1ED4\u00D5\u1E4C\u022C\u1E4E\u014C\u1E50\u1E52\u014E\u022E\u0230\u00D6\u022A\u1ECE\u0150\u01D1\u020C\u020E\u01A0\u1EDC\u1EDA\u1EE0\u1EDE\u1EE2\u1ECC\u1ED8\u01EA\u01EC\u00D8\u01FE\u0186\u019F\uA74A\uA74C',
|
|
988
|
-
},
|
|
989
|
-
{ base: 'OI', letters: '\u01A2' },
|
|
990
|
-
{ base: 'OO', letters: '\uA74E' },
|
|
991
|
-
{ base: 'OU', letters: '\u0222' },
|
|
992
|
-
{ base: 'OE', letters: '\u008C\u0152' },
|
|
993
|
-
{ base: 'oe', letters: '\u009C\u0153' },
|
|
994
|
-
{
|
|
995
|
-
base: 'P',
|
|
996
|
-
letters: '\u0050\u24C5\uFF30\u1E54\u1E56\u01A4\u2C63\uA750\uA752\uA754',
|
|
997
|
-
},
|
|
998
|
-
{ base: 'Q', letters: '\u0051\u24C6\uFF31\uA756\uA758\u024A' },
|
|
999
|
-
{
|
|
1000
|
-
base: 'R',
|
|
1001
|
-
letters: '\u0052\u24C7\uFF32\u0154\u1E58\u0158\u0210\u0212\u1E5A\u1E5C\u0156\u1E5E\u024C\u2C64\uA75A\uA7A6\uA782',
|
|
1002
|
-
},
|
|
1003
|
-
{
|
|
1004
|
-
base: 'S',
|
|
1005
|
-
letters: '\u0053\u24C8\uFF33\u1E9E\u015A\u1E64\u015C\u1E60\u0160\u1E66\u1E62\u1E68\u0218\u015E\u2C7E\uA7A8\uA784',
|
|
1006
|
-
},
|
|
1007
|
-
{
|
|
1008
|
-
base: 'T',
|
|
1009
|
-
letters: '\u0054\u24C9\uFF34\u1E6A\u0164\u1E6C\u021A\u0162\u1E70\u1E6E\u0166\u01AC\u01AE\u023E\uA786',
|
|
1010
|
-
},
|
|
1011
|
-
{ base: 'TZ', letters: '\uA728' },
|
|
1012
|
-
{
|
|
1013
|
-
base: 'U',
|
|
1014
|
-
letters: '\u0055\u24CA\uFF35\u00D9\u00DA\u00DB\u0168\u1E78\u016A\u1E7A\u016C\u00DC\u01DB\u01D7\u01D5\u01D9\u1EE6\u016E\u0170\u01D3\u0214\u0216\u01AF\u1EEA\u1EE8\u1EEE\u1EEC\u1EF0\u1EE4\u1E72\u0172\u1E76\u1E74\u0244',
|
|
1015
|
-
},
|
|
1016
|
-
{ base: 'V', letters: '\u0056\u24CB\uFF36\u1E7C\u1E7E\u01B2\uA75E\u0245' },
|
|
1017
|
-
{ base: 'VY', letters: '\uA760' },
|
|
1018
|
-
{
|
|
1019
|
-
base: 'W',
|
|
1020
|
-
letters: '\u0057\u24CC\uFF37\u1E80\u1E82\u0174\u1E86\u1E84\u1E88\u2C72',
|
|
1021
|
-
},
|
|
1022
|
-
{ base: 'X', letters: '\u0058\u24CD\uFF38\u1E8A\u1E8C' },
|
|
1023
|
-
{
|
|
1024
|
-
base: 'Y',
|
|
1025
|
-
letters: '\u0059\u24CE\uFF39\u1EF2\u00DD\u0176\u1EF8\u0232\u1E8E\u0178\u1EF6\u1EF4\u01B3\u024E\u1EFE',
|
|
1026
|
-
},
|
|
1027
|
-
{
|
|
1028
|
-
base: 'Z',
|
|
1029
|
-
letters: '\u005A\u24CF\uFF3A\u0179\u1E90\u017B\u017D\u1E92\u1E94\u01B5\u0224\u2C7F\u2C6B\uA762',
|
|
1030
|
-
},
|
|
1031
|
-
{
|
|
1032
|
-
base: 'a',
|
|
1033
|
-
letters: '\u0061\u24D0\uFF41\u1E9A\u00E0\u00E1\u00E2\u1EA7\u1EA5\u1EAB\u1EA9\u00E3\u0101\u0103\u1EB1\u1EAF\u1EB5\u1EB3\u0227\u01E1\u00E4\u01DF\u1EA3\u00E5\u01FB\u01CE\u0201\u0203\u1EA1\u1EAD\u1EB7\u1E01\u0105\u2C65\u0250',
|
|
1034
|
-
},
|
|
1035
|
-
{ base: 'aa', letters: '\uA733' },
|
|
1036
|
-
{ base: 'ae', letters: '\u00E6\u01FD\u01E3' },
|
|
1037
|
-
{ base: 'ao', letters: '\uA735' },
|
|
1038
|
-
{ base: 'au', letters: '\uA737' },
|
|
1039
|
-
{ base: 'av', letters: '\uA739\uA73B' },
|
|
1040
|
-
{ base: 'ay', letters: '\uA73D' },
|
|
1041
|
-
{
|
|
1042
|
-
base: 'b',
|
|
1043
|
-
letters: '\u0062\u24D1\uFF42\u1E03\u1E05\u1E07\u0180\u0183\u0253',
|
|
1044
|
-
},
|
|
1045
|
-
{
|
|
1046
|
-
base: 'c',
|
|
1047
|
-
letters: '\u0063\u24D2\uFF43\u0107\u0109\u010B\u010D\u00E7\u1E09\u0188\u023C\uA73F\u2184',
|
|
1048
|
-
},
|
|
1049
|
-
{
|
|
1050
|
-
base: 'd',
|
|
1051
|
-
letters: '\u0064\u24D3\uFF44\u1E0B\u010F\u1E0D\u1E11\u1E13\u1E0F\u0111\u018C\u0256\u0257\uA77A',
|
|
1052
|
-
},
|
|
1053
|
-
{ base: 'dz', letters: '\u01F3\u01C6' },
|
|
1054
|
-
{
|
|
1055
|
-
base: 'e',
|
|
1056
|
-
letters: '\u0065\u24D4\uFF45\u00E8\u00E9\u00EA\u1EC1\u1EBF\u1EC5\u1EC3\u1EBD\u0113\u1E15\u1E17\u0115\u0117\u00EB\u1EBB\u011B\u0205\u0207\u1EB9\u1EC7\u0229\u1E1D\u0119\u1E19\u1E1B\u0247\u025B\u01DD',
|
|
1057
|
-
},
|
|
1058
|
-
{ base: 'f', letters: '\u0066\u24D5\uFF46\u1E1F\u0192\uA77C' },
|
|
1059
|
-
{
|
|
1060
|
-
base: 'g',
|
|
1061
|
-
letters: '\u0067\u24D6\uFF47\u01F5\u011D\u1E21\u011F\u0121\u01E7\u0123\u01E5\u0260\uA7A1\u1D79\uA77F',
|
|
1062
|
-
},
|
|
1063
|
-
{
|
|
1064
|
-
base: 'h',
|
|
1065
|
-
letters: '\u0068\u24D7\uFF48\u0125\u1E23\u1E27\u021F\u1E25\u1E29\u1E2B\u1E96\u0127\u2C68\u2C76\u0265',
|
|
1066
|
-
},
|
|
1067
|
-
{ base: 'hv', letters: '\u0195' },
|
|
1068
|
-
{
|
|
1069
|
-
base: 'i',
|
|
1070
|
-
letters: '\u0069\u24D8\uFF49\u00EC\u00ED\u00EE\u0129\u012B\u012D\u00EF\u1E2F\u1EC9\u01D0\u0209\u020B\u1ECB\u012F\u1E2D\u0268\u0131',
|
|
1071
|
-
},
|
|
1072
|
-
{ base: 'j', letters: '\u006A\u24D9\uFF4A\u0135\u01F0\u0249' },
|
|
1073
|
-
{
|
|
1074
|
-
base: 'k',
|
|
1075
|
-
letters: '\u006B\u24DA\uFF4B\u1E31\u01E9\u1E33\u0137\u1E35\u0199\u2C6A\uA741\uA743\uA745\uA7A3',
|
|
1076
|
-
},
|
|
1077
|
-
{
|
|
1078
|
-
base: 'l',
|
|
1079
|
-
letters: '\u006C\u24DB\uFF4C\u0140\u013A\u013E\u1E37\u1E39\u013C\u1E3D\u1E3B\u017F\u0142\u019A\u026B\u2C61\uA749\uA781\uA747',
|
|
1080
|
-
},
|
|
1081
|
-
{ base: 'lj', letters: '\u01C9' },
|
|
1082
|
-
{ base: 'm', letters: '\u006D\u24DC\uFF4D\u1E3F\u1E41\u1E43\u0271\u026F' },
|
|
1083
|
-
{
|
|
1084
|
-
base: 'n',
|
|
1085
|
-
letters: '\u006E\u24DD\uFF4E\u01F9\u0144\u00F1\u1E45\u0148\u1E47\u0146\u1E4B\u1E49\u019E\u0272\u0149\uA791\uA7A5',
|
|
1086
|
-
},
|
|
1087
|
-
{ base: 'nj', letters: '\u01CC' },
|
|
1088
|
-
{
|
|
1089
|
-
base: 'o',
|
|
1090
|
-
letters: '\u006F\u24DE\uFF4F\u00F2\u00F3\u00F4\u1ED3\u1ED1\u1ED7\u1ED5\u00F5\u1E4D\u022D\u1E4F\u014D\u1E51\u1E53\u014F\u022F\u0231\u00F6\u022B\u1ECF\u0151\u01D2\u020D\u020F\u01A1\u1EDD\u1EDB\u1EE1\u1EDF\u1EE3\u1ECD\u1ED9\u01EB\u01ED\u00F8\u01FF\u0254\uA74B\uA74D\u0275',
|
|
1091
|
-
},
|
|
1092
|
-
{ base: 'oi', letters: '\u01A3' },
|
|
1093
|
-
{ base: 'ou', letters: '\u0223' },
|
|
1094
|
-
{ base: 'oo', letters: '\uA74F' },
|
|
1095
|
-
{
|
|
1096
|
-
base: 'p',
|
|
1097
|
-
letters: '\u0070\u24DF\uFF50\u1E55\u1E57\u01A5\u1D7D\uA751\uA753\uA755',
|
|
1098
|
-
},
|
|
1099
|
-
{ base: 'q', letters: '\u0071\u24E0\uFF51\u024B\uA757\uA759' },
|
|
1100
|
-
{
|
|
1101
|
-
base: 'r',
|
|
1102
|
-
letters: '\u0072\u24E1\uFF52\u0155\u1E59\u0159\u0211\u0213\u1E5B\u1E5D\u0157\u1E5F\u024D\u027D\uA75B\uA7A7\uA783',
|
|
1103
|
-
},
|
|
1104
|
-
{
|
|
1105
|
-
base: 's',
|
|
1106
|
-
letters: '\u0073\u24E2\uFF53\u00DF\u015B\u1E65\u015D\u1E61\u0161\u1E67\u1E63\u1E69\u0219\u015F\u023F\uA7A9\uA785\u1E9B',
|
|
1107
|
-
},
|
|
1108
|
-
{
|
|
1109
|
-
base: 't',
|
|
1110
|
-
letters: '\u0074\u24E3\uFF54\u1E6B\u1E97\u0165\u1E6D\u021B\u0163\u1E71\u1E6F\u0167\u01AD\u0288\u2C66\uA787',
|
|
1111
|
-
},
|
|
1112
|
-
{ base: 'tz', letters: '\uA729' },
|
|
1113
|
-
{
|
|
1114
|
-
base: 'u',
|
|
1115
|
-
letters: '\u0075\u24E4\uFF55\u00F9\u00FA\u00FB\u0169\u1E79\u016B\u1E7B\u016D\u00FC\u01DC\u01D8\u01D6\u01DA\u1EE7\u016F\u0171\u01D4\u0215\u0217\u01B0\u1EEB\u1EE9\u1EEF\u1EED\u1EF1\u1EE5\u1E73\u0173\u1E77\u1E75\u0289',
|
|
1116
|
-
},
|
|
1117
|
-
{ base: 'v', letters: '\u0076\u24E5\uFF56\u1E7D\u1E7F\u028B\uA75F\u028C' },
|
|
1118
|
-
{ base: 'vy', letters: '\uA761' },
|
|
1119
|
-
{
|
|
1120
|
-
base: 'w',
|
|
1121
|
-
letters: '\u0077\u24E6\uFF57\u1E81\u1E83\u0175\u1E87\u1E85\u1E98\u1E89\u2C73',
|
|
1122
|
-
},
|
|
1123
|
-
{ base: 'x', letters: '\u0078\u24E7\uFF58\u1E8B\u1E8D' },
|
|
1124
|
-
{
|
|
1125
|
-
base: 'y',
|
|
1126
|
-
letters: '\u0079\u24E8\uFF59\u1EF3\u00FD\u0177\u1EF9\u0233\u1E8F\u00FF\u1EF7\u1E99\u1EF5\u01B4\u024F\u1EFF',
|
|
1127
|
-
},
|
|
1128
|
-
{
|
|
1129
|
-
base: 'z',
|
|
1130
|
-
letters: '\u007A\u24E9\uFF5A\u017A\u1E91\u017C\u017E\u1E93\u1E95\u01B6\u0225\u0240\u2C6C\uA763',
|
|
1131
|
-
},
|
|
1132
|
-
];
|
|
1133
|
-
/**
|
|
1134
|
-
* Map of letters from diacritic variant to diacritless variant
|
|
1135
|
-
* Contains lowercase and uppercase separatelly
|
|
1136
|
-
*
|
|
1137
|
-
* > "á" => "a"
|
|
1138
|
-
* > "ě" => "e"
|
|
1139
|
-
* > "Ă" => "A"
|
|
1140
|
-
* > ...
|
|
1141
|
-
*
|
|
1142
|
-
* @public exported from `@promptbook/utils`
|
|
1143
|
-
*/
|
|
1144
|
-
var DIACRITIC_VARIANTS_LETTERS = {};
|
|
1145
|
-
// tslint:disable-next-line: prefer-for-of
|
|
1146
|
-
for (var i = 0; i < defaultDiacriticsRemovalMap.length; i++) {
|
|
1147
|
-
var letters = defaultDiacriticsRemovalMap[i].letters;
|
|
1148
|
-
// tslint:disable-next-line: prefer-for-of
|
|
1149
|
-
for (var j = 0; j < letters.length; j++) {
|
|
1150
|
-
DIACRITIC_VARIANTS_LETTERS[letters[j]] = defaultDiacriticsRemovalMap[i].base;
|
|
1151
|
-
}
|
|
641
|
+
return "".concat(i + 1, ") `").concat(className, "` from `").concat(packageName, "` ").concat(more);
|
|
642
|
+
})
|
|
643
|
+
.join('\n')), "\n "); });
|
|
1152
644
|
}
|
|
1153
|
-
// <- TODO: [🍓] Put to maker function to save execution time if not needed
|
|
1154
|
-
/*
|
|
1155
|
-
@see https://stackoverflow.com/questions/990904/remove-accents-diacritics-in-a-string-in-javascript
|
|
1156
|
-
Licensed under the Apache License, Version 2.0 (the "License");
|
|
1157
|
-
you may not use this file except in compliance with the License.
|
|
1158
|
-
You may obtain a copy of the License at
|
|
1159
|
-
|
|
1160
|
-
http://www.apache.org/licenses/LICENSE-2.0
|
|
1161
|
-
|
|
1162
|
-
Unless required by applicable law or agreed to in writing, software
|
|
1163
|
-
distributed under the License is distributed on an "AS IS" BASIS,
|
|
1164
|
-
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
1165
|
-
See the License for the specific language governing permissions and
|
|
1166
|
-
limitations under the License.
|
|
1167
|
-
*/
|
|
1168
645
|
|
|
1169
646
|
/**
|
|
1170
647
|
* @@@
|
|
1171
648
|
*
|
|
1172
|
-
*
|
|
649
|
+
* Note: This function is not cached, every call creates new instance of `MultipleLlmExecutionTools`
|
|
650
|
+
*
|
|
1173
651
|
* @returns @@@
|
|
1174
|
-
* @public exported from `@promptbook/
|
|
652
|
+
* @public exported from `@promptbook/core`
|
|
1175
653
|
*/
|
|
1176
|
-
function
|
|
1177
|
-
|
|
1178
|
-
|
|
1179
|
-
|
|
654
|
+
function createLlmToolsFromConfiguration(configuration, options) {
|
|
655
|
+
if (options === void 0) { options = {}; }
|
|
656
|
+
var _a = options.isVerbose, isVerbose = _a === void 0 ? false : _a;
|
|
657
|
+
var llmTools = configuration.map(function (llmConfiguration) {
|
|
658
|
+
var registeredItem = $llmToolsRegister
|
|
659
|
+
.list()
|
|
660
|
+
.find(function (_a) {
|
|
661
|
+
var packageName = _a.packageName, className = _a.className;
|
|
662
|
+
return llmConfiguration.packageName === packageName && llmConfiguration.className === className;
|
|
663
|
+
});
|
|
664
|
+
if (registeredItem === undefined) {
|
|
665
|
+
throw new Error(spaceTrim$1(function (block) { return "\n There is no constructor for LLM provider `".concat(llmConfiguration.className, "` from `").concat(llmConfiguration.packageName, "`\n\n You have probably forgotten install and import the provider package.\n To fix this issue, you can:\n\n Install:\n\n > npm install ").concat(llmConfiguration.packageName, "\n\n And import:\n\n > import '").concat(llmConfiguration.packageName, "';\n\n\n ").concat(block($registeredLlmToolsMessage()), "\n "); }));
|
|
666
|
+
}
|
|
667
|
+
return registeredItem(__assign({ isVerbose: isVerbose }, llmConfiguration.options));
|
|
1180
668
|
});
|
|
669
|
+
return joinLlmExecutionTools.apply(void 0, __spreadArray([], __read(llmTools), false));
|
|
1181
670
|
}
|
|
1182
671
|
/**
|
|
1183
|
-
* TODO: [
|
|
672
|
+
* TODO: [🎌] Togethere with `createLlmToolsFromConfiguration` + 'EXECUTION_TOOLS_CLASSES' gets to `@promptbook/core` ALL model providers, make this more efficient
|
|
673
|
+
* TODO: [🧠][🎌] Dynamically install required providers
|
|
674
|
+
* TODO: @@@ write discussion about this - wizzard
|
|
675
|
+
* TODO: [🧠][🍛] Which name is better `createLlmToolsFromConfig` or `createLlmToolsFromConfiguration`?
|
|
676
|
+
* TODO: [🧠] Is there some meaningfull way how to test this util
|
|
677
|
+
* TODO: This should be maybe not under `_common` but under `utils`
|
|
1184
678
|
*/
|
|
1185
679
|
|
|
1186
680
|
/**
|
|
1187
|
-
*
|
|
681
|
+
* Remote server is a proxy server that uses its execution tools internally and exposes the executor interface externally.
|
|
1188
682
|
*
|
|
1189
|
-
*
|
|
1190
|
-
|
|
1191
|
-
function countWords(text) {
|
|
1192
|
-
text = text.replace(/[\p{Extended_Pictographic}]/gu, 'a');
|
|
1193
|
-
text = removeDiacritics(text);
|
|
1194
|
-
return text.split(/[^a-zа-я0-9]+/i).filter(function (word) { return word.length > 0; }).length;
|
|
1195
|
-
}
|
|
1196
|
-
|
|
1197
|
-
/**
|
|
1198
|
-
* Helper of usage compute
|
|
1199
|
-
*
|
|
1200
|
-
* @param content the content of prompt or response
|
|
1201
|
-
* @returns part of PromptResultUsageCounts
|
|
1202
|
-
*
|
|
1203
|
-
* @private internal utility of LlmExecutionTools
|
|
1204
|
-
*/
|
|
1205
|
-
function computeUsageCounts(content) {
|
|
1206
|
-
return {
|
|
1207
|
-
charactersCount: { value: countCharacters(content) },
|
|
1208
|
-
wordsCount: { value: countWords(content) },
|
|
1209
|
-
sentencesCount: { value: countSentences(content) },
|
|
1210
|
-
linesCount: { value: countLines(content) },
|
|
1211
|
-
paragraphsCount: { value: countParagraphs(content) },
|
|
1212
|
-
pagesCount: { value: countPages(content) },
|
|
1213
|
-
};
|
|
1214
|
-
}
|
|
1215
|
-
|
|
1216
|
-
/**
|
|
1217
|
-
* Make UncertainNumber
|
|
1218
|
-
*
|
|
1219
|
-
* @param value
|
|
1220
|
-
*
|
|
1221
|
-
* @private utility for initializating UncertainNumber
|
|
1222
|
-
*/
|
|
1223
|
-
function uncertainNumber(value) {
|
|
1224
|
-
if (value === null || value === undefined || Number.isNaN(value)) {
|
|
1225
|
-
return { value: 0, isUncertain: true };
|
|
1226
|
-
}
|
|
1227
|
-
return { value: value };
|
|
1228
|
-
}
|
|
1229
|
-
|
|
1230
|
-
/**
|
|
1231
|
-
* Computes the usage of the Anthropic Claude API based on the response from Anthropic Claude
|
|
1232
|
-
*
|
|
1233
|
-
* @param promptContent The content of the prompt
|
|
1234
|
-
* @param resultContent The content of the result (for embedding prompts or failed prompts pass empty string)
|
|
1235
|
-
* @param rawResponse The raw response from Anthropic Claude API
|
|
1236
|
-
* @throws {PipelineExecutionError} If the usage is not defined in the response from Anthropic Claude
|
|
1237
|
-
* @private internal utility of `AnthropicClaudeExecutionTools`
|
|
1238
|
-
*/
|
|
1239
|
-
function computeAnthropicClaudeUsage(promptContent, // <- Note: Intentionally using [] to access type properties to bring jsdoc from Prompt/PromptResult to consumer
|
|
1240
|
-
resultContent, rawResponse) {
|
|
1241
|
-
var _a, _b;
|
|
1242
|
-
if (rawResponse.usage === undefined) {
|
|
1243
|
-
throw new PipelineExecutionError('The usage is not defined in the response from Anthropic Claude');
|
|
1244
|
-
}
|
|
1245
|
-
if (((_a = rawResponse.usage) === null || _a === void 0 ? void 0 : _a.input_tokens) === undefined) {
|
|
1246
|
-
throw new PipelineExecutionError('In Anthropic Claude response `usage.prompt_tokens` not defined');
|
|
1247
|
-
}
|
|
1248
|
-
var inputTokens = rawResponse.usage.input_tokens;
|
|
1249
|
-
var outputTokens = ((_b = rawResponse.usage) === null || _b === void 0 ? void 0 : _b.output_tokens) || 0;
|
|
1250
|
-
var modelInfo = ANTHROPIC_CLAUDE_MODELS.find(function (model) { return model.modelName === rawResponse.model; });
|
|
1251
|
-
var price;
|
|
1252
|
-
if (modelInfo === undefined || modelInfo.pricing === undefined) {
|
|
1253
|
-
price = uncertainNumber();
|
|
1254
|
-
}
|
|
1255
|
-
else {
|
|
1256
|
-
price = uncertainNumber(inputTokens * modelInfo.pricing.prompt + outputTokens * modelInfo.pricing.output);
|
|
1257
|
-
}
|
|
1258
|
-
return {
|
|
1259
|
-
price: price,
|
|
1260
|
-
input: __assign({ tokensCount: uncertainNumber(rawResponse.usage.input_tokens) }, computeUsageCounts(promptContent)),
|
|
1261
|
-
output: __assign({ tokensCount: uncertainNumber(outputTokens) }, computeUsageCounts(resultContent)),
|
|
1262
|
-
};
|
|
1263
|
-
}
|
|
1264
|
-
/**
|
|
1265
|
-
* TODO: [🤝] DRY Maybe some common abstraction between `computeOpenAiUsage` and `computeAnthropicClaudeUsage`
|
|
1266
|
-
*/
|
|
1267
|
-
|
|
1268
|
-
/**
|
|
1269
|
-
* Execution Tools for calling Anthropic Claude API.
|
|
1270
|
-
*
|
|
1271
|
-
* @public exported from `@promptbook/anthropic-claude`
|
|
1272
|
-
* @deprecated use `createAnthropicClaudeExecutionTools` instead
|
|
1273
|
-
*/
|
|
1274
|
-
var AnthropicClaudeExecutionTools = /** @class */ (function () {
|
|
1275
|
-
/**
|
|
1276
|
-
* Creates Anthropic Claude Execution Tools.
|
|
1277
|
-
*
|
|
1278
|
-
* @param options which are relevant are directly passed to the Anthropic Claude client
|
|
1279
|
-
*/
|
|
1280
|
-
function AnthropicClaudeExecutionTools(options) {
|
|
1281
|
-
if (options === void 0) { options = { isProxied: false }; }
|
|
1282
|
-
this.options = options;
|
|
1283
|
-
/**
|
|
1284
|
-
* Anthropic Claude API client.
|
|
1285
|
-
*/
|
|
1286
|
-
this.client = null;
|
|
1287
|
-
}
|
|
1288
|
-
Object.defineProperty(AnthropicClaudeExecutionTools.prototype, "title", {
|
|
1289
|
-
get: function () {
|
|
1290
|
-
return 'Anthropic Claude';
|
|
1291
|
-
},
|
|
1292
|
-
enumerable: false,
|
|
1293
|
-
configurable: true
|
|
1294
|
-
});
|
|
1295
|
-
Object.defineProperty(AnthropicClaudeExecutionTools.prototype, "description", {
|
|
1296
|
-
get: function () {
|
|
1297
|
-
return 'Use all models provided by Anthropic Claude';
|
|
1298
|
-
},
|
|
1299
|
-
enumerable: false,
|
|
1300
|
-
configurable: true
|
|
1301
|
-
});
|
|
1302
|
-
AnthropicClaudeExecutionTools.prototype.getClient = function () {
|
|
1303
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
1304
|
-
var anthropicOptions;
|
|
1305
|
-
return __generator(this, function (_a) {
|
|
1306
|
-
if (this.client === null) {
|
|
1307
|
-
anthropicOptions = __assign({}, this.options);
|
|
1308
|
-
delete anthropicOptions.isVerbose;
|
|
1309
|
-
delete anthropicOptions.isProxied;
|
|
1310
|
-
this.client = new Anthropic(anthropicOptions);
|
|
1311
|
-
}
|
|
1312
|
-
return [2 /*return*/, this.client];
|
|
1313
|
-
});
|
|
1314
|
-
});
|
|
1315
|
-
};
|
|
1316
|
-
/**
|
|
1317
|
-
* Check the `options` passed to `constructor`
|
|
1318
|
-
*/
|
|
1319
|
-
AnthropicClaudeExecutionTools.prototype.checkConfiguration = function () {
|
|
1320
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
1321
|
-
return __generator(this, function (_a) {
|
|
1322
|
-
switch (_a.label) {
|
|
1323
|
-
case 0: return [4 /*yield*/, this.getClient()];
|
|
1324
|
-
case 1:
|
|
1325
|
-
_a.sent();
|
|
1326
|
-
return [2 /*return*/];
|
|
1327
|
-
}
|
|
1328
|
-
});
|
|
1329
|
-
});
|
|
1330
|
-
};
|
|
1331
|
-
/**
|
|
1332
|
-
* List all available Anthropic Claude models that can be used
|
|
1333
|
-
*/
|
|
1334
|
-
AnthropicClaudeExecutionTools.prototype.listModels = function () {
|
|
1335
|
-
return ANTHROPIC_CLAUDE_MODELS;
|
|
1336
|
-
};
|
|
1337
|
-
/**
|
|
1338
|
-
* Calls Anthropic Claude API to use a chat model.
|
|
1339
|
-
*/
|
|
1340
|
-
AnthropicClaudeExecutionTools.prototype.callChatModel = function (prompt) {
|
|
1341
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
1342
|
-
var content, parameters, modelRequirements, client, modelName, rawPromptContent, rawRequest, start, complete, rawResponse, contentBlock, resultContent, usage;
|
|
1343
|
-
return __generator(this, function (_a) {
|
|
1344
|
-
switch (_a.label) {
|
|
1345
|
-
case 0:
|
|
1346
|
-
if (this.options.isVerbose) {
|
|
1347
|
-
console.info('💬 Anthropic Claude callChatModel call');
|
|
1348
|
-
}
|
|
1349
|
-
content = prompt.content, parameters = prompt.parameters, modelRequirements = prompt.modelRequirements;
|
|
1350
|
-
return [4 /*yield*/, this.getClient()];
|
|
1351
|
-
case 1:
|
|
1352
|
-
client = _a.sent();
|
|
1353
|
-
// TODO: [☂] Use here more modelRequirements
|
|
1354
|
-
if (modelRequirements.modelVariant !== 'CHAT') {
|
|
1355
|
-
throw new PipelineExecutionError('Use callChatModel only for CHAT variant');
|
|
1356
|
-
}
|
|
1357
|
-
modelName = modelRequirements.modelName || this.getDefaultChatModel().modelName;
|
|
1358
|
-
rawPromptContent = replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName }));
|
|
1359
|
-
rawRequest = {
|
|
1360
|
-
model: modelRequirements.modelName || this.getDefaultChatModel().modelName,
|
|
1361
|
-
max_tokens: modelRequirements.maxTokens || 4096,
|
|
1362
|
-
// <- TODO: [🌾] Make some global max cap for maxTokens
|
|
1363
|
-
temperature: modelRequirements.temperature,
|
|
1364
|
-
system: modelRequirements.systemMessage,
|
|
1365
|
-
// <- TODO: [🈁] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
|
|
1366
|
-
// <- Note: [🧆]
|
|
1367
|
-
messages: [
|
|
1368
|
-
{
|
|
1369
|
-
role: 'user',
|
|
1370
|
-
content: rawPromptContent,
|
|
1371
|
-
},
|
|
1372
|
-
],
|
|
1373
|
-
// TODO: Is here some equivalent of user identification?> user: this.options.user,
|
|
1374
|
-
};
|
|
1375
|
-
start = getCurrentIsoDate();
|
|
1376
|
-
if (this.options.isVerbose) {
|
|
1377
|
-
console.info(colors.bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
|
|
1378
|
-
}
|
|
1379
|
-
return [4 /*yield*/, client.messages.create(rawRequest)];
|
|
1380
|
-
case 2:
|
|
1381
|
-
rawResponse = _a.sent();
|
|
1382
|
-
if (this.options.isVerbose) {
|
|
1383
|
-
console.info(colors.bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
1384
|
-
}
|
|
1385
|
-
if (!rawResponse.content[0]) {
|
|
1386
|
-
throw new PipelineExecutionError('No content from Anthropic Claude');
|
|
1387
|
-
}
|
|
1388
|
-
if (rawResponse.content.length > 1) {
|
|
1389
|
-
throw new PipelineExecutionError('More than one content blocks from Anthropic Claude');
|
|
1390
|
-
}
|
|
1391
|
-
contentBlock = rawResponse.content[0];
|
|
1392
|
-
if (contentBlock.type !== 'text') {
|
|
1393
|
-
throw new PipelineExecutionError("Returned content is not \"text\" type but \"".concat(contentBlock.type, "\""));
|
|
1394
|
-
}
|
|
1395
|
-
resultContent = contentBlock.text;
|
|
1396
|
-
// eslint-disable-next-line prefer-const
|
|
1397
|
-
complete = getCurrentIsoDate();
|
|
1398
|
-
usage = computeAnthropicClaudeUsage(content, '', rawResponse);
|
|
1399
|
-
return [2 /*return*/, {
|
|
1400
|
-
content: resultContent,
|
|
1401
|
-
modelName: rawResponse.model,
|
|
1402
|
-
timing: {
|
|
1403
|
-
start: start,
|
|
1404
|
-
complete: complete,
|
|
1405
|
-
},
|
|
1406
|
-
usage: usage,
|
|
1407
|
-
rawPromptContent: rawPromptContent,
|
|
1408
|
-
rawRequest: rawRequest,
|
|
1409
|
-
rawResponse: rawResponse,
|
|
1410
|
-
// <- [🗯]
|
|
1411
|
-
}];
|
|
1412
|
-
}
|
|
1413
|
-
});
|
|
1414
|
-
});
|
|
1415
|
-
};
|
|
1416
|
-
/*
|
|
1417
|
-
TODO: [👏]
|
|
1418
|
-
public async callCompletionModel(
|
|
1419
|
-
prompt: Pick<Prompt, 'content' | 'parameters' | 'modelRequirements'>,
|
|
1420
|
-
): Promise<PromptCompletionResult> {
|
|
1421
|
-
|
|
1422
|
-
if (this.options.isVerbose) {
|
|
1423
|
-
console.info('🖋 Anthropic Claude callCompletionModel call');
|
|
1424
|
-
}
|
|
1425
|
-
|
|
1426
|
-
const { content, parameters, modelRequirements } = prompt;
|
|
1427
|
-
|
|
1428
|
-
// TODO: [☂] Use here more modelRequirements
|
|
1429
|
-
if (modelRequirements.modelVariant !== 'COMPLETION') {
|
|
1430
|
-
throw new PipelineExecutionError('Use callCompletionModel only for COMPLETION variant');
|
|
1431
|
-
}
|
|
1432
|
-
|
|
1433
|
-
const modelName = modelRequirements.modelName || this.getDefaultChatModel().modelName;
|
|
1434
|
-
const modelSettings = {
|
|
1435
|
-
model: modelName,
|
|
1436
|
-
max_tokens: modelRequirements.maxTokens || 2000, // <- Note: 2000 is for lagacy reasons
|
|
1437
|
-
// <- TODO: [🌾] Make some global max cap for maxTokens
|
|
1438
|
-
// <- TODO: Use here `systemMessage`, `temperature` and `seed`
|
|
1439
|
-
};
|
|
1440
|
-
|
|
1441
|
-
const rawRequest: xxxx.Completions.CompletionCreateParamsNonStreaming = {
|
|
1442
|
-
...modelSettings,
|
|
1443
|
-
prompt: rawPromptContent,
|
|
1444
|
-
user: this.options.user,
|
|
1445
|
-
};
|
|
1446
|
-
const start: string_date_iso8601 = getCurrentIsoDate();
|
|
1447
|
-
let complete: string_date_iso8601;
|
|
1448
|
-
|
|
1449
|
-
if (this.options.isVerbose) {
|
|
1450
|
-
console.info(colors.bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
|
|
1451
|
-
}
|
|
1452
|
-
const rawResponse = await this.client.completions.create(rawRequest);
|
|
1453
|
-
if (this.options.isVerbose) {
|
|
1454
|
-
console.info(colors.bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
1455
|
-
}
|
|
1456
|
-
|
|
1457
|
-
if (!rawResponse.choices[0]) {
|
|
1458
|
-
throw new PipelineExecutionError('No choises from Anthropic Claude');
|
|
1459
|
-
}
|
|
1460
|
-
|
|
1461
|
-
if (rawResponse.choices.length > 1) {
|
|
1462
|
-
// TODO: This should be maybe only warning
|
|
1463
|
-
throw new PipelineExecutionError('More than one choise from Anthropic Claude');
|
|
1464
|
-
}
|
|
1465
|
-
|
|
1466
|
-
const resultContent = rawResponse.choices[0].text;
|
|
1467
|
-
// eslint-disable-next-line prefer-const
|
|
1468
|
-
complete = getCurrentIsoDate();
|
|
1469
|
-
const usage = { price: 'UNKNOWN', inputTokens: 0, outputTokens: 0 /* <- TODO: [🐞] Compute usage * / } satisfies PromptResultUsage;
|
|
1470
|
-
|
|
1471
|
-
|
|
1472
|
-
|
|
1473
|
-
return {
|
|
1474
|
-
content: resultContent,
|
|
1475
|
-
modelName: rawResponse.model || model,
|
|
1476
|
-
timing: {
|
|
1477
|
-
start,
|
|
1478
|
-
complete,
|
|
1479
|
-
},
|
|
1480
|
-
usage,
|
|
1481
|
-
rawResponse,
|
|
1482
|
-
// <- [🗯]
|
|
1483
|
-
};
|
|
1484
|
-
}
|
|
1485
|
-
*/
|
|
1486
|
-
// <- Note: [🤖] callXxxModel
|
|
1487
|
-
/**
|
|
1488
|
-
* Get the model that should be used as default
|
|
1489
|
-
*/
|
|
1490
|
-
AnthropicClaudeExecutionTools.prototype.getDefaultModel = function (defaultModelName) {
|
|
1491
|
-
var model = ANTHROPIC_CLAUDE_MODELS.find(function (_a) {
|
|
1492
|
-
var modelName = _a.modelName;
|
|
1493
|
-
return modelName.startsWith(defaultModelName);
|
|
1494
|
-
});
|
|
1495
|
-
if (model === undefined) {
|
|
1496
|
-
throw new UnexpectedError(spaceTrim$1(function (block) {
|
|
1497
|
-
return "\n Cannot find model in OpenAI models with name \"".concat(defaultModelName, "\" which should be used as default.\n\n Available models:\n ").concat(block(ANTHROPIC_CLAUDE_MODELS.map(function (_a) {
|
|
1498
|
-
var modelName = _a.modelName;
|
|
1499
|
-
return "- \"".concat(modelName, "\"");
|
|
1500
|
-
}).join('\n')), "\n\n ");
|
|
1501
|
-
}));
|
|
1502
|
-
}
|
|
1503
|
-
return model;
|
|
1504
|
-
};
|
|
1505
|
-
/**
|
|
1506
|
-
* Default model for chat variant.
|
|
1507
|
-
*/
|
|
1508
|
-
AnthropicClaudeExecutionTools.prototype.getDefaultChatModel = function () {
|
|
1509
|
-
return this.getDefaultModel('claude-3-opus');
|
|
1510
|
-
};
|
|
1511
|
-
return AnthropicClaudeExecutionTools;
|
|
1512
|
-
}());
|
|
1513
|
-
/**
|
|
1514
|
-
* TODO: [🍆] JSON mode
|
|
1515
|
-
* TODO: [🧠] Maybe handle errors via transformAnthropicError (like transformAzureError)
|
|
1516
|
-
* TODO: Maybe Create some common util for callChatModel and callCompletionModel
|
|
1517
|
-
* TODO: Maybe make custom OpenAiError
|
|
1518
|
-
* TODO: [🧠][🈁] Maybe use `isDeterministic` from options
|
|
1519
|
-
* TODO: [🧠][🌰] Allow to pass `title` for tracking purposes
|
|
1520
|
-
* TODO: [📅] Maybe instead of `RemoteLlmExecutionToolsOptions` use `proxyWithAnonymousRemoteServer` (if implemented)
|
|
1521
|
-
*/
|
|
1522
|
-
|
|
1523
|
-
/**
|
|
1524
|
-
* Execution Tools for calling Anthropic Claude API.
|
|
1525
|
-
*
|
|
1526
|
-
* @public exported from `@promptbook/anthropic-claude`
|
|
1527
|
-
*/
|
|
1528
|
-
var createAnthropicClaudeExecutionTools = Object.assign(function (options) {
|
|
1529
|
-
if (options.isProxied) {
|
|
1530
|
-
return new RemoteLlmExecutionTools(__assign(__assign({}, options), { isAnonymous: true, llmToolsConfiguration: [
|
|
1531
|
-
{
|
|
1532
|
-
title: 'Anthropic Claude (proxied)',
|
|
1533
|
-
packageName: '@promptbook/anthropic-claude',
|
|
1534
|
-
className: 'AnthropicClaudeExecutionTools',
|
|
1535
|
-
options: __assign(__assign({}, options), { isProxied: false }),
|
|
1536
|
-
},
|
|
1537
|
-
], models: ANTHROPIC_CLAUDE_MODELS }));
|
|
1538
|
-
}
|
|
1539
|
-
return new AnthropicClaudeExecutionTools(options);
|
|
1540
|
-
}, {
|
|
1541
|
-
packageName: '@promptbook/anthropic-claude',
|
|
1542
|
-
className: 'AnthropicClaudeExecutionTools',
|
|
1543
|
-
});
|
|
1544
|
-
/**
|
|
1545
|
-
* TODO: [🧠] !!!! Make anonymous this with all LLM providers
|
|
1546
|
-
* TODO: [🧠][🧱] !!!! Maybe change all `new AnthropicClaudeExecutionTools` -> `createAnthropicClaudeExecutionTools` in manual
|
|
1547
|
-
* TODO: [🧠] Maybe auto-detect usage in browser and determine default value of `isProxied`
|
|
1548
|
-
* TODO: [🦺] Is there some way how to put `packageName` and `className` on top and function definition on bottom?
|
|
1549
|
-
* TODO: [🎶] Naming "constructor" vs "creator" vs "factory"
|
|
1550
|
-
*/
|
|
1551
|
-
|
|
1552
|
-
/**
|
|
1553
|
-
* List of available OpenAI models with pricing
|
|
1554
|
-
*
|
|
1555
|
-
* Note: Done at 2024-05-20
|
|
1556
|
-
*
|
|
1557
|
-
* @see https://platform.openai.com/docs/models/
|
|
1558
|
-
* @see https://openai.com/api/pricing/
|
|
1559
|
-
* @public exported from `@promptbook/openai`
|
|
1560
|
-
*/
|
|
1561
|
-
var OPENAI_MODELS = [
|
|
1562
|
-
/*/
|
|
1563
|
-
{
|
|
1564
|
-
modelTitle: 'dall-e-3',
|
|
1565
|
-
modelName: 'dall-e-3',
|
|
1566
|
-
},
|
|
1567
|
-
/**/
|
|
1568
|
-
/*/
|
|
1569
|
-
{
|
|
1570
|
-
modelTitle: 'whisper-1',
|
|
1571
|
-
modelName: 'whisper-1',
|
|
1572
|
-
},
|
|
1573
|
-
/**/
|
|
1574
|
-
/**/
|
|
1575
|
-
{
|
|
1576
|
-
modelVariant: 'COMPLETION',
|
|
1577
|
-
modelTitle: 'davinci-002',
|
|
1578
|
-
modelName: 'davinci-002',
|
|
1579
|
-
pricing: {
|
|
1580
|
-
prompt: computeUsage("$2.00 / 1M tokens"),
|
|
1581
|
-
output: computeUsage("$2.00 / 1M tokens"), // <- not sure
|
|
1582
|
-
},
|
|
1583
|
-
},
|
|
1584
|
-
/**/
|
|
1585
|
-
/*/
|
|
1586
|
-
{
|
|
1587
|
-
modelTitle: 'dall-e-2',
|
|
1588
|
-
modelName: 'dall-e-2',
|
|
1589
|
-
},
|
|
1590
|
-
/**/
|
|
1591
|
-
/**/
|
|
1592
|
-
{
|
|
1593
|
-
modelVariant: 'CHAT',
|
|
1594
|
-
modelTitle: 'gpt-3.5-turbo-16k',
|
|
1595
|
-
modelName: 'gpt-3.5-turbo-16k',
|
|
1596
|
-
pricing: {
|
|
1597
|
-
prompt: computeUsage("$3.00 / 1M tokens"),
|
|
1598
|
-
output: computeUsage("$4.00 / 1M tokens"),
|
|
1599
|
-
},
|
|
1600
|
-
},
|
|
1601
|
-
/**/
|
|
1602
|
-
/*/
|
|
1603
|
-
{
|
|
1604
|
-
modelTitle: 'tts-1-hd-1106',
|
|
1605
|
-
modelName: 'tts-1-hd-1106',
|
|
1606
|
-
},
|
|
1607
|
-
/**/
|
|
1608
|
-
/*/
|
|
1609
|
-
{
|
|
1610
|
-
modelTitle: 'tts-1-hd',
|
|
1611
|
-
modelName: 'tts-1-hd',
|
|
1612
|
-
},
|
|
1613
|
-
/**/
|
|
1614
|
-
/**/
|
|
1615
|
-
{
|
|
1616
|
-
modelVariant: 'CHAT',
|
|
1617
|
-
modelTitle: 'gpt-4',
|
|
1618
|
-
modelName: 'gpt-4',
|
|
1619
|
-
pricing: {
|
|
1620
|
-
prompt: computeUsage("$30.00 / 1M tokens"),
|
|
1621
|
-
output: computeUsage("$60.00 / 1M tokens"),
|
|
1622
|
-
},
|
|
1623
|
-
},
|
|
1624
|
-
/**/
|
|
1625
|
-
/**/
|
|
1626
|
-
{
|
|
1627
|
-
modelVariant: 'CHAT',
|
|
1628
|
-
modelTitle: 'gpt-4-32k',
|
|
1629
|
-
modelName: 'gpt-4-32k',
|
|
1630
|
-
pricing: {
|
|
1631
|
-
prompt: computeUsage("$60.00 / 1M tokens"),
|
|
1632
|
-
output: computeUsage("$120.00 / 1M tokens"),
|
|
1633
|
-
},
|
|
1634
|
-
},
|
|
1635
|
-
/**/
|
|
1636
|
-
/*/
|
|
1637
|
-
{
|
|
1638
|
-
modelVariant: 'CHAT',
|
|
1639
|
-
modelTitle: 'gpt-4-0613',
|
|
1640
|
-
modelName: 'gpt-4-0613',
|
|
1641
|
-
pricing: {
|
|
1642
|
-
prompt: computeUsage(` / 1M tokens`),
|
|
1643
|
-
output: computeUsage(` / 1M tokens`),
|
|
1644
|
-
},
|
|
1645
|
-
},
|
|
1646
|
-
/**/
|
|
1647
|
-
/**/
|
|
1648
|
-
{
|
|
1649
|
-
modelVariant: 'CHAT',
|
|
1650
|
-
modelTitle: 'gpt-4-turbo-2024-04-09',
|
|
1651
|
-
modelName: 'gpt-4-turbo-2024-04-09',
|
|
1652
|
-
pricing: {
|
|
1653
|
-
prompt: computeUsage("$10.00 / 1M tokens"),
|
|
1654
|
-
output: computeUsage("$30.00 / 1M tokens"),
|
|
1655
|
-
},
|
|
1656
|
-
},
|
|
1657
|
-
/**/
|
|
1658
|
-
/**/
|
|
1659
|
-
{
|
|
1660
|
-
modelVariant: 'CHAT',
|
|
1661
|
-
modelTitle: 'gpt-3.5-turbo-1106',
|
|
1662
|
-
modelName: 'gpt-3.5-turbo-1106',
|
|
1663
|
-
pricing: {
|
|
1664
|
-
prompt: computeUsage("$1.00 / 1M tokens"),
|
|
1665
|
-
output: computeUsage("$2.00 / 1M tokens"),
|
|
1666
|
-
},
|
|
1667
|
-
},
|
|
1668
|
-
/**/
|
|
1669
|
-
/**/
|
|
1670
|
-
{
|
|
1671
|
-
modelVariant: 'CHAT',
|
|
1672
|
-
modelTitle: 'gpt-4-turbo',
|
|
1673
|
-
modelName: 'gpt-4-turbo',
|
|
1674
|
-
pricing: {
|
|
1675
|
-
prompt: computeUsage("$10.00 / 1M tokens"),
|
|
1676
|
-
output: computeUsage("$30.00 / 1M tokens"),
|
|
1677
|
-
},
|
|
1678
|
-
},
|
|
1679
|
-
/**/
|
|
1680
|
-
/**/
|
|
1681
|
-
{
|
|
1682
|
-
modelVariant: 'COMPLETION',
|
|
1683
|
-
modelTitle: 'gpt-3.5-turbo-instruct-0914',
|
|
1684
|
-
modelName: 'gpt-3.5-turbo-instruct-0914',
|
|
1685
|
-
pricing: {
|
|
1686
|
-
prompt: computeUsage("$1.50 / 1M tokens"),
|
|
1687
|
-
output: computeUsage("$2.00 / 1M tokens"), // <- For gpt-3.5-turbo-instruct
|
|
1688
|
-
},
|
|
1689
|
-
},
|
|
1690
|
-
/**/
|
|
1691
|
-
/**/
|
|
1692
|
-
{
|
|
1693
|
-
modelVariant: 'COMPLETION',
|
|
1694
|
-
modelTitle: 'gpt-3.5-turbo-instruct',
|
|
1695
|
-
modelName: 'gpt-3.5-turbo-instruct',
|
|
1696
|
-
pricing: {
|
|
1697
|
-
prompt: computeUsage("$1.50 / 1M tokens"),
|
|
1698
|
-
output: computeUsage("$2.00 / 1M tokens"),
|
|
1699
|
-
},
|
|
1700
|
-
},
|
|
1701
|
-
/**/
|
|
1702
|
-
/*/
|
|
1703
|
-
{
|
|
1704
|
-
modelTitle: 'tts-1',
|
|
1705
|
-
modelName: 'tts-1',
|
|
1706
|
-
},
|
|
1707
|
-
/**/
|
|
1708
|
-
/**/
|
|
1709
|
-
{
|
|
1710
|
-
modelVariant: 'CHAT',
|
|
1711
|
-
modelTitle: 'gpt-3.5-turbo',
|
|
1712
|
-
modelName: 'gpt-3.5-turbo',
|
|
1713
|
-
pricing: {
|
|
1714
|
-
prompt: computeUsage("$3.00 / 1M tokens"),
|
|
1715
|
-
output: computeUsage("$6.00 / 1M tokens"), // <- Not sure, refer to gpt-3.5-turbo in Fine-tuning models
|
|
1716
|
-
},
|
|
1717
|
-
},
|
|
1718
|
-
/**/
|
|
1719
|
-
/**/
|
|
1720
|
-
{
|
|
1721
|
-
modelVariant: 'CHAT',
|
|
1722
|
-
modelTitle: 'gpt-3.5-turbo-0301',
|
|
1723
|
-
modelName: 'gpt-3.5-turbo-0301',
|
|
1724
|
-
pricing: {
|
|
1725
|
-
prompt: computeUsage("$1.50 / 1M tokens"),
|
|
1726
|
-
output: computeUsage("$2.00 / 1M tokens"),
|
|
1727
|
-
},
|
|
1728
|
-
},
|
|
1729
|
-
/**/
|
|
1730
|
-
/**/
|
|
1731
|
-
{
|
|
1732
|
-
modelVariant: 'COMPLETION',
|
|
1733
|
-
modelTitle: 'babbage-002',
|
|
1734
|
-
modelName: 'babbage-002',
|
|
1735
|
-
pricing: {
|
|
1736
|
-
prompt: computeUsage("$0.40 / 1M tokens"),
|
|
1737
|
-
output: computeUsage("$0.40 / 1M tokens"), // <- Not sure
|
|
1738
|
-
},
|
|
1739
|
-
},
|
|
1740
|
-
/**/
|
|
1741
|
-
/**/
|
|
1742
|
-
{
|
|
1743
|
-
modelVariant: 'CHAT',
|
|
1744
|
-
modelTitle: 'gpt-4-1106-preview',
|
|
1745
|
-
modelName: 'gpt-4-1106-preview',
|
|
1746
|
-
pricing: {
|
|
1747
|
-
prompt: computeUsage("$10.00 / 1M tokens"),
|
|
1748
|
-
output: computeUsage("$30.00 / 1M tokens"),
|
|
1749
|
-
},
|
|
1750
|
-
},
|
|
1751
|
-
/**/
|
|
1752
|
-
/**/
|
|
1753
|
-
{
|
|
1754
|
-
modelVariant: 'CHAT',
|
|
1755
|
-
modelTitle: 'gpt-4-0125-preview',
|
|
1756
|
-
modelName: 'gpt-4-0125-preview',
|
|
1757
|
-
pricing: {
|
|
1758
|
-
prompt: computeUsage("$10.00 / 1M tokens"),
|
|
1759
|
-
output: computeUsage("$30.00 / 1M tokens"),
|
|
1760
|
-
},
|
|
1761
|
-
},
|
|
1762
|
-
/**/
|
|
1763
|
-
/*/
|
|
1764
|
-
{
|
|
1765
|
-
modelTitle: 'tts-1-1106',
|
|
1766
|
-
modelName: 'tts-1-1106',
|
|
1767
|
-
},
|
|
1768
|
-
/**/
|
|
1769
|
-
/**/
|
|
1770
|
-
{
|
|
1771
|
-
modelVariant: 'CHAT',
|
|
1772
|
-
modelTitle: 'gpt-3.5-turbo-0125',
|
|
1773
|
-
modelName: 'gpt-3.5-turbo-0125',
|
|
1774
|
-
pricing: {
|
|
1775
|
-
prompt: computeUsage("$0.50 / 1M tokens"),
|
|
1776
|
-
output: computeUsage("$1.50 / 1M tokens"),
|
|
1777
|
-
},
|
|
1778
|
-
},
|
|
1779
|
-
/**/
|
|
1780
|
-
/**/
|
|
1781
|
-
{
|
|
1782
|
-
modelVariant: 'CHAT',
|
|
1783
|
-
modelTitle: 'gpt-4-turbo-preview',
|
|
1784
|
-
modelName: 'gpt-4-turbo-preview',
|
|
1785
|
-
pricing: {
|
|
1786
|
-
prompt: computeUsage("$10.00 / 1M tokens"),
|
|
1787
|
-
output: computeUsage("$30.00 / 1M tokens"), // <- Not sure, just for gpt-4-turbo
|
|
1788
|
-
},
|
|
1789
|
-
},
|
|
1790
|
-
/**/
|
|
1791
|
-
/**/
|
|
1792
|
-
{
|
|
1793
|
-
modelVariant: 'EMBEDDING',
|
|
1794
|
-
modelTitle: 'text-embedding-3-large',
|
|
1795
|
-
modelName: 'text-embedding-3-large',
|
|
1796
|
-
pricing: {
|
|
1797
|
-
prompt: computeUsage("$0.13 / 1M tokens"),
|
|
1798
|
-
// TODO: [🏏] Leverage the batch API @see https://platform.openai.com/docs/guides/batch
|
|
1799
|
-
output: 0, // <- Note: [🆖] In Embedding models you dont pay for output
|
|
1800
|
-
},
|
|
1801
|
-
},
|
|
1802
|
-
/**/
|
|
1803
|
-
/**/
|
|
1804
|
-
{
|
|
1805
|
-
modelVariant: 'EMBEDDING',
|
|
1806
|
-
modelTitle: 'text-embedding-3-small',
|
|
1807
|
-
modelName: 'text-embedding-3-small',
|
|
1808
|
-
pricing: {
|
|
1809
|
-
prompt: computeUsage("$0.02 / 1M tokens"),
|
|
1810
|
-
// TODO: [🏏] Leverage the batch API @see https://platform.openai.com/docs/guides/batch
|
|
1811
|
-
output: 0, // <- Note: [🆖] In Embedding models you dont pay for output
|
|
1812
|
-
},
|
|
1813
|
-
},
|
|
1814
|
-
/**/
|
|
1815
|
-
/**/
|
|
1816
|
-
{
|
|
1817
|
-
modelVariant: 'CHAT',
|
|
1818
|
-
modelTitle: 'gpt-3.5-turbo-0613',
|
|
1819
|
-
modelName: 'gpt-3.5-turbo-0613',
|
|
1820
|
-
pricing: {
|
|
1821
|
-
prompt: computeUsage("$1.50 / 1M tokens"),
|
|
1822
|
-
output: computeUsage("$2.00 / 1M tokens"),
|
|
1823
|
-
},
|
|
1824
|
-
},
|
|
1825
|
-
/**/
|
|
1826
|
-
/**/
|
|
1827
|
-
{
|
|
1828
|
-
modelVariant: 'EMBEDDING',
|
|
1829
|
-
modelTitle: 'text-embedding-ada-002',
|
|
1830
|
-
modelName: 'text-embedding-ada-002',
|
|
1831
|
-
pricing: {
|
|
1832
|
-
prompt: computeUsage("$0.1 / 1M tokens"),
|
|
1833
|
-
// TODO: [🏏] Leverage the batch API @see https://platform.openai.com/docs/guides/batch
|
|
1834
|
-
output: 0, // <- Note: [🆖] In Embedding models you dont pay for output
|
|
1835
|
-
},
|
|
1836
|
-
},
|
|
1837
|
-
/**/
|
|
1838
|
-
/*/
|
|
1839
|
-
{
|
|
1840
|
-
modelVariant: 'CHAT',
|
|
1841
|
-
modelTitle: 'gpt-4-1106-vision-preview',
|
|
1842
|
-
modelName: 'gpt-4-1106-vision-preview',
|
|
1843
|
-
},
|
|
1844
|
-
/**/
|
|
1845
|
-
/*/
|
|
1846
|
-
{
|
|
1847
|
-
modelVariant: 'CHAT',
|
|
1848
|
-
modelTitle: 'gpt-4-vision-preview',
|
|
1849
|
-
modelName: 'gpt-4-vision-preview',
|
|
1850
|
-
pricing: {
|
|
1851
|
-
prompt: computeUsage(`$10.00 / 1M tokens`),
|
|
1852
|
-
output: computeUsage(`$30.00 / 1M tokens`),
|
|
1853
|
-
},
|
|
1854
|
-
},
|
|
1855
|
-
/**/
|
|
1856
|
-
/**/
|
|
1857
|
-
{
|
|
1858
|
-
modelVariant: 'CHAT',
|
|
1859
|
-
modelTitle: 'gpt-4o-2024-05-13',
|
|
1860
|
-
modelName: 'gpt-4o-2024-05-13',
|
|
1861
|
-
pricing: {
|
|
1862
|
-
prompt: computeUsage("$5.00 / 1M tokens"),
|
|
1863
|
-
output: computeUsage("$15.00 / 1M tokens"),
|
|
1864
|
-
},
|
|
1865
|
-
},
|
|
1866
|
-
/**/
|
|
1867
|
-
/**/
|
|
1868
|
-
{
|
|
1869
|
-
modelVariant: 'CHAT',
|
|
1870
|
-
modelTitle: 'gpt-4o',
|
|
1871
|
-
modelName: 'gpt-4o',
|
|
1872
|
-
pricing: {
|
|
1873
|
-
prompt: computeUsage("$5.00 / 1M tokens"),
|
|
1874
|
-
output: computeUsage("$15.00 / 1M tokens"),
|
|
1875
|
-
},
|
|
1876
|
-
},
|
|
1877
|
-
/**/
|
|
1878
|
-
/**/
|
|
1879
|
-
{
|
|
1880
|
-
modelVariant: 'CHAT',
|
|
1881
|
-
modelTitle: 'gpt-3.5-turbo-16k-0613',
|
|
1882
|
-
modelName: 'gpt-3.5-turbo-16k-0613',
|
|
1883
|
-
pricing: {
|
|
1884
|
-
prompt: computeUsage("$3.00 / 1M tokens"),
|
|
1885
|
-
output: computeUsage("$4.00 / 1M tokens"),
|
|
1886
|
-
},
|
|
1887
|
-
},
|
|
1888
|
-
/**/
|
|
1889
|
-
];
|
|
1890
|
-
/**
|
|
1891
|
-
* Note: [🤖] Add models of new variant
|
|
1892
|
-
* TODO: [🧠] Some mechanism to propagate unsureness
|
|
1893
|
-
* TODO: [🎰] Some mechanism to auto-update available models
|
|
1894
|
-
* TODO: [🎰][👮♀️] Make this list dynamic - dynamically can be listed modelNames but not modelVariant, legacy status, context length and pricing
|
|
1895
|
-
* TODO: [🧠][👮♀️] Put here more info like description, isVision, trainingDateCutoff, languages, strengths ( Top-level performance, intelligence, fluency, and understanding), contextWindow,...
|
|
1896
|
-
* @see https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
|
|
1897
|
-
* @see https://openai.com/api/pricing/
|
|
1898
|
-
* @see /other/playground/playground.ts
|
|
1899
|
-
* TODO: [🍓] Make better
|
|
1900
|
-
* TODO: Change model titles to human eg: "gpt-4-turbo-2024-04-09" -> "GPT-4 Turbo (2024-04-09)"
|
|
1901
|
-
* TODO: [🚸] Not all models are compatible with JSON mode, add this information here and use it
|
|
1902
|
-
*/
|
|
1903
|
-
|
|
1904
|
-
/**
|
|
1905
|
-
* Execution Tools for calling Azure OpenAI API.
|
|
1906
|
-
*
|
|
1907
|
-
* @public exported from `@promptbook/azure-openai`
|
|
1908
|
-
*/
|
|
1909
|
-
var AzureOpenAiExecutionTools = /** @class */ (function () {
|
|
1910
|
-
/**
|
|
1911
|
-
* Creates OpenAI Execution Tools.
|
|
1912
|
-
*
|
|
1913
|
-
* @param options which are relevant are directly passed to the OpenAI client
|
|
1914
|
-
*/
|
|
1915
|
-
function AzureOpenAiExecutionTools(options) {
|
|
1916
|
-
this.options = options;
|
|
1917
|
-
/**
|
|
1918
|
-
* OpenAI Azure API client.
|
|
1919
|
-
*/
|
|
1920
|
-
this.client = null;
|
|
1921
|
-
}
|
|
1922
|
-
Object.defineProperty(AzureOpenAiExecutionTools.prototype, "title", {
|
|
1923
|
-
get: function () {
|
|
1924
|
-
return 'Azure OpenAI';
|
|
1925
|
-
},
|
|
1926
|
-
enumerable: false,
|
|
1927
|
-
configurable: true
|
|
1928
|
-
});
|
|
1929
|
-
Object.defineProperty(AzureOpenAiExecutionTools.prototype, "description", {
|
|
1930
|
-
get: function () {
|
|
1931
|
-
return 'Use all models trained by OpenAI provided by Azure';
|
|
1932
|
-
},
|
|
1933
|
-
enumerable: false,
|
|
1934
|
-
configurable: true
|
|
1935
|
-
});
|
|
1936
|
-
AzureOpenAiExecutionTools.prototype.getClient = function () {
|
|
1937
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
1938
|
-
return __generator(this, function (_a) {
|
|
1939
|
-
if (this.client === null) {
|
|
1940
|
-
this.client = new OpenAIClient("https://".concat(this.options.resourceName, ".openai.azure.com/"), new AzureKeyCredential(this.options.apiKey));
|
|
1941
|
-
}
|
|
1942
|
-
return [2 /*return*/, this.client];
|
|
1943
|
-
});
|
|
1944
|
-
});
|
|
1945
|
-
};
|
|
1946
|
-
/**
|
|
1947
|
-
* Check the `options` passed to `constructor`
|
|
1948
|
-
*/
|
|
1949
|
-
AzureOpenAiExecutionTools.prototype.checkConfiguration = function () {
|
|
1950
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
1951
|
-
return __generator(this, function (_a) {
|
|
1952
|
-
switch (_a.label) {
|
|
1953
|
-
case 0: return [4 /*yield*/, this.getClient()];
|
|
1954
|
-
case 1:
|
|
1955
|
-
_a.sent();
|
|
1956
|
-
return [2 /*return*/];
|
|
1957
|
-
}
|
|
1958
|
-
});
|
|
1959
|
-
});
|
|
1960
|
-
};
|
|
1961
|
-
/**
|
|
1962
|
-
* List all available Azure OpenAI models that can be used
|
|
1963
|
-
*/
|
|
1964
|
-
AzureOpenAiExecutionTools.prototype.listModels = function () {
|
|
1965
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
1966
|
-
return __generator(this, function (_a) {
|
|
1967
|
-
// TODO: !!! Do here some filtering which models are really available as deployment
|
|
1968
|
-
// @see https://management.azure.com/subscriptions/subscriptionId/resourceGroups/resourceGroupName/providers/Microsoft.CognitiveServices/accounts/accountName/deployments?api-version=2023-05-01
|
|
1969
|
-
return [2 /*return*/, OPENAI_MODELS.map(function (_a) {
|
|
1970
|
-
var modelTitle = _a.modelTitle, modelName = _a.modelName, modelVariant = _a.modelVariant;
|
|
1971
|
-
return ({
|
|
1972
|
-
modelTitle: "Azure ".concat(modelTitle),
|
|
1973
|
-
modelName: modelName,
|
|
1974
|
-
modelVariant: modelVariant,
|
|
1975
|
-
});
|
|
1976
|
-
})];
|
|
1977
|
-
});
|
|
1978
|
-
});
|
|
1979
|
-
};
|
|
1980
|
-
/**
|
|
1981
|
-
* Calls OpenAI API to use a chat model.
|
|
1982
|
-
*/
|
|
1983
|
-
AzureOpenAiExecutionTools.prototype.callChatModel = function (prompt) {
|
|
1984
|
-
var _a, _b;
|
|
1985
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
1986
|
-
var content, parameters, modelRequirements, client, modelName, modelSettings, rawPromptContent, messages, start, complete, rawRequest, rawResponse, resultContent, usage, error_1;
|
|
1987
|
-
return __generator(this, function (_c) {
|
|
1988
|
-
switch (_c.label) {
|
|
1989
|
-
case 0:
|
|
1990
|
-
if (this.options.isVerbose) {
|
|
1991
|
-
console.info('💬 OpenAI callChatModel call');
|
|
1992
|
-
}
|
|
1993
|
-
content = prompt.content, parameters = prompt.parameters, modelRequirements = prompt.modelRequirements;
|
|
1994
|
-
return [4 /*yield*/, this.getClient()];
|
|
1995
|
-
case 1:
|
|
1996
|
-
client = _c.sent();
|
|
1997
|
-
// TODO: [☂] Use here more modelRequirements
|
|
1998
|
-
if (modelRequirements.modelVariant !== 'CHAT') {
|
|
1999
|
-
throw new PipelineExecutionError('Use callChatModel only for CHAT variant');
|
|
2000
|
-
}
|
|
2001
|
-
_c.label = 2;
|
|
2002
|
-
case 2:
|
|
2003
|
-
_c.trys.push([2, 4, , 5]);
|
|
2004
|
-
modelName = prompt.modelRequirements.modelName || this.options.deploymentName;
|
|
2005
|
-
modelSettings = {
|
|
2006
|
-
maxTokens: modelRequirements.maxTokens,
|
|
2007
|
-
// <- TODO: [🌾] Make some global max cap for maxTokens
|
|
2008
|
-
temperature: modelRequirements.temperature,
|
|
2009
|
-
user: this.options.user,
|
|
2010
|
-
// <- TODO: [🈁] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
|
|
2011
|
-
// <- Note: [🧆]
|
|
2012
|
-
};
|
|
2013
|
-
rawPromptContent = replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName }));
|
|
2014
|
-
messages = __spreadArray(__spreadArray([], __read((modelRequirements.systemMessage === undefined
|
|
2015
|
-
? []
|
|
2016
|
-
: [
|
|
2017
|
-
{
|
|
2018
|
-
role: 'system',
|
|
2019
|
-
content: modelRequirements.systemMessage,
|
|
2020
|
-
},
|
|
2021
|
-
])), false), [
|
|
2022
|
-
{
|
|
2023
|
-
role: 'user',
|
|
2024
|
-
content: rawPromptContent,
|
|
2025
|
-
},
|
|
2026
|
-
], false);
|
|
2027
|
-
start = getCurrentIsoDate();
|
|
2028
|
-
complete = void 0;
|
|
2029
|
-
if (this.options.isVerbose) {
|
|
2030
|
-
console.info(colors.bgWhite('messages'), JSON.stringify(messages, null, 4));
|
|
2031
|
-
}
|
|
2032
|
-
rawRequest = [modelName, messages, modelSettings];
|
|
2033
|
-
return [4 /*yield*/, client.getChatCompletions.apply(client, __spreadArray([], __read(rawRequest), false))];
|
|
2034
|
-
case 3:
|
|
2035
|
-
rawResponse = _c.sent();
|
|
2036
|
-
if (this.options.isVerbose) {
|
|
2037
|
-
console.info(colors.bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
2038
|
-
}
|
|
2039
|
-
if (!rawResponse.choices[0]) {
|
|
2040
|
-
throw new PipelineExecutionError('No choises from Azure OpenAI');
|
|
2041
|
-
}
|
|
2042
|
-
if (rawResponse.choices.length > 1) {
|
|
2043
|
-
// TODO: This should be maybe only warning
|
|
2044
|
-
throw new PipelineExecutionError('More than one choise from Azure OpenAI');
|
|
2045
|
-
}
|
|
2046
|
-
if (!rawResponse.choices[0].message || !rawResponse.choices[0].message.content) {
|
|
2047
|
-
throw new PipelineExecutionError('Empty response from Azure OpenAI');
|
|
2048
|
-
}
|
|
2049
|
-
resultContent = rawResponse.choices[0].message.content;
|
|
2050
|
-
// eslint-disable-next-line prefer-const
|
|
2051
|
-
complete = getCurrentIsoDate();
|
|
2052
|
-
usage = {
|
|
2053
|
-
price: uncertainNumber() /* <- TODO: [🐞] Compute usage */,
|
|
2054
|
-
input: __assign({ tokensCount: uncertainNumber((_a = rawResponse.usage) === null || _a === void 0 ? void 0 : _a.promptTokens) }, computeUsageCounts(prompt.content)),
|
|
2055
|
-
output: __assign({ tokensCount: uncertainNumber((_b = rawResponse.usage) === null || _b === void 0 ? void 0 : _b.completionTokens) }, computeUsageCounts(prompt.content)),
|
|
2056
|
-
};
|
|
2057
|
-
return [2 /*return*/, {
|
|
2058
|
-
content: resultContent,
|
|
2059
|
-
modelName: modelName,
|
|
2060
|
-
timing: {
|
|
2061
|
-
start: start,
|
|
2062
|
-
complete: complete,
|
|
2063
|
-
},
|
|
2064
|
-
usage: usage,
|
|
2065
|
-
rawPromptContent: rawPromptContent,
|
|
2066
|
-
rawRequest: rawRequest,
|
|
2067
|
-
rawResponse: rawResponse,
|
|
2068
|
-
// <- [🗯]
|
|
2069
|
-
}];
|
|
2070
|
-
case 4:
|
|
2071
|
-
error_1 = _c.sent();
|
|
2072
|
-
throw this.transformAzureError(error_1);
|
|
2073
|
-
case 5: return [2 /*return*/];
|
|
2074
|
-
}
|
|
2075
|
-
});
|
|
2076
|
-
});
|
|
2077
|
-
};
|
|
2078
|
-
/**
|
|
2079
|
-
* Calls Azure OpenAI API to use a complete model.
|
|
2080
|
-
*/
|
|
2081
|
-
AzureOpenAiExecutionTools.prototype.callCompletionModel = function (prompt) {
|
|
2082
|
-
var _a, _b;
|
|
2083
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
2084
|
-
var content, parameters, modelRequirements, client, modelName, modelSettings, start, complete, rawPromptContent, rawRequest, rawResponse, resultContent, usage, error_2;
|
|
2085
|
-
return __generator(this, function (_c) {
|
|
2086
|
-
switch (_c.label) {
|
|
2087
|
-
case 0:
|
|
2088
|
-
if (this.options.isVerbose) {
|
|
2089
|
-
console.info('🖋 OpenAI callCompletionModel call');
|
|
2090
|
-
}
|
|
2091
|
-
content = prompt.content, parameters = prompt.parameters, modelRequirements = prompt.modelRequirements;
|
|
2092
|
-
return [4 /*yield*/, this.getClient()];
|
|
2093
|
-
case 1:
|
|
2094
|
-
client = _c.sent();
|
|
2095
|
-
// TODO: [☂] Use here more modelRequirements
|
|
2096
|
-
if (modelRequirements.modelVariant !== 'COMPLETION') {
|
|
2097
|
-
throw new PipelineExecutionError('Use callCompletionModel only for COMPLETION variant');
|
|
2098
|
-
}
|
|
2099
|
-
_c.label = 2;
|
|
2100
|
-
case 2:
|
|
2101
|
-
_c.trys.push([2, 4, , 5]);
|
|
2102
|
-
modelName = prompt.modelRequirements.modelName || this.options.deploymentName;
|
|
2103
|
-
modelSettings = {
|
|
2104
|
-
maxTokens: modelRequirements.maxTokens || 2000,
|
|
2105
|
-
// <- TODO: [🌾] Make some global max cap for maxTokens
|
|
2106
|
-
temperature: modelRequirements.temperature,
|
|
2107
|
-
user: this.options.user,
|
|
2108
|
-
// <- TODO: [🈁] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
|
|
2109
|
-
// <- Note: [🧆]
|
|
2110
|
-
};
|
|
2111
|
-
start = getCurrentIsoDate();
|
|
2112
|
-
complete = void 0;
|
|
2113
|
-
if (this.options.isVerbose) {
|
|
2114
|
-
console.info(colors.bgWhite('content'), JSON.stringify(content, null, 4));
|
|
2115
|
-
console.info(colors.bgWhite('parameters'), JSON.stringify(parameters, null, 4));
|
|
2116
|
-
}
|
|
2117
|
-
rawPromptContent = replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName }));
|
|
2118
|
-
rawRequest = [
|
|
2119
|
-
modelName,
|
|
2120
|
-
[rawPromptContent],
|
|
2121
|
-
modelSettings,
|
|
2122
|
-
];
|
|
2123
|
-
return [4 /*yield*/, client.getCompletions.apply(client, __spreadArray([], __read(rawRequest), false))];
|
|
2124
|
-
case 3:
|
|
2125
|
-
rawResponse = _c.sent();
|
|
2126
|
-
if (this.options.isVerbose) {
|
|
2127
|
-
console.info(colors.bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
2128
|
-
}
|
|
2129
|
-
if (!rawResponse.choices[0]) {
|
|
2130
|
-
throw new PipelineExecutionError('No choises from OpenAI');
|
|
2131
|
-
}
|
|
2132
|
-
if (rawResponse.choices.length > 1) {
|
|
2133
|
-
// TODO: This should be maybe only warning
|
|
2134
|
-
throw new PipelineExecutionError('More than one choise from OpenAI');
|
|
2135
|
-
}
|
|
2136
|
-
resultContent = rawResponse.choices[0].text;
|
|
2137
|
-
// eslint-disable-next-line prefer-const
|
|
2138
|
-
complete = getCurrentIsoDate();
|
|
2139
|
-
usage = {
|
|
2140
|
-
price: uncertainNumber() /* <- TODO: [🐞] Compute usage */,
|
|
2141
|
-
input: __assign({ tokensCount: uncertainNumber((_a = rawResponse.usage) === null || _a === void 0 ? void 0 : _a.promptTokens) }, computeUsageCounts(prompt.content)),
|
|
2142
|
-
output: __assign({ tokensCount: uncertainNumber((_b = rawResponse.usage) === null || _b === void 0 ? void 0 : _b.completionTokens) }, computeUsageCounts(prompt.content)),
|
|
2143
|
-
};
|
|
2144
|
-
return [2 /*return*/, {
|
|
2145
|
-
content: resultContent,
|
|
2146
|
-
modelName: modelName,
|
|
2147
|
-
timing: {
|
|
2148
|
-
start: start,
|
|
2149
|
-
complete: complete,
|
|
2150
|
-
},
|
|
2151
|
-
usage: usage,
|
|
2152
|
-
rawPromptContent: rawPromptContent,
|
|
2153
|
-
rawRequest: rawRequest,
|
|
2154
|
-
rawResponse: rawResponse,
|
|
2155
|
-
// <- [🗯]
|
|
2156
|
-
}];
|
|
2157
|
-
case 4:
|
|
2158
|
-
error_2 = _c.sent();
|
|
2159
|
-
throw this.transformAzureError(error_2);
|
|
2160
|
-
case 5: return [2 /*return*/];
|
|
2161
|
-
}
|
|
2162
|
-
});
|
|
2163
|
-
});
|
|
2164
|
-
};
|
|
2165
|
-
// <- Note: [🤖] callXxxModel
|
|
2166
|
-
/**
|
|
2167
|
-
* Changes Azure error (which is not propper Error but object) to propper Error
|
|
2168
|
-
*/
|
|
2169
|
-
AzureOpenAiExecutionTools.prototype.transformAzureError = function (azureError) {
|
|
2170
|
-
if (typeof azureError !== 'object' || azureError === null) {
|
|
2171
|
-
return new PipelineExecutionError("Unknown Azure OpenAI error");
|
|
2172
|
-
}
|
|
2173
|
-
var code = azureError.code, message = azureError.message;
|
|
2174
|
-
return new PipelineExecutionError("".concat(code, ": ").concat(message));
|
|
2175
|
-
};
|
|
2176
|
-
return AzureOpenAiExecutionTools;
|
|
2177
|
-
}());
|
|
2178
|
-
/**
|
|
2179
|
-
* TODO: Maybe Create some common util for callChatModel and callCompletionModel
|
|
2180
|
-
* TODO: Maybe make custom AzureOpenAiError
|
|
2181
|
-
* TODO: [🧠][🈁] Maybe use `isDeterministic` from options
|
|
2182
|
-
* TODO: [🧠][🌰] Allow to pass `title` for tracking purposes
|
|
2183
|
-
*/
|
|
2184
|
-
|
|
2185
|
-
/**
|
|
2186
|
-
* Computes the usage of the OpenAI API based on the response from OpenAI
|
|
2187
|
-
*
|
|
2188
|
-
* @param promptContent The content of the prompt
|
|
2189
|
-
* @param resultContent The content of the result (for embedding prompts or failed prompts pass empty string)
|
|
2190
|
-
* @param rawResponse The raw response from OpenAI API
|
|
2191
|
-
* @throws {PipelineExecutionError} If the usage is not defined in the response from OpenAI
|
|
2192
|
-
* @private internal utility of `OpenAiExecutionTools`
|
|
2193
|
-
*/
|
|
2194
|
-
function computeOpenAiUsage(promptContent, // <- Note: Intentionally using [] to access type properties to bring jsdoc from Prompt/PromptResult to consumer
|
|
2195
|
-
resultContent, rawResponse) {
|
|
2196
|
-
var _a, _b;
|
|
2197
|
-
if (rawResponse.usage === undefined) {
|
|
2198
|
-
throw new PipelineExecutionError('The usage is not defined in the response from OpenAI');
|
|
2199
|
-
}
|
|
2200
|
-
if (((_a = rawResponse.usage) === null || _a === void 0 ? void 0 : _a.prompt_tokens) === undefined) {
|
|
2201
|
-
throw new PipelineExecutionError('In OpenAI response `usage.prompt_tokens` not defined');
|
|
2202
|
-
}
|
|
2203
|
-
var inputTokens = rawResponse.usage.prompt_tokens;
|
|
2204
|
-
var outputTokens = ((_b = rawResponse.usage) === null || _b === void 0 ? void 0 : _b.completion_tokens) || 0;
|
|
2205
|
-
var modelInfo = OPENAI_MODELS.find(function (model) { return model.modelName === rawResponse.model; });
|
|
2206
|
-
var price;
|
|
2207
|
-
if (modelInfo === undefined || modelInfo.pricing === undefined) {
|
|
2208
|
-
price = uncertainNumber();
|
|
2209
|
-
}
|
|
2210
|
-
else {
|
|
2211
|
-
price = uncertainNumber(inputTokens * modelInfo.pricing.prompt + outputTokens * modelInfo.pricing.output);
|
|
2212
|
-
}
|
|
2213
|
-
return {
|
|
2214
|
-
price: price,
|
|
2215
|
-
input: __assign({ tokensCount: uncertainNumber(rawResponse.usage.prompt_tokens) }, computeUsageCounts(promptContent)),
|
|
2216
|
-
output: __assign({ tokensCount: uncertainNumber(outputTokens) }, computeUsageCounts(resultContent)),
|
|
2217
|
-
};
|
|
2218
|
-
}
|
|
2219
|
-
/**
|
|
2220
|
-
* TODO: [🤝] DRY Maybe some common abstraction between `computeOpenAiUsage` and `computeAnthropicClaudeUsage`
|
|
2221
|
-
*/
|
|
2222
|
-
|
|
2223
|
-
/**
|
|
2224
|
-
* Execution Tools for calling OpenAI API
|
|
2225
|
-
*
|
|
2226
|
-
* @public exported from `@promptbook/openai`
|
|
2227
|
-
*/
|
|
2228
|
-
var OpenAiExecutionTools = /** @class */ (function () {
|
|
2229
|
-
/**
|
|
2230
|
-
* Creates OpenAI Execution Tools.
|
|
2231
|
-
*
|
|
2232
|
-
* @param options which are relevant are directly passed to the OpenAI client
|
|
2233
|
-
*/
|
|
2234
|
-
function OpenAiExecutionTools(options) {
|
|
2235
|
-
if (options === void 0) { options = {}; }
|
|
2236
|
-
this.options = options;
|
|
2237
|
-
/**
|
|
2238
|
-
* OpenAI API client.
|
|
2239
|
-
*/
|
|
2240
|
-
this.client = null;
|
|
2241
|
-
}
|
|
2242
|
-
Object.defineProperty(OpenAiExecutionTools.prototype, "title", {
|
|
2243
|
-
get: function () {
|
|
2244
|
-
return 'OpenAI';
|
|
2245
|
-
},
|
|
2246
|
-
enumerable: false,
|
|
2247
|
-
configurable: true
|
|
2248
|
-
});
|
|
2249
|
-
Object.defineProperty(OpenAiExecutionTools.prototype, "description", {
|
|
2250
|
-
get: function () {
|
|
2251
|
-
return 'Use all models provided by OpenAI';
|
|
2252
|
-
},
|
|
2253
|
-
enumerable: false,
|
|
2254
|
-
configurable: true
|
|
2255
|
-
});
|
|
2256
|
-
OpenAiExecutionTools.prototype.getClient = function () {
|
|
2257
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
2258
|
-
var openAiOptions;
|
|
2259
|
-
return __generator(this, function (_a) {
|
|
2260
|
-
if (this.client === null) {
|
|
2261
|
-
openAiOptions = __assign({}, this.options);
|
|
2262
|
-
delete openAiOptions.isVerbose;
|
|
2263
|
-
delete openAiOptions.user;
|
|
2264
|
-
this.client = new OpenAI(__assign({}, openAiOptions));
|
|
2265
|
-
}
|
|
2266
|
-
return [2 /*return*/, this.client];
|
|
2267
|
-
});
|
|
2268
|
-
});
|
|
2269
|
-
};
|
|
2270
|
-
/**
|
|
2271
|
-
* Check the `options` passed to `constructor`
|
|
2272
|
-
*/
|
|
2273
|
-
OpenAiExecutionTools.prototype.checkConfiguration = function () {
|
|
2274
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
2275
|
-
return __generator(this, function (_a) {
|
|
2276
|
-
switch (_a.label) {
|
|
2277
|
-
case 0: return [4 /*yield*/, this.getClient()];
|
|
2278
|
-
case 1:
|
|
2279
|
-
_a.sent();
|
|
2280
|
-
return [2 /*return*/];
|
|
2281
|
-
}
|
|
2282
|
-
});
|
|
2283
|
-
});
|
|
2284
|
-
};
|
|
2285
|
-
/**
|
|
2286
|
-
* List all available OpenAI models that can be used
|
|
2287
|
-
*/
|
|
2288
|
-
OpenAiExecutionTools.prototype.listModels = function () {
|
|
2289
|
-
/*
|
|
2290
|
-
Note: Dynamic lising of the models
|
|
2291
|
-
const models = await this.openai.models.list({});
|
|
2292
|
-
|
|
2293
|
-
console.log({ models });
|
|
2294
|
-
console.log(models.data);
|
|
2295
|
-
*/
|
|
2296
|
-
return OPENAI_MODELS;
|
|
2297
|
-
};
|
|
2298
|
-
/**
|
|
2299
|
-
* Calls OpenAI API to use a chat model.
|
|
2300
|
-
*/
|
|
2301
|
-
OpenAiExecutionTools.prototype.callChatModel = function (prompt) {
|
|
2302
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
2303
|
-
var content, parameters, modelRequirements, expectFormat, client, modelName, modelSettings, rawPromptContent, rawRequest, start, complete, rawResponse, resultContent, usage;
|
|
2304
|
-
return __generator(this, function (_a) {
|
|
2305
|
-
switch (_a.label) {
|
|
2306
|
-
case 0:
|
|
2307
|
-
if (this.options.isVerbose) {
|
|
2308
|
-
console.info('💬 OpenAI callChatModel call', { prompt: prompt });
|
|
2309
|
-
}
|
|
2310
|
-
content = prompt.content, parameters = prompt.parameters, modelRequirements = prompt.modelRequirements, expectFormat = prompt.expectFormat;
|
|
2311
|
-
return [4 /*yield*/, this.getClient()];
|
|
2312
|
-
case 1:
|
|
2313
|
-
client = _a.sent();
|
|
2314
|
-
// TODO: [☂] Use here more modelRequirements
|
|
2315
|
-
if (modelRequirements.modelVariant !== 'CHAT') {
|
|
2316
|
-
throw new PipelineExecutionError('Use callChatModel only for CHAT variant');
|
|
2317
|
-
}
|
|
2318
|
-
modelName = modelRequirements.modelName || this.getDefaultChatModel().modelName;
|
|
2319
|
-
modelSettings = {
|
|
2320
|
-
model: modelName,
|
|
2321
|
-
max_tokens: modelRequirements.maxTokens,
|
|
2322
|
-
// <- TODO: [🌾] Make some global max cap for maxTokens
|
|
2323
|
-
temperature: modelRequirements.temperature,
|
|
2324
|
-
// <- TODO: [🈁] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
|
|
2325
|
-
// <- Note: [🧆]
|
|
2326
|
-
};
|
|
2327
|
-
if (expectFormat === 'JSON') {
|
|
2328
|
-
modelSettings.response_format = {
|
|
2329
|
-
type: 'json_object',
|
|
2330
|
-
};
|
|
2331
|
-
}
|
|
2332
|
-
rawPromptContent = replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName }));
|
|
2333
|
-
rawRequest = __assign(__assign({}, modelSettings), { messages: __spreadArray(__spreadArray([], __read((modelRequirements.systemMessage === undefined
|
|
2334
|
-
? []
|
|
2335
|
-
: [
|
|
2336
|
-
{
|
|
2337
|
-
role: 'system',
|
|
2338
|
-
content: modelRequirements.systemMessage,
|
|
2339
|
-
},
|
|
2340
|
-
])), false), [
|
|
2341
|
-
{
|
|
2342
|
-
role: 'user',
|
|
2343
|
-
content: rawPromptContent,
|
|
2344
|
-
},
|
|
2345
|
-
], false), user: this.options.user });
|
|
2346
|
-
start = getCurrentIsoDate();
|
|
2347
|
-
if (this.options.isVerbose) {
|
|
2348
|
-
console.info(colors.bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
|
|
2349
|
-
}
|
|
2350
|
-
return [4 /*yield*/, client.chat.completions.create(rawRequest)];
|
|
2351
|
-
case 2:
|
|
2352
|
-
rawResponse = _a.sent();
|
|
2353
|
-
if (this.options.isVerbose) {
|
|
2354
|
-
console.info(colors.bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
2355
|
-
}
|
|
2356
|
-
if (!rawResponse.choices[0]) {
|
|
2357
|
-
throw new PipelineExecutionError('No choises from OpenAI');
|
|
2358
|
-
}
|
|
2359
|
-
if (rawResponse.choices.length > 1) {
|
|
2360
|
-
// TODO: This should be maybe only warning
|
|
2361
|
-
throw new PipelineExecutionError('More than one choise from OpenAI');
|
|
2362
|
-
}
|
|
2363
|
-
resultContent = rawResponse.choices[0].message.content;
|
|
2364
|
-
// eslint-disable-next-line prefer-const
|
|
2365
|
-
complete = getCurrentIsoDate();
|
|
2366
|
-
usage = computeOpenAiUsage(content, resultContent || '', rawResponse);
|
|
2367
|
-
if (resultContent === null) {
|
|
2368
|
-
throw new PipelineExecutionError('No response message from OpenAI');
|
|
2369
|
-
}
|
|
2370
|
-
return [2 /*return*/, {
|
|
2371
|
-
content: resultContent,
|
|
2372
|
-
modelName: rawResponse.model || modelName,
|
|
2373
|
-
timing: {
|
|
2374
|
-
start: start,
|
|
2375
|
-
complete: complete,
|
|
2376
|
-
},
|
|
2377
|
-
usage: usage,
|
|
2378
|
-
rawPromptContent: rawPromptContent,
|
|
2379
|
-
rawRequest: rawRequest,
|
|
2380
|
-
rawResponse: rawResponse,
|
|
2381
|
-
// <- [🗯]
|
|
2382
|
-
}];
|
|
2383
|
-
}
|
|
2384
|
-
});
|
|
2385
|
-
});
|
|
2386
|
-
};
|
|
2387
|
-
/**
|
|
2388
|
-
* Calls OpenAI API to use a complete model.
|
|
2389
|
-
*/
|
|
2390
|
-
OpenAiExecutionTools.prototype.callCompletionModel = function (prompt) {
|
|
2391
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
2392
|
-
var content, parameters, modelRequirements, client, modelName, modelSettings, rawPromptContent, rawRequest, start, complete, rawResponse, resultContent, usage;
|
|
2393
|
-
return __generator(this, function (_a) {
|
|
2394
|
-
switch (_a.label) {
|
|
2395
|
-
case 0:
|
|
2396
|
-
if (this.options.isVerbose) {
|
|
2397
|
-
console.info('🖋 OpenAI callCompletionModel call', { prompt: prompt });
|
|
2398
|
-
}
|
|
2399
|
-
content = prompt.content, parameters = prompt.parameters, modelRequirements = prompt.modelRequirements;
|
|
2400
|
-
return [4 /*yield*/, this.getClient()];
|
|
2401
|
-
case 1:
|
|
2402
|
-
client = _a.sent();
|
|
2403
|
-
// TODO: [☂] Use here more modelRequirements
|
|
2404
|
-
if (modelRequirements.modelVariant !== 'COMPLETION') {
|
|
2405
|
-
throw new PipelineExecutionError('Use callCompletionModel only for COMPLETION variant');
|
|
2406
|
-
}
|
|
2407
|
-
modelName = modelRequirements.modelName || this.getDefaultCompletionModel().modelName;
|
|
2408
|
-
modelSettings = {
|
|
2409
|
-
model: modelName,
|
|
2410
|
-
max_tokens: modelRequirements.maxTokens || 2000,
|
|
2411
|
-
// <- TODO: [🌾] Make some global max cap for maxTokens
|
|
2412
|
-
temperature: modelRequirements.temperature,
|
|
2413
|
-
// <- TODO: [🈁] Use `seed` here AND/OR use is `isDeterministic` for entire execution tools
|
|
2414
|
-
// <- Note: [🧆]
|
|
2415
|
-
};
|
|
2416
|
-
rawPromptContent = replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName }));
|
|
2417
|
-
rawRequest = __assign(__assign({}, modelSettings), { prompt: rawPromptContent, user: this.options.user });
|
|
2418
|
-
start = getCurrentIsoDate();
|
|
2419
|
-
if (this.options.isVerbose) {
|
|
2420
|
-
console.info(colors.bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
|
|
2421
|
-
}
|
|
2422
|
-
return [4 /*yield*/, client.completions.create(rawRequest)];
|
|
2423
|
-
case 2:
|
|
2424
|
-
rawResponse = _a.sent();
|
|
2425
|
-
if (this.options.isVerbose) {
|
|
2426
|
-
console.info(colors.bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
2427
|
-
}
|
|
2428
|
-
if (!rawResponse.choices[0]) {
|
|
2429
|
-
throw new PipelineExecutionError('No choises from OpenAI');
|
|
2430
|
-
}
|
|
2431
|
-
if (rawResponse.choices.length > 1) {
|
|
2432
|
-
// TODO: This should be maybe only warning
|
|
2433
|
-
throw new PipelineExecutionError('More than one choise from OpenAI');
|
|
2434
|
-
}
|
|
2435
|
-
resultContent = rawResponse.choices[0].text;
|
|
2436
|
-
// eslint-disable-next-line prefer-const
|
|
2437
|
-
complete = getCurrentIsoDate();
|
|
2438
|
-
usage = computeOpenAiUsage(content, resultContent || '', rawResponse);
|
|
2439
|
-
return [2 /*return*/, {
|
|
2440
|
-
content: resultContent,
|
|
2441
|
-
modelName: rawResponse.model || modelName,
|
|
2442
|
-
timing: {
|
|
2443
|
-
start: start,
|
|
2444
|
-
complete: complete,
|
|
2445
|
-
},
|
|
2446
|
-
usage: usage,
|
|
2447
|
-
rawPromptContent: rawPromptContent,
|
|
2448
|
-
rawRequest: rawRequest,
|
|
2449
|
-
rawResponse: rawResponse,
|
|
2450
|
-
// <- [🗯]
|
|
2451
|
-
}];
|
|
2452
|
-
}
|
|
2453
|
-
});
|
|
2454
|
-
});
|
|
2455
|
-
};
|
|
2456
|
-
/**
|
|
2457
|
-
* Calls OpenAI API to use a embedding model
|
|
2458
|
-
*/
|
|
2459
|
-
OpenAiExecutionTools.prototype.callEmbeddingModel = function (prompt) {
|
|
2460
|
-
return __awaiter(this, void 0, void 0, function () {
|
|
2461
|
-
var content, parameters, modelRequirements, client, modelName, rawPromptContent, rawRequest, start, complete, rawResponse, resultContent, usage;
|
|
2462
|
-
return __generator(this, function (_a) {
|
|
2463
|
-
switch (_a.label) {
|
|
2464
|
-
case 0:
|
|
2465
|
-
if (this.options.isVerbose) {
|
|
2466
|
-
console.info('🖋 OpenAI embedding call', { prompt: prompt });
|
|
2467
|
-
}
|
|
2468
|
-
content = prompt.content, parameters = prompt.parameters, modelRequirements = prompt.modelRequirements;
|
|
2469
|
-
return [4 /*yield*/, this.getClient()];
|
|
2470
|
-
case 1:
|
|
2471
|
-
client = _a.sent();
|
|
2472
|
-
// TODO: [☂] Use here more modelRequirements
|
|
2473
|
-
if (modelRequirements.modelVariant !== 'EMBEDDING') {
|
|
2474
|
-
throw new PipelineExecutionError('Use embed only for EMBEDDING variant');
|
|
2475
|
-
}
|
|
2476
|
-
modelName = modelRequirements.modelName || this.getDefaultEmbeddingModel().modelName;
|
|
2477
|
-
rawPromptContent = replaceParameters(content, __assign(__assign({}, parameters), { modelName: modelName }));
|
|
2478
|
-
rawRequest = {
|
|
2479
|
-
input: rawPromptContent,
|
|
2480
|
-
model: modelName,
|
|
2481
|
-
};
|
|
2482
|
-
start = getCurrentIsoDate();
|
|
2483
|
-
if (this.options.isVerbose) {
|
|
2484
|
-
console.info(colors.bgWhite('rawRequest'), JSON.stringify(rawRequest, null, 4));
|
|
2485
|
-
}
|
|
2486
|
-
return [4 /*yield*/, client.embeddings.create(rawRequest)];
|
|
2487
|
-
case 2:
|
|
2488
|
-
rawResponse = _a.sent();
|
|
2489
|
-
if (this.options.isVerbose) {
|
|
2490
|
-
console.info(colors.bgWhite('rawResponse'), JSON.stringify(rawResponse, null, 4));
|
|
2491
|
-
}
|
|
2492
|
-
if (rawResponse.data.length !== 1) {
|
|
2493
|
-
throw new PipelineExecutionError("Expected exactly 1 data item in response, got ".concat(rawResponse.data.length));
|
|
2494
|
-
}
|
|
2495
|
-
resultContent = rawResponse.data[0].embedding;
|
|
2496
|
-
// eslint-disable-next-line prefer-const
|
|
2497
|
-
complete = getCurrentIsoDate();
|
|
2498
|
-
usage = computeOpenAiUsage(content, '', rawResponse);
|
|
2499
|
-
return [2 /*return*/, {
|
|
2500
|
-
content: resultContent,
|
|
2501
|
-
modelName: rawResponse.model || modelName,
|
|
2502
|
-
timing: {
|
|
2503
|
-
start: start,
|
|
2504
|
-
complete: complete,
|
|
2505
|
-
},
|
|
2506
|
-
usage: usage,
|
|
2507
|
-
rawPromptContent: rawPromptContent,
|
|
2508
|
-
rawRequest: rawRequest,
|
|
2509
|
-
rawResponse: rawResponse,
|
|
2510
|
-
// <- [🗯]
|
|
2511
|
-
}];
|
|
2512
|
-
}
|
|
2513
|
-
});
|
|
2514
|
-
});
|
|
2515
|
-
};
|
|
2516
|
-
// <- Note: [🤖] callXxxModel
|
|
2517
|
-
/**
|
|
2518
|
-
* Get the model that should be used as default
|
|
2519
|
-
*/
|
|
2520
|
-
OpenAiExecutionTools.prototype.getDefaultModel = function (defaultModelName) {
|
|
2521
|
-
var model = OPENAI_MODELS.find(function (_a) {
|
|
2522
|
-
var modelName = _a.modelName;
|
|
2523
|
-
return modelName === defaultModelName;
|
|
2524
|
-
});
|
|
2525
|
-
if (model === undefined) {
|
|
2526
|
-
throw new UnexpectedError(spaceTrim$1(function (block) {
|
|
2527
|
-
return "\n Cannot find model in OpenAI models with name \"".concat(defaultModelName, "\" which should be used as default.\n\n Available models:\n ").concat(block(OPENAI_MODELS.map(function (_a) {
|
|
2528
|
-
var modelName = _a.modelName;
|
|
2529
|
-
return "- \"".concat(modelName, "\"");
|
|
2530
|
-
}).join('\n')), "\n\n ");
|
|
2531
|
-
}));
|
|
2532
|
-
}
|
|
2533
|
-
return model;
|
|
2534
|
-
};
|
|
2535
|
-
/**
|
|
2536
|
-
* Default model for chat variant.
|
|
2537
|
-
*/
|
|
2538
|
-
OpenAiExecutionTools.prototype.getDefaultChatModel = function () {
|
|
2539
|
-
return this.getDefaultModel('gpt-4o');
|
|
2540
|
-
};
|
|
2541
|
-
/**
|
|
2542
|
-
* Default model for completion variant.
|
|
2543
|
-
*/
|
|
2544
|
-
OpenAiExecutionTools.prototype.getDefaultCompletionModel = function () {
|
|
2545
|
-
return this.getDefaultModel('gpt-3.5-turbo-instruct');
|
|
2546
|
-
};
|
|
2547
|
-
/**
|
|
2548
|
-
* Default model for completion variant.
|
|
2549
|
-
*/
|
|
2550
|
-
OpenAiExecutionTools.prototype.getDefaultEmbeddingModel = function () {
|
|
2551
|
-
return this.getDefaultModel('text-embedding-3-large');
|
|
2552
|
-
};
|
|
2553
|
-
return OpenAiExecutionTools;
|
|
2554
|
-
}());
|
|
2555
|
-
/**
|
|
2556
|
-
* TODO: [🧠][🧙♂️] Maybe there can be some wizzard for thoose who want to use just OpenAI
|
|
2557
|
-
* TODO: Maybe Create some common util for callChatModel and callCompletionModel
|
|
2558
|
-
* TODO: Maybe make custom OpenAiError
|
|
2559
|
-
* TODO: [🧠][🈁] Maybe use `isDeterministic` from options
|
|
2560
|
-
* TODO: [🧠][🌰] Allow to pass `title` for tracking purposes
|
|
2561
|
-
*/
|
|
2562
|
-
|
|
2563
|
-
/**
|
|
2564
|
-
* Execution Tools for calling OpenAI API
|
|
2565
|
-
*
|
|
2566
|
-
* @public exported from `@promptbook/openai`
|
|
2567
|
-
*/
|
|
2568
|
-
var createOpenAiExecutionTools = Object.assign(function (options) {
|
|
2569
|
-
// TODO: !!!!!! If browser, auto add `dangerouslyAllowBrowser`
|
|
2570
|
-
return new OpenAiExecutionTools(options);
|
|
2571
|
-
}, {
|
|
2572
|
-
packageName: '@promptbook/openai',
|
|
2573
|
-
className: 'OpenAiExecutionTools',
|
|
2574
|
-
});
|
|
2575
|
-
/**
|
|
2576
|
-
* TODO: [🦺] Is there some way how to put `packageName` and `className` on top and function definition on bottom?
|
|
2577
|
-
* TODO: [🎶] Naming "constructor" vs "creator" vs "factory"
|
|
2578
|
-
*/
|
|
2579
|
-
|
|
2580
|
-
/**
|
|
2581
|
-
* @@@
|
|
2582
|
-
*
|
|
2583
|
-
* TODO: !!!!!! Remove EXECUTION_TOOLS_CLASSES and use $llmToolsRegister instead
|
|
2584
|
-
*
|
|
2585
|
-
* @private internal type for `createLlmToolsFromConfiguration`
|
|
2586
|
-
*/
|
|
2587
|
-
var EXECUTION_TOOLS_CLASSES = {
|
|
2588
|
-
createOpenAiExecutionTools: createOpenAiExecutionTools,
|
|
2589
|
-
createAnthropicClaudeExecutionTools: createAnthropicClaudeExecutionTools,
|
|
2590
|
-
createAzureOpenAiExecutionTools: function (options) {
|
|
2591
|
-
return new AzureOpenAiExecutionTools(
|
|
2592
|
-
// <- TODO: [🧱] Implement in a functional (not new Class) way
|
|
2593
|
-
options);
|
|
2594
|
-
},
|
|
2595
|
-
// <- Note: [🦑] Add here new LLM provider
|
|
2596
|
-
};
|
|
2597
|
-
/**
|
|
2598
|
-
* TODO: !!!!!!! Make global register for this
|
|
2599
|
-
* TODO: [🧠][🎌] Adding this should be responsibility of each provider package NOT this one central place
|
|
2600
|
-
*/
|
|
2601
|
-
|
|
2602
|
-
/**
|
|
2603
|
-
* @@@
|
|
2604
|
-
*
|
|
2605
|
-
* Note: This function is not cached, every call creates new instance of `MultipleLlmExecutionTools`
|
|
2606
|
-
*
|
|
2607
|
-
* @returns @@@
|
|
2608
|
-
* @public exported from `@promptbook/core`
|
|
2609
|
-
*/
|
|
2610
|
-
function createLlmToolsFromConfiguration(configuration, options) {
|
|
2611
|
-
if (options === void 0) { options = {}; }
|
|
2612
|
-
var _a = options.isVerbose, isVerbose = _a === void 0 ? false : _a;
|
|
2613
|
-
var llmTools = configuration.map(function (llmConfiguration) {
|
|
2614
|
-
var constructor = EXECUTION_TOOLS_CLASSES["create".concat(llmConfiguration.className)];
|
|
2615
|
-
if (!constructor) {
|
|
2616
|
-
throw new Error(spaceTrim$1(function (block) { return "\n There is no constructor for LLM provider `".concat(llmConfiguration.className, "`\n\n\n @@@\n\n Available constructors are:\n ").concat(block('@@@'), "\n\n\n "); }));
|
|
2617
|
-
}
|
|
2618
|
-
return constructor(__assign({ isVerbose: isVerbose }, llmConfiguration.options));
|
|
2619
|
-
});
|
|
2620
|
-
return joinLlmExecutionTools.apply(void 0, __spreadArray([], __read(llmTools), false));
|
|
2621
|
-
}
|
|
2622
|
-
/**
|
|
2623
|
-
* TODO: [🎌] Togethere with `createLlmToolsFromConfiguration` + 'EXECUTION_TOOLS_CLASSES' gets to `@promptbook/core` ALL model providers, make this more efficient
|
|
2624
|
-
* TODO: [🧠][🎌] Dynamically install required providers
|
|
2625
|
-
* TODO: @@@ write discussion about this - wizzard
|
|
2626
|
-
* TODO: [🧠][🍛] Which name is better `createLlmToolsFromConfig` or `createLlmToolsFromConfiguration`?
|
|
2627
|
-
* TODO: [🧠] Is there some meaningfull way how to test this util
|
|
2628
|
-
* TODO: This should be maybe not under `_common` but under `utils`
|
|
2629
|
-
*/
|
|
2630
|
-
|
|
2631
|
-
/**
|
|
2632
|
-
* Remote server is a proxy server that uses its execution tools internally and exposes the executor interface externally.
|
|
2633
|
-
*
|
|
2634
|
-
* You can simply use `RemoteExecutionTools` on client-side javascript and connect to your remote server.
|
|
2635
|
-
* This is useful to make all logic on browser side but not expose your API keys or no need to use customer's GPU.
|
|
683
|
+
* You can simply use `RemoteExecutionTools` on client-side javascript and connect to your remote server.
|
|
684
|
+
* This is useful to make all logic on browser side but not expose your API keys or no need to use customer's GPU.
|
|
2636
685
|
*
|
|
2637
686
|
* @see https://github.com/webgptorg/promptbook#remote-server
|
|
2638
687
|
* @public exported from `@promptbook/remote-server`
|
|
@@ -2696,12 +745,12 @@ function startRemoteServer(options) {
|
|
|
2696
745
|
});
|
|
2697
746
|
server.on('connection', function (socket) {
|
|
2698
747
|
console.info(colors.gray("Client connected"), socket.id);
|
|
2699
|
-
socket.on('request', function (request) { return __awaiter(_this, void 0, void 0, function () {
|
|
2700
|
-
var _a, prompt, clientId, llmToolsConfiguration, llmExecutionTools, promptResult, _b, error_1;
|
|
748
|
+
socket.on('prompt-request', function (request) { return __awaiter(_this, void 0, void 0, function () {
|
|
749
|
+
var _a, isAnonymous, prompt, clientId, llmToolsConfiguration, llmExecutionTools, promptResult, _b, error_1;
|
|
2701
750
|
return __generator(this, function (_c) {
|
|
2702
751
|
switch (_c.label) {
|
|
2703
752
|
case 0:
|
|
2704
|
-
_a = __assign({ clientId: null, llmToolsConfiguration: null }, request), prompt = _a.prompt, clientId = _a.clientId, llmToolsConfiguration = _a.llmToolsConfiguration;
|
|
753
|
+
_a = __assign({ clientId: null, llmToolsConfiguration: null }, request), isAnonymous = _a.isAnonymous, prompt = _a.prompt, clientId = _a.clientId, llmToolsConfiguration = _a.llmToolsConfiguration;
|
|
2705
754
|
// <- TODO: [🦪] Some helper type to be able to use discriminant union types with destructuring
|
|
2706
755
|
if (isVerbose) {
|
|
2707
756
|
console.info(colors.bgWhite("Prompt:"), colors.gray(JSON.stringify(request, null, 4)));
|
|
@@ -2709,20 +758,20 @@ function startRemoteServer(options) {
|
|
|
2709
758
|
_c.label = 1;
|
|
2710
759
|
case 1:
|
|
2711
760
|
_c.trys.push([1, 14, 15, 16]);
|
|
2712
|
-
if (
|
|
761
|
+
if (isAnonymous === true && !isAnonymousModeAllowed) {
|
|
2713
762
|
throw new PipelineExecutionError("Anonymous mode is not allowed"); // <- TODO: !!! Test
|
|
2714
763
|
}
|
|
2715
|
-
if (
|
|
764
|
+
if (isAnonymous === false && !isCollectionModeAllowed) {
|
|
2716
765
|
throw new PipelineExecutionError("Collection mode is not allowed"); // <- TODO: !!! Test
|
|
2717
766
|
}
|
|
2718
767
|
llmExecutionTools = void 0;
|
|
2719
|
-
if (!(llmToolsConfiguration !== null)) return [3 /*break*/, 2];
|
|
768
|
+
if (!(isAnonymous === true && llmToolsConfiguration !== null)) return [3 /*break*/, 2];
|
|
2720
769
|
// Note: Anonymouse mode
|
|
2721
770
|
// TODO: Maybe check that configuration is not empty
|
|
2722
771
|
llmExecutionTools = createLlmToolsFromConfiguration(llmToolsConfiguration, { isVerbose: isVerbose });
|
|
2723
772
|
return [3 /*break*/, 5];
|
|
2724
773
|
case 2:
|
|
2725
|
-
if (!(createLlmExecutionTools !== null)) return [3 /*break*/, 4];
|
|
774
|
+
if (!(isAnonymous === false && createLlmExecutionTools !== null)) return [3 /*break*/, 4];
|
|
2726
775
|
// Note: Collection mode
|
|
2727
776
|
llmExecutionTools = createLlmExecutionTools(clientId);
|
|
2728
777
|
return [4 /*yield*/, collection.isResponsibleForPrompt(prompt)];
|
|
@@ -2731,7 +780,7 @@ function startRemoteServer(options) {
|
|
|
2731
780
|
throw new PipelineExecutionError("Pipeline is not in the collection of this server");
|
|
2732
781
|
}
|
|
2733
782
|
return [3 /*break*/, 5];
|
|
2734
|
-
case 4: throw new PipelineExecutionError("You must provide either llmToolsConfiguration or
|
|
783
|
+
case 4: throw new PipelineExecutionError("You must provide either llmToolsConfiguration or non-anonymous mode must be propperly configured");
|
|
2735
784
|
case 5:
|
|
2736
785
|
promptResult = void 0;
|
|
2737
786
|
_b = prompt.modelRequirements.modelVariant;
|
|
@@ -2773,7 +822,7 @@ function startRemoteServer(options) {
|
|
|
2773
822
|
if (isVerbose) {
|
|
2774
823
|
console.info(colors.bgGreen("PromptResult:"), colors.green(JSON.stringify(promptResult, null, 4)));
|
|
2775
824
|
}
|
|
2776
|
-
socket.emit('response', { promptResult: promptResult });
|
|
825
|
+
socket.emit('prompt-response', { promptResult: promptResult });
|
|
2777
826
|
return [3 /*break*/, 16];
|
|
2778
827
|
case 14:
|
|
2779
828
|
error_1 = _c.sent();
|
|
@@ -2789,6 +838,55 @@ function startRemoteServer(options) {
|
|
|
2789
838
|
}
|
|
2790
839
|
});
|
|
2791
840
|
}); });
|
|
841
|
+
// TODO: [👒] Listing models (and checking configuration) probbably should go through REST API not Socket.io
|
|
842
|
+
socket.on('listModels-request', function (request) { return __awaiter(_this, void 0, void 0, function () {
|
|
843
|
+
var _a, isAnonymous, clientId, llmToolsConfiguration, llmExecutionTools, models, error_2;
|
|
844
|
+
return __generator(this, function (_b) {
|
|
845
|
+
switch (_b.label) {
|
|
846
|
+
case 0:
|
|
847
|
+
_a = __assign({ clientId: null, llmToolsConfiguration: null }, request), isAnonymous = _a.isAnonymous, clientId = _a.clientId, llmToolsConfiguration = _a.llmToolsConfiguration;
|
|
848
|
+
// <- TODO: [🦪] Some helper type to be able to use discriminant union types with destructuring
|
|
849
|
+
if (isVerbose) {
|
|
850
|
+
console.info(colors.bgWhite("Listing models"));
|
|
851
|
+
}
|
|
852
|
+
_b.label = 1;
|
|
853
|
+
case 1:
|
|
854
|
+
_b.trys.push([1, 3, 4, 5]);
|
|
855
|
+
if (isAnonymous === true && !isAnonymousModeAllowed) {
|
|
856
|
+
throw new PipelineExecutionError("Anonymous mode is not allowed"); // <- TODO: !!! Test
|
|
857
|
+
}
|
|
858
|
+
if (isAnonymous === false && !isCollectionModeAllowed) {
|
|
859
|
+
throw new PipelineExecutionError("Collection mode is not allowed"); // <- TODO: !!! Test
|
|
860
|
+
}
|
|
861
|
+
llmExecutionTools = void 0;
|
|
862
|
+
if (isAnonymous === true) {
|
|
863
|
+
// Note: Anonymouse mode
|
|
864
|
+
// TODO: Maybe check that configuration is not empty
|
|
865
|
+
llmExecutionTools = createLlmToolsFromConfiguration(llmToolsConfiguration, { isVerbose: isVerbose });
|
|
866
|
+
}
|
|
867
|
+
else {
|
|
868
|
+
// Note: Collection mode
|
|
869
|
+
llmExecutionTools = createLlmExecutionTools(clientId);
|
|
870
|
+
}
|
|
871
|
+
return [4 /*yield*/, llmExecutionTools.listModels()];
|
|
872
|
+
case 2:
|
|
873
|
+
models = _b.sent();
|
|
874
|
+
socket.emit('prompt-response', { models: models });
|
|
875
|
+
return [3 /*break*/, 5];
|
|
876
|
+
case 3:
|
|
877
|
+
error_2 = _b.sent();
|
|
878
|
+
if (!(error_2 instanceof Error)) {
|
|
879
|
+
throw error_2;
|
|
880
|
+
}
|
|
881
|
+
socket.emit('error', { errorMessage: error_2.message });
|
|
882
|
+
return [3 /*break*/, 5];
|
|
883
|
+
case 4:
|
|
884
|
+
socket.disconnect();
|
|
885
|
+
return [7 /*endfinally*/];
|
|
886
|
+
case 5: return [2 /*return*/];
|
|
887
|
+
}
|
|
888
|
+
});
|
|
889
|
+
}); });
|
|
2792
890
|
socket.on('disconnect', function () {
|
|
2793
891
|
// TODO: Destroy here executionToolsForClient
|
|
2794
892
|
if (isVerbose) {
|
|
@@ -2818,6 +916,7 @@ function startRemoteServer(options) {
|
|
|
2818
916
|
};
|
|
2819
917
|
}
|
|
2820
918
|
/**
|
|
919
|
+
* TODO: [🧠][🛍] Maybe not `isAnonymous: boolean` BUT `mode: 'ANONYMOUS'|'COLLECTION'`
|
|
2821
920
|
* TODO: [⚖] Expose the collection to be able to connect to same collection via createCollectionFromUrl
|
|
2822
921
|
* TODO: Handle progress - support streaming
|
|
2823
922
|
* TODO: [🗯] Do not hang up immediately but wait until client closes OR timeout
|