@promptbook/pdf 0.94.0 → 0.98.0-2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. package/README.md +6 -2
  2. package/esm/index.es.js +46 -46
  3. package/esm/index.es.js.map +1 -1
  4. package/esm/typings/src/_packages/types.index.d.ts +2 -2
  5. package/esm/typings/src/_packages/{wizzard.index.d.ts → wizard.index.d.ts} +2 -2
  6. package/esm/typings/src/cli/cli-commands/prettify.d.ts +1 -1
  7. package/esm/typings/src/cli/cli-commands/test-command.d.ts +1 -1
  8. package/esm/typings/src/conversion/archive/loadArchive.d.ts +1 -1
  9. package/esm/typings/src/conversion/archive/saveArchive.d.ts +2 -2
  10. package/esm/typings/src/conversion/prettify/renderPipelineMermaidOptions.d.ts +1 -1
  11. package/esm/typings/src/dialogs/callback/CallbackInterfaceTools.d.ts +1 -1
  12. package/esm/typings/src/execution/AbstractTaskResult.d.ts +2 -2
  13. package/esm/typings/src/execution/createPipelineExecutor/00-CreatePipelineExecutorOptions.d.ts +1 -1
  14. package/esm/typings/src/execution/execution-report/ExecutionPromptReportJson.d.ts +2 -2
  15. package/esm/typings/src/execution/translation/automatic-translate/translateMessages.d.ts +1 -1
  16. package/esm/typings/src/llm-providers/_common/register/{$provideLlmToolsForWizzardOrCli.d.ts → $provideLlmToolsForWizardOrCli.d.ts} +2 -2
  17. package/esm/typings/src/llm-providers/anthropic-claude/register-configuration.d.ts +1 -1
  18. package/esm/typings/src/llm-providers/anthropic-claude/register-constructor.d.ts +1 -1
  19. package/esm/typings/src/llm-providers/azure-openai/register-configuration.d.ts +1 -1
  20. package/esm/typings/src/llm-providers/azure-openai/register-constructor.d.ts +1 -1
  21. package/esm/typings/src/llm-providers/deepseek/register-configuration.d.ts +1 -1
  22. package/esm/typings/src/llm-providers/deepseek/register-constructor.d.ts +1 -1
  23. package/esm/typings/src/llm-providers/google/register-configuration.d.ts +1 -1
  24. package/esm/typings/src/llm-providers/google/register-constructor.d.ts +1 -1
  25. package/esm/typings/src/llm-providers/ollama/register-configuration.d.ts +1 -1
  26. package/esm/typings/src/llm-providers/ollama/register-constructor.d.ts +1 -1
  27. package/esm/typings/src/llm-providers/openai/OpenAiAssistantExecutionTools.d.ts +1 -1
  28. package/esm/typings/src/llm-providers/openai/register-configuration.d.ts +2 -2
  29. package/esm/typings/src/llm-providers/openai/register-constructor.d.ts +2 -2
  30. package/esm/typings/src/remote-server/socket-types/listModels/PromptbookServer_ListModels_Request.d.ts +1 -1
  31. package/esm/typings/src/scrapers/_boilerplate/createBoilerplateScraper.d.ts +1 -1
  32. package/esm/typings/src/scrapers/_boilerplate/register-constructor.d.ts +1 -1
  33. package/esm/typings/src/scrapers/_boilerplate/register-metadata.d.ts +2 -2
  34. package/esm/typings/src/scrapers/_common/prepareKnowledgePieces.d.ts +1 -1
  35. package/esm/typings/src/scrapers/_common/register/ScraperAndConverterMetadata.d.ts +1 -1
  36. package/esm/typings/src/scrapers/document/createDocumentScraper.d.ts +1 -1
  37. package/esm/typings/src/scrapers/document/register-constructor.d.ts +1 -1
  38. package/esm/typings/src/scrapers/document/register-metadata.d.ts +2 -2
  39. package/esm/typings/src/scrapers/document-legacy/createLegacyDocumentScraper.d.ts +1 -1
  40. package/esm/typings/src/scrapers/document-legacy/register-constructor.d.ts +1 -1
  41. package/esm/typings/src/scrapers/document-legacy/register-metadata.d.ts +2 -2
  42. package/esm/typings/src/scrapers/markdown/createMarkdownScraper.d.ts +1 -4
  43. package/esm/typings/src/scrapers/markdown/register-constructor.d.ts +1 -1
  44. package/esm/typings/src/scrapers/markdown/register-metadata.d.ts +2 -2
  45. package/esm/typings/src/scrapers/markitdown/createMarkitdownScraper.d.ts +1 -1
  46. package/esm/typings/src/scrapers/markitdown/register-constructor.d.ts +1 -1
  47. package/esm/typings/src/scrapers/markitdown/register-metadata.d.ts +2 -2
  48. package/esm/typings/src/scrapers/pdf/createPdfScraper.d.ts +1 -1
  49. package/esm/typings/src/scrapers/pdf/register-constructor.d.ts +1 -1
  50. package/esm/typings/src/scrapers/pdf/register-metadata.d.ts +2 -2
  51. package/esm/typings/src/scrapers/website/createWebsiteScraper.d.ts +1 -1
  52. package/esm/typings/src/scrapers/website/register-constructor.d.ts +1 -1
  53. package/esm/typings/src/scrapers/website/register-metadata.d.ts +2 -2
  54. package/esm/typings/src/types/typeAliases.d.ts +1 -1
  55. package/esm/typings/src/utils/files/listAllFiles.d.ts +1 -1
  56. package/esm/typings/src/version.d.ts +1 -1
  57. package/esm/typings/src/{wizzard → wizard}/$getCompiledBook.d.ts +2 -2
  58. package/esm/typings/src/{wizzard/wizzard.d.ts → wizard/wizard.d.ts} +6 -6
  59. package/package.json +2 -14
  60. package/umd/index.umd.js +46 -46
  61. package/umd/index.umd.js.map +1 -1
@@ -10,7 +10,7 @@ export declare const websiteScraperMetadata: import("type-fest/source/readonly-d
10
10
  className: string;
11
11
  mimeTypes: string[];
12
12
  documentationUrl: "https://github.com/webgptorg/promptbook/discussions/@@";
13
- isAvilableInBrowser: false;
13
+ isAvailableInBrowser: false;
14
14
  requiredExecutables: never[];
15
15
  }>;
16
16
  /**
@@ -19,7 +19,7 @@ export declare const websiteScraperMetadata: import("type-fest/source/readonly-d
19
19
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
20
20
  *
21
21
  * @public exported from `@promptbook/core`
22
- * @public exported from `@promptbook/wizzard`
22
+ * @public exported from `@promptbook/wizard`
23
23
  * @public exported from `@promptbook/cli`
24
24
  */
25
25
  export declare const _WebsiteScraperMetadataRegistration: Registration;
@@ -658,7 +658,7 @@ export type number_seed = number_percent;
658
658
  * - ❤ is equivalent to more than 1
659
659
  */
660
660
  export type number_likeness = number;
661
- export type number_miliseconds = number_integer;
661
+ export type number_milliseconds = number_integer;
662
662
  export type number_seconds = number;
663
663
  export type number_minutes = number;
664
664
  export type number_hours = number;
@@ -11,7 +11,7 @@ import type { string_filename } from '../../types/typeAliases';
11
11
  */
12
12
  export declare function listAllFiles(path: string_dirname, isRecursive: boolean, fs: FilesystemTools): Promise<Array<string_filename>>;
13
13
  /**
14
- * TODO: [😶] Unite floder listing
14
+ * TODO: [😶] Unite folder listing
15
15
  * Note: Not [~🟢~] because it is not directly dependent on `fs
16
16
  * TODO: [🖇] What about symlinks?
17
17
  */
@@ -15,7 +15,7 @@ export declare const BOOK_LANGUAGE_VERSION: string_semantic_version;
15
15
  export declare const PROMPTBOOK_ENGINE_VERSION: string_promptbook_version;
16
16
  /**
17
17
  * Represents the version string of the Promptbook engine.
18
- * It follows semantic versioning (e.g., `0.94.0-16`).
18
+ * It follows semantic versioning (e.g., `0.98.0-1`).
19
19
  *
20
20
  * @generated
21
21
  */
@@ -5,9 +5,9 @@ import type { PrepareAndScrapeOptions } from '../prepare/PrepareAndScrapeOptions
5
5
  import type { string_filename } from '../types/typeAliases';
6
6
  import type { string_pipeline_url } from '../types/typeAliases';
7
7
  /**
8
- * @see ./wizzard.ts `getPipeline` method
8
+ * @see ./wizard.ts `getPipeline` method
9
9
  *
10
- * @private usable through `ptbk run` and `@prompbook/wizzard`
10
+ * @private usable through `ptbk run` and `@promptbook/wizard`
11
11
  */
12
12
  export declare function $getCompiledBook(tools: Required<Pick<ExecutionTools, 'fs' | 'fetch'>>, pipelineSource: string_filename | string_pipeline_url | PipelineString, options?: PrepareAndScrapeOptions): Promise<PipelineJson>;
13
13
  /**
@@ -7,14 +7,14 @@ import type { string_filename } from '../types/typeAliases';
7
7
  import type { string_parameter_value } from '../types/typeAliases';
8
8
  import type { string_pipeline_url } from '../types/typeAliases';
9
9
  /**
10
- * Wizzard for simple usage of the Promptbook
11
- * Look at `wizzard` for more details
10
+ * Wizard for simple usage of the Promptbook
11
+ * Look at `wizard` for more details
12
12
  *
13
13
  * Note: This works only in Node.js environment and looks for the configuration, environment, tools and cache in the Node.js environment
14
14
  *
15
15
  * @private just for single instance
16
16
  */
17
- declare class Wizzard {
17
+ declare class Wizard {
18
18
  /**
19
19
  * Run the book
20
20
  *
@@ -53,14 +53,14 @@ declare class Wizzard {
53
53
  getCompiledBook(pipelineSource: string_filename | string_pipeline_url | PipelineString): Promise<PipelineJson>;
54
54
  }
55
55
  /**
56
- * Wizzard for simple usage of the Promptbook
56
+ * Wizard for simple usage of the Promptbook
57
57
  *
58
58
  * Note: This works only in Node.js environment and looks for the configuration, environment, tools and cache in the Node.js environment
59
59
  *
60
60
  * @singleton
61
- * @public exported from `@promptbook/wizzard`
61
+ * @public exported from `@promptbook/wizard`
62
62
  */
63
- export declare const wizzard: Wizzard;
63
+ export declare const wizard: Wizard;
64
64
  export {};
65
65
  /**
66
66
  * TODO: [🧠] Maybe some way how to handle the progress and streaming?
package/package.json CHANGED
@@ -1,6 +1,6 @@
1
1
  {
2
2
  "name": "@promptbook/pdf",
3
- "version": "0.94.0",
3
+ "version": "0.98.0-2",
4
4
  "description": "Promptbook: Run AI apps in plain human language across multiple models and platforms",
5
5
  "private": false,
6
6
  "sideEffects": false,
@@ -70,23 +70,11 @@
70
70
  "node": ">=16.0.0",
71
71
  "npm": ">=8.0.0"
72
72
  },
73
- "cspell": {
74
- "version": "0.2",
75
- "language": "en",
76
- "ignorePaths": [
77
- "node_modules",
78
- ".next",
79
- "coverage",
80
- "dist",
81
- ".git"
82
- ],
83
- "words": []
84
- },
85
73
  "main": "./umd/index.umd.js",
86
74
  "module": "./esm/index.es.js",
87
75
  "typings": "./esm/typings/src/_packages/pdf.index.d.ts",
88
76
  "peerDependencies": {
89
- "@promptbook/core": "0.94.0"
77
+ "@promptbook/core": "0.98.0-2"
90
78
  },
91
79
  "dependencies": {
92
80
  "crypto": "1.0.1",
package/umd/index.umd.js CHANGED
@@ -25,7 +25,7 @@
25
25
  * @generated
26
26
  * @see https://github.com/webgptorg/promptbook
27
27
  */
28
- const PROMPTBOOK_ENGINE_VERSION = '0.94.0';
28
+ const PROMPTBOOK_ENGINE_VERSION = '0.98.0-2';
29
29
  /**
30
30
  * TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
31
31
  * Note: [💞] Ignore a discrepancy between file name and entity name
@@ -874,7 +874,7 @@
874
874
  * Note: [🟢] Code in this file should never be never released in packages that could be imported into browser environment
875
875
  */
876
876
 
877
- var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
877
+ var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
878
878
 
879
879
  /**
880
880
  * Checks if value is valid email
@@ -1031,7 +1031,7 @@
1031
1031
  });
1032
1032
  }
1033
1033
  catch (error) {
1034
- // TODO: [🟥] Detect browser / node and make it colorfull
1034
+ // TODO: [🟥] Detect browser / node and make it colorful
1035
1035
  console.error('There was an error with prettifying the markdown, using the original as the fallback', {
1036
1036
  error,
1037
1037
  html: content,
@@ -1313,7 +1313,7 @@
1313
1313
  else {
1314
1314
  for (const [subName, subValue] of Object.entries(value)) {
1315
1315
  if (subValue === undefined) {
1316
- // Note: undefined in object is serializable - it is just omited
1316
+ // Note: undefined in object is serializable - it is just omitted
1317
1317
  continue;
1318
1318
  }
1319
1319
  checkSerializableAsJson({ name: `${name}.${subName}`, value: subValue, message });
@@ -2003,7 +2003,7 @@
2003
2003
 
2004
2004
  Note: You have probably forgotten to run "ptbk make" to update the collection
2005
2005
  Note: Pipelines with the same URL are not allowed
2006
- Only exepction is when the pipelines are identical
2006
+ Only exception is when the pipelines are identical
2007
2007
 
2008
2008
  `));
2009
2009
  }
@@ -2771,12 +2771,12 @@
2771
2771
  get title() {
2772
2772
  return `${llmTools.title} (+usage)`;
2773
2773
  // <- TODO: [🧈] Maybe standartize the suffix when wrapping `LlmExecutionTools` up
2774
- // <- TODO: [🧈][🧠] Does it make sence to suffix "(+usage)"?
2774
+ // <- TODO: [🧈][🧠] Does it make sense to suffix "(+usage)"?
2775
2775
  },
2776
2776
  get description() {
2777
2777
  return `${llmTools.description} (+usage)`;
2778
2778
  // <- TODO: [🧈] Maybe standartize the suffix when wrapping `LlmExecutionTools` up
2779
- // <- TODO: [🧈][🧠] Does it make sence to suffix "(+usage)"?
2779
+ // <- TODO: [🧈][🧠] Does it make sense to suffix "(+usage)"?
2780
2780
  },
2781
2781
  checkConfiguration() {
2782
2782
  return /* not await */ llmTools.checkConfiguration();
@@ -3003,13 +3003,13 @@
3003
3003
 
3004
3004
  Technically, it's not an error, but it's probably not what you want because it does not make sense to use Promptbook without language models.
3005
3005
  `);
3006
- // TODO: [🟥] Detect browser / node and make it colorfull
3006
+ // TODO: [🟥] Detect browser / node and make it colorful
3007
3007
  console.warn(warningMessage);
3008
3008
  // <- TODO: [🏮] Some standard way how to transform errors into warnings and how to handle non-critical fails during the tasks
3009
3009
  /*
3010
3010
  return {
3011
3011
  async listModels() {
3012
- // TODO: [🟥] Detect browser / node and make it colorfull
3012
+ // TODO: [🟥] Detect browser / node and make it colorful
3013
3013
  console.warn(
3014
3014
  spaceTrim(
3015
3015
  (block) => `
@@ -3285,17 +3285,17 @@
3285
3285
  * Mixes registered scrapers from $scrapersMetadataRegister and $scrapersRegister
3286
3286
  */
3287
3287
  const all = [];
3288
- for (const { packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser, } of $scrapersMetadataRegister.list()) {
3288
+ for (const { packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser, } of $scrapersMetadataRegister.list()) {
3289
3289
  if (all.some((item) => item.packageName === packageName && item.className === className)) {
3290
3290
  continue;
3291
3291
  }
3292
- all.push({ packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser });
3292
+ all.push({ packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser });
3293
3293
  }
3294
- for (const { packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser, } of $scrapersRegister.list()) {
3294
+ for (const { packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser, } of $scrapersRegister.list()) {
3295
3295
  if (all.some((item) => item.packageName === packageName && item.className === className)) {
3296
3296
  continue;
3297
3297
  }
3298
- all.push({ packageName, className, mimeTypes, documentationUrl, isAvilableInBrowser });
3298
+ all.push({ packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser });
3299
3299
  }
3300
3300
  for (const { metadata } of availableScrapers) {
3301
3301
  all.push(metadata);
@@ -3307,8 +3307,8 @@
3307
3307
  const isInstalled = $scrapersRegister
3308
3308
  .list()
3309
3309
  .find(({ packageName, className }) => metadata.packageName === packageName && metadata.className === className);
3310
- const isAvilableInTools = availableScrapers.some(({ metadata: { packageName, className } }) => metadata.packageName === packageName && metadata.className === className);
3311
- return { ...metadata, isMetadataAviailable, isInstalled, isAvilableInTools };
3310
+ const isAvailableInTools = availableScrapers.some(({ metadata: { packageName, className } }) => metadata.packageName === packageName && metadata.className === className);
3311
+ return { ...metadata, isMetadataAviailable, isInstalled, isAvailableInTools };
3312
3312
  });
3313
3313
  if (metadata.length === 0) {
3314
3314
  return spaceTrim__default["default"](`
@@ -3321,7 +3321,7 @@
3321
3321
  return spaceTrim__default["default"]((block) => `
3322
3322
  Available scrapers are:
3323
3323
  ${block(metadata
3324
- .map(({ packageName, className, isMetadataAviailable, isInstalled, mimeTypes, isAvilableInBrowser, isAvilableInTools, }, i) => {
3324
+ .map(({ packageName, className, isMetadataAviailable, isInstalled, mimeTypes, isAvailableInBrowser, isAvailableInTools, }, i) => {
3325
3325
  const more = [];
3326
3326
  // TODO: [🧠] Maybe use `documentationUrl`
3327
3327
  if (isMetadataAviailable) {
@@ -3330,16 +3330,16 @@
3330
3330
  if (isInstalled) {
3331
3331
  more.push(`🟩 Installed`);
3332
3332
  } // not else
3333
- if (isAvilableInTools) {
3333
+ if (isAvailableInTools) {
3334
3334
  more.push(`🟦 Available in tools`);
3335
3335
  } // not else
3336
3336
  if (!isMetadataAviailable && isInstalled) {
3337
3337
  more.push(`When no metadata registered but scraper is installed, it is an unexpected behavior`);
3338
3338
  } // not else
3339
- if (!isInstalled && isAvilableInTools) {
3339
+ if (!isInstalled && isAvailableInTools) {
3340
3340
  more.push(`When the scraper is not installed but available in tools, it is an unexpected compatibility behavior`);
3341
3341
  } // not else
3342
- if (!isAvilableInBrowser) {
3342
+ if (!isAvailableInBrowser) {
3343
3343
  more.push(`Not usable in browser`);
3344
3344
  }
3345
3345
  const moreText = more.length === 0 ? '' : ` *(${more.join('; ')})*`;
@@ -3679,7 +3679,7 @@
3679
3679
  /**
3680
3680
  * TODO: [🧊] In future one preparation can take data from previous preparation and save tokens and time
3681
3681
  * Put `knowledgePieces` into `PrepareKnowledgeOptions`
3682
- * TODO: [🪂] More than max things can run in parallel by acident [1,[2a,2b,_],[3a,3b,_]]
3682
+ * TODO: [🪂] More than max things can run in parallel by accident [1,[2a,2b,_],[3a,3b,_]]
3683
3683
  * TODO: [🧠][❎] Do here proper M:N mapping
3684
3684
  * [x] One source can make multiple pieces
3685
3685
  * [ ] One piece can have multiple sources
@@ -5351,10 +5351,10 @@
5351
5351
  */
5352
5352
  async function getKnowledgeForTask(options) {
5353
5353
  const { tools, preparedPipeline, task, parameters } = options;
5354
- const firstKnowlegePiece = preparedPipeline.knowledgePieces[0];
5355
- const firstKnowlegeIndex = firstKnowlegePiece === null || firstKnowlegePiece === void 0 ? void 0 : firstKnowlegePiece.index[0];
5354
+ const firstKnowledgePiece = preparedPipeline.knowledgePieces[0];
5355
+ const firstKnowledgeIndex = firstKnowledgePiece === null || firstKnowledgePiece === void 0 ? void 0 : firstKnowledgePiece.index[0];
5356
5356
  // <- TODO: Do not use just first knowledge piece and first index to determine embedding model, use also keyword search
5357
- if (firstKnowlegePiece === undefined || firstKnowlegeIndex === undefined) {
5357
+ if (firstKnowledgePiece === undefined || firstKnowledgeIndex === undefined) {
5358
5358
  return ''; // <- Note: Np knowledge present, return empty string
5359
5359
  }
5360
5360
  try {
@@ -5365,7 +5365,7 @@
5365
5365
  title: 'Knowledge Search',
5366
5366
  modelRequirements: {
5367
5367
  modelVariant: 'EMBEDDING',
5368
- modelName: firstKnowlegeIndex.modelName,
5368
+ modelName: firstKnowledgeIndex.modelName,
5369
5369
  },
5370
5370
  content: task.content,
5371
5371
  parameters,
@@ -5373,7 +5373,7 @@
5373
5373
  const taskEmbeddingResult = await llmTools.callEmbeddingModel(taskEmbeddingPrompt);
5374
5374
  const knowledgePiecesWithRelevance = preparedPipeline.knowledgePieces.map((knowledgePiece) => {
5375
5375
  const { index } = knowledgePiece;
5376
- const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowlegeIndex.modelName);
5376
+ const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowledgeIndex.modelName);
5377
5377
  // <- TODO: Do not use just first knowledge piece and first index to determine embedding model
5378
5378
  if (knowledgePieceIndex === undefined) {
5379
5379
  return {
@@ -5394,8 +5394,8 @@
5394
5394
  task,
5395
5395
  taskEmbeddingPrompt,
5396
5396
  taskEmbeddingResult,
5397
- firstKnowlegePiece,
5398
- firstKnowlegeIndex,
5397
+ firstKnowledgePiece,
5398
+ firstKnowledgeIndex,
5399
5399
  knowledgePiecesWithRelevance,
5400
5400
  knowledgePiecesSorted,
5401
5401
  knowledgePiecesLimited,
@@ -5464,7 +5464,7 @@
5464
5464
  * @private internal utility of `createPipelineExecutor`
5465
5465
  */
5466
5466
  async function executeTask(options) {
5467
- const { currentTask, preparedPipeline, parametersToPass, tools, onProgress, $executionReport, pipelineIdentification, maxExecutionAttempts, maxParallelCount, csvSettings, isVerbose, rootDirname, cacheDirname, intermediateFilesStrategy, isAutoInstalled, isNotPreparedWarningSupressed, } = options;
5467
+ const { currentTask, preparedPipeline, parametersToPass, tools, onProgress, $executionReport, pipelineIdentification, maxExecutionAttempts, maxParallelCount, csvSettings, isVerbose, rootDirname, cacheDirname, intermediateFilesStrategy, isAutoInstalled, isNotPreparedWarningSuppressed, } = options;
5468
5468
  const priority = preparedPipeline.tasks.length - preparedPipeline.tasks.indexOf(currentTask);
5469
5469
  // Note: Check consistency of used and dependent parameters which was also done in `validatePipeline`, but it’s good to doublecheck
5470
5470
  const usedParameterNames = extractParameterNamesFromTask(currentTask);
@@ -5552,7 +5552,7 @@
5552
5552
  cacheDirname,
5553
5553
  intermediateFilesStrategy,
5554
5554
  isAutoInstalled,
5555
- isNotPreparedWarningSupressed,
5555
+ isNotPreparedWarningSuppressed,
5556
5556
  });
5557
5557
  await onProgress({
5558
5558
  outputParameters: {
@@ -5647,7 +5647,7 @@
5647
5647
  }
5648
5648
  return exportJson({
5649
5649
  name: `executionReport`,
5650
- message: `Unuccessful PipelineExecutorResult (with missing parameter {${parameter.name}}) PipelineExecutorResult`,
5650
+ message: `Unsuccessful PipelineExecutorResult (with missing parameter {${parameter.name}}) PipelineExecutorResult`,
5651
5651
  order: [],
5652
5652
  value: {
5653
5653
  isSuccessful: false,
@@ -5684,7 +5684,7 @@
5684
5684
  return exportJson({
5685
5685
  name: 'pipelineExecutorResult',
5686
5686
  message: spaceTrim.spaceTrim((block) => `
5687
- Unuccessful PipelineExecutorResult (with extra parameter {${parameter.name}}) PipelineExecutorResult
5687
+ Unsuccessful PipelineExecutorResult (with extra parameter {${parameter.name}}) PipelineExecutorResult
5688
5688
 
5689
5689
  ${block(pipelineIdentification)}
5690
5690
  `),
@@ -5825,7 +5825,7 @@
5825
5825
  }
5826
5826
  return exportJson({
5827
5827
  name: 'pipelineExecutorResult',
5828
- message: `Unuccessful PipelineExecutorResult (with misc errors) PipelineExecutorResult`,
5828
+ message: `Unsuccessful PipelineExecutorResult (with misc errors) PipelineExecutorResult`,
5829
5829
  order: [],
5830
5830
  value: {
5831
5831
  isSuccessful: false,
@@ -5876,7 +5876,7 @@
5876
5876
  * @public exported from `@promptbook/core`
5877
5877
  */
5878
5878
  function createPipelineExecutor(options) {
5879
- const { pipeline, tools, maxExecutionAttempts = DEFAULT_MAX_EXECUTION_ATTEMPTS, maxParallelCount = DEFAULT_MAX_PARALLEL_COUNT, csvSettings = DEFAULT_CSV_SETTINGS, isVerbose = DEFAULT_IS_VERBOSE, isNotPreparedWarningSupressed = false, cacheDirname = DEFAULT_SCRAPE_CACHE_DIRNAME, intermediateFilesStrategy = DEFAULT_INTERMEDIATE_FILES_STRATEGY, isAutoInstalled = DEFAULT_IS_AUTO_INSTALLED, rootDirname = null, } = options;
5879
+ const { pipeline, tools, maxExecutionAttempts = DEFAULT_MAX_EXECUTION_ATTEMPTS, maxParallelCount = DEFAULT_MAX_PARALLEL_COUNT, csvSettings = DEFAULT_CSV_SETTINGS, isVerbose = DEFAULT_IS_VERBOSE, isNotPreparedWarningSuppressed = false, cacheDirname = DEFAULT_SCRAPE_CACHE_DIRNAME, intermediateFilesStrategy = DEFAULT_INTERMEDIATE_FILES_STRATEGY, isAutoInstalled = DEFAULT_IS_AUTO_INSTALLED, rootDirname = null, } = options;
5880
5880
  validatePipeline(pipeline);
5881
5881
  const pipelineIdentification = (() => {
5882
5882
  // Note: This is a 😐 implementation of [🚞]
@@ -5893,7 +5893,7 @@
5893
5893
  if (isPipelinePrepared(pipeline)) {
5894
5894
  preparedPipeline = pipeline;
5895
5895
  }
5896
- else if (isNotPreparedWarningSupressed !== true) {
5896
+ else if (isNotPreparedWarningSuppressed !== true) {
5897
5897
  console.warn(spaceTrim.spaceTrim((block) => `
5898
5898
  Pipeline is not prepared
5899
5899
 
@@ -5926,7 +5926,7 @@
5926
5926
  maxParallelCount,
5927
5927
  csvSettings,
5928
5928
  isVerbose,
5929
- isNotPreparedWarningSupressed,
5929
+ isNotPreparedWarningSuppressed,
5930
5930
  rootDirname,
5931
5931
  cacheDirname,
5932
5932
  intermediateFilesStrategy,
@@ -5935,7 +5935,7 @@
5935
5935
  assertsError(error);
5936
5936
  return exportJson({
5937
5937
  name: 'pipelineExecutorResult',
5938
- message: `Unuccessful PipelineExecutorResult, last catch`,
5938
+ message: `Unsuccessful PipelineExecutorResult, last catch`,
5939
5939
  order: [],
5940
5940
  value: {
5941
5941
  isSuccessful: false,
@@ -5973,7 +5973,7 @@
5973
5973
  className: 'MarkdownScraper',
5974
5974
  mimeTypes: ['text/markdown', 'text/plain'],
5975
5975
  documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
5976
- isAvilableInBrowser: true,
5976
+ isAvailableInBrowser: true,
5977
5977
  // <- Note: [🌏] This is the only scraper which makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
5978
5978
  requiredExecutables: [],
5979
5979
  }); /* <- Note: [🤛] */
@@ -5983,7 +5983,7 @@
5983
5983
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
5984
5984
  *
5985
5985
  * @public exported from `@promptbook/core`
5986
- * @public exported from `@promptbook/wizzard`
5986
+ * @public exported from `@promptbook/wizard`
5987
5987
  * @public exported from `@promptbook/cli`
5988
5988
  */
5989
5989
  $scrapersMetadataRegister.register(markdownScraperMetadata);
@@ -6082,7 +6082,7 @@
6082
6082
  }
6083
6083
  // ---
6084
6084
  if (!llmTools.callEmbeddingModel) {
6085
- // TODO: [🟥] Detect browser / node and make it colorfull
6085
+ // TODO: [🟥] Detect browser / node and make it colorful
6086
6086
  console.error('No callEmbeddingModel function provided');
6087
6087
  }
6088
6088
  else {
@@ -6108,7 +6108,7 @@
6108
6108
  if (!(error instanceof PipelineExecutionError)) {
6109
6109
  throw error;
6110
6110
  }
6111
- // TODO: [🟥] Detect browser / node and make it colorfull
6111
+ // TODO: [🟥] Detect browser / node and make it colorful
6112
6112
  console.error(error, "<- Note: This error is not critical to prepare the pipeline, just knowledge pieces won't have embeddings");
6113
6113
  }
6114
6114
  return {
@@ -6144,7 +6144,7 @@
6144
6144
  // 'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
6145
6145
  ],
6146
6146
  documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
6147
- isAvilableInBrowser: false,
6147
+ isAvailableInBrowser: false,
6148
6148
  // <- Note: [🌏] Only `MarkdownScraper` makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
6149
6149
  requiredExecutables: [],
6150
6150
  }); /* <- Note: [🤛] */
@@ -6154,7 +6154,7 @@
6154
6154
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
6155
6155
  *
6156
6156
  * @public exported from `@promptbook/core`
6157
- * @public exported from `@promptbook/wizzard`
6157
+ * @public exported from `@promptbook/wizard`
6158
6158
  * @public exported from `@promptbook/cli`
6159
6159
  */
6160
6160
  $scrapersMetadataRegister.register(markitdownScraperMetadata);
@@ -6291,7 +6291,7 @@
6291
6291
  *
6292
6292
  * @public exported from `@promptbook/markitdown`
6293
6293
  * @public exported from `@promptbook/pdf`
6294
- * @public exported from `@promptbook/wizzard`
6294
+ * @public exported from `@promptbook/wizard`
6295
6295
  * @public exported from `@promptbook/cli`
6296
6296
  */
6297
6297
  const _MarkitdownScraperRegistration = $scrapersRegister.register(createMarkitdownScraper);
@@ -6312,7 +6312,7 @@
6312
6312
  className: 'PdfScraper',
6313
6313
  mimeTypes: ['application/pdf-DISABLED'],
6314
6314
  documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
6315
- isAvilableInBrowser: false,
6315
+ isAvailableInBrowser: false,
6316
6316
  // <- Note: [🌏] Only `MarkdownScraper` makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
6317
6317
  requiredExecutables: [],
6318
6318
  }); /* <- Note: [🤛] */
@@ -6322,7 +6322,7 @@
6322
6322
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
6323
6323
  *
6324
6324
  * @public exported from `@promptbook/core`
6325
- * @public exported from `@promptbook/wizzard`
6325
+ * @public exported from `@promptbook/wizard`
6326
6326
  * @public exported from `@promptbook/cli`
6327
6327
  */
6328
6328
  $scrapersMetadataRegister.register(pdfScraperMetadata);
@@ -6397,7 +6397,7 @@
6397
6397
  * Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
6398
6398
  *
6399
6399
  * @public exported from `@promptbook/pdf`
6400
- * @public exported from `@promptbook/wizzard`
6400
+ * @public exported from `@promptbook/wizard`
6401
6401
  * @public exported from `@promptbook/cli`
6402
6402
  */
6403
6403
  const _PdfScraperRegistration = $scrapersRegister.register(createPdfScraper);