@promptbook/pdf 0.94.0 → 0.98.0-10
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- package/README.md +6 -2
- package/esm/index.es.js +229 -168
- package/esm/index.es.js.map +1 -1
- package/esm/typings/src/_packages/anthropic-claude.index.d.ts +2 -2
- package/esm/typings/src/_packages/cli.index.d.ts +4 -0
- package/esm/typings/src/_packages/core.index.d.ts +2 -0
- package/esm/typings/src/_packages/openai.index.d.ts +10 -0
- package/esm/typings/src/_packages/types.index.d.ts +14 -4
- package/esm/typings/src/_packages/{wizzard.index.d.ts → wizard.index.d.ts} +6 -2
- package/esm/typings/src/cli/cli-commands/prettify.d.ts +1 -1
- package/esm/typings/src/cli/cli-commands/test-command.d.ts +1 -1
- package/esm/typings/src/config.d.ts +1 -1
- package/esm/typings/src/conversion/archive/loadArchive.d.ts +1 -1
- package/esm/typings/src/conversion/archive/saveArchive.d.ts +2 -2
- package/esm/typings/src/conversion/prettify/renderPipelineMermaidOptions.d.ts +1 -1
- package/esm/typings/src/dialogs/callback/CallbackInterfaceTools.d.ts +1 -1
- package/esm/typings/src/execution/AbstractTaskResult.d.ts +2 -2
- package/esm/typings/src/execution/createPipelineExecutor/$OngoingTaskResult.d.ts +8 -0
- package/esm/typings/src/execution/createPipelineExecutor/00-CreatePipelineExecutorOptions.d.ts +1 -1
- package/esm/typings/src/execution/execution-report/ExecutionPromptReportJson.d.ts +2 -2
- package/esm/typings/src/execution/translation/automatic-translate/translateMessages.d.ts +1 -1
- package/esm/typings/src/execution/utils/validatePromptResult.d.ts +53 -0
- package/esm/typings/src/llm-providers/_common/register/{$provideLlmToolsForWizzardOrCli.d.ts → $provideLlmToolsForWizardOrCli.d.ts} +2 -2
- package/esm/typings/src/llm-providers/anthropic-claude/AnthropicClaudeExecutionTools.d.ts +3 -3
- package/esm/typings/src/llm-providers/anthropic-claude/AnthropicClaudeExecutionToolsOptions.d.ts +2 -2
- package/esm/typings/src/llm-providers/anthropic-claude/register-configuration.d.ts +1 -1
- package/esm/typings/src/llm-providers/anthropic-claude/register-constructor.d.ts +1 -1
- package/esm/typings/src/llm-providers/azure-openai/register-configuration.d.ts +1 -1
- package/esm/typings/src/llm-providers/azure-openai/register-constructor.d.ts +1 -1
- package/esm/typings/src/llm-providers/deepseek/register-configuration.d.ts +1 -1
- package/esm/typings/src/llm-providers/deepseek/register-constructor.d.ts +1 -1
- package/esm/typings/src/llm-providers/google/register-configuration.d.ts +1 -1
- package/esm/typings/src/llm-providers/google/register-constructor.d.ts +1 -1
- package/esm/typings/src/llm-providers/ollama/register-configuration.d.ts +1 -1
- package/esm/typings/src/llm-providers/ollama/register-constructor.d.ts +1 -1
- package/esm/typings/src/llm-providers/openai/OpenAiAssistantExecutionTools.d.ts +1 -1
- package/esm/typings/src/llm-providers/openai/OpenAiAssistantExecutionToolsOptions.d.ts +2 -2
- package/esm/typings/src/llm-providers/openai/OpenAiCompatibleExecutionTools.d.ts +4 -4
- package/esm/typings/src/llm-providers/openai/OpenAiCompatibleExecutionToolsOptions.d.ts +52 -0
- package/esm/typings/src/llm-providers/openai/OpenAiExecutionToolsOptions.d.ts +3 -5
- package/esm/typings/src/llm-providers/openai/createOpenAiCompatibleExecutionTools.d.ts +74 -0
- package/esm/typings/src/llm-providers/openai/register-configuration.d.ts +13 -2
- package/esm/typings/src/llm-providers/openai/register-constructor.d.ts +16 -2
- package/esm/typings/src/remote-server/socket-types/listModels/PromptbookServer_ListModels_Request.d.ts +1 -1
- package/esm/typings/src/scrapers/_boilerplate/createBoilerplateScraper.d.ts +1 -1
- package/esm/typings/src/scrapers/_boilerplate/register-constructor.d.ts +1 -1
- package/esm/typings/src/scrapers/_boilerplate/register-metadata.d.ts +2 -2
- package/esm/typings/src/scrapers/_common/prepareKnowledgePieces.d.ts +1 -1
- package/esm/typings/src/scrapers/_common/register/ScraperAndConverterMetadata.d.ts +1 -1
- package/esm/typings/src/scrapers/document/createDocumentScraper.d.ts +1 -1
- package/esm/typings/src/scrapers/document/register-constructor.d.ts +1 -1
- package/esm/typings/src/scrapers/document/register-metadata.d.ts +2 -2
- package/esm/typings/src/scrapers/document-legacy/createLegacyDocumentScraper.d.ts +1 -1
- package/esm/typings/src/scrapers/document-legacy/register-constructor.d.ts +1 -1
- package/esm/typings/src/scrapers/document-legacy/register-metadata.d.ts +2 -2
- package/esm/typings/src/scrapers/markdown/createMarkdownScraper.d.ts +1 -4
- package/esm/typings/src/scrapers/markdown/register-constructor.d.ts +1 -1
- package/esm/typings/src/scrapers/markdown/register-metadata.d.ts +2 -2
- package/esm/typings/src/scrapers/markitdown/createMarkitdownScraper.d.ts +1 -1
- package/esm/typings/src/scrapers/markitdown/register-constructor.d.ts +1 -1
- package/esm/typings/src/scrapers/markitdown/register-metadata.d.ts +2 -2
- package/esm/typings/src/scrapers/pdf/createPdfScraper.d.ts +1 -1
- package/esm/typings/src/scrapers/pdf/register-constructor.d.ts +1 -1
- package/esm/typings/src/scrapers/pdf/register-metadata.d.ts +2 -2
- package/esm/typings/src/scrapers/website/createWebsiteScraper.d.ts +1 -1
- package/esm/typings/src/scrapers/website/register-constructor.d.ts +1 -1
- package/esm/typings/src/scrapers/website/register-metadata.d.ts +2 -2
- package/esm/typings/src/types/typeAliases.d.ts +1 -1
- package/esm/typings/src/utils/files/listAllFiles.d.ts +1 -1
- package/esm/typings/src/version.d.ts +1 -1
- package/esm/typings/src/{wizzard → wizard}/$getCompiledBook.d.ts +2 -2
- package/esm/typings/src/{wizzard/wizzard.d.ts → wizard/wizard.d.ts} +6 -6
- package/package.json +2 -14
- package/umd/index.umd.js +229 -168
- package/umd/index.umd.js.map +1 -1
package/umd/index.umd.js
CHANGED
|
@@ -25,7 +25,7 @@
|
|
|
25
25
|
* @generated
|
|
26
26
|
* @see https://github.com/webgptorg/promptbook
|
|
27
27
|
*/
|
|
28
|
-
const PROMPTBOOK_ENGINE_VERSION = '0.
|
|
28
|
+
const PROMPTBOOK_ENGINE_VERSION = '0.98.0-10';
|
|
29
29
|
/**
|
|
30
30
|
* TODO: string_promptbook_version should be constrained to the all versions of Promptbook engine
|
|
31
31
|
* Note: [💞] Ignore a discrepancy between file name and entity name
|
|
@@ -174,7 +174,7 @@
|
|
|
174
174
|
*
|
|
175
175
|
* @public exported from `@promptbook/core`
|
|
176
176
|
*/
|
|
177
|
-
const DEFAULT_MAX_EXECUTION_ATTEMPTS =
|
|
177
|
+
const DEFAULT_MAX_EXECUTION_ATTEMPTS = 7; // <- TODO: [🤹♂️]
|
|
178
178
|
// <- TODO: [🕝] Make also `BOOKS_DIRNAME_ALTERNATIVES`
|
|
179
179
|
// TODO: Just `.promptbook` in config, hardcode subfolders like `download-cache` or `execution-cache`
|
|
180
180
|
/**
|
|
@@ -874,7 +874,7 @@
|
|
|
874
874
|
* Note: [🟢] Code in this file should never be never released in packages that could be imported into browser environment
|
|
875
875
|
*/
|
|
876
876
|
|
|
877
|
-
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpfull assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
|
|
877
|
+
var PipelineCollection = [{title:"Prepare Knowledge from Markdown",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book",formfactorName:"GENERIC",parameters:[{name:"knowledgeContent",description:"Markdown document content",isInput:true,isOutput:false},{name:"knowledgePieces",description:"The knowledge JSON object",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}",resultingParameterName:"knowledgePieces",dependentParameterNames:["knowledgeContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge from Markdown\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-from-markdown.book`\n- INPUT PARAMETER `{knowledgeContent}` Markdown document content\n- OUTPUT PARAMETER `{knowledgePieces}` The knowledge JSON object\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, extract the important knowledge from the document.\n\n# Rules\n\n- Make pieces of information concise, clear, and easy to understand\n- One piece of information should be approximately 1 paragraph\n- Divide the paragraphs by markdown horizontal lines ---\n- Omit irrelevant information\n- Group redundant information\n- Write just extracted information, nothing else\n\n# The document\n\nTake information from this document:\n\n> {knowledgeContent}\n```\n\n`-> {knowledgePieces}`\n"}],sourceFile:"./books/prepare-knowledge-from-markdown.book"},{title:"Prepare Keywords",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-keywords.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"keywords",description:"Keywords separated by comma",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}",resultingParameterName:"keywords",dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Keywords\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-keywords.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{keywords}` Keywords separated by comma\n\n## Knowledge\n\n<!-- TODO: [🍆] -FORMAT JSON -->\n\n```markdown\nYou are experienced data researcher, detect the important keywords in the document.\n\n# Rules\n\n- Write just keywords separated by comma\n\n# The document\n\nTake information from this document:\n\n> {knowledgePieceContent}\n```\n\n`-> {keywords}`\n"}],sourceFile:"./books/prepare-knowledge-keywords.book"},{title:"Prepare Knowledge-piece Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-knowledge-title.book",formfactorName:"GENERIC",parameters:[{name:"knowledgePieceContent",description:"The content",isInput:true,isOutput:false},{name:"title",description:"The title of the document",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"knowledge",title:"Knowledge",content:"You are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}",resultingParameterName:"title",expectations:{words:{min:1,max:8}},dependentParameterNames:["knowledgePieceContent"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Knowledge-piece Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-knowledge-title.book`\n- INPUT PARAMETER `{knowledgePieceContent}` The content\n- OUTPUT PARAMETER `{title}` The title of the document\n\n## Knowledge\n\n- EXPECT MIN 1 WORD\n- EXPECT MAX 8 WORDS\n\n```markdown\nYou are experienced content creator, write best title for the document.\n\n# Rules\n\n- Write just title, nothing else\n- Write maximum 5 words for the title\n\n# The document\n\n> {knowledgePieceContent}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-knowledge-title.book"},{title:"Prepare Persona",pipelineUrl:"https://promptbook.studio/promptbook/prepare-persona.book",formfactorName:"GENERIC",parameters:[{name:"availableModels",description:"List of available model names together with their descriptions as JSON",isInput:true,isOutput:false},{name:"personaDescription",description:"Description of the persona",isInput:true,isOutput:false},{name:"modelsRequirements",description:"Specific requirements for the model",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-model-requirements",title:"Make modelRequirements",content:"You are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n```json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n```\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n```json\n{availableModels}\n```\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}",resultingParameterName:"modelsRequirements",format:"JSON",dependentParameterNames:["availableModels","personaDescription"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Persona\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-persona.book`\n- INPUT PARAMETER `{availableModels}` List of available model names together with their descriptions as JSON\n- INPUT PARAMETER `{personaDescription}` Description of the persona\n- OUTPUT PARAMETER `{modelsRequirements}` Specific requirements for the model\n\n## Make modelRequirements\n\n- FORMAT JSON\n\n```markdown\nYou are an experienced AI engineer, you need to find the best models for virtual assistants:\n\n## Example\n\n\\`\\`\\`json\n[\n {\n \"modelName\": \"gpt-4o\",\n \"systemMessage\": \"You are experienced AI engineer and helpful assistant.\",\n \"temperature\": 0.7\n },\n {\n \"modelName\": \"claude-3-5-sonnet\",\n \"systemMessage\": \"You are a friendly and knowledgeable chatbot.\",\n \"temperature\": 0.5\n }\n]\n\\`\\`\\`\n\n## Instructions\n\n- Your output format is JSON array\n- Sort best-fitting models first\n- Omit any models that are not suitable\n- Write just the JSON, no other text should be present\n- Array contain items with following keys:\n - `modelName`: The name of the model to use\n - `systemMessage`: The system message to provide context to the model\n - `temperature`: The sampling temperature to use\n\n### Key `modelName`\n\nHere are the available models:\n\n\\`\\`\\`json\n{availableModels}\n\\`\\`\\`\n\n### Key `systemMessage`\n\nThe system message is used to communicate instructions or provide context to the model at the beginning of a conversation. It is displayed in a different format compared to user messages, helping the model understand its role in the conversation. The system message typically guides the model's behavior, sets the tone, or specifies desired output from the model. By utilizing the system message effectively, users can steer the model towards generating more accurate and relevant responses.\n\nFor example:\n\n> You are an experienced AI engineer and helpful assistant.\n\n> You are a friendly and knowledgeable chatbot.\n\n### Key `temperature`\n\nThe sampling temperature, between 0 and 1. Higher values like 0.8 will make the output more random, while lower values like 0.2 will make it more focused and deterministic. If set to 0, the model will use log probability to automatically increase the temperature until certain thresholds are hit.\n\nYou can pick a value between 0 and 2. For example:\n\n- `0.1`: Low temperature, extremely conservative and deterministic\n- `0.5`: Medium temperature, balanced between conservative and creative\n- `1.0`: High temperature, creative and bit random\n- `1.5`: Very high temperature, extremely creative and often chaotic and unpredictable\n- `2.0`: Maximum temperature, completely random and unpredictable, for some extreme creative use cases\n\n# The assistant\n\nTake this description of the persona:\n\n> {personaDescription}\n```\n\n`-> {modelsRequirements}`\n"}],sourceFile:"./books/prepare-persona.book"},{title:"Prepare Title",pipelineUrl:"https://promptbook.studio/promptbook/prepare-title.book",formfactorName:"GENERIC",parameters:[{name:"book",description:"The book to prepare the title for",isInput:true,isOutput:false},{name:"title",description:"Best title for the book",isInput:false,isOutput:true}],tasks:[{taskType:"PROMPT_TASK",name:"make-title",title:"Make title",content:"Make best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}",resultingParameterName:"title",expectations:{words:{min:1,max:8},lines:{min:1,max:1}},dependentParameterNames:["book"]}],personas:[],preparations:[],knowledgeSources:[],knowledgePieces:[],sources:[{type:"BOOK",path:null,content:"# Prepare Title\n\n- PIPELINE URL `https://promptbook.studio/promptbook/prepare-title.book`\n- INPUT PARAMETER `{book}` The book to prepare the title for\n- OUTPUT PARAMETER `{title}` Best title for the book\n\n## Make title\n\n- EXPECT MIN 1 Word\n- EXPECT MAX 8 Words\n- EXPECT EXACTLY 1 Line\n\n```markdown\nMake best title for given text which describes the workflow:\n\n## Rules\n\n- Write just title, nothing else\n- Title should be concise and clear - Write maximum ideally 2 words, maximum 5 words\n- Title starts with emoticon\n- Title should not mention the input and output of the workflow but the main purpose of the workflow\n _For example, not \"✍ Convert Knowledge-piece to title\" but \"✍ Title\"_\n\n## The workflow\n\n> {book}\n```\n\n`-> {title}`\n"}],sourceFile:"./books/prepare-title.book"}];
|
|
878
878
|
|
|
879
879
|
/**
|
|
880
880
|
* Checks if value is valid email
|
|
@@ -1031,7 +1031,7 @@
|
|
|
1031
1031
|
});
|
|
1032
1032
|
}
|
|
1033
1033
|
catch (error) {
|
|
1034
|
-
// TODO: [🟥] Detect browser / node and make it
|
|
1034
|
+
// TODO: [🟥] Detect browser / node and make it colorful
|
|
1035
1035
|
console.error('There was an error with prettifying the markdown, using the original as the fallback', {
|
|
1036
1036
|
error,
|
|
1037
1037
|
html: content,
|
|
@@ -1313,7 +1313,7 @@
|
|
|
1313
1313
|
else {
|
|
1314
1314
|
for (const [subName, subValue] of Object.entries(value)) {
|
|
1315
1315
|
if (subValue === undefined) {
|
|
1316
|
-
// Note: undefined in object is serializable - it is just
|
|
1316
|
+
// Note: undefined in object is serializable - it is just omitted
|
|
1317
1317
|
continue;
|
|
1318
1318
|
}
|
|
1319
1319
|
checkSerializableAsJson({ name: `${name}.${subName}`, value: subValue, message });
|
|
@@ -2003,7 +2003,7 @@
|
|
|
2003
2003
|
|
|
2004
2004
|
Note: You have probably forgotten to run "ptbk make" to update the collection
|
|
2005
2005
|
Note: Pipelines with the same URL are not allowed
|
|
2006
|
-
Only
|
|
2006
|
+
Only exception is when the pipelines are identical
|
|
2007
2007
|
|
|
2008
2008
|
`));
|
|
2009
2009
|
}
|
|
@@ -2400,7 +2400,7 @@
|
|
|
2400
2400
|
throw new Error(spaceTrim__default["default"]((block) => `
|
|
2401
2401
|
${block(error.message)}
|
|
2402
2402
|
|
|
2403
|
-
The JSON text:
|
|
2403
|
+
The expected JSON text:
|
|
2404
2404
|
${block(value)}
|
|
2405
2405
|
`));
|
|
2406
2406
|
}
|
|
@@ -2771,12 +2771,12 @@
|
|
|
2771
2771
|
get title() {
|
|
2772
2772
|
return `${llmTools.title} (+usage)`;
|
|
2773
2773
|
// <- TODO: [🧈] Maybe standartize the suffix when wrapping `LlmExecutionTools` up
|
|
2774
|
-
// <- TODO: [🧈][🧠] Does it make
|
|
2774
|
+
// <- TODO: [🧈][🧠] Does it make sense to suffix "(+usage)"?
|
|
2775
2775
|
},
|
|
2776
2776
|
get description() {
|
|
2777
2777
|
return `${llmTools.description} (+usage)`;
|
|
2778
2778
|
// <- TODO: [🧈] Maybe standartize the suffix when wrapping `LlmExecutionTools` up
|
|
2779
|
-
// <- TODO: [🧈][🧠] Does it make
|
|
2779
|
+
// <- TODO: [🧈][🧠] Does it make sense to suffix "(+usage)"?
|
|
2780
2780
|
},
|
|
2781
2781
|
checkConfiguration() {
|
|
2782
2782
|
return /* not await */ llmTools.checkConfiguration();
|
|
@@ -3003,13 +3003,13 @@
|
|
|
3003
3003
|
|
|
3004
3004
|
Technically, it's not an error, but it's probably not what you want because it does not make sense to use Promptbook without language models.
|
|
3005
3005
|
`);
|
|
3006
|
-
// TODO: [🟥] Detect browser / node and make it
|
|
3006
|
+
// TODO: [🟥] Detect browser / node and make it colorful
|
|
3007
3007
|
console.warn(warningMessage);
|
|
3008
3008
|
// <- TODO: [🏮] Some standard way how to transform errors into warnings and how to handle non-critical fails during the tasks
|
|
3009
3009
|
/*
|
|
3010
3010
|
return {
|
|
3011
3011
|
async listModels() {
|
|
3012
|
-
// TODO: [🟥] Detect browser / node and make it
|
|
3012
|
+
// TODO: [🟥] Detect browser / node and make it colorful
|
|
3013
3013
|
console.warn(
|
|
3014
3014
|
spaceTrim(
|
|
3015
3015
|
(block) => `
|
|
@@ -3285,17 +3285,17 @@
|
|
|
3285
3285
|
* Mixes registered scrapers from $scrapersMetadataRegister and $scrapersRegister
|
|
3286
3286
|
*/
|
|
3287
3287
|
const all = [];
|
|
3288
|
-
for (const { packageName, className, mimeTypes, documentationUrl,
|
|
3288
|
+
for (const { packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser, } of $scrapersMetadataRegister.list()) {
|
|
3289
3289
|
if (all.some((item) => item.packageName === packageName && item.className === className)) {
|
|
3290
3290
|
continue;
|
|
3291
3291
|
}
|
|
3292
|
-
all.push({ packageName, className, mimeTypes, documentationUrl,
|
|
3292
|
+
all.push({ packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser });
|
|
3293
3293
|
}
|
|
3294
|
-
for (const { packageName, className, mimeTypes, documentationUrl,
|
|
3294
|
+
for (const { packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser, } of $scrapersRegister.list()) {
|
|
3295
3295
|
if (all.some((item) => item.packageName === packageName && item.className === className)) {
|
|
3296
3296
|
continue;
|
|
3297
3297
|
}
|
|
3298
|
-
all.push({ packageName, className, mimeTypes, documentationUrl,
|
|
3298
|
+
all.push({ packageName, className, mimeTypes, documentationUrl, isAvailableInBrowser });
|
|
3299
3299
|
}
|
|
3300
3300
|
for (const { metadata } of availableScrapers) {
|
|
3301
3301
|
all.push(metadata);
|
|
@@ -3307,8 +3307,8 @@
|
|
|
3307
3307
|
const isInstalled = $scrapersRegister
|
|
3308
3308
|
.list()
|
|
3309
3309
|
.find(({ packageName, className }) => metadata.packageName === packageName && metadata.className === className);
|
|
3310
|
-
const
|
|
3311
|
-
return { ...metadata, isMetadataAviailable, isInstalled,
|
|
3310
|
+
const isAvailableInTools = availableScrapers.some(({ metadata: { packageName, className } }) => metadata.packageName === packageName && metadata.className === className);
|
|
3311
|
+
return { ...metadata, isMetadataAviailable, isInstalled, isAvailableInTools };
|
|
3312
3312
|
});
|
|
3313
3313
|
if (metadata.length === 0) {
|
|
3314
3314
|
return spaceTrim__default["default"](`
|
|
@@ -3321,7 +3321,7 @@
|
|
|
3321
3321
|
return spaceTrim__default["default"]((block) => `
|
|
3322
3322
|
Available scrapers are:
|
|
3323
3323
|
${block(metadata
|
|
3324
|
-
.map(({ packageName, className, isMetadataAviailable, isInstalled, mimeTypes,
|
|
3324
|
+
.map(({ packageName, className, isMetadataAviailable, isInstalled, mimeTypes, isAvailableInBrowser, isAvailableInTools, }, i) => {
|
|
3325
3325
|
const more = [];
|
|
3326
3326
|
// TODO: [🧠] Maybe use `documentationUrl`
|
|
3327
3327
|
if (isMetadataAviailable) {
|
|
@@ -3330,16 +3330,16 @@
|
|
|
3330
3330
|
if (isInstalled) {
|
|
3331
3331
|
more.push(`🟩 Installed`);
|
|
3332
3332
|
} // not else
|
|
3333
|
-
if (
|
|
3333
|
+
if (isAvailableInTools) {
|
|
3334
3334
|
more.push(`🟦 Available in tools`);
|
|
3335
3335
|
} // not else
|
|
3336
3336
|
if (!isMetadataAviailable && isInstalled) {
|
|
3337
3337
|
more.push(`When no metadata registered but scraper is installed, it is an unexpected behavior`);
|
|
3338
3338
|
} // not else
|
|
3339
|
-
if (!isInstalled &&
|
|
3339
|
+
if (!isInstalled && isAvailableInTools) {
|
|
3340
3340
|
more.push(`When the scraper is not installed but available in tools, it is an unexpected compatibility behavior`);
|
|
3341
3341
|
} // not else
|
|
3342
|
-
if (!
|
|
3342
|
+
if (!isAvailableInBrowser) {
|
|
3343
3343
|
more.push(`Not usable in browser`);
|
|
3344
3344
|
}
|
|
3345
3345
|
const moreText = more.length === 0 ? '' : ` *(${more.join('; ')})*`;
|
|
@@ -3679,7 +3679,7 @@
|
|
|
3679
3679
|
/**
|
|
3680
3680
|
* TODO: [🧊] In future one preparation can take data from previous preparation and save tokens and time
|
|
3681
3681
|
* Put `knowledgePieces` into `PrepareKnowledgeOptions`
|
|
3682
|
-
* TODO: [🪂] More than max things can run in parallel by
|
|
3682
|
+
* TODO: [🪂] More than max things can run in parallel by accident [1,[2a,2b,_],[3a,3b,_]]
|
|
3683
3683
|
* TODO: [🧠][❎] Do here proper M:N mapping
|
|
3684
3684
|
* [x] One source can make multiple pieces
|
|
3685
3685
|
* [ ] One piece can have multiple sources
|
|
@@ -4487,6 +4487,77 @@
|
|
|
4487
4487
|
return mappedParameters;
|
|
4488
4488
|
}
|
|
4489
4489
|
|
|
4490
|
+
/**
|
|
4491
|
+
* Replaces parameters in template with values from parameters object
|
|
4492
|
+
*
|
|
4493
|
+
* Note: This function is not places strings into string,
|
|
4494
|
+
* It's more complex and can handle this operation specifically for LLM models
|
|
4495
|
+
*
|
|
4496
|
+
* @param template the template with parameters in {curly} braces
|
|
4497
|
+
* @param parameters the object with parameters
|
|
4498
|
+
* @returns the template with replaced parameters
|
|
4499
|
+
* @throws {PipelineExecutionError} if parameter is not defined, not closed, or not opened
|
|
4500
|
+
* @public exported from `@promptbook/utils`
|
|
4501
|
+
*/
|
|
4502
|
+
function templateParameters(template, parameters) {
|
|
4503
|
+
for (const [parameterName, parameterValue] of Object.entries(parameters)) {
|
|
4504
|
+
if (parameterValue === RESERVED_PARAMETER_MISSING_VALUE) {
|
|
4505
|
+
throw new UnexpectedError(`Parameter \`{${parameterName}}\` has missing value`);
|
|
4506
|
+
}
|
|
4507
|
+
else if (parameterValue === RESERVED_PARAMETER_RESTRICTED) {
|
|
4508
|
+
// TODO: [🍵]
|
|
4509
|
+
throw new UnexpectedError(`Parameter \`{${parameterName}}\` is restricted to use`);
|
|
4510
|
+
}
|
|
4511
|
+
}
|
|
4512
|
+
let replacedTemplates = template;
|
|
4513
|
+
let match;
|
|
4514
|
+
let loopLimit = LOOP_LIMIT;
|
|
4515
|
+
while ((match = /^(?<precol>.*){(?<parameterName>\w+)}(.*)/m /* <- Not global */
|
|
4516
|
+
.exec(replacedTemplates))) {
|
|
4517
|
+
if (loopLimit-- < 0) {
|
|
4518
|
+
throw new LimitReachedError('Loop limit reached during parameters replacement in `templateParameters`');
|
|
4519
|
+
}
|
|
4520
|
+
const precol = match.groups.precol;
|
|
4521
|
+
const parameterName = match.groups.parameterName;
|
|
4522
|
+
if (parameterName === '') {
|
|
4523
|
+
// Note: Skip empty placeholders. It's used to avoid confusion with JSON-like strings
|
|
4524
|
+
continue;
|
|
4525
|
+
}
|
|
4526
|
+
if (parameterName.indexOf('{') !== -1 || parameterName.indexOf('}') !== -1) {
|
|
4527
|
+
throw new PipelineExecutionError('Parameter is already opened or not closed');
|
|
4528
|
+
}
|
|
4529
|
+
if (parameters[parameterName] === undefined) {
|
|
4530
|
+
throw new PipelineExecutionError(`Parameter \`{${parameterName}}\` is not defined`);
|
|
4531
|
+
}
|
|
4532
|
+
let parameterValue = parameters[parameterName];
|
|
4533
|
+
if (parameterValue === undefined) {
|
|
4534
|
+
throw new PipelineExecutionError(`Parameter \`{${parameterName}}\` is not defined`);
|
|
4535
|
+
}
|
|
4536
|
+
parameterValue = valueToString(parameterValue);
|
|
4537
|
+
// Escape curly braces in parameter values to prevent prompt-injection
|
|
4538
|
+
parameterValue = parameterValue.replace(/[{}]/g, '\\$&');
|
|
4539
|
+
if (parameterValue.includes('\n') && /^\s*\W{0,3}\s*$/.test(precol)) {
|
|
4540
|
+
parameterValue = parameterValue
|
|
4541
|
+
.split('\n')
|
|
4542
|
+
.map((line, index) => (index === 0 ? line : `${precol}${line}`))
|
|
4543
|
+
.join('\n');
|
|
4544
|
+
}
|
|
4545
|
+
replacedTemplates =
|
|
4546
|
+
replacedTemplates.substring(0, match.index + precol.length) +
|
|
4547
|
+
parameterValue +
|
|
4548
|
+
replacedTemplates.substring(match.index + precol.length + parameterName.length + 2);
|
|
4549
|
+
}
|
|
4550
|
+
// [💫] Check if there are parameters that are not closed properly
|
|
4551
|
+
if (/{\w+$/.test(replacedTemplates)) {
|
|
4552
|
+
throw new PipelineExecutionError('Parameter is not closed');
|
|
4553
|
+
}
|
|
4554
|
+
// [💫] Check if there are parameters that are not opened properly
|
|
4555
|
+
if (/^\w+}/.test(replacedTemplates)) {
|
|
4556
|
+
throw new PipelineExecutionError('Parameter is not opened');
|
|
4557
|
+
}
|
|
4558
|
+
return replacedTemplates;
|
|
4559
|
+
}
|
|
4560
|
+
|
|
4490
4561
|
/**
|
|
4491
4562
|
* Extracts all code blocks from markdown.
|
|
4492
4563
|
*
|
|
@@ -4589,77 +4660,6 @@
|
|
|
4589
4660
|
* TODO: [🏢] Make this logic part of `JsonFormatParser` or `isValidJsonString`
|
|
4590
4661
|
*/
|
|
4591
4662
|
|
|
4592
|
-
/**
|
|
4593
|
-
* Replaces parameters in template with values from parameters object
|
|
4594
|
-
*
|
|
4595
|
-
* Note: This function is not places strings into string,
|
|
4596
|
-
* It's more complex and can handle this operation specifically for LLM models
|
|
4597
|
-
*
|
|
4598
|
-
* @param template the template with parameters in {curly} braces
|
|
4599
|
-
* @param parameters the object with parameters
|
|
4600
|
-
* @returns the template with replaced parameters
|
|
4601
|
-
* @throws {PipelineExecutionError} if parameter is not defined, not closed, or not opened
|
|
4602
|
-
* @public exported from `@promptbook/utils`
|
|
4603
|
-
*/
|
|
4604
|
-
function templateParameters(template, parameters) {
|
|
4605
|
-
for (const [parameterName, parameterValue] of Object.entries(parameters)) {
|
|
4606
|
-
if (parameterValue === RESERVED_PARAMETER_MISSING_VALUE) {
|
|
4607
|
-
throw new UnexpectedError(`Parameter \`{${parameterName}}\` has missing value`);
|
|
4608
|
-
}
|
|
4609
|
-
else if (parameterValue === RESERVED_PARAMETER_RESTRICTED) {
|
|
4610
|
-
// TODO: [🍵]
|
|
4611
|
-
throw new UnexpectedError(`Parameter \`{${parameterName}}\` is restricted to use`);
|
|
4612
|
-
}
|
|
4613
|
-
}
|
|
4614
|
-
let replacedTemplates = template;
|
|
4615
|
-
let match;
|
|
4616
|
-
let loopLimit = LOOP_LIMIT;
|
|
4617
|
-
while ((match = /^(?<precol>.*){(?<parameterName>\w+)}(.*)/m /* <- Not global */
|
|
4618
|
-
.exec(replacedTemplates))) {
|
|
4619
|
-
if (loopLimit-- < 0) {
|
|
4620
|
-
throw new LimitReachedError('Loop limit reached during parameters replacement in `templateParameters`');
|
|
4621
|
-
}
|
|
4622
|
-
const precol = match.groups.precol;
|
|
4623
|
-
const parameterName = match.groups.parameterName;
|
|
4624
|
-
if (parameterName === '') {
|
|
4625
|
-
// Note: Skip empty placeholders. It's used to avoid confusion with JSON-like strings
|
|
4626
|
-
continue;
|
|
4627
|
-
}
|
|
4628
|
-
if (parameterName.indexOf('{') !== -1 || parameterName.indexOf('}') !== -1) {
|
|
4629
|
-
throw new PipelineExecutionError('Parameter is already opened or not closed');
|
|
4630
|
-
}
|
|
4631
|
-
if (parameters[parameterName] === undefined) {
|
|
4632
|
-
throw new PipelineExecutionError(`Parameter \`{${parameterName}}\` is not defined`);
|
|
4633
|
-
}
|
|
4634
|
-
let parameterValue = parameters[parameterName];
|
|
4635
|
-
if (parameterValue === undefined) {
|
|
4636
|
-
throw new PipelineExecutionError(`Parameter \`{${parameterName}}\` is not defined`);
|
|
4637
|
-
}
|
|
4638
|
-
parameterValue = valueToString(parameterValue);
|
|
4639
|
-
// Escape curly braces in parameter values to prevent prompt-injection
|
|
4640
|
-
parameterValue = parameterValue.replace(/[{}]/g, '\\$&');
|
|
4641
|
-
if (parameterValue.includes('\n') && /^\s*\W{0,3}\s*$/.test(precol)) {
|
|
4642
|
-
parameterValue = parameterValue
|
|
4643
|
-
.split('\n')
|
|
4644
|
-
.map((line, index) => (index === 0 ? line : `${precol}${line}`))
|
|
4645
|
-
.join('\n');
|
|
4646
|
-
}
|
|
4647
|
-
replacedTemplates =
|
|
4648
|
-
replacedTemplates.substring(0, match.index + precol.length) +
|
|
4649
|
-
parameterValue +
|
|
4650
|
-
replacedTemplates.substring(match.index + precol.length + parameterName.length + 2);
|
|
4651
|
-
}
|
|
4652
|
-
// [💫] Check if there are parameters that are not closed properly
|
|
4653
|
-
if (/{\w+$/.test(replacedTemplates)) {
|
|
4654
|
-
throw new PipelineExecutionError('Parameter is not closed');
|
|
4655
|
-
}
|
|
4656
|
-
// [💫] Check if there are parameters that are not opened properly
|
|
4657
|
-
if (/^\w+}/.test(replacedTemplates)) {
|
|
4658
|
-
throw new PipelineExecutionError('Parameter is not opened');
|
|
4659
|
-
}
|
|
4660
|
-
return replacedTemplates;
|
|
4661
|
-
}
|
|
4662
|
-
|
|
4663
4663
|
/**
|
|
4664
4664
|
* Counts number of characters in the text
|
|
4665
4665
|
*
|
|
@@ -4820,6 +4820,68 @@
|
|
|
4820
4820
|
* Note: [💝] and [🤠] are interconnected together
|
|
4821
4821
|
*/
|
|
4822
4822
|
|
|
4823
|
+
/**
|
|
4824
|
+
* Validates a prompt result against expectations and format requirements.
|
|
4825
|
+
* This function provides a common abstraction for result validation that can be used
|
|
4826
|
+
* by both execution logic and caching logic to ensure consistency.
|
|
4827
|
+
*
|
|
4828
|
+
* @param options - The validation options including result string, expectations, and format
|
|
4829
|
+
* @returns Validation result with processed string and validity status
|
|
4830
|
+
* @private internal function of `createPipelineExecutor` and `cacheLlmTools`
|
|
4831
|
+
*/
|
|
4832
|
+
function validatePromptResult(options) {
|
|
4833
|
+
const { resultString, expectations, format } = options;
|
|
4834
|
+
let processedResultString = resultString;
|
|
4835
|
+
let validationError;
|
|
4836
|
+
try {
|
|
4837
|
+
// TODO: [💝] Unite object for expecting amount and format
|
|
4838
|
+
if (format) {
|
|
4839
|
+
if (format === 'JSON') {
|
|
4840
|
+
if (!isValidJsonString(processedResultString)) {
|
|
4841
|
+
// TODO: [🏢] Do more universally via `FormatParser`
|
|
4842
|
+
try {
|
|
4843
|
+
processedResultString = extractJsonBlock(processedResultString);
|
|
4844
|
+
}
|
|
4845
|
+
catch (error) {
|
|
4846
|
+
keepUnused(error);
|
|
4847
|
+
throw new ExpectError(spaceTrim.spaceTrim((block) => `
|
|
4848
|
+
Expected valid JSON string
|
|
4849
|
+
|
|
4850
|
+
The expected JSON text:
|
|
4851
|
+
${block(processedResultString)}
|
|
4852
|
+
`));
|
|
4853
|
+
}
|
|
4854
|
+
}
|
|
4855
|
+
}
|
|
4856
|
+
else {
|
|
4857
|
+
throw new UnexpectedError(`Unknown format "${format}"`);
|
|
4858
|
+
}
|
|
4859
|
+
}
|
|
4860
|
+
// TODO: [💝] Unite object for expecting amount and format
|
|
4861
|
+
if (expectations) {
|
|
4862
|
+
checkExpectations(expectations, processedResultString);
|
|
4863
|
+
}
|
|
4864
|
+
return {
|
|
4865
|
+
isValid: true,
|
|
4866
|
+
processedResultString,
|
|
4867
|
+
};
|
|
4868
|
+
}
|
|
4869
|
+
catch (error) {
|
|
4870
|
+
if (error instanceof ExpectError) {
|
|
4871
|
+
validationError = error;
|
|
4872
|
+
}
|
|
4873
|
+
else {
|
|
4874
|
+
// Re-throw non-ExpectError errors (like UnexpectedError)
|
|
4875
|
+
throw error;
|
|
4876
|
+
}
|
|
4877
|
+
return {
|
|
4878
|
+
isValid: false,
|
|
4879
|
+
processedResultString,
|
|
4880
|
+
error: validationError,
|
|
4881
|
+
};
|
|
4882
|
+
}
|
|
4883
|
+
}
|
|
4884
|
+
|
|
4823
4885
|
/**
|
|
4824
4886
|
* Executes a pipeline task with multiple attempts, including joker and retry logic. Handles different task types
|
|
4825
4887
|
* (prompt, script, dialog, etc.), applies postprocessing, checks expectations, and updates the execution report.
|
|
@@ -4837,17 +4899,18 @@
|
|
|
4837
4899
|
$resultString: null,
|
|
4838
4900
|
$expectError: null,
|
|
4839
4901
|
$scriptPipelineExecutionErrors: [],
|
|
4902
|
+
$failedResults: [], // Track all failed attempts
|
|
4840
4903
|
};
|
|
4841
4904
|
// TODO: [🚐] Make arrayable LLMs -> single LLM DRY
|
|
4842
4905
|
const _llms = arrayableToArray(tools.llm);
|
|
4843
4906
|
const llmTools = _llms.length === 1 ? _llms[0] : joinLlmExecutionTools(..._llms);
|
|
4844
|
-
attempts: for (let
|
|
4845
|
-
const isJokerAttempt =
|
|
4846
|
-
const jokerParameterName = jokerParameterNames[jokerParameterNames.length +
|
|
4907
|
+
attempts: for (let attemptIndex = -jokerParameterNames.length; attemptIndex < maxAttempts; attemptIndex++) {
|
|
4908
|
+
const isJokerAttempt = attemptIndex < 0;
|
|
4909
|
+
const jokerParameterName = jokerParameterNames[jokerParameterNames.length + attemptIndex];
|
|
4847
4910
|
// TODO: [🧠][🍭] JOKERS, EXPECTATIONS, POSTPROCESSING and FOREACH
|
|
4848
4911
|
if (isJokerAttempt && !jokerParameterName) {
|
|
4849
4912
|
throw new UnexpectedError(spaceTrim.spaceTrim((block) => `
|
|
4850
|
-
Joker not found in attempt ${
|
|
4913
|
+
Joker not found in attempt ${attemptIndex}
|
|
4851
4914
|
|
|
4852
4915
|
${block(pipelineIdentification)}
|
|
4853
4916
|
`));
|
|
@@ -5045,35 +5108,18 @@
|
|
|
5045
5108
|
}
|
|
5046
5109
|
}
|
|
5047
5110
|
// TODO: [💝] Unite object for expecting amount and format
|
|
5048
|
-
|
|
5049
|
-
|
|
5050
|
-
|
|
5051
|
-
|
|
5052
|
-
|
|
5053
|
-
|
|
5054
|
-
|
|
5055
|
-
|
|
5056
|
-
|
|
5057
|
-
throw new ExpectError(spaceTrim.spaceTrim((block) => `
|
|
5058
|
-
Expected valid JSON string
|
|
5059
|
-
|
|
5060
|
-
${block(
|
|
5061
|
-
/*<- Note: No need for `pipelineIdentification`, it will be catched and added later */ '')}
|
|
5062
|
-
`));
|
|
5063
|
-
}
|
|
5064
|
-
}
|
|
5065
|
-
}
|
|
5066
|
-
else {
|
|
5067
|
-
throw new UnexpectedError(spaceTrim.spaceTrim((block) => `
|
|
5068
|
-
Unknown format "${task.format}"
|
|
5069
|
-
|
|
5070
|
-
${block(pipelineIdentification)}
|
|
5071
|
-
`));
|
|
5111
|
+
// Use the common validation function for both format and expectations
|
|
5112
|
+
if (task.format || task.expectations) {
|
|
5113
|
+
const validationResult = validatePromptResult({
|
|
5114
|
+
resultString: $ongoingTaskResult.$resultString || '',
|
|
5115
|
+
expectations: task.expectations,
|
|
5116
|
+
format: task.format,
|
|
5117
|
+
});
|
|
5118
|
+
if (!validationResult.isValid) {
|
|
5119
|
+
throw validationResult.error;
|
|
5072
5120
|
}
|
|
5073
|
-
|
|
5074
|
-
|
|
5075
|
-
if (task.expectations) {
|
|
5076
|
-
checkExpectations(task.expectations, $ongoingTaskResult.$resultString || '');
|
|
5121
|
+
// Update the result string in case format processing modified it (e.g., JSON extraction)
|
|
5122
|
+
$ongoingTaskResult.$resultString = validationResult.processedResultString;
|
|
5077
5123
|
}
|
|
5078
5124
|
break attempts;
|
|
5079
5125
|
}
|
|
@@ -5082,6 +5128,15 @@
|
|
|
5082
5128
|
throw error;
|
|
5083
5129
|
}
|
|
5084
5130
|
$ongoingTaskResult.$expectError = error;
|
|
5131
|
+
// Store each failed attempt
|
|
5132
|
+
if (!Array.isArray($ongoingTaskResult.$failedResults)) {
|
|
5133
|
+
$ongoingTaskResult.$failedResults = [];
|
|
5134
|
+
}
|
|
5135
|
+
$ongoingTaskResult.$failedResults.push({
|
|
5136
|
+
attemptIndex,
|
|
5137
|
+
result: $ongoingTaskResult.$resultString,
|
|
5138
|
+
error: error,
|
|
5139
|
+
});
|
|
5085
5140
|
}
|
|
5086
5141
|
finally {
|
|
5087
5142
|
if (!isJokerAttempt &&
|
|
@@ -5103,35 +5158,41 @@
|
|
|
5103
5158
|
});
|
|
5104
5159
|
}
|
|
5105
5160
|
}
|
|
5106
|
-
if ($ongoingTaskResult.$expectError !== null &&
|
|
5161
|
+
if ($ongoingTaskResult.$expectError !== null && attemptIndex === maxAttempts - 1) {
|
|
5162
|
+
// Note: Create a summary of all failures
|
|
5163
|
+
const failuresSummary = $ongoingTaskResult.$failedResults
|
|
5164
|
+
.map((failure) => spaceTrim.spaceTrim((block) => {
|
|
5165
|
+
var _a, _b;
|
|
5166
|
+
return `
|
|
5167
|
+
Attempt ${failure.attemptIndex + 1}:
|
|
5168
|
+
Error ${((_a = failure.error) === null || _a === void 0 ? void 0 : _a.name) || ''}:
|
|
5169
|
+
${block((_b = failure.error) === null || _b === void 0 ? void 0 : _b.message.split('\n').map((line) => `> ${line}`).join('\n'))}
|
|
5170
|
+
|
|
5171
|
+
Result:
|
|
5172
|
+
${block(failure.result === null
|
|
5173
|
+
? 'null'
|
|
5174
|
+
: spaceTrim.spaceTrim(failure.result)
|
|
5175
|
+
.split('\n')
|
|
5176
|
+
.map((line) => `> ${line}`)
|
|
5177
|
+
.join('\n'))}
|
|
5178
|
+
`;
|
|
5179
|
+
}))
|
|
5180
|
+
.join('\n\n---\n\n');
|
|
5107
5181
|
throw new PipelineExecutionError(spaceTrim.spaceTrim((block) => {
|
|
5108
|
-
var _a
|
|
5182
|
+
var _a;
|
|
5109
5183
|
return `
|
|
5110
5184
|
LLM execution failed ${maxExecutionAttempts}x
|
|
5111
5185
|
|
|
5112
5186
|
${block(pipelineIdentification)}
|
|
5113
5187
|
|
|
5114
|
-
---
|
|
5115
5188
|
The Prompt:
|
|
5116
5189
|
${block((((_a = $ongoingTaskResult.$prompt) === null || _a === void 0 ? void 0 : _a.content) || '')
|
|
5117
5190
|
.split('\n')
|
|
5118
5191
|
.map((line) => `> ${line}`)
|
|
5119
5192
|
.join('\n'))}
|
|
5120
5193
|
|
|
5121
|
-
|
|
5122
|
-
${block(
|
|
5123
|
-
.split('\n')
|
|
5124
|
-
.map((line) => `> ${line}`)
|
|
5125
|
-
.join('\n'))}
|
|
5126
|
-
|
|
5127
|
-
Last result:
|
|
5128
|
-
${block($ongoingTaskResult.$resultString === null
|
|
5129
|
-
? 'null'
|
|
5130
|
-
: spaceTrim.spaceTrim($ongoingTaskResult.$resultString)
|
|
5131
|
-
.split('\n')
|
|
5132
|
-
.map((line) => `> ${line}`)
|
|
5133
|
-
.join('\n'))}
|
|
5134
|
-
---
|
|
5194
|
+
All Failed Attempts:
|
|
5195
|
+
${block(failuresSummary)}
|
|
5135
5196
|
`;
|
|
5136
5197
|
}));
|
|
5137
5198
|
}
|
|
@@ -5351,10 +5412,10 @@
|
|
|
5351
5412
|
*/
|
|
5352
5413
|
async function getKnowledgeForTask(options) {
|
|
5353
5414
|
const { tools, preparedPipeline, task, parameters } = options;
|
|
5354
|
-
const
|
|
5355
|
-
const
|
|
5415
|
+
const firstKnowledgePiece = preparedPipeline.knowledgePieces[0];
|
|
5416
|
+
const firstKnowledgeIndex = firstKnowledgePiece === null || firstKnowledgePiece === void 0 ? void 0 : firstKnowledgePiece.index[0];
|
|
5356
5417
|
// <- TODO: Do not use just first knowledge piece and first index to determine embedding model, use also keyword search
|
|
5357
|
-
if (
|
|
5418
|
+
if (firstKnowledgePiece === undefined || firstKnowledgeIndex === undefined) {
|
|
5358
5419
|
return ''; // <- Note: Np knowledge present, return empty string
|
|
5359
5420
|
}
|
|
5360
5421
|
try {
|
|
@@ -5365,7 +5426,7 @@
|
|
|
5365
5426
|
title: 'Knowledge Search',
|
|
5366
5427
|
modelRequirements: {
|
|
5367
5428
|
modelVariant: 'EMBEDDING',
|
|
5368
|
-
modelName:
|
|
5429
|
+
modelName: firstKnowledgeIndex.modelName,
|
|
5369
5430
|
},
|
|
5370
5431
|
content: task.content,
|
|
5371
5432
|
parameters,
|
|
@@ -5373,7 +5434,7 @@
|
|
|
5373
5434
|
const taskEmbeddingResult = await llmTools.callEmbeddingModel(taskEmbeddingPrompt);
|
|
5374
5435
|
const knowledgePiecesWithRelevance = preparedPipeline.knowledgePieces.map((knowledgePiece) => {
|
|
5375
5436
|
const { index } = knowledgePiece;
|
|
5376
|
-
const knowledgePieceIndex = index.find((i) => i.modelName ===
|
|
5437
|
+
const knowledgePieceIndex = index.find((i) => i.modelName === firstKnowledgeIndex.modelName);
|
|
5377
5438
|
// <- TODO: Do not use just first knowledge piece and first index to determine embedding model
|
|
5378
5439
|
if (knowledgePieceIndex === undefined) {
|
|
5379
5440
|
return {
|
|
@@ -5394,8 +5455,8 @@
|
|
|
5394
5455
|
task,
|
|
5395
5456
|
taskEmbeddingPrompt,
|
|
5396
5457
|
taskEmbeddingResult,
|
|
5397
|
-
|
|
5398
|
-
|
|
5458
|
+
firstKnowledgePiece,
|
|
5459
|
+
firstKnowledgeIndex,
|
|
5399
5460
|
knowledgePiecesWithRelevance,
|
|
5400
5461
|
knowledgePiecesSorted,
|
|
5401
5462
|
knowledgePiecesLimited,
|
|
@@ -5464,7 +5525,7 @@
|
|
|
5464
5525
|
* @private internal utility of `createPipelineExecutor`
|
|
5465
5526
|
*/
|
|
5466
5527
|
async function executeTask(options) {
|
|
5467
|
-
const { currentTask, preparedPipeline, parametersToPass, tools, onProgress, $executionReport, pipelineIdentification, maxExecutionAttempts, maxParallelCount, csvSettings, isVerbose, rootDirname, cacheDirname, intermediateFilesStrategy, isAutoInstalled,
|
|
5528
|
+
const { currentTask, preparedPipeline, parametersToPass, tools, onProgress, $executionReport, pipelineIdentification, maxExecutionAttempts, maxParallelCount, csvSettings, isVerbose, rootDirname, cacheDirname, intermediateFilesStrategy, isAutoInstalled, isNotPreparedWarningSuppressed, } = options;
|
|
5468
5529
|
const priority = preparedPipeline.tasks.length - preparedPipeline.tasks.indexOf(currentTask);
|
|
5469
5530
|
// Note: Check consistency of used and dependent parameters which was also done in `validatePipeline`, but it’s good to doublecheck
|
|
5470
5531
|
const usedParameterNames = extractParameterNamesFromTask(currentTask);
|
|
@@ -5552,7 +5613,7 @@
|
|
|
5552
5613
|
cacheDirname,
|
|
5553
5614
|
intermediateFilesStrategy,
|
|
5554
5615
|
isAutoInstalled,
|
|
5555
|
-
|
|
5616
|
+
isNotPreparedWarningSuppressed,
|
|
5556
5617
|
});
|
|
5557
5618
|
await onProgress({
|
|
5558
5619
|
outputParameters: {
|
|
@@ -5647,7 +5708,7 @@
|
|
|
5647
5708
|
}
|
|
5648
5709
|
return exportJson({
|
|
5649
5710
|
name: `executionReport`,
|
|
5650
|
-
message: `
|
|
5711
|
+
message: `Unsuccessful PipelineExecutorResult (with missing parameter {${parameter.name}}) PipelineExecutorResult`,
|
|
5651
5712
|
order: [],
|
|
5652
5713
|
value: {
|
|
5653
5714
|
isSuccessful: false,
|
|
@@ -5684,7 +5745,7 @@
|
|
|
5684
5745
|
return exportJson({
|
|
5685
5746
|
name: 'pipelineExecutorResult',
|
|
5686
5747
|
message: spaceTrim.spaceTrim((block) => `
|
|
5687
|
-
|
|
5748
|
+
Unsuccessful PipelineExecutorResult (with extra parameter {${parameter.name}}) PipelineExecutorResult
|
|
5688
5749
|
|
|
5689
5750
|
${block(pipelineIdentification)}
|
|
5690
5751
|
`),
|
|
@@ -5825,7 +5886,7 @@
|
|
|
5825
5886
|
}
|
|
5826
5887
|
return exportJson({
|
|
5827
5888
|
name: 'pipelineExecutorResult',
|
|
5828
|
-
message: `
|
|
5889
|
+
message: `Unsuccessful PipelineExecutorResult (with misc errors) PipelineExecutorResult`,
|
|
5829
5890
|
order: [],
|
|
5830
5891
|
value: {
|
|
5831
5892
|
isSuccessful: false,
|
|
@@ -5876,7 +5937,7 @@
|
|
|
5876
5937
|
* @public exported from `@promptbook/core`
|
|
5877
5938
|
*/
|
|
5878
5939
|
function createPipelineExecutor(options) {
|
|
5879
|
-
const { pipeline, tools, maxExecutionAttempts = DEFAULT_MAX_EXECUTION_ATTEMPTS, maxParallelCount = DEFAULT_MAX_PARALLEL_COUNT, csvSettings = DEFAULT_CSV_SETTINGS, isVerbose = DEFAULT_IS_VERBOSE,
|
|
5940
|
+
const { pipeline, tools, maxExecutionAttempts = DEFAULT_MAX_EXECUTION_ATTEMPTS, maxParallelCount = DEFAULT_MAX_PARALLEL_COUNT, csvSettings = DEFAULT_CSV_SETTINGS, isVerbose = DEFAULT_IS_VERBOSE, isNotPreparedWarningSuppressed = false, cacheDirname = DEFAULT_SCRAPE_CACHE_DIRNAME, intermediateFilesStrategy = DEFAULT_INTERMEDIATE_FILES_STRATEGY, isAutoInstalled = DEFAULT_IS_AUTO_INSTALLED, rootDirname = null, } = options;
|
|
5880
5941
|
validatePipeline(pipeline);
|
|
5881
5942
|
const pipelineIdentification = (() => {
|
|
5882
5943
|
// Note: This is a 😐 implementation of [🚞]
|
|
@@ -5893,7 +5954,7 @@
|
|
|
5893
5954
|
if (isPipelinePrepared(pipeline)) {
|
|
5894
5955
|
preparedPipeline = pipeline;
|
|
5895
5956
|
}
|
|
5896
|
-
else if (
|
|
5957
|
+
else if (isNotPreparedWarningSuppressed !== true) {
|
|
5897
5958
|
console.warn(spaceTrim.spaceTrim((block) => `
|
|
5898
5959
|
Pipeline is not prepared
|
|
5899
5960
|
|
|
@@ -5926,7 +5987,7 @@
|
|
|
5926
5987
|
maxParallelCount,
|
|
5927
5988
|
csvSettings,
|
|
5928
5989
|
isVerbose,
|
|
5929
|
-
|
|
5990
|
+
isNotPreparedWarningSuppressed,
|
|
5930
5991
|
rootDirname,
|
|
5931
5992
|
cacheDirname,
|
|
5932
5993
|
intermediateFilesStrategy,
|
|
@@ -5935,7 +5996,7 @@
|
|
|
5935
5996
|
assertsError(error);
|
|
5936
5997
|
return exportJson({
|
|
5937
5998
|
name: 'pipelineExecutorResult',
|
|
5938
|
-
message: `
|
|
5999
|
+
message: `Unsuccessful PipelineExecutorResult, last catch`,
|
|
5939
6000
|
order: [],
|
|
5940
6001
|
value: {
|
|
5941
6002
|
isSuccessful: false,
|
|
@@ -5973,7 +6034,7 @@
|
|
|
5973
6034
|
className: 'MarkdownScraper',
|
|
5974
6035
|
mimeTypes: ['text/markdown', 'text/plain'],
|
|
5975
6036
|
documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
|
|
5976
|
-
|
|
6037
|
+
isAvailableInBrowser: true,
|
|
5977
6038
|
// <- Note: [🌏] This is the only scraper which makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
|
|
5978
6039
|
requiredExecutables: [],
|
|
5979
6040
|
}); /* <- Note: [🤛] */
|
|
@@ -5983,7 +6044,7 @@
|
|
|
5983
6044
|
* Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
|
|
5984
6045
|
*
|
|
5985
6046
|
* @public exported from `@promptbook/core`
|
|
5986
|
-
* @public exported from `@promptbook/
|
|
6047
|
+
* @public exported from `@promptbook/wizard`
|
|
5987
6048
|
* @public exported from `@promptbook/cli`
|
|
5988
6049
|
*/
|
|
5989
6050
|
$scrapersMetadataRegister.register(markdownScraperMetadata);
|
|
@@ -6082,7 +6143,7 @@
|
|
|
6082
6143
|
}
|
|
6083
6144
|
// ---
|
|
6084
6145
|
if (!llmTools.callEmbeddingModel) {
|
|
6085
|
-
// TODO: [🟥] Detect browser / node and make it
|
|
6146
|
+
// TODO: [🟥] Detect browser / node and make it colorful
|
|
6086
6147
|
console.error('No callEmbeddingModel function provided');
|
|
6087
6148
|
}
|
|
6088
6149
|
else {
|
|
@@ -6108,7 +6169,7 @@
|
|
|
6108
6169
|
if (!(error instanceof PipelineExecutionError)) {
|
|
6109
6170
|
throw error;
|
|
6110
6171
|
}
|
|
6111
|
-
// TODO: [🟥] Detect browser / node and make it
|
|
6172
|
+
// TODO: [🟥] Detect browser / node and make it colorful
|
|
6112
6173
|
console.error(error, "<- Note: This error is not critical to prepare the pipeline, just knowledge pieces won't have embeddings");
|
|
6113
6174
|
}
|
|
6114
6175
|
return {
|
|
@@ -6144,7 +6205,7 @@
|
|
|
6144
6205
|
// 'application/vnd.openxmlformats-officedocument.wordprocessingml.document',
|
|
6145
6206
|
],
|
|
6146
6207
|
documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
|
|
6147
|
-
|
|
6208
|
+
isAvailableInBrowser: false,
|
|
6148
6209
|
// <- Note: [🌏] Only `MarkdownScraper` makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
|
|
6149
6210
|
requiredExecutables: [],
|
|
6150
6211
|
}); /* <- Note: [🤛] */
|
|
@@ -6154,7 +6215,7 @@
|
|
|
6154
6215
|
* Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
|
|
6155
6216
|
*
|
|
6156
6217
|
* @public exported from `@promptbook/core`
|
|
6157
|
-
* @public exported from `@promptbook/
|
|
6218
|
+
* @public exported from `@promptbook/wizard`
|
|
6158
6219
|
* @public exported from `@promptbook/cli`
|
|
6159
6220
|
*/
|
|
6160
6221
|
$scrapersMetadataRegister.register(markitdownScraperMetadata);
|
|
@@ -6291,7 +6352,7 @@
|
|
|
6291
6352
|
*
|
|
6292
6353
|
* @public exported from `@promptbook/markitdown`
|
|
6293
6354
|
* @public exported from `@promptbook/pdf`
|
|
6294
|
-
* @public exported from `@promptbook/
|
|
6355
|
+
* @public exported from `@promptbook/wizard`
|
|
6295
6356
|
* @public exported from `@promptbook/cli`
|
|
6296
6357
|
*/
|
|
6297
6358
|
const _MarkitdownScraperRegistration = $scrapersRegister.register(createMarkitdownScraper);
|
|
@@ -6312,7 +6373,7 @@
|
|
|
6312
6373
|
className: 'PdfScraper',
|
|
6313
6374
|
mimeTypes: ['application/pdf-DISABLED'],
|
|
6314
6375
|
documentationUrl: 'https://github.com/webgptorg/promptbook/discussions/@@',
|
|
6315
|
-
|
|
6376
|
+
isAvailableInBrowser: false,
|
|
6316
6377
|
// <- Note: [🌏] Only `MarkdownScraper` makes sense to be available in the browser, for scraping non-markdown sources in the browser use a remote server
|
|
6317
6378
|
requiredExecutables: [],
|
|
6318
6379
|
}); /* <- Note: [🤛] */
|
|
@@ -6322,7 +6383,7 @@
|
|
|
6322
6383
|
* Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
|
|
6323
6384
|
*
|
|
6324
6385
|
* @public exported from `@promptbook/core`
|
|
6325
|
-
* @public exported from `@promptbook/
|
|
6386
|
+
* @public exported from `@promptbook/wizard`
|
|
6326
6387
|
* @public exported from `@promptbook/cli`
|
|
6327
6388
|
*/
|
|
6328
6389
|
$scrapersMetadataRegister.register(pdfScraperMetadata);
|
|
@@ -6397,7 +6458,7 @@
|
|
|
6397
6458
|
* Warning: This is not useful for the end user, it is just a side effect of the mechanism that handles all available known scrapers
|
|
6398
6459
|
*
|
|
6399
6460
|
* @public exported from `@promptbook/pdf`
|
|
6400
|
-
* @public exported from `@promptbook/
|
|
6461
|
+
* @public exported from `@promptbook/wizard`
|
|
6401
6462
|
* @public exported from `@promptbook/cli`
|
|
6402
6463
|
*/
|
|
6403
6464
|
const _PdfScraperRegistration = $scrapersRegister.register(createPdfScraper);
|